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Abstract 
 

Red Flag Warnings (RFWs) issued by the National Weather Service in the United 

States (U.S.) are an important fire early warning system based on forecasts of critical fire 

weather that foster fire activity including the occurrence of large fires. However, verification 

of RFWs as they relate to fire activity is lacking, thereby limiting means to improve forecasts 

as well as increase value for end-users. We evaluated the efficacy of RFWs as forecasts of 

large fire occurrence for the Northwestern U.S and found favorable performance broadly 

across the area, along with substantial skill and improvement over reference forecasts. We 

further demonstrate that the skill of RFWs is significantly higher for lightning-ignited large 

fires and for forecasts issued during periods of high fuel dryness. The results of this first 

verification study of RFWs lay the groundwork for future efforts towards improving the 

relevance and usefulness of RFWs to better serve the fire community and public.  
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1. Introduction 
 

Wildland fire plays an important role as a natural and increasingly anthropogenic 

disturbance found in most vegetated ecosystems globally (Bowman et al., 2009) and generally 

serves to promote healthy, resilient landscapes. However, when fire threatens to directly impact 

human life and property, it may be considered hazardous (Moritz et al., 2014), prompting land 

management action to avoid potentially catastrophic consequences. In recent decades, longer 

periods of critical fire weather (Jolly et al., 2015) juxtaposed by human-caused fire activity 

(Balch et al., 2017) have expanded the threat of hazardous fires in the United States (U.S.), 

making land management objectives more difficult and costlier to achieve while also placing 

the safety of fire suppression personnel and the public at greater risk. These effects have been 

demonstrated by recent hazardous fire events in the U.S. (Brewer and Clements, 2020; Nauslar 

et al., 2018; Balch et al., 2018), and are expected to continue or worsen due to anthropogenic 

climate change (Barbero et al., 2015; Moritz et al., 2014) and the growth of wildland-urban 

interfaces (Radeloff et al., 2018).  

Many warning systems have been developed for fire hazards (de Groot et al., 2014). 

Comprehensive fire danger systems integrate weather, fuels, and climate information to 

generate daily predictions regarding the fire environment and fire behavior characteristics 

(Deeming et al., 1983; Van Wagner, 1987). These outputs are generally considered in fire 

management plans as actionable criteria that prompt some prevention, preparedness, or 

resource allocation decision (de Groot et al., 2014) and have seen widespread adoption in the 

wildland fire community. Novel systems, such as the Severe Fire Danger Index and Santa Ana 

Wind Threat Index, leverage advancements in gridded meteorological forecast data along with 

fuels and fire behavior information to provide local-to-regional predictions of fire danger (Jolly 

et al., 2019; Rolinski et al., 2016), while other systems predict fire danger directly from fire 

weather conditions independent of fuels (Srock et al., 2018, Erickson et al., 2016). While these 

systems serve as important tools for understanding hazardous fire risk, many are generated 

independent of real-time human input that may be important for deciphering rapidly changing 

fire environment factors that drive the most extreme fire activity.  

In the U.S., Red Flag Warnings (RFWs) issued by meteorologists at the National 

Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS), are 
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forecasts of critical fire weather conditions, that, in the presence of sufficiently dry fuels, could 

lead to abundant new ignitions and/or rapid spread and growth on existing fires (Figure 1.1) 

(NWS, 2017). Forecasters at local weather forecast offices (WFOs) issue RFWs on short 

timescales (imminent to 48-hr lead times) and consider numerous quantitative and qualitative 

meteorological parameters (e.g. relative humidity, wind speed, atmospheric stability, dry 

frontal passage, lightning) along with some measure of fuel dryness. These parameters are 

considered as criteria for RFW issuance (Table 1.2) based on the expert opinion and analyses 

at WFOs and vary geographically by sub-regional fire weather zones (FWZs). Although this 

arrangement allows for greater flexibility to accommodate local conditions most conducive to 

area fire initiation and growth, it has resulted in many different criteria across FWZs, 

complicating the messaging intent of these forecasts. Further, these numerous criteria have 

limited efforts to verify the performance of RFWs, and no peer-reviewed studies could be 

located that would otherwise give information on possible refinements to these forecasts.  

RFWs are similar to other NWS early warning products for natural hazards (e.g. 

tornadoes, severe thunderstorms, flash floods) as they are issued for high-impact events that 

threaten life and property. Many verification studies have been conducted on the performance 

of these other hazard forecasts to increase the quality of the system and value to end-users 

(Brooks and Correia, 2018; Obermeier and Anderson, 2014; Clark et al., 2014; McGovern et 

al., 2014). The NWS maintains internal verification statistics for RFWs, but these are 

computed for weather that could lead to hazardous fires, not actually the occurrence of  

hazardous fires (unlike warnings for tornadoes or flash floods). It is useful, however, to explore 

the performance of RFWs as direct forecasts of hazardous fire activity to assess the ability of 

RFWs to discriminate those fires which have the greatest effect on resources and human values, 

and thus are of most concern to end-users.   
Here, we consider occurrences of new large fires (LFs) as hazardous fires and treat 

RFWs as dichotomous forecasts of these fire occurrences across subregions of the 

Northwestern U.S.. Since LF occurrence is complicated by many non-meteorological factors, 

we examine how verification of RFW performance varies across different LF size thresholds, 

fire causes, and land cover. Finally, we assess how forecast performance varies as a function 

of relative fuel dryness, which while being a criterion considered in many RFWs, is applied 

heterogeneously across zones. This study provides a first known effort to evaluate the added 
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value of RFWs for actualized LF activity that is of key importance for fire suppression. Results 

of this study may help to both refine RFWs and identify reasons why forecast performance and 

skill varies across different regions and LF characteristics. 
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2. Materials and Methods 
 

2.1 Study Location 

The study area is composed of the county warning areas of eight NWS WFOs of the 

northwest contiguous U.S.: Seattle (SEW), Spokane (OTX), Missoula (MSO), Pocatello (PIH), 

Boise (BOI), Medford (MFR), Pendleton (PDT), and Portland (PQR) (Figure 2.1). This covers 

a diverse set of regions we herein refer to as the Northwest, including the coastal areas of 

Washington and Oregon, the Cascade Mountains and Blue Mountains, much of the Northern 

Rockies, the Columbia Basin, and portions of the Great Basin. Fire season in the Northwest is 

generally shorter and more well-defined compared to other fire-prone regions across the U.S. 

(Werth et al., 2016), with ~86.1% of all wildfires and ~99.7% of total burned area occurring 

in the months of June - October during 2006 - 2015. Across the region, the number of lightning 

ignited fires and human ignited fires is nearly the same, although lightning fires comprise 

~83.6% of total burned area while human ignited fires account for only ~16.42% of total 

burned area (Short, 2017). Smaller, generally human ignited fires are more commonly found 

west of the Cascade Mountains due to less lightning frequency (Agee, 1993; Abatzoglou et al., 

2016) and a larger wildland-urban interface component (Balch et al., 2017).  

 

2.2 Datasets 

 Spatial data of RFWs were obtained from the Iowa State University Iowa Environmental 

Mesonet (IEM) archive of NWS watches and warnings (IEM, 2019). This dataset includes the 

WFO, FWZ, issuance date/time, and expiration date/time with each warning. We simplified 

RFWs that span multiple days into records for each day such that if a RFW was active for any 

portion of a calendar day it was considered a RFW day for that FWZ. The resulting dataset 

contains 8,940 RFW forecast days during 2006–2015. 

 Point-location fire records for the same 10-year period were obtained from the Fire 

Program Analysis fire occurrence database (Short, 2017). This data includes fire discovery 

date, final fire size, and fire cause. Records were reduced to the study area resulting in 64,122 

fires that were assigned to the corresponding FWZ that existed at the time of fire discovery 

date. This latter point is important as FWZ boundaries have changed throughout the entire 

period due to anticipated improvements in the quality of forecasts and ability to adequately 
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warn affected populations (NWS, 2018). We designate LFs for each FWZ as the largest 10% 

of fires within each zone per Nagy et al. (2018), but also assess the sensitivity of results to 

choice of fire size by considering the largest 5% and 20% of fires. The resulting number of 

LFs across the entire study region were 10,402, 5,341, and 2,775 for when fire sizes were >= 

80th, 90th, 95th percentile sizes, respectively. For the purpose of tabulating LFs, we assumed 

that fires reached size thresholds on the date of discovery as detailed fire progression 

information was unavailable.  

 We additionally explore how RFW performance varies by fire cause, land cover, and a 

measure of relative fuel dryness. These subsequent tests are constrained to LFs above the 90th 

percentile size threshold. To more effectively determine performance for just human- and 

lightning-caused fires, we eliminated those which had an ‘unknown’ cause, leaving 2,309 

lightning-caused and 2,890 human-caused LFs. However, we retained these ‘unknown’ caused 

fires in the other tests to maximize the frequency of events available for computing 

performance statistics. We then classified LFs as burning primarily in forested lands and those 

primarily burning in non-forested lands using the 0.5 km MODIS-based global land cover 

climatology dataset (Broxton et al., 2014). Due to the absence of fire perimeters, we 

approximated perimeters by assuming a circular fire with an area equivalent to the final fire 

size. Fires which had >50% pixels classified as forested were assigned as such and those <50% 

were assigned as non-forested vegetation. A total of 3,073 LFs were classified as forested while 

the remaining 2,466 were considered non-forested.  

 Lastly, energy release component (ERC) percentile values were assigned to each fire using 

co-located ~4-km gridded data from gridMET (Abatzoglou, 2013) to represent fuel dryness. 

These percentiles were calculated by pooling data for the entire calendar year during the 2006–

2015 period. ERC is defined as the total available energy within the flaming front of a fire 

calculated from the U.S. National Fire Danger Rating System, here using a commonly used 

fuel model (dense conifer). ERC is often used in fire business decision-making as it is a good 

measure of cumulative fire danger as it gives higher weighting to heavier fuel types that tend 

to reflect seasonal drying trends (Freeborn et al., 2015), yet does not consider the short-term 

effects of wind in daily fluctuations of fire weather. Several studies have shown a strong 

relationship between interannual fire activity and ERC (Abatzoglou and Kolden, 2013; 

Barbero et al., 2014). Most commonly, the 90th percentile ERC threshold is used to represent 
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high fire danger across particular geographic regions (Heinsch et al., 2009; Dalton et al., 2015, 

Jolly et al., 2019), and we adopt this threshold in our analysis. A total of 2,160 LFs occurred 

with ERC >= 90th percentile while 3,307 occurred when ERC < 90th percentile. 

 

2.3 Analysis Methods 

To quantify forecast performance, we treated RFWs as dichotomous forecasts for new 

LFs and constructed a contingency table that shows the frequency of forecasts and LF 

occurrences. The contingency table is a standard forecast verification tool used to compute 

performance statistics of nonprobabilistic forecasts of discrete predictands (Murphy and 

Winkler, 1987; Doswell et al., 1990; Wilks, 2006) and has the general form:  

 

 
Observed Event? 

Yes No 

Forecast Issued? 
Yes Correct Positive (a) False Alarm (b) 

No Miss (c) Correct Negative (d)* 

                     * Not calculated  

 

Here, correct positive forecasts (i.e., hits) are RFWs where a new LF occurred on or within 

one day following the forecast in the same FWZ. This 2-day period was used to accommodate 

typical delays in fire reporting and is consistent with other studies that consider meteorological 

conditions immediate to fire occurrence using LF databases (Abatzoglou et al., 2018). If a 

RFW was issued but no LFs were observed coincident with or one day after the forecast date, 

the forecast is classified as a false alarm. A forecast is classified as a miss when there was no 

forecast issued for a FWZ during the 2-day period but a LF occurred. Since RFWs are forecasts 

of rare events (similar to tornadoes, flash floods) calculating correct negative forecasts are of 

little value due to the overwhelming amount of days where no event was observed or forecast 

(e.g., Clark et al., 2014; Obermeier and Anderson, 2014; Vaughan et al., 2017). Thus, we omit 

correct negatives in our analysis (Mason, 2003). An example of this classification scheme for 

a particular day is given in Figure 2.2. On 10 August 2015, 32 RFWs (shown as hits or false 

alarms) were issued and 90th percentile sized LFs which occurred on 10–11 August were used 
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to classify forecasts. The resulting number of hits, misses, and false alarms for this RFW day 

were 11, 11, and 21, respectively.  

From the contingency table, we computed the following performance measures: 

probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI). The 

relevant equations and definitions of these metrics are listed in Table 2.1. These measures are 

frequently reported together in the case of rare event forecasts because of a shared lack of 

consideration given to correct negatives (Schaefer, 1990). Further, if we consider the formulae 

in Table 2.1, we can rearrange terms to show that CSI is a nonlinear function of POD and FAR 

given by: 

 

𝐶𝑆𝐼	 = [(𝑃𝑂𝐷)!1	+	(1 − 𝐹𝐴𝑅)!1 − 1]!1 
 

For rare events such as LFs, it is important to note that values will seldom approach CSI = 1 

(and may instead be much closer to CSI = 0) due to the decreased frequency of events and 

increased frequency of times where no event was forecast or observed.  

Most commonly, forecast systems are evaluated against persistence forecasts, random 

forecasts, or climatological forecasts by determining the ‘skill score’ of the compared forecasts 

for a particular performance metric (Wilks, 2006). These skill scores provide an analytic guide 

to measure the added value of a forecast relative to a reference forecast. In its most generic 

form, the skill score with respect to some performance metric (M) is defined as: 

 

𝑀"" 	= 	
𝑀#$%&'()* 	− 	𝑀%&#&%&+'&

𝑀,&%#&'* 	− 	𝑀%&#&%&+'&
	 

 

where 𝑀!"#$%&'( 	is the performance metric (such as POD or CSI) of the forecast system being 

evaluated, 𝑀#$!$#$)%$ is the same metric but for the reference forecast, and 𝑀*$#!$%( is the 

scalar value of a perfect forecast for that particular metric (for example, 𝑃𝑂𝐷*$#!$%( = 1 if 

POD was being evaluated). If 𝑀++ 	> 	0, improvement over the reference forecast can be 

inferred.  

Since RFWs and LF occurrence within the study area are generally confined to the 

summer months, reference forecasts need to preserve this seasonality for fair comparisons. 
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Climatological and persistence forecasts are commonly used as reference forecasts for skill 

score calculations, particularly for continuous variables (Potts, 2003; Mason, 2004; Warner, 

2011). For our case, a persistence-based reference would not be suitable given the serial 

correlation of these forecasts from one day to the next that would make it difficult to separate 

skill of the actual forecasts from the reference (Mittermaier, 2008). A randomly generated 

forecast provides a reference completely independent of the observations (a truly no-skill 

forecast) but sacrifices the seasonal relationship we are trying to preserve. Thus, we define a 

‘random climatology’ forecast to achieve an independent set of reference forecasts that retain 

a similar seasonal distribution to the actual RFWs. To achieve this, a resampling procedure 

was implemented where actual RFW days are resampled for any date within  ± 15 days among 

all years of the study period resulting in a reference set of the same size. These reference 

forecasts were then assessed against the observations using the performance metrics and skill 

scores were computed against the actual forecasts. This process was repeated one hundred 

times to obtain a robust sample of statistics and skill scores and median values were selected 

for presentation in the results. To test the statistical significance of RFW forecast skill versus 

the reference, we reject the null hypothesis of RFW skill being the same as the reference 

forecast if 95% of the sample skill scores are greater than zero.  

We also report results in terms of relative change between the RFWs and reference as 

another measure of skill since skill scores may be unintuitive to fire managers and other readers 

external to the weather forecasting community. This formula is given as:  

 

 𝑅𝑒𝑙. 𝐶ℎ𝑎𝑛𝑔𝑒	(%) 	= 	-!"#$%&'(	!	-#$!$#$)%$
	-#$!$#$)%$

	× 	100 

 

In addition to reporting performance metrics and skill for each WFO, we compute area-wide 

statistics by aggregating the number of hits, misses, and false alarms from each WFO into one 

contingency table representing all eight offices.      
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3. Results 
 

3.1 Performance as forecasts of LF occurrence 

 We found that RFWs exhibited skill as forecasts of LF occurrence across WFOs in the 

Northwestern US (Figure 3.1). Area-wide POD was 0.29, while PODSS was 0.18 and POD 

relative improvement was 124.1% over the reference forecast. Six of the eight WFOs 

demonstrated >100% POD relative improvements. POD was the lowest for two offices 

covering the populated and mesic portions of the study area (SEW and PQR), although relative 

improvements for capturing LF occurrence in these areas were high.  

  

3.2 Fire size  

 Area-wide POD increased with larger fire size thresholds, although this was countered 

by increased FAR values due to decreasing event frequency (Table 3.1). Similarly, area-wide 

skill scores showed improved PODSS from 0.13 for 80th percentile sized LFs to 0.23 for 95th 

percentile sized LFs. The area-wide relative improvement of POD increased from 99.4% to 

138.2% as size thresholds increased. Differences in POD as a function of fire size were variable 

among the WFOs; across all fire size thresholds, the highest performance was shown for 

regions with the largest fire sizes (BOI, PIH, and PDT) while notably lower performance was 

observed for regions west of the Cascades Mountains (PQR and SEW). Five WFOs 

demonstrated relative improvements over the reference forecast > 100% regardless of fire size 

threshold.  

 

3.3 Fire cause 

 Area-wide POD, PODSS, and relative improvement of POD were notably higher for 

lightning-caused LFs than for human-caused LFs (Figure 3.2). For example, the area-wide 

POD was 0.46 for lightning-caused LFs and 0.17 for human-caused LFs. Further, PODSS was  

0.34 for lightning-caused LFs and only 0.08 for human-caused LFs. While skill scores for 

human-caused LFs were low, they showed substantial relative improvement (~78.4%) above 

the reference.   

Similar to area-wide results, we generally found higher skill for lightning-caused fires 

than human-caused fires across WFOs. Figure 3.2b shows this as points for each WFO where 
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higher POD and lower FAR pairs result in increased CSI values. WFOs with the fewest 

lightning-caused LFs (PIH, PQR, and SEW) showed the lowest POD and highest FAR. 

Although more human-caused LFs occurred across the region, FAR values for these fires were 

higher than lightning-caused LFs for five of the eight WFOs. Skill scores demonstrated 

improvement for both cause types across regions, although the improvement among human-

caused fires was low. 

 

3.4 Land cover type  

 We found little discernible difference in performance and skill scores calculated for 

LFs stratified by forest and non-forest land cover (Table 3.2). Area-wide POD was slightly 

higher for non-forested fires but FAR and CSI were nearly the same. Both land cover types 

showed area-wide relative improvement >125% above the reference. We found statistically 

significant skill for all RFWs by land cover except for non-forested LFs in SEW. 

 

3.5 Fire danger  

 RFW forecasts conditioned on being coincident with high fire danger (ERC >= 90th 

percentile, area-wide POD of 0.42) exhibited superior skill than RFW forecasts coincident with 

lesser fire danger (ERC < 90th percentile, area-wide POD of 0.23) (Figure 3.3a). Further, area-

wide PODSS coincident with high fire danger  was nearly double that of RFW coincident with 

lesser fire danger. Area-wide POD relative improvement over the reference was 142.1% for 

LFs with high fire danger and 116.2% for those LFs with lesser fire danger.  

POD and PODSS were ubiquitously higher for RFWs coincident with high fire danger 

than lesser fire danger across WFOs (Figure 3.3a). Similar to findings for differences in skill 

metrics between human- and lightning-caused fires, we show improvements in POD, FAR, 

and CSI between RFWs issued during lesser fire danger and during high fire danger across 

WFOs (Figure 3.3b). For example, we find a POD of 0.61 at for the Pendleton WFO during 

high fire danger, which is well higher than the POD during lesser fire danger (0.34) and showed 

a 195% improvement over the reference forecast. We found statistically significant skill for all 

RFWs conditioned by fire danger except for RFWs issued by PIH coincident with  ERC < 90th 

percentile.  
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4. Discussion 
 

4.1 Performance in the context of rare event forecasting 

We found that RFWs have skill as forecasts for the occurrence of new LFs across the 

Northwestern US and further demonstrate substantial improvement from reference forecasts 

(Figure 4.1). This is an important finding that indicates the added value RFWs provide to fire 

managers and the public. As was expected, overall performance metrics were low due to the 

rare nature of LFs, and the fact that we constrained our definition of fire activity to new LFs 

rather than also accounting for growth on existing fires or the number of new ignitions. In 

addition, forecasts of high-risk, rare events, are prone to hedging, where the cost of a missed 

forecast exceeds the forecaster’s risk tolerance leading to the issuance of more forecasts and a 

greater number of false alarms (Murphy and Winkler, 1971; Murphy, 1991). Other forecasts 

of high-risk, rare events such as flash floods (Clark et al., 2014) and earthquakes (Holliday et 

al., 2005; Shcherbakov et al., 2010) similarly demonstrate the consequences of hedging and 

lower metrics. By reporting the relative improvement of RFWs alongside skill scores, we 

mitigate biases introduced through hedging and are able to show that forecasts are considerably 

more skillful than the reference forecast.  

 

4.2 Lightning- and human-caused fires   

A majority (55.6%) of LFs across the study area were human-caused. However, the 

performance of RFWs for the occurrence of human-caused LFs was quite low with only one 

WFO having POD > 0.25. Conversely, performance was notably higher for lightning-ignited 

fires with all WFOs having POD > 0.25 and three WFOs having POD > 0.5. The interaction 

between lightning and fire occurrence is well understood (Abatzoglou et al., 2016), although 

there is some debate on which factors are most critical for determining fire ignition potential 

(Nauslar, 2014). Previous research has shown that the presence of dry thunderstorms, low fuel 

moistures, and fuel type impact the ignition efficiency of lightning (Rorig and Ferguson, 1999). 

The probability of dry thunderstorms as agents of fire ignition is often included in the issuance 

of  RFWs. Improvements in dry thunderstorm forecasting and continued research on lightning 

characteristics (e.g., polarity, residence time, and amplitude) for ignition potential (see Shultz 

et al. (2019)) are likely to increase RFW performance for lightning-caused fires.  
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By contrast, RFWs do not explicitly include predictors of human ignitions. The lesser 

skill of RFW for capturing human-caused LFs is consistent with prior research that shows that 

human-caused fires are more difficult to predict (Martínez et al., 2008; Magnussen and Taylor, 

2012) and occur over a more diverse set of fuel moistures and broader period of the year than 

lightning-caused fires (Balch et al., 2017). Other factors beyond fuels, weather, and topography 

tend to influence human-caused ignitions such as road, population, and railroad density, day 

of the week, holidays, and socioeconomic status (Costafreda-Aumedes et al., 2017).  

The issuance of RFWs may alter human activity resulting in degraded skill. RFWs for 

non-lightning events (e.g., hot and dry conditions, high winds) may act as a preventative 

measure for fire managers and the public that reduce the number of new large human-caused 

fires. For example, the issuance of RFWs can promote action by local land agencies to restrict 

campfire usage, limit silvicultural and agricultural burning, and bolster suppression capability 

in the affected areas. Contrarily, there are claims that illegal burners and arsonists may view 

RFWs as a window of opportunity to maximize their efforts, although research suggests this 

may not be well-founded (Mees, 1991). Collectively, these factors highlight reasons for 

reduced performance and skill of RFWs for human-caused fires. More research is needed here 

to discern the efficacy of RFWs in limiting human ignitions.  

 

4.3. Fuel dryness as a prerequisite for RFW issuance 

 We found improved RFW skill for new LFs conditioned on fuel dryness. LFs generally 

occur when fuels are more receptive due to weather and climate drivers (Barbero et al., 2014; 

Abatzoglou et al., 2018) and RFWs are intended to consider some measure of fuel dryness. 

Our results reinforce the added value of RFW forecasts that explicitly integrate objective 

measures of fuel dryness. For this study, we chose ERC because of its representativeness of 

seasonal drying trends and widespread usage by regional fire management, although we 

acknowledge that other fire danger indices may be more appropriate for different geographic 

areas or times of the year depending on the dominant drivers of fire activity for the expected 

event. For example, in western Washington, downslope wind events that bring hot and dry 

winds from the Columbia Basin across the Cascades can occur throughout the year and are a 

known critical fire weather pattern when they co-occur with dry fuels (Brewer et al., 2012; 

Werth et al., 2016). These events typically occur on short timescales and thus the fuels response 
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and fire risk may be better resolved by 10-/100-hour fuel moisture values than ERC. Additional 

studies that examine a variety of fuel aridity metrics throughout the year may aid in the efficacy 

of RFWs.  

 

4.4 Limitations of assessing and interpreting skill of RFWs 

 RFWs are issued for areas of relatively homogenous climate and fuels. We caution that 

comparisons of performance between WFOs need to consider the climate, fuels, and frequency 

of events that differ markedly across FWZs. Further, WFOs with larger FWZ sizes could show 

artificially better skill because of a larger pool of fire occurrence. Previous studies have shown 

similar results where performance increases with the scale of the geographic area considered 

but tends to result in decreased value to the end-user (Scherbakov et al. 2010). Additional 

analyses that examine the specific criteria for RFW by zones as well as the host of biophysical 

and human factors may help shed light on differences in forecast skill. 

Lastly, we considered RFWs as forecasts of new LF occurrence, although in reality, 

RFWs may be issued for weather conditions (e.g., atmospheric instability, high winds, low 

relative humidity) that promote growth on existing fires and heighten the potential for rapid 

rates of fire spread for new ignitions. Our explicit treatment of RFWs as forecasts for new LFs 

results in a low estimate of skill as we classify RFW days that may have rapid growth on 

existing fires but no new LFs as false alarms. Recent geospatial datasets of daily fire incident 

status reports (SIT-209s, St. Denis et al., 2020) and burned area information from satellite 

imagery (Andela et al., 2019) aim to provide fire growth information for larger fires and thus 

may be useful for future evaluation of RFWs and other fire hazard warning systems. 
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5. Conclusions 
 

 We found favorable skill of RFWs for a meaningful measure of fire activity broadly 

across the Northwestern U.S.. We additionally demonstrated that RFW skill was significantly 

better for lightning-caused fires and when issued coincident to high fuel dryness . While this 

is the first known study on RFW skill married to actual fire activity, our measures of skill are 

specific only to the occurrence of new large fires. Still, these forecasts may have value for fire 

early warning systems beyond that reported here. 

 Our results provide a means for discussing the quality of RFWs and highlight 

recommendations on improving RFWs while preserving value to end-users. The definition of 

RFWs and criteria used to issue these forecasts should be explicit, centrally-documented, and 

easily verifiable. We discovered many different WFO interpretations of the RFW definition 

and found numerous qualitative RFW criteria that would be especially challenging to verify 

directly. RFW criteria should include a measure of fuel dryness (e.g., ERC, 1000-hr fuel 

moisture) and be flexible enough to accommodate different weather regimes that drive fire 

activity throughout the year. Further, improved empirical analyses on the weather and fuels 

conditions that lead to significant ignitions and rapid rates of spread need to be performed to 

determine appropriate local RFW criteria, and these criteria should be quantifiable and concise 

so that performance may be easily assessed and improved upon. Such analyses may draw upon 

studies that have identified meteorological and fuel moisture thresholds important for ignitions 

and rapid spread rates (Abatzoglou et al., 2018; Rorig and Ferguson, 1999; Podur and Wotton, 

2011).  

RFWs and other early warning systems for fire may benefit from incorporating a 

probabilistic framework that is better suited for high-risk rare event forecasting (Murphy, 1991; 

Gneiting and Katzfuss, 2014) and quantitative risk assessments (Casati et al., 2008). A 

probabilistic forecast would be especially useful for the fire community, where decisions are 

commonly made with high economic cost and human risk factors (Worsnop et al., 2020; 

Noonan-Wright et al., 2011). The NOAA Forecasting a Continuum of Environment Threats 

(FACETs) framework seeks to supplement or replace existing NWS deterministic products 

with high-resolution probabilistic information (Rothfusz et al., 2018) and may be applicable 

for moving RFWs in this direction. Beyond RFWs, other fire early warning systems should 
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consider providing probabilistic information that identify the range of potential scenarios that 

would ultimately lead to better, more actionable decisions by end-users.  
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Figure 1.1: An example of a Red Flag Warning issued by the NWS Spokane forecast office 

for windy and dry conditions on 28 August 2015.  
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Figure 2.1: Map of the study area with forestlands defined using the 0.5 km MODIS-based 

global land cover climatology dataset (Broxton et al., 2014) and NWS WFO warning areas 

based on fire weather zones. 
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Figure 2.3: An example of the RFW and large fire classification scheme pairing RFWs issued 

for 10 August 2015 and new large fires from 10–11 August 2015. 32 RFWs were issued 

resulting in 11 hits, 11 misses, and 21 false alarms across the study area.   
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Figure 3.1: Red Flag Warning skill for large fires (>= 90th percentile) for each WFO showing 

(a) POD, (b) PODSS, and (c) relative improvement over the random climatology reference 

forecast.  
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Figure 3.3: POD skill scores and relative improvement (a) and performance metrics (b) of 

RFWs for lightning- and human-caused large fires across the WFOs. For (b), CSI is found to 

generally increase with higher POD and decreasing FAR.  
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Figure 3.5: POD skill scores and relative improvement (a) and performance metrics (b) of 

RFWs for when LFs occurred with ERC >= 90th percentile and ERC < 90th percentile values.  
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Figure 4.1: Summary of area-wide POD, PODSS, and POD relative improvement for the four 

classification of LF types.  
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Table 1.2: Select criteria for issuing RFWs taken from the 2019 Northwest Area Fire Weather 

Annual Operating Plan. 

WFO Pendleton 
All FWZs 
 

“LIGHTNING: Abundant lightning in conjunction with sufficiently dry fuels (fuels remain 
dry or critical during and after a lightning event). Warnings are not typically issued for 
isolated coverage events. Warnings not typically issued for events that will be accompanied 
by significant rain (greater than 0.25 inches). However, if a lightning event will occur with 
significant rain, but is then followed by very hot and dry conditions, a warning may be issued 
if holdover/sleeper fires are a concern.” 

WFO Portland 
Zones 605, 607, and 660  

“One station (RAWS) must report 35% humidity or less AND 10-minute wind speed of 10 
mph AND/OR gusts to 20 mph or more for four hours in an 8- hour block, AND at least TWO 
other stations reporting 35% humidity or less AND 10- minute wind of 10 mph AND/OR 
gusts to 20 mph for at least TWO hours. Key RAWS: Horse Creek, Log Creek, Wanderer’s 
Peak, Kosmos, Canyon Creek, Orr Creek, Elk Rock, and 3-Corner Rock. NOTE: Includes 
stations from zone 659.” (Only valid during nighttime hours) 

WFO Spokane 
All FWZs 

“An unusually unstable atmosphere. This would be associated with a strong thermal trough 
which typically forms along the east slopes of the Washington Cascades.” 
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Table 2.2: Forecast performance metrics calculated in this study. 

Performance 
metric Measures Equation Possible range and 

perfect score 

Probability of 
detection (POD) 

Fraction of observed events that were correctly 
forecast POD = ,

,	.	/
 0 to 1 

1 

False alarm ratio 
(FAR) 

Fraction of predicted events that did not 
actually occur  FAR = 0

,	.	0
 0 to 1 

0 

Critical success 
index (CSI) 

Fraction of correctly forecasted events without 
consideration to correct negatives CSI = ,

,	.	0	.	/
 0 to 1 

1 
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Table 3.2: Area-wide POD, skill scores, and relative improvement of Red Flag Warnings 

tested at 80th, 90th, and 95th large fire size thresholds.  

 LF Size >= 80th Perc. LF Size >= 90th Perc. LF Size >= 95th Perc. 

POD 0.24 0.29 0.34 

PODSS 0.13 0.18 0.23 

Rel. Imp. 99.4% 124.1% 138.2% 
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Table 3.4: As in Table 3.1 but for forested and non-forested LF land cover types.  

 Forested LF  Non-Forested LF 

POD 0.28 0.34 

PODSS 0.18 0.23 

Rel. Imp. 129.0% 131.3% 
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Appendix 1: Supplemental Material 
 

Table A1.1a: Complete RFW performance statistics, skill scores, and relative improvement 

values for large fires >= 80th percentile sizes.  

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.29 0.82 0.13 0.13 0.92 0.05 0.18 0.11 0.08 124.08 -11.3 142.0 

BOI 0.37 0.85 0.12 0.17 0.94 0.05 0.25 0.09 0.07 124.78 -8.8 144.6 

MFR 0.32 0.79 0.15 0.13 0.91 0.06 0.21 0.14 0.10 135.93 -13.7 156.8 

MSO 0.22 0.76 0.13 0.14 0.84 0.08 0.09 0.10 0.05 53.91 -9.7 58.5 

OTX 0.22 0.79 0.12 0.10 0.90 0.05 0.13 0.12 0.07 110.62 -12.4 122.8 

PIH 0.35 0.93 0.06 0.20 0.96 0.03 0.19 0.03 0.03 73.84 -3.2 82.9 

PDT 0.42 0.78 0.17 0.16 0.92 0.05 0.32 0.16 0.12 171.73 -15.9 214.9 

PQR 0.19 0.81 0.10 0.08 0.92 0.04 0.12 0.12 0.07 139.30 -12.2 155.2 

SEW 0.16 0.86 0.08 0.05 0.96 0.02 0.12 0.10 0.06 231.45 -10.4 254.6 

 
 
Table A1.1b: Complete RFW performance statistics, skill scores, and relative improvement 

values for large fires >= 90th percentile sizes.  

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.24 0.72 0.15 0.12 0.86 0.07 0.13 0.16 0.08 99.4 -16.5 113.5 

BOI 0.32 0.78 0.15 0.15 0.89 0.07 0.19 0.13 0.09 108.5 -12.9 124.4 

MFR 0.26 0.67 0.17 0.13 0.84 0.08 0.16 0.20 0.10 105.9 -20.1 122.4 

MSO 0.18 0.61 0.14 0.12 0.73 0.09 0.06 0.16 0.05 46.3 -15.7 51.0 

OTX 0.16 0.69 0.12 0.10 0.81 0.07 0.07 0.15 0.06 68.1 -15.0 75.3 

PIH 0.36 0.86 0.11 0.19 0.93 0.05 0.21 0.07 0.06 87.2 -7.3 103.2 

PDT 0.34 0.67 0.20 0.14 0.87 0.07 0.23 0.23 0.14 139.6 -22.6 171.4 

PQR 0.15 0.70 0.11 0.07 0.86 0.05 0.08 0.18 0.06 104.9 -17.9 117.7 

SEW 0.13 0.78 0.09 0.05 0.92 0.03 0.09 0.15 0.06 188.7 -15.4 206.8 
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Table A1.1c: Complete RFW performance statistics, skill scores, and relative improvement 

values for large fires >= 95th percentile sizes.  

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.34 0.88 0.09 0.14 0.95 0.04 0.23 0.07 0.06 138.2 -7.2 157.4 

BOI 0.40 0.92 0.07 0.17 0.97 0.03 0.28 0.05 0.05 136.6 -5.1 152.3 

MFR 0.36 0.87 0.11 0.15 0.95 0.04 0.25 0.08 0.07 138.2 -8.2 158.5 

MSO 0.25 0.85 0.10 0.15 0.91 0.06 0.11 0.06 0.04 61.3 -5.9 65.1 

OTX 0.29 0.85 0.11 0.12 0.94 0.04 0.20 0.10 0.07 153.0 -10.0 174.0 

PIH 0.36 0.96 0.04 0.21 0.98 0.02 0.19 0.02 0.02 74.7 -1.7 78.8 

PDT 0.51 0.85 0.13 0.18 0.95 0.04 0.40 0.11 0.09 183.4 -10.5 237.2 

PQR 0.23 0.88 0.09 0.08 0.96 0.03 0.16 0.08 0.06 191.8 -8.3 217.3 

SEW 0.15 0.93 0.05 0.05 0.98 0.02 0.10 0.04 0.03 189.0 -4.4 203.0 
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Table A1.2a: Complete RFW performance statistics, skill scores, and relative improvement 

values for lightning-caused large fires >= 90th percentile sizes. 

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.46 0.87 0.11 0.18 0.95 0.04 0.34 0.09 0.08 154.0 -8.7 182.9 

BOI 0.51 0.88 0.11 0.20 0.95 0.04 0.38 0.08 0.07 150.4 -7.9 180.5 

MFR 0.62 0.83 0.16 0.21 0.95 0.05 0.51 0.13 0.12 190.8 -12.7 245.4 

MSO 0.27 0.82 0.12 0.19 0.88 0.08 0.10 0.06 0.04 45.4 -6.0 48.9 

OTX 0.41 0.86 0.11 0.14 0.96 0.03 0.31 0.10 0.08 197.6 -9.8 230.5 

PIH 0.32 0.96 0.04 0.20 0.98 0.02 0.15 0.02 0.02 59.2 -1.6 66.0 

PDT 0.64 0.84 0.15 0.19 0.96 0.04 0.56 0.13 0.12 232.4 -12.7 311.8 

PQR 0.33 0.92 0.07 0.13 0.97 0.03 0.23 0.05 0.05 154.3 -5.3 170.6 

SEW 0.30 0.94 0.05 0.08 0.99 0.01 0.25 0.04 0.04 289.6 -4.4 325.0 

 
 
Table A1.2b: Complete RFW performance statistics, skill scores, and relative improvement 

values for human-caused large fires >= 90th percentile sizes.  

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.17 0.94 0.04 0.09 0.97 0.02 0.08 0.03 0.02 78.4 -2.5 80.7 

BOI 0.19 0.97 0.03 0.11 0.98 0.02 0.08 0.01 0.01 66.4 -1.1 66.7 

MFR 0.13 0.95 0.04 0.10 0.96 0.03 0.04 0.01 0.01 36.1 -1.2 33.7 

MSO 0.16 0.92 0.05 0.09 0.96 0.03 0.08 0.03 0.03 78.4 -3.4 78.3 

OTX 0.15 0.91 0.06 0.08 0.95 0.03 0.07 0.04 0.03 75.1 -3.8 79.4 

PIH 0.40 0.97 0.03 0.21 0.99 0.01 0.24 0.01 0.01 91.2 -1.4 101.9 

PDT 0.22 0.94 0.05 0.13 0.97 0.03 0.10 0.02 0.02 67.7 -2.4 72.7 

PQR 0.15 0.89 0.07 0.07 0.95 0.03 0.09 0.06 0.04 122.1 -6.5 133.7 

SEW 0.13 0.92 0.05 0.04 0.97 0.02 0.09 0.06 0.04 233.1 -6.1 248.0 
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Table A1.3a: Complete RFW performance statistics, skill scores, and relative improvement 

values for forested large fires >= 90th percentile sizes. 

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.28 0.90 0.08 0.12 0.96 0.03 0.18 0.06 0.05 129.0 -6.0 140.7 

BOI 0.44 0.96 0.04 0.23 0.98 0.02 0.26 0.02 0.02 87.4 -1.9 94.4 

MFR 0.33 0.85 0.11 0.13 0.94 0.04 0.23 0.10 0.08 162.3 -9.8 183.7 

MSO 0.22 0.83 0.11 0.15 0.88 0.07 0.09 0.06 0.04 50.6 -6.2 53.5 

OTX 0.23 0.87 0.09 0.10 0.95 0.04 0.15 0.08 0.06 137.9 -7.7 149.8 

PIH 0.29 0.99 0.01 0.18 0.99 0.01 0.13 0.00 0.00 57.9 -0.5 66.5 

PDT 0.45 0.90 0.09 0.15 0.97 0.03 0.35 0.07 0.06 193.7 -6.9 229.7 

PQR 0.19 0.85 0.09 0.08 0.93 0.04 0.11 0.09 0.06 125.8 -9.3 140.9 

SEW 0.18 0.86 0.08 0.05 0.96 0.02 0.14 0.10 0.06 269.5 -10.4 298.5 

 
 
Table A1.3b: Complete RFW performance statistics, skill scores, and relative improvement 

values for non-forested large fires >= 90th percentile sizes. 

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.34 0.90 0.09 0.15 0.96 0.03 0.23 0.06 0.05 131.3 -6.4 150.6 

BOI 0.37 0.88 0.10 0.15 0.95 0.04 0.26 0.07 0.06 148.4 -7.3 167.8 

MFR 0.36 0.90 0.08 0.16 0.96 0.03 0.24 0.06 0.05 120.6 -5.6 136.5 

MSO 0.25 0.90 0.08 0.14 0.95 0.04 0.13 0.05 0.04 84.9 -4.9 91.5 

OTX 0.23 0.89 0.08 0.11 0.95 0.04 0.13 0.06 0.05 103.3 -6.2 114.1 

PIH 0.37 0.94 0.05 0.21 0.97 0.03 0.20 0.03 0.02 73.0 -2.6 80.4 

PDT 0.46 0.84 0.14 0.17 0.95 0.04 0.35 0.11 0.10 178.3 -11.5 227.2 

PQR 0.22 0.95 0.04 0.08 0.99 0.01 0.15 0.03 0.03 185.6 -3.1 209.1 

SEW 0.05 0.99 0.00 0.05 0.99 0.00 0.00 0.00 0.00 -1.2 0.0 -0.7 
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Table A1.4a: Complete RFW performance statistics, skill scores, and relative improvement 

values for forested large fires >= 90th percentile sizes where ERC >= 90th percentile values. 

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.42 0.89 0.10 0.17 0.96 0.04 0.30 0.07 0.06 142.1 -7.2 169.3 

BOI 0.47 0.91 0.08 0.21 0.96 0.03 0.33 0.05 0.05 120.6 -5.1 142.3 

MFR 0.48 0.91 0.09 0.20 0.96 0.03 0.35 0.06 0.05 135.1 -5.9 160.4 

MSO 0.31 0.84 0.12 0.20 0.90 0.07 0.15 0.07 0.05 60.0 -6.6 65.8 

OTX 0.36 0.86 0.11 0.15 0.94 0.04 0.25 0.09 0.07 136.5 -9.0 161.9 

PIH 0.50 0.94 0.05 0.22 0.98 0.02 0.36 0.04 0.03 129.0 -3.6 156.8 

PDT 0.61 0.87 0.12 0.21 0.96 0.03 0.51 0.10 0.09 194.7 -9.9 264.1 

PQR 0.32 0.85 0.11 0.10 0.96 0.03 0.24 0.11 0.09 230.9 -11.4 275.1 

SEW 0.23 0.89 0.08 0.06 0.97 0.02 0.18 0.09 0.06 282.8 -8.6 319.7 

 
 
Table A1.4b: Complete RFW performance statistics, skill scores, and relative improvement 

values for large fires >= 90th percentile sizes where ERC < 90th percentile values. 

 Forecast Performance Reference Performance Skill Score Rel. Improvement (%) 

 POD FAR CSI POD FAR CSI POD FAR CSI POD  FAR  CSI  

AREA 0.23 0.91 0.07 0.11 0.96 0.03 0.14 0.05 0.04 116.2 -5.1 124.7 

BOI 0.32 0.93 0.06 0.12 0.97 0.02 0.22 0.05 0.04 161.2 -4.7 176.5 

MFR 0.29 0.85 0.11 0.12 0.94 0.04 0.20 0.10 0.07 149.4 -9.8 169.7 

MSO 0.17 0.89 0.07 0.11 0.93 0.04 0.07 0.04 0.03 57.9 -4.1 59.5 

OTX 0.16 0.90 0.07 0.08 0.95 0.03 0.09 0.05 0.03 102.0 -5.2 106.1 

PIH 0.15 0.99 0.01 0.19 0.98 0.02 -0.05 0.00 0.00 -20.1 0.4 -23.5 

PDT 0.34 0.89 0.09 0.13 0.96 0.03 0.24 0.07 0.06 160.7 -7.5 185.3 

PQR 0.10 0.95 0.04 0.07 0.96 0.03 0.03 0.02 0.01 40.6 -1.6 40.6 

SEW 0.10 0.96 0.03 0.04 0.99 0.01 0.06 0.02 0.02 174.1 -2.5 180.0 

 
 


