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Abstract

Convexity plays an essential role in many areas of mathematics, from geometry,

analysis and linear algebra to numerous applications in other areas of mathematics

such as optimization. It unifies many apparently diverse mathematical phenomena,

and is relevant to engineering and the sciences. In practice, however, convexity

does not always hold, which raises the need for suitable generalizations of convexity.

In this thesis, I will study generalizations of convexity and use metric entropy to

give a numerical quantification of the collections of sets and function classes which

satisfy these generalized convexity conditions. In particular, I will estimate the metric

entropy of the collection of bounded sets in Rd with positive reach, the metric entropy

of an lq-hull (0 < q ≤ 1) in an important case, as well as the upper bound for the

metric entropy of separately convex functions in Rd.
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chapter 1

Introduction

Convexity plays an essential role in many areas of mathematics, from geometry to

analysis to linear algebra, and has numerous applications in other areas of mathemat-

ics such as optimization. It unifies many diverse mathematical phenomena, and is

relevant to engineering and the sciences. In this thesis, I study different generaliza-

tions of convexity of sets as well as generalizations of convexity for functions.

Convex sets have been defined and studied in many different settings. The most

useful definition to this thesis is that given for a real topological vector space. A

subset K of a real topological vector space is said to be convex if for any x, y ∈ K

and any λ ∈ [0, 1], the point λx + (1− λ)y ∈ K. In other words, for any two points

x, y ∈ K, the entire line segment from x to y lies in K. A point x ∈ K which does not

lie in any line segment joining two points of K, except possibly on the end point of a

line segment, is called an extreme point of K. If K is convex and compact in a locally

convex space, then the set of extreme points Extr(K) of K is non-empty. Furthermore,

by the Krein-Milman theorem, K is the closure of the convex hull of its extreme points;

i.e., K = conv(Extr(K)), where, for a set S ∈ Rd, conv(S) is defined by

conv(S) :=

{
x =

n

∑
i=1

αixi

∣∣∣∣∣ αi ≥ 0, xi ∈ S,
n

∑
i=1

αi = 1, n ≥ 1

}
, (1.1)

It is straight forward to check that the convex hull of any set is a convex set. This

furnishes a convenient source of convex sets.

Convex sets possess useful geometric properties. One in particular, is that, for

a normed space X, if K ⊂ X is closed and convex, and a /∈ K, then there exists a

hyperplane that separates a from K. Furthermore, for any x on the boundary of K,

there is a hyperplane containing x such that the entire set K lies on one side of the

hyperplane. Such a hyperplane is called a supporting hyperplane at x. This property

leads to another common way of generating convex a set: taking intersections of half-
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spaces.

A function f defined on a convex set K is called convex if it satisfies the inequality

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) (1.2)

holds for all x, y ∈ K and every λ ∈ [0, 1]. If the strict inequality

f (λx + (1− λ)y) < λ f (x) + (1− λ) f (y) (1.3)

holds for all x, y ∈ K and every λ ∈ (0, 1), then the function is said to be strictly

convex.

There are several equivalent characterizations of conditions (1.2) and (1.3). For

instance, it is straightforward to check that any real valued function f is convex on

dom( f ) ⊂ X

if and only if for any x ∈ dom( f ) and any vector v ∈ X, the function

g(t) := f (x + tv)

is a convex function on

{t ∈ R : x + tv ∈ dom( f )}.

It is also not difficult to see that if dom( f ) ⊂ Rn is a convex set, then f is convex if

and only if its epigraph defined by

epi( f ) :=
{
(x, t) ∈ Rn+1

∣∣∣ t ≥ f (x), x ∈ dom( f )
}

(1.4)

is a convex set in Rn+1.
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If f is a differentiable function on dom( f ), where dom( f ) ⊂ Rn is a convex set,

then f is convex if any only if for all x, y ∈ dom( f ),

f (y)− f (x) ≥ ∇ f (x)T(y− x), (1.5)

where ∇ f is the gradient of f defined by

∇ f (x) =
(

∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xn

)T

. (1.6)

If f is a twice-differentiable function on dom( f ), where dom( f ) ⊂ Rn is a convex

set, then f is convex if any only if for all x ∈ dom( f ), the Hessian matrix H f (x) is

positive semi-definite, where

H f (x) :=



∂2 f
∂x1∂x1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2∂x2

· · · ∂2 f
∂x2∂xn

...
... · · · ...

∂2 f
∂xn∂x1

∂2 f
∂x1∂x2

· · · ∂2 f
∂xn∂xn


. (1.7)

However, for high dimensions, positive definiteness of the Hessian (1.7) can be dif-

ficult to check as are the conditions (1.2) and (1.3). Consequently, in practice, one

often verifies the convexity of a function by checking if it can be expressed using

some basic convex functions and convexity-preserving operators. Some basic convex

functions over Rn include:

• All norms on Rn;

• The maximum function max{x1, x2, . . . , xn};

• The log-sum-exp function log(∑n
i=1 exi);

• The geometric mean function (∏n
i=1 xi)

1/n over the following subset of Rn:

{(x1, . . . , xn) ∈ Rn | xi > 0, 1 ≤ i ≤ n} . (1.8)
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Operations that preserve convexity include:

• The operation of taking a nonnegative weighted sum of convex functions: that

is, a nonnegative weighted sum of convex functions is convex;

• Composition of a convex function with an affine mapping: if f is a convex

function on dom( f ) ⊂ Rn, A is an n×m matrix and b ∈ Rn, then the function

g(x) = f (Ax + b) (1.9)

is a convex function on {x ∈ Rm | Ax + b ∈ dom( f )}.

• Taking the maximum of two convex functions: the maximum of two convex

functions is convex on the intersection of their domains; that is, if f and g are

convex functions on dom( f ), dom(g) ⊂ Rn, then the function h defined by

h(x) := max{ f (x), g(x)} (1.10)

is a convex function on

dom(h) = dom( f )
⋂

dom(g).

• Composition of a convex function with a convex and nondecreasing scalar func-

tion, i.e., if g is convex function on dom(g) ⊂ Rn, and h is a nondecreasing

convex function on R, then f (x) = h(g(x)) is a convex function on dom(g);

• The minimization of a convex function on a convex set is convex, i.e., if f is

convex in (x, y) and C ⊂ dom( f ) is a non-empty convex set, then the function

g(x) = inf
y∈C

f (x, y)

is a convex function on

dom(g) = {x | (x, y) ∈ dom( f ) for some x} ,
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provided that g(x) > −∞.

When a function cannot be expressed as a known convex function using convexity

preserving operators, checking convexity is typically very difficult.

On the other hand, when a function is convex, it has some nice properties. For

example, one variable convex functions are necessarily continuous and have one-sided

derivatives. If f is strictly convex on a compact convex domain, then it has a unique

minimizer. Consequently, as a class, the set of convex functions on a fixed domain

is much smaller than, say, the class of continuous functions on the same domain.

Similarly, the collection of convex sets contained in a bounded region, say [0, 1]d, is

much smaller than, for instance, the collection of simply connected sets contained in

[0, 1]d. One of the most effective way to gauge the “size” of a collection of sets, or the

“massiveness” of a function class, is to use the metric entropy of the set of functions

class, which will be introduced in detail in the next chapter. Roughly speaking, if T

is a set in a metric space (X, ρ), then the size of the set T can be gauged by the the

quantity

log N(ε, C, ρ)

with varying ε, where N(ε, C, ρ) is the minimum cardinality of ε-net of T, that is,

N(ε, C, ρ) := min {n | ∃x1, . . . , xn ∈ X such that ∪n
i=1 B(xi; ε) ⊃ C} , (1.11)

where

B(x; ε) = {y ∈ T | ρ(x, y) ≤ ε} .

In order to be able to compute metric entropy for classes of sets, we require an

appropriate metric to measure the distance between two sets. In this dissertation we

employ the most commonly used metric, the Hausdorff distance, h(·, ·). Given two

bounded sets K and L in Rn the Hausdorff distance, which we denote by h(K, L), is

defined by

h(K, L) := max

{
sup
k∈K

inf
l∈L
‖k− l‖ , sup

l∈L
inf
k∈K
‖k− l‖

}
. (1.12)
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In practice, one usually employs the following, equivalent formulation:

h(K, L) := inf {r ∈ (0, ∞) | K ⊂ L + B(r), L ⊂ K + B(r)} . (1.13)

where

B(r) = B(0; r) = {y ∈ Rn | ‖y‖ ≤ r} .

We establish the notation, which will be in use throughout this thesis, A � B which

means that there exist two constants 0 < C1 < C2 < ∞ such that C1B ≤ A ≤ C2B, then,

the following celebrated result of Bronshtein [3] quantifies the “size” of the collection

of convex sets contained in B(1), the unit ball in Rd, d ≥ 2 centered at the origin.

Theorem 1. (Bronshtein [3]) Let C be the collection of convex sets contained in [0, 1]d, d ≥ 2.

Then for any 0 < ε ≤ 1

log N(ε, C, h) � ε−(d−1)/2,

Similarly, if we let Ω be a measurable subset of Rd, and denote

‖ f − g‖p =

(∫
Ω
| f (x)− g(x)|pdx

)1/p
,

where 1 ≤ p < ∞, then following results proved by Gao and Wellner [15] quantify the

massiveness of the collection of convex functions over Rd:

Theorem 2. (Gao and Wellner [15]) Let Ω be a bounded and closed convex domain in Rd

with non-empty interior. Let Cr(Ω), 1 < r ≤ ∞, be the set of convex functions on Ω whose

Lr(Ω)-norms are bounded by 1. Denote by |Ω| the volume of Ω.

(i) There exist constants c0 > 0 depending only on d, such that

log N(ε, Cr(Ω), ‖ · ‖Lp(Ω)) ≥ c0(|Ω|
1
p−

1
r ε−1)d/2.
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(ii) If Ω has finitely many extreme points, then for any 1 ≤ p < r, there exists a constant

C1 depending on p, d, r such that for any ε > 0,

log N(ε, Cr(Ω), ‖ · ‖Lp(Ω)) ≤ C1ε−d/2;

log N[ ](ε, C∞(Ω), ‖ · ‖Lp(Ω)) ≤ C1|Ω|
d

2p ε−d/2,

When r = ∞, the same inequality holds for the bracketing entropy N[ ](ε, C∞(Ω), ‖·‖Lp (Ω)),

which was introduced in definition 3.

In view of the fact that a general compact convex set in Rd can be approximated

by convex sets with finitely many extreme points, one might guess that the rate ε−d/2

holds for a general compact convex set in Rd. This, however, is not the case.

Theorem 3. (Gao and Wellner [15]) If D is closed unit ball in Rd, then there exists a constant

c2 dependent only on d and p such that for all 0 < ε < 1,

log N(ε, C∞(D), ‖ · ‖Lp(D)) ≥ c2ε−β,

where β = max{(d− 1)p/2, d/2}.

Theorem 1 of Bronshtein is the theoretic foundation of many shape-reconstruction

algorithms for high-dimensional convex sets; while Theorem 2 and Theorem 3 play

key roles in the study of risk bounds of multivariate convex regression [20]. In these

applications, one would often like to see extensions of these results to a more general

collections of sets or classes of functions. For example, in image reconstruction

of brain activities, it is not realistic to assume that the active regions are convex.

Rather, an active region typically consists of several subregions, each of which are

approximately convex, such as a kidney-shaped region.

Motivated by these applications, the work in this thesis generalizes convexity.

There are several different approaches to generalizing convexity for collections of sets.

In this thesis, we will focus on the following two approaches:

1. Positive Reach

As we discussed above, a convex set in Rd can be formed by intersecting half-spaces,



8

and each point on its boundary has a supporting hyperplane. Thus, one can move

a half-space (or a ball of infinite radius) along the boundary of a convex set without

intersecting the interior of the convex set. Consider, somewhat more generally, sets

with the property that one can roll a ball of radius at most c along the boundary of

the set. This property was first studied by Federer in [11] under the name “reach”.

More precisely, the reach of a set K ⊂ Rd is defined as

reach(K) := sup {r ≥ 0 | ∀y with dist(y, K) ≤ r, ∃!x ∈ K nearest to y} .

We say that a set K has positive reach, if reach(K) > 0. Considering its intuitive

motivation, positive reach serves as a useful generalization of convexity. Reach is

considered in depth in chapter 3.

2. lq-Hull, 0 < q ≤ 1

By the Krein-Milman theorem, every closed convex set in Rd is the closed convex hull

of the set of its extreme points. Thus, every closed convex set is the closure of of a

convex hull. If we replace the definition of convex hull given in equation (1.1) by

hullq(S) :=

{
x =

n

∑
i=1

αixi

∣∣∣∣∣ αi ≥ 0, xi ∈ S,
n

∑
i=1

α
q
i = 1, n ≥ 1

}
, (1.14)

where 0 < q ≤ 1, then clearly hull1(S) = conv(S). Thus, hullq(S) can be viewed as a

generalization of conv(S). When 0 < q < 1, the set hullq(S) is usually not convex, but

has some properties similar to a convex set. We will also consider sets of the form

Hq(S) :=

{
x =

n

∑
i=1

αixi

∣∣∣∣∣ xi ∈ S,
n

∑
i=1
|αi|q ≤ 1, n ≥ 1

}
, (1.15)

These sets are motivated by applications in sparse approximation. Note that when

q = 1, Hq(S) is just the absolute convex hull of S; when q is close to 0, then the

set Hq(S) is close to the symmetric star-convex set {tx | x ∈ S, |t| ≤ 1} with vantage

point 0. Thus, for 0 < q < 1, Hq(S) can be viewed as a continuous deformation from
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a convex set to a star-convex set.

3. Separate-Con Functions

Just as for convex sets, there are also many different fruitful generalizations of convex-

ixty for classes of functions in Rd. Among the most common generalizations used in

practice are polyconvexity, quasiconvex and rank-one convex functions. In this thesis,

we consider a condition which is easy to verify. Let a set D ⊂ Rd have the property

that the intersection of D with any line parallel to a coordinate axis is convex. We say a

function f on dom( f ) = D is separately convex if f is a convex function of each single

variable while holding the other variables fixed. We say a function f on dom( f ) = D

is separately concave if f is a concave function of each single variable while holding

the other variables fixed. We say a function f on dom( f ) = D is separate-con if for

each variable it is either a concave or convex function of that variable while the other

variables are held fixed.

The goal of this thesis is to quantitatively gauge the massiveness of sets and

function classes satisfying these three generalizations of convexity. The main results

of the thesis are the following:

Theorem 4. Let Pm be the collection of d-dimensional sets contained in B(R) that can be

expressed as the union of at most m sets of reach greater than c. Then there exists a constant

Λ(c, d) depending only on c and d, such that for every 0 < ε < 1,

log N(ε,Pm, h) ≤ Λ(c, d)mRdε−(d−1)/2.

Theorem 5. If K is a precompact set in a Hilbert space satisfying

log N(δ, K, ‖ · ‖) = O(δ−α),

for α > 2q
2−q , and 0 < q ≤ 1, then

log N(ε, Hq(K), ‖ · ‖) = O
(
ε−α
)

.
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Theorem 6. Let F ([0, 1]d) denote the collection of separately convex functions on [0, 1]d that

are bounded by 1. Then, for any 1 ≤ p < ∞, there exists a constant C(d, p) depending only

on d and p, such that for all 0 < ε < 1,

log N(ε,F ([0, 1]d), ‖ · ‖p) ≤ C(d, p)ε−d+ 1
2 . (1.16)

The thesis is organized as follows: In Chapter 2, I collect basic concepts, definitions

and known results that are either used in later chapters, or important for conceptual

understanding of the topic. In Chapter 3, I study the “size” of the collection of

sets contained in [0, 1]d with positive reach. In particular, Theorem 4 is proved. In

Chapter 4, I study the metric entropy of lq-hull Hq(S), provided that we know the

metric entropy of S. In particular, Theorem 5 is proved. In Chapter 5, I study the

“massiveness” of the class of bounded separate-con functions on [0, 1]d, and prove

Theorem 6.
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chapter 2

Preliminary Results

This chapter collects those definitions, notations and concepts which are integral

to the following chapters. It introduces some of the key concepts of metric entropy,

some fundamental relations between the so-called Kolmogorov widths and Gelfand

widths, and some important metric entropy estimates which are either used in the

later chapters or are otherwise conceptually important.

2 .1 definitions

Metric entropy was first defined by Kolmogorov in [22]. Following Kolmogorov, we

first define the ε-covering number for precompact subsets of normed spaces:

Definition 1. Let A be a precompact subset of a metric space (X, τ). For ε > 0, we define

and denote the ε-covering number of A under the metric τ by

N(ε, A, τ) := min

{
n ∈N

∣∣∣∣∣ ∃x1, · · · , xn ∈ X, A ⊂
n⋃

k=1

B(xk, ε)

}
, (2.1)

where B(xk, ε) denotes the closed ball under τ, with center xk and radius ε. When there is no

confusion we refer to N(ε, A, τ) simply as the covering number of A.

The logarithm of the ε-covering number of A is called the ε-metric entropy of A

or sometimes just the metric entropy of A. More precisely, we have the following

definition:

Definition 2. Let A be a precompact subset of a metric space (X, τ). For ε > 0, we define the

ε-metric entropy of A under τ as the quantity log N(ε, A, τ). When there is no confusion, we

refer to log N(ε, A, τ) simply as the metric entropy of A.

In statistical applications, extra requirements may be placed on metric entropy. For

example, instead of closed balls of of radius ε, brackets may be used. In a normed

space of a real-valued functions, brackets are defined as follows:
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Definition 3. Let D be a set, F a linear space of functions D → R equipped with norm ‖·‖.
Let f , h ∈ F with f (x) ≤ h(x) for all x ∈ X. We define the bracket [ f , h] by

[ f , h] := {g ∈ F | f (x) ≤ g(x) ≤ h(x), ∀x ∈ X} . (2.2)

If ‖ f − h‖ ≤ ε for all x ∈ X, we say that [ f , h] is an ε-bracket.

Using the notion of a bracket, we can now define the ε-bracketing covering number

of a precompact subset A of a normed space (X, ‖·‖).

Definition 4. Let F be a linear space of functions from a set D to R, equipped with norm

‖·‖. Let A be a subset of F which is precompact under the topology induced by ‖·‖. We define

the bracketing covering number of A as the minimum number of ε-brackets needed to cover A,

that is,

N[ ](ε, A, ‖·‖) := min

{
n ∈N

∣∣∣∣∣ ∃ f1, h1, · · · , fn, hn ∈ X, A ⊂
n⋃

k=1

[ fk, hk]

}
, (2.3)

where, for any i, [ fi, hi] is an ε-bracket.

Now, we can define bracketing entropy as follows:

Definition 5. We define the bracketing entropy of A ⊂ F to be simply

log N[ ](ε, A, ‖·‖). (2.4)

To distinguish it from bracketing entropy, definition 2 is also sometimes referred

to as entropy without bracketing. The relation between metric entropy and bracketing

entropy will be discussed in proposition 7.

It will be convenient to define metric entropy using the concept of an ε-net.

Definition 6. Given a set A in a metric space (X, τ), a finite set N is said to be an ε-net of

A if, for any a ∈ A, there exists b ∈ N , such that τ(a, b) ≤ ε.

Using the notion of an ε-net, we now give an alternate definition of covering

number mathematically equivalent to definition (2.1) as:
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Definition 7. The ε-covering number of A under τ is defined as the least cardinality of any

ε-net of A.

Closely related with metric entropy are the so-called entropy numbers, which are

defined as follows:

Definition 8. For a fixed precompact set K in a space equipped with a norm ‖ · ‖, the entropy

numbers ε l(K) are defined by

ε l(K) := inf {ε > 0 | N(ε, K, ‖·‖) ≤ l} , (2.5)

and the dyadic entropy numbers el by

el(K) :=ε2l−1(K) (2.6)

If the metric entropy is thought of as a function of ε, then the entropy numbers

may be roughly thought of as the corresponding inverse function.

Metric entropy is also fundamentally related to a number of other quantities,

among which we mention Kolomogorov width ([21]) and Gelfand width (see [27]),

defined as follows:

Definition 9. Let A be a subset of a normed space (X, ‖·‖). We define the Kolmogorov width

of A in X by

dn(A, X) := inf
L

sup
a∈A

inf
l∈L
‖a− l‖ , (2.7)

where L runs over all n dimensional subspaces of X. Where there is no chance of ambiguity,

we will omit mention of the normed space X and simply write dn(A) instead of dn(A, X).

The other notion of width which is important for metric entropy is the Gelfand

width of a subset of a normed vector space.
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Definition 10. Let A be a subset of a normed space (X, ‖·‖). We define the Gelfand width of

A by

dn(A, X) := inf

{
sup

a∈L
⋂

A
‖a‖
}

, (2.8)

where the infimum ranges over all n-codimensional subspaces L of X. Where there is no

ambiguity, we will omit mention of the normed space X and simply write dn(A) instead of

dn(A, X).

2 .2 some important connections

The following well-known proposition summarizes the connection between metric

entropy and bracketing entropy:

Proposition 7. Let A be a precompact subset of some real-valued function space F equipped

with norm ‖ · ‖. For any ε > 0,

N(ε, A, ‖ · ‖) ≤ N[ ](2ε, A, ‖ · ‖). (2.9)

If ‖ · ‖ is the supremum norm, then

N(ε, A, ‖·‖∞) = N[ ](2ε, A, ‖·‖∞). (2.10)

Proof. Let

N :=N[ ](2ε, A, ‖ · ‖).

Assume without loss of generality that N < ∞, for otherwise relation (2.9) is trivial.

Then, there exist 2ε-brackets [ f1, h1] , · · · , [ fN, hN] such that

A ⊆
N⋃

k=1

[ fN, hN] .

Each bracket [ fi, hi] is a closed ball of radius ε with center at ( fi + hi)/2 under the

norm ‖ · ‖. Thus, the set {( fi + hi)/2}N
i=1 is an ε-net of A. This proves inequality (2.9).
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To prove equation (2.10), we notice that if m :=N(ε, A, ‖ · ‖∞). Then A can be

covered by m closed balls of radius ε, say B1, B2, . . . , Bm. For each i = 1, . . . , m, we

define functions fi and hi by

fi(x) = inf{ f (x) : f ∈ Bi},

and

hi(x) = sup{ f (x) : f ∈ Bi}.

Then the bracket [ fi, hi] is a 2ε-bracket that contains Bi. Thus, ∪m
i=1[ fi, hi] ⊃ A. Hence

N[ ](2ε, A, ‖ · ‖) ≤ m. Together with (2.9), we obtain equation (2.10).

The connection between Kolmogorov width and metric entropy is less trivial. Here

we list two noteworthy relations:

Proposition 8. ([10], the appendix by Levin and Tikhomirov) If

dn(K) ≤ Ce−rn, ∀n ∈N, (2.11)

then

log N(ε, K, ‖·‖) ≤ C′r
(

log
1
ε

)2

, ∀ε ∈ (0, 1], (2.12)

where C′ is a constant which does not depend on r or n.

Proposition 9. (Carl [4]) If for all n ∈N

dn−1(K) ≤
C
nα

, (2.13)

then for all 0 < ε < 1,

log N(ε, K, ‖·‖) ≤ C′ε−1/α. (2.14)

In addition to relations between widths and metric entropy, there are also some

nice duality relations between Kolmogorov widths and Gelfand widths. In particular
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Proposition 10. (Pinkus [27]) Let 1 ≤ p1, q1, p2, q2 < ∞ satisfy

1
p1

+
1
q1

=1, and (2.15)

1
p2

+
1
q2

=1. (2.16)

i.e., (p1, q1) and (p2, q2) are pairs of Hölder conjugates to each other. Then

dn(Bn
p1

, `n
p2
) = dn(Bn

q1
, `n

q2
). (2.17)

In the more general case, one also has the following:

Proposition 11. (Pinkus [27]) Let (X, ‖·‖) and (Y, |·|) be normed spaces, and let K(X, Y)

be the collection of compact linear operators between X and Y. For T ∈ K(X, Y), T′ denotes

the adjoint of T. Then,

dn(T) = dn(T′), (2.18)

where dn(T) means dn(T(X), Y) and likewise for dn(T).

2 .3 convex hulls

There are some important results about the metric entropy of a set and the metric

entropy of its convex hull. Because the research in this thesis is partly motivated by

these results, we devote special attention to them.

Let K be a precompact subset of a Banach space (X, ‖ · ‖X), and let conv(K) be the

closed convex hull of K. Suppose we already know the rate of log N(ε, K, ‖ · ‖X) for

all 0 < ε < 1. Then, some upper bound for the rate of log N(ε, conv(K), ‖ · ‖X) can be

obtained for 0 < ε < 1. Among the known results, we list the following two results

for precompact sets in a Hilbert space:
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Proposition 12. (Carl, Kyrezi and Pajor [6]) Let K be a precompact subset of a Hilbert space

H. For all 0 < ε < 1,

√
log N(2ε, conv(K), ‖ · ‖) = O

(
1
ε

∫ diam(K)

ε/2

√
log N(r, K, ‖ · ‖)dr

)
. (2.19)

Proposition 13. (Gao [12]) For all 0 < ε < 1,

log N(2ε, conv(K), ‖ · ‖) = O
(

inf
η

{
η2

ε2 + I−1(η)

})
, (2.20)

where I−1 is the inverse function of

I(x) =
∫ x

0

√
log N(r, K, ‖ · ‖)dr.

Note that, inequality (2.19) is optimal when
∫ diam(K)

0

√
log N(r, K, ‖ · ‖)dr diverges;

while inequality (2.20) is optimal when
∫ diam(K)

0

√
log N(r, K, ‖ · ‖)dr converges; see

e.g. [14].

The relation between the Gelfand width of a precompact set and that of its absolute

convex hull has also been studied. For example, it is shown in [5] that:

Proposition 14. (Carl, Hinrichs and Pajor [5]) Let K be a precompact in a Hilbert space.

Then,

√
ndn(aco(K)) ≤ C

(
1 +

n

∑
k=1

√
kek(K)

)
, n ∈N, (2.21)

where aco(K) is the absolute convex hull of K, defined by

aco(K) :=

{
n

∑
k=1

ciki

∣∣∣∣∣ n ∈N, |c1|+ · · ·+ |cn| ≤ 1, ∀ i ki ∈ K

}
(2.22)

and C is an absolute constant.

An inequality bounding ek in terms of dk is also contained in [5]:
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Proposition 15. (Carl, Hinrichs and Pajor [5]) Let K be a precompact in a Hilbert space.

Then,

n

∑
k=1

ks/r−1(ek(conv(K)))s ≤ C(r, s)
n

∑
k=1

ks/r−1(dk(conv(K)))s, (2.23)

where 0 < s, r ≤ ∞ and C(r, s) is a constant depending only on r and s.

These propositions are especially useful in function spaces. For example, if K is

the set of indicator functions of the intervals [0, a], 0 < a ≤ 1. Then conv(K) is the set

of all non-negative monotonic functions on [0, 1] that is bounded by 1. This greatly

simplifies the problem. These two propositions also motivated us to study so-called

lq-hulls for 0 < q ≤ 1 in the next chapter.

2 .4 some metric entropy estimates

In this section we collect some well-known metric entropy estimates. Some of which

will serve as basic facts and will be used in what follows; others are included here to

give readers an impression about the typical growth rate of metric entropy estimates

and how the growth rate captures the information about the “size" of the set (or

function class).

2 .4 .1 Ellipsoidal Classes

The following known result is a basic fact, and will be used later.

Proposition 16. ([9], page 98) Let B`n
p be the unit ball of `n

p, 0 ≤ p < q < ∞. Then the

ε-metric entropy of B`n
p , under the `q norm is given by

log N(ε, B`n
p , `n

q ) �


1
εs log(2nεs), nεs > 1

n log( 2
nεs ), nεs < 1

, (2.24)

where we set s := pq
q−p .
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To illustrate the usefulness of this result, we introduce two estimates which appear

in applications.

Corollary 17. (Kolmogorov and Tikhomirov [24]) Let φ1, · · · , φk, · · · be an orthonormal basis

for L2([0, 1]), and let {bk} be a sequence of constants where bk � kα, and α > 0, so bk → ∞.

We define the ellipsoidal class E({bk}, C) by

E({bk}, C) :=

{
g =

∞

∑
k=1

ξkφk

∣∣∣∣∣ ∞

∑
k=1

ξ2
kb2

k < C

}
. (2.25)

Then, the class E({bk}, C) has metric entropy under the L2 norm of

log N(ε, E({bk}, C), ‖·‖L2) � ε−1/α. (2.26)

With the assumption that bk � kα removed, much is still known about these classes.

For example, Mitjagin [26] studied cross-sections of E({bk}, C), i.e., functions of the

form

m

∑
k=1

ξkφk, (2.27)

and applying results similar to that from equation (4.2) showed that, in general, these

ellipsoidal classes have entropy satisfying

m
(

2
ε

)
log

8
ε
≥ log N(ε, C({bk}, C), ‖·‖) ≥ m

(
1

2εe

)
(2.28)

where e ≈ 2.71828 denotes the base of the natural logarithm.

Similarly, the following estimate can be obtained:

Corollary 18. (Smoljak [28]) Let C be a constant, k ≥ 0 and α > 1
2 . Define Ek,α

d (C) as the

set of all functions

g(x1, · · · , xd) =
∞

∑
m1,··· ,md=−∞

(
am1,··· ,amd

cos

(
d

∑
i=1

2πmixi

)
+ bm1,··· ,md sin

(
d

∑
i=1

2πmixi

))
(2.29)
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over [0, 1]d subject to the conditions

√
a2

m1,··· ,md
+ b2

m1,··· ,md
≤ C(m1 · · ·md)

−α(logk(m1 · · ·md) + 1) (2.30)

for all m1, · · · , md ∈ R, with m = max{m, 1}. Then, under the ‖·‖L2
norm,

log N(ε, Ek,α
d , ‖·‖L2

) �
(

1
ε

)1/(α−1/2)

. (2.31)

In analogy with the definition of Ek,α
d (C), one may define a class of functions,

Gk,α
d (C), of the form given in equation (2.29), but satisfying the constraint

∞

∑
m1,··· ,md=−∞

(m1 · · ·md)
2α
(

a2
m1,··· ,md

+ b2
m1,··· ,md

)
≤ C2 (2.32)

instead of the constraint given in (2.30). Then, Gk,α
d (C) has metric entropy (see [28]):

log N(ε, Gk,α
d (C), ‖·‖L2

) �
(

1
ε

)1/α

logd−1
(

1
ε

)
. (2.33)

2 .4 .2 Finite Differences

We will use results from this section as a starting point for the research in this

dissertation, especially chapter 5.

For a function g : R → R, define the finite difference operator ∆hg by ∆hg(x) =

g(x + h) − g(x). It follows from direct computation that the k-th such difference,

denoted ∆k
h is given by

∆k
hg(x) :=

k

∑
j=0

(
k
j

)
(−1)k−jg(x + jh). (2.34)

Let C be a constant. Let q ≥ 1 and α ≥ (1
q −

1
2)

+, where a+ = max{a, 0}. Define

the class of Lipschitz functions by

Lipα,q(C) := {g : [0, 1]→ [−C, C] | ‖∆hg(x)‖Lq ≤ Chα} . (2.35)
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Then, the metric entropy of Lipα,q(C) is:

Proposition 19. (Birman and Solomjak[1]) The metric entropy of Lipα,q(C) is given by

log N(ε, Lipα,q(C), ‖·‖L2) � ε−1/α. (2.36)

Define the class of functions of bounded variation by

BV(C) := {g : [0, 1]→ [−C, C] | V(g) ≤ C} (2.37)

where V(g) is the variation of g, defined by:

V(g) := sup
m

∑
i=1
|g(xi+1)− g(xi)| (2.38)

where the supremeum is taken over all partitions {x1, · · · , xd} of [0, 1]. Since (see e.g.

[8])

Lip1,∞(C) ⊂ BV(C) ⊂ Lip1,1(C), (2.39)

we immediately obtain, via Proposition 19, the following estimate of metric entropy

for the class of bounded variation functions:

Corollary 20. For any ε > 0,

log N(ε, BV(C), ‖·‖L2) �
1
ε

. (2.40)

Because a bounded monotonic function on R is automatically of bounded varia-

tion, we have:

Corollary 21. Let F denote the set of all monotone increasing functions f : I → [0, 1], where

I ⊆ R is an arbitrary bounded interval in R. The entropy of F is given by:

log N(ε,F , ‖·‖Lp) �
1
ε

(2.41)
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Remark 22. It can be proved directly that

log N[ ](ε,F , ‖·‖Lp) �
1
ε

.

(See e.g. [32] or [2] for a simple proof.) Because any function of bounded variation can

be written as a difference of two monotone functions (Mcdonald and Weiss [25]), we have

BV(C) ⊂ F − F . Thus, the following estimate, which is stronger than that contained in

equation (2.40), also holds:

log N[ ](ε, BV(C), ‖·‖L2) �
1
ε

.

For a function g : Rn → R, denote the ki-th difference operator with respect to the

variable xi by ∆ki
h , that is,

∆k
hg(x) :=

k

∑
j=0

(
k
j

)
(−1)k−jg(x + jhei), (2.42)

where ei is the vector whose i-th coordinate is 1 and other coordinates are 0.

The metric entropy of the class of functions with the properties mentioned above

is given as follows:

Proposition 23. (Timan [31], page 279) Let A consist of all the functions f : [0, 1]n → [0, 1]

such that for each 1 ≤ i ≤ n, there exists a constant Mi such that for all 0 < t < 1,

sup0<h≤t ‖∆k
h f ‖2 ≤ Mitβi , where 0 < βi ≤ ki. Then,

log N(ε, A, ‖ · ‖2) � ε−∑n
i=1 β−1

i . (2.43)

2 .4 .3 Differentiable Functions

Although the results from this subsection and the next section will not be be used in

the dissertation, we include them in order to illustrate the rates of some typical metric

entropy estimates and how the rates of these estimates are affected by the presence of

a particularly strong hypothesis such as analyticity for instance.
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To introduce these results, we let I = [a, b], and let Wr
p(I) denote the collection of

all functions f : I → R such that f (r−p) is absolutely continuous and f (r) ∈ Lp(A). We

further define

Br
p :=

{
f ∈Wr

p

∣∣∣∣ ∥∥∥ f (r)
∥∥∥

p
≤ 1

}
. (2.44)

For 0 ≤ h ≤ b− a, we define the modulus of continuity w(·, ·)p by

w(g, h)p := max
0<t≤h

 b−h∫
a

|g(x + t)− g(x)|p dx

1/p

. (2.45)

For α = r + β with 0 ≤ β ≤ 1, we define

Lipα
p :=

{
f ∈Wα

p

∣∣∣ w( f (r), t)p ≤ tβ
}

. (2.46)

If p = ∞, we further define Lipα
∞ as follows:

Lipα
∞ :=


{

f ∈ Lipα
∞

∣∣∣ ∥∥∥ f (r)
∥∥∥

∞
≤ 1

}
if β = 0,

{
f ∈ Lipα

∞

∣∣∣ ∣∣∣ f (r)(x)− f (r)(y)
∣∣∣ ≤ |x− y|β

}
if β 6= 0.

(2.47)

With the notations defined above, we have:

Proposition 24. (Temljakov [29]) There exists a constant C such that for all 0 < ε < 1,

log N(ε, Lipα
p, ‖·‖q) ≥ Cε−1/α. (2.48)

If α ≥ 1
p −

1
q , then the reverse to inequality (2.48) has been shown via Taylor

expansions:

Proposition 25. (Birman and Solomyak [1]) If α ≥ 1
p −

1
q , then

log N(ε, Lipα
p, ‖·‖q) � ε−1/α. (2.49)
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When p = q = ∞, the estimate (2.49) has been extended to higher dimensional

cases:

Proposition 26. (Kolmogorov [23]) Under the notations defined in the previous proposition,

log N(ε, Bα
∞([0, 1]d), ‖·‖∞) � ε−d/α. (2.50)

2 .4 .4 Analytic Functions

When the functions are analytic, the metric entropy rate is small, which reflects the

intuition that the class of analytic functions must be “small” since analyticity is such

a strong condition. Here we list a few typical results:

Proposition 27. (Vitushkin [33]) We denote the closed, 0 centered ball of radius r by D(r).

Let A(D(r)) denote all the analytic functions on an open connected set G which are uniformly

bounded by 1.

log N(ε,A(D(r)), ‖·‖L∞(D(r))) =
1

log r
log log

1
ε
+ O(log

1
ε

log log
1
ε
). (2.51)

It is noteworthy that equation (2.51) is exact and gives the non-asymptotic term

precisely. For general connected open sets, similar but less precise results can be

obtained:

Proposition 28. (Widom [34]) Let G ⊂ C be a connected open set, K ⊂ G be a compact set,

and we let A(G) denote all the analytic functions on G which are uniformly bounded by 1.

log N(ε,A(G), ‖·‖L∞(K)) � C(K, G) log log
1
ε

, (2.52)

where C(K, G) is a constant depending only on K and G.

It is shown in ([34]) that this constant is in fact 1
V(K,G)

where V(K, G) is defined by

the equation

e−V(K,G) = lim
n→∞

[
dn(A(G)), ‖·‖L∞(D(r))

]1/n
. (2.53)
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In higher dimensions, if G ⊆ Cd is a bounded, open and connected set, K ⊆ G

denoting a compact set with non-empty interior, then it is shown in Kolmogorov [23]

that

log N(ε,A(G), ‖·‖L∞(K)) � (log
1
ε
)d+1. (2.54)
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chapter 3

Metric Entropy of Sets With Positive Reach

3 .1 sets of positive reach

Convexity is a fundamental part of analysis. Unfortunately, convexity may not hold

in practice. To meet the needs of practitioners from diverse areas of mathematics and

the sciences, several generalizations have been proposed and studied. Among the

most popular is the notion of positive reach. In Federer’s seminal paper [11] of 1959,

the following definition of the reach of a set is introduced:

Definition 11. For a set K ⊂ Rd, the reach of K is defined as

reach(K) := sup {r ≥ 0 | ∀y with dist(y, K) ≤ r, ∃!x ∈ K nearest to y} .

Definition 12. A set K ⊂ Rd is said to have positive reach if reach(K) > 0.

It is easy to check that if reach(K) > 0, then K is necessarily a closed set. Further-

more, K is closed and convex if and only if reach(K) = ∞. Thus, positive reach is a

generalization of convexity.

Let us remark that a set of positive reach can have a very difference appearance

from that of a convex set. For example, a set of positive reach could have a cavity. It

is easy to check that the complement of any open ball of radius R is a set of positive

reach with reach(K) = R. Furthermore, a set of positive reach does not need to be

connected. Indeed, any finite set is of positive reach: If K is a finite set, then

reach(K) = min
{

1
2
‖x− y‖

∣∣∣∣ x, y ∈ K, x 6= y
}

.

For convex sets, it is clear that the intersection of two convex sets is still convex. In

terms of reach, we have the following:

reach(K) = reach(L) = +∞ ⇒ reach(K ∩ L) = +∞.
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It is important to remark that the intersection of two sets with positive reach may no

longer of positive reach. In fact, we have the following:

Proposition 29. For any r > 0, there exists set K with reach(K) = r, and a closed convex

set L, i.e., reach(L) = ∞, such that reach(K ∩ L) = 0.

Proof. Let

K =
{

x ∈ R2
∣∣∣ ‖x‖ ≥ r

}
.

We prove that reach(K) = r. For any x ∈ R2, if dist(x, K) = 0, then x ∈ K. So, there

exists a unique point in K that is closest to x. If 0 < dist(x, K) < r, then x 6= 0 and

dist(x, K) = r − ‖x‖. In this case, the closed ball B(x, r − ‖x‖) intersects K at the

unique point r
‖x‖x. Therefore, reach(K) ≥ r.

On the other hand, because dist(0, K) = r, and the closed ball B(0, r) intersects

K at infinitely many points (indeed, at every point on
{

x ∈ R2
∣∣ ‖x‖ = r

}
). Hence

reach(K) ≤ r. Therefore reach(K) = r.

To construct the convex set L we choose a strictly decreasing sequence of real

numbers {θn}∞
n=1 in (0, π) that converges to 0, and define

xn = (r cos(θn), r sin(θn)) ∈ R2.

Thus, the points xn, n ≥ 1, are on the upper half of the circle
{

x ∈ R2
∣∣ ‖x‖ = r

}
.

For n ≥ 1, let Ln be the line containing x2n−1 and x2n, and let Hn be the region

below the line Ln, including the points on the line Ln. Furthermore, we let L0 be the

line containing x1 and the point (r, 0) ∈ R2, and let H0 be the region above the line

L0, including the points on the line L0. Thus, Hn is a closed half space for each n ≥ 0.

Consequently, the set

L :=
∞⋂

n=0
Hn

is a closed convex set in R2. Now, let us look at the intersection K∩ L. It is not difficult

to see that

K ∩ L =
∞⋃

n=1

∆n,
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where ∆n is the closed region bounded by the line Ln, the line Ln+1, and the short arc

x2nx2n+1. If we let ξn = 1
2(x2n + x2n+1) for n ≥ 2. Then it is easy to check that

dist(ξn, K ∩ L) =
1
2
‖x2n+1 − x2n‖.

Because there are two points on K ∩ L, namely, x2n and x2n+1, which are closest to ξn,

we have

reach(K ∩ L) ≤ 1
2
‖x2n+1 − x2n‖,

for all n ≥ 1. However,

lim
n→∞
‖x2n+1 − x2n‖ = 0.

Therefore, reach(K ∩ L) = 0.

While Proposition 29 says that in general, the intersection of two sets with positive

reach may not have positive reach, the following proposition says that under a certain

condition, the intersection can still have positive reach.

Proposition 30. (Colesanti and Manselli [7], Theorem 3.10) If reach(K) ≥ R > 0, and L is

a closed set with the property that whenever a, b ∈ L, the set I(a, b, R) ⊂ L, where I(a, b, R)

is the intersection of all closed balls of radius R containing a and b, then reach(K ∩ L) ≥ R.

In particular, if L is a closed ball of radius no larger than R, then reach(K ∩ L) ≥ R.

On the other hand, sets with positive reach have many nice properties. In particu-

lar, Federer [11] extended both the classical Steiner’s formula for convex sets, and the

fundamental Weyl’s Tube Formula for differential manifolds to sets of positive reach.

We refer the readers to a nice survey paper [30] for the research on positive reach up

to 2009.

Among the many nice properties of sets with positive reach, we recall the following

property that was discovered by Federer:

Proposition 31. ((6) of Theorem 4.8 in Federer [11]) For any a ∈ ∂K, and any v ∈ Rd, if

0 < τ = sup {t | dist(a + tv, K) = ‖tv‖} < ∞,

then ‖τv‖ ≥ reach(K).
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We use Proposition 31 to prove the following important property of sets with

positive reach, which will be used in an essential way in the later proof.

Lemma 32. If K is a set in Rd with positive reach, then the following are true:

i) For every 0 < r < reach(K), and every y ∈ Rd with dist(y, K) < reach(K), if x is the

unique point on K that is closest to y, then, the closed ball B(z, r) intersects K precisely

at x, where

z = x +
r

‖y− x‖ (y− x).

ii) For every 0 < r < reach(K), every point on the boundary of K is touchable by a closed

ball of radius r from outside, that is, for every 0 < r < reach(K) and every x0 ∈ ∂K,

there exists a w ∈ Rd, such that the closed ball B(w, r) intersects K precisely at x0.

Proof. We prove i) by contradiction. Suppose i) is false, then there exist a y ∈ Rd with

0 < dist(y, K) < reach(K), and an x ∈ K with ‖y − x‖ = dist(y, K), and 0 < r <

reach(K) such that

‖z− x‖ > dist(z, K),

where

z = x +
r

‖y− x‖ (y− x).

Then,

0 < 1 ≤ τ = sup {t | dist(x + t(y− x), K) = ‖t(y− x)‖} ≤ r
‖y− x‖ < ∞.

By applying Proposition 31, we have

r =
∥∥∥∥ r
‖y− x‖ · (y− x)

∥∥∥∥ ≥ τ‖y− x‖ ≥ reach(K),

which is a contradiction. This proves i).

Now, we use i) to prove ii). Because x0 is on the boundary of K, there exists

N0 > 0 such that for every integer n ≥ N0, we can choose a point yn outside K so that
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‖yn − x0‖ < r/n. Let xn be the unique point in K that is closest to yn. Let

wn = xn +
r

‖yn − xn‖
(yn − xn).

By i), the closed ball B(wn, r) intersects K precisely at xn, and yn lies between xn and

wn. Since

‖wn − x0‖ ≤ ‖wn − xn‖+ ‖xn − x0‖ ≤ (1 + 1/n)r

for all n ≥ N0, the sequence {wn} is bounded in Rd. Hence it contains a subsequence

that converges to some w0 ∈ Rd. Clearly, we have

‖w0 − x0‖ = r = dist(w0, K).

Since r < reach(K), the set closed ball B(w0, r) intersects K precisely at x0. This

finishes the proof of ii).

3 .2 hausdorff distance

A key concept in measuring the distance between two bounded sets is the so-called

Hausdorff distance. Let B(r) be the closed ball in Rd with center at 0 and radius r,

and let K1 and K2 be two bounded closed sets in Rd. The Hausdorff distance between

K1 and K2 is defined to be the minimum value of r so that

K1 ⊂ K2 + B(r), (3.1)

and

K2 ⊂ K1 + B(r). (3.2)

Hausdorff distance is commonly used in shape approximation, for instance in

computer graphics the Hausdorff distance is used to measure the difference between

two different representations of the same 3D object [19], particularly when generating

level of detail for efficient display of complex 3D models. A celebrated result of
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Bronshtein states that if Cd is the collection of closed convex subsets of B(1), then

there exists a constant λ(d) depending only on d such that for all ε > 0, Cd has an

ε-net in Hausdörff distance of cardinality

N(ε, Cd, h) ≤ exp
(

λ(d)ε−(d−1)/2
)

.

This result provides a theoretic base of approximation algorithms of convex bodies.

It also plays a key role in the study of metric entropy of convex functions, see, for

instance, [18] and [15]. In applications, one often wants an extension of Bronshtein’s

result to non-convex bodies. For example, in image reconstruction of brain activities,

it is not realistic to assume that the active regions are convex. Rather, an active region

typically consists of several subregions, each of which are approximately convex, such

a kidney-shaped region. Motivated by these applications, in this chapter, we extend

Bronshtein’s theorem to sets with positive reach. We believe that this result, and more

broadly, the notion of reach itself, will useful to workers in applied fields where certain

regularity conditions may not hold in practice.

Having defined reach and Hausdorff distance, we can now state the main result of

this chapter:

Theorem 33. Let K be the collection of all sets K contained in B(1), with reach(K) > c. For

any ε > 0,

log N(ε,K, h) ≤ Λ(c, d)ε−(d−1)/2,

where Λ(c, d) is a constant depending only on c and d.

3 .3 coating a set of positive reach

The key idea of our approach to study the metric entropy of K is to smooth the

boundary of each set K ∈ K by means of “coating” it with a closed ball of radius

δ > 0. To be precise, let K be a bounded closed set in Rd. We define

Kr := K + B(r).
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We call Kr the r-coating of K. We also define

Kr := {Kr | K ∈ K} .

The following lemma establishes the equivalence between the metric entropies of K
and Kr.

Lemma 34. For all 0 < δ, r ≤ c,

N(δ,Kr, h) ≤ N(δ,K, h) ≤ N(δ/2,Kr, h).

Proof. Let C, D ∈ K, and let h(C, D) = δ. We first show that

h(C + B(r), D + B(r)) = h(C, D). (3.3)

We begin by establishing that

h(C + B(r), D + B(r)) ≤ h(C, D).

By definition of Hausdorff distance,

C ⊂ D + B(δ),

and

D ⊂ C + B(δ).

Consequently,

C + B(r) ⊂ D + B(r) + B(δ)

and

D + B(r) ⊂ C + B(r) + B(δ),

which implies that

h(C + B(r), D + B(r)) ≤ δ.

This is one direction of (3.3).
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On the other hand, by the definition of Haüsdorff distance, together with the

compactness of C and D, either there exists x ∈ C such that dist(x, D) = δ, or

there exists y ∈ D such that dist(y, C) = δ. Without loss of generality, we assume

dist(x, D) = δ.

Since D is closed, there exists y ∈ D such that ‖x− y‖ = δ. That is, y is the point

in D that is closest to x.

Since reach(D) > max{r, δ} := r∗, by Lemma 32, there exists a closed ball B(w, r∗)

with center at w and radius r∗ such that B(w, r∗) intersects D only at y, and x lies on

the line segment from y to w. Let v = x + r
‖w−x‖ (w− x). Clearly, v ∈ C + B(r), and

dist(v, D + B(r)) = δ. Thus,

h(C + B(r), D + B(r)) ≥ δ = h(C, D).

This finishes the proof of equation (3.3).

We proceed to finish the lemma. We claim first that, if {Bi} is an δ-net for K,

{Bi + B(r)} is an δ-net for Kr. Let E ∈ Kr. Then, for some E1 ∈ K, we have that

E = E1 + B(r). Let Bi be an element of the δ-net with h(E1, Bi) ≤ δ. Then,

h(E, Bi + B(r)) =h(E1 + B(r), Bi + B(r)) (3.4)

=h(E1, Bi). (3.5)

≤δ (3.6)

Thus, {Bi + B(r)} is a δ-net for Kr as claimed. If, in particular, {Bi} is a δ-net for K
with minimum cardinality, this implies that

N(δ,Kr, h) ≤ N(δ,K, h).

Now we show that

N(δ/2,K, h) ≤ N(
δ

2
,Kr, h).
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Let {Ci} be a δ-net of Kr of minimum cardinality. For each i, choose Ki in K such that

h(Ci, Ki + B(r)) ≤ δ

2
. (3.7)

Then, for any A ∈ K we have for appropriate i:

h(A, Ki) = h(A + B(r), Ki + B(r)) (3.8)

≤ h(A + B(r), Ci + B(r)) + h(Ci + B(r), Ki + B(r)) (3.9)

≤ δ

2
+

δ

2
(3.10)

= δ. (3.11)

Thus,

N(δ,K, h) ≤ N(δ/2,Kr, h).

This completes the proof.

3 .4 some properties of coated sets

We now prove some key properties of the coated sets of sets with positive reach. We

will use these properties in the later proofs.

The first property is that a certain kind of coated sets are star-convex.

Lemma 35. Suppose K ⊂ B(x0, r/2) with reach(K) > r. Then, every ray emanating from

x0 intersects the boundary of Kr at exactly one point. That is, Kr is star-convex with vantage

point x0.

Proof. Suppose a ray emanating from x0 intersects the boundary Kr at two distinct

points y and z, with ‖y− x0‖ < ‖z− x0‖. Since reach(K) > r, there exists a unique

w ∈ K such that ‖z− w‖ = r. Let m be the middle point of y and z, and let H be the

hyperplane that passes through m and is perpendicular to the line segment from y to

z. Because ‖y− w‖ ≥ r = ‖z− w‖, the hyperplane H separates w and y, with y on
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the side containing x0 and w on the other side. Since w, x0 ∈ B(0, 1
4r), we have

‖w− x0‖ ≤
1
2

r.

On the other hand, because ‖y− w‖ ≥ r, we have

‖y− x0‖ ≥ ‖y− w‖ − ‖x0 − w‖ ≥ r− 1
2

r =
1
2

r,

which implies that

‖w− x0‖ ≥ ‖m− x0‖ > ‖y− x0‖ ≥
1
2

r.

This is a contradiction. Hence any ray emanating from x0 intersects the boundary of

Kr only at one point. Consequently, Kr is star-convex.

The next lemma describes an important property coated sets.

Lemma 36. Suppose K ⊂ B(x0, r/4) and reach(K) > 3r. For any two points p and q on

∂(Kr), if ∠px0q < π/10, then

‖p− q‖ ≤ 7r sin∠px0q.

Proof. Without loss of generality, we assume

‖p− x0‖ ≥ ‖q− x0‖ .

Because q ∈ ∂(Kr), there exists a point q0 ∈ K such that ‖q− q0‖ = r. Since reach(K) >

3r, by Lemma 32, the closed ball B(w, 3r) centered at w = q0 + 3(q− q0) with radius

3r intersects K only at q0. Consequently, the closed ball B(w, 2r) intersects Kr only at

q. In particular, this means that p is outside the closed ball B(w, 2r).

Since for any u ∈ B(x0, 7
10r), we have

‖u− q0‖ ≤ ‖u− x0‖+ ‖x0 − q0‖ ≤
7

10
r +

1
4

r < r,



36

which implies that

‖w− u‖ ≥ ‖w− q0‖ − ‖u− q0‖ > 3r− r = 2r.

Thus, the ball B(x0, 7
10r) does not intersect the ball B(w, 2r). Also, because p is on the

boundary of Kr, there exists p0 ∈ K such that ‖p− p0‖ = r. Consequently,

‖p− x0‖ ≥ ‖p− p0‖ − ‖p0 − x0‖ ≥ r− 1
4

r =
3
4

r >
7

10
r. (3.12)

This means that p is outside the ball B(x0, 7
10r). Therefore, we have two disjoint balls

B(x0, 7
10r) and B(w, 2r), with the point q on the boundary of B(w, 2r), and the point p

lying outside both balls.

Let H be the two-dimensional plane containing x0, p and q. Let Γ be the intersec-

tion of H with the boundaries of the balls B(w, 2r), and γ be the intersection of H

with the boundary of B(x0, 7
10r). Clearly, γ is a circle centered at x0 with radius 7

10r.

Since Γ contains q, Γ is not empty. Thus, Γ must be a circle (or the single point q in

the extreme case, which can be viewed as a circle of radius 0). Let w′ be the center of

Γ.

Because q0 ∈ K ⊂ B(x0, 1
4r), the distance between q0 and x0 is at most 1

4r. Thus,

the distance between q0 and the plane H is at most 1
4r.

We claim that the distance from w to H is at most r
2 . Note that w, q0 and q are

collinear with

‖w− q‖ = 2 ‖q− q0‖ .

Let q′0 denote the closet point on H to q0, and let w′ denote the closest point on H to

w. Thus, w′ is the center of the circle Γ. (See figure 3.1.) Then, the triangle 4q0q′0q is

similar to the triangle 4ww′q. In particular, this implies that

‖q0 − q‖∥∥q0 − q′0
∥∥ =

‖w− q‖
‖w− w′‖ . (3.13)
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F igure 3 .1 : Lemma 36: Distance to H

Since, ‖w− q‖ = 2‖q− q0‖, and ‖q0 − q‖ ≤ 1
4r, we obtain

‖w− w′‖ = 2‖q0 − q‖ ≤ r
2

.

We thus conclude that the distance between w and H is at most 1
2r, i.e. ‖w−w′‖ ≤ 1

2r.

Next, we show that the radius of Γ is at least
√

15
2 r. By considering the right triangle

4ww′q we see that

radius of Γ =

√
‖w− q‖2 − ‖w− w′‖2 (3.14)

≥
√
(2r)2 −

( r
2

)2
(3.15)

=

√
15
2

r. (3.16)

Recall that p lies outside the ball B(x0, 7
10r) and the ball B(w, 2r), implying that p is

outside the circles γ and Γ. Thus, there are two tangent lines from p to the circle γ

and hence two tangent points, which we call t and s.
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Consider the right triangle 4x0tp. By equation (3.12) and the fact that‖t− x0‖ =
7

10r, we have then have

cos∠tx0p =
‖t− x0‖
‖p− x0‖

≤
7
10r
3
4r

=
14
15

, (3.17)

implying that

∠tx0p ≥ cos−1 14
15
≥ π

10
.

On the other hand, since

‖p− x0‖ ≤ ‖p− p0‖+ ‖p0 − x0‖ ≤ r +
1
4

r =
5
4

r,

we have

cos∠tx0p = sin∠tpx0 =
‖t− x0‖
‖p− x0‖

≥
7

10r
5
4r

=
14
25

>
1
2

, (3.18)

which implies that ∠tx0p ≤ π
3 . In conclusion, we have

π

10
≤ ∠tx0p ≤ π

3
.

Of course, we also have
π

10
≤ ∠sx0p ≤ π

3
.

Now, we estimate the angle ∠qpx0. There are two cases. Case one: q and x0 lies

on different sides of one of the tangent lines, say line pt. Case two, q is between the

rays pt and ps emanating from p.

In the first case, we have

∠tpx0 ≤ ∠qpx0.

Since we have assumed that

‖p− x0‖ ≥ ‖q− x0‖,
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x0

t
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p

F igure 3 .2 : Lemma 36: Case 1

we also have ∠qpx0 < π/2. Hence,

π

10
≤ ∠qpx0 ≤

π

2
. (3.19)

Now, we consider the second case, that is, q lies in the cone between the rays pt

and ps. Because by our initial hypothesis

∠qx0p < π/10 ≤ ∠tx0p,

q must lie in the region bounded by the line segment pt, line segment ps and the short

arc st. This region has diameter less than 5
4r, which is too small to contain the entire

circle Γ. Together with the fact that p lies outside Γ, we conclude that Γ must intersect

with one of the tangent lines twice. We assume that Γ intersects with pt at u and v,

with v next to p. Let m be the midpoint of the line segment from u to v. Note that

∠tpq ≤ ∠uvq. Since ∠uvq equals half of the radian measure of the short arc uq on the

circle Γ, which is less that half of the radian measure of the arc uqv on the circle, and

the latter equals half of the angle ∠uw′v, or equals the angle ∠mw′v, we thus have

∠tpq ≤ ∠mw′v. (3.20)
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Note that

‖m− v‖ =1
2
‖u− v‖ (3.21)

≤1
2
‖t− p‖ (3.22)

≤1
2
‖x0 − p‖ (3.23)

≤5
8

r. (3.24)

Also, recall from equation (3.16) that ‖w− v‖ ≥
√

15
2 r. Thus, we have

sin∠mw′v =
‖m− v‖
‖w′ − v‖ ≤

5
8r
√

15
2 r
≤ 1

3
. (3.25)

Hence, we have

sin∠tpq ≤ 1
3

. (3.26)

Consequently,

sin∠qpx0 = sin(∠tpx0 −∠tpq)

= sin∠tpx0 cos∠tpq− cos∠tpx0 sin∠tpq

≥1
2
·

√
1−

(
1
3

)2

−

√
1−

(
1
2

)2

· 1
3

=
2
√

2−
√

3
6

. (3.27)

Therefore, in either case, we have

sin∠qpx0 ≥
2
√

2−
√

3
6

.

By the law of sines applied to triangle 4px0q, together with the fact that

‖x0 − q‖ ≤ 5
4

r
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F igure 3 .3 : Lemma 36: Case 2

and the numerical calculation that

6
2
√

2−
√

3
· 5

4
< 7,

we have

‖p− q‖ = ‖x0 − q‖
sin∠qpx0

· sin∠px0q

≤ 6
2
√

2−
√

3
5
4

r sin∠px0q

≤7r sin∠px0q. (3.28)

3 .5 simplicial approximation

Given a bounded closed star-shaped set L in Rd with vantage point x0, we say a set

S is a δ-simplicial approximation of L, if S is a star-shaped set with vantage point x0,

such that the boundary of S is a union of (d − 1)-simplices with non-overlapping
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interiors. Furthermore, the vertices of each simplex are on ∂L, and the edge-length of

each simplex is at most δ.

Lemma 37. Suppose K ⊂ Rd with reach(K) > c. For any 0 < r ≤ c
4 , if diam(K) ≤

1
2r, then for every 0 < δ < r, and every

√
rδ-simplicial approximation S of Kr, we have

h(Kr, S) ≤ δ.

Proof. By definition of Hausdorff distance, in order to establish the conclusion, we

must show that δ satisfies

Kr ⊆S + B(δ), (3.29)

and

S ⊆Kr + B(δ). (3.30)

We begin by establishing equation (3.29). For any y ∈ Kr \ S, there exists x0 ∈ K, so

that ‖x0 − y‖ ≤ r. Because

diam(K) ≤ 1
2

r,

we have that

K ⊂ B(x0, r/2).

The ray emanating from x0 and passing through y intersects a facet of S at some point

x. Let x1, x2, . . . , xd be the vertices on that facet. Then x can be expressed as convex

combination of xi, 1 ≤ i ≤ d. There are two cases: y lies between x0 and x, or x lies

between x0 and y.

We first consider the former. Suppose y lies between x0 and x. Since S is star-

shaped with vantage point x0, the entire line segment x0x is contained in S. Hence,

y ∈ S, and we immediately have y ∈ S + B(δ). On the other hand, suppose x lies

between x0 and y. Since the xi are on the boundary of Kr, we must have

‖xi − x0‖ ≥ r.
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F igure 3 .4 : Spherical Cap Argument

Since

K ⊆ B(x0,
r
2
)

by hypothesis, Lemma 35 then implies that the entire line segment x0xi lies in Kr.

Therefore, there exist points x̂i on the line segment x0xi so that ‖x̂i − x0‖ = r. For any

1 ≤ i < j ≤ d, the triangle 4xix0xj contains the isosceles triangle 4x̂ix0x̂j, so we have

∥∥x̂i − x̂j
∥∥ ≤ ∥∥xi − xj

∥∥ ≤ √rδ.

Let 4 be the convex hull of x̂i, 1 ≤ i ≤ d. The line segment x0y cuts 4 at some point,

say at x̂. Since x0 is a vantage point of Kr, Lemma 35 implies that x̂ ∈ Kr. We claim

that

‖x̂− x0‖ > r− δ.

Indeed, suppose

‖x̂− x0‖ ≤ r− δ.
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Let L be the hyperplane passing through x̂ and perpendicular to the line segment

x0y. Consider the spherical cap cut off by L from the ball centered at x0 with radius r.

Because the base radius of the spherical cap is at least

√
r2 − (r− δ)2 =

√
2r− δ

√
δ (3.31)

>
√

rδ, (3.32)

while

‖x̂i − x̂‖ ≤max
j 6=i

∥∥x̂i − x̂j
∥∥ (3.33)

≤
√

rδ, (3.34)

we see that the x̂i all lie on the spherical cap but not on the base of the spherical cap.

Consequently, as a convex combination of x̂i, 1 ≤ i ≤ d, the point x̂ does not lie on

the base of the spherical cap. This is a contradiction. Hence

‖x̂− x0‖ > r− δ,

and consequently,

‖y− x̂‖ = ‖y− x0‖ − ‖x̂− x0‖ ≤ δ.

This implies that y ∈ S + B(δ).

Therefore, in either case, we have y ∈ S + B(δ), which implies that Kr ⊂ S + B(δ).

Next, we prove S ⊂ Kr + B(δ). For any x on the boundary of S, x belongs to a

facet of S. Thus, there exist vertices xi, 1 ≤ i ≤ d with

∥∥xi − xj
∥∥ ≤ √rδ

for 1 ≤ i < j ≤ d, such that x is a convex combination of xi, 1 ≤ i ≤ d. Thus

dist(x, K) ≤ ‖x− x1‖+ dist(x1, K) ≤
√

rδ + r < c. (3.35)
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Since reach(K) > c, there exists a unique point x0 ∈ K that is closest to x, and the

closed ball B(w, c) with center at w intersects K only at x0, where we define

w := x0 +
c

‖x− x0‖
(x− x0).

Consequently, the closed ball B(w, c− r) with center at w and radius c− r intersects

Kr only one point. Denote this point by y. We have

dist(x, Kr) = ‖x− y‖.

Clearly, y lies on the line segment from x0 to w.

If x is between y and x0, then, because K is star-shaped with respect to x0, we have

that the entire line segment from x0 to y must lie in Kr, implying that x ∈ Kr. This

immediately implies that x ∈ Kr + B(δ).

Suppose y is between x and x0. We show that ‖x− y‖ ≤ δ. Assume ‖x− y‖ > δ.

Consider the hyperplane H that passes through x and is perpendicular to the line

segment xy. Since H contains x which is a linear combination of xi, 1 ≤ i ≤ d, there

exists at least one xi such that either xi ∈ H or xi and y lie on different sides of H.

Since

B(w, c− r)
⋂

Kr = {y},

this xi lies outside the ball B(w, c− r). Thus,

‖xi − x‖ ≥
√
(c− r)2 − (c− r− ‖x− y‖)2 (3.36)

≥
√

2c− 2r− 2δ
√

δ (3.37)

>
√

rδ. (3.38)

However, since

‖x− xi‖ ≤ max
j 6=i

∥∥xi − xj
∥∥ ≤ √rδ,

we get a contradiction. Therefore, we must have ‖x− y‖ ≤ δ, which implies that

x ∈ Kr + B(δ). Hence, in either case, we have x ∈ Kr + B(δ). Because x is an arbitrary

point on ∂S, we have ∂S ⊂ Kr + B(δ). Note that S and Kr + B(δ) are star-shaped with
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F igure 3 .5 : Equations (3.36) Through (3.38)

common vantage point x0. We conclude that

S ⊂ Kr + B(δ).

3 .6 local approximation

In this section, we approximate sets that are already close to a fixed set.

Lemma 38. Let K be the collection of all sets contained in B(1) with reach(K) > c. For each

fixed D ∈ K, and 0 < η < 3
4 sin( π

10)r, where r = c
3 , denote

Dη = {C ∈ K | h(C, D) < η} .

Then,

log N
(η

2
,K, h

)
≤ λ(c, d)η−(d−1)/2

where λ(c, d) is a constant depending only on c and d.

Proof. Let M be the maximum number of points that can be choosen from B(1) with

mutual distance at least r/4. Then, the balls centered at these points with radius r/4

cover B(1), while the balls centered at these points with radius r/8 are disjoint and

contained in B(1 + r/8). The total volume of the M small balls is

M · (r/8)d · vol(B(1)),
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while the volume of B(1 + r/8) is

(1 + r/8)d · vol(B(1).

By comparing the volumes, we obtain

M ≤
(

1 +
8
r

)d
.

This means that B(1) can be covered by no more than (1 + 24/c)d closed balls of

radius r/4. Denote these balls by B(ci, r/4), 1 ≤ i ≤ M. By Proposition 30, for each

K ∈ K, reach(K ∩ B(ci, r/4)) > c. Consider the collection

Ki(η) :=
{

K ∩ B(ci, r/4)
∣∣ K ∈ Dη

}
.

If we denote Di = D ∩ B(ci, r/4), then

Ki(η) ⊂{K ⊂ B(ci, r/4) | reach(K) > c, h(K, Di) ≤ η}

=
{

ci + K
∣∣ K ⊂ B(0, r/4), reach(K) > c, h(K, D′i) ≤ η

}
,

where D′i = (Di − ci) ∩ B(r/4). We denote

E i
η = {K ⊂ B(xi, r/4) | reach(K) > c, h(K, Di) ≤ η} .

Now, for each K ∈ E i
η, we approximate Kr with a simplicial sphere. Note that

Kr ⊂ B(r/4) + B(r) ⊂
[
−5

4
r,

5
4

r
]d

.

The 2d facets of [−5
4r, 5

4r]d can be triangulated into µη−(d−1)/2 simplices of dimension

(d− 1) and edge length at most 1
24
√

rη, where µ is a constant depending only on d

and c. Let vi, 1 ≤ i ≤ d be the vertices of these simplices. Thus,

‖vi − 0‖ ≥ 5
4

r
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for all 1 ≤ i ≤ d. Since we have proved that Kr must be star-convex with vantage

point 0 in Lemma 35, the line segment connecting each vi and the origin intersects the

boundary of Kr at a unique point, say si. Let SK be the simplicial sphere with vertices

si, 1 ≤ i ≤ m. We show that S is a
√

rη-simplicial approximation of Kr. Indeed, for

any two adjacent vertices vi and vj, because

‖vi − vj‖ ≤
1

24
√

rη,

and ‖vi‖ ≥ 5
4r, ‖vj‖ ≥ 5

4r, we have

sin(θ/2) ≤ 1
30
√

rη,

where θ is the angle between the vector vi and vj. This implies that

sin θ ≤ 1
15
√

rη.

By Lemma 36, we have ∥∥si − sj
∥∥ ≤ 1

2
√

rη.

Applying Lemma 37, we obtain

h(K, SK) ≤
1
4

η.

The simplicial sphere SK we obtained above cannot be directly used to construct

η/2-net for E i
η because the choices of the vertices depends on K too specifically. In

what follows, we will reduce its dependence on K.

Let ti be the intersection of the line segment 0vi with the boundary of Dr
i . Then si,

ti, vi and the origin are on the same line. We claim that ‖ti − si‖ ≤ 11η.

Without loss of generality, we assume si lies between ti and 0. Because

h(Kr, Dr
i ) = h(K, Di) ≤ η,
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there exists xi ∈ Kr such that

‖ti − xi‖ ≤ η.

Now, let us look at the 4ti0xi. We have

‖ti − 0‖ ≥ dist(ti, Di)− dist(0, Di) ≥ r− 1
4

r =
3
4

r,

‖xi − 0‖ ≥ dist(xi, K)− dist(0, K) ≥ r− 1
4

r =
3
4

r,

and

‖ti − xi‖ ≤ η ≤ 3
4

sin(
π

10
)r.

Therefore, a simple computation gives

sin∠ti0xi ≤
4η

3r
≤ sin(

π

10
). (3.39)

Hence,

∠ti0xi ≤
π

10
.

Now, we consider the triangle 4si0xi. Because

‖si − 0‖ ≥ dist(si, K)− dist(0, K) ≥ r− 1
4

r =
3
4

r,

‖xi − 0‖ ≥ 3
4r, and

∠si0xi = ∠ti0xi ≤
π

10
,

we can apply Lemma 36, and use (3.39) to obtain

‖si − xi‖ ≤ 7r sin∠si0xi ≤ 10η.

Therefore,

‖ti − si‖ ≤ ‖ti − xi‖+ ‖xi − si‖ ≤ 11η.

This finishes the proof of the claim.
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Now, for an integer k ≤ 44, we choose ŝi to be the point on the line segment 0vi

that is closest to si and with distance kη/4 way from ti Then it is clear, there are less

than 100 choices for each ŝi. Let ŜK be the simplicial sphere with vertices ŝi. Clearly,

we have

h(Si, Ŝi) ≤
η

4
,

which implies that

h(K, ŜK) ≤
1
2

η.

Since there are less than 100 choices for each ŝi, the total number of choices of ŜK is

no more than

100µη−(d−1)/2 ≤ exp
(

Cη−(d−1)/2
)

,

where C is a constant depending only on d and c. This means that

N(η/2, E i
η, h) ≤ exp

(
Cη−(d−1)/2

)
.

In particular, this implies that for each 1 ≤ i ≤ M,

N(η/2,Ki(η), h) ≤ exp
(

Cη−(d−1)/2
)

.

Now we turn to estimate N(η/2,Dη, h). For each 1 ≤ i ≤ M, there exists an

η/2-net of Ki(η) of cardinality exp
(

Cη−(d−1)/2
)

. Denote these nets by Ni.

For each K ∈ Dη, we have K ∩ B(ci, r/4) ∈ Ki(η). Thus, there exists Si ∈ Ni such

that

h(K ∩ B(ci, r/4), Si) ≤
η

2
.

Now we define

S = ∪M
i=1Si.

This S may not have positive reach. So, we define S̃ to be intersection of all sets P ⊃ S

with reach(P) > 2r. Since reach(K) > 3r, and η < r, we have

reach(Kη/2) ≥ reach(K)− η

2
> 2r,
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and Kη/2 ⊃ Si for all 1 ≤ i ≤ M, we have

P ⊂ Kη/2 = K + B(η/2).

On the other hand, we clearly have

K ⊂ ∪M
i=1Si + B(η/2) ⊂ P + B(η/2).

Thus,

h(K, P) ≤ η/2.

Now the total number of choices of P is no more than

exp
(

Cη−(d−1)/2
)M
≤ exp

(
λ(c, d)η−(d−1)/2

)
,

where λ(c, d) is a constant depending only on c and d.

This proves Lemma 38.

3 .7 proof of theorem 33

Proof. Let P(n) denote the statement:

log N(ε,K, h) ≤ Λ(c, d)e−
d−1

2 , (3.40)

for all ε ≥ 2−n, with n ∈ N
⋃{0}. By choosing a sufficiently large constant, we only

need to prove for the case when ε ≤ 3
4 sin(π/10)r so we can directly use the previous

lemma. We prove Theorem 33 by induction on n ≥ n0 := d− log2(
3
4 sin(π/10)r)e.

Again, we may choose a sufficiently large constant, say Λ(d, c) > 2λ(d, c), to

ensure that the statement P(n0) is true. Now assume that the statement P(n) is true

for all ε ≥ 2−n, for some fixed n ∈ N. We will show that P(n + 1) also holds.

By the induction hypothesis, P(n), there exists an ε-net of K, say, D1, . . . , DN, with
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N :=N(ε,K, h). We approximate each of these Di under the Haüsdorff norm. Let

Ki := {C ∈ K | h(C, Di) ≤ ε} .

Clearly K ⊂
N⋃

n=1
Ki. By Lemma 38,

N(ε/2,Ki, h) ≤ exp
(

λ(c, d)ε−(d−1)/2
)

.

Then,

N(
ε

2
,K, h) ≤N(

ε

2
,Ki, h) · N (3.41)

= N(
ε

2
,Ki, h) · exp

(
µ(c, d)

( ε

2

)−(d−1)/2
)

(3.42)

= exp
(

λ(c, d)ε−(d−1)/2
)

exp
(

µ(c, d)
( ε

2

)−(d−1)/2
)

(3.43)

= exp
(

Λ(c, d)
( ε

2

)−(d−1)/2
)

, (3.44)

where µ(c, d) is the constant guranteed by the induction hypothesis P(n) and

Λ(c, d) :=λ(c, d) + µ(c, d).

Thus the statement holds for all ε > 0.

3 .8 extension

The following theorem is readily obtained from the proof of Theorem 33.

Theorem 39. Let Pm be the collection of d-dimensional sets contained in B(R) that can be

expressed as the union of at most m sets of reach greater than c. The there exists a constant

Λ(c, d) depending only on c and d, such that for every 0 < ε < 1,

log N(ε,Pm, h) ≤ Λ(c, d)mRdε−(d−1)/2.
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chapter 4

Metric Entropy of Q-hulls in Hilbert Spaces

In this chapter, we consider the following problem: Given a pre-compact subset T of

a Hilbert space H, suppose we have known the metric entropy of the set T. What can

we say about the metric entropy of its q-hull, 0 < q ≤ 1, defined by

Hq(T) :=

{
n

∑
i=1

αiti

∣∣∣∣∣ ti ∈ T, 1 ≤ i ≤ n, n ≥ 1,
n

∑
i=1
|αi|q ≤ 1

}
? (4.1)

4 .1 a preliminary result

We first quote a result in special case of Proposition 13 of Chapter 2 that will be used

in the later proof:

Proposition 40. ([9], p. 98) Fix n ∈ N and let `n
q and `n

1 denote Rn under the `q and `1

metrics respectively. Let id : `n
q → `n

1 be the identity map, we abbreviate ek = ek (id). Then,

for 0 < q ≤ 1,

ek ≤ c ·


1, q ≤ k ≤ log (2n) ,[
k−1 log

(
1 + 2n

k
)] 1

q−1
, log (2n) ≤ k ≤ 2n,

2
−k
2n (2n)

1
q−1 , k ≥ 2n,

.

Proposition 40 implies the following proposition stated in terms of metric entropy.

Proposition 41. Let B`n
q be the unit ball of `n

q , 0 < q ≤ 1. Then the ε-metric entropy of B`n
q ,

under the `1 norm, is given by

log N(ε, B`n
q , ‖ · ‖`n

1
) ≤


Cε−q/(1−q) log(2nεq/(1−q)), nεq/(1−q) > 1

Cn log(2nε−q/(1−q)), nεq/(1−q) < 1

. (4.2)
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Proof. If ε ≥ 1, then the left-hand side of inequality (4.2) is 0, so inequality (4.2) is

clearly true. We thus consider the case ε < 1. If nεq/(1−q) > 1, we choose k to be the

smallest integer such that

ε ≤ c
[

k−1 log
(

1 +
2n
k

)] 1
q−1

. (4.3)

where c is the constant in Proposition 40. Then, we choose k to be the smallest integer

such that

nεq/(1−q) ≥cq/(1−q) n
(k + 1)

log
(

1 +
2n

(k + 1)

)
≥ n

c1k
log
(

1 +
2n
c1k

)
, (4.4)

for some integer c1. Since we can choose c1 so that

log(2n) ≤ c1k ≤ 2n,

by Proposition 40, we have

N(ε, B`n
q , ‖ · ‖`n

1
) ≤ 2c1k−1. (4.5)

Because inequality (4.3) implies that

ε
q

1−q � 1
k

log
(

1 +
2n
k

)
� 1

k
log
(

2n
k

)
. (4.6)

Thus,

log(2nε
q

1−q ) � log
(

2n
k

)
+ log log

(
2n
k

)
� log

(
2n
k

)
. (4.7)

Plugging into (4.6), we have

k � ε−q/(1−q) log(2nε
q

q−1 ). (4.8)
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Plugging into (4.16), we have

log N(ε, B`n
q , ‖ · ‖`n

1
) ≤ Cε−q/(1−q) log(2nε

q
q−1 ).

Now we look at the the case nεq/(1−q) ≤ 1. We can choose k, k ≥ 2n, to be the

smallest integer such that

ε ≥ c2−
k

2n (2n)
1
q−1 , (4.9)

where c is the constant in Proposition 40. We can choose a positive integer c2 such

that

c2−
k

2n (2n)
1
q−1 ≥ 2−

c2k
2n (2n)

1
q−1 .

Since

k �2n log
(2n)1− 1

q

ε
, (4.10)

we have

log N
(

ε, B`n
p , `q

)
≤ c2k ≤ Cn log(2nε−q/(1−q)).

This finishes the proof of the proposition.

4 .2 metric entropy of q-hulls of a finite set

We first consider the case when T = {t1, t2, . . . , tn} with ‖ti‖ ≤ 1 for all 1 ≤ i ≤ n. We

estimate N(ε, Hq(T), ‖ · ‖2), where

Hq(T) =

{
n

∑
i=1

citi

∣∣∣∣∣ n

∑
i=1
|ci|q ≤ 1

}
. (4.11)

Let

N0 :=N
(

δ, Bn
`q
(T) , ‖·‖`n

2

)
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So, there is a set of points {yi} ⊂ Rn such that,

B`n
q ⊂

N0⋃
i=1

B`n
2
(yi, δ)

where

B`n
2
(y, δ) =

{
x ∈ Rn

∣∣∣ ‖x− y‖`n
2
≤ δ

}
.

Thus, we have

Hq(T) =

{
n

∑
i=1

citi

∣∣∣∣∣ (c1, . . . , cn) ∈ B`n
q

}
(4.12)

⊂
{

n

∑
i=1

citi

∣∣∣∣∣ (c1, . . . , cn) ∈ ∪N0
j=1B`n

2
(yj, δ)

}
(4.13)

=
N0⋃
j=1

(
n

∑
i=1

yj(i)ti +

{
n

∑
i=1

citi

∣∣∣∣∣ n

∑
i=1
|ci| ≤ δ

})
(4.14)

=
N0⋃
j=1

(
n

∑
i=1

yj(i)ti +

{
δ

n

∑
i=1

citi

∣∣∣∣∣ n

∑
i=1
|ci| ≤ 1

})
. (4.15)

Note that {
δ

n

∑
i=1

citi

∣∣∣∣∣ n

∑
i=1
|ci| ≤ 1

}
= δ · H1(T).

If N0 = {x1, . . . xm} is an η-net of H1(T). Then for each j = 1, . . . , N0, the set

n

∑
i=1

yj(i)ti + δ · N0 =

{
n

∑
i=1

yj(i)ti + δxj

∣∣∣∣∣ j = 1, . . . , m

}

is an δη-net of
n

∑
i=1

yj(i)ti +

{
δ

n

∑
i=1

citi

∣∣∣∣∣ n

∑
i=1
|ci| ≤ 1

}
.

Consequently, the set

N := ∪N0
j=1

(
n

∑
i=1

yj(i)ti + δ · N0

)
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is a δη-net of Hq(T) with cardinality N0m. This implies that

N(δη, Hq(T), ‖ · ‖2) ≤ N0m. (4.16)

Now, we turn to estimate m. We use a well-known probabilistic method due to

Maurey. Define a random vector X by

1) P (X = sign(ci) · ti) :=|ci|

2) P (X = 0) :=1−
n

∑
i=1
|ci|

Let v = ∑ ciXi. Note that E (X) = v, which is in H1(T). Let X1, . . . , Xk; X̃1, . . . , X̃k be

i.i.d. copies of X. Define random vector Y by

Y =
1
k

k

∑
i=1

Xi.

Note that

E (Y) = v = E

(
1
k

k

∑
i=1

Xi

)
= E

(
1
k

k

∑
i=1

X̃i

)
.

Consider the following computations:

Eω‖Y− v‖2 =Eω

∥∥∥∥∥Y−Eω̃

(
1
k

k

∑
j=1

Xj

)∥∥∥∥∥
2

=Eω

∥∥∥∥∥Eω̃

(
1
k

k

∑
j=1

X̃j −
1
k

k

∑
j=1

Xj

)∥∥∥∥∥
2

≤EωEω̃

∥∥∥∥∥1
k

k

∑
j=1

X̃j −
1
k

k

∑
j=1

Xj

∥∥∥∥∥
2

=EωEω̃

∥∥∥∥∥1
k

k

∑
j=1

(X̃j − Xj)

∥∥∥∥∥
2

. (4.17)

Because X̃j − Xj is symmetric in the product space Ω̃×Ω, if we let ε1, . . . , εk be i.i.d.

Bernoulli random variables, independent of Xj and X̃j, 1 ≤ j ≤ k, with P(εi = 1) =
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P(εi = −1) = 1
2 , then we have

EωEω̃

∥∥∥∥∥1
k

k

∑
j=1

(X̃j − Xj)

∥∥∥∥∥
2

=EωEω̃

∥∥∥∥∥1
k

k

∑
j=1

ε j(X̃j − Xj)

∥∥∥∥∥
2

≤EωEω̃

∥∥∥∥∥1
k

k

∑
j=1

ε jXj

∥∥∥∥∥
2

+ EωEω̃

∥∥∥∥∥1
k

k

∑
j=1

ε jXj)

∥∥∥∥∥
2

=2Eω

∥∥∥∥∥1
k

k

∑
j=1

ε jXj)

∥∥∥∥∥
2

.

Plugging into (4.17), and taking expectation over the space of εi, we obtain

Eω‖Y− v‖2 ≤2EεEω

∥∥∥∥∥1
k

k

∑
j=1

ε jXj

∥∥∥∥∥
2

(4.18)

=2EωEε

∥∥∥∥∥1
k

k

∑
j=1

ε jXj

∥∥∥∥∥
2

(4.19)

≤2Eω

Eε

∥∥∥∥∥1
k

k

∑
j=1

ε jXj

∥∥∥∥∥
2

2

1/2

. (4.20)

Because

Eω̃

∥∥∥∥∥1
k

k

∑
j=1

ε jXj

∥∥∥∥∥
2

2

=
k

∑
j=1
‖Xj‖2,

and Xi ∈ {±t1, . . . ,±tn} with ‖ti‖ ≤ 1 for all 1 ≤ i ≤ n, we have

Eω̃

∥∥∥∥∥1
k

k

∑
j=1

ε jXj

∥∥∥∥∥
2

2

≤ k.

This implies that

Eω‖Y− v‖2 ≤
2√
k

.

Thus, for any v ∈ H1(T), we have shown that u lies within a distance of 2√
k

of a

realization of Y. Note that there are (2n + 1)k possible realizations of the Y. If we let
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η = 2√
k
, then k = 4

η2 , and we have

N (η, H1(T), ‖·‖2) ≤ (2n + 1)k = (2n + 1)4η−2
.

Therefore, we can choose m as small as (2n + 1)4η−2
. Plugging this into (4.16) we

obtain

N(δη, Hq(T), ‖ · ‖2) ≤ N0 · (2n + 1)4η−2
.

On the other hand, by Proposition 41, we can choose N0 as small as

N0 ≤ (2n + 1)Cδ−q/(1−q)
,

for some constant C > 0. Thus,

N(δη, Hq(T), ‖ · ‖2) ≤ (2n + 1)Cδ−q/(1−q)+4η−2
.

In particular, if we choose δ = η2(1−q)/q. Then we obtain

N(η(2−q)/q, Hq(T), ‖ · ‖2) ≤ (2n + 1)(C+4)η−2
,

which implies that

log N(ε, Hq(T), ‖ · ‖2) ≤ Cε
− 2q

2−q log n. (4.21)

4 .3 metric entropy of Hq(T) when T is infinite

Now we consider the case when T is a infinite set. We consider the case when

log N(ε, T, ‖ · ‖2) ≤ Cε−a (4.22)

for all 0 < ε < 1, where a > 2q
2−q is some constant.
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For any 0 < ε < 1, and any integer 0 ≤ k ≤ m, where m is the smallest integer

such that 2m−1ε > 1. Let Nk be the 2k−1ε-net of T with minimum cardinality. Denote

the cardinality of Nk by Nk. Thus, by our hypothesis (4.22)

Nk ≤ eC(2k−1ε)−a
,

for all 0 ≤ k < m. Furthermore Nm is only a singleton, say {t∗m}. Note that Hq(N0)

is an ε/2-net of Hq(T). If we can find ε/2-net of Hq(N0) with cardinality N, then this

ε/2-net of Hq(N0) is an ε-net of Hq(T). Therefore, it suffices to study

N(ε/2, Hq(N0), ‖ · ‖2).

Because for each t0 ∈N0, we can write

t0 = tm +
m

∑
i=1

(ti−1 − ti),

where for all 1 ≤ i ≤ m ti ∈ Ni is a point satisfying ‖ti − ti−1‖ ≤ 2i−1ε, and tm = t∗m is

independent of t0.

If we let

Ki =
{

t− s
∣∣∣ t ∈ Ni, s ∈ Ni−1, ‖t− s‖ ≤ 2i−2ε

}
.

Then each Ki has no more than e2C(2i−2ε)−a
elements, and the norm of each elements is

bounded by 2i−1ε. By what we have proved in the finite case, we have

log N(ηi, Hq(Ki), ‖ · ‖2) ≤ C
( ηi

2i−1ε

)−2q/(2−q)
· 2C(2i−2ε)−a. (4.23)

Because,

Hq(N0) ⊂ t∗m +
m

∑
i=1

Hq(Ki),

if we choose ηi so that ∑m
i=1 ηi = ε/2, then we have

N(ε/2, Hq(N0), ‖ · ‖) ≤
m

∏
i=1

log N(ηi, Hq(Ki), ‖ · ‖2).
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This implies that

log N(ε, Hq(T), ‖ · ‖2) ≤ log N(ε/2, Hq(N0), ‖ · ‖2)

≤
m

∑
i=1

(
C
( ηi

2i−1ε

)−2q/(2−q)
· 2C(2i−2ε)−a

)
,

where ηi are any positive numbers satisfying ∑m
i=1 ηi = ε/2. In particular, if we choose

ηi =
i−2ε

2 ∑m
i=1 i−2 ≥

3ε

π2i2 ,

then we have

log N(ε, Hq(T), ‖ · ‖2) ≤
m

∑
i=1

(
C
(

3
2i−1π2i2

)−2q/(2−q)
· 2C(2i−2ε)−a

)

≤2aC2
m

∑
i=1

(2i−1)
a− 2q

2−q i
4q

2−q · ε−a

≤C′ε−a,

where C is a constant depending on a− 2q
2−q .

In conclusion, we have proven the main result of this chapter:

Theorem 42. If K is a precompact set in a Hilbert space satisfying

log N(δ, K, ‖ · ‖) = O(δ−α),

where for α > 2q
2−q , and 0 < q ≤ 1, then

log N(ε, Hq(K), ‖ · ‖) = O
(
ε−α
)

.
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chapter 5

Separately Con Functions

5 .1 background

Shape-constrained functions are very important in applications, such as in nonpara-

metric estimation of densities in statistics where many interesting classes of densities

are shape-constrained. For a single variable function, monotonicity and convexity

are the two most commonly used ones in practice. In general, one can study the so-

called k-monotonic functions. Recall that a function on an interval I ⊂ R is called

a k-monotonic function, if (−1)i f (i)(x) ≥ 0 for all x ∈ I, and 0 ≤ i ≤ k − 2, and

furthermore, (−1)k−2 f (k−2) is convex and (−1)k−1 f (k−1) is decreasing on I.

It is known (c.f. [32]) that ifM is the class of monotonic functions on [0, 1] that are

bounded by 1, then for any 1 ≤ p < ∞,

log N[ ](ε,M, ‖ · ‖p) � log N(ε,M, ‖ · ‖p) � ε−1.

It is also proved (c.f. [13] and [17]) that if Mk denotes the class of k-monotonic on

[0, 1] that are bounded by 1, than for any 1 ≤ p < ∞,

log N[ ](ε,Mk, ‖ · ‖p) � log N(ε,Mk, ‖ · ‖p) � ε−1/k.

As a special case, it was proved in [13] and [17] that, if C([0, 1]) is the collection of

convex functions on [0, 1] that are bounded by 1, then for all 1 ≤ p < ∞, there exist

constants c(p) and C(p) depending only on p, such that for all 0 < ε < 1,

c(p)ε−1/2 ≤ log N(ε, C([0, 1]), ‖ · ‖2) ≤ C(p)ε−1/2. (5.1)

We will use this result in the later proof.

A multivariate function f : Rd → R is called separately monotone or block monotone

if it is monotone in each variable while holding the other variables fixed. The metric
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entropy of bounded separately monotone functions on [0, 1]d was studied in [16]. If

we denote by Md the class of separately monotonic functions on [0, 1]d which are

bounded by 1, then roughly speaking it is proved in [16] that for all 1 ≤ p < ∞

log N[ ](ε,Md, ‖ · ‖p) � log N(ε,Md, ‖ · ‖p) � ε−max{d,(d−1)p}. (5.2)

On the other hand, if we let Cd(Ω) be the class of convex functions on Ω ⊂ Rd that

are bounded by 1, then it was proved by Guntuboyina and Sen [18] for Ω = [0, 1]d,

and by Gao and Wellner [15] for all convex polytopes that for all 1 ≤ p < ∞

log N[ ](ε, Cd(Ω), ‖ · ‖p) � log N(ε, Cd(Ω), ‖ · ‖p) � ε−d/2.

Furthermore, it was proved by Gao and Wellner [15] that for all 1 ≤ p < ∞

log N(ε, Cd(D), ‖ · ‖p) ≥ Cε−β,

where β = max{(d− 1)p/2, d/2}.

5 .2 statements of the main results

Unlike separately monotonicity which is an easy condition to check, convexity of a

function is typically difficult to check. It is natural to consider functions which are

convex or concave in each variable while holding the other variables fixed. We call

such functions separately con functions. In this chapter, I will prove that

Theorem 43. Let F ([0, 1]d) denote the collection of separately con functions on [0, 1]d that

are bounded by 1. Then, for any 1 ≤ p < ∞, there exists a constant C(d, p) depending only

on d and p, such that for all 0 < ε < 1,

log N(ε,F ([0, 1]d), ‖ · ‖p) ≤ C(d, p)ε−d+ 1
2 . (5.3)
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In light of the attention being paid to classes whose functions are defined by

generalized shape constraints, separate con is a natural consideration. In this sense,

Theorem 43 complements those of [16], [18] and [15] mentioned above.

Remark 44. I conjecture that in the case d = 2, the rate ε−3/2 is optimal.

5 .3 proof of the main result

We prove the theorem by induction on the dimension d. When d = 1, the theorem

reduces to equation (5.1). So, the theorem is true for d = 1, with C(1, p) = C(p),

where C(p) is the constant appear in equation (5.1).

Now, assume that Theorem 43 holds for d ∈ N. We show that it holds for d + 1

with constant

C(d + 1, p) =
4d8p+1C(d, p)

1− 2−d− 1
2

.

We first note that since for any f ∈ F ([0, 1]d+1), we have ‖ f − 0‖p ≤ 1, we have

N(ε,F ([0, 1]d+1), ‖ · ‖p) = 1.

for all ε ≥ 1. Thus, the theorem is clearly true if ε ≥ 1. Now, we assume the induction

hypothesis holds for some n ∈N, that is, that the theorem is true for all ε ≥ 2−n, that

is,

log N(ε,F ([0, 1]d+1), ‖ · ‖) ≤ C(d + 1, p)ε−(d+1)+ 1
2 , (5.4)

for all ε ≥ 2−n. We show that it is also true for ε ≥ 2−n−1.

We first choose θ = 8−p, and define

Dθ :=(θ, 1− θ)× [0, 1]d,

B1 :=[0, θ]× [0, 1]d,

and

B2 :=[θ, 1− θ]× [0, 1]d.



65

Then, for each f ∈ F ([0, 1]d+1), we can write

f = 1Dθ
f + 1B1 f + 1B2 f . (5.5)

If we define

G1 =
{

1B1 f
∣∣∣ f ∈ F ([0, 1]d+1)

}
,

G2 =
{

1B2 f
∣∣∣ f ∈ F ([0, 1]d+1)

}
,

and

Fθ =
{

1Dθ
f
∣∣∣ f ∈ F ([0, 1]d+1)

}
,

then, we have

F ([0, 1]d+1) ⊂ G1 + G2 +Fθ.

If N1, and N2 are ε/4-nets of G1 and G2 with minimum cardinality, and if Nθ is an

ε/2-net of Fθ with minimum cardinality, then, N1 +N2 +Nθ is an ε-net of F ([0, 1]d+1.

Indeed, for any f ∈ F ([0, 1]d+1), 1B1 f ∈ G1, so there exists g1 ∈ N1 such that

‖1B1 f − g1‖p ≤ ε/4.

Similarly, there exist g2 ∈ N2 and gθ ∈ Nθ such that

‖1B2 f − g2‖p ≤ ε/4;

‖1Dθ
f − gθ‖p ≤ ε/2.

Consequently,

‖ f − (g1 + g2 + gθ)‖p ≤ ‖1B1 f − g1‖p + ‖1B2 f − g2‖p + ‖1Dθ
f − gθ‖p ≤ ε.
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Therefore,

N(ε,F ([0, 1]d+1), ‖ · ‖p) ≤ N(ε/4,G1, ‖ · ‖p) · N(ε/4,G2, ‖ · ‖p) · N(ε/2,Fθ, ‖ · ‖p).

(5.6)

The following lemma enables us to estimate the covering number for G1 and G2.

Lemma 45. For any η > 0,

N(η,G1, ‖ · ‖p) = N(8η,F ([0, 1]d+1), ‖ · ‖p); (5.7)

N(η,G2, ‖ · ‖p) = N(8η,F ([0, 1]d+1), ‖ · ‖p). (5.8)

Proof. Let f1, . . . , fN be a 8η-net of F ([0, 1]d+1). We define

gi(t, x2, . . . , xd+1) = fi(θ
−1t, x2, . . . , xd+1)

on [0, θ]× [0, 1]d, 1 ≤ i ≤ N. We claim that g1, . . . , gN is an η-net of G1. Indeed, for

any g ∈ G1, the function

f (x1, x2, . . . , xd+1) := g(θx1, x2, . . . , xd+1)

belongs to F ([0, 1]d+1). Thus, there exists some fi such that ‖ f − fi‖p ≤ 2η. That is

(8η)p ≥
∫
[0,1]d

∫ 1

0
| f (x1, x2, . . . , xd+1)− fi(x1, x2, . . . , xd+1)|pdx1dx2 · · · dxd+1

=
∫
[0,1]d

∫ 1

0
|g(θx1, x2, . . . , xd+1)− gi(θx1, x2, . . . , xd+1)|pdx1dx2 · · · dxd+1

=θ−1
∫
[0,1]d

∫ θ

0
|g(t, x2, . . . , xd+1)− gi(t, x2, . . . , xd+1)|pdt dx2 · · · dxd+1

=8p‖g− gi‖
p
p,

which implies that ‖g− gi‖p ≤ η. Thus,

N(η,G1, ‖ · ‖p) ≤ N(8η,F ([0, 1]d+1), ‖ · ‖p).
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To prove the other direction, we let g1, . . . , gM be an η-net of G1 with minimum

cardinality. We define

fi(x1, x2, . . . , xd+1) = gi(θ
−1x1, x2, . . . , xd+1).

We claim that f1, . . . , fN is a 2η-net of F ([0, 1]d+1). Indeed, for any f ∈ F ([0, 1]d+1),

since the function

g(t, x2, . . . , xd+1) := f (θt, x2, . . . , xd+1)

belongs to G1, there exists gi, such that ‖g− gi‖p ≤ η. That is,

ηp ≥
∫
[0,1]d

∫ θ

0
|g(t, x2, . . . , xd+1)− gi(t, x2, . . . , xd+1)|pdtdx2 · · · dxd+1

=
∫
[0,1]d

∫ θ

0
| f (θ−1t, x2, . . . , xd+1)− fi(θ

−1t, x2, . . . , xd+1)|pdtdx2 · · · dxd+1

=θ
∫
[0,1]d

∫ 1

0
| f (x1, x2, . . . , xd+1)− fi(x1, x2, . . . , xd+1)|pdx1 dx2 · · · dxd+1

=8−p‖ f − fi‖
p
p,

which implies that ‖ f − fi‖p ≤ 8η. Thus,

N(η,G1, ‖ · ‖p) ≥ N(8η,F ([0, 1]d+1), ‖ · ‖p).

This proves (5.7). The proof of (5.8) is similar, and we thus omit it.

Now, applying Lemma 45 and the induction assumption (5.4), we obtain that for

all ε ≥ 2−n−1,

log N(
ε

4
,G1, ‖ · ‖p) = log N(2ε,F ([0, 1]d+1), ‖ · ‖p) ≤ C(d + 1, p)(2ε)−(d+1)− 1

2 ; (5.9)

log N(
ε

4
,G1, ‖ · ‖p) = log N(2ε,F ([0, 1]d+1), ‖ · ‖p) ≤ C(d + 1, p)(2ε)−(d+1)− 1

2 . (5.10)
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Now, we turn to estimating the covering number of Fθ. To this end, we first prove

that for any f ∈ Fθ, ∣∣∣∣ ∂ f
∂x1

∣∣∣∣ ≤ 2
θ
= 2 · 8p. (5.11)

Indeed, for each (x2, . . . , xd+1) ∈ [0, 1]d, the function f (t, x2, . . . , xd+1) is convex or

concave on t ∈ [0, 1], and bounded by 1. Thus, setting

A :=
| f (θ, x2, . . . , xd+1)− f (0, x2, . . . , xd+1)|

θ
,

and

B :=
| f (1, x2, . . . , xd+1)− f (1− θ, x2, . . . , xd+1)|

θ
,

we have for any t, s ∈ (θ, 1− θ),

| f (t, x2, . . . , xd+1)− f (s, x2, . . . , xd+1)|
|t− s|

≤max {A, B}

≤2
θ

=2 · 8p,

which implies (5.11).

Now, we let

θk = θ + k · 8−p−1ε

for k = 1, . . . , m, where m is the largest integer such that θm ≤ 1− θ. Clearly, we have

m ≤ 8p+1ε−1. For any t ∈ (θ, 1− θ), we can find some θk such that |t− θk| ≤ 8−p−1ε.

By (5.11), for any (x2, . . . , xd+1) ∈ [0, 1]d, we have

| f (t, x2, . . . , xd+1)− f (θk, x2, . . . , xd+1)| ≤ 2 · 8p · 8−p−1ε =
ε

4
.
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For each k = 1, . . . , m, consider the function

fk(x2, . . . , xd+1) := f (θk, x2, . . . , xd+1).

As a function on [0, 1]d, fk ∈ F ([0, 1]d). By the induction hypothesis, there exists an

ε/4-net Sk of minimum cardinality

N(ε/4,F ([0, 1]d), ‖ · ‖p) ≤ eC(d,p)(ε/4)−d+ 1
2 ,

such that for some gk ∈ Sk, ‖ fk − gk‖p ≤ ε/4, that is,

(∫
[0,1]d
| f (θk, x2, . . . , xd+1)− g(x2, . . . , xd+1)|pdx2 · · · dxd+1

)1/p
≤ ε

4
.

Now, we define

g(t, x2, . . . , xd+1) =1(θ,θ2)(t)g1(x2, . . . , xd+1) +
m−1

∑
k=2

1[θk,θk+1)
(t)gk(x2, . . . , xd+1)

+ 1[θm,1−θ)(t)gm(x2, . . . , xd+1),

and

f̃ (t, x2, . . . , xd+1) =1(θ,θ2)(t) f (θ1, x2, . . . , xd+1) +
m−1

∑
k=2

1[θk,θk+1)
(t) f (θk, x2, . . . , xd+1)

+ 1[θm,1−θ)(t) f (θm, x2, . . . , xd+1).

Then, we have

| f (t, x2, . . . , xd+1)− f̃ (t, x2, . . . , xd+1)| ≤
ε

4
.

Thus,

‖ f − g‖ ≤ ε

4
+ ‖ f̃ − g‖p. (5.12)
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Since

‖ f̃ − g‖p
p =

∫ θ2

θ

∫
[0,1]d
| f (θ1, x2, . . . , xd+1)− g1(x2, . . . , xd+1)|pdx2 · · · dxd+1dt

+
m−1

∑
k=2

∫ θk+1

θk

∫
[0,1]d
| f (θk, x2, . . . , xd+1)− gk(x2, . . . , xd+1)|pdx2 · · · dxd+1dt

+
∫ 1−θ

θm
| f (θm, x2, . . . , xd+1)− gm(x2, . . . , xd+1)|pdx2 · · · dxd+1dt

≤
∫ 1−θ

θ

( ε

4

)p
dt

≤
( ε

4

)p
,

plugging into (5.12), we obtain

‖ f − g‖p ≤
ε

2
.

Since there are no more than

[
N(ε/4,F ([0, 1]d), ‖ · ‖p)

]m
≤ emC(d,p)(ε/4)−d+ 1

2 ≤ e4d8p+1C(d,p)ε−d− 1
2 ,

realizations of g, we obtain

log N(ε/2,Fθ, ‖ · ‖p) ≤ 4d8p+1C(d, p)ε−d− 1
2 .

Plugging this and (5.9) and (5.10) into (5.6), we obtain that for all ε ≥ 2−n−1,

log N(ε,F ([0, 1]d+1), ‖ · ‖p) ≤2C(d + 1, p)(2ε)−(d+1)− 1
2 + 4d8p+1C(d, p)ε−d− 1

2

≤C(d + 1, p)ε−(d+1)+ 1
2 ,

where in the last inequality we used the relation that

C(d + 1, p) =
4d8p+1C(d, p)

1− 2−d− 1
2

.

Hence, by mathematical induction, (5.3) is true for dimension d+ 1 and all ε > 0. This

finishes the proof of Theorem 43.
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