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Abstract 

Global plastic use and disposal has become increasingly detrimental to the marine 

environment. The plastic problem is broad in scope with a complex solution; however, 

replacement of petro-plastics with bioplastics addresses the root of the issue, plastic 

accumulation. Polyhydroxyalkanoates (PHA) are biodegradable thermoplastics that are 

naturally produced by a variety of microorganisms and possess mechanical properties 

favorable for replacing fossil fuel derived plastics in single-use applications. Current PHA 

production processes utilize synthetic feed and pure cultures, a costly method that leaves 

economic viability to be desired. By employing an engineered PHA production process 

known as aerobic dynamic feeding (ADF), PHA can be synthesized by mixed microbial 

consortia (MMC) fed otherwise unused organic-rich waste streams. The inherent 

sustainability, coupled with reduced cost of substrate procurement and sterilization practices, 

place ADF configurations at the forefront of potentially feasible bioplastic solutions. 

Nevertheless, operational parameters that maximize volumetric productivity for a limited 

waste stream have yet to be defined. Research presented herein focused on the optimization of 

a three-stage ADF PHA production process by assessing the impacts of operational 

parameters, solids retention time (SRT) and organic loading rate (OLR). Additionally, a 

metabolic model was developed in order to describe ADF metabolism using complex 

substrate mixtures, ultimately providing insight for continued optimization efforts. Factorial-

based evaluation of PHA production assessments led to the determination of a 2-day SRT and 

20 Cmmol/L-d OLR as near-optimal culture enrichment operational criteria. Under said 

operation, the MMC converted nearly 100% of carbon to PHA resulting in an average 

maximum intracellular PHA accumulation of 38% (w/w). Furthermore, the metabolic model 

developed quantified the dynamic ADF microbial processes and led to accurate prediction of 

PHA composition for variable substrate mixtures.  
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1. Introduction 

Global plastic use has nearly doubled since 2000; the main driver of consumption and waste is 

single use plastics with design lifespans of less than a year, accounting for an estimated 40% 

of plastic produced [9]. In 2015, an estimated 34.5 million tons (MT) of plastic was generated 

in the United States alone, 75.4% of which ended up in landfills [10]. In general, landfilling 

presents many environmental concerns such as occupying of land, potential pollution of 

groundwater, and deferred management of waste to future generations [11]. However, 

landfilling is not the largest environmental concern associated with plastics; indeed, 

landfilling plastic is benign relative to plastic broadly distributed in the marine environment. 

In coastal areas of the world, a large percentage of plastic is indirectly disposed into the 

ocean. A 2010 study estimated 5.3-14 MT of land-based plastic waste entered the ocean from 

192 coastal countries [12]. Additionally, this estimate does not embody the total oceanic 

plastic pollution, as it only accounts for the mass of plastics buoyant in seawater, such as 

polyethylene and polypropylene. Plastic entering the ocean is of serious environmental 

concern because of its harmful effects on aquatic biota. Plastic is harmful to aquatic life due to 

ingestion and entanglement [13]. Beyond mechanical organ blockage from ingestion, organic 

pollutants and toxic chemicals such as polychlorinated biphenyls (PCBs) and polycyclic 

aromatic hydrocarbons (PAHs) adsorbed by plastic debris creates a myriad of health and 

fertility problems for aquatic life post-consumption [11, 14]. This becomes a compounding 

issue in the aquatic food web and ecosystem, and ultimately can directly affect human health. 

Modern attempts of containing plastic waste are founded on recycling and incineration 

practices. Incineration does not require significant land but releases potentially harmful 

compounds and greenhouse gases directly to the environment [11]. Recycling is a potentially 

sustainable alternative to plastic disposal, but its prevalence is relatively insignificant. For 

example, in the United States, 1 trillion plastic bags are produced annually, but only an 

estimated 5% are recycled [15]. Moreover, pollutants within the plastic reduce the reusability 

and yield of recycled plastic, making the expensive process inefficient [11]; in effect plastic 

recycling is downcycling [16]. With little to no incentive to increase recycling practices, the 

problem of plastic entering the environment remains. 
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An enticing solution to the plastics problem is to replace the use of petroleum-based plastics 

with biodegradable plastics derived from renewable waste streams. Bioplastics, or 

biopolymers, are polymers derived from natural resources that are typically biodegradable and 

nontoxic [17]. In particular, polyhydroxyalkanoates (PHA) are biopolymers that rival 

petroleum-based plastics with characteristics similar to those of polypropylene and 

polystyrene, all while being biodegradable and derived from renewable sources [18]. PHA 

can be naturally produced from a variety of feedstocks, including waste organic matter, with 

material properties suitable to replace many single use plastics. The comparable functionality 

of PHA to petrochemical plastics, coupled with the opportunity for re-purposing waste, makes 

it a favorable candidate for production of bio-based polymer plastics [19].  

PHA is naturally produced by a variety of microorganisms reliant on carbon and energy 

storage reserves. Despite its obvious attractiveness, the primary reason PHA is not utilized 

ubiquitously are the costs associated with PHA production being much higher than that of 

fossil-fuel counterparts. In the late 90s, commercial PHA production focused on harvesting 

PHA produced directly in the chloroplasts of leaves from corn. A study on the effectiveness 

of this method showed that it required 2.39 kilograms (kg) of fossil fuel per kg of PHA, 

leading to Monsanto terminating their PHA production systems [20]. Following plant-based 

efforts, PHA production began revolving around using pure bacterial cultures with single 

substrates, requiring expensive machinery and sterilization practices. Metabolix, a former 

industrial producer of biopolymer products, priced polyhydroxyalkanoate-based pellets at $5 

per kg, roughly three times the price of polypropylene, before terminating PHA operations 

[21]. Ultimately, the cost of maintaining a pure culture and refining substrate from crops 

proved to be too financially encumbering; moreover, these prior methods also demanded more 

fossil fuel that petro-plastics [22].  

Despite historic failures to realize commercial PHA production, there remains hope. A 

promising approach for PHA production to reduce operational costs involves using a mixed 

microbial consortium (MMC) and waste-based substrate. Leveraging ecological selection 

principles to obtain enriched microbial cultures with maximum PHA production capacity 

could reduce production costs dramatically [11]. Additionally, using organic-rich waste as a 

source of carbon alleviates the cost of substrate production, and also creates opportunity for 

achieving resource recovery. In particular, dairy manure, with an estimated 227 billion kg of 
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manure produced in the US annually [15], lends itself as an abundant nutrient stream for PHA 

production, while indirectly closing the loop on the dairy waste cycle. PHA production using 

MMC and waste substrate generally involves a three-stage process [23]; a dairy manure fed 

variant is illustrated in Figure 1.1. 

 

Figure 1.1: Three-Stage PHA Production Process Using Dairy Manure Feed 

The first stage of the process is the fermentation stage, where organic material present in the 

dairy manure is converted to acetic acid and other carboxylates (collectively referred to as 

volatile fatty acids, VFAs, in this work) via acidogenic fermentation. Fermenter effluent is 

then centrifuged to minimize unwanted solids, as the VFA-rich centrate or dairy fermenter 

liquor (DFL) becomes the carbon source for the remaining stages. The second stage is the 

enrichment stage, where a MMC is maximally enriched with bacteria capable of PHA 

production by cycling between periods of excess carbon (feast) and extended periods of 

carbon shortage (famine). During the ‘feast’ period, the MMC principally stores carbon as 

PHA rather than using it directly for growth purposes. This metabolic response, originally 

presented by Majone et al. [24], is commonly referred to as a Feast-Famine (F-F) metabolism, 

and is induced under aerobic dynamic feeding (ADF) conditions; the MMC can convert in 

excess of 70% of carbon to storage products in the form of PHA [25-27]. The ADF 

configuration shifts the MMC by selecting for microorganisms capable of storing excess 

carbon, allowing their survival in the stressful famine phase. A portion of the enriched MMC, 

typically the daily waste, is then used in a side stream reactor to accomplish PHA production; 

this is referred to as the third, or production, stage. Intracellular PHA concentrations in the 

production stage exceed that of the enrichment stage by operating at a higher total organic 

loading rate (OLR) until PHA saturation has been achieved [23]. DFL is supplied either 

continuously or in pulses to sustain a ‘feast’ response; the feeding strategy seeks to avoid high 

concentrations of VFAs (currently estimated at >60 Cmmol/L) that can inhibit the storage 

metabolism [27]. A pulse-feeding strategy requires pulses of substrate before bulk solution 
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VFAs are depleted. This feeding strategy can prove quite difficult, thus online dissolved 

oxygen (DO) monitoring is commonly employed, indicating a pulse to be added when DO 

levels rise abruptly [28].   

A primary issue with PHA production by MMC cultured on complex waste streams is that 

PHA content and overall volumetric productivity falls short when compared to pure cultures 

using single substrates [29]. To overcome this challenge, an optimally configured and 

operated ADF-driven PHA production process must achieve the following core objectives: i) 

conserve PHA precursors (e.g., VFA-rich fermenter liquor) for PHA production in the 3rd 

stage of the process; in other words, the process must minimize use of PHA precursors in the 

2nd stage of the process, ii) enrich for a MMC capable of converting nearly 100% of the PHA 

precursors to PHA during the ‘feast’ metabolic response and iii) generate a MMC capable of 

very high PHA intracellular content in the 3rd stage. These three overarching process 

objectives are ultimately and necessarily intertwined in maximizing process success; morover, 

with a fixed substrate, i.e. fermented dairy manure, a MMC’s PHA production capability 

becomes dependent on reactor operating conditions [28]. Since the introduction of the ADF 

PHA production process using complex substrates, several studies have evaluated the effect of 

numerous operational parameters, including organic loading rate (OLR), carbon to nitrogen 

ratio, enrichment reactor solids retention time (SRT), pH, oxygen concentration, and 

temperature on culture selection [29-36]. In the context of PHA production using fermented 

dairy manure and realizing the objectives articulated above, OLR and SRT are two of the 

most important operational parameters; however, the interrelation of the two parameters to 

achieve maximal process success has not been extensively studied. The combination of SRT 

and OLR influence all three objectives articulated above: carbon conservation, PHA yield, 

and intracellular PHA concentration. From biological wastewater treatment fundamentals, it is 

well established that SRT generally shares a positive relationship with solids content, with 

bioreactor solids content increasing with SRT; however, as the SRT increases, the bioreactor 

inorganic solids content increases, thus countering the goal to achieve higher biomass PHA 

content. As determined by Beun et al. [37, 38], for a fixed OLR, PHA yield is negatively 

impacted by SRTs below a certain threshold (suggested to be 2 days) but is otherwise 

independent of SRT up to 19.8 days. In commercial PHA production aimed at maximizing 

extraction quantities, there exists an SRT that is optimal in regards to total intracellular PHA 
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and PHA yield. Similarly, there exists an OLR that optimally conserves substrate for 

maximum PHA production in the 3rd stage. Assuming a healthy ADF process that enriches for 

a MMC capable of maximum PHA yield, the amount of polymer that can be synthesized is 

simply a function of the quantity of substrate applied; specifically, maximum PHA production 

results from the highest enrichment OLR that can be applied without hindering the F-F 

metabolism and ADF process’ selective pressure on the MMC [23]. However, for a fixed 

quantity of substrate available for both stages of the PHA process, the optimal OLR is not 

solely limited by culture selection. The waste feedstock, and ultimately the fermentation 

stage, must be capable of accommodating substrate needs for both the enrichment stage and 

the production stage. Similar to the effects of increasing SRT, operating the ER at higher 

OLRs increases the quantity of the MMC; consequently, increased amounts of DFL are 

required in the production stages to reach maximum intracellular PHA concentrations and net 

PHA quantity. Hence, the optimal OLR is dependent on the waste source and is potentially 

lower than the theoretical OLR that achieves maximum PHA production. Moreover, there is 

likely a link between SRT and OLR to maximize process success. Further understanding the 

effects of SRT and OLR on overall PHA productivity – independently and in combination – is 

critical to increasing the viability of waste substrate and MMC becoming commercially 

favored.  

Beyond process operational criteria, closing the gap in performance between pure cultures and 

MMC requires knowledge and enhanced application of the ‘feast’ PHA metabolism. ADF 

selected microorganisms grow and store PHA simultaneously in the feast phase, and then 

continue to grow using PHA stores throughout the famine phase. A metabolic model would be 

a useful tool to help understand and troubleshoot this dynamic process, wherein the 

stoichiometric yields and maintenance coefficients are interdependent [38]. The first model 

describing ADF-driven PHB production, and the associated feast-famine metabolism, under 

dynamic substrate supply was introduced by van Aalst-van Leeuwen et al. in 1997 [39]. The 

model was developed from a pure culture of Paracoccus pantotrophus fed acetic acid. From 

the original model, many extensions have been made [19, 37, 38, 40-44], with the first model 

describing the metabolism of PHA-producing MMC fed a complex mixture of substrate 

derived from sugar cane molasses introduced by Pardelha et al. [18].  Extension of said model 

for describing the metabolism of an MMC enriched on dairy waste feedstock could prove of 
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high-value in commercialization of a dairy-fed PHA production process. Understanding the 

internal microbial processes via a metabolic model allows for overall performance 

predictiveness, understanding of process upset, and the ability to determine polymer 

characteristics a priori. 

Building upon the identified process needs articulated herein, research conducted in this thesis 

strived to increase real-world application of biopolymer production by first optimizing a 

dairy-fed PHA production process, focused on evaluating SRT and OLR effects, and then by 

expanding the ADF metabolic model to evaluating SRT and OLR effects on the feast-famine 

metabolism. With underlying microbial processes better understood and optimal operations 

exploited, bioplastics would be better positioned to find a home in the competitive plastic 

market. 

1.1. Research Questions, Hypothesis, and Objectives 

This thesis was driven by the following research questions (RQs), hypotheses, and objectives: 

RQ 1: What is the optimal enrichment reactor SRT-OLR that addresses the 

three core process objectives: optimal distribution of PHA precursors, 

maximizing PHA yield on VFAs, and maximizing intracellular PHA 

concentration?  

Hypothesis 1: There exists an SRT-OLR combination that will result in maximum PHA 

production. 

Objective 1: Conduct a factorial-based experimental design with SRT and OLR as 

independent operational parameters. Statistically evaluate effects of SRT 

and OLR on enrichment reactor PHA production from SBR and fed-

batch assessments. 

RQ 2: How well can a feast-famine PHA metabolic model consistently describe 

PHA production in MMC fed DFL and operated under ADF conditions? 

Hypothesis 2: A PHA feast-famine metabolic model will provide predictive 

measurement of PHA production and will mechanistically describe 

metabolic processes in the feast phase. 
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Objective 2: Develop a metabolic model to describe feast-famine PHA synthesis. 

Evaluate and assess measurements of PHA production from SBR and 

fed-batch assessments by means of the metabolic model. 

RQ 3: How effectively will a PHA feast-famine metabolic model assist in 

establishing empirical direction towards the optimization of PHA 

production on fermented dairy manure? How well does the metabolic 

model predict the same optimal SRT-OLR combination as determined 

empirically? 

Hypothesis 3:  A calibrated/validated feast-famine PHA metabolic model will provide 

insight on optimizing the operational environment of an SBR for PHA 

production, unforeseen by lab experimentation. 

Objective 3: Evaluate possible carbon flux scenarios using the metabolic model to 

maximize theoretical PHA production and access its extension to 

laboratory operation of an SBR. 
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2. Literature Review 

2.1. Polyhydroxyalkanoates 

Frenchman Maurice Lemoigne isolated and characterized the first bacterially-produced 

polyester in 1923, which he named “lipide-β-hydroxybutyrique” [45]. Lemoigne had 

effectively discovered polyhydroxyalkanoates (PHA), an intracellular carbon and energy 

storage product produced by a plethora of microorganisms. PHA is synthesized by bacteria 

under conditions of metabolic stress, typically induced either by limitation of an electron 

acceptor or critical macronutrient, or when substrate is supplied dynamically [29]. Once 

accumulated in a microbial cell, PHA can be extracted to become a biodegradable substitute to 

petroleum-derived plastic. The commercial viability of PHA in single-use plastic applications, 

coupled with its unique ability to be derived from carbon in existing waste streams, makes it a 

bioplastic worthy of further scrutiny.   

2.1.1. PHA Composition 

Bacteria store polyhydroxyalkanoates (PHA) within the cytoplasm as amorphous granules 

ranging in size from 0.2 to 0.5 μm [46]. PHA are natural polymers made up of 

hydroxyalkanoic acids (HA), structured as a spiral chain of repeating monomers (i.e. HA). 

While roughly 125-150 different HA have been observed [47, 48], short-chained volatile fatty 

acids (VFAs) primarily generate four monomers: 3-hydroxybutyrate (3HB), 3-

hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), and 3-hydroxy-2-

methylvalerate (3H2MV) [29]. Due to 3HV and 3H2MB being isomers, they are collectively 

referred to as 3HV [40]. Importantly, 3H2MV is not accumulated by most MMC and 

conventional analytical methods are not able to separate it efficiently. Therefore, biological 

systems effectively only produce 3HB and 3HV monomers and their homopolymer 

derivatives: poly-3-hydroxybutryate (PHB) and poly-3-hydroxyvalerate (PHV). In many 

cases, when both 3HB and 3HV are available, the microbe will randomly polymerize the 

monomers to form the co-polymer hydroxybutyrate-co-3-hydroxyvalerate (PHBV) [49] . The 

monomeric structure of PHB, PHV, and PHBV is shown in Figure 2.5. 
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.  

Figure 2.1: Common Polyhydroxyalkanoate Monomers [50] 

Reproduced with permission. 

2.1.2. PHA Material Properties 

Physical properties of PHA are highly dependent on relative monomeric composition (i.e. HV 

fraction). Homopolymer PHB is predominantly crystalline, making it a very stiff and brittle 

material [51]. Additionally, PHB exhibits poor temperature stability, with pronounced 

molecular weight loss and decomposition at its melt temperature [1]. The aforementioned 

characteristics of PHB severely limit its application; however, copolymers with 3HV can 

exhibit attractive mechanical properties. PHBV copolymers with HV contents between 5-20% 

have been commercially produced, principally due to their superior melt stability and 

mechanical characteristics [52]. Increasing 3HV content improves mechanical properties, 

namely, by decreasing stiffness and brittleness, increasing its flexibility, tensile strength, and 

toughness [51]. However, higher 3HV content requires longer processing time due to slower 

crystallization rates [52].  

In MMC systems, PHA composition is of great importance, as the thermal and mechanical 

properties thereof must outcompete synthetic plastics. For this case, PHA composition is 

dependent on the fermenter effluent composition [51]. Bacteria can produce PHA from a 
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variety of substrates, however, VFAs are the most direct precursors to PHA synthesis. VFAs 

are short chain (2-6 carbon) carboxylic acids that are a product of acidogenic fermentation. In 

general, the uptake and conversion of even-numbered carbon VFAs (i.e. acetate and butyrate) 

yields 3HB monomers, while odd-numbered carbon VFAs (i.e. propionate and valerate) yield 

3HV monomers. Moreover, it is suggested for mixtures of VFAs, the resultant copolymer 

HB:HV ratio will be reflective of the ratio of even:odd carbon molecules [40]. Indeed, to 

produce PHA with desirable physiochemical properties, the feedstock VFA distribution 

should be ‘controlled’ accordingly. 

2.1.3 PHA Biodegradability 

A competitive advantage PHA has over synthetic plastics is biodegradability. Since PHA is a 

biologically produced storage product, the inverse, or enzymatic degradation of PHA for 

energy and growth can also be facilitated by a vast amount of bacteria [53]. In microbially 

active environments, PHA can fully degrade in as little as 30 days; moreover, no harmful 

intermediates or by-products are introduced by the degradation process [54]. Alternatively, as 

seen in packaging applications, PHA kept in a relatively cool and dry environment degrades at 

a negligible rate. A visual depicting the rate of PHA degradation in an aerobic sewage sludge 

environment is shown in Figure 2.2. In contrast, petro-plastic (e.g. polypropylene, 

polyethylene, and polyethylene terephthalate) monomers can be naturally synthesized, 

however, these polymers exhibit negligible biodegradation, owed to practically no 

microorganism possessing the necessary enzymes to dismantle their chemical structure [48].  
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Figure 2.2: PHA Degradation in Aerobic Sewage Sludge (20°C). Duration 0, 2, 4, 6, 

8, and 10 Weeks (left to right) [53]. 

Reproduced with permission. 

2.2. PHA Synthesis, General 

Certain microbes synthesize PHA in stressful environmental conditions as a means of 

survival, analogous to humans storing adipose tissue. The ‘stress’ responsible for PHA 

accumulation is primarily attributed to an absence of essential growth nutrients or to an 

exposure to a superabundance of carbon substrate. PHA synthesis can be achieved in pure-

cultures and MMC, alike; however, the ‘protocol’ of imposed environmental pressure differs 

with culture complexity. In the literature, three engineered techniques for inducing microbial 

stress and subsequent PHA accumulation have been developed: anaerobic feeding (absence of 

an external terminal electron acceptor), controlled-growth feeding (nutrient deprivation), and 

aerobic dynamic feeding (intermittent carbon oversupply). Each is discussed in further detail 

below.  

2.2.1. Anaerobic PHA Synthesis 

In the context of engineered environments, PHA storage by MMC was originally observed in 

an enhanced biological phosphorus removal (EBPR) system [55]. In an EBPR system, 

activated sludge (biomass) is recirculated through anaerobic, anoxic, and aerobic zones, 

principally to remove nitrogen (N) and phosphorus (P) [56]. The MMC is first introduced in 

the anaerobic stage where the highest concentration of readily biodegradable carbon (VFAs) 

exist. With an absence of oxygen, nitrate, or nitrite as a terminal electron acceptor, ordinary 
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cellular function and growth is inhibited; thus, microbes capable of storing VFAs as PHA are 

provided a competitive advantage for survival. In the subsequent aerobic stage, stored PHA is 

used for growth and secondary storage reserves [29].     

EBPR stability and reliability is reliant on proper enrichment of a group of microorganisms 

called phosphorus accumulating organisms (PAOs). These bacteria are able to uptake and 

store soluble P as polyphosphate, resulting in bulk solution P removal following solids 

separation [56]. Relevant to this thesis, PAOs leverage polyphosphate and glycogen stores to 

synthesize PHA. Conversely, glycogen accumulating organisms (GAOs), a PHA-synthesizing 

bacterium commonly enriched in EBPR systems, use solely glycogen as a secondary energy 

reserve and do not contribute to P removal. Increased GAO populations can outcompete 

PAOs for carbon, resulting in deteriorated EBPR; however, GAOs can obtain higher PHA 

yields [56]. 

PHA accumulation in EBPR systems is ultimately limited by low concentrations of VFAs 

inherent in raw wastewater. However, an increase in PHA storage, relative to that realized in 

the EBPR process, can be achieved  when a portion of biomass is transferred to a separate 

accumulation reactor and exposed to an extended period of anaerobic or aerobic VFA feeding 

[57]. Anaerobic operation of said accumulation reactor is limited by initial concentrations of 

secondary storage products (polyphosphate and/or glycogen), as the microbes cannot perform 

respiration to fulfill further energy requirements for continued VFA uptake. Conversely, 

aerobic operation induces PHA storage through carbon oversupply; metabolically, however, 

the PHA synthesis response might be different than the MMC realizes in the EBPR process 

scheme. Of the two, aerobic operation has been shown to be superior, albeit with PHA 

accumulation levels warranting researchers to focus on other accumulation technologies [29, 

58]. A proposed process for optimized implementation of a PHA-accumulation stage at 

existing treatment facilities is shown in Figure 2.3; however, research on the viability of this 

method is ongoing [59-61].  
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Figure 2.3: Proposed Wastewater Facility PHA Production Process [50]. 

Originally adapted from [62]. 

Reproduced with permission.  

2.2.2. Controlled-Growth Feeding PHA Synthesis 

Following the discovery of PHA-synthesizing bacteria in MMC, researchers directed their 

attention towards identifying and exploiting PHA-accumulating species and genera. This 

strategy was founded on the idea that pure cultures of known PHA-accumulators could be 

more tightly controlled to produce higher quantities of PHA than achievable by MMC [63, 

64]. To date, over 300 unique PHA-synthesizing microorganisms have been identified [65]; 

additionally, the PHA production potential of promising pure-cultures has been extensively 

assessed at the industrial and laboratory level [66].  

Pure-culture PHA production under a controlled-growth strategy is almost universally 

performed using a two-stage process [63]. In the first stage, a pure-culture known to exhibit 

high PHA accumulation is grown aerobically and fed high purity substrate, commonly 

glucose or sucrose [29]. The culture is allowed to grow without nutrient limitation until 

achieving critical mass, thereafter, the second or nutrient limitation stage is imposed. In the 

nutrient limitation stage, the microbes are deprived of nitrogen or phosphorus; thus, a lack of 

essential nutrients inhibits growth and forces the microbes to convert carbon into PHA. Under 

this operational strategy, cultures have been shown to reach intracellular PHA concentrations 

of 90% on a weight basis [53]. 
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The polymer yield obtained from employing a controlled-growth feeding strategy is nothing 

short of exceptional; however, high costs associated with maintaining a pure culture (energy 

for sterilization) and procuring impurity-free substrate eliminate it from contention with 

cheaper petro-plastics [29, 63]. Moreover; the process’ sterilization practices do not allow the 

use of organic-rich waste streams as substrate. 

2.2.3. Aerobic Dynamic Feeding PHA Synthesis 

Following lackluster pure-culture viability, investigations of potential alternative PHA 

production processes aimed at reducing polymer production costs narrowed on MMC systems; 

reason being, MMC systems can use a variety of low cost complex substrates and do not require 

sterilization [29]. In 1996, Majone et al. [24] discovered that biological systems exposed to 

alternating states of VFA excess and VFA absence, under fully aerobic conditions, select for a 

culture dominated by floc-forming PHA-accumulating organisms, rather than filamentous 

bulking organisms; however, some filamentous bacteria enriched in ADF systems (e.g. 

Meganema) have PHA-synthesizing capability [67, 68]. This metabolic response, coined ‘feast-

famine’, is associated with the characteristic cyclical feeding of an engineered ADF 

environment [23, 50]. Contrary to anaerobic and controlled growth feeding (described above) 

where PHA storage is driven by inhibiting growth, ADF PHA accumulation is induced by 

providing excess external substrate (VFAs) [38].    

Under ADF conditions, the F-F response results in the majority of carbon (VFAs) being stored 

as intracellular PHA rather than being used for growth, despite excess availability of requisite 

nutrients [1].  To take this phenomenon into account, it is hypothesized that the bacteria have a 

reduced metabolic capacity (rRNA or enzyme deficiency) after the famine phase, subsequently, 

leading to inhibited growth in the feast phase. Therefore, when excess carbon is introduced, the 

microbes cannot grow at their maximum rate and compensate by storing PHA. This metabolic 

behavior, referred to as an ‘overflow metabolism’ causing ‘energy spilling’, has been observed 

by microorganisms exposed to a wide array of environmental factors [69-71]. In the famine 

phase, stored PHA acts as a buffer for substrate, allowing the microbes to grow and sustain 

populations without an external carbon source for a prolonged period of time. Furthermore, the 

metabolic capability of storing PHA provides a competitive advantage over non-storing 
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microorganisms, leading to an enriched culture under ADF conditions. A typical F-F response 

is depicted in Figure 2.4. 

 

Figure 2.4: Typical Feast-Famine Response [1] 

Reproduced with permission. 

In theory, ADF configurations can be fed any organic-rich waste stream; however, VFAs are 

required in the feedstock as they are the direct pre-cursors to PHA and can be readily 

consumed and converted [28]. Contrary to pure cultures, other forms of carbon (e.g., 

carbohydrates, alcohols) do not accumulate as PHA in MMC. By providing primarily VFAs, 

populations of non-storing ‘flanking’ microorganisms, broadly referred to as Ordinary 

Heterotrophs (OHOs), are restricted from consuming substrate and minimized in a Darwinian 

way from the system. In order to maintain the dynamic conditions that promote PHA 

accumulator enrichment, ADF conditions are almost exclusively obtained with SBRs. A 

typical SBR cycle occurs in the following stages: substrate addition, reaction (e.g., feast, 

famine), wasting, settling, and decant.   

2.3. PHA Synthesis by a MMC 

To date, commercial PHA production employs a controlled-growth strategy (described above) 

using pure-cultures fed synthetic substrate – most commonly pure sugars refined from corn 

[21]. These systems reliably achieve high intracellular PHA yields (> 80%); nevertheless, 

costs arising from substrate procurement and maintaining axenic conditions result in PHA 

costs being 3-9x that of polypropylene and polyethylene by weight [21, 27]. Initially 
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supported by the results of Serafim et al. [27], who observed PHA accumulation in upwards 

of 65% using a MMC under ADF conditions, the production of PHA from MMC systems has 

become a promising avenue for decreasing commercial PHA production costs [27, 72]. For 

MMC systems using existing waste streams, the costs associated with substrate refinement 

and sterilization are relatively negligible; however, research has elucidated several limitations 

of using MMC fed complex substrates, primarily reduced intracellular yield and low PHA-

producing biomass concentration.  

Reported peak intracellular PHA accumulation for MMC systems operated under ADF 

conditions are highly variable ranging from 8% [72] to 89% [73]; comparatively, commercial 

production facilities using pure cultures and substrates consistently achieve greater than 80% 

accumulation [21]. Low PHA content and other inefficiencies associated with carbon being 

utilized for growth rather than storage and/or increased OHO populations effectively 

skyrocket production costs by requiring increased extraction duration and chemical usage. To 

give a frame of reference, it has been shown that an increase in intracellular PHA content 

from 50% to 88% can lower recovery costs from 4.8 to 0.92 $/kg [74]. Operation of a MMC 

system should be markedly tailored to achieve high intracellular PHA content as it is essential 

for commercial economic feasibility.   

Relevant to PHA content, the productivity of PHA production systems is dependent on the 

concentration of active biomass. In commercial production operations, performed in batches, 

cell concentrations at the point of harvest are typically greater than 100 gTSS/L [74]. 

Conversely, municipal activated sludge systems, representative of the biomass accumulation 

potential for MMC systems, operate between 3 and 10 gTSS/L [75]. While it is suggested 

MMC systems operate at similar biomass concentrations to pure-culture systems for economic 

viability, it is not possible when using substrates with impurities. Feeding of VFA-rich waste 

feedstock in theoretical quantities to beget pure-culture biomass concentrations would 

drastically reduce PHA content by adding inert material and slowly biodegradable carbon; 

moreover, the required footprint and associated operational consequences (e.g. foaming) 

further deny feasibility. Fortunately, this large disparity in achievable biomass concentrations 

can potentially be relieved by MMC systems operating continuously, and thus offsetting 

productivity differential. 
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2.4. Metabolic Pathways of PHA Synthesis 

Achieving optimal PHA synthesis demands a fundamental understanding of PHA-producing 

prokaryotes’ metabolism. A cell’s metabolism is the total of chemical and physical 

interconversions in a cell [76]. With the extraordinary number of enzymes in each cell, it is 

useful to map the cell’s metabolism via a metabolic pathway. To this end, the specific 

pathways enzymes in a MMC fed complex waste feedstock use remains uncertain, thus 

research efforts have focused on describing metabolic pathways based on pure-cultures fed 

synthetic substrates. Without properly elucidated pathways for MMC, it can be assumed that 

process descriptions of MMC can be approximated by those described using pure cultures, in 

this case R. eutropha [4]. PHA synthesis can occur via four unique pathways [3]; however, an 

extensively studied three-step pathway presented in Figure 2.5 represents PHA synthesis from 

common VFAs in R. eutropha.  For the metabolism of low molecular weight compounds, the 

major metabolic pathways are glycolysis, the pentose phosphate pathway, the citric acid cycle 

(e.g. TCA cycle), oxidative phosphorylation, fatty acid degradation and synthesis, 

gluconeogenesis and glycogen breakdown and synthesis [76]. For simplicity, metabolic 

pathways involved with PHA synthesis are separated into four processes: VFA activation and 

conversion, PHA synthesis, intracellular degradation of PHA, and the catabolic oxidation of 

metabolic intermediates. 

2.4.1. VFA Uptake and Activation 

The method of VFA transport across the microbial cell is not fully understood; however, due 

to the size and lipid solubility of VFAs in un-dissociated form, it is presumed to occur 

primarily through passive diffusion [77]. As intracellular pH is higher than the pKa for 

organic acids (4.7 to 4.9), acid-base equilibrium disassociates a portion of the permeated acid, 

resulting in the production of excess intracellular protons [78]. To maintain proton motive 

force (PMF), the cell is required to expel the excess protons at the expense of Adenosine 

Triphosphate (ATP) [79]. The ATP cost associated with VFA uptake is difficult to estimate as 

it is a function of the pH gradient across the cell membrane and external VFA characteristics; 

generally, it is assumed that one mole of ATP is required for the uptake of one mole of VFA 

[80]. 



18 

 

Following transport, intracellular VFAs are activated through esterification with available 

Coenzyme-A (CoASH), resulting in a corresponding alkyl-CoA [7]. Activation to an alky-

CoA allows the molecule to access a suite of metabolic pathways depending on VFA size, as 

shown in Figure 2.5 and Figure 2.6. Larger VFAs (4 carbon or greater) can enter the β-

oxidation pathway to be broken down into shorter alkyl-CoAs. This cyclic process cleaves 

two carbons every cycle to form acetyl-CoA; for odd carbon VFA, the last cycle will form 

one acetyl-CoA and one propionyl-CoA. While VFA uptake is passive, activation requires 

CoASH and an additional mole of ATP per mole of VFA [40]. Similarly, β-oxidation 

consumes CoASH, but generates reducing equivalents in the form of nicotinamide adenine 

dinucleotide (NAD) plus hydrogen (H), NADH, and flavin adenine dinucleotide (FAD) plus 

two H, FADH2.  

In literature, it is common for models and metabolic diagrams to represent all reducing agents 

(NADH + H+, NADPH + H+, FADH2) as NADH. This approach is valid when performing 

simple metabolic analysis as all the carriers have a power of 2 reducing equivalents (hydrogen 

atoms) [81]. 

2.4.2. Tricarboxylic Acid Cycle and Oxidative Phosphorylation 

The tricarboxylic acid (TCA) cycle is a metabolic pathway used by most aerobic heterotrophs 

to meet energy production needs (i.e., ATP). The TCA cycle is responsible for oxidizing 

acetyl-CoA to CO2, and as a result, phosphorylates ADP to synthesize ATP and transfers 

reducing equivalents to NAD+, NADP+, and FAD [7]. In short, the energy inherent in the 

acetyl-CoA molecule is captured by stripping electrons from the molecule and oxidizing it to 

carbon dioxide. The full cycle, depicted in Figure 2.6, results in two moles of CO2, three 

moles of NADH/H+, and one mole of FADH2. As shown, propionyl-CoA can also be oxidized 

in the TCA cycle by entering the succinyl-CoA pathway [82, 83]. The transformation of 

propionyl-CoA to succinyl-CoA is a three-step process that consumes ATP [83]; furthermore, 

it lends itself as one of the five possible ways propionyl-CoA is decarboxylated to acetyl-

CoA, as evidenced in cultures fed propionic and valeric acid [26]. Without inhibition, the 

TCA cycle will continuously produce reducing equivalents to facilitate respiration, or 

oxidative phosphorylation, in the next step. 
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Oxidative phosphorylation is a mitochondrial process in which ATP is produced via the 

transfer of electrons from NADH or FADH2 to O2, accounting for the large majority of 

aerobic microorganisms’ energy production [84]. Briefly, electrons produced from the TCA 

cycle are transferred by protein complexes embedded in the mitochondrial inner membrane to 

the terminal electron acceptor, oxygen, to form H2O [84]; meanwhile, hydrogen ions are 

being pumped outside the membrane. This uneven distribution of protons generates a 

transmembrane electrical potential resulting in PMF [84]. Finally, the enzyme, ATP synthase, 

creates ATP by collecting energy dissipated from hydrogen being passively transported back 

into the membrane, and thus restoring equilibrium [85].  

The amount of ATP generated from oxidative phosphorylation is dependent on the degree of 

PMF (how many hydrogen ions are pumped out of the membrane) and how efficient the ATP 

synthase enzyme is in energy collection. Moreover, this energy yield has been shown to vary 

significantly by carbon source used for culture enrichment [40]. In modeling aerobic systems, 

this energy yield is termed the P/O ratio, denoted as δ, and has units of mole ATP per mole 

NADH or 2e-. While the theoretical maximum P/O is around 3 [40], values obtained in 

biological systems are in generally in the range of 1.5-2.5 mole ATP/mole NADH [37, 85, 

86]. 

2.4.3. Growth and Maintenance  

Microorganisms primarily generate ATP for growth and maintenance. Growth, commonly 

referred to as anabolism, is the formation of new biomass. For activated sludge systems, the 

assumed elemental composition of active biomass is C5H7NO2 [75]; however, for MMC 

subjected to ADF conditions a biomass composition of CH1.8N0.2O0.5 is commonly assumed 

[37, 42, 87]. Anabolism requires energy, principally from a carbon and electron source 

yielding ATP, and a nitrogen source. In the context of this work, growth is facilitated by 

VFAs providing carbon and electrons and ammonia as the nitrogen source. 

Maintenance is defined as the energy demand for all essential processes not related to growth 

[86]. In modeling, maintenance is used as a catch-all term for ATP utilized absent of growth 

and substrate uptake. Hence, if the P/O ratio and maintenance term are theoretically known, 

an ATP balance summing to zero could be performed on a PHA-synthesizing metabolism [88, 

89].  
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2.4.4. PHA Synthesis  

The term PHA encapsulates a variety of monomers, with the distribution thereof being 

dependent on the VFAs available to the microorganisms. Figure 2.5 and Figure 2.6 illustrate 

the potential metabolic pathways of PHA production from common VFAs [1]. First, PHA 

production begins with VFA uptake and activation, as described above, requiring CoASH and 

ATP. The resulting alkyl-CoA precursors are then condensed by β-ketothiolase to form a 3-

ketoacyl-CoA compound, liberating one CoASH in the process [90]. Once condensed, the 3-

ketacyl-CoA molecules are reduced by acetoacetyl-CoA reductase, requiring NADPH, to 

generate the corresponding 3-hydroxyacyl-CoA [6]. Lastly, PHA synthase incorporates the 3-

hydroxyacyl-CoA into the polymer, thereby liberating the remaining CoASH [91]. 

Acetic acid, typically the most abundant VFA, is activated directly to acetyl-CoA; β-

ketothiolase then condenses two units of acetyl-CoA to form the 3HB precursor acetoacetyl-

CoA [92]. Cultures grown on acetic acid will only produce P(3HB), with polymer content 

sharing a positive relationship with acetate concentration of the medium [93]. Propionic acid 

is activated directly to propionyl-CoA, giving rise to three possible precursors [29]. Two 

molecules of propionyl-CoA can condense to poly-3-hydroxy-2-methylvalerate, the direct 

precursor to P(3H2MV) [29]; additionally, propionyl-CoA can be decarboxylated to acetyl-

CoA, for which the junction of both molecules, acetyl and propionyl-CoA, can generate 

P(3HV) or P(3H2MB) [26, 29, 93]. Butyric acid can either be directly condensed to the 3HB 

precursor acetoacetyl-CoA or form two acetyl-CoA molecules via β-oxidation. Similarly, 

valeric acid can generate the direct precursor for 3HV or can form one acetyl-CoA and one 

propionyl-CoA following β-oxidation [94]. While cultures fed butyric acid solely beget PHB, 

valeric acid can generate combinations of 3HV and 3HB yielding PHBV [94]. Organic acids 

larger than valeric acid are capable of yielding PHA via β-oxidation; however, caproic acid 

and other fermentation products exist in low concentrations, and thus have negligible impact 

on polymer composition. 
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Figure 2.5: PHA Synthesis from common VFAs.  

Adapted from [8]. 

 Reproduced with permission. 
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Reproduced with permission. 

Figure 2.6: PHA Metabolisms and Regulation in Ralstonia Eutropha. 

Created by [1], synthesized from [2],[3], [4], [5], [6], [7], [8].  
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2.4.5. Intracellular Degradation of PHA 

The function of intracellular PHA stores in bacteria is to provide nutrients for energy and 

carbon metabolism in phases of starvation [95]. While extracellular PHA depolymerization is 

well researched, intracellular degradation has received little attention due to the difficult 

nature of analyzing isolated PHA granules in vitro [95]. That being said, three intracellular 

degradation pathways, as shown in Figure 2.6 (red-orange, orange, gold), have been 

elucidated. 

For the context of this research, the original pathway based on the work of Senior and Dawes 

[2], shown in red-orange (Figure 2.6), sufficiently describes the conversion of stored PHA to 

metabolites that can be repurposed as energy. First, stored polymer is hydrolyzed by PHA 

depolymerase, PhaZ, thereby releasing 3HB. The released 3HB is then oxidized to 

acetoacetate by D(-)-3-hydroxybutyrate dehydrogenase, transferring reducing equivalents 

from NAD+ to NADH; furthermore, the acetoacetate is thiolyzed with CoASH by 

Acetoacetyl-CoA synthase, requiring ATP. Following the reverse condensation of 

acetoacetyl-CoA to acetyl-CoA, production of acetyl-CoA provides the cell a means of energy 

generation through catabolism, or simply put, the TCA cycle. The depolymerization of 3HV 

to propionyl-CoA follows the same general process. Further details regarding intracellular 

polymer degradation and other described metabolic processes are discussed in the following 

metabolic model chapter.  

2.5. Three-Stage ADF Operations 

Since the seminal work of Majone et al. [24], our knowledge of PHA-producing culture 

selection and metabolism has expanded immensely from numerous lab-scale ADF 

investigations. The majority of ADF studies have utilized synthetic substrates, ammonium, 

and other trace nutrients [23, 26-28, 37, 38, 87, 96, 97]. Understanding that substrate is one of 

the primary costs in PHA production [65], the use of  synthetic medium at full-scale becomes 

rather unfeasible. As a remedy, complex waste streams in lieu of synthetic medium and pure 

cultures are used in a three-stage PHA production process [23]. This process has been shown 

to elicit high PHA storage yields and intracellular PHA content from waste substrates [62, 

98]. A schematic of a three-stage PHA production process utilizing dairy waste is shown in 

Figure 2.7; the solids separation step is tailored to dairy manure, although ADF configurations 
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are comparable regardless of substrate, and solids separation would be required when solids-

rich organic matter is used.   

 

Figure 2.7: Dairy Manure Fed Three-Stage PHA Production Process Schematic 

In the first stage, acidogenic fermentation converts the biodegradable waste (e.g., dairy 

manure) into carboxylic acids (VFAs), the preferred carbon source for feast-famine driven 

PHA storage [99]. This stage can be viewed as independent from the other two, yet can decide 

the maximum MMC enrichment and PHA storage capacity, as it provides the readily 

biodegradable carbon used downstream. Low VFA yield can become the three-stage process’ 

limiting factor; additionally, the distribution of VFAs can have a pronounced effect on 

polymer characteristics in the later stages. Optimization of the fermentation stage has been 

extensively studied, including the evaluation of relevant substrate [100, 101], and involves 

maintaining a low SRT (< 5 days), thereby limiting the growth of methanogenic bacteria (and 

ultimately the consumption of VFAs) [102]. 

The second stage of the process is culture enrichment. Here the MMC is subjected to ADF 

conditions, consequently inducing F-F metabolism and enriching for and producing MMC 

with high storage behavior. Typically, culture enrichment, and the selective pressure thereof, 

is accomplished in an SBR subjected to periodic feeding (feast and famine conditions) [23, 

27, 30, 37, 73, 97, 98, 103]; however, similar enrichment capabilities have been shown in 

two-stage continuous stirred tank reactor (CSTR) configurations [35, 104, 105]. The latter 
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configuration uses separate CSTRs for the feast and famine phase, with selective pressure 

controlled by HRT.  

The third and final stage is the production stage. Excess sludge (enriched biomass), usually 

the decanted volume produced from the enrichment stage, is leveraged in a batch 

accumulation reactor. The batch reactor, or production reactor, is operated at a significantly 

higher organic load in order to saturate the biomass PHA storage capacity and achieve an 

extended ‘feast’ [23]. Once PHA saturation is achieved, the PHA-rich biomass is recovered 

for either an extraction phase [106], or directly as an end product for composite material 

manufacturing [62]. So long as substrate and a terminal electron acceptor (e.g., oxygen or 

nitrate [68]) are provided in excess, the biomass will accumulate higher intracellular PHA 

concentrations compared to the enrichment stage. However, substrate feeding must be closely 

monitored, as high VFA concentrations can have an inhibitory effect on PHA storage [27]. 

For this reason, substrate has been most-commonly supplied in pulses, begetting near zero 

substrate concentrations between pulses [28], yet the same goal can be achieved using 

continuous feeding [50, 89].  

A three-stage ADF configuration is, for all intents and purposes, the primary process 

employed for PHA production using MMC and complex waste substrates, as each stage 

serves a unique and necessary purpose. Advantageously, the integrated process inherently 

allows the independent optimization of each stage; however, with the production inocula 

being sourced from the enrichment stage, the degree of culture enrichment can have powerful 

implications on downstream PHA accumulation performance [89]. While the basic process 

mechanisms for culture enrichment are well studied, operational criteria for maximizing PHA 

production are far from being conclusively defined. This lack of understanding is only further 

magnified when applying MMC systems using differing complex feed sources. Further 

research focused on the development of optimized ADF operational criteria could prove 

significant in improving commercial PHA production and its economic viability.  

Specific to an SBR, the major operational parameters for an enrichment culture under ADF 

conditions are: solids residence time (SRT), cycle length (CL), organic loading rate (OLR), 

and terminal electron acceptor levels. However, research efforts should focus primarily on 

SRT and OLR, as they have the largest effect on selective pressure and PHA accumulation, 
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while being operationally simple to adjust. Minor operational parameters that are more 

complex to control with limited influence on process performance include: temperature, pH, 

and carbon to nitrogen ratio (C/N). 

2.5.1. Solids Retention Time (SRT) and Cycle Length (CL) 

SRT represents the average time a microbe remains in a system, typically defined by the 

amount of biomass in a system divided by the amount of biomass exiting the system per day. 

Hence, a larger SRT results in increased biomass within a system (as less biomass is removed 

from the system), creating a more robust and consistent MMC, as microbes unable to sustain 

themselves are washed out of the system. However, increased SRT can also lead to the 

accumulation of dead biomass and ash/minerals. From conventional microbial theory, a 

shorter SRT equates to higher growth rates. Applying the same logic to ADF-driven PHA-

accumulating MMC, this would imply less substrate is stored as PHA as it is used primarily 

for growth [28]. This notion was confirmed experimentally by Beun et al. [37] and Carta et al. 

[107], who observed an SRT > 2 days resulted in PHA storage independent of growth rate 

(and SRT), while SRTs below this threshold shared a pronounced inverse relationship with 

PHA yield and productivity. Conversely, while longer SRTs appear advantageous, 

operationally there becomes a point where increasing SRT begets diminished returns. At too 

large of SRTs the metabolic activity of the biomass can decrease, resulting in a less active 

microbial population [102]. Moreover, as the SRT increases, the relative fraction of inert 

suspended solids (e.g. minerals) increases, and thus this disparity can result in a lower 

potential PHA fraction on a TSS basis. As a case in point, SRT investigations by Chua et al. 

[108] showed a 10% decrease in intracellular PHA content when operating at a 10 day versus 

a 3 day SRT. Nevertheless, despite suggested evidence that the SRT should exceed 2 days, in 

much of the ADF literature an SRT of 1 day is a common design value on the basis a higher 

percentage of active biomass results in higher intracellular PHA yields [97, 99, 109]. 

Ultimately, the lack of consensus on an optimal SRT remains. 

Operationally associated with SRT is the cycle length (CL), which is the duration of one 

complete feast and famine cycle. The effect of the CL:SRT ratio on PHA accumulation has 

only been sparsely studied, and values have varied substantially across ADF investigations, 

from 0.04 to 0.5 [23, 27, 37, 73, 97, 99, 103, 110, 111].  However, the CL:SRT ratio 
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(day/day) has been established as a key operational criteria related to increasing intracellular 

PHA content in the feast phase [112]. The parameter gained significant attention when the 

maximum reported intracellular PHA content of 89% was achieved using a CL:SRT of 0.5, 

the ‘upper limit’ of CL:SRT values [73]. Further investigation of CL:SRT in comparable 

systems yielded similar results, with higher intracellular PHA content (> 70 wt%) being 

observed in larger CL:SRT operations [112]. With increased CL and constant SRT, the 

amount of substrate fed per cycle and the length of the famine phase increase; as a result, 

more substrate per individual microbe is consumed and a higher degree of selective pressure 

is imposed, hence, increased PHA storage capacity. Currently, the effects of CL:SRT on ADF 

metabolism are strictly empirical derivations, and implications for full-scale PHA production 

requires further study. 

2.5.2. Organic Loading Rate (OLR) 

The organic loading rate (OLR) is the concentration of organic matter (e.g., VFAs) applied to 

the MMC, reported on a per day or per cycle basis. In a ‘utopian’ ADF system, the amount of 

polymer produced is simply a function of substrate supplied [28]. Indeed, a linear relationship 

between OLR and the quantity of PHA produced was observed by Serafim et al. [27], Dionisi 

et al. [96], and Beun et al. [37] within ranges of 0.9-2.7, 1-8, and 0.18-1.44 g/L, respectively. 

Increasing OLR raises the amount of active biomass within a system, as more carbon is 

available to support a larger population. Within the aforementioned ranges, although variable, 

the results suggest an increase in biomass proportional to OLR with no change in storage 

kinetics.  

In F-F metabolism, operating at a high OLR can have adverse effects on PHA accumulation. 

Generally, as OLR increases the famine phase duration decreases; as a result, the MMC can 

become less reliant on storing PHA due to reduced environmental stress. This shortcoming of 

operating at a high OLR was observed by Dionisi et al. [97], where PHA storage decreased 

significantly at OLRs higher than 17.6 g/L-h.   

2.5.3. Feast-Famine Ratio (F-F Ratio)  

Herein the F-F ratio is defined as the proportion of the feast phase duration relative to the 

famine phase duration, within a single cycle (hr/hr); however, a lack of a unanimous 

definition of feast and famine amongst researchers adds variability in reported ratios. The 
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transition between feast and famine phases has been defined in literature as: a sharp rise in 

dissolved oxygen (DO) concentration, complete VFA uptake from bulk solution, or as 

complete degradation of stored PHA. Nonetheless, a small F-F ratio (< 0.25) is required for a 

successful ‘feast’ PHA response. At low F-F ratios, the growth rate for non-PHA storing 

microorganisms required to sustain themselves becomes too large, effectively washing them 

out and creating a highly enriched PHA-storing population [89].  

Control of the F-F Ratio is quite difficult, if not impossible, as it is a function of SRT, CL, 

and OLR, all of which are interdependent operational criteria. Therefore, the F-F ratio can be 

viewed as quantification of a metabolic response rather than an operational parameter. 

Independent of OLR, the F-F ratio can be reduced by increasing the CL to SRT ratio and 

resultant famine phase length. For a constant CL to SRT ratio, Albuquerque et al. [103] found 

increasing the OLR can nominally increase the F-F ratio, although at high organic loading the 

nutrient limitation caused biomass concentrations to increase disproportionally to OLR. 

Conversely, Dionisi et al. [97] found that higher OLRs resulted in shorter famine phase 

durations and larger F-F ratios; furthermore, increases in F-F ratio yielded lower PHA 

accumulation, principally due to reduced selective pressure in culture enrichment.  

In ADF systems it is well understood that the F-F ratio is an indicator of the metabolic stress 

realized by MMC; moreover, minimization of the F-F ratio intensifies the selective pressure 

for PHA-accumulating microbes [103]. For limiting a growth response, a maximum F-F ratio 

of 0.25 was experimentally determined by Dionisi et al. [97]; alternatively, the findings of 

Jiang et al. [112] suggest a more conservative maximum of 0.20. The reason an upper limit is 

reported, rather than an optimal F-F ratio, is because F-F ratios below said maximum do not 

necessarily follow the ‘lower is better’ assertion. For instance, Jiang et al. [112] observed a 

decrease in PHA accumulation from 90 to 82 (wt%) when the F-F ratio was decreased from 

0.10 to 0.05.  

2.5.4. Supply of a Terminal Electron Acceptor  

With ADF systems being wholly aerobic in the enrichment and production stage, oxygen is 

the primary terminal electron acceptor, however, at low dissolved oxygen (DO) 

concentrations facultative heterotrophs may also use nitrate and/or nitrite, particularly during 

the ‘feast’ period [68]. In an effort to ensure DO levels are not rate-limiting on VFA uptake 
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and storage, ADF systems are typically supplied aeration in excess [1, 73]. In this case, 

aeration kinetics can be reported as the volume of air provided per reactor volume or as a 

range of DO concentrations [1, 113]; however, in situations where the aim is to reduce 

operational costs of aeration, more accurate estimation is required.  

Aeration or oxygen transfer rate (OTR) is typically quantified by a process’ volumetric mass 

transfer coefficient, kLa, and oxygen concentration measurements (DO). This method has its 

limitations, as it is heavily reliant on proper DO probe calibration and correct measurement of 

kLa. Reactor kLa is determined based on evaluation of water quality, reactor geometry, mixing 

characteristics, and the oxygen delivery system (e.g. diffuser type) [114]. Studies on the 

effects of kLa on PHA storage are limited. Third et al. [87] showed that, for synthetic medium, 

reduced kLa (aeration) resulted in higher PHA yield on substrate. This suggests that 

minimizing oxygen supply rates effectively promotes PHA storage rather than growth, as the 

availability of reducing power is decreased. Conversely, research on real waste substrate 

indicated no statistical difference between kLa and carbon uptake and storage kinetics [115, 

116].    

2.5.5. Minor Operational Parameters 

Temperature, pH, and nutrients, particularly the ratio of carbon to nitrogen (C/N), represent 

secondary operational parameters that are more complex to control. Often times controlling 

these parameters also adds unnecessary complexity and operation costs to a system [110]. An 

evaluation by Fang et al. [117] on the influence of operational parameters ranked the 

influence of each parameter studied: pH > substrate concentration (COD) > influent N 

concentration = influent P concentration; while a similar study by Mohan et al. [118], ranked 

the following parameters: microenvironment > pH > glucose > phosphorus > nitrogen > 

acetate = propionate = butyrate > iron > other VFAs. 

PHA production is suggested to be sensitive to initial culture pH [119]. It is hypothesized, at 

low pH conditions (< 4.75), VFAs remain in an undissociated form in order to maintain 

biomass intracellular pH at equilibrium [108]. Research by Chua et al. [108] suggests this 

phenomenon can occur at a higher pH, between 6 to 7, and results in negligible PHA 

accumulation; the authors go on to recommend a pH ≥ 8. Similarly, Dionisi et al. [99] 

reported that maximal biomass activity and PHA storage occurred in a pH range of 7.5 to 8.5, 
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with a significant decrease in productivity below 7. A large amount of studies suggest peak 

PHA production occurs at a pH range of 8.0 to 9.0 [27, 99, 108, 111, 120]; however, reported 

optimal pH ranges for ADF PHA production utilizing MMC are contradictory. A pH range of 

6.0 to 7.5, preferably 7.0, is suggested as optimal due to PHA enzymes being more active at a 

neutral pH [118, 119]. This variance in pH across studies can be attributed to differences in 

MMC characteristics and enrichment conditions; more importantly, it suggests less 

importance be put on pH control at full-scale. Legacy ADF PHA production research on dairy 

manure have not sought to exert pH control [1, 50, 89, 116], principally because dairy manure 

contains such an excess of alkalinity that any attempts to control alkalinity would demand 

excess chemicals and would be completely unrealistic. Ultimately, dairy manure-based 

operations consistently operate at a pH range of 8.0-8.6. 

Nutrient concentrations, specifically nitrogen (N) and phosphorus (P), have been shown to 

influence PHA production, although principally in non-ADF systems. It is suggested that 

under conditions of nutrient excess, substrate is preferentially used for growth [72]; moreover, 

N- or P- limitation has been shown to increase PHA production [30]. Conventional theory 

suggests N-limitation restricts the potential for growth by decreasing protein synthesis and 

associated enzymatic activity [121]; similarly, increased PHA accumulation observed with P-

limitation is thought to be a result of restricting the TCA cycle [122]. While studies 

implementing N-limitation generally affirm higher overall PHA accumulation, culture 

enrichment and PHA storing kinetics are suggested to improve in non-limiting N 

concentrations [30, 99]. Nutrient concentrations are important to consider in ADF processes; 

however, most waste substrates are very nutrient-rich, therefore limitation of N or P is not 

feasible.  

2.5.6. Overview of Major Operational Criteria  

A comparison of key operating parameters for culture selection under ADF conditions for a 

variety of feed types is shown in Table 2.1. The selection of studies is not comprehensive, but 

representatively shows the variability, or lack thereof, between operational criteria for both 

synthetic and complex waste mixture fed PHA production systems. Reported OLR values for 

enrichment reactors fed fermented dairy waste are between 5.2 – 33.4 Cmmol/L-d [50, 89, 

116]. Regarding OLR units, the ratio of gCOD to Cmmol for fermented dairy liquor (DFL) is 
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roughly 0.035 (n > 1500); therefore, an OLR range of 10 to 30 Cmmol/L-d (this study) is 

approximately 0.35 to 1.06 gCOD/L-d. Comparatively, the OLR range ultimately applied in 

this research is low, yet the bulk solution substrate concentration realized by the biomass at 

the beginning of each cycle is consistent with the studies shown in Table 2.1. Furthermore, 

and more critically, the upper limit of OLR for the dairy-fed ADF process reflects the 

maximum feasible based on fermenter footprint and VFA yield potential.  

Table 2.1: Reactor Operations for Various Substrates  

Ref. 
HRT                  

d 

SRT              

d 

CL             

h 

OLR           

Cmmol L-1 d-1 

*gCOD L-1 d-1 

F/F 

Ratio 
Substrate Source 

[123] 2 2 24 *4.5 ~0.017 Paper Mill Effluent 

[103] 1 10 12 60, 90, 120 ~0.22 
Fermented Sugar 

Molasses 

[110] 1 6 12 *1-2  N/A 
Fermented Whey 

Permeate 

[97] 1 1 2 
*8.5-20 

*20-31.25 

< 0.33 

1 
Synthetic 

[73] 1 1 12 27 ~0.036 Synthetic 

[27] 1 10 12 12 ~0.012 Synthetic 

2.5.7. Optimal Operation 

Amongst the interrelated operating parameters that ensure proper enrichment of PHA-

accumulating organisms, the maximum substrate concentration during the feast phase (related 

to OLR) and SRT emerge as the two critical parameters [72]. For a CL of 24 h (this work), the 

maximum substrate concentration becomes the OLR. Determining the optimized combination 

of these two parameters is an elusive goal, as previous investigations define an optimal 

value(s) of one parameter, independent of the other (i.e., one parameter is fixed). Sifting 

through the various schools of thought on optimal operation, three statements that are 

generally in agreement are: 
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i. The optimal enrichment OLR is the highest OLR that can be achieved while selective 

pressure vital to F-F metabolism is maintained [23].  

ii. The CL to SRT ratio should be maximized in order to establish a culture enriched for 

microorganisms with a high PHA storage capacity [112]. 

iii. The optimal SRT is where peak biomass activity occurs and substrate utilization for 

growth is minimized. 

A conceptual diagram illustrating the optimal operation range as a function of SRT and OLR 

is shown in Figure 2.8 

 

Figure 2.8: Conceptual Diagram of Optimal Enrichment Reactor Operating 

Conditions for Maximizing PHA Production 
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3. Metabolic Model 

Modeling of storage products in MMC started with the Activated Sludge Model no. 3 

(ASM3) [124]; however, its shortcomings in modeling dynamic metabolic processes such as 

simultaneous growth and PHA storage became quickly apparent. This sparked the 

development of a model describing ADF metabolism in pure cultures [39] and MMC [38]. 

Metabolic models are superior in describing dynamic processes due to the stoichiometric 

yield and maintenance coefficients being dependent on the same metabolic parameters [38].  

With the innate capability of evaluating alternative operations mathematically, a metabolic 

model describing the MMC’s ability to produce PHA is essential to the optimization of PHA 

production at the industrial level. An MMC’s bioplastic production potential from a complex, 

diverse substrate (e.g., waste-feed stock) is also complex and diverse; a metabolic model 

serves to provide understanding to the underlying microbial processes. The metabolic model 

developed in this thesis details and quantifies internal microbial reactions occurring within an 

MMC under ADF conditions critical to F-F PHA synthesis. More importantly, the model 

provides predictive-ness of copolymer production on substrate mixtures more representative 

of waste-feed fermentative products, rather than single or mixed synthetic substrates. Results 

extracted from the metabolic model offer valuable empirical prediction and characterization 

of PHA synthesis for further optimization of real-world applications.  

3.1. Model Focus 

The metabolic model described herein is focused on the enrichment phase of the three stage 

ADF PHA process; see Figure 2.7. For relative simplicity, the model is confined to describing 

PHA synthesis from carboxylate mixtures composed of acetate, propionate, butyrate, and 

valerate; however, by design the model can incorporate other 4 and 5 carbon VFAs (e.g., iso-

butyrate, iso-valerate). Nearly two years of fermentation data, developed from a dairy manure 

fed fermenter, indicates these four carboxylates represent over 95% of the total carboxylate 

yield (see Ch. 4). Modeling PHA synthesis from these four carboxylates extends previous 

models [37-40, 42, 44], while avoiding unnecessary complexity from incorporated substrates 

whose concentrations have little effect on copolymer production. Furthermore, the model 

extends the original PHA production from complex VFA mixtures framework proposed by 

Pardelha et al. [18, 41, 125], by incorporating famine phase processes valuable to commercial 
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application. It is assumed the metabolic model is robust enough to simulate diverse real-world 

carboxylate mixtures, with proper calibration. 

3.2. Metabolic Model for Aerobic PHA Synthesis and Degradation 

A schematic of the metabolic model developed in this study is illustrated in Figure 3.1 and a 

complete overview of the biochemical reaction stoichiometries are shown in Table 3.1. All 

reactions are expressed on a carbon-mole basis, which is consistent with past metabolic 

modeling efforts. 

In the feast phase, VFAs are actively transported within the cell, requiring one mole of ATP 

per mole of carbon source [7]. Following transport, the carboxylates are converted to their 

respective acyl-CoA, requiring an additional mole of ATP per mole VFA [40]. Acetate and 

propionate are activated to directly to acetyl-CoA and propionyl-CoA (R1 and R2). While 

butyrate and valerate can be directly converted to HB and HV precursors, the model assumes 

they pass through β-oxidation and are converted to acetyl-CoA and propionyl-CoA (R3 and 

R4). This assumption is valid for modeling purposes as the net energetic, material, and 

reducing power balances are equivalent for both scenarios [125]. Details regarding β-

oxidation are discussed in the previous chapter.  

It has been reported that a fraction of propionyl-CoA can be converted to acetyl-CoA [26]; to 

account for this decarboxylation, the model assumes propionyl-CoA is converted to acetyl-

CoA via the succinyl-CoA pathway as described by Dias et al. [40] (R5). 

Regarding PHA synthesis, acetyl-CoA and propionyl-CoA are reduced and condensed to form 

either 3HB, from two acetyl-CoA monomers, or 3HV, from one propionyl-CoA and one 

acetyl-CoA monomer. The condensation of two propionyl-CoA monomers to 3H2MV was 

not observed in this study; however, PH2MV was included in the model framework despite 

not being evaluated. For convenience, 3HB and 3HV monomers are represented by acetyl-

CoA* and propionyl-CoA* (R6 and R7). This formality, as employed by previous 

investigators [40, 125-127], allows the polymerization process be omitted from the model 

prior to PHA formation, and thus permits the use of linear relations [127]. Subsequent PHA 

synthesis from these monomers requires no additional energy or reducing power (R13 and 

R14). In the famine phase, PHB and PHV are degraded to acetyl-CoA and propionyl-CoA, 

requiring one mole of ATP per mole of building block (R15 and R16) [44]. 
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Acetyl-CoA is converted to CO2 via the TCA cycle (R10), as described by van Aalst-van 

Leeuwen et al. [39]; furthermore, it is assumed the catabolism of propionyl-CoA occurs 

through the TCA cycle as acetyl-CoA (R5 is followed by R10). Cellular energy in the form of 

ATP is generated from NADH2 via oxidative phosphorylation (R11). The amount of ATP 

generated per mole of NADH2 oxidized is expressed by the P/O ratio, δ, and is synonymous 

with oxidative phosphorylation efficiency [128].   

Biomass growth is assumed to occur from both acetyl-CoA and propionyl-CoA (R8 and R9). A 

biomass composition of CH1.8O0.5N0.2 (C-mole representation) with a degree of reduction of 

4.2 is used, as proposed by Beun et al. [37]. Detail on the determination of the anabolism 

equations is discussed below.   

 

 

Figure 3.1: Model Metabolic Network 

Adapted from [125]. 
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Table 3.1: Metabolic Model of PHA Production from Common VFAs by MMC 

Reaction Description Stoichiometry 

R1 Acetate Uptake 𝐶𝐻2𝑂 +  𝐴𝑇𝑃 → 𝐶𝐻𝑂0.5  +  0.5𝐻2𝑂 

R2 Propionate Uptake 𝐶𝐻2𝑂0.67  +  0.67𝐴𝑇𝑃 → 𝐶𝐻1.33𝑂0.33  +  0.33𝐻2𝑂 

R3 Butyrate Uptake 𝐶𝐻2𝑂0.5  +  0.5𝐴𝑇𝑃 → 𝐶𝐻𝑂0.5  +  0.5𝑁𝐴𝐷𝐻2 

R4 Valerate Uptake 
𝐶𝐻2𝑂0.4  +  0.4𝐴𝑇𝑃 → 0.4𝐶𝐻𝑂0.5  + 0.6𝐶𝐻1.33𝑂0.33

+  0.4𝑁𝐴𝐷𝐻2 

R5 
Propionyl-CoA decarboxylated 

to Acetyl-CoA 
1.5𝐶𝐻1.33𝑂0.33 + 𝐻2𝑂 → 𝐶𝐻𝑂0.5 + 1.5𝑁𝐴𝐷𝐻2 + 0.5𝐶𝑂2 

R6 
Production of HB Precursor 

(Acetyl-CoA*) 
𝐶𝐻𝑂0.5  +  0.25𝑁𝐴𝐷𝐻2 → C𝐻1.5𝑂0.5 

R7 
Production of HV Precursor 

(Propionyl-CoA*) 
𝐶𝐻1.33𝑂0.33  +  0.17𝑁𝐴𝐷𝐻2 → 𝐶𝐻1.67𝑂0.33 

R8 Growth on Acetyl-CoA 
1.27𝐶𝐻𝑂0.5 + 0.2𝑁𝐻3 + 𝐾1𝐴𝑇𝑃 + 0.4𝐻2𝑂 → C𝐻1.8𝑂0.5𝑁0.2

+ 0.43𝑁𝐴𝐷𝐻2 + 0.27𝐶𝑂2 

R9 Growth on Propionyl-CoA 

1.06𝐶𝐻1.5𝑂0.33 + 0.2𝑁𝐻3 + 𝐾2𝐴𝑇𝑃

+ 0.26𝐻2𝑂 → C𝐻1.8𝑂0.5𝑁0.2 + 0.37𝑁𝐴𝐷𝐻2

+ 0.06𝐶𝑂2 

R10 Catabolism 𝐶𝐻𝑂0.5 + 1.5𝐻2𝑂 → C𝑂2 + 2𝑁𝐴𝐷𝐻2 + 0.5𝐴𝑇𝑃 

R11 Oxidative Phosphorylation 𝑁𝐴𝐷𝐻2 + 0.5𝑂2 → 𝐻2𝑂 +  δATP 

R12 Maintenance 𝐴𝑇𝑃 → 𝑚𝐴𝑇𝑃 

R13 PHB Production C𝐻1.5𝑂0.5 → PHB 

R14 PHV Production 0.4C𝐻1.5𝑂0.5 + 0.6𝐶𝐻1.67𝑂0.33 → PHV 

R15 PHB Consumption 𝑃𝐻𝐵 + 0.25𝐴𝑇𝑃 → 𝐶𝐻𝑂0.5 + 0.25𝑁𝐴𝐷𝐻2 

R16 PHV Consumption 𝑃𝐻𝑉 + 0.2𝐴𝑇𝑃 → 0.4𝐶𝐻𝑂0.5 + 0.6𝐶𝐻1.33𝑂0.33 + 0.2𝑁𝐴𝐷𝐻2 
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3.2.1. Growth on Acetyl-CoA and Propionyl-CoA 

The reactions of biomass growth on acetyl-CoA and propionyl-CoA, R8 and R9, were 

determined from a stoichiometric and degree of reduction balance in accordance with 

Villadsen [81]. The degree of reduction is a measure of the available electrons per unit carbon 

for a given compound and can be used to calculate the amount of reducing equivalents to 

apply to a stoichiometric equation within a process. For said equations, ammonia was used as 

the nitrogen source. Anabolism for 1 C-mol of biomass from acetyl-CoA is represented in R8 

(Table 3.1). The theoretical amount of ATP required for the synthesis of biomass precursors 

from acetyl-CoA is 0.66 mol ATP per C-mol X [80]. Furthermore, the synthesis of 1 C-mol of 

biomass from biomass precursors requires an additional 1.5 mol ATP per C-mol X [129]. 

Applying a balance on ATP, the synthesis of 1 C-mol of biomass on acetate requires 2.16 

moles of ATP, represented as K1. The molar ratio for H2O was determined from a balance on 

oxygen, with 0.267 C-mol CO2 being produced from the synthesis of 1 C-mol X on acetate 

[130]. Reducing equivalents in the form of NADH2 were determined from a balance on 

NADH2.  

Due to inadequate research, the amount of decarboxylation of propionate for growth purposes 

has not yet been quantified [126]. Alternatively, biomass synthesis on propionyl-CoA is 

modeled as growth on succinate, its biokinetic derivative. The synthesis of 1 C-mol of 

biomass on succinate yields 0.409 moles of CO2 [130]. Utilizing the reverse succinate-

propionate pathway the resulting stoichiometric values of CO2 and NADH2 for propionate as 

the carbon source can be determined. Although there are no published values of ATP demand 

for biomass synthesis on propionate, the requirement of 1.84 mol ATP per C-mol X, 

represented as K2, was determined from a steady state balance on the conversion of acetyl-

CoA and propionyl-CoA to succinate [126]. Anabolism for 1 C-mol of biomass on propionyl-

CoA is represented in R9 (Table 3.1). The complete derivation of R8 and R9 is illustrated in 

Appendix A.  

3.4. Stoichiometric Parameters 

The model consists of 16 metabolic reactions, 6 intracellular metabolites (acetyl-CoA, acetyl-

CoA*, propionyl-CoA, propionyl-CoA*, ATP, and NADH2), 6 input substrates (acetate, 

propionate, butyrate, valerate, ammonia, and oxygen), and 4 end-products (biomass, PHB, 
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PHV, and CO2). The model stoichiometric matrix is not presented in this section due to its 

size but is illustrated in Appendix A. 

3.4.1. Feast Phase Steady State Balancing of Intermediates 

The feast phase is comprised of 14 metabolic reactions (R1-R14). Under steady-state 

conditions, the metabolic intermediates are balanced and result in a system of algebraic 

equations, where ri represents the flux of reaction Ri. 

Equation 3.1: Feast Phase Balance on Acetyl-CoA 

𝑟1 + 𝑟3 + 0.4𝑟4 + 𝑟5 − 𝑟6 − 1.27𝑟8 − 𝑟10 = 0 

Equation 3.2: Feast Phase Balance on Acetyl-CoA* 

𝑟6 − 𝑟13 − 0.4𝑟14 = 0 

Equation 3.3: Feast Phase Balance on Propionyl-CoA 

𝑟2 + 0.06𝑟4 − 1.5 ∗ 𝑟5 − 𝑟7 − 1.06 ∗ 𝑟9 = 0 

Equation 3.4: Feast Phase Balance on Propionyl-CoA* 

𝑟7 − 0.6𝑟14 − 𝑟15 = 0 

Equation 3.5: Feast Phase Balance on NADH2  

0.5𝑟3 + 0.4𝑟4 + 1.5𝑟5 − 0.25𝑟6 − 0.17𝑟7 + 0.43𝑟8 + 0.37𝑟9 + 2𝑟10 − 𝑟11 = 0 

Equation 3.6: Feast Phase Balance on ATP 

0.5𝑟10 − 0.67𝑟2 − 0.5𝑟3 − 0.4𝑟4 − 𝑟1 − 𝑟12 + δ𝑟11 − 𝐾1𝑟8 − 𝐾2𝑟9 = 0 

3.4.2. Feast Phase Yield and Maintenance Coefficients 

The advantage of employing a metabolic model is that the theoretical yield and maintenance 

coefficients can be determined as a function of metabolic parameters. Modeling four unique 

VFAs increases model complexity and creates an undetermined system; therefore, additional 

constraints on metabolic parameters are required. Adopting the approach of Dias et al. [40] 

and Pardelha [41], VFA uptake is separated by even and odd carbon VFA using the defined 

ratio, y, of odd carbon flux (rodd) to total carbon flux (rs) as described in Equation 3.7.   

Equation 3.7: Ratio of Odd Carbon VFA to Total VFA Flux 

𝑦 =
𝑟2 + 𝑟4

𝑟1 + 𝑟2 + 𝑟3 + 𝑟4
=

𝑟𝑜𝑑𝑑

𝑟𝑠
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Furthermore, the number of carbons of even (neven) and odd (nodd) substrates were defined by 

taking the weighted average of each VFA with their respective flux (Equation 3.8 and 

Equation 3.9). 

Equation 3.8: Weighted Number of Even Carbons Fluxed  

𝑛𝑒𝑣𝑒𝑛 =
𝑛𝐴𝑐𝑟1 + 𝑛𝐵𝑢𝑟3

𝑟𝑠
 

Equation 3.9: Weighted Number of Odd Carbons Fluxed 

𝑛𝑜𝑑𝑑 =
𝑛𝑃𝑟𝑟2 + 𝑛𝑉𝑎𝑟4

𝑟𝑠
 

Ultimately, the defined relationships (Equations 3.1, 3.8, and 3.9) can be incorporated to form 

one stoichiometric equation describing substrate uptake, RS, shown in Equation 3.10 [41]. 

Equation 3.10: Lumped Substrate Uptake  

𝑅𝑆: 𝑉𝐹𝐴 + (
2(1 − 𝑦)

𝑛𝑒𝑣𝑒𝑛
− 2𝑦𝑛𝑜𝑑𝑑)𝐴𝑇𝑃 → (

(𝑛𝑜𝑑𝑑 − 3)

𝑛𝑜𝑑𝑑

𝑦 − 𝑦 + 1) 𝐶𝐻𝑂0.5 +
3𝑦

𝑛𝑜𝑑𝑑

𝐶𝐻1.33𝑂0.33

− (
𝑛𝑒𝑣𝑒𝑛 − 4

2𝑛𝑒𝑣𝑒𝑛

(𝑦 − 1) +
𝑛𝑜𝑑𝑑 − 5

2𝑛𝑜𝑑𝑑

𝑦) 𝐻2𝑂 + (
(𝑛𝑜𝑑𝑑 − 3)

𝑛𝑜𝑑𝑑

𝑦 −
𝑛𝑒𝑣𝑒𝑛 − 2

𝑛𝑒𝑣𝑒𝑛

(1 − 𝑦)) 𝑁𝐴𝐷𝐻2 

To further decrease the number of unknown fluxes, an additional constraint was imposed. 

Similar to the method used by Jiang et al. [44], the ratio of PHV formation to total PHA 

synthesis, yPHV, was defined (Equation 3.11). 

Equation 3.11: Ratio of PHV Flux to PHA Flux 

𝑦𝑃𝐻𝑉 =
𝑟14

𝑟13 + 𝑟14
=

𝑟𝑃𝐻𝑉

𝑟𝑃𝐻𝐴
 

The use of yPHV allows PHA synthesis be defined by one stoichiometric relationship, as 

shown in Equation 3.12. 

Equation 3.12: Lumped PHA Synthesis 

𝑅𝑃𝐻𝐴:
3

5
(1 − 𝑦𝑃𝐻𝑉)C𝐻1.5𝑂0.5 +

3

5
𝑦𝑃𝐻𝑉𝐶𝐻1.67𝑂0.33 → 𝑃𝐻𝐴 
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With the addition of the detailed modeling constraints, the system is reduced to 10 unknown 

flux rates which are related through 6 linear equations (Equation 3.2-3.7). Therefore, any flux 

rate can be defined in terms of 4 unknown flux rates. These four unknown flux rates are then 

defined a priori, via a kinetic model, to calculate the full network of fluxes [40]. The model 

herein defines the flux rates in terms of anabolism from acetyl-CoA and propionyl-CoA (R8 

and R9), maintenance (R12), and PHA production (RPHA).   

To solve the system of reactions, a method of Metabolic Flux Analysis (MFA) described by 

Villadsen [81] was used. Briefly, MFA allows a set of known fluxes, 𝒗𝟏, be used to determine 

a set of unknown fluxes, 𝒗𝟐, through stoichiometric balancing [40]. The MFA equation for 

solving 𝒗𝟐 with 𝒗𝟏 is shown Equation 3.13. 

Equation 3.13: MFA Relationship 

𝒗𝟐 = −𝑇1
−1𝑇2𝒗𝟏 

For the model described herein, the vectors are defined as: 

𝒗𝟏 = [

𝑟8
𝑟9

𝑟𝑃𝐻𝐴

𝑟12

] 𝒗𝟐 =

[
 
 
 
 
 
𝑟𝑠
𝑟5
𝑟6
𝑟7
𝑟10

𝑟11]
 
 
 
 
 

    

Where T1 and T2 are submatrices of the model stoichiometric matrix whose columns 

correspond to 𝒗𝟏and 𝒗𝟐, and rows correspond to the conserved moieties (acetyl-CoA, acetyl-

CoA*, propionyl-CoA, propionyl-CoA*, ATP, and NADH2). As a result of the MFA 

procedure, the substrate uptake rate, 𝒗𝟐(1), is equivalent to: 

−𝑟𝑆 =
𝑟8

𝑌𝑋𝐴𝑐
𝑆

+
𝑟9

𝑌𝑋𝑃𝑟
𝑆

+
𝑟𝑃𝐻𝐴

𝑌𝑃𝐻𝐴
𝑆

+ 𝑟12  

Whether biomass is formed from either acetyl-CoA or propionyl-CoA is unmeasurable. For 

this model it is assumed that growth on acetyl-CoA and propionyl-CoA is proportional to the 

ratio 𝑦, similar to the approach of Jiang et al. [44]. Finally, the substitution of 𝑟𝑋 = 𝜇𝐶𝑋,  𝑟𝑆 =

𝑞𝑆𝐶𝑋, and  𝑟𝑃𝐻𝐴 = 𝑞𝑃𝐻𝐴𝐶𝑋 followed by division by the biomass concentration 𝐶𝑋, results in a 

Herbert-Pirt type relationship for the feast phase, shown in Equation 3.14. 
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Equation 3.14: Feast Herbert-Pirt Relationship 

−𝑞𝑠 = (1 − 𝑦)
𝜇𝑓𝑒𝑎𝑠𝑡

𝑌𝑋𝐴𝑐
𝑆

+ 𝑦
𝜇𝑓𝑒𝑎𝑠𝑡

𝑌𝑋𝑃𝑟
𝑆

+
𝑞𝑃𝐻𝐴,𝑓𝑒𝑎𝑠𝑡

𝑌𝑃𝐻𝐴
𝑆

+ 𝑚𝑠,𝑓𝑒𝑎𝑠𝑡 

As shown, substrate uptake and specific substrate uptake rates are denoted with negative signs 

as they are consumptive processes. The above relationship couples substrate uptake to growth, 

PHA production, and maintenance through defined yields derived from the steady-state 

balance. The expressions for the yield and maintenance coefficients are compiled in Table 

3.2. Importantly, the MFA methodology used produces relationships for each flux in 𝒗𝟐 in 

terms of fluxes in 𝒗𝟏. For example, 𝒗𝟐(2) is equivalent to the oxygen evolution of the feast 

phase.  

Table 3.2: Feast Yield and Maintenance Coefficients on Substrate 

Parameter Description Stoichiometry 

𝑌𝑋𝐴𝑐
𝑆

 

Growth from 

Acetyl-CoA 

on VFAs 

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(1 + 6δ) + 4𝑛𝑜𝑑𝑑(𝑦 + δy − 1 − δ) − 𝑛𝑒𝑦(5 + 4δ)

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(2𝐾1 + 4.2δ + 1.27)
 

𝑌𝑋𝑃𝑟
𝑆

 

Growth from 

Propionyl-

CoA on 

VFAs 

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(1 + 6δ) + 4𝑛𝑜𝑑𝑑(𝑦 + δy − 1 − δ) − 𝑛𝑒𝑦(5 + 4δ)

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(2𝐾2 + 4.2δ + 0.7)
 

𝑌𝑃𝐻𝐴
𝑆

 
PHA storage 

on VFAs 

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(1 + 6δ) + 4𝑛𝑜𝑑𝑑(𝑦 + δy − 1 − δ) − 𝑛𝑒𝑦(5 + 4δ)

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(4.5δ − 0.2𝑦𝑃𝐻𝑉 + 0.3δ𝑦𝑃𝐻𝑉 + 1)
 

𝑚𝑠,𝑓𝑒𝑎𝑠𝑡 Maintenance 
2𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑𝑚𝐴𝑇𝑃

𝑛𝑒𝑣𝑒𝑛𝑛𝑜𝑑𝑑(1 + 6δ) + 4𝑛𝑜𝑑𝑑(𝑦 + δy − 1 − δ) − 𝑛𝑒𝑦(5 + 4δ)
 

 

3.4.1. Famine Phase Steady State Balancing of Intermediates 

The famine phase is comprised of 8 metabolic reactions (R5, R8-R12, R15, R16). For the case of 

PHA degradation, the model assumes the monomer stage is superseded [44]; therefore, R6 and 

R7 are not considered and there are only 4 intracellular metabolites in steady state. Assuming 

no net consumption or accumulation of these moieties results in the following linear 

equations: 
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Equation 3.15: Famine Phase Balance on Acetyl-CoA 

𝑟5 − 1.27𝑟8 − 𝑟10 + 𝑅16 + 0.4𝑅17 = 0 

Equation 3.16: Famine Phase Balance on Propionyl-CoA 

0.6𝑟17 − 1.06𝑟9 − 1.5𝑟5 = 0 

Equation 3.17: Famine Phase Balance on NADH 

1.5𝑟5 + 0.43𝑟8 + 0.37𝑟9 + 2𝑟10 − 𝑟11 + 0.25𝑟16 + 0.2𝑟17 = 0 

Equation 3.18: Famine Phase Balance on ATP 

0.5𝑟10 − 𝑟12 − 0.25𝑟16 − 0.2𝑟17 + 𝛿𝑟11 − 𝐾1𝑟8 − 𝐾2𝑟9 = 0 

3.4.3. Famine Phase Yield and Maintenance Coefficients 

Similar to the feast phase, the famine phase requires an additional constraint be made to 

reduce model complexity. To this end, the ratio of PHV consumption to total PHA 

consumption, 𝑦𝑓, is defined by Equation 3.19. 

Equation 3.19: Ratio of PHV Degradation Flux to  

𝑦𝑓 =
𝑟16

𝑟15 + 𝑟16
=

𝑟𝑃𝐻𝑉𝑓

𝑟𝑃𝐻𝐴𝑓
 

Provided this relationship, PHA degradation can be defined by one stoichiometric reaction 

illustrated in Equation 3.20. 

Equation 3.20: Lumped PHA Consumption  

𝑅𝑃𝐻𝐴𝑓: 𝑃𝐻𝐴 + (
1

4
−

𝑦
𝑓

20
) ATP→ (1 −

3𝑦
𝑓

5
) 𝐶𝐻𝑂0.5 +

3𝑦
𝑓

5
 𝐶𝐻1.33𝑂0.33 + (

1

4
−

𝑦
𝑓

20
) 𝑁𝐴𝐷𝐻2 

Effectively, the famine phase is reduced to 7 unknown fluxes that are correlated with 4 

algebraic relationships (Equations 3.15-3.18); moreover, if three fluxes are defined all of the 

remaining fluxes can be expressed in terms of the defined fluxes. By repeating the MFA 

methodology performed in the previous section for the famine phase, the vectors 𝒗𝟏 and 𝒗𝟐 

become: 

𝒗𝟏 = [

𝑟8
𝑟9
𝑟12

] 𝒗𝟐 = [

𝑟𝑃𝐻𝐴𝑓

𝑟5
𝑟10

𝑟11

]    
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Using Equation 3.13 with the input of the respective famine phase submatrices T1 and T2, the 

resultant PHA degradation rate, 𝒗𝟐(1), is defined as: 

−𝑟𝑃𝐻𝐴𝑓 =
𝑟8

𝑌𝑋𝐴𝑐
𝑃𝐻𝐴

+
𝑟9

𝑌𝑋𝑃𝑟
𝑃𝐻𝐴

+ 𝑟12  

Similar to the feast phase, the model assumes growth on acetyl-CoA and propionyl-CoA is 

proportional to the ratio 𝑦𝑓; further substitution of 𝑟𝑋 = 𝜇𝐶𝑋,  𝑟𝑆 = 𝑞𝑆𝐶𝑋, and  𝑟𝑃𝐻𝐴 = 𝑞𝑃𝐻𝐴𝐶𝑋 

followed by division by the biomass concentration 𝐶𝑋, results in a Herbert-Pirt type 

relationship for the famine phase, shown in Equation 3.21. 

Equation 3.21: Famine Herbert-Pirt Relationship 

−𝑞𝑃𝐻𝐴,𝑓 = (1 − 𝑦𝑓)
𝜇𝑓𝑎𝑚𝑖𝑛𝑒

𝑌𝑋𝐴𝑐
𝑃𝐻𝐴

+ 𝑦𝑓

𝜇𝑓𝑎𝑚𝑖𝑛𝑒

𝑌𝑋𝑃𝑟
𝑃𝐻𝐴

+ 𝑚𝑠,𝑓𝑎𝑚𝑖𝑛𝑒 

This relationship couples PHA consumption to growth and maintenance through defined 

yields derived from the steady-state balance. The expressions for the famine yield and 

maintenance coefficients are compiled in Table 3.3. 

Table 3.3: Famine Yield and Maintenance Coefficients on PHA 

Parameter Description Stoichiometry 

𝑌𝑋𝐴𝑐
𝑃𝐻𝐴

 Growth on PHA degraded to Acetyl-CoA 
4.5δ − 0.1𝑦𝑓 + 0.3δ𝑦𝑓 + 0.5

(2𝐾1 + 4.2δ + 1.27)
 

𝑌𝑋𝑃𝑟
𝑃𝐻𝐴

 Growth on PHA degraded to Propionyl-CoA 
4.5δ − 0.1𝑦𝑓 + 0.3δ𝑦𝑓 + 0.5

(2𝐾2 + 4.2δ + 0.7)
 

𝑚𝑠,𝑓𝑎𝑚𝑖𝑛𝑒 Maintenance 
2𝑚𝐴𝑇𝑃

4.5δ − 0.1𝑦𝑓 + 0.3δ𝑦𝑓 + 0.5
 

 

3.6. Kinetic Model 

A kinetic model was developed to empirically describe the model’s ‘known’ fluxes, biomass 

growth, PHA/VFA consumption, and maintenance, in order to calculate the entire network of 

fluxes. The kinetic equations used in this work are compiled in Table 3.4. Stoichiometric 

relations for O2 and CO2 were not included in the kinetic model due to a lack of accurate 

measurement; this would require precise reactor kLa estimation and DO probe calibration 
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while yielding minimal benefit, as the reactors in this work were excessively aerated 

throughout.   

3.6.1. Feast Phase 

For the model described herein, substrate uptake is assumed to occur at a maximum rate due 

to intracellular PHA concentrations observed in the enrichment stage being too low to inhibit 

VFA uptake; hence, VFA uptake, 𝑞𝑠 , is modelled with saturation kinetics with a small half-

saturation constant [131]. Similarly, the biomass specific growth rate, 𝜇𝑓𝑒𝑎𝑠𝑡, is modelled with 

a maximum growth rate, 𝜇𝑚𝑎𝑥, and with Monod-like saturation terms for VFAs and ammonia 

[42]. The maintenance rate related to substrate, 𝑚𝑠,𝑓𝑒𝑎𝑠𝑡 , is a function of the constant biomass 

specific ATP consumption rate, 𝑚𝐴𝑇𝑃, and the ATP yield on VFA (see Table 3.2). The 

conversion rate of PHA can then be obtained from rearranging Equation 3.14; furthermore, 

the model separates PHA into PHB and PHV by using the ratio of PHV flux to PHA flux 

𝑦𝑃𝐻𝑉 (Equation 3.11).  

3.6.2. Famine Phase 

Famine phase kinetics were applied when modelled concentration of VFAs was below 0.001 

Cmmol/L, as suggested by Johnson et al. [42]. Under this condition, growth is a function of 

PHA degradation and maintenance as described by Equation 3.21. This approach assumes that 

growth on PHA is rate-limited by PHA consumption which is generally valid [37, 44, 132]. 

Murnleitner et al. [133] suggests the rate of PHA degradation is dependent on PHA surface 

area and can be expressed by a two-third order function of intracellular PHA content. This 

approach was adopted for this model; moreover, the degradation rate of PHB and 

PHV,𝑞𝑃𝐻𝐵,𝑓𝑎𝑚𝑖𝑛𝑒 and 𝑞𝑃𝐻𝑉,𝑓𝑎𝑚𝑖𝑛𝑒, are individually specified by modeled biomass fraction of 

homopolymer, 𝑓𝑃𝐻𝐵

𝑋

 and 𝑓𝑃𝐻𝐵

𝑋

, as shown in Equation 3.22. The maintenance rate related to 

PHA consumption, 𝑚𝑠,𝑓𝑎𝑚𝑖𝑛𝑒, is a function of 𝑚𝐴𝑇𝑃, and the stoichiometric ATP yield on 

PHA (see Table 3.3). 

Equation 3.22: Modelled Biomass Fraction of PHB or PHV 

𝑓𝑃𝐻𝐵,𝑃𝐻𝑉
𝑋

=
𝐶𝑃𝐻𝐵,𝑃𝐻𝑉

𝐶𝑋
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Table 3.4: Model Kinetics Equations 

Feast Phase 

Parameter Description Kinetic Rate Equation 

𝑞𝑃𝐻𝐵,𝑓𝑒𝑎𝑠𝑡 
PHB 

production 

[𝑞𝑠(𝑡) − 𝜇𝑓𝑒𝑎𝑠𝑡(𝑡) (
1 − 𝑦

𝑌𝑋𝐴𝑐
𝑆

+
𝑦

𝑌𝑋𝑃𝑟
𝑆

) − 𝑚𝑠,𝑓𝑒𝑎𝑠𝑡](𝑌𝑃𝐻𝐴
𝑆

)(1

− 𝑦𝑃𝐻𝑉) 

𝑞𝑃𝐻𝑉,𝑓𝑒𝑎𝑠𝑡 
PHV 

production 

[𝑞𝑠(𝑡) − 𝜇𝑓𝑒𝑎𝑠𝑡(𝑡) (
1 − 𝑦

𝑌𝑋𝐴𝑐
𝑆

+
𝑦

𝑌𝑋𝑃𝑟
𝑆

)

− 𝑚𝑠,𝑓𝑒𝑎𝑠𝑡](𝑌𝑃𝐻𝐴
𝑆

)(𝑦𝑃𝐻𝑉) 

𝑞𝑠 
Substrate 

uptake 
𝛴(−𝑞𝑉𝐹𝐴𝑖,𝑚𝑎𝑥)

𝐶𝑖(𝑡)

𝐾𝑖 + 𝐶𝑖(𝑡)
; 𝑜𝑓 𝑖𝑡ℎ 𝑉𝐹𝐴 

𝜇𝑓𝑒𝑎𝑠𝑡 Growth 𝜇𝑚𝑎𝑥

𝐶𝑁𝐻3
(𝑡)

𝐾𝑁𝐻3
+ 𝐶𝑁𝐻3

(𝑡)

𝐶𝑠(𝑡)

𝐾𝑆 + 𝐶𝑆(𝑡)
 

𝑞𝑁𝐻3 ,𝑓𝑒𝑎𝑠𝑡 NH3 uptake 𝜇𝑓𝑒𝑎𝑠𝑡(𝑡) 𝑌𝑁𝐻3
𝑋

 

Famine Phase 

𝜇𝑓𝑎𝑚𝑖𝑛𝑒 Growth 

𝑞𝑃𝐻𝐵,𝑓(𝑡)𝑌𝑋𝐴𝑐
𝑃𝐻𝐴

+ 𝑞𝑃𝐻𝑉,𝑓(𝑡)𝑌𝑋𝑃𝑟
𝑃𝐻𝐴

− 𝑚𝑠,𝑓𝑎𝑚𝑖𝑛𝑒 (
1 − 𝑦𝑓

𝑌𝑋𝐴𝑐
𝑃𝐻𝐴

+
𝑦𝑓

𝑌𝑋𝑃𝑟
𝑃𝐻𝐴

) 

𝑞𝑃𝐻𝐵,𝑓𝑎𝑚𝑖𝑛𝑒 
PHB 

degradation 
𝑘𝑓𝑃𝐻𝐵

𝑋
(𝑡)2/3

𝐶𝑁𝐻3
(𝑡)

𝐾𝑁𝐻3
+ 𝐶𝑁𝐻3

(𝑡)
 

𝑞𝑃𝐻𝑉,𝑓𝑎𝑚𝑖𝑛𝑒 
PHV 

degradation 
𝑘𝑓𝑃𝐻𝑉

𝑋
(𝑡)2/3

𝐶𝑁𝐻3
(𝑡)

𝐾𝑁𝐻3
+ 𝐶𝑁𝐻3

(𝑡)
 

𝑞𝑁𝐻3,𝑓𝑎𝑚𝑖𝑛𝑒 NH3 uptake 𝜇𝑓𝑎𝑚𝑖𝑛𝑒(𝑡) 𝑌𝑁𝐻3
𝑋
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3.6.3. Dynamic Material Balances 

The transient material balances for all kinetically described compounds – acetate, propionate, 

butyrate, valerate, biomass, PHB, PHV, and ammonia – were modelled. The general form for 

the material balance equations is shown in Equation 3.23.  

Equation 3.23: General Material Balance Form 

𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝑞𝑖(𝑡)𝐶𝑋(𝑡) 

Where 𝑖 = [𝐴𝑐 𝑃𝑟 𝐵𝑢 𝑉𝑎 𝑋 𝑃𝐻𝐵 𝑃𝐻𝑉 𝑁𝐻3]. Importantly, 𝑞𝑋, is represented by  

𝜇𝑓𝑒𝑎𝑠𝑡 or 𝜇𝑓𝑎𝑚𝑖𝑛𝑒 depending on reactor phase. Initial concentrations of all materials were 

established by optimization. 

3.7. Model Calibration 

To calculate all rates and concentrations as a function of time, several parameters were held 

constant while others were estimated using measured data. A summary of model parameters is 

provided in Table 3.5.  

Similar to the method of Johnson et al. [42] and Jiang et al. [44], half-saturation constants for 

each VFA and ammonia, and the P/O ratio (δ) were held constant. Half-saturation constants 

are such that beget near-zero order kinetics without causing numerical issues with integration. 

The P/O ratio, δ, and maintenance ATP requirement, 𝑚𝐴𝑇𝑃, are dependent of each other and 

therefore cannot be independently separated from measurements. A constant P/O ratio of 2 

mmol ATP per mmol NADH2 was chosen for this model, as is common for similar models 

[37, 42, 43]. Conversely, 𝑚𝐴𝑇𝑃 is estimated by fitting, which is suggested to vary more 

significantly with differences in environmental conditions [42]. The maximum specific VFA 

uptake rate for each of the four VFAs, 𝑞𝑉𝐹𝐴𝑖,𝑚𝑎𝑥, maximum feast growth rate, 𝜇𝑚𝑎𝑥, ratio of 

PHV to total PHA production flux, 𝑦𝑃𝐻𝑉, and PHA degradation constant, 𝑘, were estimated 

by the calibration procedure. The remaining parameters 𝑦 and 𝑦𝑓𝑎𝑚 are calculated from the 

material balances as a function of time. As it was observed that 𝑦 and 𝑦𝑃𝐻𝑉 share collinearity, 

𝑦𝑃𝐻𝑉 was estimated as the product of a fitted constant and 𝑦 (see Table 3.5). 
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Table 3.5: Model Parameters 

Parameter Value Units 
Estimated 

(Yes/No) 

Substrate half-saturation 𝐾𝑆 = 0.2 
𝐶𝑚𝑚𝑜𝑙

𝐿
 N 

Ammonia half-saturation 
𝐾𝑁𝐻3

= 0.0001 

𝑚𝑚𝑜𝑙

𝐿
 N 

Oxidative phosphorylation 

efficiency 
δ = 2 

𝑚𝑚𝑜𝑙 𝐴𝑇𝑃

𝑚𝑚𝑜𝑙 𝑁𝐴𝐷𝐻2
 N 

Maintenance ATP requirement 𝑚𝐴𝑇𝑃 
𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 Y 

Max. acetate uptake rate 𝑞𝐴𝑐,,𝑚𝑎𝑥 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 Y 

Max. propionate uptake rate 𝑞𝑃𝑟,𝑚𝑎𝑥 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 Y 

Max. butyrate uptake rate 𝑞𝐵𝑢,𝑚𝑎𝑥 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 Y 

Max. valerate uptake rate 𝑞𝑉𝑎,𝑚𝑎𝑥 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 Y 

Max. growth rate feast 𝜇𝑚𝑎𝑥 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 Y 

PHA degradation rate constant 𝑘 (
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
)
1
3ℎ−1 Y 

Ratio of PHV to PHA storage feast  𝑦𝑝ℎ𝑣 = 𝐶𝑦 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
 Y 

Ratio of odd carbon VFA to total 

VFA flux feast 
𝑦 

𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
 N 

Ratio of PHV to PHA degradation 

famine 
𝑦𝑓𝑎𝑚 

𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
 N 

Yield of ammonia on biomass 𝑌𝑁𝐻3
𝑋

= −0.2 𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
 

N; See biomass 

formula 
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3.7.2. Parameter Estimation 

The kinetic parameters were estimated by a nonlinear least-squares solver, lsqcurvefit or 

lsqnonlin (MATLAB), which uses the Trust-Region-Reflective algorithm. The program 

minimizes the root mean squared error: 

Equation 3.24: Root Mean Squared Error 

𝑅𝑀𝑆𝐸 = √
𝑒𝑇𝑒

𝐷𝑂𝐹
 

Where 𝐷𝑂𝐹 is the difference between the number of measured values and number of 

parameters estimated, and 𝑒 is the vector of residuals scaled by their maximum value [40]. 

This follows that all measurements are weighted equally. 

Model concentrations of acetate, propionate, butyrate, valerate, PHB, PHV, X, and NH3 were 

obtained from integrating respective transient material balances (Equation 3.23) using a 

4th/5th order Runge-Kutta solver, ode45 (MATLAB). The modelled values were subtracted 

from the time-respective data measurements to generate the residuals. This error is referred to 

as the relative error, 𝐸𝑅. In steady state the amount of biomass and PHA produced over an 

operational cycle is equal to the amount removed at the end of the cycle, as expressed in 

Equation 3.25.   

Equation 3.25: SRT Definition for Biomass and PHA Conversions 

𝐶𝑋,𝑃𝐻𝐴
𝑆𝑅𝑇 (𝑡𝑒𝑛𝑑) = 𝐶𝑋,𝑃𝐻𝐴(0)

𝑆𝑅𝑇

𝑆𝑅𝑇 − 𝑡𝑐𝑦𝑐𝑙𝑒
 

Therefore an additional error, an additional steady state error, 𝐸𝑆𝑆, is included for solids 

agreement across cycles [42, 44]. Essentially, the difference between modelled PHA and 

biomass concentration at the end of the cycle and the concentrations produced from Equation 

3.25 provide another set of residuals in which to minimize error. The kinetic rates and 

concentrations of modelled compounds can then be calculated by minimizing the total error 

defined by: 

Equation 3.26: Total Model Error 

𝐸𝑇 = 𝐸𝑅 + 𝐸𝑆𝑆 
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The confidence bounds for the estimated parameters were obtained using approximate 

standard deviations by performing a student’s t-test with 95% confidence interval. Standard 

deviations were estimated using the covariance matrix generated from the Jacobian matrix 

produced at the RMSE.  
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4. Methods and Materials 

4.1. Experimental Setup 

4.1.1. Substrate 

Dairy manure was obtained from the University of Idaho dairy farm approximately every two 

weeks and stored at 4°C until used. Collection took place in the loafing barns in order to avoid 

contaminating the manure with rocks and bedding material. For every new batch collected, 

Total solids (TS) and volatile solids (VS) was measured in triplicate, with average values 

(n=36) of 16.3% ± 1.6% and 80.8% ± 4.7%, respectively. 

4.1.2. Bench-Scale Fermenter 

Dairy manure fermenter operations employed in this research were a legacy from and a 

continuation of previous related investigations [50, 134, 135]. The bench-scale fermenter was 

operated as an SBR, with an operational volume of 16 L and an SRT/HRT of 4 days; hence, 4 

L was decanted and 4 L of diluted dairy manure was added on a 24-hour cycle. Manure was 

added to maintain an organic loading rate of 11.0 gVSS/L*day. The substrate for the 

enrichment and production reactors (i.e., DFL) was obtained from the fermenter effluent, 

which was centrifuged at 9000 rpm for 60 min.  The fermenter was equipped with a 3.75 inch 

diameter helical impeller powered by an Oriental Motor (San Jose, CA, USA) USM315- 

401W 15 W AC speed-control motor connected to a 3GN35SA reduction gearbox. Mixing 

speed was set to suspend material and ensure uniform reactor properties. VFAs were 

measured tri-weekly with average values (n=172) of  1553 ± 434 mg/L (acetate), 858 ± 202 

mg/L (propionate), 231 ± 164 mg/L (butyrate), 87 ± 58 mg/L (iso-butyrate), 112 ± 59 mg/L 

(valerate), 92 ± 43 mg/L (iso-valerate), and 24 ± 19 mg/L (caproate). Total carboxylates were 

on average 4006 ± 790 as mg-COD/L and 112 ± 22 as Cmmol/L. 

4.1.3. Source of Microorganisms 

The inocula for the PHBV enrichment reactors used in this research was obtained from an 

existing fermented dairy manure fed ADF processes’ enrichment reactor that had been in 

operation since August 2011 [50, 89]. 

4.1.4. Enrichment Reactors 

Unless otherwise specified, the following experimental setup used in the factorial enrichment 

and production stage investigations was also used for the optimal operation evaluation. 
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4.1.4.1. Factorial Enrichment Reactor Setup 

In the factorial investigation phase of this study, 3 reactors were operated over a span of 185 

days to assess the effects of SRT and OLR on PHA production potential. The enrichment 

reactors were operated as SBRs in chemostat mode, such that SRT=HRT. Three enrichment 

reactors were online at any given time, operated as SBRs (identified by E.SRT.OLR) with 

working volumes of 2 L as shown in Figure 4.1. Each of the three SBRs was operated at a 

fixed SRT, with the OLR adjusted accordingly after a given SRT-OLR investigation was 

completed; the exception was for the 10 Cmmol/L-d OLR investigations. In total, 12 

combinations of operating conditions were evaluated in the factorial (3 SRTs (2, 3, and 4 

days) x 4 OLRs (10, 20, 25, and 30 Cmmol L-1 d-1)). The operation and sampling timeline for 

the factorial is shown in Table 4.1. A total cycle length of 1 day was maintained for all SBRs, 

with wasting and feeding occurring at the same time each day via two Watson Marlow model 

323 peristaltic pumps operating on digital timers. The wasting time was set for 10 min, while 

the feed time was set at 5 min. The enrichment SBRs are shown in Figure 4.2. The volume of 

substrate fed to each SBR was adjusted daily to maintain the target OLR and was dependent 

on the measured concentration of VFAs in each DFL batch. Aeration was supplied through 

stainless steel diffusers at approximately 1-1.5 LPM (Key Instruments rotometer (0-2.5 LPM 

range), Hatfield, PA, USA) depending on reactor SRT and OLR. Dissolved oxygen (DO) was 

controlled at a maximum setpoint of 3 mg/L using a Hach (Loveland, CO, USA) sc100™ 

Controller equipped with a Hach LDO™ Dissolved Oxygen Sensor. The reactors were mixed 

with Teflon™-coated stir bars and magnetic stir plates. The reactors are covered but are 

vented to the atmosphere.   
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Table 4.1: Factorial Operation Timeline 
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Figure 4.1: Factorial Enrichment Reactor Setup E.2.10, E.3.10, and E.4.10 (left to 

right) 

 

Figure 4.2: Enrichment Reactor Cycle Phases, adapted from [50] 
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4.1.4.2 “Optimum” Enrichment Reactor 

Upon completing the factorial analysis, the “optimum” enrichment reactor operational 

condition was determined (see SRT & OLR Factorial: Results and Discussion). The 

enrichment reactor (identified as E.2.20) was operated as an SBR with a working volume of 8 

L as depicted in Figure 4.3. The SRT and HRT were maintained at 2 days, with a total cycle 

length of 1 day. The reactor was decanted and fed (4 L) every day following the same method 

as described herein. The target OLR was set at 20 Cmmol L-1 d-1. Aeration was achieved 

using a 9 inch diameter Sanitaire Silver Series II membrane fine bubble disc diffuser at 

approximately 8 LPM. A three-bladed, 6 inch diameter impeller was used for mixing, 

powered by an Oriental Motor Co., LTD. (1500 rpm max at 60 Hz), model 5GN3.6SA. The 

“optimum” reactor was operated from 7/12/19 to the date of this thesis, with sampling events 

on 8/17/19, 8/22/19, and 10/23/19. 

 

Figure 4.3: E.2.20 Enrichment Reactor 
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4.1.5. PHA Production Reactors 

Production reactors were operated in batch mode with varying working volume (< 3 L); the 

base of each reactor was a Sanitaire Silver Series fine bubble diffuser. The waste of each 

production reactor’s parent enrichment reactor was used as the inocula (e.g., E.2.20 provides 

inocula for P.2.20). All experiments were conducted using a pulse fed operation mode. Pulses 

of undiluted DFL were introduced manually every 45 min for the 4-day SRT evaluations and 

every 30 min for the remaining events; the operational strategy was selected to ensure that 

VFAs were never depleted (i.e., avoiding the onset of ‘famine’ conditions). The volume of 

DFL added for each pulse was determined based on the parent enrichment reactor specific 

VFA uptake rate (realized prior to sampling), the DFL VFA concentration, and volumetric 

dilution effects; the goal was to achieve the same OLR for each pulse as realized in the parent 

enrichment reactor. Dissolved oxygen, VFAs, PHA, TSS, and VSS were sampled prior to 

each pulse addition. A discrete mixer was not employed due to the fine bubble aeration 

providing sufficient mixing. 

4.2. Analytical Techniques 

Samples were collected to monitor pH, DO, TS, VS, TSS, VSS, soluble nutrients (NH3-N, 

NO3-N, and PO4-P), VFAs, and PHA. Prior to analyzing soluble constituents, samples were 

centrifuged to remove biomass, from which the supernatant was filtered through a 0.22 µm 

syringe filter (Millipore Corp., Billerica, MA, USA). For the analysis of PHA, 10 mL samples 

were taken from the reactor and centrifuged at 5,000 rpm for 4 min. The resulting supernatant 

was then decanted before the samples were dried at 100ºC for at least 24 hours. Measurement 

of pH was accomplished using a Hach (Loveland, CO, USA) Intellical pHC101 pH Electrode. 

DO concentrations were measured using a Hach HQ40d Meter configured with a LDO101 

DO probe. TS, VS, TSS, and VSS were measured in compliance with Standard Methods 2540 

D and 2540 E [136]. 

4.2.1. Nutrient Analysis 

Testing for soluble NH3-N, NO3-N, and PO4-P was performed in accordance with Hach 

method 10031, 10020, and 8048 (equivalent method to Standard Methods 4500-PE [136]), 

respectively. Absorbance for each reacted sample was measured using a Thermo-Fisher 

Scientific Corp (Waltham, MA, USA) Spectronic® 20 Genesys ™ spectrophotometer at a 
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wavelength of 655 nm for NH3-N, 410 nm for NO3-N, and 890 nm for PO4-P. Concentrations 

were calculated using linear standard curves (R2 > 0.99).  

4.2.2. VFA Analysis 

VFAs (acetic, propionic, butyric, isobutyric, valeric, isovaleric, and caproic acids) were 

quantified using a Hewlett-Packard 6890 series gas chromatograph (Agilent Technologies, 

Inc., Santa Clara, CA, USA) equipped with a flame-ionization detector and a Hewlett-Packard 

7679 series injector.  The system was interfaced with the Hewlett-Packard GC ChemStation 

software version A.06.01. VFA separation was achieved using a capillary column (Zebron 

ZB-WAXplus 30 m x 0.25 mm ID, Phenomenex, Inc., Torrance, CA, USA) which was 

ramped from an initial 50°C to 200°C in three steps (2 min at 50°C, ramp to 95°C at 

30°C/min then to 150°C at 10°C/min and hold for 3 min; lastly, ramp to 200°C at 25°C/min 

and hold for 12 min) with helium as the carrier gas (1.2 mL/min). The split/splitless injector 

and detector were operated isothermally at 210 and 300ºC, respectively. Prior to analysis, 

samples were acidified to a pH < 2 using nitric acid. After preparation, 0.5 μL of each sample 

was injected in 20:1 split mode. VFA concentrations were determined through retention time 

matching with known standards (Sigma-Aldrich Co., St. Louis, MO, USA; Thermo Fisher 

Scientific Inc., Waltham, MA, USA) and linear standard curves (R2 > 0.99). 

4.2.3. Intracellular PHA Analysis 

Recovered solids (TSSr) PHA content was determined by gas chromatography/mass 

spectrometry (GC-MS) as described by Braunegg et al. [137]. Dried solids samples were 

digested for 4 hours at 100°C in 2 mL of acidified methanol (3% v/v sulfuric acid) and 

chloroform containing an internal standard of benzoic acid (0.25 mg/mL). Following 

digestion, 2 mL of deionized water was added and vortexed to separate into chloroform and 

water phases. The chloroform phase was extracted and filtered through sodium sulfate 

anhydrous to remove excess moisture and particulates. GC-MS was performed using a 

ThermoScientific ISQ7000-Trace1300 GC-MS instrument. Separation was achieved using a 

ZB1ms (30 m x 0.25 mm ID) capillary column (Phenomenex, Torrance, CA, USA) with an 

initial temperature of 40ºC ramped to 200ºC at 5ºC/min and using helium as the carrier gas 

(1.2 mL/min). 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate monomers (3HV) were 

verified by retention time and mass spectral matching with PHA standards (Sigma-Aldrich 
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Co., St. Louis, MO, USA; Metabolix, Cambridge, MA, USA) as methyl ester derivatives, 

with quantification derived from the internal standard. The Xcalibur 4.0 software program 

(Thermo Electron Corporation) was used to facilitate PHA quantification. 3HB and 3HV were 

identified and quantified based on a m/z of 103. 3HB eluted at approximately 6.1-6.5 min, 

3HV eluted at approximately 9.1-9.4 min, and the benzoic acid standard eluted at 

approximately 13.2-13.9 min. Total intracellular PHA content was determined on a percent 

dry weight basis (mass PHA per mass recovered solids, w/w). 

4.3. Calculations 

PHA, biomass, and VFAs were normalized to a Cmmol basis for calculations associated with 

carbon conversion and to compare quantities across varying operations and constituents. As 

assumed in the metabolic model, a biomass formula C1H1.8O0.5N0.2  (C-mole basis), with 

0.0406 Cmmol/gVSS as the Cmmol/L equivalence, was used to normalize biomass VSS. The 

initial biomass concentration used in rate quantification was approximated using the VSS at 

the beginning of the cycle. PHA values determined on a Cmmol/L basis were calculated as a 

function of PHB and PHV mass (mg) and the recovered solids (TSSr) concentration (mg/L). 

The justification for using TSSr, rather than TSS, for the quantification of reactor PHA 

concentration is due to its increased accuracy in representing PHA content for the reactor 

solids not captured for PHA measurement. Calculation of PHA concentrations using reactor 

TSS was shown to overestimate carbon yields (> 1 CmmolVFA/CmmolPHA), presumably 

because PHA-rich biomass is preferentially captured in centrifugation compared to DFL 

solids which remain post-centrifugation.  

PHA yield on substrate (YPHA/S) was calculated at the time point the maximum intracellular 

PHA concentration was realized, and uses the cumulative amount of VFAs depleted to that 

point. For enrichment reactor evaluations (high volume to sample event ratio), the effect of 

sampling on PHA yield calculation is negligible; conversely, production reactor evaluation 

(low reactor volume to sample event ratio) requires the volume removed for VFA, biomass, 

and PHA analysis be accounted for in calculations. PHA yield is a valuable metric that 

indicates the ADF metabolism’s efficiency of the MMC during the feast phase. A higher 

YPHA/S indicates less carbon is being used for growth and maintenance purposes, as shown in 

Equation 3.14. 
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The specific VFA uptake (qVFA) and PHA storage (qPHA) rates were calculated using linear 

regression on VFA and PHA data with respect to cycle duration, normalized by the initial 

biomass concentration. Thus, the rate of carbon uptake and PHA storage for a unit of MMC 

are estimated. Reactor feast lengths, and ultimately the F-F ratio (Equation 4.1), were 

calculated using the qVFA to reduce error resulting from the feast phase ending in between 

sample times. 

The active biomass concentration was calculated by subtracting PHA content from the VSS 

concentration, as shown in Equation 4.2. The PHB and PHV fraction of biomass was 

calculated by factoring the respective molecular weights, as shown in Equation 4.3, for which 

the summation of PHB and PHV fraction represents the total PHA fraction of biomass. 

The calculations for the enrichment and production stage factorial were performed using 

Microsoft Excel® software; however, statistical analysis of variance utilized ANOVA1 and 

ANOVA2 packages in MATLAB®. For the optimal operation investigations and metabolic 

model, all calculations, including statistical calculations were performed using MATLAB®.  

4.3.1. Equations 

Equation 4.1: Feast-Famine Ratio 

𝐹 𝐹⁄  𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑖𝑚𝑒𝐹𝑒𝑎𝑠𝑡

𝑇𝑖𝑚𝑒𝐹𝑎𝑚𝑖𝑛𝑒
 

Equation 4.2: Active Biomass Estimation 

𝑋 = 𝑉𝑆𝑆 (1 −
%𝑃𝐻𝐴

100
) (

1

1000
) ; [

𝑔

𝐿
] 

Equation 4.3: PHB or PHV Biomass Fraction 

𝑓𝑃𝐻𝐵(𝑉),𝑋 =
%𝑃𝐻𝐵(𝑉)

100 − %𝑃𝐻𝐵(𝑉)

𝑀𝑊𝑋

𝑀𝑊𝑃𝐻𝐵(𝑉)
; [

𝐶𝑚𝑜𝑙

𝐶𝑚𝑜𝑙
] 

Equation 4.4: Fermenter Manure Loading 

𝑊𝑀𝑎𝑛𝑢𝑟𝑒 =
𝑂𝐿𝑅(𝑉𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑒𝑟)

1000(𝑇𝑆)(𝑉𝑆)
; [

𝑘𝑔

𝑑𝑎𝑦
] 
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5. SRT & OLR Factorial: Results and Discussion 

A primary focus of this research was to establish near-optimal operating criteria for the PHA 

Enrichment Reactor (Figure 2.7); to that end, an experimental design was executed focused on 

two of the most critical, and easily controllable, Enrichment Reactor operational parameters, 

SRT and OLR, with tested values of 2-4 days and 10-30 C-mmol/L-d, respectively. The 

following discussion presents results from these analyses, first comparing effects of SRT and 

OLR independently, then concluding with a discussion on the combined effect of SRT-OLR. 

The common thread in this discussion is PHA, and thus the dependent variables in this study, 

used to determine near-optimal operational criteria, were PHA yield and maximum 

intracellular PHA concentration. 

5.1. Effect of SRT 

5.1.1. Enrichment Reactors 

Enrichment profiles are presented for all SRTs at constant OLR; the variable OLR for a given 

SRT prevents the compilation of all data for a given SRT on a single plot. An OLR of 10 

Cmmol/L-d was chosen as minimum operating OLR. Figure 5.1 illustrates the average (n = 3; 

operational days 148, 156, and 172) VFA uptake and PHA accumulation profile for the 10 C-

mmol/L-d reactors, by SRT.  

 

Figure 5.1: Average (n = 3) 10 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 

Figure continued on next page 
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Figure 5.1: Average (n = 3) 10 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 

As shown, when operating at an OLR of 10 Cmmol/L-d, the average VFA uptake rate 

increases with SRT, and as a result the feast length decreases with increased SRT; the F-F 

ratios were 0.08, 0.05, and 0.04 for SRTs of 2, 3, and 4 days, respectively. Commensurately, a 

shorter feast length resulted in increased PHA yield on VFAs consumed. However, maximum 

intracellular PHA content was observed at the lowest SRT. Average yield values for E.2.10, 

E.3.10, and E.4.10 were 0.70, 0.78, and 0.84 CmmolPHA/CmmolVFA, while average peak PHA 

content were 14.9%, 13.6%, and 10.1% TSSr (w/w), respectively. This contradictory response 

can be explained by accounting for biomass content; in other words, although VFA uptake 
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rates increased with SRT, the specific VFA uptake rate (qVFA) for E.2.10, E.3.10, and E.4.10 

were 0.33, 0.34, and 0.21 Cmmol/gVSS-min, respectively; thus as can be inferred, the shorter 

SRT MMC were ultimately more efficient in consuming VFAs and storing PHA.   

Scaling up from a low OLR, 20 Cmmol/L-d was chosen as an intermediate OLR to be 

evaluated. Figure 5.2 shows the average (n = 3; operational days 94, 127, and 129 for 2-day, 

66, 73, and 80 for 3-day, and 18, 22, and 31 for 4-day SRT) VFA uptake and PHA 

accumulation profile for the 20 C-mmol/L-d reactors, by SRT. 

 

 

Figure 5.2: Average (n = 3) 20 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 
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Figure continued 

 

Figure 5.2: Average (n = 3) 20 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 

Under an organic loading rate of 20 Cmmol/L-day, E.3.20 and E.4.20 experienced similar 

feast lengths of roughly 70 min, sharing an average F-F ratio of 0.05. In contrast, E.2.20 only 

reached complete VFA consumption once within 90 min, averaging a F-F ratio of 0.07. 

However, contrary to the 10 Cmmol/L-day findings, decreased feast-length did not result in 

higher PHA yield (YPHA), as E.2.20, E.3.20, and E.4.20 averaged 0.82, 0.82, and 0.73 

CmmolPHA/CmmolVFA, respectively. As shown, peak intracellular PHA content increased with 

lower SRTs, particularly for the 2-day operation, where E.2.20 averaged a peak PHA content 

of 33% TSSr (w/w); this result was more than double that observed by the E.3.20 MMC, and 

triple the E.4.20 MMC. As a caveat to these observations, the large variation in intracellular 

PHA content is due to a small sample size, coupled with the 2-day reactors seeing their best 

performance on operational day 127, where E.2.20 reached an intracellular PHA content of 

48% TSSr (w/w). This PHA content is remarkably high for the enrichment stage of this PHA 

production process, as compared to, for example, a maximum achieved by Chua et al. [108] of 

31%. Commensurate with elevated PHA productivity, specific VFA uptake rates (qVFA) 

increased with shorter SRTs, as E.2.20, E.3.20, and E.4.20 averaged rates of 0.47, 0.22, and 

0.18 Cmmol/gVSS-min, respectively. This aligns with the comparison at an OLR of 10 

Cmmol/L-day, as the lower SRTs saw increased efficiency in VFA consumption and storage.  
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Figure 5.3 shows the average (n = 3; operational days 94, 127, and 129 for 2-day, 66, 73, and 

80 for 3-day, and 18, 22, and 31 for 4-day SRT) VFA uptake and PHA accumulation profile 

for the 25 C-mmol/L-d reactors, by SRT. 

 

 

 

Figure 5.3: Average (n = 3) 25 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 

Figure continued on next page 
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Figure 5.3: Average (n = 3) 25 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 

The 20 and 25 Cmmol/L-d enrichment profiles are remarkably similar, with the exception of 

E.4.25 exhibiting a longer feast period and significantly lower PHA yield of 0.43 

CmmolPHA/CmmolVFA, indicating a decrease in the MMC’s efficiency regarding the uptake 

and conversion of VFAs to PHA. The specific VFA uptake rate, PHA yield, F-F ratio, and 

intracellular PHA content for E.2.25 and E.3.25 are comparable to those of E.2.20 and E.3.20, 

suggesting PHA production is a linear function of VFAs added within an SRT range of 2 to 3 

days and OLR range of 20 to 25 Cmmol/L-d. Similar MMC behavior for various operational 

ranges was observed in other SRT vs OLR studies [27, 37, 96]. Of note, E.2.25 achieved an 

intracellular PHA content of 52.8% TSSr (w/w) on operational day 127, the highest content 

observed in the enrichment reactor factorial.  

Following the evaluation of SRT effect on the 25 Cmmol/L-d reactors, reactor sampling 

assessments for the 30 Cmmol/L-d reactors, deemed the maximum operational OLR, were 

evaluated. Figure 5.4 shows the average (n = 3; operational days 94, 127, and 129 for 2-day, 

66, 73, and 80 for 3-day, and 18, 22, and 31 for 4-day SRT) VFA uptake and PHA 

accumulation profile for the 30 C-mmol/L-d reactors, by SRT. 
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Figure 5.4: Average (n = 3) 30 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively). 

Figure continued on next page 
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Figure 5.4: Average (n = 3) 30 Cmmol/L Enrichment Assessment by SRT (A, B, and 

C represent 2-, 3-, and 4-day SRT, respectively) 

As can be seen, the primary difference between SRTs is the intracellular PHA content 

increasing with decreased SRT, especially from a 3-day to a 2-day SRT. Interestingly, E.3.30 

exhibits a much shorter feast length than E.2.30 and E.4.30, despite the high organic loading. 

This is attributed to E.3.30 having an average specific VFA uptake rate of 0.37 compared to 

0.17 Cmmol/gVSS-min for the E.4.30 MMC, with only 18% less biomass. Regardless of feast 

length, all three SRTs exhibit relatively equal PHA storage efficiency, with average PHA 

yields for E.2.30, E.3.30, and E.4.30 being 0.67, 0.69, and 0.67 CmmolPHA/CmmolVFA, 

respectively.   
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Figure 5.5: Enrichment qVFA vs SRT (n=10, n=11, and n=11 for 2-,3-, and 4-day 

SRT, respectively) 

One of the more pronounced differences observed between SRTs was the specific VFA 

uptake rate (qVFA). Figure 5.5 shows the difference in specific VFA uptake rate for the 2-, 3-, 

and 4-day enrichment assessments; average specific VFA uptake rates were 0.35 ± 0.07, 0.26 

± 0.08, and 0.18 ± 0.03, respectively (n = 10). Generally, such a response aligns with 

microbial growth theory for suspended growth systems; specifically, the microbial specific 

growth rate, µ, is inversely proportional to SRT, and thus the rate of substrate utilization (𝑟𝑠; 

i.e., VFA consumption) and the specific rate are inversely proportional to SRT (see Equation 

5.1; Y = yield, X = MLVSS).  

Equation 5.1: SRT’s Relationship to Specific Growth Rate and Substrate Utilization 

𝑟𝑠 = 
µ

𝑌
∗ 𝑋 =  

1

𝑆𝑅𝑇 ∗ 𝑌
∗ 𝑋;  𝑞𝑠 = 

𝑟𝑠
𝑋

=  
1

𝑆𝑅𝑇 ∗ 𝑌
 

However, conventional microbial theory links rsu to microbial growth, not PHA storage. Yet, 

lower SRT and increased specific VFA uptake rates did correlate with higher intracellular 

PHA content. Similarly, Chua et al. [108] observed a roughly 30% higher PHA content when 

operating at a 3-day SRT as compared to a 10-day SRT. Conversely, Dias et al. [28] suggests 

that greater PHA storage occurs with increasing SRT, although it is also suggested that SRTs 

less than 2 days beget great PHA accumulation. Ultimately the data suggests a metabolic 

disconnection between VFA uptake and growth under F-F conditions; clearly the induced 

feast metabolism and associated overloading of VFAs at t=0 yields a temporary non-growth, 



68 

 

“energy spilling” [69] metabolic response. Indeed, higher growth rates have been shown to 

yield decreased intracellular PHB content, as observed in pure cultures and MMC by van 

Aalst-van Leeuwen et al. [39] and Beun et al. [38]. Ultimately the relationship between 

substrate uptake rate, specific growth rate, and polymer storage remains poorly understood 

and requires further study. Nevertheless, this research suggests a shorter SRT – 2 days – 

enriches for a MMC with a larger PHA-storing capacity. 

As previously mentioned, SRT generally shares a positive relationship with reactor solids 

concentration, a metric that has profound implications on performance and design of a PHA 

production process. Solids concentrations were evaluated for each reactor at the beginning of 

the operation cycle and evaluated over the feast period to track changes over time. Solids at t 

= 0 represents WAS concentrations at the end of the previous cycle, assuming the added 

solids from the DFL are hydrolyzed as substrate. The decision to ignore the relatively small 

solids addition from the diluted DFL purposefully allows for data analysis on the basis of just 

the potential PHA producing microorganisms in the MMC. Figure 5.6 illustrates the average 

enrichment mixed liquor solids inventory by SRT during each OLR assessment as well as the 

TSS recovery efficiency. As shown, SRT has a pronounced effect on reactor solids 

concentration; the average increase in t = 0 solids concentration from 2- to 3-day SRT and 

from 3- to 4-day SRT is 42% and 18%. The average VSS/TSS ratio for the 2-, 3-, and 4-day 

SRT configurations were 0.83, 0.81, and 0.80, respectively, indicating that longer SRTs 

increased inert solids minimally. This primarily has implications on volumetric productivity, 

which is the product of intracellular PHA content (%TSSr) and the concentration of recovered 

solids.  
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Figure 5.6: Average Enrichment Reactor Solids Inventory by SRT (A, B, C, and D represent OLRs of 10, 20, 25, and 30 

Cmmol/L, respectively)
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5.1.2. Production Reactors  

Each of the aforementioned enrichment reactors provided biomass for same-day fed-batch 

production assessments. Initial production reactor volume, sourced from the enrichment 

WAS, was always 0.45-0.5 L for consistency; however, due to varying initial VSS 

concentrations, DFL VFA concentrations, specific uptake rates, and rate of dilution, the 

volume of DFL added with each pulse varied. The average production reactor carbon profiles 

for each reactor are shown in Figure 5.7. Predicted VFA profiles represent the pulse-feeding 

strategy employed for each reactor, assuming a constant substrate uptake after every pulse. 

More information on the pulse-feeding is found in Chapter 4. 

Similar to the enrichment stage, a prominent difference between SRTs is the specific VFA 

uptake rate. Average specific VFA uptake rates for the 2-, 3-, and 4-day reactors were 0.17, 

0.16, and 0.12 Cmmol/gVSS-min, respectively (n = 12). These values are substantially lower 

than their enrichment reactor counterparts due to being averages of specific uptake over all 

the substrate pulse additions (substrate uptake generally decreased with every pulse added). 

This is discussed further in the effects of OLR.  

As can be observed in Figure 5.7, production results are remarkably similar between the 3-

day and 4-day reactors; however, a significant increase in peak intracellular PHA content on 

a weight basis was observed for the 2-day reactors. Average peak percent PHA for the 2-, 3-, 

and 4-day production reactors were 30.5, 22.5, and 22.4% TSSr (w/w). Similarly, higher 

PHA yield was generally observed for the 2-day reactors, with average values for the 2-, 3-, 

and 4-day reactors of 0.91, 0.72, and 0.74 CmmolPHA/CmmolVFA. The highest obtained value 

of 55.2% TSSr – 73.2% on a VSS basis – was achieved by P.2.30 on operational day 127. 

Similar values of 75 and 77% VSS basis were achieved by Albuquerque et al. [103] and 

Jiang et al. [123]. Interestingly, unlike the research presented herein, these cited studies were 

performed under growth limiting conditions (namely ammonia limitation) favoring PHA 

storage. Although performance matched growth-limited studies, this peak PHA content was 

only achieved one time. Excluding the best performance achieved by the 2-day reactors on 

operational day 127, P.2.20 achieved peak intracellular PHA contents of 36% and 26% TSSr 

and 41% and 33% VSS basis, the highest performing OLR for the 2-day reactors. 
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Figure 5.7: Production Reactor Carbon Conversion Assessment (A, B, C, and D represent P.2.10, P.3.10, P.4.10, and P.2.20, 

respectively). Figure continued on next page 
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Figure 5.7: Production Reactor Carbon Conversion Assessment (E, F, G, and H represent P.3.20, P.4.20, P.2.25, and P.3.25, 

respectively). Figure continued on next page 



 

 

7
3
 

 

Figure 5.7: Production Reactor Carbon Conversion Assessment (I, J, K, and L represent P.4.25, P.2.30, P.3.30, and P.4.30, 

respectively).
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5.2. Effect of OLR 

5.2.1. Enrichment Reactors 

As previously shown in Figure 5.6, higher applied OLR resulted in an increase in reactor 

solids concentration, as more carbon for growth and residual DFL solids were being supplied 

to the system. Average VSS and TSS concentrations increased 3.5% and 4% per additional 

Cmmol/L-d loaded, except from the 25 to 30 Cmmol/L-d configurations where solids 

increase was negligible.  Of note, qVFA and feast length were relatively constant across all 

OLRs for a given SRT, indicating an increase in solids with OLR did not result in decreased 

substrate uptake efficiency. 

While peak PHA content on a %TSSr basis was generally constant across OLRs for a given 

SRT, the maximum PHA produced (g) was a function of OLR, as depicted in Figure 5.8. 

Average peak weight of PHA for the 10-, 20-, 25-, and 30 Cmmol/L-d reactors were 0.3, 

0.61, 0.67, and 0.79 grams, respectively. This indicates that, for the OLR ranges in question, 

net PHA produced is a linear function of carbon supplied, roughly 0.014 gPHA/Cmmol.  

 

Figure 5.8: Maximum PHA (g) as Related to OLR 

5.2.2 Production Reactors 

The independent impacts of OLR for the production reactors were similar to that of the 

enrichment. Uniquely, as on can see in Figure 5.7, as the OLR decreases, the amount the rate 

of substrate uptake generally decreases between pulses is intensified (i.e. at lower OLRs the 

MMC have a low propensity for maintaining a constant rate of substrate uptake). This 
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indicates the MMC are more susceptible to high PHA concentrations inhibiting substrate 

uptake.  

5.3. Combined SRT & OLR Assessment 

Bivariate statistical analysis of the combined effects of SRT and OLR on PHA yield, 

intracellular PHA content, and total PHA produced was performed to identify potential 

optimal operational parameters. Additionally, contour plots were developed for enhanced 

visualization of SRT and OLR ranges relative to performance.  

5.3.1 Enrichment Reactors 

5.1.3.1. Feast-Famine 

The F-F ratio was relatively consistent across all OLRs for each SRT, suggesting it is 

independent of OLR within a range of 10-30 Cmmol/L-d. The average F-F ratios for the 2-, 

3-, and 4-day SRT operations were 0.05, 0.05, and 0.07, respectively. All reactor F-F ratios 

were below the suggested maximum F-F of 0.20 necessary to achieve process success [112]; 

therefore, sufficient famine lengths for inducing a stressful microbial environment suitable 

for a PHA-producing MMC were maintained throughout the factorial. 

5.1.3.2. PHA Yield on Substrate 

PHA yield is analogous to PHA production efficiency and aids in quantifying the degree of 

enrichment of PHA-producing microorganisms within an enrichment reactor. For said 

reasons, it is a parameter that is heavily valued in optimal operation determination. Figure 5.9 

depicts the results of a two-way analysis of variance (ANOVA2) performed with PHA yield 

as the response variable, and SRT and OLR as the two factors.   

Statistical tests on the effects of SRT and OLR regarding PHA yield verified that there is no 

correlation between the two operational parameters and PHA yield, independently; however, 

the interaction between SRT and OLR is significant within a 97% confidence interval. As 

can be inferred, there is no optimal SRT or OLR with respect to PHA yield, but there exists 

an optimal combination(s) of the two parameters, identified by E.2.20, E.2.25, E.3.20, 

E.3.25, and E.4.10. 
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Figure 5.9: Factorial Operational Criteria vs. PHA Yield on Substrate (A and B 

represent SRT and OLR). 
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Figure 5.10 illustrates average PHA yields over the SRT and OLR ranges evaluated. 

 

Figure 5.10: SRT & OLR vs PHA Yield on Substrate 

As shown, PHA yield is at a maximum within an OLR range of 20 to 25 C-mmol/L-d and an 

SRT range of 2 to 3 days; additionally, a 10 Cmmol/L-d OLR and 4-day SRT exhibited 

similar yields. The average PHA yield for the reactors operating within said ranges is 0.82 

CmmolPHA/CmmolVFA (n = 15), indicating a substantial fraction of carbon being stored as 

PHA.   

5.1.3.3. Maximum PHA Content 

For a commercial PHA production process, intracellular PHA content is of utmost 

importance – specifically, the weight percent PHA reported on TSSr basis. This metric 

represents the PHA in the effluent solids, prior to extraction, and has profound implications 

on economic feasibility – specifically, low intracellular PHA content equates to increased 

chemical usage per gram of PHA recovered for extraction. Referring to Figure 5.6, no 

correlation between in-reactor solids content and that recovered from centrifuging and drying 

methods was observed; therefore, quantification of PHA recovered on a %TSSr is consistent 

across all reactors.  Figure 5.11 shows the ANOVA2 results for the two factors, SRT and 

OLR, with maximum intracellular PHA content as the response variable. 
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Figure 5.11: Factorial Operational Criteria vs. Intracellular PHA Content (A and B 

represent SRT and OLR). 

Bivariate analysis of the effect SRT and OLR have on maximum intracellular PHA content 

showed a 2-day SRT is statistically superior from the 3- and 4-day SRT reactors; however, 
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no correlation between both the interaction of SRT and OLR, nor OLR independently, on 

PHA content was observed. In other words, increased OLR did not result in increased PHA 

produced per unit of recovered solids. Average peak PHA content on a %TSSr (w/w) basis 

for the 2-, 3-, and 4-day SRT configurations were 28.0, 13.8, and 10.2%, respectively. As 

suggested by the results, PHA accumulation efficiency increases substantially as SRT 

decreases from 3- to 2-days. This is visualized in Figure 5.12, which depicts average peak 

PHA content for the SRT and OLR ranges evaluated. 

 

Figure 5.12: SRT & OLR vs Maximum Intracellular PHA Content  

Maximum PHA content was observed within an OLR range of 20 to 25 Cmmol/L-d for the 

2-day SRT operation, with an average of 32.8% TSSr on a weight basis (n = 6); results align 

with analysis of PHA yield (Figure 5.9).  

Comparable to peak intracellular PHA content on a TSSr basis is the peak PHA to inocula 

solids (VSS) ratio. The VSS basis is more indicative of MMC performance compared to a 

TSS basis, as inocula VSS better represents the viable, PHA-producing, microbial 

population. Figure 5.13 illustrates the average peak PHA to VSS ratio (g/g) over the SRT and 

OLR ranges evaluated. 
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Figure 5.13: SRT & OLR vs PHA Production Efficiency 

Results shown follow similar behavior to the peak PHA content on a weight basis, as the 

ratio of PHA produced to inocula VSS is maximized within an OLR range of 20 to 25 

Cmmol/L-d for the 2-day SRT. Average ratios observed for E.2.20 and E.2.25 were 0.56 and 

0.55 (n = 3).  

Table 5.1 summarizes the parameters evaluated to access enrichment reactor performance for 

the various SRT and OLR configurations.
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Table 5.1: Enrichment Factorial Results 
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5.3.2 Production Reactors 

5.3.2.1. PHA Yield on Substrate  

Production reactor PHA yields were comparable to those of their respective parent 

(enrichment) reactors, with the exception of P.2.20, P.2.30, and P.4.20 exhibiting roughly a 

15% increase; this is attributed to numerous factors including the production stage having an 

increased margin of error due to varying solution volume, lack of DO control, use of 

undiluted DFL, and increased sample to total volume ratio. However, the data suggests 

enrichment reactor PHA yield is nonetheless indicative of ‘downstream’ production reactor 

performance. This observation aligns with the findings of Carleton [89], also utilizing dairy 

manure feedstock. Figure 5.14 illustrates the average PHA yield for the production reactors 

over the SRT and OLR ranges evaluated. 

 

Figure 5.14: Production - SRT & OLR vs. PHA Yield 

As shown, maximum PHA yield was observed within an OLR range of 20 to 30 Cmmol/L-d 

for the 2-day configuration, with an average yield of 0.95 CmmolPHA/CmmolVFA (n = 9); 

importantly, nearly all of the VFAs consumed are directly converted to PHA. The subsequent 

highest average PHA yield of 0.88 CmmolPHA/CmmolVFA (n = 6), was observed for an OLR 

range of 10 to 20 Cmmol/L-d for the 4-day configuration.  
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5.3.2.2. Maximum PHA Content 

As with PHA yield, higher enrichment reactor intracellular PHA content generally translated 

to higher PHA content in the production stage. Figure 5.15 shows the average PHA content 

(%TSSr w/w) for the production reactors over the SRT and OLR ranges evaluated. 

 

Figure 5.15: Production – SRT & OLR vs. Max Intracellular PHA Content 

As can be seen, the highest peak intracellular PHA content on a weight basis was observed for 

a 20 Cmmol/L-d OLR and 2-day SRT (P.2.20), averaging a value of 37.6% (n = 3); 

furthermore, the 3- and 4-day SRT reactors remained in the 20-25% range regardless of OLR. 

Overall, the peak PHA content achieved in the production reactors were in agreement with 

reported ranges when using dairy waste substrate, albeit on the low end [1, 50, 68, 89, 116].  

With regards to commercial PHA production, the maximum PHA accumulated in the 

production reactor, less extraction losses, represents the net PHA produced; therefore, 

evaluating the maximum weight of PHA produced at lab scale for each operational scheme is 

valuable for scaling purposes. Figure 5.16 illustrates the average maximum PHA harvestable 

in the production stage across the SRT and OLR ranges evaluated.  
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Figure 5.16: Production – SRT & OLR vs. Max PHA Concentration  

Perhaps of no surprise, regardless of accumulation efficiencies the peak PHA produced is 

primarily a function of OLR. A maximum of 2.08g PHA was produced by P.3.30 on 

operational day 80. Production reactor volume at peak PHA accumulation varied substantially 

due to change in DFL strength and inocula VSS concentrations, thus volume of DFL required 

to meet said maximums were not reported. The values depicted represent the PHA output that 

roughly 0.5L of WAS (inoculum) is capable of producing.  

Table 5.2 summarizes the parameters evaluated to access production reactor performance for 

the various SRT and OLR configurations. 
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Table 5.2: Production Factorial Results 
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5.3. Optimal Enrichment Reactor Operational Criteria  

To preface the selection of the optimal enrichment reactor operation scheme, a 2-day SRT 

reactor is inherently favored over increased SRTs, independent of OLR and PHA production 

performance.  A 2-day SRT has the highest rate of turnover from the enrichment to the 

production stage – half of the enrichment reactor volume per day as compared to 33% and 

25% for the 3- and 4-day.  Furthermore, the 2-day SRT has the shortest acclimatization time 

for returning to steady state if a process upset were to occur. These benefits of decreased SRT 

played were factored in the selection of optimal operational criteria. 

The 2-day SRT configurations elicited substantial increases in intracellular PHA 

concentration and conversion of VFAs to PHA, indicative of a more active, PHA-

accumulating MMC. Of note, the maximum intracellular PHA concentrations observed in this 

study were achieved under a CL:SRT ratio of 0.5 (2-day SRT), the same CL:SRT ratio used 

to achieve the record high 89% intracellular PHA content from MMC [73]. Maximum PHA 

storage was observed for the 3-day SRT configuration, which averaged roughly 15% more 

PHA (g) produced than corresponding 2-day SRT reactors; however, 3-day SRT intracellular 

PHA concentrations were roughly 35% lower in comparison to 2-day reactors. Assuming 

extraction costs are scalable by PHA content, the increase in net PHA production is 

unjustifiable for suggestion of a 3-day SRT as optimal. The question then became one of 

OLR, specifically, between 20-, 25-, and 30-Cmmol/L-d, as the 10-Cmmol/L-d saw 

diminished F-F metabolism. For E.2.20, E.2.25, and E.2.30 and their respective production 

reactors, net PHA production was a function of the amount of carbon supplied; however, 

E.2.20 averaged slightly higher PHA yield on substrate and intracellular PHA content. 

Ultimately, the choice of optimal OLR amongst the three becomes the highest OLR that you 

can afford given the limitations of the upstream fermentation stage. Within the scope of this 

research, optimization of the ADF process aims to conserve carbon usage across the 

enrichment and production stages; therefore, E.2.20 is the near-optimal operational criteria as 

the lower OLR does not negatively impact MMC enrichment or PHA production 

performance. 
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5.4. Conclusions 

The objective of this research was to determine the optimal combination of enrichment stage 

operational parameters, SRT and OLR, through factorial based evaluation of Enrichment and 

Production Reactor carbon conversion assessments. Commercial viability of PHA production 

requires maximizing net PHA quantities while minimizing extraction costs; furthermore, 

optimal operation further pursues exaggeration of volumetric productivity and efficient use of 

limited carbon supply (DFL) in both stages. Twelve enrichment reactors were operated and 

evaluated at SRTs of 2-, 3-, and 4-days, and OLRs of 10-, 20-, 25-, and 30 Cmmol/L-d, along 

with their corresponding production reactors. It was hypothesized that within said ranges there 

exists a combination of SRT and OLR such that maximum PHA production is achieved. 

Conclusions based on this study include the following: 

i. Near-optimal Enrichment Reactor operation was achieved for an SRT of 2-days and 

an OLR of 20 Cmmol/L-d.  

ii. Decreased SRT resulted in enhanced ADF metabolism characterized by increased 

intracellular PHA storage and PHA yield on substrate in both the enrichment and 

production stages. Moreover, decreased SRT did not result in more carbon being 

shunted to growth, rather it increased the overall enrichment and activity of PHA-

accumulating MMC. 

iii. OLR shared a positive linear relationship with net PHA produced for the OLR ranges 

evaluated, suggesting F-F selective pressure is maintained up to 30 Cmmol/L-d. As 

evidenced by E.2.10, decreased SRT in conjunction with decreased OLR can result in 

a negative metabolic impact characterized by reduced intracellular PHA storage.  

5.4.1. Future Research 

This research evaluated and determined the optimal combination of ADF enrichment reactor 

operational parameters, SRT and OLR; however, the impacts of additional easily-controlled 

enrichment reactor operational parameters on ADF metabolism have yet to be assessed, 

including: HRT, CL, and volume. Future investigations for the advancement of this research 

include: 

i. Investigation of the impacts of CL and HRT on F-F metabolism and PHA production 

for the enrichment and production stages, independent of SRT. 
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ii. Elucidation of production stage VFA uptake kinetics for conditions of PHA inhibition, 

ideally through metabolic modeling. As shown in Figure 5.7, employing a pulse-feed 

strategy can result in large quantities of VFAs remaining in bulk solution after PHA 

stores have reached saturation. Proper estimation of required substrate per pulse 

addition could potentially save significant amounts of fermenter liquor with no 

consequence on productivity. 
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6. Metabolic Modeling: Results and Discussion 

6.1. Model Calibration 

Three E.2.20 sampling events, performed on operational days 36, 41, and 103, were leveraged 

in model calibration. Due to the tolerances of the nonlinear least-squares solver, the 

minimization of error between modelled and measured concentrations, 𝐸𝑅, and steady state 

error, 𝐸𝑅, were performed individually. The model incorporates the theoretical yield and 

maintenance coefficients, as previously described, which are a function of the modelled VFA 

and PHA flux. 

6.1.1. Calibration to Measurements 

The estimation of kinetic parameters for each sampling event and the concentration profiles 

thereof are shown in Figure 6.1 and Figure 6.2. For operational days 41 and 103, the relative 

error decreased significantly when measured biomass concentrations were excluded from the 

model fitting procedure; moreover, this exclusion was required for maintaining non-negative 

concentrations during simulation of operational day 103.  This suggests a discrepancy in 

measured material concentrations, a topic that is further discussed below. As shown in Figure 

6.1, the fitting procedure results in accurate representation of the metabolism observed on 

operational day 36. Conversely, for operational day 41 the fitted model overpredicts the initial 

concentration of PHV and falsely shows negligible changes in ammonia concentration. This 

deviation from measured values was reduced by fitting kinetic parameters independent of 

solids concentrations, as shown in Figure 6.2. In doing so the model adequately describes the 

observed concentrations for operational days 41 and 103 at the expense of accurate biomass 

representation. In both cases, the biomass concentration behaves in an implausible manner. 

The reactor appears to experience sporadic periods of growth and decay despite availability of 

carbon throughout (e.g., VFAs, PHA); moreover, the magnitude of decay is far too large for a 

microbial system of this time scale. The results from this stage of model calibration were 

sufficient in denying the adequacy of using measurements obtained on operational days 41 

and 103 as a basis for the model. However, the kinetic parameters obtained do offer insight on 

overall process behavior.  
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Figure 6.1: Model Parameter Estimation Respective to Measurements (A and B 

represent Operational Day 36 and 41). Symbols indicate experimental data and full 

lines indicate the modelled results. (*) VFAs, (□, blue) PHB, (□. red) PHV, (+) active 

biomass, and (.) ammonia. 
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Figure 6.2: Model Parameter Estimation Respective to Measurements, Excluding 

Biomass (C and D represent Operational Day 41a and 103a). Symbols indicate 

experimental data and full lines indicate the modelled results. (*) VFAs, (□, blue) 

PHB, (□, red) PHV, (+) active biomass, and (.) ammonia. 
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6.1.2. Steady State Calibration 

For steady state calibration, the fitted kinetic parameters from the previous step were 

initialized for subsequent adjustment in the steady state error minimization step. The resultant 

adjusted kinetic parameters were then used for model simulation and verification of steady 

state. Figure 6.3 depicts the calibrated steady state model representative of the initial material 

concentrations observed on operational day 36. In all experiments used for model calibration, 

the concentration of PHA at the end of the cycle was negligible, and thus biomass 

concentration was the sole criteria for steady state realization (see Equation 3.26). With a CL 

of 24 hours and an effective SRT/HRT of 2 days, E.2.20 is theoretically in steady state when 

the concentration of biomass at the end of the cycle is double the concentration at the 

beginning of the cycle.  

Steady state conditions were verified by performing model simulation over a model time of 

288 hours, equivalent to 3 times the target SRT of E.2.20, with negligible changes in material 

concentrations cycle to cycle. This simulation time is generally viewed as the minimum 

operation time for an SBR to achieve sufficient stability [102]. Of the three sampling events, 

operational day 36 was the only dataset capable of steady state calibration within acceptable 

integration tolerances. This limitation is primarily attributed to insignificant changes in solids 

concentration over the course of a cycle, commonly observed in this study (see Figure 5.6, 

Figure 6.1, and Figure 6.2). Presumably, the active biomass are growing throughout the feast-

famine cycle (as witnessed by ammonia concentrations), however, the biomass measurements 

do not support this for reasons that remain unknown. A possible explanation is that the solids 

inherent in the DFL are being hydrolyzed simultaneously with biomass growth; thus, if the 

rate of solids hydrolysis is equal or greater than the growth rate, anabolism will not be 

presented in the TSS/VSS measurements. Modeled ammonia concentrations are in good 

agreement with measured values, suggesting ammonia depletion more reliably represents 

biomass growth than biomass concentrations; however, this does not aid in determining initial 

biomass concentration, for which the rate change of state variables are all effectively scaled 

by. 
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Figure 6.3: Steady State Feast-Famine Model (gray = biomass, black = VFAs, and 

blue = PHA; produced using initial concentrations identified by optimization of 

operational day 36). 
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6.1.3. Model Kinetic Parameters 

The kinetic parameters determined from the calibration procedure are shown in Table 6.1. The 

calibrated model’s kinetic parameters are listed for operation day 36. Importantly, the 

estimated butyrate and valerate specific uptake rates include iso-butyric and iso-valeric acid. 

This inclusion increases the accuracy of the carbon and electron balance of the measured data 

while obeying the model framework, being 4 and 5 carbon VFAs. 

Table 6.1: Estimated Kinetic Parameters 

E.2.20 
Operational 

Day 36  

Operational 

Day 41c 

Operational Day 

41a,c 

Operational Day 

103a,c 

Parameter Value 
95% 

CI 
Value 

95% 

CI 
Value 

95% 

CIb 
Value 

95% 

CI 
Units 

𝑞𝐴𝑐,,𝑚𝑎𝑥  -0.27 ± 0.03 -0.12 ± 0.05 -0.13 - -0.13 ± 0.04 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 

𝑞𝑃𝑟,𝑚𝑎𝑥 -0.22 ± 0.04 -0.13 ± 0.07 -0.13 - -0.21 ± 0.06 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 

𝑞𝐵𝑢,𝑚𝑎𝑥 -0.17 ± 0.06 -0.14 ± 0.10 -0.15 - -0.14 ± 0.03 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 

𝑞𝑉𝑎,𝑚𝑎𝑥  -0.23 ± 0.10 -0.07 ± 0.04 -0.05 - -0.07 ± 0.02 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 

𝜇𝑚𝑎𝑥 -0.02 ± 0.01 -0.03 ± 0.03 -0.08 - -0.04 ± 0.02 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 

𝑚𝐴𝑇𝑃 -0.16 ± 0.03 0.10 ± 0.04 -0.21 - -0.04 ± 0.02 
𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙 ∗ ℎ𝑟
 

𝑘 -0.05 ± 0.02 -0.05 ± 0.01 -0.07 - -0.10 ± 0.05 (
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
)
1
3ℎ−1 

𝑦𝑝ℎ𝑣 1.1 ± 0.2 0.80 ± 0.3 1.07 - 0.96 ± 0.06 
𝐶𝑚𝑚𝑜𝑙

𝐶𝑚𝑚𝑜𝑙
 

a Calibration procedure excluded measured biomass concentration. 

b Confidence interval extrapolated by large changes in modelled biomass. 

c Model could not estimate steady state within allowable tolerances. 

As shown, the specific uptake rates for each VFA are quite variable between experiments 

except for butyrate, principally due to being highly sensitive to measured biomass 

concentrations. The calibrated model incorporates the upper limit of estimated VFA uptake 

rates as operational day 36, the sole experiment to exhibit near steady state conditions, was 

the most efficient regarding substrate uptake.  
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The ratio of PHV to total PHA flux, 𝑦𝑃𝐻𝑉, was relatively consistent across all experiments 

and resulted in good agreement between modelled and measured PHA composition. As 𝑦𝑃𝐻𝑉 

is estimated as a linear function of the ratio of odd carbon flux to total VFA flux, 𝑦, the range 

of 0.8 to 1.1 indicates that uptake of even and odd carbon VFA is highly correlated with PHB 

and PHV storage. This presents the concern of inaccurate parameter estimation between 𝑦𝑃𝐻𝑉 

and each of the specific VFA uptake rates due to collinearity; however, some enrichment 

cultures exhibit little correlation between VFA distribution and condensed PHA composition 

[40, 49]. 

The reaction order of 2/3 for PHB degradation, represented by 𝑘, described famine phase 

PHA consumption well across all experiments. The observed range of -0.05 to -0.07 is 

relatively similar to the range identified by Johnson et al. [42] and Beun et al. [38] of -0.09 to 

-0.14 and -0.09.  

For all evaluations, the maximum growth rate in the feast phase, 𝜇𝑚𝑎𝑥 , was negative; 

similarly, the biomass specific ATP consumption rate, 𝑚𝐴𝑇𝑃 , was negative for two of the 

experiments. The negative specific growth rate can be explained by the aforementioned 

hydrolysis of DFL solids; however, a negative maintenance coefficient implies ATP is being 

synthesized from an energy source other than PHA or VFAs. This was still the case even after 

increasing the oxidative phosphorylation efficiency constant, 𝛿, from 2 (the assumed value) to 

its theoretical maximum of 3 mole ATP per mole NADH2 [40]. For perspective, modelled 

values of the specific ATP consumption rate are typically in the range of 0-0.227 

mmol/Cmmol-hr [42, 44], with a set value of 0.02 mmol/Cmmol-hr commonly employed in 

relevant modeling efforts [37, 43]. In the initial parameter estimation attempts, the growth rate 

and maintenance term were each given non-negative lower bounds; however, this resulted in 

significant underprediction of PHA storage. Further investigation led to the evaluation of the 

model yield and maintenance coefficients as depicted in Figure 6.4.  
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Figure 6.4: Model Yield and Maintenance Coefficients as a Function of VFA and 

PHA Flux Distribution 

In the case that the theoretical yields are underpredicted, the unbounded calibration would 

compensate by using a negative maintenance term to fit PHA measurements. However, all 

yield coefficients are comparable to that of Dias et al. [40], and the theoretical PHA yield on 

substrate is in agreement with experimental true yields of 0.74 and 0.75 from literature [37, 

131]. Being that the model stoichiometry is derived from a balance of conserved moieties and 

degree of reduction, the findings suggest an additional carbon source is contributing to ATP 

production and ultimately PHA synthesis therefrom. This was reaffirmed after performing a 

check where PHA yield on substrate was set to 1 Cmmol/Cmmol and the result was the same.  

6.2. Model Results 

6.2.1 Model Performance against E.2.20 

Evaluation of the calibrated model was performed by comparing the ability of the model to 

represent the performance of E.2.20 for each of the sampling events. Famine phase 

comparisons are excluded from this section due to being highly reliant on accurate feast phase 

simulation; moreover, the famine phase kinetics were consistent across the individual 

calibration results. 
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The comparison between modelled and measured VFA concentrations is shown in Figure 6.5. 

The coefficients for a linear fit of the model outputs to measured values, and the associated 

coefficient of determination (R2), are included to quantify modelling accuracy. As shown by 

R2 values and slope terms (m) close to 1, VFA uptake is adequately described for operational 

days 36 and 103. For all comparisons the model overpredicts the rate of VFA uptake, and to a 

significantly higher degree for operational day 41. This can be attributed to having roughly 

20% higher measured biomass concentrations compared to the other two sampling events.  

 

Figure 6.5: Modelled vs Measured: VFA Uptake 

With respect to commercial PHA production, the most important quality of a model is its 

ability to accurately predict the maximum PHA content and the monomeric composition of 

the ‘end-product’. The comparison between modelled and measured feast phase PHB and 

PHV concentrations are illustrated in Figure 6.6 and Figure 6.7. The tailing of the PHB and 

PHV curves at higher PHA concentrations is indicative of kinetic saturation terms taking 

effect at low VFA concentrations, resulting in a reduced PHA storage rate. Furthermore, the 

overall predictive accuracy of the model compared to each sampling event is summarized in 

Table 6.2. 



98 

 

  

 

Figure 6.6: Modelled vs Measured: PHB Storage 

 

Figure 6.7: Modelled vs Measured: PHV Storage 
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Table 6.2: Model Results: Intracellular PHA Content and HV Fraction  

Sampling Event 

VFA Content 

(Cmmol/L) 

Max. PHA 

 (%w/w) 

HV Fraction 

 (gHV/ gPHA) 

Operational Day Total*(Ac:Pr:(i)Bu:(i)Va) Measured Modelled Measured Modelled 

36 19.5 (0.36,0.33, 0.2,0.11) 19.3 14.3 0.45 0.44 

41 20.2 (0.36,0.32, 0.24,0.08) 23.7 15.2 0.44 0.39 

103 18.6 (0.29,0.4,0.19,0.12) 14.5 14.3 0.44 0.52 

 

As shown, the model slightly overpredicts PHA storage during the period of VFA saturation 

while underpredicting PHA storage in the latter period of the feast phase. The modelled 

maximum PHA content was underpredicted by 26% and 36% for operational days 36 and 41. 

As a result, the coefficients of linear regression between modelled and measured 

concentrations are not indicative of a good fit; however, visual inspection suggests accurate 

model prediction of the rate of PHA storage, albeit until near-zero VFA concentrations are 

reached. Interestingly, the model accurately predicted the maximum PHA content for 

operational day 103 although this comparison was the source of the largest deviation in 

monomeric composition. The model was capable of accurately representing the relative HV 

fraction for operational days 36 and 41, while the odd carbon dominant VFA feed greatly 

influenced modelled HV fraction for operational day 103. This is likely the case due to the 

model assuming steady state is achieved using the VFA distribution observed for each 

sampling event; thus, using an average VFA distribution for simulation would yield a constant 

HV fraction in agreement with measured values close to 0.44. As witnessed by the model 

results for operational day 36, minimization of the steady state error causes the model outputs 

to stray from observed measurements. Prior to the steady state calibration step (Figure 6.1), 

the estimated kinetic parameters fit maximum PHA concentration within 5% of the measured 

value.  
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6.2.2. Model Performance against PHA Pilot 

For pseudo-validation and additional insight on the metabolic model’s potential application, 

the model was vetted against a pilot-scale PHA production enrichment reactor not previously 

used for parameter estimation. The 680 L enrichment reactor was operated as an SBR under 

similar conditions to that of E.2.20; the primary differences in operation (excluding scale) 

being the reactor was operated with a target SRT/HRT of 4 days and fed uncentrifuged DFL 

diluted with tap water with a 1:1 ratio. 

The modelled versus measured concentration profiles and the overall model performance are 

shown in Figure 6.8 and Table 6.3. 

 

Figure 6.8: Model Results against PHA Pilot. Symbols indicate experimental data 

and full lines indicate the modelled results. (*) VFAs, (□, blue) PHB, (□, red) PHV, 

and (*) ammonia. 
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Table 6.3: PHA Pilot Model Results: Intracellular PHA Content and HV Fraction 

Sampling Event 

VFA Content 

(Cmmol/L) 

Max. PHA (%w/w) HV Fraction  

Date Total*(Ac:Pr:(i)Bu:(i)Va) Measured Modelled Measured Modelled 

8-22-19 12.2 (0.60,0.17, 0.17,0.06) 9.4 6.3 0.30 0.26 

 

As shown, the modelled VFAs were depleted much faster than measured concentrations, and 

thus the famine phase and ensuing PHA consumption commence significantly earlier in the 

cycle. This result comes as no surprise due to model kinetic parameters being tailored for a 2 

day versus a 4 day SRT configuration. While kinetic rates will change with variable SRT, the 

primary impact on modelling is the increased solids content with SRT; moreover, in the case 

of the PHA pilot being fed uncentrifuged DFL biomass concentrations are increasingly 

overestimated. The calibrated model is designed for initial biomass concentrations in the 

range of 35 to 62 Cmmol/L, whereas the PHA Pilot is roughly 104 Cmmol/L. 

The PHA pilot system and E.2.20 vary significantly with operation and scale, enough so as to 

warrant low expectations for the model’s ability to predict pilot performance; however, the 

model shows promising results. While maximum intracellular PHA content was under 

predicted by roughly 30%, the monomeric composition was described quite well. More 

impressively, the relative HV fraction was within 15% of the quantified fraction while the 

substrate composition differed substantially from the VFA composition used to calibrate the 

model. Ammonia concentrations, the rate of PHA storage, and the rate of PHA degradation 

were all in good agreement with respective experimental values. This suggests the model is, at 

its core, capable of describing feast-famine metabolism for both lab-scale and pilot processes; 

however, the issue of a potential uncharacterized source of carbon contributing to PHA 

storage is evidenced in both cases.  

6.3. Conclusions 

Modeling the dynamics of a biological system using real complex waste is a difficult 

endeavor, increasingly so for SBRs where natural environmental deviations occur cycle to 
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cycle. An SBR’s cyclic nature can cause measurement error or parameter sensitivities to be 

compounded over many cycles and result in large discrepancies between real and modelled 

values. This imperfect reality lends itself as an explanation for the large error in model 

prediction of peak intracellular PHA content. For a model to even begin to drive design 

decisions accurate representation of experimental data is required, especially for key outputs 

such as intracellular PHA. Fortunately, initial parameter estimation disregarding the steady 

state condition described PHA production very well. This finding gives rise to a possible 

avenue of model error reduction. Ultimately, more datasets for E.2.20 are required for 

adequate calibration and smoothing of natural ‘quasi-steady state’ variations between 

sampling events. It was hypothesized that the model would be capable of driving optimization 

studies to further inform optimal Enrichment Reactor operation (RQ3), however, this is not 

the case for the developed model. The sheer scope of work involved in determination of near-

optimal operational criteria (RQ1) for the basis of developing a metabolic model (RQ2) did 

not allow further model refinement. Indeed, the model described herein provides direction and 

empirical insight for future research of ADF process optimization. 

Conclusions based on this study include the following: 

i. The metabolic model developed in this research adequately describes ADF 

metabolism for MMC enriched on complex mixtures of VFAs. Net PHA produced 

was underpredicted for 2 of the 3 modelled experiments; however, computed rates of 

VFA uptake, PHA production, biomass growth (as related to ammonia measurements), 

and PHA degradation were in good agreement with measured data. As a result, the 

model presents itself as a valuable tool for regulation of PHA production and 

degradation for complex systems.  

ii. A benefit of the developed metabolic model is that material, carbon, and degree of 

reduction balances close. Model simulations in this study yielded negative (although 

near-zero) feast phase growth rates and maintenance ATP requirements. While the 

values themselves do not reflect their actual rates, they are an indication of an 

additional source of ATP not accounted for by the model framework (e.g., carbon 

from VFAs).  
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a. The approach of using a constant P/O ratio, δ, and determining the MMC’s 

ATP consumption rate, 𝑚𝐴𝑇𝑃 , through fitting was ideal in this case. The 

quantity of unknown COD (Cmmol) contributing to PHA consumption can be 

estimated through model values of 𝑚𝐴𝑇𝑃.  

iii. Model prediction of PHA monomeric composition was in good agreement for both 

lab-scale and pilot-scale evaluation. It was shown that polymer composition was 

strongly dependent on the composition of substrate; for all experiments, the linear 

relationship between the odd carbon fraction of VFA uptake to HV fraction of PHA 

storage was roughly 0.96-1.1 to 1. This carries important design implication for 

optimization of a 3-stage ADF process to beget desired polymer composition, 

particularly for the fermentation stage. 

6.3.1. Future Research 

While results presented in this research offer a promising foundation for further model-based 

optimization studies for ADF metabolism relative to dairy waste fed MMC systems, future 

refinements would be of value. Specifically, further advancement of model accuracy to add 

value to its application include: 

i. Refining the method of determining active biomass concentration. In particular, 

consideration should be given to developing an approach for quantifying hydrolysis of 

DFL solids so as to separate MMC from general solids measurements. The enhanced 

speciation of solids in the bioreactor would drastically improve the accuracy of model 

kinetics, and as a result, the prediction of PHA production for a given process. 

ii. Expansion of the model to include a COD component and to determine the yield 

coefficients thereof. The results from this research indicate the assumption that VFAs 

are the only carbon source utilized for PHA synthesis is not valid for accurate 

prediction of peak PHA content. 

iii. Incorporating a feast-phase kinetic relationship for substrate uptake that accounts for 

PHA inhibition. This would allow the model to simulate fed-batch experiments that 

follow the kinetics describe herein until PHA saturation is reached and as a result 

substrate uptake and subsequent PHA storage stagnate.  
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Appendix A: Model 

 

 

Figure A. 1: Determination of R8 
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Figure A. 2: Determination of R9 
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Figure A. 3: Model Stoichiometric Matrix (excludes PH2MV) 
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Figure B. 4: Figure permissions for Figure 2.2 


