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Abstract
Material microstructure is key to understanding processing-structure-property rela-

tionships. However, limitations in computational descriptions of microstructure present

a challenge in being able to predict property changes under noisy processing conditions.

Correctly modeling microstructure and being able to produce reliable material property

predictions would enable efficient strategies for material optimization. Such strategies are

shown to drastically reduce the amount of experiments needed to reach an optimal mate-

rial. This in turn would decrease the time to market required to develop new materials, a

key goal of the material genome initiative.

In this work, a general mechanism for linking processing, structure, and properties

is developed through the use of Deep Learning. Two separate models have been devel-

oped. The first model, the encoder-decoder model, is used to link processing conditions

to microstructure, while the second model, the predictor model, is used to predict mate-

rial properties given the current material microstructure. The trained encoder-decoder

model is shown to predict the non-trivial evolution of ferroelectric domains in bi-crystalline

lead titanate perovskites. In addition to small constant inputs such as the processing

temperature, the encoder-decoder can account for spatial input conditions, such as the

arrangement of grains in a polycrystalline material. The predictor model uses the ferro-

electric microstructure to predict the ferroelectric switching constant, the coercive field.

It is demonstrated that the predictor model is able to model the coercive field property

using only the microstructure with a similar level of accuracy as state-of-the-art machine

learning methods that have been trained directly on input processing conditions. Even

if the input conditions are unknown or noisy, the microstructure can often be observed

accurately.

Further, the model has been demonstrated on more complicated environments with

stochastic poly-crystalline systems. It is shown that the model is able to sufficiently capture

and reproduce key characteristic features of the microstructure, despite never being
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explicitly programmed to do so. The overall volume fractions of domains is maintained, the

formation of domain walls occur along directions expected analytically, and the polarization

is reduced along grain boundaries in the presence of a secondary phase.
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Chapter 1: Introduction & Background

1.1 Motivation and Justification

In the course of human history, each era of mankind’s progress has been best described

by the materials used. The first humans made use of bones and wood for hunting. During

the following 3 million years of the stone age, shelters were built and basic stone implements

were used in the collecting of food. The introduction of metallurgy starting with the

bronze age and improving through the iron age in around 1000 BCE gave rise to tools

capable of improving the quality of life. From there, with metal working and improved

tools, a cascade of improvements followed over a relatively short time period in human

history. The production of metals and the study of alloys was followed by technological

leaps in glass working, ceramics, and polymers building momentum until the industrial

age in the 18th century.

Progress continued at an even greater breakneck pace than before, driven by the sharing

and accumulation of knowledge gained through both successful and failed experimentation.

The 20th century saw the development of phenomenological models now seen as pillars

of materials science, including the renowned Hall-Petch relationship [1] and the Hume-

Rothery rules [2]. These arose from iterative experimental work on alloy design and became

invaluable in the creation of future materials.

Today, materials science and similar fields benefit greatly from the presence of computers

that now play an integral role in handling and processing knowledge. Since the introduction

of the supercomputer, they have run material simulations, starting with the first molecular

dynamics in 1950s. This trend continued with the emergence and growth of quantum

mechanical methods, including the ubiquitous density functional theory for ab initio

atomistic simulation [3]. Other methods developed from thermodynamics, such as phase-

field method which was used to predict dendrite growth [4]. These simulations helped
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realize new breakthroughs in experimental technologies, which led to further improved

simulations.

The development of many distinct computational methods that are each useful to a

particular time and length scale has led to an effort to combine many different methods to

simulate macroscopic behaviour with the accuracy of ab initio quantum mechanics. This

effort is referred to as multi-scale modelling [5]. Many details in materials science are a

direct result of many scales, from point defects on the nanometer scale to compressive

stresses on the centimeter scale. Figure 1.1 demonstrates how many different length scales

interact to form a cohesive material property and affect the overall properties. Being able

to observe many timescales simultaneously is one of the many advantages of computer

simulation.

Figure 1.1. A schematic of many different defects and considerations that occur on a
wide range scales in materials science [5].

The widespread availability of computing power combined with the advances in theoret-

ical physics has created the era of computational materials science. The advent of quantum

mechanics and density functional theory has allowed powerful computing software to sim-

ulate individual atoms and atomic force-fields. However, much of this research, both
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experimental and theoretical, could be collected into a database for further use. Current

practice is to perform necessary simulations and experiments to emphasize a particular

research interest. The data is used to generalize information and findings but is not typ-

ically made available in an accessible searchable manner. Today, one of the challenges

is to create large databases where research knowledge is collected and processed. With

such databases, materials can be filtered and trends identified. Ultimately, as seen in the

similar fields of bioinformatics and cheminformatics, the ability to generate, process, and

retrieve data efficiently from many sources is critical to developing a rapid development

cycle. Likewise, materials informatics is an upcoming field that aims to create high

quality experimental and computational databases with the goal of applying modern ma-

chine learning techniques and data mining methods to evolve new models [6, 7]. Once

a knowledge base is established, many data-driven tools become useful, such as those in

machine learning.

1.1.1 Material Informatics

Material informatics databases have already began evolving. In 2011, the Materials

Genome Initiative [8] was created as a direct parallel of the Human Genome Project

[9] in an effort by the US Government to “discover, manufacture, and deploy advanced

materials twice as fast, at a fraction of the cost.” Other projects have sprung up, such

as the Integrated Computational Materials Engineering (ICME) [10], and the Advanced

Manufacturing initiative [11], the Materials Project [12], and AFLOW [13]. Even more

recently, an Executive Order has been announced to maintain “American Leadership in

Artificial Intelligence” with the aim of increasing adoption and use of data science across

diverse scientific fields [14]. Such initiatives brought about a number of methods from

information statistics to jointly optimize materials through machine learning. One major

challenge of materials design is determining the optimal composition and processing to

obtain desired properties. Prior to recent years, time-consuming Edisonian trial and error
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was the norm. The powerful combination of machine learning methods, high-performance

computing, and modern databases displays great promise to revolutionize the development

process, lower processing costs and accelerate the pace of materials discovery.

Recently, theory has become powerful enough to accurately predict materials charac-

teristics. Even with these advances, the sheer combination of possibilities in the parameter

space, even with logical elimination of poor choices, the materials landscape is far too large

to compute. Thus, it has been found that the best approach may be an iterative approach

that learns from available data using statistical inference. The typical optimization process

consists of 1) develop a model that enables prediction of property y from x materials, 2)

utilize these models to predict the optimal x to synthesize next, and 3) measure y from

this new x material and add the new dataset to a database. Step 3 provides difficulty as a

factor of the arduous process necessary to synthesize a new material and accurately mea-

sure a known property. Therefore, it becomes productive to synthesize as few compounds

as possible to remove the bottleneck.

At the forefront combining statistical inference with high-throughput is an approach

known as adaptive design strategies using uncertainties [15]. Machine learning advances

have shown that picking the best predicted option from the regressor may not be the

optimal choice when the predictions have associated uncertainties [16]. This is particularly

important when small data sets are used to extrapolate to large unexplored chemistry

search space, such as in materials design. Instead, an additional model is used to measure

the errors associated with the prediction, and choose the next material that maximizes the

“expected improvement”, which depends on both the predicted properties and the predicted

error associated with them. This method is very useful, as it can balance exploration and

exploitation of the data. Here, exploration is the wide searching of many very different

possibilities, while exploitation involves iterating over similar possibilities. During initial

modeling, exploration is very important to identify many different possibilities that may

be more optimal. However, as the model approaches the targeted property, exploitation
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becomes the driving factor. Two excellent algorithms for this method are Efficient Global

Optimization (EGO) from 1998 and Knowledge Gradient (KG). Both algorithms have

enjoyed widespread success outside the field of materials science, especially in process

design, and can be used effectively to escape local optima. These algorithms optimally

choose between the tradeoff of exploiting the materials closest to those giving best results

and exploring completely new materials. Additional exploration will add to the overall

dataset and improve the quality of the predictions. Overall, adaptive design is a powerful

general method to select the next best material to test.

Figure 1.2. A schematic design loop showing adaptive design strategies that incorporate
machine learning with iterative feedback. KG, EGO, and MOCU stand for knowledge
gradient, efficient global optimization, and mean objective cost of uncertainty, respectively
[6].

Figure 1.2 demonstrates the basic design principles of adaptive design. A database

involving many different characteristics and features of materials is used to train a classifier
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(a tool to predict what category the data belongs to) or a regression algorithm that chooses

the materials it predicts should provide the best properties. Out of theses predicted

materials, an adaptive design algorithm chooses the material that has the maximum

expectation based on the error in the prediction process. This material is selected for

further validation and testing and eventually gets added back to the database. This process

can drastically decrease the materials testing necessary to reach new optimal materials.

Adaptive design strategies have garnered utilization in high-throughput methods to

optimize material chemistry [6]. This in combination with the popularization of density

functional theory directly lead to chemistry optimization capably being performed and

screened computationally. There have been many strategies utilizing modern optimization

techniques for solving the chemistry as a black box function [15]. Density functional

theory allows bulk characteristics of crystals and defects to be calculated with relative

ease. However, there are few studies that aim to quantify and utilize the microstructure of

a material, despite the advantage presented in experimental works. Data-driven materials

design has been applied successfully to materials chemistry challenges, but there still are

many challenges that need to be solved before the same can be applied to optimize the

structure of materials. Materials structure, specifically microstructure plays a major role

in defining material properties.

A common paradigm ubiquitous in materials design is creating understanding of

processing-microstructure-properties (PSP) relationship for a given material. This focus is

ideal for creating key concepts in engineering new materials and focuses on the processing

conditions to create a material, the microstructure that defines the material, and the

properties obtained [17]. However, in practical applications the materials contain many

different phases present on a microscopic scale that are linked with drastically different

properties.

Material properties, such as tensile strength, elongation, fatigue life, creep life, and

toughness ultimately depend on the arrangement of these microstructural features, which
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in turn arise from a combination of the processing conditions and operating conditions

the material is exposed to. To better understand the properties of the microstructure,

phenomenological principals such as the Hall-Petch relationship are commonly employed to

link them to both the processing conditions and the properties of a material. These models

ultimately fail to capture the relationship between the process-microstructure-property

relationship. Chemical analysis in combination with phenomenological models can only

provide pieces of the full understanding necessary to optimize material properties. A

more complete understanding can be developed by recognizing features present in the

microstructure. Unfortunately, the microstructure has remained a difficult object to

quantify and learn from. With the aid of machine learning, it is possible to digest visual

microstructure characteristics and in turn, relate them to properties.

1.2 Machine Learning Concepts

Machine learning is a field pioneered by computer scientists that gives computers

the ability to learn and predict without being explicitly programmed [18]. As a result

of this lack of needing explicit programming, it is a powerful tool that can explore the

construction and variation of algorithms that can make predictions from data. Typically

recognized as a subset of artificial intelligence, machine learning includes the subfields of

data mining, unsupervised learning, and predictive analytics. Machine learning is limited

by the methods of pattern-finding available, the scope of the parameter domain, and quite

nearly always by the training data available. These pitfalls are commonly overlooked and

lead to machine learning algorithms failing to deliver.

Conversely, it has been shown that machine learning works quite well when applied to

suitable branches of science within a narrow, well-studied domain. The example cases of

bioinformatics and cheminformatics are a testament to the true power of machine learning

in science [19–23]. In material informatics, as it was in other fields before it, the struggle is

primarily due to a dearth of expertly labeled data in a coherent collection. Many efforts are



8

currently on-going to coordinate data curation that aim to fix this issue in the long term.

Materials science has built up large amounts of data available in publications over the last

decades dealing with many critical problems. However, collecting that information into

cohesive relational databases is a task that requires significant community contribution

and coordination. In many cases, sufficient data has not been provided and overfitting,

can occur on small sample sets. For the work prepared in this document, much of the data

was able to be generated on a personal computer. This allows us to develop prototypes

that can be leveraged later on as new data collections are built.

Machine learning is typically classified into two broad categories. The first is unsuper-

vised learning, in which no labels are attached to the input data and it is expected to find

a structure inherent in the data. A label is simply an attribute of the data without human

bias. For instance, given an image of aluminum microstructure, a label could describe

its composition, or processing conditions, or even just the type of alloy. Unsupervised

learning is a powerful form of learning that can lead to many patterns and trend analysis

in the data.

The second category of machine learning is supervised learning, during which the

computer is fed a series of inputs which correlate to specific outputs and its objective

is to predict the output. The supervised learning domain can be further dissected into

classification and regression problems. In classification, the inputs are segregated into

discrete classes and the learning device must model that assigns inputs to one or more of

these classes. For instance, one might show a model pictures of different types of animals

and expect the desired output to have the highest score. Regression is another common

type where the outputs are continuous, rather than individual groups. To build a system

that can predict the cost of homes, one would first collect information about the houses

being sold, such as the location, square feet, rooms, etc. During training, the machine

learning algorithm would be fed this information and the output would be expected to

be as close the actual sale price as possible. Although it is sometimes possible to model
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classification as a regression problem by assigning the classes to a number and trying to

regress between them, this method makes the underlying assumption that there is a linear

relationship between the classes and that the ones following a class may be closer than the

rest.

During the training process, we compute an objective function (also called a loss

function if it should be minimized) that measures the error (or distance) between the

output scores and the desired scores. The machine modifies some parameters internally in

such a way to reduce this error. These parameters are often called weights and are real

numbers that define the relationship between the input and output. For instance, in the

house price prediction example, the loss function could simply be the difference between

the actual selling price and the predicted selling price. The objective function can then

be seen as a hilly landscape, one with many valleys of differing depth [24]. Although the

objective may be to identify the deepest valley, it can be easy to get stuck in more local

minima. Furthermore, the shape of the “landscape” can change drastically depending on

the data available.

The limitation of this available data provides some interesting problems. It is possible

for a model to generalize poorly where it exhibits bad performance on data it has never

seen before, but do extremely well on the data that it was trained with. This phenomenon

is known as over-fitting. Solving over-fitting is a sub-field of its own, but typically a close

solution can be found through limiting the number of parameters and regularization.

Over-fitting is a problem particularly relevant in the field of materials science where

experimental data is costly. Figure 1.3 provides an overview of how the data-driven design

philosophy applies to materials science. There are many avenues of data creation and

generation.

Despite the difficulty involved, machine learning aspects of the process-structure-

property linkage can provide new insight and automate the material selection and screening

process. Many mechanical properties, such as yield strength, fatigue life, creep life, and
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toughness result from the microstructure of a material. Regression methods have provided

a foundation for modeling chemistry-property relationships in materials science [6, 15, 25].

However, these methods often fail to take into account the nature of defects, secondary

phase particles, grain boundary interactions and other features that take place on the scale

of the microsctructure. Experienced metallurgists often understand that by observing the

microstructure, they can target processing parameters to see their desired properties. For

example, for steel it is understood that the coexistence of more microstructural features

can lead to decreased crack propagation and increased fatigue life. Such qualitative

measurements are difficult to attribute to any single change in processing parameter and

introduce bias into the characterization process. Bias is introduced as an expert is required

to first recognize and identify key microstructural features. Despite recent advances in

microstructure recognition and analysis, the field depends heavily on expert knowledge to

identify features of interest for quantification. Therefore it is desirable to explore methods

of analyzing and predicting microstructure in a quantitative fashion which do not require

a priori knowledge of features of interest to automatically pick features that have the

most impact on properties.

To address the concerns presented by machine learning microstructure, new tools are

needed that are capable of processing image data in an efficient manner. Neural networks

are a strong component of machine learning that have gained traction in recent years and

shown great progress in images and multidimensional data.

1.2.1 Neural Networks

An artificial neural network consists of multiple layers each filled with computational

units called neurons. Each neuron takes a set of inputs from the previous layer (the first

layer being the input to the network) and multiplies it by a weight and shifts it by a bias.

It then applies an activation function to map the value over a nonlinear space, and the

resulting output or activation is passed to the next layer. Figure 1.4 demonstrates the
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Figure 1.3. Schematic detailing data-driven materials design philosophy [26].

basic topology of a simple neural network consisting of a single hidden layer.

In this basic fully-connected state consisting of neurons that are fully connected to

each neuron of the next layer, neural networks are hard to train and grow computationally

prohibitive as the network size increases [28]. There have been many adaptations to the

basic principles in an effort to decrease the drawbacks of neural networks. These adaptations

take the form of better activations functions, loss functions, dropout, regularization,

convolutions, and other ideas that have been incorporated into modern network designs.

In training networks, it is often desirable to produce an algorithm that performs well

on not just the training data, but also on new inputs. Regularization is a method used

to decrease the test sample error even at the cost of increased training error. Through

regularization, the algorithms can be tuned to perform better for a specific objective. One

of the most common kinds of regularization is the L2 parameter norm known as weight

decay. This strategy encourages weights to be near to the origin by adding a term to the

loss function [29].

Activation functions are applied to the output of the neuron. These activation functions
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Figure 1.4. (left) A neuron with inputs x, weights wi and activation function σ with bias
w0. (right) A neural network with one hidden layer [27].

are necessary so that the network does not become a linear function of its input. The

most common activation function today is the rectified linear unit or ReLU defined by

g(z) = max (0, z) [30]. This function is piecewise linear, as it maintains its linearity for

positive values but is 0 otherwise. Because of this near linearity, rectified linear units are

able to preserve many properties that make linear models easy to optimize.

Today, networks in which a neuron in one layer is connected to each of the neurons

in the next layer (fully connected networks) are rarely used directly for image analysis.

Due to a very large number of parameters, fully connected layers are difficult to train

and further require an extraordinary amount of computer memory. Instead, other options

have been investigated to great success, such as convolutional neural networks, which

outperformed every other method in the 2011 ImageNet classification competition [31].

1.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) have been recognized in recent years as state-of-

the-art for computer vision tasks [32]. A CNN is a specific type of artifcial neural network

that can utilize layers with convolving filters (called kernels) that are applied to local

features [33]. Essentially, a CNN is a neural network that uses convolutions in place of

general matrix multiplication in at least one of their layers. Figure 1.5 presents an example

of a kernel sliding along an input image to produce the next layer of output. The output
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of such layers are called convolution maps. Convolutions are important as they leverage

sparse interactions, parameter sharing, and equivariant representations. Convolutions also

provide the very important benefit of being able to deal with varying image sizes.

In a traditional neural network, every output unit interacts with every input unit.

Convolutional networks typically have sparse interactions by making the kernel smaller

than the input layer. The input image may have millions of pixels, but small features

such as edges can be detected with kernels of only tens of pixels. This has the advantage

of lowering the number of parameters and correspondingly lower memory costs. Fewer

parameters to optimize also means a more stable and statistically efficient system. Neurons

in deeper layers of a convolutional neural network may indirectly interact with more of

the greater image. This allows complex interactions and features over large range-scales to

be taken into account.

Figure 1.5. A two-dimensional convolutional operator demonstrating the kernel K sliding
across the input image I to produce I · K [27].

Parameter sharing is another equally important advantage of CNNs where the same

weight is tied to the value of weights elsewhere. In the instance of convolutions, each

weight of the kernel is applied to every position on the input layer. This implies that much

fewer parameters are needed to obtain useful information about the layer. Specifically,
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convolutions have a particular form of parameter sharing called equivariance. That is, as

the input changes, the output will change in the same way. A function f(x) is equivariant

to function g if f(g(x)) = g(f(x)).

A convolutional network layer typically consists of three steps. First, the layer performs

many different convolutions on the same input image with different kernels to produce a set

of linear activations. Second, these linear activations are passed to a nonlinear activation

function, such as the rectified linear unit. Finally, a pooling function is used to coarse

grain the image. During pooling, a statistic is taken over a small region of the input layer,

such as the maximum in a 3 × 3 pixel region. Through this process of convolving and

pooling, CNNs develop knowledge of very complex correlations over large length scales

which makes them an ideal candidate for image recognition and microstructure analysis.

1.2.3 Challenges with Microstructure

The applications of large multilayer neural networks are limited in their capacity to

many scientific fields as a result of the requirement of large amounts of training data

necessary to prevent over-fitting. Neural networks often require 100,000s of training samples

to generalize to a large enough subset. As of this time, there are no materials databases

of that magnitude publicly available. As a result, using pre-trained neural networks via

transfer learning is often preferred [34–36]. Transfer learning is a process where a network

that has been trained for one task gains inherent knowledge about the images or features

it is sampling that can be used to describe features in completely unrelated tasks. These

transfer learned neural networks may not perform as well as a network trained with the

intention of microstructure analysis. The transfer learned process relies on non-specific

information as well as some form of dimensionality reduction. They present a very limited

ability to analyze the microstructure and the analysis cannot be reversed currently (the

transfer learned network could not predict a microstructure from a desired property

set). Furthermore, current networks are trained for two dimensional image classification.
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Electron backscattered diffusion and other microstructure analysis methods produce three

dimensional observations of a sample which are required for a complete analysis. Transfer

learned methods would not be able to process higher dimensional images and much of this

information would be lost.

1.3 Data Generation Methods for Machine Learn-

ing

In order to build a model, neural network or otherwise, first there must be data.

There are many apparent sources of data that could be applied. Ideally, this would

collect and condense many multifaceted research efforts into one large database to make

extensive use of real-world data. However, many good simulation tools exist that can

provide a stepping stone to prototype and test models without resorting to expensive and

time-consuming experimental methods. These tools provide results within a reasonable

accuracy of experimental methods and contain many of the necessary complications seen

in experimentally. This makes them much better suited than many of the toy problems

models are currently tested on, such as Gaussian Random Field [37]. Although noise

algorithms produce a somewhat detailed microstructure, this pseudo-microstructure lacks

the long-range interactions typically observed.

The recent trends in computational materials science have largely been accomplished

through high-throughput simulation techniques. The most accurate of these simulation

methods are based on quantum mechanics (QM) such as ab initio post-Hartree-Fock

chemistry and quantum Monte Carlo (QMC). Such simulations are able to ascertain a

number of useful bulk material properties, including atomic crystal structure, equations of

state, melting points, elastic moduli, defect formation energies, and many other properties.

However, the usefulness of QM methods is limited at larger length scales and it is unable

to calculate properties that arise as a function of long-range behavior, such as plasticity

in metals, polycrystalline behavior, particle coarsening, and grain boundary inclusions.
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Multiple methods of simulation are necessary to form a more complete analysis of the

material.

Larger scale methods such as molecular dynamics or phase-field require experimentally

derived energies and fields and may altogether make assumptions that are invalid for the

given material. Together, the techniques may be employed jointly to develop a multiscale

model. In the following sections, we discuss different techniques to generate data for

machine learning at different length scales.

1.3.1 Density Functional Theory

Density functional theory is one of the most popular quantum mechanical approaches

to date as it can potentially calculate very accurate results, but at high computational

cost. It is considered an ab initio method, derived directly from theoretical principles with

no incorporation of empirical parameters or experimental data. However, common practice

is to use functionals that are derived from empirical data. It is used to determine the

electronic structure, or the probability distribution of electrons in materials. The electronic

structure is obtained through the solution of the Schrödinger equation associated with

the Hamiltonian. The molecular orbitals are determined through an iterative process of

assuming static atomic positions and finding an approximate solution to the wavefunction.

Once a solution to the wavefunction is found, the gradient is used to update the positions

of the atoms. The gradient is determined by taking the derivative of the total energy with

respect to the position of the nuclei. DFT expresses the total energy in terms of electron

density, rather than explicitly through the wavefunction and provides a viable alternative

to post-Hartree-Fock methods for large systems.

As a result of its low computational costs and accuracy, DFT is considered a de facto

standard for atomic simulations today. It is accurate enough to be directly comparable

with experiment in many cases [38]. However, it is limited in the number of atoms that

can be reasonably observed; DFT is limited to a scale of a few dozen atoms. This limits
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its ability to observe macroscopic phenomenon. Furthermore, without cluster expansion

and ab-intio molecular dynamics, DFT cannot observe kinetically limited reactions. DFT

requires large amounts of memory and requires a small supercomputing cluster to obtain

results in a reasonable time frame. Calculations can take as low as a few minutes for bulk

calculations to tens of thousands of CPU-hours for more complex systems. Furthermore,

calculations of band gap in semiconductors and some intermolecular interactions (such as

van der Waals forces) are difficult to calculate with DFT. Overall, DFT is an extremely

popular tool to date for calculations in solid-state physics, but it is limited on length and

time scales. However, information from DFT can be used in other methods suitable at

larger length scales, such as molecular dynamics or phase-field modeling.

1.3.2 Molecular Dynamics

Molecular dynamics (MD) was one of the first simulation methods pioneered by Alder

and Wainwright and Rahman in the late 1950s and 1960s. It has since been widely adopted

as a staple tool in many areas of physics and chemistry [39]. Classical MD treats atoms

similarly to the “ball and stick” model. Atoms are soft balls with elastic radial cutoffs that

correspond to bonds. With the right applications of force fields derived experimentally or

from QM theory, classical MD can be very powerful. It is capable of modelling millions of

atoms simultaneously. It is capable of modeling the evolution of a system over small time

scales. This is extremely useful in many fields, particularly molecular biology.

As mentioned briefly earlier, ab initio quantum mechanics based schemes are rising in

popularity due to their accuracy and efficiency. However, DFT cannot access timescales

larger than a nanosecond. In this regard, the field of quantum MD has been developed.

Quantum MD uses the ingredients from quantum mechanical theory, such as the potential

energies and atomic forces. However, the evolution of the atoms is performed classically.

This allows MD to retain ab initio accuracy while still performing temporal evolution on

many atoms [40].
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Like other simulation methods, molecular dynamics is limited by the choice of potentials

and interatomic forces. Molecular dynamics is able to simulate much larger length scales

than DFT, allowing it to observe much more complex systems. However, quantum MD

faces a trade-off of accounting for all valence electrons and system size. Further, quantum

MD techniques are still limited to the ground-state adiabatic surfaces. The most severe

problem for MD is the limitation of time-scale, which requires very small integration steps

which makes modeling processes that take microseconds or even seconds very difficult.

1.3.3 Phase-field Modeling

Phase-field modelling is a powerful mathematical tool for solving mesoscale interfacial

problems [41]. It has previously been employed to predict 3-D microstructure evolution

kinetics in many diverse material processes, such as ferroelectric and ferromagnetic phase-

transition, phase-separation, solidification, precipitation, and twinning. It is based on

fundamental thermodynamic and kinetics and is able to model the temporal evolution

of the microstructure [41–45]. Phase-field does not require any prior assumptions of the

microstructure morphology, and it does not explicitly track the location of interfaces.

Furthermore, phase-field can efficiently perform 3-D representations of material processes

with both short and long range interactions [46].

A very recent case leveraging the advantage of phase-field modelling can be seen in

the field of irradiated nuclear materials [47]. Atomistic methods, such as DFT, molecular

dynamics, kinetic Monte Carlo, cluster dynamics, and rate theory, have been employed

to determine the thermodynamic and kinetic properties of irradiation defects. However,

it was seen that these combined methods still face significant challenges in determining

properties such as hardening and ductile-brittle transition temperature due to their reliance

on microstructure. In this case, the phenomenon happen on a length scale between

nanometers to micrometers and important processes occur in femtoseconds but cascade

over years. Phase-field is uniquely suited to these problems to cover the temporal evolution



19

over larger scales [47].

However, phase-field is not without its own unique set of limitations. The phase-field

method relies on accurately experimentally determined constants. The error accumulates

with the error in these constants. These constants are often difficult and expensive to

measure and the systems which can be observed are limited to measured and published

values. Furthermore, phase-field, like other non-ab-initio methods, is limited by the

systematic description and mathematical formulation of each defects it wishes to encompass.

As a result, the phase-field method typically only provides qualitative and semi-quantitative

answers as an observation of trends. Most real processes are much more complicated

than what is modelled by phase-field, and only a limited set of energies can be taken into

account. As a result, the trend is captured, but not physical values. On the accuracy

of phase-field, as a continuum level technique, each grid point cannot represent smaller

than one lattice point, as it cannot resolve features smaller than the lattice parameter.

Despite these limitations phase-field has been used successfully to model a large variety of

problems in materials science and offers a tool to observe the evolution of heterogeneous

microstructures. It offers a computationally efficient method for observing real trends and

features at the continuum scale.

1.4 Ferroelectric Materials & Microstructure

A ferroic is a material that adopts a spontaneous, switchable internal alignment.

Despite the name, few ferroic materials contain any iron at all. Figure 1.6 shows the

primary ferroic parameters and the relationship between them. A ferroelectric material is

a type of ferroic in which an electric field induces a switch in the electric dipole-moment

alignment. Ferroelectrics are of considerable interest due to their high-ranging applications

in electronic and electro-optical devices, such as acoustic sensors and actuators [48].

More specifically, a ferroelectric can be described as an insulating system with two or

more discrete states of different nonzero electric polarization in zero applied electric field
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[49]. This persistence of polarization without the presence of an electric field is referred to

as “spontaneous” polarization. This region of spontaneous polarization with a uniform

direction is known as a ferroelectric domain. A system considered ferroelectric must

be able to switch between these states of alignment in the electric dipole-moment with the

presence of an applied electric field.

Figure 1.6. Diagram of the relationship between the ferroic order parameters. The electric
field E, magnetic field H, and stress control the electric polarization P , magnetization M ,
and strain ε, respectively [50].

The key concept in understanding ferroelectricity is to develop an intuitive grasp of

electric polarization. For a defined system of constant volume, the electric polarization P

is defined as
~P = d~p

dV
(1.1)

where ~p is the dipole moment, obtained from the charge density, and V is the system

volume. However, for an infinite crystal, this definition is not valid. For an infinite crystal,

the polarization is identified as an integrated current through a transformation from one

variant to another, and is expressed as a Berry phase. In this formulation, the polarization

is not a vector quantity, but a lattice.

Switching between alignment states is understood to take place on a scale larger than
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Figure 1.7. (a) A typical polarization curve for a nonlinear dielectric. Ps is the saturation
polarization, Ec is the coercive field [51]. (b-e) Schematic of the domain structure in a
polycrystalline ferroelectric corresponding to the points M, N, O, and P, respectively [51].



22

the unit-cell. Switching is believed to occur by the movement of the domain wall and

corresponding change in size of the domains. Figure 1.7 shows the common polarization

hysteresis of a two-dimensional tetragonal material with four directions without an applied

field. It can be seen to start with random polarization directions that get aligned as

an electric field along the positive y direction is applied. At the top it reaches a linear

zone where all the domains have aligned to be in the direction of the applied field or

perpendicular to it. As the magnitude of the electric field decreases to zero, not all of the

domains shift back to their original alignment. This creates the hysteresis affect where a

non-zero polarization is now observed in the absence of an electric field. This retained

polarization is called the saturation polarization Ps. As the electric field is applied in the

opposite direction, the polarization eventually reaches zero. Although it was previously

believed that the domain magnitudes (here in the −y and +y) were equal in magnitude, it

has been shown [52] that the domains in the perpendicular direction are still apparent in

the material and represent the majority of the magnitude at this point. The electric field

required to clear the polarization is called the coercive field. In this canonical form, the

ferroelectric hysteresis loop is symmetric. Different phenomenon during repeated electric

cycles can lead to a non-symmetric hysteresis.

The creation of a non-zero spontaneous polarization results from the arrangement of

ions in the crystal structure. Two types of ferroelectrics discussed here are the conventional

ferroelectrics where the position of the ions dictates the polarization, and electronic

ferroelectrics which are dependent on charge ordering of multiple valences. For a nonzero

spontaneous polarization to occur, the crystal must have a polar space group. However,

the crystal must also be able to switch between different variants with an electric field,

which drastically reduces the number of ferroelectric crystals. A small distortion of a

greater symmetry through polar displacements coupled to the lattice strain is common

[53].

The wide range of applications lends ferroelectric and multiferroic materials to be
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a popular research focus of the last couple decades. However, despite their apparent

popularity there still remains many unexplored avenues associated with their production

and evolution. The complex chemical interactions and the microstructural domain evolution

present within ferroelectric devices makes multiferroics and, by extension, ferroelectrics an

excellent candidate for machine learning applications.

1.5 Thesis in a Nutshell

Computational materials science can enable much more efficient materials design and

development. This work uses Deep Learning, a popularized term for artificial neural

networks, to build a model that can ultimately connect processing-structure-properties

solely using modern neural network methods without any explicit programming about

the nature of the material being modeled. Producing an intelligent model that can

predict material properties would help guide further exploration. A model without explicit

programming is more easily adapted to new problems and does not carry any bias of an

expert. However, such a model is difficult to design because not all processing parameters

may be known, or are not known exactly (there is often noise in experimental data). Thus,

predicting properties based on processing parameters alone is often insufficient. Instead,

material microstructure may be assumed for ideal conditions and property predictions based

on the idealized microstructure. This presents an alternative view where the microstructure

that is derived from processing parameters is used to fingerprint the material properties.

To reiterate, the primary goal of this research was to use modern Deep Learning tools

to establish a link between processing-structure-properties in a general form. To that end,

the general outline of this document is as follows. Chapter 1 introduces the topics being

covered in the remainder of this work. It briefly touches on the tools used, and outlines

the justification for this work.

Chapter 2 discusses previous works with similar objectives and recent works that make

use of deep learning.
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Chapter 3 overviews the techniques used to produce the data and details how the

models were created.

Chapter 4 presents a general model used to link processing conditions to microstructure

in the case of bi-crystalline lead-titanate. It was trained using phase-field simulations.

Further, a second model is presented that can link microstructure to properties.

Chapter 5 extends the general model to poly-crystalline microstructure. Furthermore,

the model is shown to learn a weight of importance for the input. It is shown that different

energetics contribute to different parts of the microstructure.

Finally, Chapter 6 summarizes and concludes the work while offering some directions

for future work.
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Chapter 2: Literature Review

The study and design of microstructure is ubiquitous in the field of materials science, but

requires domain specific expert knowledge. Further complicating studies, microstructure

incorporates many facets of materials science from large scale features observable with

optical microscopy to small nano-scale strains to ferroelectric and ferromagnetic interactions.

The defining feature of microstructure is the spatial inhomogeneity that separates a

material from its pure defect free single crystalline counterpart.

Ivry et al. observed that microstructure in ferroelectrics is intriguing because it exhibits

both long-range and short-range organization [54]. Essential microstructure information

may include long-range interactions such as the distribution of ferroeleastic domains across

neighboring grains. Shown in Figure 2.1, there are often patterns that form over a long range

(distributed across several grains) that appear in microstructure. Capturing both long-

range and short-range interactions is a difficult task to perform and often reconstruction

algorithms are unable to do so without explicit programming.

Much of the challenge in identifying microstructure is the inherent stochastic nature of

them. If, for example, one took an optical microscopy image of an aluminum sample and

then moved the microscope to the left a centimeter and took another optical image, one

would notice very similar characteristics between the two samples. They are, of course,

the same material. They have similar properties, such as grain size distribution, grain

shape, grain boundary width, and so forth. However, the images are completely different

from a computer’s point of view; the pixels are very different between the two.

To recognize the same microstructure despite very different pixels, the challenge is to

identify the characteristic statistics of the microstructure (grain size, etc.) that define it

and be able to produce equivalent microstructures that maintain these attributes. This task

is commonly called Microstructure Characterization and Reconstruction. It incorporates

techniques that provide some way to identify core components of microstructure and
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methods to reconstruct material microstructure from an identifying fingerprint.

Figure 2.1. Long-range linear organization of ferroelastic domains from Ivry et al. [54].

2.1 Microstructure Characterization and Reconstruc-

tion Techniques

There are tools available to explore microstructure reconstruction and the relationship

between processing, microstructure, and property. However, these tools are limited to

very specific goals. A comprehensive review of current microstructure characterization and

reconstruction methods is provided by Bostanabad et al. [55]; these can be categorized

into the following:

1. Correlation function methods

2. Physical descriptor methods

3. Gaussian Random Field (GRF) methods

4. Markovian Random Field (MRF) methods

5. Deep Belief Network methods

6. Spectral Density Function (SDF) methods, and

7. Transfer Learning methods

8. Generative Neural Network methods
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These existing techniques have limitations in their ability to link processing conditions

to final microstructures. Methods 3, 4, 5, and 7 are based on rebuilding a target image,

and do not have parameters to control the target based on processing conditions. The

remaining methods (1, 2, and 6) involve a significant amount of information loss as

dimension reduction is used to transform high-dimensional microstructure characteristics

into a small set of key characteristics. This work implements and comments on the final

method, a generative neural network (8).

2.2 Deep Learning Microstructure Characterization

and Reconstruction

When this project was started, using generative neural networks was a novel idea that

combined some of the best new technologies coming out of computer vision, machine

learning, and materials science. During the creation of this thesis and throughout the

research project, other works have emerged using deep neural networks in relationship

to microstructure characterization and reconstruction. The works discussed here focus

solely on characterization of microstructure and not on the relationship microstructure

has to processing or properties. These are contrary to this work, which attempts not to

characterize the microstructure, but to build a model to tie in processing parameters to

microstructure and microstructure to properties.

Lubbers et al. [35] first used bilinear CNN representations to synthesize lamellar

structures. This was the first known use of neural networks to generate microstructure-

like features in materials science. They used a network previously trained on natural

images (cars, people, birds, etc.) to capture the base texture of the microstructure, in a

method known as transfer learning. Lubbers et al. demonstrated that neural networks

seemingly are able to identify and reproduce the defining features of microstructure. In

Figure 2.2, each image is passed through a neural network trained to classify natural

images. Even though the network’s classification metric is useless in the context of a
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microstructure image, the network still parses many of the image features along the way.

By extracting the activations at multiple layers in the network, it is possible to create

a second image that matches those statistics. The result is a new microstructure that

carries the same properties, but is ultimately different. This is one of the core challenges

in MCR, identifying and preserving the statistics of the microstructure without explicitly

programming all of the important features.

Figure 2.2. Texture synthesis of materials microstructure using a CNN. The CNN
synthesizes each “Reconstruction” microstructure based on a single “Original” image.
Reproduced from Lubbers et al. [35].



29

Lubbers et al. then generated a representative microstructure-like database using noise

algorithms and show that they can reproduce the input parameters from the microstructure.

This was done using dimensionality reduction across all the image statistics such that each

image was passed through the pre-trained network and compared to every other image.

This process is extremely costly and needs to be reperformed each time a new image is

added.

Chowdhury et al. similarly used transfer learning to classify different dendritic mor-

phologies on a self-produced database of experimental microstructures collected over the

course of three years [34]. Decost et al. [36] analyzed 600 micrographs of high carbon steel

and found that combining the statistics gained from transfer learning with a fingerprint

achieved through vector of locally aggregated descriptors (VLAD), the classification rate

was 98.9%. This method laid the path for identifying the presence of individual features

at the microstructure level and using it to predict the relationship to properties.

Yang et al. produced a model for microstructure reconstruction using a similar technique

to that used in this work [37]. Yang et al. chose to pursue a Generative Adversarial Network

(GAN), which operates in a slightly different manner to the Variational Autoencoder

(VAE) design used in this work. Details of the VAE will be discussed in the following

chapter. The GAN design does not use a traditional loss function to compare the predicted

microstructure to a real microstructure. Instead, a separate neural network component

called a discriminator is used, as can be seen in Figure 2.3. The discriminator is learning

to separate the fake microstructures from the real microstructures while the generator is

attempting to learn to fool the discriminator. This allows the network to pick up core

features without having identical images. Unfortanately, our early results showed that such

a model did not perform well at high-resolutions. For more information, see Figure A.3.

Azimi et al. used a CNN without explicit coding of feature extractions to classify

optical steel microstructures with an accuracy of 93% [56]. The categories were Martensite,

Tempered Martensite, Bainite, and Pearlite. Kondo et al. used a similar comparison with
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Figure 2.3. Schematic architecture of the GAN used in Yang et al. [37].

a CNN applied to ceramics to determine ionic conductivity [57].

2.3 Phase-field

The phase-field model is a mesoscale approach applied to understand the evolution

of the microstructure in a variety of materials [41]. The phase-field model represents the

state of the microstructure through a continous variable known as the order parameter

φ. The order parameters changes diffusely across the domains or interfaces, and has

a known width. This is directly opposite a mathematical representation with a sharp

interface. Common variables used in the phase-field simulations are concentration, phase,

or polarization that define the composition or structure. Phase-field simulations often

utilize thermodynamic and kinetic parameters as input constants.

An initial microstructure can be generated by assuming small randomly perturbed

values of order parameters at each grid point. The energetically driving force for mi-

crostructural evolution is calculated and evaluated in the evolution equation to obtain the

final microstructure. The evolution occurs according to the Cahn-Hilliard [58] nonlinear
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diffusion equation and the Allen-Cahn [59] (time-dependent Ginzburg-Landau) equation:

∂ηp(~r, t)
∂t

= −Lpq
δF

δηq(~r, t) (2.1)

∂c(~r, t)
∂t

= M∇2 δF

δc(~r, t) (2.2)

where r is the position vector, t is time, Lpq is the mobility of the non-conserved variables,

M is diffusivities of the species, c is the conserved field variable, ηi are the non-conserved

field variables, and F is the total free energy of the system. The total energy should take

into account both local and long-range interaction energies. The description of the system

comes in from the definition of the free energy functional, which in its most basic form

takes into account the chemical energy, phase gradient energy, and composition gradient

energy.

F (f, c, η) =
∫

V

[
f(c, η) + κc

2 (∇c)2 + κη

2 (∇η)2dv
]

(2.3)

where κc and κη are the composition and phase gradient energy coefficients, respectively.

Phase-field has become attractive for its use in studying the evolution in solidification

[60], spinodal decomposition [61], Martensitic phase transformations [43], grain growth

[44], and ferroelectric domain switching [62]. It has been extended multiple times over the

past couple of decades to study the effect of strain on domain structure in ferroelectric

thin films, as well as the combined effects of interfacial dislocations on phase stability [45].

As described later in greater detail, the evolution of phase-field has tightly followed

its applications and derivations for unique material surfaces. The chemical energy, phase-

gradient, and composition gradient energies are local energetics, which take into account

short range interactions with their neighbors. Further introducing long-range terms in the

form of global elastic energy and electrostatic energy, results in new long-range interactions.

Phase-field has experienced great success and growth to many areas working with the

evolution of ferroelectric domains. Early on, L.Q. Chen used the continuum phase-field
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model to simulate grain growth [63]. The effect of thin films was explored by Y.L. Li [64].

It was then expanded to polycrystalline work by Choudhury [65]. Further refinement was

performed by Zhang and Bhattacharya on domain models [66, 67] and Su and Landis in

2007[46]. In a recent effort to address a major limiting concern in phase-field, Völker et. al

determined phase-field constants from ab initio density functional theory [68]. As a result,

we will explore the use of phase-field as a basis for data generation to train our machine

learning model.
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Chapter 3: Methods

3.1 Phase Field Data Generation

The numerical solution of the spatial and temporal evolution of the PbTiO3 ferro-electric

domain structure was determined via the time-dependent Landau-Ginzburg-Devonshire

equations [69]. The relevant Landau-Ginzburg-Devonshire equations are as follows:

∂Pi(x, t)
∂t

= −L
δF

δPi(x, t) , (i = 1, 2, 3) (3.1)

where P represents the vector of ferroelectric polarization, x is the position vector, L is a

kinetic coefficient related to the domain mobility, t is time, and F is the total free energy.

The total free energy is described by:

F =
∫

V
(fbulk + felas + fgrad + felec) dV (3.2)

where fbulk(Pi) represents the Landau-Ginzburg-Devonshire uniform unstrained bulk

energy, felas(Pi, εkl) is the elastic energy density, fgrad(∇Pi) is the gradient energy density,

and felec(Pi, Ei) is the electrostatic energy density, over the volume V . The bulk free

energy density is expanded in terms of the local polarization [65]:

fbulk = α1
[
(P L

x )2 + (P L
y )2 + (P L

z )2
]

+ α11
[
(P L

x )4 + (P L
y )4 + (P L

z )4
]

+

α111
[
(P L

x )6 + (P L
y )6 + (P L

z )6
]

+

α12
[
(P L

x P L
y )2 + (P L

y P L
z )2 + (P L

z P L
x )2

]
+

α112
[
(P L

x )2
(
(P L

y )4 + (P L
z )4

)
+ (P L

y )2
(
(P L
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x )4

)
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(
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)]
α123(P L

x P L
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z )2

(3.3)
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where α1, α11, α111, α12, α112, α123 are the dielectric stiffness and higher-order stiffness

coefficients under stress-free boundary conditions, and P L
x , P L

y , P L
z are the polarization

components local to each grain’s orientation.

Further details of the expressions for the energy density relations are expanded in ref

[65]. A periodic boundary condition along x and y was applied to Equation 3.1 with a

semi-implicit spectral method [41, 65]. The system was represented as a discrete grid of

512l0 × 512l0 × 1l0 points where the grid spacing factor l0 was 1.0 nm. A forward time

step is taken to be ∆t/t0 = 0.05. The Landau energy coefficients and the electrostrictive

coefficients for PbTiO3 are found in refs [64, 70]. The two variables considered were: 1)

the grain boundary transition temperature and 2) the maximum misorientation between

grains. The grain structure was assumed to be static and does not change with time.

The orientation of each grain was assigned randomly at the beginning of each phase-field

simulation. For the bicrystalline setup, there was one grain structure with a line dividing

them evenly. For the polycrystalline results, the grain structure was kept fixed with 20

grains in a discrete space of 512 × 512 nm.

The grain boundary transition temperature was chosen to match the experimentally

observed paraelectric secondary phases that appear at the grain boundary [71]. We would

like to mimic this observed behavior by controlling the phase at the grain boundary. The

system of interest is PbTiO3, which experiences a phase transition at 479 ◦C. Above

this temperature the system is paraelectric and does not experience the spontaneous

polarization observed in ferroelectrics. However, below this temperature the system

becomes ferroelectric. We can artificially change the temperature this phase change occurs

at to mimic how paraelectric phases form at the grain boundary. The lower our artificially

controlled grain boundary transition temperature is set, the more material at the grain

boundary becomes paraelectric.

The angles of each grain are initialized between 0◦ and 45◦ for the grain structure and

stored. It is assumed that the grain structure is static, and does not evolve with time.
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Two coordinate systems were used internally to describe the ferroelectric polarization. A

rotated local coordinate system describes the polarization within each grain, as well as

a global coordinate system to solve the elasticity and electrostatic equations. Beginning

from a paraelectric state with zero applied electric field, each grain structure is initialized

for 32,000 iterations. This initialized structure is used for the microstructure analysis and

prediction training. To determine the coercive field, a static electric field is further applied

incrementally 10,000 iterations to generate a total of 100 points. The coercive field is

calculated as Ec = (E+
c − E−

c ) /2, where E+
c and E−

c are the positive and negative linear

interpolations at zero polarization.

A total of 2048 microstructures were simulated from phase-field to build the testing

and training sets for the encoder-decoder model. Each microstructure represented a unique

set of processing conditions, as a pair of randomly selected grain boundary transition

temperature and grain boundary angle. The grain boundary transition temperature was

chosen in the range 5–479◦C. Similarly, the angles of the two domains were chosen such

that the orientation between grains was in the range 0◦ and 90◦. Approximately 120,000

CPU hours were needed to simulate the microstructures.

3.2 Encoder-Decoder Architecture.

The network model was written using the open source PyTorch software version 1.0

and python 3.7. The model was loosely based on the principle of a variational autoencoder

[72]. However, the implementation of the components were very similar to those outlined

by Radford et al [73]. The model is built upon two components, an encoder which learns

a transformation from the image to a latent vector z, and a decoder which learns a

transformation from the latent vector to a final microstructure of size 512 × 512 with two

channels. The two channels represent the local polarization Pl in the x and y directions,

respectively.

The structure of the encoder is a modification to the discriminator provided by Radford
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et al. using the loss described by Kingma et al [74]. The primary modifications were

the addition of an attention layer and increasing the number of convolution layers to

account for the higher input resolution of 512 × 512 pixels, as well as outputting to a

vector with len(z) channels. The encoder consists of an attention layer followed by several

two-dimensional convolutional layers with kernel size of 4 × 4 and stride of 2 pixels with 1

pixel padding. Leaky rectified linear unit activation functions and batch normalization are

applied to all layers except the input [75]. The encoder optimizes a mean µ and standard

deviation σ vectors that are reparametrized into a latent vector space such that z = εσ + µ,

where ε ∼ N (0, 1). The encoder loss was defined using Kullback-Leibler divergence:

Loss =
N∑

n=1
σ2

n + µ2
n − log σn − 1 (3.4)

The decoder had similar modifications to increase the output resolution to the desired

512 × 512 pixels. A standard mean squared error (MSE) loss function was used to compare

the decoder output to the phase-field simulated input:

l(x, y) = mean ([l1, . . . , lN ]) , ln = (xn − yn)2 (3.5)

where N is the batch size. The networks were initialized using the Xavier method [76].

Several hyper-parameters were tested. Of note for this work were the encoder loss

weighting of 0.01, a batch size of 32, and a learning rate for the RMSProp optimizer of

0.000,1[77]. 16 filters were used for both the encoder and the generator at each layer.

3.3 Predictor Architecture

The hyper-parameters involved include the weight of the encoder loss, the number of

filters used, the batch size, and the learning rate for the RMSprop optimizer [77]. The

encoder loss was set to 0.01. A base of 8 filters were used for both the encoder and the

generator. The batch size was set to 64, though it was determined the results did not
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strongly depend on batch size. A learning rate of 0.001 was selected and found to work

well.

The network was trained on 1792 out of the 2048 unique phase-field generated domain

structures. The training process took roughly four hours to accomplish on a Nvidia 1080

Ti GPU. The training set was split such that 256 domain structures were used as a test

set.
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Chapter 4: Rapid domain structure

predictions with neural networks

Material morphology is a critical part of the materials development process. In recent

years, there has been a growing drive to incorporate materials informatics to reduce

time-to-market while iteratively expanding the database of material properties through

modeling and simulation tools [78–81]. The need for cost-effective design of materials

is made evident by the Materials Genome Initiative [82–84], and computational tools

such as integrated computational materials engineering (ICME)[85]. Many of these high-

throughput computational methods have largely been focused on optimizing materials

chemistry [12, 86–88]. However, bulk chemistry alone fails to capture many structural and

chemical inhomogeneities present in many materials, also known as microstructure. It is

known that many desirable properties such as strength, toughness, ferromagnetic properties,

and fatigue resistance are strongly tied to the structural and chemical inhomogeneity

within a material known as microstructure [89, 90]. Furthermore, there is a strong desire

to realize the link between processing, structure, and properties (PSP links). To this end,

further optimization of the materials’ mesoscale microstructure is necessary to fully realize

optimal performance.

Optimizing microstructure through experimental analysis and design is costly and

time-consuming. Microstructures have an inherently stochastic nature such that two

microstructures of the same material with equivalent properties will not be identical.

Computational microstructure characterization and reconstruction (MCR) improves the

material design and optimization process by providing methods to quantitatively represent

microstructure with consistent results. Beyond classifying individual components and

phases within a material, MCR further enables the reproduction of equivalent microstruc-

tures from design variables. Microstructure prediction is useful in the design process to
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provide statistics about how the processing methods control the structure. These methods

may additionally be used to augment limited datasets. MCR ultimately enables building

forward and inverse PSP links to design processing parameters that can lead to a target

structure.

Due to the difficulty and cost of building a database, previous MCR studies have

used stochastic noise generation processes [35, 37] or very limited regimes of experimental

microstructures [36, 56, 57]. These methods do not capture relevant physics (noise

generation) or have limited transferability (experimental). This study proposes using an

experimentally verified phase-field technique to produce adequate samples for learning as

an intermediate step between over-simplified structures and experimental work [62]. Phase-

field modeling offers a unique method for generating thousands of realistic microstructures

with real-world applications in a matter of days. It has been successfully applied to many

areas of materials science, from slip systems to ferroelectric behavior and can provide a

range of microstructures with both qualitative and semi-quantitative relationships [69, 71,

91]. Phase-field has already been extensively used to provide insight into the structure-

property linkage. Structures generated from phase-field contain realistic co-existing features

that account for complex long range interactions. Having experimentally observed features

enables trained networks to be more readily leveraged toward material design.

Due to the many features and interactions within the microstructure manifold, charac-

terizing and predicting material microstructure is not a trivial process and often requires

expert knowledge [92]. Microstructures are inherently complex and present a challenge

due to the difference in scale and appearance of many visual features such as grains, ferro-

electric domains, and other defects. Dozens of phenomenological models have been built

upon the foundation of such features to correlate changes to properties, such as Hall-Petch

equation, the Hollomon law, Landau-Devonshire theory, etc. A single class of ultra-high

carbon steels may require over 16,000 visual features to be appropriately classified [36].

When studying multiple features that co-exist and are strongly interacting, there can be
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non-linear relationships that make it very difficult to predict how the final microstructure

will form. For this reason, studying the relationship between processing conditions and

microstructure continues to be a core focus of materials science. Linking a wide range of

processing conditions to material structure would enable more rapid material development,

and can be accomplished through an effective combination of deep learning and phase-field

modeling.

An expansive summary of previous work with MCRs can be found elsewhere [55].

Previous work has focused largely on classifying features in the microstructure using point

statistics and local image descriptors in conjunction with support vector machines [56,

93]. These methods typically involve dimension reduction of the feature space to a small

set of key characteristics. However, dimension reduction methods often have significant

information loss. More recently, methods that have incorporated deep learning by leveraging

transfer-learning or deep belief networks have shown great promise [35, 37, 94]. These

methods have already yielded success in microstructure characterization, demonstrating

the potential within deep learning. However, reconstruction efforts have been limited

thus far to reproducing noise generated images. Deep learning is a powerful technology

that has grown in many parallel fields of science during recent years due to successes in

applications of computer vision problems. Deep learning frameworks are able to rapidly

learn and classify many objects with near-human precision in some areas given sufficient

training data [35, 36, 56]. In addition to being successful at classification and image

segmentation tasks, a type of artificial neural networks called generative models can learn

to produce images with qualities specified by an initial set of starting parameters [95]. This

is akin to providing the processing conditions and producing the desired microstructure.

Two categories of generative models are Generative Adversarial Networks (GAN) and

Variational Auto-Encoders (VAE). After some initial testing, Variational Auto-Encoders

proved to be the more resilient setup.

Reliably predicting microstructure from design variables is an inherently difficult task.
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Modeling microstructure typically requires an algorithm with an intrinsic understanding

of the physics to determine a physically sound structure. Variational Auto-encoders would

allow a network with sufficient training data to determine the characteristic features of

a microstructure and reproduce them across different input parameters independent of

any prior knowledge of the physics. This method could be applied to many forms of

microstructure.

A prominent type of microstructure is the formation of ferroelectric domains, which is

key in the study of ceramic materials. Ferroelectric domains are spatially homogeneous

regions of spontaneous electric polarization that form below the ferroelectric phase transi-

tion. This useful property allows the material to exhibit very different properties over a

narrow range of temperatures. Below the ferroelectric transition temperature, ferroelectric

materials can develop a spontaneous electric polarization that can be reveresed with the

application of an applied electric field [69]. This occurs through the development of ferro-

electric domain structures, separated by domain walls, when a paraelectric phase is cooled.

The ability to retain a spontaneous electric polarization in the absence of an applied elec-

tric field makes these materials prime candidates for new non-volatile memory technologies.

Multiple domains can exist within a single grain, a region with the same crystallographic

axis. Developing a fundamental understanding of domains and their response to external

electric fields is crucial for many applications of ferroelectrics [48]. Although this study

focuses on ferroelectric domains and grain structure as starting points for microstructure

discussion, surface and misfit dislocations are other considerations to explore.

Domain wall formation and movement is difficult to study and simulate. However,

it is a key characteristic in determining the final material properties. The nature of

the domain structure is difficult to estimate analytically. Phenomenological models,

while capable of accurately conveying the Curie temperature changes, are only applicable

where good potentials are known [96]. An alternative method of using thermodynamic

phase-field simulation can provide a reasonably accurate depiction of the domain wall
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formation and migration energy [69]. Beyond just simulating microstructure under different

conditions, phase-field modeling also provides an assortment of physical properties for

each microstructure. This makes phase-field an ideal tool for studying the core processing-

structure-property linkages in materials science.

In this work, we employ a high-resolution encoder-decoder VAE to learn how the

ferroelectric domain structure changes under different design variables from phase-field

simulated images. Further, a second predictor network is developed to quantify a material

property from the generated ferroelectric structure. These networks would enable the use

of modern optimization schemes by providing a computationally inexpensive model that

can be continuously trained [15]. Figure 4.1 demonstrates a potential feedback loop in

which deep learning is used to optimize a material property using the microstructure. A

phase-field simulation is used to generate the initial microstructure dataset that can be

used to train the VAE (red box). This work focuses on the creation and training of the

two network models, and the adaptive design feedback loop is not implemented in this

work. Using a combined approach with phase-field and deep learning brings about many

advantages. Primarily, phase-field allows us to observe near-experimental microstructures

with a much lower entry cost. We are able to predict microstructure for lead titanate using

the processing conditions given grain boundary transition temperature and misorienation

between grains for a bi-crystalline system. Phase-field simulation provides an intelligent

starting point for a large data set and can be readily produced on workstations in

a reasonably short time frame. A workstation with 32 cores can produce sufficient

microstructures of lead titanate under varying grain orientations and grain boundary

transition temperatures in a matter of days.
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Figure 4.1. Schematic flowchart of the proposed design strategy.
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Figure 4.3. Schematic for predictor network that calculates the coercive field based on
microstructure input.

4.1 Results and Discussion

4.1.1 Microstructure prediction

To establish the first linkage between processing and microstructure, an encoder-decoder

style convolutional neural network (CNN) was used to predict the domain structure

given a set of input processing conditions. The ferroelectric domains were predicted

for a bi-crystalline two-dimensional 512×512 nm tetragonal PbTiO3 using a multilayer

encoder-decoder convolutional neural network. The reference domain structures were

produced using a phase-field technique to model the domain evolution and switching in a

2D bi-crystalline grain structure [62]. A training set of 1792 images were used to train the

network, while a separate testing set of 256 images was used to evaluate its performance.

The testing and training sets had non-overlapping input parameters.

Two input parameters were considered that determine the simulated bi-crystalline

microstructure. The first input parameter considered was the ferroelectric transition

temperature (TGB), which is used to model effects known to occur at the grain boundary
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Figure 4.5. Schematic diagram of linear change in transition temperature across a grain
boundary.

as a result of processing conditions. For example, lower transitions temperatures simulate

the presence of a secondary paraelectric phase that can occur at the grain boundary. This

may lead to reduced or zero polarization at the grain boundary. It has been previously

shown that the presence of a non-ferroelectric grain boundary layer decreases the dielectric

properties in barium titanate ceramics [71]. In this study the grain boundary occurs over

a very finite distance of 2∆x, where the transition temperature was changed in a linear

fashion as can be seen in Figure 4.5. The transition temperature at the grain boundary was
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decreased from 479 ◦C to 25 ◦C, which accounted for a significantly increased coercive field.

The second considered parameter was the orientation difference between the two grains.

has been found to affect the performance of ferroelectric properties. The preferred grain

orientation is known to affect polarization switching and influence the overall evolution of

ferroelectric domains [62].

Figure 4.4 demonstrates the capabilities of the encoder-decoder to predict domain

structures similar to that produced by phase-field over a wide range of input conditions.

In tetragonal PbTiO3, the spontaneous polarization can occur in the positive or negative

direction of the x and y axis, leading to four possibilities in 2D each of which are equally

probable. The ferroelectric domains, regions of similar polarization alignment, are labeled

as the x+, y+, x−, and y−. The four variants are distinguished with separate shading.

In tetragonal, there are two types of domain walls possible to form. In Figure 4.4, a x+

domain changing to a y+ is separated by a 90◦ domain wall. Similarly, a 180◦ polarization

is possible.

The resemblances between the domain structure predicted by the encoder-decoder

and by phase-field are readily apparent. The encoder-decoder is able to capture and

reproduce the changing shape of the domains within the two grains. Further, the encoder-

decoder produces similar important physical attributes. For example, a defining attribute

observed in phase-field models is the orientation of the ferroelectric domain walls. It is

well-known that ferroelectric domains will form such that their edges will be orientated

along specific directions dependent on the local angle of the grain [97]. Figure 4.6 compares

the measured error of the domain wall angle with the expected domain wall angle due

to the orientation of the grain within the 256 sample test set. Each domain wall angle is

measured and compared to the expected angle resulting in a total error in degrees. The

plot reveals that the encoder-decoder produced microstructures compare favorably to the

phase-field produced structures. Due to the nature of imperfect domains, there is an

inherent small error in measuring the domain wall angles with line finding algorithms and
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also a component of error in the phase-field simulation itself. The phase-field produced

microstructures have a built-in average error of 0.84◦, demonstrating that there is minimal

measurement error. The predictor model performs at an average prediction error of 2.23◦.

Figure 4.7 captures the ferroelectric polarization at the grain boundary with differing

grain boundary transition temperatures. Along with direction and formation of domains

in Figure 4.4, the magnitude of the polarization is also important in several key areas. It

has previously been shown that there is a linear trend of increasing polarization magnitude

with an increase in transition temperature at the grain boundary [62]. The same behavior

is expected to be observed in the encoder-decoder model. The encoder-decoder is able to

replicate this linear behavior as this condition is changed.

As can be seen, many of the fundamental physics of the ferroelectric domain features

were successfully reproduced by the encoder-decoder. The volume fraction of domain

types and the direction of polarization across a high angle grain boundary were also found

to be consistent with phase-field. These early results demonstrate the strength of using

the presented encoder-decoder scheme as a general tool to predict and generate material

microstructure for unique input parameters.

4.1.2 Coercive field Prediction

Beyond providing an effective model to the processing-structure relationship, deep learn-

ing can provide insight into the structure-property relationship creating a full processing-

structure-property linkage. Phase-field lends itself well to this task, as it can generate

many desirable engineering properties of materials beyond just the evolution of microstruc-

tures. These simulated properties, such as coercive field, are used to train a model. The

coercive field relates the ease at which a ferroelectric will switch polarization directions.

It has been shown to be heavily influenced by grain orientations, ferroelectric properties

at the grain boundaries [98]. Two important factors in determining coercive field, the

ferroelectric transition temperature at the grain boundary and the misorientation between
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Figure 4.8. RMSE of different machine learning techniques to predict the coercive
field. The orange figure is the predictor network presented in this work and takes only
microstructure as input. The blue methods were trained using the input processing
parameters.

the two grains, have been taken into account to determine the final property through a

hysteresis loop in phase-field calculations. Phase-field calculations modeled the evolution

of the domains as an applied electric field was applied and reversed.

An independent predictor network was trained to predict the coercive field, given the

domain structure of the material. The predictor trained on 1972 domain structures in

a similar manner to the encoder-decoder model. Learning the coercive field from the

initial domain structure is possible as the coercive field should be a direct result from

the formation and arrangement of initial domains. As seen in Figure 4.8, the predictor

performs favorably in its property prediction when compared to the phase-field determined
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coercive-field.

Figure 4.8 details the ability of common machine learning methods to predict the

coercive field of PbTiO3 when supplied with only the grain boundary transition temperature

and grain angle. The leftmost column in the figure depicts the results of the predictor

which was supplied with only the microstructure. The remaining bars were off-the-shelf

machine learning methods that were provided the grain boundary transition temperature

and the misorienation between grains as inputs but not the microstructure. The root

mean squared error (RMSE) is a common method for determining error of a real-valued

prediction. The Gaussian Process (GP), the Kernel Ridge Regression(KRR), and the

Linear Support Vector Machine (SVM) had, respectively, an RMSE of 0.0088, 0.0129,

0.0578. With an RMSE of 0.0105, the predictor does better than all except GP, indicating

that the predictor can extract the same information from just the microstructure alone.

An encoder-decoder and predictor network were trained which represent the ability of

deep neural networks to encapsulate and reproduce the physics of ferroelectric PbTiO3.

Together, these networks are able to predict the domain evolution and formation given

the processing conditions and then predict the final coercive field property from that

microstructure. As demonstrated in Figure 4.1, the two networks jointly can form a

regression algorithm that can predict properties, while providing useful visual predictions

of the microstructure. This is fundamental in developing understanding of why new

materials will be successful. One of the key aspects of materials science is the analysis

of microstructural changes in response to a processing change. This relates the physical

status of the material to the properties in a visual and useful manner. The patterns and

features in microstructure together culminate to detail the processing conditions in a

way that simple summary statistics cannot. It is possible to observe a gradient in the

ferroelectric transition temperature as a result of composition shift or temperature shift.

This will be reflected in the microstructure, but not in summarized processing conditions.

In this study, the random seed used to initialize the phase-field model was kept constant
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across all simulations to verify the learning process.

The trained VAE is able to reproduce the polarization directions similar to that

predicted by the phase-field code, despite having not seen the combination of properties

previously. This is one of the key advantages in deep learning, the ability to automatically

learn correlations and reproduce statistically accurate physics without having any explicit

domain knowledge programmed in. A cursory visual inspection reveals the encoder-decoder

has learned some of the more important aspects of domain formation in PbTiO3. The

encoder-decoder was trained using a naive image based L2 loss function, but was able to

capture much of the underlying physics as well, namely the domain wall orientation and

the polarization magnitude at the grain boundary.

As noted previously, the orientation of the domain wall angles can be determined

analytically and only form along planes with mechanical compatibility [97]. It is known

that for 90◦ domain walls, a grain with 0◦ orientation the domain wall will form along

[1 1 0]. Rotation of the grain will also lead to rotation of the domain wall. Without explicit

coding of the loss function to take into account the domain wall formation energies, the

network was able to determine the domain wall angle relative to the grains. A quantitative

estimate of success can be seen in Figure 4.6. The network predicted domain structures

deviated significantly more from the analytically expected domain wall angles than the

phase-field model. However, the network is still able to capture this information and only

produce an average error of 1.39◦ higher than that predicted by phase-field modeling. This

is only slightly higher than the noise level of the measurement method, as indicated by

the error in the phase-field measurements. This achievement indicates that with further

addition of phase-field thermodynamics into the network architecture, there will be an

even greater success.
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4.1.3 Coercive field predictions

The network prediction of coercive field performs better than those predicted by

traditional machine learning on the processing conditions alone. This could indicate

that the processing conditions were not sufficient to describe the final property outcome.

However, the microstructure observed contained more latent information about the final

properties and the network was able to predict more accurately. The success of the

network is partially dependent on the network being able to capture and analyze long

range parameters, such as the domain size, the presence of 180◦ domain walls, and more.

Such interactions may form a more complete depiction of the total system than processing

conditions alone.
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Chapter 5: Applying generalized method

to polycrystalline systems

5.1 Introduction

Recently, there has been considerable interest in investigating and improving low cost

poly-crystalline piezoelectric devices [54, 99–103]. Lead zirconate titanate (PZT) and

barium titanate BaTiO3 are typical piezoelectric materials found in industry thanks to

their combination of large piezoelectric constants, temperature stability, and the cost

efficiency of polycrystalline ceramics. Recent studies have shown that domain structures

of PZT contains both short-range and long-range organization of ferroelectric domains. It

can be seen that domains need to minimize energy in short-range with their orientation

respect to their immediate neighbors, causing narrow stripes in opposing directions to form.

However, across many defects such as grain boundaries or interfaces, these form much

more important interactions. The organization of these narrow stripe regions now effects

the macroscopic properties we observe and care about. The phase-field model takes into

account both long-range and short-range interactions and can be distinguished between each

other. This makes phase-field modeling and ideal tool to probe into these interactions and

their effect on properties. Low cost devices are dependent upon polycrystalline processing.

Identifying the sources that lead to a particular microstructure can lead to ultimately

understanding how to improve properties exhibited by polycrystalline microstructure.

In order to understand how microstructure is developed energetically, we must first have

a general knowledge of what microstructure contains. Typically we think of microstructure

as a collection of extrinsic strains from atomic defects, dislocations, interfaces, etc. The

presence of strains can immediately effect the rotation of polarization. This has a long-range

effect which ultimately degrades properties due to pinning domain walls and suppressing
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switching. Furthermore, it has been observed that piezoelectric properties change spatially

depending on input grain structure and strain [104]. Together, this demonstrates that

there is a need for understanding what the source of these long-range and short-range

interactions are and how we can distinguish them. Many machine learning techniques,

such as neural networks may be applied to this extent.

Artificial neural networks have been increasingly applied to improve performance and

automate tasks in materials science with respect to microstructure [35, 37, 57]. A series of

rapid advances since 2012 have enabled networks to automate many tasks, including defect

analysis in electron microscopy [105], classification and segregation of steels [106], and

analyze ferroelectric performance [curtis_2019]. Such tasks involve the microstructure

which has historically been difficult to model due to the complex long-range relationships

and built-in entropy. Neural networks have become prevalent in many science disciplines

due to their versatility, but are still in their infancy and the applications are just beginning

to be understood. However, they introduce a powerful new tool in unlocking modeling

applications directly on the materials microstructure rather than summary heuristics.

Microstructure-sensitive design is key in controlling reaction rate, charge transport, and

other features critical to modern applications.

Current methods in microstructure characterization and reconstruction (MCR) are

incapable of taking design variables, such the processing conditions, into consideration

when reconstructing a microstructure. Building a model capable of taking a wide range of

design variables would be desirable to compare the effect of many combinations of design

variables without expensive simulation or experimentation. Furthermore, spatial design

variables should be considered, such as the effect of specific grain shape or sizes. This

is a much more complex development that requires the input to be characterized and

encoded before a final microstructure is produced. A model that can accurately predict

microstructure based on a set of spatial design variables would enable faster exploration

and thus more rapid material development.
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Figure 5.1. Schematic flowchart of the Micro-Attention Net, the proposed design to
capture and differentiate the affect of multiple inputs on the final microstructure.

This work aims to create a flexible model, the Micro-Attention Net (MAN) to map

spatial design variables to a polycrystalline microstructure using modern machine learning

approaches. Furthermore, this work demonstrates that such a model can infer useful

context about the generated microstructure, such as the importance each energy input has

on the produced structure. In this work we observe two contributions to the ferro-electric

microstructure: the elastic energy and the electro-static energy. Developing understanding

of how different design variables contribute to the final microstructure product is crucial

to microstructure design.

Figure 5.1 demonstrates the MAN model. The input is six different channels, two

are the randomly initialized starting points, two channels are maps of the elastic and

electrostatic energies. The remaining two channels are the grain boundary transition

temperature, and the map of the original grain structure. The two energy channels are fed

into an attention layer, which determines the weight of the channels for later, and then

concatenated with the remaining four channels, which are then together passed into an

encoder, resulting in a small latent vector that describes the input in a compressed form.

The latent vector is then applied in the generator, which consecutively up-scales the result

into the final microstructure.
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5.2 Methods

The same method was applied from chapter 3 with some additions to the network. An

attention network was added to the beginning of the network. This attention network

used a series of convolutional and pooling layers to down sample the image, then followed

with multiple transpose convolutions building a "U" shaped architecture. This method has

been shown to be effective in other research areas [107].

This work extended previous work by accounting for energetics in addition to the

selected design variables. Previous works relied on a spatial input of the grain boundaries,

grain boundary transition temperature, and the orientation of each grain. This work relies

on the energetics produced by phase-field calculation as sole inputs. Two energetics were

considered, the elastic energy and the electrostatic energy. These were taken directly from

the intermediate steps in a phase-field calculation.

5.3 Results & Discussion

To build new understanding of the process-microstructure linkage and of the contribut-

ing energetic factors, an encoder-decoder convolutional neural network was designed to pre-

dict the formation of microstructure under different design variables. This implementation

is the Micro-Attention Net (MAN). To demonstrate the utility of the proposed model, the

ferroelectric domains were predicted in a typical polycrystalline two-dimensional 512 × 512

nm tetragonal PbTiO3. The reference microstructures used for training were produced

with a semi-implicit phase-field technique to model the temporal domain evolution and

switching in a poly-crystalline system [65]. MAN was evaluated on a distinct testing set of

256 images with input design parameters not yet seen previously.

Three design variables were considered, the grain boundary ferroelectric transition

temperature, the maximum allowed grain angle, and the grain structure. Limiting the grain

angle limits the orientation difference that can occur between grains. Furthermore, the
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ferroelectric transition temperature affects how the domains react to the grain boundaries,

and can be likened to having the presence of secondary phases at the grain boundary.

Figure 5.2 outlines how design variables can result in different microstructures. The

top row contains domain structures directly from phase-field calculation. Each image in

the row contains a different set of input design parameters. Despite a static seed, each

microstructure is very different than every other microstructure. The second row shows

results from the MAN model when given the same inputs as the phase-field simulation

and trained on a static seed. The result is a microstructure that looks nearly identical in

domain structure to that produced by the phase-field simulation, albeit with the presence

of some artifacts. The final row is similar, except the MAN model produces output when

trained on randomly seeded data. As expected, the performance is significantly worse.

This is due to the randomness built in to microstructures.

A major obstacle preventing easy microstructure analysis is their inherent stochasticity.

Despite being prepared with near identical conditions, microstructures will form that are

completely distinct from one another. Grain boundaries will not be in the same place, and

the number of grains is not guaranteed to be the same. In the case of the second row, this

object is removed by fixing the seed to a constant value and every microstructure produced

by phase-field will be identical if given identical inputs. Conversely, the third row has

been trained with each microstructure taking on a unique seed value. This results in the

model having to generalize much of the output. During this operation, many artifacts are

produced.

Beyond just looking at the microstructure prediction, another aspect of the network is

the addition of a attention layer. An attention layer exists to learn the relative importance

of each input. This is useful, for instance, when determining what input contributes

most to the microstructure. In Figure 5.3, we can see the output of this attention layer

when looking at two input energies: the elastic energy and the electrostatic energy. The

figure captures the weight for each microstructure in the test set. As seen in the figure,
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seen.

a distribution appears centered on 0.4 and 0.6, for the electrostatic and elastic energies,

respectively. This indicates that the relative importance of the electrostatic and elastic

energies fluctuate from input to input, but not very greatly. Furthermore, Figure 5.3

demonstrates that in this instance, the elastic energy is the dominant contributing factor

to the formation of ferroelectric domains in our studied PbTiO3 data set. The electrostatic

energy is given less weight, but it is not ignored completely, indicating it too is critical to

determine the final microstructure.

5.4 Conclusion

The Micro-Attention Net model was designed and implemented to predict microstruc-

ture formation given spatial inputs. Furthermore, an attention model was built into it
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that could determine the relative importance of each input type across the microstructure.

The MAN model can reasonably reproduce results from a statically generated dataset.

However, it is limited in its ability to learn and generalize from a truly random training

set. Despite this limitation, it was shown to identify a difference in the relative importance

of elastic and electrostatic energies in their bulk contribution to the final domain struc-

ture. Furthermore, it was able to present a spatial distribution of the importance of each

input. From this, we can see what inputs contributed most to what final microstructure

feature. Ultimately, this model shows great promise in its ability to aid in microstructure

understanding and design.
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Chapter 6: Summary and Future Work

As mentioned in Chapter 1 the primary objective of this thesis is to develop a general

model capable of linking microstructure to both processing conditions and to properties.

In particular, to develop a model that could capture many of the complex short-range

and long-range interactions within a microstructure and be able to reproduce them in a

statistically equivalent image following the principles of Microstructure Characterization

and Reconstruction. Microstructure is studied in many aspects of materials science and

plays a critical role in the development of new materials. A material microstructure is a

direct result of the processing conditions and chemical makeup, but also directly correlates

to the final properties a material will have. This relationship, that of the processing-

microstructure-property, is ubiquitous throughout materials science. This work ambitiously

aims to build a general model that can capture many features of the microstructure, and

then predict a new microstructure under various conditions automatically.

To this end, a general model designed using a machine learning approach with Convo-

lutional Neural Networks (CNNs) was developed and tested on bi-crystalline lead-titanate

that had been simulated with a phase-field technique. The model successfully predicted

ferroelectric domain wall orientation, volume fraction, and grain boundary polarization in

bi-crystalline lead-titanate. Further, an extension of the model was shown to successfully

estimate the coercive field based on the initial ferro-electric domain structure.

6.1 Limitations

One of the strongly limiting aspects of the current model is the noise apparent in the

predictions. Despite that many features (volume fraction of domains, domain orientation,

etc.) were successfully predicted and captured, other aspects appear that are non-physical.

There are often small regions that are inconsistent with the surrounding area. These

“islands” are often a domain direction that is inconsistent with the surrounding domain
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and may be entirely encompassed by one domain. Such an area does not physically appear

in the simulations. Furthermore, the shape of these defects is incongrous with the overall

shape of many domains. The regular domains typically form in straight laminar segments,

whereas the defects often appear in circular regions.

6.2 Future Directions

One aspect of neural networks that limits their application is the number of parameters

to be trained. Jon von Neumann famously said “With four parameters I can fit an elephant,

and with five I can make him wiggle his trunk.” The networks trained in this work were on

the order of millions of parameters. The sheer number of which drastically increases the

computational cost. Even with efficient codebases and using modern GPU calculations,

scaling this project to larger image sizes would be nearly impossible to train without

reconsidering the network architecture. One interesting direction would be to limit the

number of parameters in the network and use external tools to increase the produced

image size. Recent work has been progressing rapidly on super-resolution image techniques,

which are able to enhance an image resolution.

Taking the scaling argument a little further in a direction important to materials

science would be to look at the case of 3D microstructures. While we often look at

2D microstructures, the real information is 3D and we simply take a 2D sample. The

technologies used in this thesis already exist in 3D, and even phase-field has long been used

on 3D as seen in Figure 6.1. This would require being able to scale the input accordingly,

but new efficient 3D convolutions are already working in other fields. 3D microstructures

may well drastically improve the results and reveal new features.

This work shows the potential of current convolutional strategies for encoding a spatial

input and then predicting a new microstructure from that input. Presently, it requires

thousands of labeled samples in order to successfully train. Acquiring a database of

experimental samples this large would require a massive collective effort from several
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Figure 6.1. An example of three dimensional phase-field output [108].

students and universities. However, there is a current field of study observing transfer

learning [109]. It demonstrates that a previously trained model could be used on an

entirely new application with little modification. Furthermore, it has been shown that a

model may initialize weights from a previously trained model and be successfully applied

to a new area with much fewer samples. In this case, it may be possible to train the model

with simulation techniques, such as phase-field, and then train on a very small data set

consisting of only a couple dozen samples. The model could then be used in tandem with

data-driven machine learning techniques to quickly focus on property optimization in a

few steps.

While developing and testing on experimental data is the ideal moving target, there are

many recent developments that could improve the current state of the model. These new

methods may provide greater accuracy and insight while removing key limitations of the

current model, such as the island defects. The first is the addition of an adversarial network.

An adversarial network severely increases the complexity of training the model, but also

does not use a defined loss function. Ideally, this network should reproduce statistically

equivalent images. However, the description of statistically equivalent evolves for each
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image. Instead, this network is trained on static images and is expected to reproduce them

based on an intial state. Adding an adversarial network would remove this requirement

and instead the network would be the loss function. It would allow the model to predict

truly stochastic microstructures.

Another improvement to the network architecture in addition to adversarial networks

could be transferring expert knowledge into the network from phase-field. This would

reduce the number of training images needed, and also improve accuracy. One potential

implementation would accomplish this by taking energy functionals described in the phase-

field model and enforce the network to minimize these as well in its output. This would

incorporate much of the knowledge the network needs to learn. This method loses the

overall generalization of the project but is expected to bring significant performance and

usability improvements. This improvement, along with other listed could bring significantly

better accuracy and prediction skills.
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Appendix A: Supplemental Information

A.1 Characterizing Success

One of the more difficult challenges was determining how successful the model was a

reproducing a statistically equivalent image. It is easy to see that the encoder-decoder in

chapter 4 produces images that appear similar to the phase-field model outputs. However,

there are a few important features that may provide an indication to how well the network

is really learning. Some of the features that were worth observing were:

• Volume Fraction

• Grain boundary polarization

• Domain wall orientation

• Contiguity of domains

• Smoothness of domain walls

• Domain wall thickness

• Domain continuity across grain boundary

However, not all features are straightforward to quantify and have not been implemented.

There may be many other features that are not preserved besides those listed here.

A.2 Hyper-parameter Tuning

A number of parameters were varied throughout the network process. As we decided

on one network architecture, the number of filters for each the encoder and decoder and

the size of the latent vector were varied. The results in Table A.1 demonstrates a few

sample runs and how the results were changed by these updates.
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(a) phase-field (b) encoder-decoder

Figure A.1. Overlay with colored lines showing sources of error in detecting domain wall
orientations. Blue and white lines indicate large dependency between detected orientation
and expected orientation of that domain wall.

A.3 Application to Other Phase-Field Methods

While this work is limited in scope to evaluation of ferroelectric domains in PbTiO3,

there are many other potentially useful phase-field simulations that could be readily

explored. First, one might be interested in how homogeneous and inhomogeneous stress

affects precipitation in the microstructure over time. For example, consider the time

evolution of a precipitate in a strained material, which can be seen in Figure A.2. It might

be useful to consider and model the change in microstructure with time. This model could

present a baseline which could be expanded for such applications.

A.4 Network Architecture

As previously mentioned there are two common types of network strategies that have

been applied to MCR. The first is a Generative Adversarial Network (GAN) and the second

is a Variational Auto-Encoder (VAE). A VAE operates by taking an input, compressing
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Table A.1. A spread of different training runs performed with varying hyper-parameters.
NEF is the number of filters used in the encoder as a starting point. NDF is likewise the
number of filters used in the decoder.

Run NEF NDF Nlatent LR Epochs Avg Err Med Err
1 16 16 512 1 × 10−5 2320 1.4164 1.2291
2 16 16 512 1 × 10−5 2840 1.3204 1.1631
3 16 16 512 1 × 10−5 7300 1.2158 1.0605
4 8 8 16 1 × 10−4 4500 2.0275 1.6463
5 8 8 16 1 × 10−5 6960 1.8420 1.6181
6 8 8 64 1 × 10−5 8000 1.6534 1.4840

(a) t = 40 (b) t = 120 (c) t = 400 (d) t = 1000

Figure A.2. Precipitation over time in inhomogeneous material.

it down to a latent vector, and then attempting to regenerate the input. This is very

straightforward to train, as the loss function is a straightforward L2 loss of the input

compared with the output. VAEs provide a compressed latent representation, which can

be useful to perform imputation or other model tweaks. However, VAEs can often produce

blurry results, especially when used in the vanilla Gaussian reconstruction model.

GANs operate on a different basis and instead use adversarial networks. They use a

discriminator, an external network trained to distinguish the true image from the fake

image. The goal is to take some input sample and use that to generate an example that

is realistic enough to fool the discriminator. Training is often quite complicated as the

loss function is a highly complex network. It is common for GANs to suffer from mode

collapse, where there is little variance in the output of the generator. See Figure A.3 and

Figure A.4 for examples of mode collapse. One method for circumventing mode collapse is

to use the Wasserstein GAN [110]. GANs often produce much higher visual fidelity.
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Figure A.3. Output of GAN with 2000 training data on bi-crystals demonstrating mode
collapse.

A.5 Effective Receptive Field

One important aspect of this work is the ability of neural networks to capture long-range

interactions. Something on one side of the microstructure can interact with something on

another. The range of interactions that can be observed is called the effective receptive

field (ERF). There is basic theory on how that can be determined [111]. In principle, the

effect of each pixel in the ERF does not contribute equally to the final product. There

are many ways to increase the effective receptive field. Stacking more layers (increasing

depth), subsampling (pooling, striding), filter dilation (dilated convolutions), etc.

Figure A.5 captures the premise of how the receptive field increases with a deeper

network topology and more pooling layers. After just a single 9×9 convolutional layer, the

receptive field is only 9 pixels long on a side. By applying pooling and another convolution,

the network now interconnects more pixels and is able to generalize a larger area. The

effective receptive field is now 26 pixels wide on a side.

Although the effective receptive field should be considered at least as large as the

smallest interaction being considered, it might be productive to study the effect of the
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Figure A.4. Another example of GAN mode collapse with a supplemental L2 loss function.
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receptive field. Does observing only small features still provide good results? Are the

large interactions or features necessary for the property you are looking at? It may be

worth considering different receptive fields to understand more about the problem you are

studying.

Figure A.5. The effective receptive fields from Wei et al [111]. This demonstrates how the
effective field grows with larger kernel sizes and decreasing image size through a multilayer
convolutional network.

A.6 Image to Image Method

A variational autoencoder typically uses a direct loss between the input and generated

output. However, in our case, we use a network framework similar to a variational

autoencoder but we encode a set of input parameters. This is not ideal. It is difficult to

map input parameters to microstructure directly because it is a one-to-many operation.

There are an infinite number of microstructures that may result from the same set of

input conditions. Image-to-Image gives us a baseline of how well we can do with L2 loss,

since this is the ideal case of building an image mapping. The encoder is not dealing with

overlapping input parameters and multiple outputs for similar inputs. Instead, it is given

an image and attempts to compress and reproduce that image.
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