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ABSTRACT

The study of Gene Regulatory Networks (GRNs) poses a significant challenge due to their
high dimensions, making it difficult to accurately infer these networks for many genes. More-
over, it is also a challenge to interpret these networks or generate biologically meaningful
hypotheses for further investigation. To address this issue, researchers often look for mod-
ules and pathways, which are subnetworks of much smaller sizes. This approach suggests
an alternative to studying GRNs, which is to learn about a hierarchy of multiple layers of
networks.

The idea behind this approach is to use a hierarchy of networks, with each layer building
on the one below it. In this hierarchy, a node in an upper-layer network corresponds to a
subnetwork in the lower-layer network. Therefore, the size of the networks in each layer
increases from top to bottom in the hierarchy. This means that the bottom-layer network
is the GRN at the gene level, whereas upper-layer networks group genes into subnetworks
or networks of these subnetworks. This reduces the dimensions(number of nodes) as we
move up the hierarchy and allows us to “zoom out” and look at the big picture. While this
approach is similar to hierarchical clustering, it differs in that we are interested not only in
the hierarchy but also in learning about the relationships among clusters at each level.

To address the challenges of inferring hierarchical GRNs from genome-wide data of molec-
ular phenotypes (such as gene expression, DNA methylation, etc.), we present a deep learn-
ing algorithm, Hierarchical Graph Neural Network (HGNN). Our HGNN algorithm updates
the inference on the hierarchy over iterations, in addition to updating the inference of the
network in each layer. We utilize a four-component loss function that aims to recover the
underlying network structure.

To assess the performance of this algorithm, we perform extensive simulations on two
main datasets generated from a disconnected two-layer hierarchy and a connected three-
layer hierarchy. By using HGNN, we aim to accurately infer hierarchical GRNs, allowing us to

better understand the underlying biological processes and generate hypotheses for further
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investigation. Additionally, based on the results, HGNN has the potential to be applied to
other datasets with high dimensions, offering a promising solution for studying complex

biological systems.
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce Graph Neural Networks (GNNs) and highlight their applica-

tions, Gene Regulatory Networks (GRNs), and the use of GNNs in inference on GRNSs.

1.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) are a specific type of neural network designed to analyze
and process inputs that can be graph-structured. The generalization of Convolutional Neu-
ral Networks (CNNs)(Hinton and Salakhutdinov, 2006) to unusual graph structures is how
GNNs are commonly defined (Reiser et al., 2022).

These networks can learn representations of graph-structured data by including the
topological details of the graph structure in the network design. GNNs’ ability to learn
from graph-structured data makes them very appealing for a variety of applications, such
as social network analysis, bioinformatics, and recommendation systems, among others.

The history of GNNs is dated to the early 2000s (Scarselli ef al., 2008) when researchers
first started looking into the application of neural networks to the processing of graph-structured
data. Graph kernels are functions that map a pair of graphs to a real value, measuring
the similarity between the graphs (Vishwanathan et al., 2010; Ghosh et al., 2018). These
techniques were developed on the basis that machine learning algorithms might use prop-
erties derived from graph-theoretical approaches to learn some hidden relationships in the
network. However, these methods were computationally expensive and limited in their
ability to handle large, complex graphs (Vishwanathan et al., 2010; Kriege et al., 2020).

The success of CNNs in image and signal processing has led to a resurgence in interest
in GNNs in recent years. Researchers developed the idea of Graph Convolution Networks

(GCNs) and began investigating the usage of CNNs for processing graph-structured data.



Introduced by Kipf and Welling (2016), a GCN is a type of GNN that learns representa-
tions of graph-structured data using convolutional functions and operations. Numerous
applications, such as node classification, link prediction, and graph classification, have
demonstrated the efficacy of GCNs.

GNNs are built on the concept of information transmission, in which the representa-
tion or signals of nodes are updated by combining those of their neighbors. Additionally,
GNNs can capture the local neighborhood information of each node while maintaining the
global structure of the network. This procedure is performed several times, and the final
representations are applied to the relevant task (node classification, link prediction, etc.).
Since the introduction of GCNs, there have been many other types of GNNs proposed and
developed, each with their own unique characteristics and capabilities. Some examples of

these include:

e Graph Attention Networks (GATs): First proposed by Velickovi¢ et al. (2017), these
networks use attention mechanisms to weigh the importance of different nodes in

the graph during the convolutional operations.

* Graph Recurrent Networks: These networks handle graph-structured data by repeat-
edly updating the node representations using Recurrent Neural Networks (RNNs). This
method enables the temporal dynamics of the graph data to be captured (Mikolov
etal., 2010).

* Graph Autoencoder Networks (GAEs): These networks learn low-dimensional rep-
resentations of graph-structured data using autoencoder architectures. To perform
tasks like link prediction or graph construction, GAEs aim to learn a concise represen-

tation of the graph structure (Pan et al., 2018).

GNNs have demonstrated their effectiveness in applications and are a robust tool for
analyzing graph-structured data. New training methods and architectures frequently pro-

posed and created in the domain of research, actively involve the development of GNNs.



Though GNNs have yielded promising outcomes, it is important to note that the currently
available GNNs also have significant drawbacks and difficulties. For instance, the inter-
pretability of GNNs is not well understood, and there may be challenges in scaling GNNs to
handle very large graphs. To enhance their functionality and applicability for use in solving
real-world issues, there is therefore still a great deal of room for further study in GNNs.

Traditional approaches for inferring GRNs rely on correlation-based or mutual information-
based techniques, which can be noise-sensitive and have limited capacity to handle non-
linear interactions. On the other hand, GNNs may be trained using information about
gene expression and previously observed interactions between genes to forecast newly dis-
covered gene interactions, which can provide a new understanding of the genes and their
interactions.

GNNs have been used in a variety of domains, including computer vision, chemistry,
natural language processing, physics, social network analysis, bioinformatics, and recom-

mendation systems among others.

* On graph-structured text data, such as social networks (Facebook, LinkedIn, and Twit-
ter), road networks (used in navigation tools like GPS, Google Maps, and Apple Maps),
and document collections, GNNs have been utilized in text categorization and senti-

ment analysis in natural language processing.

* GNNs have been utilized in chemistry to predict the characteristics of molecules and

materials, including medicinal effectiveness and toxicity (Reiser et al., 2022).

* For object recognition and segmentation of graph-structured pictures, such as road
networks and 3D point clouds, GNNs have been employed in computer vision (Shi

and Rajkumar, 2020).

* GNNs have been applied to physics to explore the dynamics of graph-based physical

systems, such as quantum systems and protein folding.



* GNNs have also been widely used in bioinformatics and biological sciences (Wang

etal., 2021; Zitnik et al., 2018).

1.2 GENE REGULATORY NETWORKS (GRNS)

One of the foundational concepts in biology is that genes do not function independently
of each other. However, the development of technique/methods for inferring regulatory
networks from gene expression data has been a gradual process. This presents a challenge
to understanding the hidden interactions between genes and their regulation in biological
systems (Chen and Mar, 2018). Defined by Emmert-Streib et al. (2014), GRNs are networks
that has been inferred from gene expression data obtained through techniques such as
ribonucleic acid(RNA) sequencing, deoxyribonucleic acid(DNA) microarrays among others
(Singh et al., 2018), and they they can be highly dense and sparse making it difficult to
draw any biological hypothesis. However, interest in GRNs has increased in recent years
as a result of its ability to offer potential insights into complex biological processes, help
identify genes and pathways involved in disease development, and the development of new
therapeutic strategies. The inference of GRNs can be performed at different levels of reso-
lution, from whole-network to sub-level. Thus, researchers have explored the use of both
classical and machine/deep learning methods to develop algorithms for GRN inference.
Some of these include partial correlation, bayesian networks, context likelihood relatedness,
scGNN, ARACNE, and GENIE3, among others (Schafer and Strimmer, 2005; Wang et al.,
2021; Friedman et al., 2000; Faith et al., 2007; Krouk et al., 2013; Allen et al., 2012; Badsha
etal, 2019; Huynh-Thu et al., 2010; Reiss et al., 2016; Kipf and Welling, 2017).

In this work, we present a deep learning algorithm , Hierarchical Graph Neural Network
(HGNN) for learning high-dimensional GRNs. In upcoming chapters, we will elaborate on
the methodology that we have used in this work, then discuss our simulation study, present

our results, and perform a thorough analysis of our findings. Finally, in the last chapter, we



will provide a conclusion and discussion of our study, highlighting the implications of our

results, and the potential areas for future research.



CHAPTER 2

METHODOLOGY

In this chapter, we first give a brief introduction to some fundamental concepts in graph
theory, which serve as a foundation for discussing our Hierarchical Graph Neural Network

(HGNN) architecture and its various components.

2.1 CONCEPTSIN GRAPH THEORY

A graph G consists of a set of vertices V(G) and a set of edges, E(G). Edges (or links) represent
connections between vertices. Two vertices in a graph are said to be adjacent if there is an
edge joining them. Adjacent vertices are said to be incident to the edge joining them. For
a vertex v in the graph G, we call the set of vertices in G that are adjacent to it as its open
neighborhood. We will let N;(v) denote the open neighborhood of a vertex v in graph G.
The cardinality of Ng(v) is called the degree of v, denoted by deg(v). It is easy to infer that
deg(v) is also the number of edges that are incident to the vertex v.

The graph G is directed if its edges have a direction and contain a cycle if we can move
from a vertex back to the same vertex, without repeating edges and vertices. G is called
acyclic if it does not contain any cycle. We define a graph G, as directed and acyclic. G4
is called a directed acyclic graph (DAG). DAGs are useful graph structures used in model-
ing graph connectivity, probabilities, and casualty, among others. In this work, we make
use of DAGs in our simulation study to simulate hierarchies from which we generate a
pseudo gene expression data. In modeling GRNs using graph-based approaches, each gene
is represented as a node in the graph, and the regulatory interactions between genes are
represented as edges in the graph. These interactions can be either direct or indirect, and

they can either activate or repress the expression of the genes.
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FIGURE 2.1: A graph G with two subgraphs identified by the color of nodes with node and
edge set are given by V(G) ={1,2,3,4,5,6,7,8,9,10} and
EG) ={a,b,c,d,e, f, g, h} respectively. Nodes labeled 5 and 6 are adjacent since they are
connected by the edge d. Additionally, nodes 5 and 6 are incident to the edge d. We also

have Ng(6) = {5,7,9}, hence deg(6) = 3. Here, the subgraph with yellow-colored nodes is a
directed graph.

2.1.1 Adjacency Matrix

Let G be a graph with n number of vertices. The adjacency matrix A(G) of G is an n x n
matrix whose entries reflect the connection or relationship between the vertices in G. If the
edges of G have no embedded weights, the i j— entries of its adjacency matrix are defined

as,

1 ifi, j € V(G) and (i, j) € E(G),
Llij =
0 otherwise.

By definition, if G is undirected, then A(G) is a symmetric matrix (i.e., a;; = a;;). Each
row or column’s total is also equal to the degree of the vertex it represents. As a result, we can
deduce that the total degree of the vertices equals the total of all the entries in A(G). We also
note that the number of ones in the upper or lower triangular matrix is equal to the number
of edges in G. A(G) has its diagonal entries being zeros(acyclic), hence the trace of A(G) is

zero. As a result, its eigenvalues add up to 0.



2.1.2 Degree Matrix

The degree matrix 2(G) of a graph G is an n x n diagonal matrix whose entries are the degree

of the vertices of G. Mathematically, this can be represented as

deg(v;) where v; represent the i’ vertex of G

0 otherwise.

2.1.3 Laplacian Matrix

The laplacian matrix £ (G) of a graph G is defined as
Z(G)=92(G) - A(G)

where A(G) and 2(G) represent the adjacency and degree of matrix of the graph, G re-
spectively. We also defined the signless laplacian, Z;(G) and normalized laplacian £, (G)

matrices, of G. These are given by
Z(G) =2(G) + AG),
and
Zn(G) =2 [2(6) - AG)|2(6G)" 2

The spectrum of G, y(G) is the set of all eigenvalues of its matrix representation. A graph’s
set of eigenvalues and eigenvectors conveys important information about its structure.
Taking graph G in Figure 2.1 we define its matrix representations below;

The adjacency matrix is given by



1 23 456789 10
1 {01 00[0000O0 0
2001 0/000 00 0
3000 0/00000 0
4100 0/00000 O

AG= 5[0 00 0[0 1000 0
61000 0/1 01071 0
71000 0/01 000 0
80 00 0/000O0T1 0
910 00 0/01 010 1
100 00 0[000O0T1 0

It can be seen that the off diagonals of the partitions A(G) are a submatrix of zeros, indicat-
ing the disconnection between the two subgraphs. Additionally, the first diagonal submatrix
is asymmetric (from the directed subgraph), with the second being a symmetric submatrix

(from the undirected subgraph).
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By definition, the signless laplacian matrix is given by,

Zs(G) = A(G) +2(G)

1 2 3 45 6 7 8 9 10
12 1 0 0,0 0 0 0 0 O
210 21 0|0 0 0 0 0 O
310 0 1 0,0 0 O O O O
411 0 0 1/0 0 O O O O

- 510 0 0 0|1 1 0 0 0 O
6 10 0 001 3 101 O
710 0 0 0|0 1 1 0 0 O
810 0 00j]0O 0 01 1 O
910 0 0 0|0 1 0 1 3 1
10\0 0 0 0|0 O O O 1 1

2.1.4 Topological Order

Let Gp be a DAG. The topological order of Gp, is an ordering in which the nodes of Gp are
linearly arranged. This means for any directed edge (a, b), the node a appears before the
node b in the linear arrangement(Haeupler et al,, 2012). In other words, it is the complete
ordering of the graph’s nodes such that each directed edge leads from an earlier node to a

later node.

FIGURE 2.2: Directed acyclic graphs. The topological ordering of these DAGs are given by
{1,2,3}, {1,2,3} and {1, 3, 2} respectively.
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2.2 HIERARCHICAL GRAPH NEURAL NETWORK (HGNN)

In this section, we describe our proposed deep learning algorithm, Hierarchical Graph Neu-

ral Network (HGNN), and its components, for learning a highly dimensional GRNs.
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2.2.1 The Algorithm

FIGURE 2.3: The architecture of Hierarchical Graph Neural Networks. At the i'"
iteration, the algorithm utilizes gene expression data to infer an input graph and generate a
hierarchical structure with pipelines for message or signal transfer. This structure is then fed
into the Graph Convolution Network model, resulting in an inferred graph that serves as the
input graph for the (i + 1)’" iteration until the change in loss meets a predefined criterion.
This iterative process aims to produce a more accurate inference of the underlying structure

in the network.

We can emphasize four main components of the overall architecture of our method, HGNN,

as shown in Figure 2.3.
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2.2.1.1 Graph Construction

The gene expression value for an individual and a specific gene is a quantitative measure of
the level of activity of that gene in the cells of that individual. These measurements yields
scalar values which can expressed as a matrix of dimension n x m, where n is the number
of genes (nodes) and m, is the number of samples or individuals. Let Z be the correlation
matrix representing the linear relationship or dependence between genes of dimension 7 x
n. % is a symmetric matrix, with its i j— entries being the pairwise correlation between

genes. This can be defined as

aij:r

Y (6= D0~ 7)

\/gl(xi — %)% x gl(J/i - 3)?

i=1 i=1 i=1

2 2
n (£ a] | [nd - (5]

i=1

where X, y represents the sample mean for i = 1,..., m. Generating the correlation matrix
serves as the initial stage for our graph construction process. To get the graph adjacency
matrix, A, which leads us to the final stage of the graph construction process. The entries

of A, are defined as,

0 Vi=j
aij=11 iflrl=c,Vi#j

0 otherwise.
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where c € [0, 1] is a cutoff or threshold for the pairwise correlations between genes. The value
of ¢ can randomly chosen based of some known underlying relationship between the genes.
|r| € [0,1], the correlation coefficient. It can be observed that the diagonal entries of A,
become zeros. This is to avoid the occurrence of self-loops when generating a graph from
Ac. The final stage of the graph construction process is to generate an initial undirected
network, Gp from A.. This serves as an input graph to our HGNN algorithm for the initial

start iteration.

2.2.1.2 Hierarchical Structure Generation

Hierarchical Structure Generation is a key component of HGNN, which comprises a Louvain
community detection algorithm and a message propagation process. Introduced by Blondel
et al. (2008), the Louvain algorithm has gained popularity in finding modular structures or
clusters from complex network structures using two main iterative phases or steps.

Let Gy be the initial graph input generated from the correlation adjacency matrix. In the
first phase (bottom-up phase) of the Louvain algorithm on Gy, each node in Gy is assigned
its own community. Thus, at this stage, the total number of communities is equal to the
number of nodes in Gy. Then, considering the neighbors j of each node i, the algorithm
assesses the change in modularity (that is, a measure of the strength within modules or
communities) that would result from moving the node i from its community to the commu-
nity of its neighbor j. Once this process is applied to all neighbors j of the given node i, the
node is assigned to the community where the highest positive modularity gain is achieved.
This process is repeated in succession for all nodes in Gy until there is no modularity better
change.

The second phase(top-down phase) of the algorithm involves an aggregation process
and the first phase. Here, each community from the first phase is considered a new network
or node, with its edge information obtained by an aggregation of edges from the communi-

ties obtained in the first phase. Phase one is repeated to obtain a new community structure.
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Using communities as nodes, this phase is iterated, until no further modularity improve-

ment is possible.

FIGURE 2.4: Visualization of the steps in the Louvain algorithm. The first pass is the first
stage of modularity optimization to find modules. The second phase takes modules in the
first as nodes and finds module of modules by optimizing modularity. Passes are iteratively
repeated until mode shifting does not provide possible modularity improvement. Self-loop
edges represent twice the edges in a module or cluster and cross edges represent edges
existing between modules or clusters.

The next stage after generating a hierarchy from the Louvain method is building pipelines
for message or signal transfer. HGNN adopts three message propagation techniques from

Zhong et al. (2023). These are;

e Down-up propagation. This technique updates the node representation of an upper
layer in the hierarchy using the previous layer by calculating the weighted sum of
node representation. This sends information from lower layers to the higher layer
in the hierarchy allowing the capturing of both local and global information from the

hierarchy.
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» Within-level propagation. In within-level propagation, node representations are up-
dated by aggregating neighborhood information together with a node’s information

at the same level in the hierarchy.

* Top-down propagation. In this technique, node representations in higher layers of are
used to update the representations of nodes in the initial bottom layer. This is done

using the information obtained during the down-up propagation step.

of the initial bottom layer using the representations obtained from the down-up prop-

agation step.

2.2.1.3 GCN with e number of epochs

FIGURE 2.5: GCN model architecture

The next stage in the HGNN architecture is the GCN for updating node representations.
This comes after the input graph generation and hierarchical structure generation steps.

This stage involves training the GCN model using a predetermined number of epochs e,
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which determines the number of times the model iteratively updates the node representa-
tion based on its neighbors. Setting e too low may result in underfitting (the model does
not capture an underlying pattern in the data). In contrast, setting e too high may lead to
overfitting (the model becomes too sensitive, failing to generalize well to unseen data).

The GCN model updates the node representations by aggregating information from their
neighborhood through node aggregation and message passing operations. This is done iter-
atively with the updated node representations used in the subsequent iterations to further

refine the representations and capture higher-level features and patterns in the input graph.

2.2.1.4 Evaluation and updating (i number of iteration)

The updating step is an iterative process where the inferred graph is passed back into HGNN.
This iterative process starts from the hierarchical structure generation to updating and eval-
uation stage until convergence is reached. This is done to refine the HGNN model and
achieve the desired performance. Overall, the updating step plays an important role in
ensuring that the HGNN model is effective in capturing the underlying network structure
and achieving the desired task objective. After the set change in total loss criterion for con-
vergence or maximum number of iteration is met, the effectiveness of HGNN is be assessed

through some performance evaluation metrics.

2.2.2 Loss Function

To tackle the challenge of learning complex Gene Regulatory Networks using Graph Neu-
ral Networks, it is important to have a suitable loss function that can enhance the overall
performance of the GNN algorithm. Therefore, our HGNN algorithm uses a loss function

composed of four components, each designed to contribute to the optimization process.
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2.2.2.1 Binary Cross Entropy(BCE)

Mathematically, this is defined by,

L) = ——Z[ (l>1og( ( (”))+(1—y(”)-1og(1—a(?(”))]

where 7% represent predicted edge weights. These weights are also referred to as logits. o (-)

1+ex
utilize this component of the loss to control edge weight predictions.

1 .
is a sigmoid function (o (y) = — € [0, 1]) and y represent the true edge weight. We

2.2.2.2 Spectral Mean Squared Error (SMSE)

The loss function’s spectral mean squared error component is defined based on the spec-
trumy ( ) G| and y (G) of graphs G and G respectively (Wilson and Zhu, 2008; Wills and Meyer,
2020). Mathematically,

where 1; and A; represent eigenvalues of the matrix representation of G and G respectively.
Here, the matrix representation used is the signless laplacian matrix chapter (2.1.3). The
purpose of using this component is to achieve stabilization for the entire hierarchy, includ-

ing both the bottom and super layer nodes.
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2.2.2.3 Clustering Loss (CL)

This loss component seeks to improve the clustering performance of HGNN. Mathemati-

cally,

CL=M Swithin -M Sbetween
1 k lcil

n_k'ZZ (xij_xi.)z—ﬁ'z (x;.—%.)°

i:lj:l i=1

where n is the number of observations, k, the number of inferred clusters, and |c;| repre-
sents the number of observations in a given cluster i. It can be easily seen that k < n. x;;

represents the input data with x; being mean of cluster i, and x_, the overall mean.

2.2.2.4 Penalty on the number of clusters(k)

The purpose of incorporating the penalty on the number of clusters (k) component into the
loss function is to stabilize the number of clusters that are inferred.
To get the total loss, these four components are weighted and added. Thus, the total loss, [

is given by

l= AlBCE+AZSMSE+/13CL+A4k

where 1,...,14 represent weights on each component. In the context of our simulation
study and the results presented in the next chapter, we aim to evaluate the impact of each
component of the loss function. To this end, we assign a weight of 1 to a single component

while setting the weights of the remaining components to 0.
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CHAPTER 3

SIMULATION STUDY

In this chapter, we focus on our simulation study. We will discuss our data set generation
procedure. The second part of this chapter presents our results and findings from running
HGNN on two main simulated pseudo-gene expression data sets generated from a discon-

nected two-layer hierarchy and a connected three-layer hierarchy.

3.1 SIMULATION OF HIERARCHICAL GRAPH LAYERS

To test our HGNN algorithm, we simulate a hierarchy of layers from which gene expression
data is generated and passed to the algorithm. In this section, we go through an overview of

the simulation of these hierarchies.

3.1.1 Disconnected two-layer hierarchy

In this simulation, the goal was to generate a simple pseudo-gene expression data set. The
top layer of this hierarchy consists of ten(randomly chosen) disconnected nodes (also re-
ferred to as super nodes). From each of these nodes, we randomly generate a directed
small-world network to form the bottom layer of the hierarchy. This results in the bottom
layer having ten connected subgraphs. Thus, the final hierarchy comprises ten super nodes
in the top layer and ten connected subgraphs in the bottom layer. From the bottom layer,
a pseudo-gene expression data set is randomly generated from normal distribution with a

specified noise based on the connections existing between nodes .
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(A)

(B)

FIGURE 3.1: A simulated hierarchy of two layers with 10 disconnected super nodes and
10 connected subgraphs in the bottom layer. (A) Top layer with 10 disconnected nodes.
(B) Bottom layer with 10 connected small-world subgraphs and 670 total number of edges.
Node colors are based on the top layer nodes.
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3.1.2 Connected three-layer hierarchy

The goal of this simulation was to generate a more complex pseudo-gene expression data set
to be used as input for the algorithm. Three layers make up the hierarchy of this simulation:
the top layer, the middle layer, and the bottom layer. For the top layer, we generated a di-
rected small-world network with 10 nodes and 20 edges. Furthermore, for each node in the
top layer, a directed small-world subnetwork is randomly generated. Next, we used these
subgraphs to construct the middle layer module by adding edges between the generated
subgraphs based on the distribution of edges in the top layer. To add an edge between two
nodes, we generated a random number uniformly between 0 and 1 and added the edge if
the number was less than a specified connection probability. We repeat the same process to

generate the bottom layer module from the middle layer.

FIGURE 3.2: Asimulated hierarchy of three layers - Top layer with 10 nodes and 20 edges
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FIGURE 3.3: Continued from Figure 3.2 - Middle layer with 147 nodes and 506 edges. Node
colors are based on the top layer nodes.

FIGURE 3.4: Continued from Figure 3.3. Bottom layer with 2186 nodes and 9895 edges.
Node colors are based on the top layer nodes.
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3.1.3 Gene expression dataset simulation

After the hierarchies are constructed, this is the last stage of the simulation is to generate the
sample gene expression dataset. The bottom layer is used to randomly generate a pseudo-
gene expression dataset based on node and edge distribution in the hierarchy. Here, the
adjacency matrix and the topological order of the bottom layer are utilized to represent the
entire hierarchy. To generate the expression values for each node (representing genes) in the
hierarchy, a random normal distribution is also utilized with an initial mean and standard
deviation. The mean and standard deviation are crucial in controlling the amount of noise
added to the generated gene expression dataset. The generated data is of dimension m x n,
where m represents the samples or individuals and 7, the genes or nodes. We generate two
pseudo-gene expression datasets for each simulated hierarchy, with standard deviations of
0.1 and 0.5, and an initial mean equal to 0.

As an example, suppose A, B, and C of Figure 2.2 represent three different bottom layers.

Using the topological order,

e For (A), we obtain the generated pseudo-gene expression for each individual or sam-

ple as follows. First, we assign the expression value of node 1 as
P
Xi1 ~N(,u—0,0 ),

where x;; denotes the expression value for node 1 for the ith individual, u is the initial

mean (which is set to 0), and o is the standard deviation specified.

Since there exists a directed edge from node 1 to node 2, we can use the value of node

1 to calculate the value of node 2. Specifically, we set
Xia ~ N(N = xibUz),

where x;; is the expression value for node 2 for the i’ individual, i is the mean given

by the value of x;;, and o is the same standard deviation as before.
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Similarly, we obtain the value of node 3 using the value of node 2 as the mean,
_ 2
Xi3 ~ N(M— Xi2, 0 ),

where x;3 is the expression value for node 3 for the i'" individual.

To generate pseudo-gene expression for an individual or sample in (B), we use normal
distribution with a specified standard deviation ¢ and initial mean u = 0 for nodes 1
and 2, denoted by x;; and x;, respectively. For node 3, we take the average of the
expression values for nodes 1 and 2, denoted by X;{;2;, and set it as the mean for the

normal distribution, resulting in the expression value
_ = 2
Xi3 ~ N(H = Xi{12), 0 ) -

The generated pseudo-gene expression for an individual or sample for (C) will also be

given by
Xi1 ~ N(u: 0,02),

where x;; is the expression value for node 1 for the ith individual, u is the initial mean

and o is the specified standard deviation.

Furthermore, the expression values for nodes 2 and 3 are given by

Xip ~ N(ll= xil,Uz)

Xi3 ~N(,u=xi1,02),

where x;» and x;3 are the expression values for nodes 2 and 3 for the i’ h individual, U

is the mean given by x;;, and o is the specified standard deviation.
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In summary, the expression values of x;1, x;2, and x;3 are generated sequentially based
on the topological order, with each node’s value being drawn from a normal distribution
with mean equal to the value of its parent node and the same specified standard deviation

o for all nodes.

3.2 ANALYSIS
3.2.1 Quantitative Evaluation

In this section, we briefly discuss examining the different components of our loss function.
We adopt three main quantitative evaluation metrics from Rosenberg and Hirschberg (2007)

in our analysis to measure the performance of our algorithm, HGNN. These include;

3.2.1.1 Homogeneity (S€)

We use this metric to measure how similar nodes (genes) are in a cluster. In other words, the
distribution of nodes within a cluster should be biased towards a particular class of nodes.

It is mathematically defined as,

o= HCIK
H(C)
Nk Nek
- lo
1 CEC%CEK N g( ng )
- ~X plenlog(p(cy)
1

where H(C) is the entropy (Shannon and Weaver, 1949) related to cluster C, n.j represents
the number of nodes (genes) of class c in cluster k, ny is the number of nodes (genes) in

cluster k. It can be easily seen that when all nodes (genes) in class c are in cluster k, ng = ng.
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Thus,
Nk ng
_ ek oo 2K
ceC%ceK N og(nk)
JgC=1-—
— Y. p(ci)log(p(c))
1
- x g
—1— ceC,kek
— Y plcplog(p(c)
0
-1-
- Y. p(ci)log(p(c))
| i
=1.

€ € [0,1] with 1 representing a perfect score.

3.2.1.2 Completeness (€)

This metric measures the degree to which similar nodes are clustered together in the same

cluster. Mathematically,

H(K|C)
H(K)
Nck Nck
_ ek oo | Zek
CEC%CEK N Og( nc)
~ Y. pki)log(p(k:)
i

€ =1-

where H(K) is the entropy (Shannon and Weaver, 1949) associated with cluster K, n, is the

number of nodes (genes) in with label (belonging to) c. We can easily deduce that € =1
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when all nodes (genes) in cluster k belongs to class ¢ (that is, n i = n.).

-y Nek log(ﬂ)
G=1— ceCkek N nc
- Y. pki)log(p(k:)
1
[~ 5 Dk egq]
—1— ceC,kek N
- Y. pki)log(p(k:)
1
0
=1-
- p(ki)log(p (k)
=1.

%€ € [0,1] with 1 representing a perfect score.

3.2.1.3 Normalized Mutual Information (NMI)

Mathematically defined as

S x €
NMI=2x
S+ €

where /# and € represent homogeneity and completeness, respectively. The NMI also
provides a quantitative way to assess the quality of our algorithm. NMTI € [0,1] with 1

representing a perfect clustering quality.
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FIGURE 3.5: Illustration of the metrics: completeness and homogeneity. A). Both metrics
are perfect. As can be seen, each inferred cluster only has one class from the truth, and all
the nodes from the true clusters are inferred to be in the same cluster. B). Here, homogeneity
= 0 as all nodes from the true clusters are inferred to be in one cluster. Completeness = 1
(all nodes from the same true cluster are inferred to belong to the same cluster). C). We
observe that all nodes belonging to a true cluster are placed in the same inferred cluster,
thus completeness = 1. Since an inferred cluster is made of nodes from two true clusters
(2 and 3), homogeneity < 1. D). Each inferred cluster contains only nodes from a true
cluster, thus, homogeneity = 1 but completeness = 0 as nodes from a true cluster belong
to different inferred clusters. E). Completeness < 1 (we observe that nodes from true cluster
1 are inferred to belong to different clusters) with homogeneity =1 (each inferred cluster has
one class of nodes from the true clusters).

3.2.1.4 Evaluation of hierarchy

For evaluating the hierarchy, we use the number of super layers which represent the number
of upper levels in the hierarchy and super nodes which represent the number of upper level
nodes in the hierarchy. We make a comparison between the true and inferred hierarchy
from HGNN. Additionally, we use the number of true and inferred clusters as a means of
comparison to check the performance of HGNN. These metrics also allow us to compare
the true and inferred hierarchy from HGNN and determine the degree of similarity between

the two.
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3.2.2 Visualization

Visualizations play an important role in analyzing and interpreting results. It helps identify
possible patterns and structures. Here, we discuss four main visualizations used to analyze

the result from running HGNN.

* Loss function plot over iterations. The loss function plot over iterations shows the
nature of the loss curve over iterations. This visualization helps evaluate the perfor-

mance of HGNN and identify possible convergence issues or optimal stopping points.

e Inferred cluster network with true cluster labels. This visualization involves compar-
ing the true cluster labels with the inferred cluster labels. To do this, the inferred clus-
ter network is visualized with node coloring using the true cluster labels. This provides
a better idea of the performance of HGNN and helps identify any misclassifications or
overlap between clusters. We expect each cluster in the inferred to have the same

node colors as the algorithm produces a perfect inference.

* Adjacency heatmap of true and inferred. The adjacency heatmap is a binary matrix
visualization of the true network and inferred network/clusters at the gene level. To
provide better visualization, the rows and columns are sorted based on the true cluster
labels. This helps identify clusters that are not apparent from the inferred cluster

network.

* Adjacency heatmap of true and inferred cluster evolution. The heatmap of true and
inferred cluster evolution shows the similarity between true and inferred cluster labels
over iterations. This helps to visualize inferred cluster label distribution over iteration

in comparison to the true labels for each component of the loss function.
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3.3 RESULTS

This section presents the results of our simulations. We show the results of our simulations
after running HGNN on our simulated pseudo-gene expression data sets with standard

deviations 0.1 and 0.5 for our disconnected and connected hierarchy.

3.3.1 Disconnected two-layer hierarchy

We show the result of HGNN on our simple pseudo- gene expression dataset with a standard
deviation of 0.1. Here in our implementation, we set the change in total loss criterion to 0.01
and limit the maximum number of iterations to 10, with the number of within epoch loops
set to 50. The absolute correlation threshold was also set to 0.5. The value of the threshold

was randomly chosen for this specific simulation.

3.3.1.1 Disconnected small-world two-layer hierarchy (standard deviation = 0.1)

This section shows the results of HGNN on a simple pseudo-gene expression dataset with a

standard deviation of 0.5.
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(A) (B)

FIGURE 3.6: Binary heatmap of simulated network adjacency(A) and correlation inferred
adjacency(B) matrix. Nodes were sorted based on the true labels.

The binary heatmap of the adjacency matrix for the true bottom layer and the absolute
correlation adjacency are displayed in Figure 3.6. It is evident that both heatmaps exhibit
ten distinct clusters, indicating that the inferred adjacency matrix captures a significant por-
tion of the underlying network structure. However, there are numerous edges inferred in the
correlation adjacency identified by broader clusters in the heatmap(Figure 3.6b). Overall,
these results suggest that the inferred adjacency matrix is a good representation of the true

bottom-layer network.
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(A) (B)

(€) (D)

FIGURE 3.7: Hierarchy of 2 disconnected layers: Visualization of individual component of
the loss function. (A) Binary Cross Entropy Loss curve. (B) Spectral Mean Square Error loss
curve. (C) Clustering loss curve. (D) Penalty on the clustering curve.

Figure 3.7 provides a visualization of the individual loss components in the context of
our proposed HGNN. Specifically, the BCE loss is shown in Figure 3.7a, the SMSE loss in Fig-
ure 3.7b, and the clustering loss in Figure 3.7c. It is observed that the BCE loss curve shows
an initial rise, followed by a gradual decrease, but the first iteration remains the minimum

loss value. In contrast, the SMSE loss curve decreases steadily and reaches the minimum
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loss value at the ninth iteration. Lastly, the clustering loss curve shows a consistent rise

throughout the iterations, with the first iteration having the minimum loss value.

(A) (B)

(c) (D)

FIGURE 3.8: Visualization of inferred cluster labels and true cluster labels over iterations.
(A) Cluster evolution using BCE loss. (B) Cluster evolution using SMSE loss. (C) Cluster
evolution using Clustering loss. (D) Cluster evolution using cluster penalty loss.

Figure 3.8 shows the true labels with the inferred labels at each iteration for each loss
component. Notably, all the individual components of the loss exhibit good cluster parti-
tioning, as identified by the clear separation of the inferred labels in the plot. The inferred

labels align well with the true labels from the top layer, indicating the effectiveness and
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robustness of HGNN. Overall, the good cluster partitioning observed in the individual loss
components reinforces the validity and accuracy of the HGNN in identifying the underlying

network structure in the simple pseudo-gene expression dataset.

(A) (B)

(C) (D)

FIGURE 3.9: Visualization of the inferred cluster at convergence of HGNN. (A)Inferred
cluster using BCE loss. (B) Inferred cluster using SMSE loss. (C) Inferred cluster using
clustering loss. (D) Inferred cluster using cluster penalty loss

Figure 3.9 gives a visualization of the inferred bottom layer graph structure under each
loss component. The node coloring is based on true cluster labels. We observed that for
all loss components, the true cluster labels have been accurately placed in the same class,

and all classes are of the same kind. This visualization of the inferred bottom layer graph
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structures gives insight into the performance of HGNN and its ability to accurately capture

the underlying network structure.

Loss Function Parameters Clustering Performance Inferred Cluster Information

BCE SMSE CL K Homogeneity Completeness NMI Clusters Super nodes Super Edges Super Layer

0.4934 0 0 0 1 1 1 10 10 0 1
0 9.1716 0 0 1 1 1 10 10 43 1
0 0 -1.8374 0 1 1 1 10 10 0 1
0 0 0 10 1 1 1 10 10 0 1

TABLE 3.1: Performance metric of HGNN on our simple pseudo-gene expression dataset
generated from a disconnected small-world two-layers with standard deviation 0.1.

Table 3.1 shows the clustering performance metrics of HGNN on the pseudo-gene ex-
pression dataset generated from a disconnected small-world 2-layer hierarchy with a stan-
dard deviation of 0.1. The loss function parameters include Binary Cross-Entropy (BCE),
Square Mean Square Error (SMSE), Clustering Loss (CL), and penalty on the number of
clusters (k). The clustering performance metrics are homogeneity, completeness, and Nor-
malized Mutual Information (NMI). The inferred cluster information comprises the number
of clusters, super nodes, super edges, and super layers. HGNN performs well in terms of
clustering performance with a perfect score (1) for all components of the loss. Similarly, the
inferred cluster information produces an accurate or perfect result in terms of inferring the
number of clusters (10), the number of super nodes (10), the number of super edges (0), and
the number of super-layers (1). We observe that for the SMSE loss, the number of inferred
edges between top layer nodes were 43. These results suggest that HGNN can accurately

infer underlying graph structure in the data.

3.3.1.2 Disconnected small-world two-layer hierarchy (standard deviation = 0.5)

This section shows the results of HGNN on a simple pseudo-gene expression dataset with a

standard deviation of 0.5.
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(A) (B)

FIGURE 3.10: Binary heatmap of simulated network adjacency(A) and correlation
inferred adjacency(B) matrix. Nodes were sorted based on the true labels.

Figure 3.10 displays the binary heatmaps of the adjacency matrices for the true bottom
layer and the inferred absolute correlation adjacency in HGNN. Ten distinct clusters are
visible in both heatmaps, indicating that the inferred adjacency matrix captures a significant
portion of the underlying network structure. Though more edges seem to be inferred by the

correlation adjacency, we expect the GCN step of HGNN to down-weight these false edges.
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(A) (B)

(c) (D)

FIGURE 3.11: Hierarchy of 2 disconnected layers: Visualization of individual component
of the loss function. (A) Binary Cross Entropy Loss curve, (B) Spectral Mean Square Error
loss curve. (C) Clustering loss curve. (D) Penalty on the clustering curve.

Figure 3.11 gives a visualization of the individual loss components of HGNN. Analysis
of the loss curves shows that the BCE loss curve initially rises sharply, and then tries to
decrease, with the minimum loss value at the first iteration. On the other hand, the SMSE
loss curve has a decreasing curve (except from iterations 1 to 2) with the minimum loss
value at the fifth iteration. The clustering loss curve also shows a decrease throughout the

iterations, with the minimum loss value occurring at the first iteration.
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(A) (B)

(c) (D)

FIGURE 3.12: Visualization of inferred cluster labels and true cluster labels over iterations.
(A) Cluster evolution using BCE loss. (B) Cluster evolution using SMSE loss. (C) Cluster
evolution using Clustering loss. (D) Cluster evolution using cluster penalty loss.

In Figure 3.12, the inferred labels for each loss component are plotted against the true
labels at each iteration. The plot clearly shows good cluster partitioning for all individual
loss components, with the inferred labels aligning well with the true cluster labels. This
result is similar to the result shown in Figure 3.8. Overall, this highlights the capability of
HGNN to identify network structures in the disconnected two-layer gene expression data

set.
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(A) (B)

(c) (D)

FIGURE 3.13: Visualization of the inferred cluster at convergence of HGNN. (A)Inferred
cluster using BCE loss. (B) Inferred cluster using SMSE loss. (C) Inferred cluster using
clustering loss. (D) Inferred cluster using cluster penalty loss

Figure 3.13 displays the inferred bottom layer graph structure for each loss component,
with the node coloring based on true cluster labels. This visualization shows that the in-
ferred structures accurately capture the true cluster labels, with all true cluster labels placed

in the same class and all classes being of the same kind.
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Loss Function Parameters Clustering Performance Inferred Cluster Information

BCE SMSE CL K Homogeneity Completeness NMI Clusters Super nodes Super Edges Super Layer

0.4913 0 0 0 0.9944 0.9972 10 10 0
1 1 10 10 44

0.9944 0.9972 10 10 0

0 11.1899 0 0
0 0 -7.38 0
0 0 0 11

_ e e e
_ = =

0.9944 0.9971 10 10 0

TABLE 3.2: Performance metric of HGNN, on our simple pseudo-gene expression dataset
using a disconnected small-world two-layers with standard deviation 0.5

Table 3.2 shows the clustering performance metrics of HGNN on the pseudo-gene ex-
pression dataset generated from a disconnected small-world two-layer hierarchy with a
standard deviation of 0.5. We observe that HGNN performs well in terms of clustering
performance(i.e. homogeneity, completeness, NMI) with scores approximately equal to 1
for each component of the loss. Similarly, the inferred cluster information produces an
accurate or perfect result in terms of inferring the number of clusters (10), the number of
super nodes (10), the number of super edges (0), and the number of super-layers (1). We
observe that for the SMSE loss, the number of inferred super edges was 44. These results

suggest that HGNN can accurately infer underlying graph structure in the data.

3.3.1.3 Disconnected scale-free two layer hierarchy (standard deviation = 0.1 and 0.5)

Similar to the disconnected small-world two-layer hierarchy generated datasets, we test
HGNN on a generated dataset with scale-free graph properties. This shows similar patterns
in the visualization and performance metric evaluation for the different components of the

loss function.

3.3.1.4 Summary

Overall, the performance evaluation of HGNN on our disconnected two-layer hierarchy
pseudo-gene expression dataset demonstrates its effectiveness in identifying the correct
clusters for both small-world and scale-free graph structures with standard deviations of

0.1 and 0.5. Here, the clustering performance metrics were approximately equal to 1, de-
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picting a perfect clustering score on datasets. Similarly, the number of inferred super nodes,
and super edges for all component of the loss matches the truth except for the SMSE loss
inferring false edges in the top layer. It can observed that the individual component of the
loss function for the two graph structures produced nearly same results for both clustering
performance metrics and the inferred hierarchy information. This highlights the potential
of HGNN as a powerful tool for clustering and analyzing gene expression datasets and other

network datasets with similar properties.

3.3.2 Connected three-layer hierarchy

This section presents the results for running HGNN on our complex pseudo-gene expres-
sion dataset generated from a connected three-layer hierarchy with standard deviations
of 0.1 and 0.5. Our implementation involves setting the maximum number of iterations
to 10 with a change in loss criterion set to 0.01 and performing 50 within-epoch loops.
Additionally, we randomly set the absolute correlation threshold to 0.5 to determine the

inferred correlation adjacency matrix.

3.3.2.1 Connected small-world three-layer hierarchy (standard deviation = 0.1)

In this experiment, we evaluate the performance of HGNN on our complex pseudo-gene
expression dataset generated from a connected small-world three-layer hierarchy with a

standard deviation of 0.1.
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(A) (B)

FIGURE 3.14: Binary heatmap of simulated network adjacency and correlation inferred
adjacency matrix. Both true adjacency binary heatmap (A) and correlation adjacency binary
heatmap (B) are sorted matrices based on the true cluster the nodes belong to

Figure 3.14a and Figure 3.14b show the binary heatmap of the adjacency matrix for
the true bottom layer and the inferred absolute correlation adjacency, respectively, in our
complex pseudo-gene expression dataset with standard deviation 0.1. As depicted (in Fig-
ure 3.14) , the inferred adjacency matrix captures a some of the underlying network struc-
ture in the true adjacency heatmap. However, there are numerous edges inferred in the
correlation adjacency. Nevertheless, the overall results suggest that the inferred adjacency

matrix is a reasonable representation of the true adjacency.
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(A) (B)

(c) (D)

FIGURE 3.15: Hierarchy of 3 connected layers: Visualization of individual component of
the loss function. (A) Binary Cross Entropy Loss curve. (B) Spectral Mean Square Error loss
curve. (C) Clustering loss curve. (D) Penalty on the clustering curve.

In Figure 3.15, we visualize the individual loss components of HGNN. The BCE loss curve
depicted in Figure 3.15a experiences a sharp drop initially, followed by a gradual decrease,
but the second iteration still has the minimum loss value. On the other hand, the SMSE
(Figure 3.15b) and clustering (Figure 3.15c) loss curves show a steady increase with the
minimum loss value at the first iterations, while the penalty on the number of inferred

clusters in the Figure 3.15d loss curve decreases over iterations.
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(A) (B)

(€) (D)

FIGURE 3.16: Visualization of inferred cluster labels and true cluster labels over iterations.
(A) Cluster evolution using BCE loss. (B) Cluster evolution using SMSE loss. (C) Cluster
evolution using Clustering loss. (D) Cluster evolution using cluster penalty loss.

In Figure 3.16, we see the true labels alongside the inferred labels for each loss compo-
nent at each iteration. One notable observation is that, for all the individual components
of the loss function, true cluster labels from the top layer have been broken into smaller
clusters. This leads to having many inferred clusters relative to the truth. Thus here, HGNN
has difficulty in making accurate inference with our complex dataset using only individual

components of the loss function.
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(A) (B)

(c) (D)

FIGURE 3.17: Visualization of the inferred cluster at convergence of HGNN. (A)Inferred
cluster using BCE loss. (B) Inferred cluster using SMSE loss. (C) Inferred cluster using
clustering loss. (D) Inferred cluster using cluster penalty loss

Figure 3.17 gives a visualization of the inferred bottom layer graph structure under each
loss component. The node coloring is based on true cluster labels. We observe that for all

loss components, the true cluster labels have been placed in single or small classes.
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Loss Function Parameters Clustering Performance Inferred Cluster Information

BCE SMSE CL K Homogeneity Completeness NMI Clusters Super nodes Super Edges Super Layer
0.5612 0 0 0 0.5634 0.4926 0.5256 70 479 966 4
0 2.9248 0 0 0.5415 0.4843 0.5113 91 527 782 4
0 0 0.2501 0 0.5416 0.4842 0.5113 91 527 782 4
0 0 0 26 0.4754 0.46824 0.4751 26 272 1494 4

TABLE 3.3: Performance metric of HGNN, on our simple pseudo-gene expression dataset
using a connected small-world three-layer hierarchy with standard deviation 0.1.

Table 3.3 shows the clustering performance metrics of HGNN on the pseudo-gene ex-
pression dataset generated from a connected small-world 3-layer hierarchy with a standard
deviation of 0.1. It can be observed that HGNN performs fairly well in terms of clustering
performance with homogeneity, completeness, and NMI ranging from 0.47 to 0.56. Simi-
larly, the inferred cluster information produces a result in terms of inferring the number of
clusters, number of super nodes, and number of super edges, ranging from 26 to 91, 272 to
527, and 782 to 1494 respectively. The number of inferred super-layers is 4. This result gives

an idea of the potential of HGNN to infer underlying graph structure in the data.

3.3.2.2 Connected small-world three-layer hierarchy (standard deviation = 0.5)

For these results, we assess the effectiveness of HGNN on a complex pseudo-gene expres-

sion dataset with a standard deviation of 0.5.
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(A) (B)

FIGURE 3.18: Binary heatmap of simulated network adjacency and correlation inferred
adjacency matrix. Both true adjacency binary heatmap (A) and correlation adjacency binary
heatmap (B) are sorted matrices based on the true cluster the nodes belong to

Figure 3.18a and Figure 3.18b show the binary heatmap of the adjacency matrix for the
true bottom layer and the inferred absolute correlation adjacency, respectively, in our com-
plex pseudo-gene expression dataset with standard deviation 0.5. As shown in Figure 3.18,
the inferred adjacency matrix captures some significant portion of the underlying network
structure compared to the true adjacency heatmap. Similar to the scenario of 0.1 standard
deviation data, a comparable pattern is seen here. The correlation adjacency reveals a

relatively high number of edges in comparison to the truth.
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(A) (B)

(€) (D)

FIGURE 3.19: Hierarchy of 3 connected layers: Visualization of individual component of
the loss function. (A) Binary Cross Entropy Loss curve, (B) Spectral Mean Square Error loss
curve. (C) Clustering loss curve. (D) Penalty on the clustering curve.

In Figure 3.19, both BCE (Figure 3.19a) and clustering (Figure 3.19c) loss curves rise
steadily, followed by a decrease, with the first iterations having the minimum loss value. On
the other hand, the SMSE (Figure 3.19b) loss curve has an overall decreasing nature, with the
minimum loss value at the eighth iteration. The penalty on the number of inferred clusters
in the Figure 3.19d loss curve decreases over iterations, with the minimum loss value at the

eighth iteration.
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(A) (B)

(c) (D)

FIGURE 3.20: Visualization of inferred cluster labels and true cluster labels over iterations.
(A) Cluster evolution using BCE loss. (B) Cluster evolution using SMSE loss. (C) Cluster
evolution using Clustering loss. (D) Cluster evolution using cluster penalty loss.

Figure 3.20 shows the performance of HGNN on our complex pseudo-gene expression
dataset, with a standard deviation of 0.5. The figure shows the true labels and inferred labels
for each loss component at each iteration. We observe that the SMSE and penalty loss com-
ponents inferred a reasonable number of clusters at their minimum loss values. However,
the other loss components produced a larger number of inferred clusters compared to the

truth.
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(A) (B)

(c) (D)

FIGURE 3.21: Visualization of the inferred cluster at convergence of HGNN. (A)Inferred
cluster using BCE loss. (B) Inferred cluster using SMSE loss. (C) Inferred cluster using
clustering loss. (D) Inferred cluster using cluster penalty loss

Figure 3.21 gives a visualization of the inferred bottom layer graph structure under each
loss component with node coloring based on true cluster labels. We observe that for all loss
components, the true cluster labels have been divided into single or smaller classes (similar

to the observation in 3.17)
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Loss Function Parameters Clustering Performance Inferred Cluster Information

BCE SMSE CL K Homogeneity Completeness NMI Clusters Super nodes Super Edges Super Layer
0.5619 0 0 0 0.44 0.5242 0.4784 81 380 512 3
0 13.801 0 0 0.3101 0.5291 0.4 9 174 1379 3
0 0 0.9251 0 0.4421 0.5228 0.4791 80 380 512 3
0 0 0 9 0.31 0.5291 0.4 9 174 1379 3

TABLE 3.4: Performance metric of HGNN, on our simple pseudo-gene expression dataset
using connected small-world three-layer hierarchy with standard deviation 0.5.

Table 3.4 shows the clustering performance metrics of HGNN on the pseudo-gene ex-
pression dataset generated from a connected small-world 3-layer hierarchy with a standard
deviation of 0.5. We observe that HGNN performance in terms of clustering performance
with homogeneity, completeness, and NMI ranges from 0.31 to 0.44, 0.52 to 0.53, and 0.4
to 0.48 receptively. Similarly, the inferred cluster information produces a result in terms
of inferring the number of clusters, number of super nodes, and number of super edges,
ranging from 9 to 81, 174 to 380, and 512 to 1379 respectively. The number of inferred
super-layers is 4. This also gives an idea of the potential of HGNN to infer underlying graph

structure in the data.

3.3.2.3 Connected scale-free three-layer hierarchy (standard deviation = 0.1)

We present the results of evaluating the performance of HGNN on our complex pseudo-
gene expression dataset, which has a scale-free network structure and standard deviations

of 0.1.
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(A) (B)

FIGURE 3.22: Binary heatmap of simulated network adjacency and correlation inferred
adjacency matrix. Both true adjacency binary heatmap (A) and correlation adjacency binary
heatmap (B) are sorted matrices based on the true cluster the nodes belong to

Figure 3.22a and Figure 3.22b show the binary heatmap of the adjacency matrix for
the true bottom layer and the inferred absolute correlation adjacency, respectively, in our
complex pseudo-gene expression dataset with standard deviation 0.1. As depicted, the
findings are consistent with previous scenarios. But here, the number of inferred edges in

the correlation adjacency seems to be smaller when compared to the truth.
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(A) (B)

(€) (D)

FIGURE 3.23: Hierarchy of 3 connected layers: Visualization of individual component of
the loss function. (A) Binary Cross Entropy Loss curve. (B) Spectral Mean Square Error loss
curve. (C) Clustering loss curve. (D) Penalty on the clustering curve.

In Figure 3.23, the visualization of the individual loss components of HGNN in our com-
plex scale-free pseudo-gene expression dataset with standard deviation 0.1. It can be seen
that the BCE (Figure 3.23a) and penalty (Figure 3.23d) loss curves show a decreasing trend,
with the second and tenth iterations having the minimum loss values, respectively. In con-

trast, the SMSE (Figure 3.23b) and clustering (Figure 3.23c) loss curves generally show an
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increasing trend, with the minimum loss values at the fourth and first iterations, respec-

tively.

(A) (B)

(c) (D)

FIGURE 3.24: Visualization of inferred cluster labels and true cluster labels over iterations.
(A) Cluster evolution using BCE loss. (B) Cluster evolution using SMSE loss. (C) Cluster
evolution using Clustering loss. (D) Cluster evolution using cluster penalty loss.

In Figure 3.24, we see the true labels alongside the inferred labels for each individual
loss component at each iteration. For all the individual components of the loss function,
true cluster labels are placed into smaller clusters, resulting in many inferred clusters as

observed in the small-world complex data set.



57

(A) (B)

(C) (D)

FIGURE 3.25: Visualization of the inferred cluster at convergence of HGNN. (A)Inferred
cluster using BCE loss. (B) Inferred cluster using SMSE loss. (C) Inferred cluster using
clustering loss. (D) Inferred cluster using cluster penalty loss

In Figure 3.25, the inferred bottom layer graph structure under each loss component
is visualized with node coloring based on true cluster labels. It can be observed that for
all components, the true cluster labels have been divided into smaller classes or combined

with other class labels.
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Loss Function Parameters Clustering Performance Inferred Cluster Information

BCE SMSE CL K Homogeneity Completeness NMI Clusters Super nodes Super Edges Super Layer
0.518 0 0 0 0.8141 0.3201 0.4595 1249 5210 399 4

0 1.5893 0 0 0.7837 0.3137 0.448 1202 5064 458 4

0 0 0.0888 0 0.8349 0.3262 0.4691 1267 5271 357 4

0 0 0 1125 0.7385 0.2972 0.4221 1103 3557 481 3

TABLE 3.5: Performance metric of HGNN, on our simple pseudo-gene expression dataset
using a connected scale-free three-layer hierarchy with standard deviation 0.1.

Table 3.5 shows the clustering performance metrics of HGNN on the pseudo-gene ex-
pression dataset generated from a connected scale-free three-layer hierarchy with a stan-
dard deviation of 0.1. We observe that HGNN performance in terms of clustering perfor-
mance with homogeneity, completeness, and NMI ranges from 0.73 to 0.84, 0.3 to 0.33, and
0.42 to 0.47 receptively. Similarly, the inferred cluster information produces a result in terms
of inferring the number of clusters, number of super nodes, and number of super edges,
ranging from 1103 to 1249, 3557 to 5271 and 357 to 481 respectively with number of inferred

super-layers ranging from 3 to 4.

3.3.2.4 Connected scale-free three-layer hierarchy (standard deviation = 0.5)

For this scenario, we assess the effectiveness of HGNN on our scale-free complex pseudo-
gene expression dataset with a standard deviation of 0.5. The implementation entails setting
the maximum number of iterations to 10 and performing 50 within-epoch loops with the
absolute correlation threshold set to 0.5 to determine the inferred correlation adjacency

matrix.
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(A) (B)

FIGURE 3.26: Binary heatmap of simulated network adjacency and correlation inferred
adjacency matrix. Both true adjacency binary heatmap (A) and correlation adjacency binary
heatmap (B) are sorted matrices based on the true cluster the nodes belong to

Figure 3.26a and Figure 3.26b show the binary heatmap of the adjacency matrix for the
true bottom layer and the inferred absolute correlation adjacency, respectively, in our com-
plex pseudo-gene expression dataset with standard deviation 0.5. As shown in Figure 3.18,
although the inferred adjacency matrix captures some significant portion of the underlying
network structure compared to the true adjacency heatmap. Additionally, fewer edges seem

to be inferred relative to the number of edges in the truth.
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(A) (B)

(c) (D)

FIGURE 3.27: Hierarchy of 3 connected layers: Visualization of individual component of
the loss function. (A) Binary Cross Entropy Loss curve, (B) Spectral Mean Square Error loss
curve. (C) Clustering loss curve. (D) Penalty on the clustering curve.

In Figure 3.27, both SMSE (Figure 3.27b) and clustering (Figure 3.27c) loss curves rise
steadily with second and first iterations respectively producing the minimum loss value. On
the other hand, the BCE Figure 3.27a and penalty on the number of inferred clusters in the
Figure 3.27d loss curves decrease over iterations with the minimum loss value at the second

and fifth iteration respectively.
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(A) (B)

(€) (D)

FIGURE 3.28: Visualization of inferred cluster labels and true cluster labels over iterations.
(A) Cluster evolution using BCE loss. (B) Cluster evolution using SMSE loss. (C) Cluster
evolution using Clustering loss. (D) Cluster evolution using cluster penalty loss.

Figure 3.28 shows the performance of HGNN on our complex pseudo-gene expression
dataset, with a standard deviation of 0.5. The figure shows the true labels and inferred labels
for each loss component at each iteration. We observe a similar result in Figure 3.24 where
all the individual components of the loss function, true cluster labels are placed into smaller

clusters, resulting in many inferred clusters as observed in the small-world complex data set.
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(A) (B)

(c) (D)

FIGURE 3.29: Visualization of the inferred cluster at convergence of HGNN. (A)Inferred
cluster using BCE loss. (B) Inferred cluster using SMSE loss. (C) Inferred cluster using
clustering loss. (D) Inferred cluster using cluster penalty loss

Figure 3.29 gives a visualization of the inferred bottom layer graph structure under each
loss component with node coloring based on true cluster labels. It can be observed that for
all components of the loss, the inferred network puts together nodes from different clusters

in the true top layer or these nodes are split into smaller clusters.
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Loss Function Parameters Clustering Performance Inferred Cluster Information

BCE SMSE CL K Homogeneity Completeness NMI Clusters Super nodes Super Edges Super Layer

0.5192 0 0 0 0.8177 0.3214 0.4614 1252 5246 371
0 1.1178 0 0 0.8251 0.322 0.4635 1262 5270 387
0 0 0.3394 0 0.8312 0.3231 0.4653 1277 4026 310

ENENTENEFS

0 0 0 1231 0.7888 0.3129 0.448 1209 5058 447

TABLE 3.6: Performance metric of HGNN, on our simple pseudo-gene expression dataset
using connected scale-free three-layer hierarchy with standard deviation 0.5.

Table 3.6 shows the clustering performance metrics of HGNN on the pseudo-gene ex-
pression dataset generated from a connected scale-free three-layer hierarchy with a stan-
dard deviation of 0.5. We observe that HGNN performance in terms of clustering perfor-
mance with homogeneity, completeness, and NMI ranges from 0.78 to 0.83, 0.31 to 0.33,
and 0.44 to 0.47 receptively. Similarly, the inferred cluster information produces results in
terms of inferring the number of clusters, the number of super nodes, and the number of
super edges, ranging from 1209 to 1277, 4026 to 5270, and 310 to 447 respectively with a
similar number of super-layers. This also gives an idea of the potential of HGNN to infer

underlying graph structure in the data.

3.3.2.5 Summary

The results of the performance evaluation of HGNN on our complex pseudo-gene expres-
sion dataset generated from a connected three-layer hierarchy with the small-world and
scale-free graph structure for standard deviations 0.1 and 0.5 indicate that the algorithm has
the potential to infer the underlying hierarchical structure of the datasets. HGNN achieved
fair clustering performance in terms of homogeneity, completeness, and normalized mu-
tual information (NMI), ranging from 0.3 to 0.83, 0.3 to 0.56 and 0.4 to 0.47 respectively. In
terms of homogeneity, we observed that all individual loss components resulted in better
clustering performance on a scale-free graph structure compared to a small-world graph
structure. However, in terms of the completeness metric, the small-world data performed

slightly better than the scale-free data. Interestingly, for each dataset, the loss components
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produced similar NMI scores. However, since the algorithm struggled to accurately deter-
mine the number of inferred super layers and nodes using the individual components of
the loss function, it suggests a combination of the loss components may produce better

results in terms of the evaluation metrics.
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CHAPTER 4

CONCLUSIONS AND DISCUSSION

4.1 CONCLUSION

In our study, we introduced a new algorithm called HGNN, which is designed for learning
highly dimensional GRNs. The algorithm consists of four key components. Firstly, we con-
struct a graph by using an inferred adjacency matrix from the gene expression data to get
an input graph. Secondly, we use Louvain community detection to infer the hidden upper
layers of the input graph and build a message propagation pipeline for transferring and ag-
gregating information from nodes and edges. Thirdly, we use the generated structure from
the previous step and the gene expression dataset for learning embeddings of the expression
dataset to infer a new graph. Finally, we perform structure updating and evaluation using
homogeneity, completeness, and normalized mutual information performance metrics and
update the structure by passing the inferred graph as the input if convergence is not met.

In conclusion, our study evaluated the effectiveness of HGNN by applying it to our pseudo-
gene expression data containing both simple (dataset generated from a disconnected two-
layer hierarchy) and complex (dataset generated from a connected three-layer hierarchy)
datasets. The results demonstrated that HGNN is a powerful and effective method for in-
ferring the underlying network structure in both simple and complex scenarios. In par-
ticular, we observed perfect clustering performance metrics and accurate inferred cluster
information relative to the truth for the simple datasets. The complex datasets were more
challenging, but HGNN was able to capture some key underlying structures in the true
graph.

We also analyzed the individual components of the loss function and found that each
component contributes significantly to the overall performance of HGNN. However, we

note that the performance of HGNN could be further improved by tuning hyperparameters



66

such as the number of iterations, within-epoch loops, and absolute correlation threshold.
Additionally, adopting a good loss component combination could also improve the perfor-
mance of HGNN.

Overall, our findings suggest that HGNN is a robust and powerful tool for high dimen-
sional network analysis, particularly for GRNs and other networks with similar properties.
Future research could explore the potential of HGNN and optimize its hyperparameters for

even better performance.

4.2 DISCUSSION

In this discussion section, we will explore some of the key findings and consider the implica-
tions of these findings for future research. The results from HGNN have provided important
insights into the structure and patterns within our pseudo-gene expression dataset.

One important aspect of our analysis was the use of an appropriate loss function to
measure the dissimilarity between genes within and between clusters. It was found that
the choice of loss function components and weights has a significant impact on the perfor-
mance of our HGNN algorithm. This suggests that carefully adopting the right combination
and weight for the four loss component can potentially improve the performance of HGNN.

Another important consideration in our analysis was the use of a correlation threshold
to infer an adjacency matrix for the input graph for HGNN. We found that setting an appro-
priate threshold was critical to achieving accurate and meaningful results. In particular, we
observed that a too-low correlation threshold led to inferring few edges, while a too-high
correlation threshold resulted in inferring a lots of false edges, which may combine distinct
clusters. This suggests the correlation threshold selection should be carefully done based
on some possible known characteristics of the gene expression data.

Finally, HGNN seems to be highly biased to the input graph. Thus, we also considered
alternative methods(k-nearest neighbors, partial correlation, and precision) for generating

the input graph for our HGNN algorithm. We found that the choice of input graph gener-
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ation method had a significant impact on the results, with each method exhibiting differ-
ent strengths and weaknesses. For example, the k-nearest neighbors method tended to be
highly driven by the k parameter. Thus, when k is set very small, larger clusters are broken
into small clusters, and when k is set high, there is an aggregation of smaller clusters. This
suggests the need to carefully explore and evaluate different methods for generating the
input graph based on some possible known characteristics of the gene expression data and
the direction of inference.

Overall, our analysis highlights the importance of carefully considering the various com-
ponents and parameters of HGNN for analyzing simple and complex datasets. By choosing
appropriate correlation thresholds or evaluating alternative input graph generation meth-
ods and exploring different combinations of the loss function components, HGNN has the
potential to provide insights into the underlying structure of a gene-level dataset to help

identify patterns and relationships.
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