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Abstract 

Sheep are a globally important species raised for meat, milk, and fiber. Research in livestock 

genomics, including sheep, is important to increasing disease resilience and production of animal 

products while decreasing environmental impact of raising animals. Sheep have adapted to many 

different environments across the world, which has led to specialized traits including heat tolerance, 

disease resilience, and increased growth and meat quality. The first study presented in this 

dissertation found that sheep selected to fit production systems across the world are genetically 

different, despite originating from similar breed lineages. This can lead to further characterization of 

biological traits unique to populations of animals within a species. The assembly of high-quality 

reference genomes also leads to a better understanding of genetic diversity and identification of 

genetic variation. This includes mitochondrial genomes, which have historically contributed to 

phylogenetic studies in mammalian species. The assembly of the mitochondrial genome of the Rocky 

Mountain bighorn sheep and the entire genome of the Rambouillet sheep presented in this dissertation 

contribute valuable reference resources to the scientific community. Further studies using these 

assemblies will aid in better defining and understanding the relationships between wild and domestic 

sheep, as well as genetic variation and locations of genes and regulatory elements in domestic sheep. 

The functional annotation of the sheep genome presented in the last two chapters of this dissertation 

defines the locations of transcriptional regulatory elements across the genome from a large collection 

of tissues. Histone modification, open chromatin, and DNA methylation are all classified as 

transcriptional regulatory elements and were defined in these studies. These regulatory elements were 

annotated on the Rambouillet reference genome to provide further resources to the community to 

investigate the mechanisms of gene regulation in relation to traits important to the sheep industry. 

Overall, this research will advance sheep research and production of economically important sheep 

products including meat, milk, and wool across the world.  

 

 

 

 

 

 



iii 

 

Acknowledgements 

I would like to thank the following people for their professional assistance and support to this 

dissertation and my academic career: 

 

Dr. Brenda Murdoch, my major professor, for outstanding mentorship, opportunities to learn 

and network, and continued investment into my research career. 

 

Dr. Mark McGuire for serving on my committee and providing excellent advice, insight, and 

encouragement throughout my postgraduate education.  

 

Dr. Paul Hohenlohe for serving on my committee and providing thought-provoking 

perspectives and insights into this research. 

 

Dr. Timothy Smith for serving on my committee and providing writing and research support 

as well as mentorship for these projects. 

 

Dr. Gordon Murdoch for research advice and education, guidance, and humor. 

 

Dr. Stephanie McKay for networking advice, research insight, and support. 

 

Dr. Benjamin Rosen for instruction on bioinformatics and genome assembly, research 

support, encouragement, and hosting my USDA AGIL visit.  

 

Dr. Kara Thornton for the kind advice and inspiration to pursue a career in research. 

 

Dr. Patricia Villamediana for research support and assistance. 

 

Graduate students Gabrielle Becker, Morgan Stegemiller, and Katie Shira for research 

support and assistance.  

 

Undergraduate students Parker Cendejas, Abby Davis, Brooklen Walker, Dana Kerner, 

Taylor Badigian, Hannah Jaeger, and Rebekka Job for research assistance. 

 

The University of Idaho Animal, Veterinary, & Food Sciences department faculty, staff, and 

students for support throughout my postgraduate education. 

 

This project was supported by Agriculture and Food Research Initiative grant no. 2017-

67016-26301, Hatch grant no. IDA01566 from the USDA National Institute of Food and 

Agriculture, USDA-ARS Project 3040-31000-100-00-D for sequencing, and USDA-ARS 

Project 2090-32000-36-00-D for the care and management of sheep. Financial support for 

presenting this research in oral and poster format were obtained from the International 

Society of Animal Genomics US Graduate Students and Early Career Investigator Awards 

(Dublin, Ireland and Lleida, Spain), University of Idaho Graduate and Professional Student 

Association Travel Awards, Oxford Nanopore Technologies Travel Bursary, and the AVFS 

department.  
 



iv 

 

 

 

 

 

Dedication 

This dissertation is dedicated to my grandparents, parents, and sister, who have always supported me 

throughout my education and career pursuits.



v 

 

Table of Contents 

Abstract .................................................................................................................................................. ii 

Acknowledgements ............................................................................................................................... iii 

Dedication ............................................................................................................................................. iv 

Table of Contents ................................................................................................................................... v 

List of Tables ......................................................................................................................................... xi 

List of Figures ...................................................................................................................................... xii 

Chapter 1: Literature Review ................................................................................................................. 1 

Introduction ........................................................................................................................................ 1 

The Sheep Industry in the United States ........................................................................................ 1 

Brief Overview of Sheep Genetics Research ................................................................................. 3 

Genome Assembly ............................................................................................................................. 5 

Genome Assembly Process ............................................................................................................ 5 

Genome Assemblies in Model Species and Livestock ................................................................... 9 

Mitochondrial Genome Assemblies ............................................................................................. 12 

Transcriptional Regulation in Mammals .......................................................................................... 13 

Introduction to Transcriptional Regulation .................................................................................. 13 

Genome Organization ................................................................................................................... 16 

CCCTC-Binding Factor (CTCF) .................................................................................................. 20 

Histone Modifications .................................................................................................................. 21 

DNA Methylation ......................................................................................................................... 23 

Functional Annotation of Animal Genomes (FAANG) ............................................................... 25 

Conclusion ........................................................................................................................................ 34 

References ........................................................................................................................................ 35 

Chapter 2: Genetic Structure and Admixture in Sheep from Terminal Breeds in the United States .... 88 

Summary .......................................................................................................................................... 89 

Introduction ...................................................................................................................................... 90 



vi 

 

Materials and methods ...................................................................................................................... 91 

Sample collection and DNA isolation .......................................................................................... 91 

Genotyping and quality control .................................................................................................... 91 

Observed heterozygosity, inbreeding coefficients, and FST calculations ...................................... 91 

Eigenvalue analyses...................................................................................................................... 92 

Hierarchical clustering .................................................................................................................. 92 

Admixture analysis ....................................................................................................................... 92 

International Breed Comparisons ................................................................................................. 93 

Results .............................................................................................................................................. 93 

Observed Heterozygosity and Inbreeding Coefficient ................................................................. 93 

Wright’s FST .................................................................................................................................. 93 

Eigenvalue Analyses .................................................................................................................... 94 

Hierarchical Clustering Based on Identity by State ...................................................................... 94 

Admixture Analysis ...................................................................................................................... 95 

Eigenvalue Plots of U.S. and International Comparisons............................................................. 95 

Discussion ........................................................................................................................................ 96 

Acknowledgements .......................................................................................................................... 98 

Availability of data ........................................................................................................................... 98 

References ........................................................................................................................................ 99 

Tables ............................................................................................................................................. 105 

Figures ............................................................................................................................................ 107 

Chapter 3: The Complete Mitochondrial Genome Sequence of Bighorn Sheep ................................ 113 

Abstract .......................................................................................................................................... 114 

Manuscript ...................................................................................................................................... 114 

Acknowledgements ....................................................................................................................... 115 

References ..................................................................................................................................... 116 



vii 

 

Chapter 4: An Improved Ovine Reference Genome Assembly to Facilitate In-Depth Functional 

Annotation of the Sheep Genome ....................................................................................................... 118 

Abstract .......................................................................................................................................... 120 

Background ................................................................................................................................ 120 

Findings ...................................................................................................................................... 120 

Conclusions ................................................................................................................................ 120 

Context ........................................................................................................................................... 121 

Methods .......................................................................................................................................... 122 

Sampling Strategy ...................................................................................................................... 122 

Sequencing and Data Acquisition............................................................................................... 122 

Assembly .................................................................................................................................... 124 

Scaffolding ................................................................................................................................. 124 

Gap Filling and Polishing ........................................................................................................... 125 

RNA Sequencing ........................................................................................................................ 125 

Annotation .................................................................................................................................. 125 

Data Validation and Quality Control .............................................................................................. 127 

Assembly Quality Statistics ........................................................................................................ 127 

RNA sequencing alignment ........................................................................................................ 129 

Annotation .................................................................................................................................. 129 

Re-use potential .............................................................................................................................. 130 

Availability of supporting data ....................................................................................................... 130 

Author contributions ....................................................................................................................... 131 

Acknowledgements ........................................................................................................................ 131 

Funding ........................................................................................................................................... 131 

References ...................................................................................................................................... 132 

Tables ............................................................................................................................................. 138 

Figures ............................................................................................................................................ 140 



viii 

 

Supplementary Material ................................................................................................................. 144 

Chapter 5: Characterizing Genetic Regulatory Elements in Ovine Tissues ....................................... 150 

Abstract .......................................................................................................................................... 151 

Introduction .................................................................................................................................... 152 

Materials & Methods ...................................................................................................................... 155 

Sample collection ....................................................................................................................... 155 

Chromatin immunoprecipitation ................................................................................................ 155 

ChIP-seq library preparation and sequencing ............................................................................. 156 

Whole genome bisulfite sequencing library preparation and sequencing .................................. 156 

ChIP-seq data quality control, mapping, and peak calling ......................................................... 157 

DNA methylation data quality control, mapping, and methylation level characterization ........ 158 

Chromatin state and CTCF motif analysis ................................................................................. 158 

Results ............................................................................................................................................ 159 

Mapping summary and statistics ................................................................................................ 160 

ChIP-seq peak calling ................................................................................................................. 160 

Visual assessment of sequence pileup ........................................................................................ 162 

Variability in histone marks between animals ............................................................................ 163 

Principal component analysis of DNA methylation ................................................................... 164 

Methylation level at CG and non-CG sites ................................................................................. 164 

Chromatin state assignment and correlation with methylation status ........................................ 164 

Distribution of chromatin states in the genome and proximity to TSS ...................................... 166 

Similarities and differences of chromatin states between tissues ............................................... 167 

CTCF binding motifs .................................................................................................................. 167 

Discussion ...................................................................................................................................... 168 

Acknowledgements ........................................................................................................................ 173 

Contribution to the field ................................................................................................................. 174 

Funding ........................................................................................................................................... 174 



ix 

 

Ethics statement .............................................................................................................................. 175 

Data availability ............................................................................................................................. 175 

Supplementary data ........................................................................................................................ 175 

Author contributions ....................................................................................................................... 175 

Conflict of interest statement .......................................................................................................... 176 

References ...................................................................................................................................... 177 

Tables ............................................................................................................................................. 190 

Figures ............................................................................................................................................ 195 

Supplementary Material ................................................................................................................. 206 

Chapter 6: Defining Genetic Regulatory Elements in the Ovine Genome Provides Insight into 

Transcriptional Regulation Across Tissues ........................................................................................ 221 

Abstract .......................................................................................................................................... 222 

Introduction .................................................................................................................................... 223 

Materials & Methods ...................................................................................................................... 224 

Tissue Collection ........................................................................................................................ 224 

Chromatin Immunoprecipitation with Sequencing ..................................................................... 224 

Assay for Transposase-Accessible Chromatin with Sequencing ................................................ 226 

Whole Genome and Reduced Representation Bisulfite Sequencing .......................................... 227 

RNA Sequencing ........................................................................................................................ 227 

Chromatin State Characterization ............................................................................................... 228 

Assay Integration ........................................................................................................................ 229 

Results ............................................................................................................................................ 229 

Hierarchical Clustering of Sequence Signal ............................................................................... 229 

ATAC-seq and ChIP-seq Peak Annotation ................................................................................ 230 

Chromatin State Characterization ............................................................................................... 231 

Chromatin State Overlap with Open Chromatin ........................................................................ 232 



x 

 

Chromatin State and ATAC-seq Overlap with Hypermethylated and Hypomethylated Regions

 .................................................................................................................................................... 233 

Chromatin State and ATAC-seq Overlap with Transcript Expression ....................................... 234 

Tissue Comparisons of Chromatin States ................................................................................... 235 

Discussion ...................................................................................................................................... 237 

Funding ........................................................................................................................................... 241 

Acknowledgements ........................................................................................................................ 241 

References ...................................................................................................................................... 243 

Figures ............................................................................................................................................ 260 

Supplementary Material ................................................................................................................. 281 

Chapter 7: Conclusion ........................................................................................................................ 292 

 

 



xi 

 

List of Tables 

Table 2.1: The mean observed heterozygosity and average estimated inbreeding coefficient including 

the 95% confidence interval for each group…………………………………………………………105 

Table 2.2: Pairwise FST* between breeds of sheep………………………………………………….106 

Table 4.1: Assembly quality statistics comparison…………………………………………………138 

Table 4.2: RNA-seq alignment statistics to ARS-UI_Ramb_v2.0 and Oar_rambouillet_v1.0 from five 

different tissues………………………………………………………………………………………139 

Table 5.1: Average correlations of sequencing signal between all four animals……………………190 

Table 5.2: Known CTCF motifs present in the top 10 most significant motifs across multiple 

samples………………………………………………………………………………………………191 

Table 5.3: Top three de novo CTCF motifs present in each sample in liver………………………..192 

Table 5.4: Top three de novo CTCF motifs present in each sample in spleen……………………...193 

Table 5.5: Top three de novo CTCF motifs present in each sample in cerebellum…………………194 

 

  



xii 

 

List of Figures 

Figure 1.1: An outline of the genome assembly process ....................................................................... 6 

Figure 1.2: Example of manual curation and scaffold rearrangement using the Hi-C contact map into 

full length chromosomes.. ...................................................................................................................... 7 

Figure 1.3: Example of DNA looping and enhancer regulatory element contact with promoter 

sequence and transcription initiation complex ..................................................................................... 14 

Figure 1.4: Three-dimensional organization of the genome ................................................................ 16 

Figure 1.5: Workflow of ATAC-seq protocol ..................................................................................... 27 

Figure 1.6: A comparison of open chromatin characterization methods ............................................. 28 

Figure 1.7: Chromatin immunoprecipitation followed by sequencing (ChIP–seq) ............................. 29 

Figure 1.8: Bisulfite treatment of DNA ............................................................................................... 31 

Figure 1.9: Overview of Hi-C.............................................................................................................. 32 

Figure 2.1: Plot of calculated Eigenvalues for breeds of U.S. sheep ................................................ 107 

Figure 2.2: Rectangular cladogram of individuals ............................................................................ 108 

Figure 2.3: ADMIXTURE model clustering output with K-6 populations ....................................... 109 

Figure 2.4: Eigenvalue plots of U.S. sheep in this study compared to other breeds across the world as 

part of the Sheep HapMap study ........................................................................................................ 111 

Figure 4.1: Image of Benz 2616 Rambouillet ewe selected for the ovine reference genome assembly

 ............................................................................................................................................................ 140 

Figure 4.2: Hi-C contact map comparison of ARS-UI_Ramb_v2.0.................................................. 141 

Figure 4.3: Assembly error comparison between ARS-UI_Ramb_v2.0, Oar_rambouillet_v1.0, and 

Oar_v4.0 ............................................................................................................................................. 142 

Figure 4.4: Dotplot comparison of genome assemblies ..................................................................... 143 

Figure 5.1: The percent of the total number of peaks normalized per Mb on each chromosome. .... 196 

Figure 5.2: Signal of H3K4me3 ChIP-seq peaks 2 kilobases upstream and downstream of 

transcription start sites (TSS) identified by CAGE assays ................................................................. 197 

Figure 5.3: Integrative Genomics Viewer (IGV) screenshot of sequence pileup normalized with the 

input control for active and repressive histone marks and DNA methylation .................................... 199 

Figure 5.4: Principal component analysis plot based on CG methylation ......................................... 200 

Figure 5.5: Methylation level at CG compared to non-CG sites in liver, spleen, and cerebellum. ... 201 

Figure 5.6: Chromatin state description and ChromHMM heatmap with histone mark signal overlap

 ............................................................................................................................................................ 203 

Figure 5.7: Percent of the genome in liver, spleen, and cerebellum assigned to each chromatin 

category .............................................................................................................................................. 204 

file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965648
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965649
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965649
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965650
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965650
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965651
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965652
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965653
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965654
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965655
file:///D:/Davenport%20Dissertation%20Draft%20to%20Committee%20revised%208.27.21.docx%23_Toc80965656


xiii 

 

Figure 5.8: Percent of overlapping promoter, active enhancer, poised enhancer, and repressed 

enhancer chromatin state categories, and hypermethylated and hypomethylated regions ................. 205 

Figure 6.1: Cluster dendrograms of raw sequence signal displaying tissue relationships ................. 265 

Figure 6.2: Annotation of peaks as percent of peaks overlapping with each feature ........................ 270 

Figure 6.3: Chromatin states across tissues incorporating signal from all four histone modifications

 ............................................................................................................................................................ 271 

Figure 6.4: Chromatin state overlap with open chromatin regions.................................................... 272 

Figure 6.5: Comparison of hypermethylated and hypomethylated sites with chromatin states and open 

chromatin regions ............................................................................................................................... 273 

Figure 6.6: Transcript per million (TPM) counts in chromatin states and open chromatin regions .. 274 

Figure 6.7: Comparison of chromatin states across tissues ............................................................... 278 

Figure 6.8: Comparison of promoter and active enhancer chromatin states in a subset of brain tissues, 

GI tissues, and tissues with immune related function ........................................................................ 279 

Figure 6.9: Screenshots from the Integrative Genomics Viewer (IGV) ............................................ 280 

  



1 

 

Chapter 1: Literature Review 

 

Introduction 

The Sheep Industry in the United States 

Sheep are an important agricultural species used for several purposes including meat, 

milk, and wool in the United States and across the world. The number of sheep in the United 

States reached 45 million in 1867 and peaked at 51 million in 1884 (Hahn, 2020). Sheep 

numbers declined to approximately 5 million and operations to approximately 80,000 by 

2012; however, the number of sheep operations increased to over 101,000 in 2017 (National 

Academy of Sciences, 2008; Hahn, 2020). This increase in the number of operations is 

attributed to a rise in small-scale farms that produce less than 100 sheep for lamb and wool 

each year (Hahn, 2020).  

A recent survey conducted by the American Sheep Industry (ASI) reported that 47% 

of producers across the United States plan to increase the number of breeding ewes on their 

operations in the next five years (Miller et al., 2016). The largest flocks reside in the western 

United States, with approximately 20% of all operations representing almost 80% of the 

national breeding ewe population (Miller et al., 2016). Conversely 73% of sheep operations 

raise 100 ewes or fewer, and these operations reported that they planned on expanding their 

flocks (Miller et al., 2016). Expansion of these smaller flocks could benefit the sheep 

industry by increasing consumption of locally raised lamb considering that approximately 

50% of the lamb consumption in the United States is imported from Australia and New 

Zealand (National Academy of Sciences, 2008).  

 The continued advancement of the U.S. sheep industry will rely on the use of genetic 

selection to improve production. The ASI survey reported that producers, primarily seedstock 

and small-scale producers, ranked genetics as a high priority for improvement of their flocks 

(Miller et al., 2016). Genomic selection strategies are not currently widely applied in the 

sheep industry when compared to other livestock industries such as the dairy cattle industry. 

The sheep industry is beginning to implement estimated breeding values (EBVs) calculated 

from reported phenotypes for selection of desired sires and replacement ewes in their flocks. 

The National Sheep Improvement Program (NSIP) was established in 1987 and is an 
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organization that encourages the use of EBVs for birth weight, weaning weight, carcass 

traits, and breed specific production traits (Wilson and Morrical, 1991; Lupton, 2008). This 

has allowed producers to access EBVs, however factors including cost and sufficient record 

keeping limit producer implementation of this program. Genetic selection moving forward 

will rely on precise phenotyping and record keeping along with the use of molecular genetic 

tools to more accurately predict the genetic materials that is inherited in the next generation 

and select desirable animals earlier in life.  

 One trait that the sheep industry is currently selecting against scrapie susceptibility. 

Scrapie is a prion disease that has previously devastated the sheep industry. Mutations at 

codon 171 of the prion gene PRNP that results in an “R” amino acid has been shown to be 

associated with less susceptibility compared with the “Q” which has been associated with 

greater susceptibility (Baylis and Goldman, 2004). Genetic variation in not only codon 171, 

but also 154 and 136 of ovine PRNP have been associated with susceptibility (Baylis and 

Goldman, 2004). Producers have capitalized on this knowledge to select against this harmful 

disease as part of the National Scrapie Eradication Program (Lynn et al., 2007; Melichior et 

al., 2010).  

 The sheep industry has several single marker genetic tests for causative mutations 

related to disease and production traits such as spider lamb, callipyge, and fecundity 

available for producer use (Cockett et al., 1999; Cockett and Beever, 2001; Wilson et al., 

2001; McNatty et al., 2007; Freking et al., 1998). However, single marker genomic tests are 

not the only molecular genetic tool available to the sheep industry and researchers. The 

International Sheep Genomics Consortium (ISGC) has historically led the international effort 

to compile various single nucleotide polymorphisms (SNPs) identified throughout the sheep 

genome into panels for parentage testing and genomic evaluation (Heaton et al., 2014). The 

available SNP panels include the Ovine 15K, three different arrays consisting of 

approximately 50,000 SNPs (Illumina Ovine 50K BeadChip, Affymetrix Ovine 50K, and 

Neogen GGP Ovine 50K), and a high-density panel (Illumina Ovine HD) consisting of 

approximately 600,000 SNPs. These arrays include markers for parentage, some traits of 

interest such as scrapie, and SNPs that evenly span the entire genome. The recently released 

low-density and low-cost panel (Flock54) specifically targets parentage markers and markers 
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related to disease and production traits (Job et al., 2019; Thorne et al., 2019). This panel 

gives producers the opportunity to use genomic testing at a lower cost to inform selection 

decisions in their flocks (Job et al., 2019; Thorne et al., 2019). In summary, the sheep 

industry in the United States will greatly benefit from implementation of genetic selection 

tools to improve meat, wool, and milk production.  

 

Brief Overview of Sheep Genetics Research 

 Sheep populations across the world have diverged based on adaptation and selection 

for traits such as wool, growth, or milk production and this has led to greater breed 

specialization (Kijas et al., 2012; Zhang et al., 2013). The sheep HapMap project used the 

50K array to characterize genetic relatedness of sheep across the world although both the 

high-density and 50K SNP arrays are commonly used for genomics research (Kijas et al., 

2012). This study found that many breeds of sheep retained greater heterozygosity in 

comparison to other livestock species under selection such as cattle (McKay et al., 2008; 

Bovine HapMap Consortium et al., 2009; Kijas et al., 2012; Ciani et al., 2013; Gaouar et al., 

2017).  

Inbreeding coefficient and Wright’s FST metrics have been used in addition to 

observed heterozygosity to assess relatedness in sheep across the world (Wright, 1965; Weir 

& Cockerham, 1984; Zhang et al., 2013; Al-Mamun et al., 2015; Michailidou et al., 2018). 

The genetic differences based on selection for specific purposes and production systems are 

apparent across different geographical locations revealed by clustering based on principle 

component analyses and identity by state matrices (Blackburn et al., 2011; Kijas et al., 2012). 

Regional differences have been identified even within sheep breeds including Suffolk in the 

United States (Kuehn et al., 2008). It is important to understand genetic differences of sheep 

based on breed and geographic location because this can improve the effectiveness of 

genomic selection and assess the applicability of information discovered in one breed to 

other breeds based on relatedness.  

 The 50K and HD SNP panels have also been used for genome-wide association 

studies to identify genetic relationships to traits of interest. This includes resistance for 

gastrointestinal nematodes and ovine lentivirus, which both substantially affect the sheep 
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industry (Heaton et al., 2012; Heaton et al., 2013; Becker et al., 2020; Ahbara et al., 2021). 

Parasite and lentivirus infections are difficult to mitigate with treatment and often these 

pathogens develop resistance, therefore genetic selection for resistance provides a promising 

prevention strategy (Heaton et al., 2012; Heaton et al., 2013; Becker et al., 2020; Ahbara et 

al., 2021).  

The production of lamb for consumption, which relies on litter size, growth, and meat 

quality traits, has also been studied in a wide variety of breeds including Icelandic, 

Finnsheep, Romanov, Wadi, Hu, Texel, Dorper, and Merino (Zhang et al., 2013; McRae et 

al., 2018; Mortimer et al., 2018; Xu et al., 2018). These studies identified quantitative trait 

loci (QTLs) associated with economically important, valuable, or desirable traits. Among 

these is callipyge, a trait that is characterized by increased muscling in the hindquarters 

(Cockett et al., 1996; Freking et al., 2002; Murphy et al., 2005; Murphy et al., 2006; Bidwell 

et al., 2014; Freking et al., 2018). The SNP associated with callipyge was found to disrupt an 

enhancer that was paternally imprinted (Cockett et al., 1996; Freking et al., 2002; Murphy et 

al., 2005; Murphy et al., 2006; Bidwell et al., 2014; Freking et al., 2018). Many other SNPs 

associated with traits of interest lie outside transcribed regions, and may reside in regulatory 

regions, however these have not yet been annotated in the sheep genome.   

 Many traits of interest to the sheep industry including fecundity have been examined 

with other technologies such as whole genome sequence (WGS) (Heaton et al., 2017). This is 

an important tool in sheep research and provides in-depth characterization of genetic 

variation throughout the genome. WGS has also been used to characterize and trace selection 

signatures across wild and domestic sheep as well as a tool to examine the accuracy of 

imputation from a high-density ovine SNP panel (700K) to sequence level variation 

(Bolormaa et al., 2019; Yang et al., 2020). The increased availability of WGS in sheep from 

research groups including the United States Department of Agriculture and the International 

Sheep Genomics Consortium is advantageous to researchers examining traits across a diverse 

collection of sheep breeds. 

 The sheep industry in the United States will greatly benefit from the increased use of 

genomic technologies and advancements in genetic research. The use of SNPs and WGS 

have enabled major advancements in associating genetic variation to traits of interest to the 
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industry. These technologies rely heavily on a quality reference genome to precisely map 

these markers and sequence, as well as gene and regulatory element annotation, to deliver the 

most accurate results. Reference genomes in sheep and other species will be discussed in the 

subsequent section of this literature review.  

 

 

Genome Assembly 

Genome Assembly Process 

 Genome assembly algorithms have greatly advanced in the last several years. There 

are numerous genome assembly programs available for a range of uses including Velvet and 

HGAP which are optimized for small genomes (Zerbino and Birney, 2008; Chin et al., 2013), 

Falcon and Canu which are optimized for large genome assembly with long read PacBio 

and/or Oxford Nanopore data (Chin et al., 2016; Koren et al., 2017), and MaSuRCA which 

can be used for any size genome and both long and short read data (Zimin et al., 2013). An 

overview of the genome assembly process is outlined in Figure 1.1. One of the most 

commonly used assembly programs is Canu, an updated Celera assembler that was 

developed for single molecule sequencing such as PacBio or Oxford Nanopore (Myers et al., 

2000; Miller et al., 2008; Koren et al., 2017). This program uses the MinHash Alignment 

Process (MHAP) to overlap and generate consensus sequence from single-molecule sequence 

(Berlin et al., 2015; Koren et al., 2017). Canu operates in three stages: correct, trim, and 

assemble (Koren et al., 2017). Raw sequence reads (PacBio, Oxford Nanopore, or a 

combination of the two) are overlapped and the highest quality overlap is selected and output 

as a consensus (Koren et al., 2017). The low-quality reads are identified in the overlapping 

sequence and trimmed, retaining the highest quality consensus sequence (Koren et al., 2017). 

Canu then makes a final pass to identify potential sequencing errors, constructs an overlap 
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graph, generates consensus sequences, outputs assembled contigs, and calculates summary 

statistics (Koren et al., 2017).  

The next step in the genome assembly process is scaffolding. There are several 

technologies that can aid in piecing together contigs into scaffolds including physical 

mapping, subcloning, and chromosome contact data (Ghurye & Pop, 2019). Physical 

mapping includes restriction mapping, which is implemented with enzymatic cleavage of 

DNA at specific recognition sites followed by sequencing to order and join contigs (Williams 

et al., 1992; Schwartz et al., 1993; Ghurye & Pop, 2019). Another type of physical mapping 

is optical mapping, which uses a restriction enzyme to digest DNA which is then stained with 

a fluorescent dye and joined together into a consensus optical map (Lawrence et al., 1991; 

Wu & Shi, 2002; Ghurye & Pop, 2019). Radiation hybrid mapping, another physical 

mapping technique, utilizes X-rays or radiation to randomly break DNA, which is then 

cloned into cell lines and sequenced (Lawrence et al., 1991; Wu & Shi, 2002; Ghurye & Pop, 

2019). Subcloning is a process which involves fragmenting the genome into large pieces, 

transferring these DNA inserts into a vector such as a BAC, and sequencing of these 

fragments (Ghurye & Pop, 2019). This was first done by sequencing each end of BACs 

which were approximately 100kb in length (Rowen et al., 1997; Lander et al., 2001; Ghurye 

& Pop, 2019). The 10x Genomics technology uses this concept by partitioning large DNA 

fragments into droplets which are tagged with a barcode, sequenced, and divided into groups 

Figure 1.1: An outline of the genome assembly process. A) Whole genome sequence 

reads (short or long read). B) Assembly of sequence into contigs. C) Scaffolding of 

contigs into scaffolds. D) Gap filling and polishing of the assembly. Adapted from 

Giani et al., 2020. 

A 

C 

B 

D 
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based on which DNA fragment they originated from (Mostovoy et al., 2016; Ghurye & Pop, 

2019).  

Additional scaffolding techniques include chromosomal contact mapping methods 

such as Hi-C and Chicago to utilize the three-dimensional structure of DNA to identify areas 

in close proximity (Lieberman-Aiden et al., 2009; Ghurye & Pop, 2019). The Hi-C protocol 

involves cross-linking of DNA, fragmenting with a restriction enzyme that leaves sticky 

ends, biotinylation and ligation of sticky ends, and sequencing of the chimeric DNA 

fragment (Lieberman-Aiden et al., 2009; Ghurye & Pop, 2019). The Chicago method is 

similar to Hi-C; however, this protocol starts with purified DNA and uses artificial 

nucleosomes to define contacts, which are then sequenced (Putnam et al., 2016; Ghurye & 

Pop, 2019). Contacts maps from both methods provide information about order and 

orientation of DNA sequence to inform the scaffolding process (Ghurye & Pop, 2019). A 

common and effective algorithm that scaffolds contigs using Hi-C information is the simple 

assembly scaffolder (SALSA) (Ghurye et al., 2017; Ghurye et al., 2019). The Hi-C sequence 

is first aligned to the genome, and then read coordinates are used to correct any contig mis-

assemblies and construct scaffolds based on a scaffold graph and contact frequency between 

contigs (Ghurye et al., 2017; Ghurye et al., 2019).   

Scaffolds are then visualized and manually curated after the scaffolding algorithm 

completes. The Hi-C data is mapped to the scaffolded assembly and visualized as a contact 

heatmap (Durand et al., 2019). The Hi-C contact information is then used to arrange and edit 

scaffolds (Figure 1.2) (Durand et al., 2018; Renschler et al., 2019). This step can be 

Figure 1.2: Example of manual curation and scaffold rearrangement using the Hi-

C contact map into full length chromosomes. Adapted from Renschler et al., 2019. 
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performed with program such as Juicer and Pretextmap (Durand et al., 2018). Scaffolded 

assemblies can also be compared with other genome assemblies, such as prior assemblies 

within the same species, by aligning the two assemblies to each other using minimap2 and 

visualizing similarities and differences using an interactive dotplot (Cabanettes & Klopp, 

2018; Li, 2018).  

The next step in the assembly process is gap filling. Gap filling may not be needed for 

some assemblies constructed from very long reads, such as Oxford nanopore (Heaton et al., 

2021; Oppenheimer et al., 2021). Some scaffolded assemblies may have gaps that can 

become problematic when the assembly is released and used by the scientific community 

(English et al., 2012). A commonly used gap filling program is PBJelly which is designed 

specifically to use PacBio data (English et al., 2012). To accomplish gap filling, this program 

aligns PacBio WGS to the scaffolded genome and identifies reads that span gaps, and then 

fills these gaps in the assembly accordingly (English et al., 2012).  

Polishing is the final step in the assembly process. This step aims to reduce error and 

deliver a more accurate assembly (Jain et al., 2018; Rhie et al., 2021). There are many 

polishing programs available including Nanopolish and freebayes (Jain et al., 2018; Rhie et 

al., 2021). Nanopolish aligns raw Oxford Nanopore fast5 sequence to the genome draft and 

searches for disagreements between the aligned reads and the assembly, which it then 

corrects based on the consensus of the raw Oxford Nanopore sequence (Jain et al., 2021). 

Freebayes is also used to correct errors by identifying disagreements between the draft 

genome and short read sequence, which generally has a greater accuracy, and subsequently 

corrects these errors based on the consensus of the short-read sequence (Rhie et al., 2021). 

The polished genome can then be evaluated for various quality metrics such as contig N50 

(the length of the smallest contig where the sum of this contig and all larger contigs is equal 

to over 50% of the total assembly length) and L50 (the least number of contigs it takes to 

span half the genome), scaffold N50 (half of the scaffolds are of this size and larger) and L50 

(the length of the smallest scaffold where the sum of this scaffold and all larger scaffolds is 

equal to over 50% of the total assembly length), per-base and kmer based quality scores, and 

other metrics such as mapping rate of sequence data such as RNA-seq data (Heaton et al., 

2021; Oppenheimer et al., 2021).  
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Complete and accurate genome assemblies are important resources for the scientific 

community because they provide a baseline map that defines the location of genes, 

transcribed regions and genetic variation within the genome. The genomes assembled for 

model organisms as well as livestock, including reference genomes, will be discussed in the 

subsequent section.  

 

Genome Assemblies in Model Species and Livestock 

The precise annotation of a genome relies on an accurate reference assembly. The 

accuracy and completeness of a genome improves as technology rapidly advances. Genome 

assembly began with model organisms including Caenorhabditis elegans (Sulston et al., 

1992), mouse (Mouse Genome Sequencing Consortium, 2002), and zebrafish (Howe et al., 

2013). The large-scale project that involved sequencing the human genome for the first time 

began in 1990, with the first draft released in 2001 (International Human Genome 

Sequencing Consortium, 2001). The first human genome used Sanger technology to 

sequence bacterial artificial chromosome (BAC) clones generated from restriction enzyme 

fragmented DNA (International Human Genome Sequencing Consortium, 2001; Chial 2008). 

It was reported that this venture cost approximately $300 million (Etherington et al., 2020). 

Genome assembly technology has changed dramatically over two decades. The decrease in 

cost of next-generation sequencing including high throughput short read (Illumina) and long 

read (PacBio and Oxford Nanopore) as well as advancement of assembly algorithms has 

decreased cost of a simple, non-reference mammalian genome assembly to roughly $1,000 

(Etherington et al., 2020).  

 Global efforts to sequence and assemble genomes of non-model species including 

livestock and wild species have followed the release of the human genome. The Genome 

10K Community of Scientists aimed to collect tissue and DNA for sequencing of 10,000 

vertebrate species, expecting a decrease in whole genome sequencing costs during the time 

the samples were collected (Genome 10K Community of Scientists, 2009). This community 

then evolved into the Vertebrate Genomes Project which aimed to assemble genomes from 

71,657 vertebrate species (Rhie et al., 2021). A similar effort named the Earth Biogenomes 

Project has the goal to sequence, catalog, and characterize genomes from thousands of 
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eukaryotes over the span of 10 years (Lewin et al., 2018). Within the agriculture sector, 

globally collaborative scientific communities studying agriculturally relevant livestock 

species including cattle, goats, and sheep assembled reference genomes for their respective 

species.  

 The sequencing and assembly of the first cattle genome set the stage for the sheep 

genome assembly. The first cattle genome, which was adopted as the first reference genome, 

was released in 2004, and later refined and published in 2009 (Liu et al, 2009). The animal 

that was selected to be used for this assembly due to her high level of inbreeding was a 

Hereford cow (L1 Dominette 01449) (Liu et al., 2009). The high level of inbreeding and 

reduced heterozygosity in this cow was intended to simplify genome assembly (Liu et al., 

2009). The first cattle genome was assembled from BAC sequence combined with whole 

genome shotgun sequence (WGSS) (Liu et al., 2009). The BACs were pooled and sequenced 

to reduce cost, which was a similar approach to the rat and sea urchin genomes (Gibbs et al., 

2004; Consortium SUGS, 2006; Liu et al., 2009). The cattle assembly was performed using 

the Atlas assembly system, which involves assembly of the BAC sequence alone and then in 

combination with the WGSS data (Liu et al., 2009). The assembled contigs and scaffolds 

were then placed onto chromosomes using the Integrated Bovine Map (Snelling et al., 2007; 

Liu et al., 2009). The Integrated Bovine Map included maps constructed from fragments of 

290,797 BAC clones, linkage maps, and radiation hybrid maps (Ihara et al., 2004; Snelling et 

al., 2005; Everts-van der Wind et al., 2005; Itoh et al., 2005; McKay et al., 2007; Snelling et 

al., 2007). The reference genome assembly, Btau_3.1 was released as a resource to the 

scientific community. Soon after, another non-reference cattle genome, UMD2, was 

assembled from the same Hereford cow but used different assembly algorithms (Zimin et al., 

2009). The UMD2 genome was assembled with a modified Celera assembler that was also 

used in the Drosophila genome (Zimin et al., 2009). Several years later, the reference cattle 

genome was updated to Btau_4.0 and Btau_5.0 as it was widely utilized by cattle researchers.  

Genome assemblies have vastly improved in contiguity because of advances in 

sequencing technology and assembly algorithms. The most recent cattle reference genome, 

ARS-UCD1.2, was assembled using the same Hereford cow as the first reference (Rosen et 

al., 2020). This updated reference genome combined PacBio RSII long read WGS and 
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Illumina NextSeq500 short read WGS to achieve greater continuity with a contig N50 of over 

25 Mb. T The ARS-UCD1.2 genome was assembled with the PacBio sequence using the 

Falcon assembler (Chin et al., 2016) and contigs were scaffolded using Dovetail Chicago 

(Putnam et al., 2016; Rosen et al., 2020), BtOM1.0 optical map (Zhou et al., 2015; Rosen et 

al., 2020) and a recombination map (Ma et al., 2015; Rosen et al., 2020). The Falcon 

assembler is diplotype-aware and assembles the genome by error correcting raw reads, 

overlapping reads together, phasing heterozygous SNPs by grouping these SNPs into 

haplotypes, and using these phased reads to generate contigs and haplotigs (Chin et al., 

2016). The Dovetail Chicago method of scaffolding involves proximity ligation of DNA and 

linking these contigs into scaffolds based on three-dimensional contacts of DNA (Putnam et 

al., 2016). The optical map is another scaffolding technique created using a single molecule-

based system that orders DNA fragments based on imaging (Zhou et al., 2015). The 

recombination map was created in Holstein cattle by examining linkage disequilibrium 

across the genome from genotypes from related animals (Ma et al., 2015).  

 The first cattle genome paved the way for the genome assemblies of other livestock, 

including sheep. The first sheep reference genome was assembled using sequence data 

generated from two Texel sheep (Jiang et al., 2014). This genome was assembled in multiple 

iterations and eventually Oar_v3.1 was released, which was a high-quality reference genome 

at the time (Jiang et al., 2014). The first sheep genome was assembled from WGSS (short 

read), BAC sequence, a radiation hybrid map, and a linkage map (Jiang et al., 2014). The 

contig N50 of Oar_v3.1 is approximately 40 kilobases (kb) and is 2.61 Gb in length (Jiang et 

al., 2014). This Texel genome was later updated using improved assembly algorithms and 

released as Oar_v4.0. The sheep reference was again updated in 2017 with a genome 

assembled from a Rambouillet ewe selected for the Functional Annotation of Animal 

Genomes project (Salavati et al., 2020). The Oar_rambouillet_v1.0 genome has a contig N50 

of 2.57 Mb and was assembled using PacBio RSII and Illumina whole genome shotgun 

sequencing, followed by scaffolding with Hi-C (Salavati et al., 2020). The sheep reference 

genome Oar_rambouillet_v1.0 was a vast improvement from previous assemblies but has 

lower contiguity and quality when compared with other livestock genomes released at a 

similar time (Bickhart et al, 2017; Rosen et al., 2020).  
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 There are current efforts in sheep and cattle to combine multiple genomes assembled 

from a several different breeds within a species to create a pan-genome. A pan-genome is 

essentially a reference genome that captures genetic variation across multiple individuals 

within a species (Sherman & Salzberg, 2020). Pan-genomes are currently being constructed 

and utilized in humans, crops, and bacteria (Sherman & Saslzberg, 2020; Siles et al., 2020; 

Coletta et al., 2021). A new strategy that is being used to create pan-genomes by assembling 

multiple livestock genomes involves crossing divergent breeds and collecting samples from 

the offspring to create haplotype-resolved genomes of each parent. This takes advantage of 

high heterozygosity and the ability to phase entire chromosomes back to the parental 

sequence, which is termed trio-binning (Koren et al., 2018; Low et al., 2020). The Angus 

(Bos taurus) and Brahman (Bos indicus) genome assemblies were derived from a 153-day F1 

fetus and achieved contig N50s of 29.4 Mb for Angus and 23.4 Mb for Brahman (Low et al., 

2020). Two additional assemblies were generated from a hybrid animal which was a cross 

between a yak female (Bos grunniens) and a Highland cattle male (Bos taurus)(Rice et al., 

2020). These assemblies achieved impressive contig N50s of 79.8 Mb for yak and 72.8 Mb 

for Highland (Rice et al., 2020). Additional genomes were assembled from an American 

bison (Bison bison) and Simmental cattle (Bos taurus) cross, resulting in contig N50s of 70.8 

Mb for the Simmental female and 68.5 Mb for the bison male (Heaton et al., 2021; 

Oppenheimer et al, 2021). These genomes strongly support the benefit of crossing divergent 

species to assemble haplotype-resolved genomes. 

  

Mitochondrial Genome Assemblies 

 Several mitochondrial genomes have been completed for many different species in 

addition to full genome assemblies. Mitochondrial genomes are often included with the entire 

assembly; however, some mitochondrial genomes have been assembled separately since they 

can be informative in population genetics analyses and discerning phylogeny (Avise et al., 

1987; Moritz, 1994; Moore, 1995). Several mitochondrial genomes exist for domestic sheep 

(Ovis aries) including the Texel and Rambouillet breeds (Hu & Gao, 2014; Salavati et al., 

2020). These genomes are circular, over 16,600bp in length, and include 13 protein-coding 

genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control or D-loop region (Hu 
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& Gao 2014). Other breeds of domestic sheep including Hamdani and Karadi breeds from 

Kurdistan, as well as Altay, Shandong large-tailed, small-tailed Hulun Buir, and Alpine 

Merono breeds from China have complete mitochondrial genomes (Fan et al., 2015; Mustafa 

et al., 2018; Qiao et al., 2020). Mitochondrial genomes of other Ovis species have also been 

assembled, which provides insight into phylogenetic differences between populations of wild 

sheep and their relationships to domestic sheep. This includes bighorn sheep (Ovis 

canadensis), snow sheep (Ovis nivicola), thinhorn sheep (Ovis dalli), and Turkish wild sheep 

(Ovis gmelinii anatolica) (Bunch et al., 2006; Miller et al., 2012; Demirci et al., 2013; 

Dotsev et al., 2019).  

The genomes of livestock and other species have vastly improved in continuity and 

quality as sequencing technology and assembly algorithms improve. The cost of assembling 

these genomes has drastically decreased since the first human genome was released. The 

continued progress in technology will allow even more improvement in genome assembly in 

the future, as well as the construction of pan-genomes that incorporate genetic diversity from 

many different breeds and lineages. 

 

 

Transcriptional Regulation in Mammals 

Introduction to Transcriptional Regulation 

The regulation of gene expression in mammals is essential for proper biological 

functionality, as well as tissue and cellular identity. Precise gene regulation is important for 

daily functionality and responses to environmental stimuli, which affects the expression of 

phenotypes such as growth and wool production important to the sheep industry. 

Transcriptional regulation is modulated by the binding of proteins to specific regulatory 

sequences that impact the activity of RNA polymerase. Regulatory elements including 

promoters and enhancers act in cis, or within proximity of neighboring elements they are 

acting upon. Promoter elements generally contain bindings sites for transcription factors, 

such as the TATA box and Inr sequence (Cooper, 2000; Calo & Wysocka, 2013; Andersson 

& Sandelin, 2020).   
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Enhancer regions are generally farther away from the transcription start site of a gene 

and outnumber protein coding genes, with over a million enhancers estimated to exist in the 

human genome (Cooper, 2000; Tippens et al., 2018). This demonstrates the complexity of 

gene regulation, with many enhancers having the capacity to regulate a single gene (Tippens 

et al., 2018). Enhancers act in cis and may be up to a megabase from their target gene in 

linear space (Tippens et al., 2018). The proximity in three-dimensional space is thought to 

facilitate enhancer and promoter interaction, and therefore gene regulation (Tippens et al., 

2018). Enhancers act similarly to promoters because they often allow the binding of 

transcription factors which then interact with RNA polymerase (Cooper, 2000; Calo & 

Wysocka, 2013; Andersson & Sandelin, 2020). A depiction of this three-dimensional 

interaction is displayed in Figure 1.3. Genetic variation in these regulatory sequences can 

impact transcription factor binding and therefore transcriptional regulation (Cooper, 2000; 

Calo & Wysocka, 2013; Andersson & Sandelin, 2020).  

The transcription 

factors that bind to regulatory 

sequences are an instrumental 

component of gene 

regulation. Transcriptional 

activators are the most well-

studied group of transcription 

factors (Cooper, 2000). These 

proteins have two major 

domains, one that binds the 

target DNA sequence and one 

that interacts with the 

transcriptional machinery 

(Cooper, 2000; Calo & Wysocka, 2013; Andersson & Sandelin, 2020). There are four major 

families of DNA binding domains including zinc fingers, helix-turn-helix, leucine zipper, and 

helix-loop-helix (Cooper, 2000; Calo & Wysocka, 2013; Andersson & Sandelin, 2020). The 

zinc finger domains consist of zinc ions bound to alpha helix and beta sheet loops that 

directly interact with the DNA (Cooper, 2000; Calo & Wysocka, 2013; Andersson & 

Figure 1.3: Example of DNA looping and enhancer 

regulatory element contact with promoter sequence and 

transcription initiation complex. Adapted from 

https://slideplayer.com/slide/7463417/.  
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Sandelin, 2020). Helix-turn-helix domains consist of two or more coiled regions in which 

one region has direct contact with the DNA and the other regions stabilize the contact 

(Cooper, 2000; Calo & Wysocka, 2013; Andersson & Sandelin, 2020). Leucine zipper 

domains are comprised of polypeptide chains with hydrophobic areas that interact with each 

other and form a DNA binding helix (Cooper, 2000; Calo & Wysocka, 2013; Andersson & 

Sandelin, 2020). Helix-loop-helix domains are similar to leucine zippers except the protein 

dimerization has two helical regions that encompass the DNA instead of one (Cooper, 2000; 

Calo & Wysocka, 2013; Andersson & Sandelin, 2020).  

 Repressors also play a large role in transcriptional regulation in mammals. Repressors 

bind to promoter regions and throughout the genome and have domains that inhibit 

transcription by interacting with transcription factors (Calo & Wysocka, 2013; Andersson & 

Sandelin, 2020). Repressors play a key role in transcriptional regulation and are thought to be 

involved with tissue-specific expression, although they are not as historically well studied as 

activators (Cooper, 2000; Andersson & Sandelin, 2020).  

Methylation of DNA at promoter sites can also repress transcription, although this is 

not always true (Andersson & Sandelin, 2020). Methylation of specific amino acids that are 

part of histone tails also can indicate repressed regions (Cooper, 2000; Calo & Wysocka, 

2013; Andersson & Sandelin, 2020). Tight chromatin packaging is another method of 

repressing transcription, leaving the transcription start site inaccessible to RNA polymerase 

(Calo & Wysocka, 2013; Andersson & Sandelin, 2020). This packaging can be related to 

histone modifications that dictate histone compaction, and therefore silencing of transcription 

(Cooper, 2000; Andersson & Sandelin, 2020). Both DNA methylation and histone 

modification will be discussed in greater detail in a subsequent section of this review. 

Genome organization and packaging influences transcriptional repression as well as 

activation.  
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Genome Organization 

 Genomes are often visualized in silico in a linear manner, however within the 

nucleus, DNA has a deliberate three-dimensional organization. DNA has a hierarchical 

structure, with intentional folds and higher order organization that influences gene activity. 

The positioning of genes within this organization can influence transcription, with 

heterochromatic and repressed regions present at the outer portion of the nucleus, and more 

active genes present near the interior of the nucleus (Szabo et al., 2019; Bickmore, 2013). A 

visual depiction of higher order genome organization within the nucleus is displayed in 

Figure 1.4 (Szabo et al., 2019). Individual chromosomes are organized into chromosome 

territories, which represent distinct higher order packaging within the nucleus (Szabo et al., 

2019; Cremer and Cremer, 2010). These territories contain A and B compartments that 

separate different types of chromatin (Lieberman-Aiden et al., 2009; Rao et al., 2014; Wang 

et al., 2016). A compartments contain active chromatin and regions that are gene rich, while 

B compartments contain mostly repressed chromatin (Szabo et al., 2019; Lieberman-Aiden et 

al., 2009; Rao et al., 2014).  

Figure 1.4: Three-dimensional organization of the genome within the nucleus into 

chromosome territories, A and B compartments, and topologically associated 

domains. This organization is instrumental in facilitating gene regulation. Adapted 

from Szabo et al., 2019. 
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Topologically associated domains (TADs) consist of genomic regions within 

chromatin compartments that are looped in close physical proximity in three-dimensional 

space, which facilitates intradomain interactions of genes and regulatory elements (Szabo et 

al., 2019; Nora et al., 2012). The size of these domains varies anywhere from 10 kilobases 

(kb) to hundreds of kb, with a median size in mice of 880 kb (Dixon et al., 2012; Hou et al., 

2012; Nora et al., 2012; Sexton et al., 2012). Gene regulation and regulatory landscapes 

across the genome through three-dimensional organization can be influenced by TADs 

(Symmons et al., 2014; Bonev et al., 2017; Szabo et al., 2019) This facilitates contact 

between genes and regulatory elements such as promoters and enhancers located within the 

same TAD (Symmons et al., 2014; Bonev et al., 2017; Szabo et al., 2019). The influence of 

enhancers and promoters on gene expression is normally restricted within the same TAD 

(Bonev et al., 2017; Szabo et al., 2019). Smaller domains within TADs, called sub-TADs, are 

also believed to influence transcriptional regulation, and have a median size of 185 kb in the 

mouse genome (Rao et al., 2014; Rowley et al., 2017). Studies in mammalian species have 

shown that TADs are highly conserved (Dixon et al., 2012; Vietri Rudan et al., 2015; Szabo 

et al., 2019). Disruption of TADs can lead to mis-regulation of genes by facilitating non-

intentional regulatory element contacts with genes, which may cause mis-expression of genes 

and lead to complications during development or even cancer (Lupianez et al., 2015; 

Flavahan et al., 2016; Franke et al., 2016; Hnisz et al., 2016; Lupianez et al., 2016; 

Weischenfeldt et al., 2017; Szabo et al., 2019).  

The boundaries of TADs are characterized by the presence of CCCTC-binding factor 

(CTCF) and the structural maintenance of chromosomes (SMC) cohesin complex. CTCF 

plays an essential role in defining the boundaries of TADs. The removal or change in the 

CTCF binding site can shift TAD boundaries or even dismantle them completely (Sanborn et 

al., 2015; Lupianez et al., 2015; de Wit et al., 2015; Guo et al., 2015; Szabo et al., 2019). 

Approximately 75-95% of TAD boundaries in mice are associated with CTCF, depending on 

the cell type (Dixon et al., 2012; Bonev et al., 2017; Szabo et al., 2019). Approximately 5-

25% of TAD boundaries are independent of CTCF (Nora et al., 2017; Szabo et al., 2019). 

These CTCF-absent boundaries have been found to separate A and B compartments within a 

chromosome territory (Dixon et al., 2012; Rao et al., 2014; Bonev et al., 2017; Rowley et al., 

2017; Szabo et al., 2019).  
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 The stability of TADs is also influenced by the SMC cohesin complex, which lies in 

the interior of the TAD (Sanborn et al., 2015; Fundenberg et al., 2016; Szabo et al., 2019). 

Most TAD domains were experimentally disrupted by the absence or depletion of CTCF, 

cohesin, or the cohesin loading factor Nipbl in mice (Nora et al., 2017; Rao et al., 2017; 

Schwarzer et al., 2017; Wutz et al., 2017; Szabo et al., 2019). The presence of cohesin on 

chromatin stabilizes TADs (Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 2017; Wutz 

et al., 2017; Haarhuis et al., 2017; Nuebler et al., 2018; Szabo et al., 2019). Super resolution 

microscopy suggests that cohesin is required for cell type specific positioning of TADs 

(Szabo et al., 2019).  

The formation of TADs is proposed to occur by the “loop extrusion method,” which 

involves chromatin being extruded by the SMC complex until the chromatin either reaches 

two bound, convergent CTCF sites or the cohesin complex itself dissociates (Fundenberg et 

al., 2017; Szabo et al., 2019). The condensin II complex has also been observed to play a role 

in this loop extrusion process (Ganji et al., 2018; Szabo et al., 2019). The interaction between 

the cohesin and condensin complexes in this process has yet to be investigated. Interestingly, 

when cohesin is removed, chromatin still forms TADs through the loop extrusion method, 

however these loops are not positioned at CTCF boundaries (Bintu et al., 2018; Szabo et al., 

2019).  

CTCF is not only present at TAD boundaries, but it is also present within TADs. 

Enhancer-promoter pairs within TADs form smaller loop domains (sub-TADs) which are 

also defined by CTCF and cohesin, along with YYI (Rao et al., 2014; Phillips-Cremins et al., 

2013; Szabo et al., 2019). The YYI protein is thought to contribute to cell type specific 

promoter and enhancer interactions with genes inside the sub-TAD (Weintraub et al., 2018; 

Szabo et al., 2019). CTCF acts as an insulator, which prevents ectopic regulatory element 

interaction both across TAD and sub-TAD boundaries. This process is discussed in further 

detail in a subsequent section of this review.  

Domains that resemble TADs have been identified across other eukaryotes as well as 

prokaryotes. Four types of TADs exist according to the specific chromatin function and 

signature, including active domains, polycomb-repressed domains, domains devoid of 

chromatin and histone modifications, and heterochromatin domains in Drosophila (Sexton et 
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al., 2012; Szabo et al., 2019). The Caenorhabditis elegans species exhibits defined domains 

with internal interactions were found only on the X chromosome (Crane et al., 2015; Szabo 

et al., 2019). Complete TAD formation and partitioning of the genome was not found in 

plants such as Arabidopsis thaliana, however boundary-like regions that contain regulatory 

compartments similar in role to those of Drosophila were identified in other species 

including maize, tomato, sorghum, foxtail millet, and rice (Grob et al., 2014; Wang et al., 

2018; Dong et al., 2017; Szabo et al., 2019). Boundary-like regions termed chromosomal 

interaction domains were also found in bacteria, first in Caulobacter crescentus (Le et al., 

2013; Szabo et al., 2019). Similar domains have also been identified in other species of 

bacteria including Escherichia coli and Mycoplasma pneumoniae (Espeli et al., 2008; Szabo 

et al., 2019). This demonstrates that higher order chromatin organization is not unique to 

mammals and is thought to influence gene regulation in many different species.  

 These higher order chromatin domains contain chromatin, which consists of DNA 

wrapped around nucleosomes. This basic level of genome organization was discovered in 

1884 by Albrecht Kossel (Chen et al., 2014; Ramazi et al., 2020). Nucleosomes are histone 

octamers comprised of two of each H2A, H2B, H3, and H4 histone proteins (Cao and Yan 

2012; Zhang et al., 2015; Maleszewska et al., 2016). Approximately 147 base pairs of DNA 

are wrapped around each nucleosome, and nucleosomes are joined by linker DNA and 

histone H1 to form chromatin (Crane-Robinson et al., 1997; Zhang et al., 2015; Ramazi et 

al., 2020). These histone proteins have N- and C- terminal tails which protrude from the 

nucleosome and can be post translationally modified (Zhang et al., 2015).  

Post-translational modifications of histone tails can regulate chromatin structure, act 

to recruit proteins such as transcription factors to chromatin, and mark transcriptionally 

active or repressed chromatin (Zhang et al., 2015). Histone modifications can play an 

essential role in regulating the condensation of chromatin into accessible and inaccessible 

states (Peterson and Laniel, 2004; Sawan and Herceg 2010; Ramazi et al., 2020). The most 

abundant and studied histone modifications include methylation, acetylation, 

phosphorylation, and ubiquitylation, although others have been reported (Arnauda and 

Garcia, 2013; Zhang et al., 2015). Histone modifications and their function as regulators of 

gene expression will be discussed in greater detail in subsequent sections of this review. 
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CCCTC-Binding Factor (CTCF) 

 CTCF is known to have several different roles in addition to marking the boundaries 

of TADs. It was first discovered to be a transcriptional repressor of c-MYC, a zinc finger 

known to play a role in cell cycle progression and apoptosis (Lee & Iyer et al., 2012). The 

zinc finger, c-MYC is expressed in many different tissues and the sequence is conserved 

across vertebrate species (Klenova et al., 1993; Filippova et al., 1996; Lee & Iyer et al., 

2012). A paralog of CTCF in testicular tissue, BORIS, is expressed and hypothesized to be 

involved in resetting epigenetic marks in the germline after erasure (Loukinov et al., 2002; 

Lee & Iyer et al., 2012). CTCF has also been shown to be involved with X chromosome 

inactivation in mammalian species (Chao et al., 2002; Lee & Iyer, 2012). Overexpression of 

CTCF in cell lines caused cell cycle arrest and apoptosis (Torrano et al., 2005; Qi et al., 

2003; Lee & Iyer, 2012). A knockdown of CTCF led to cell proliferation and inhibited cell 

differentiation (Torrano et al., 2005; Qi et al., 2003; Lee & Iyer, 2012).  

 One function of CTCF is to block communication between promoters and enhancers 

to prevent inappropriate interactions, known as the “insulator function” (Lee & Iyer, 2012). 

This can occur at boundaries of TADs to prevent cross talk between loop domains, as well as 

at specific loci that are not meant to interact with each other. CTCF acts as an insulator and 

blocks enhancers upstream and downstream from interacting with the β-globin locus in mice 

and humans (Bell et al., 1999; Ristimaki et al., 1991; Lee & Iyer, 2012).  

 CTCF has also demonstrated involvement in genomic imprinting. CTCF acts as an 

insulator in mice by blocking communication between promoters and enhancers at the Igf2 

and H19 locus (Bell et al., 2000; Lee & Iyer, 2012). Differences in DNA methylation 

between alleles exist in the imprinting control regions (ICR) of these two genes based on 

parental origin (Bell et al., 2000; Szabo et al., 2000; Kanduri et al., 2000; Lee & Iyer, 2012). 

CTCF binding is inhibited when the paternally inherited ICR is hypermethylated, which 

silences H19 expression and indirectly activates transcription of Igf2 (Bell et al., 2000; Szabo 

et al., 2000; Kanduri et al., 2000; Lee & Iyer, 2012). The hypomethylated ICR inherited 

maternally is permissive to CTCF binding, which activates H19 and insulates the Igf2 
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promoter from its distal enhancer, leading to repression of Igf2 (Bell et al., 2000; Szabo et al., 

2000; Kanduri et al., 2000; Lee & Iyer, 2012).  

 

Histone Modifications 

 The chemical modifications of histone tails play an essential role in chromatin 

accessibility and gene regulation in eukaryotes. The first report of histone modifications 

having an inhibitory role in RNA synthesis was reported in 1951, and today we understand 

more about how this occurs (Allfrey et al.,1964; Ramazi et al., 2020). These modifications 

have been found to influence gene expression, DNA replication, DNA damage response and 

repair (Banerjee and Chakravarti, 2011; Khan et al., 2015; Kaimori et al., 2016; Ramazi et 

al., 2020), DNA condensation during mitosis and meiosis, chromatin packaging, cell cycle 

control, protein-protein interactions, and protein functions (Arnaudo and Garcia, 2013; Duan 

and Walther 2015; Shortreed et al., 2015; Ramazi et al., 2020). These modifications are 

added or removed by enzymes termed ‘writers’ and ‘erasers’ (Fan et al., 2015; Sadakierska-

Chudy and Filip, 2015; Sabari et al., 2017; Ramazi et al., 2020). 

The most abundant post-translational histone modifications are methylation, 

acetylation, phosphorylation, and ubiquitylation, however SUMOylation, ADP-ribosylation, 

deamination, arginine citrullination, N-formylation, crotonylation, propionylation, 

butyrylation, proline and aspartic acid isomerization, and biotinylation have also been 

observed (Hassan and Zempleni 2008; Wood et al., 2009; Sawan and Hercet 2010; Tan et al., 

2011; Sadakierska-Chudy and Filip, 2015; Ramazi et al., 2020). Most histone modifications 

occur on the N-terminal of the tails; however, some modifications have been reported within 

the histone core (Sawan and Herceg, 2010; Ramazi et al., 2020). Post-translational 

modifications have been detected on over 60 residues of histones (Sawan and Herceg, 2010; 

Ramazi et al., 2020). Acetylation and methylation of histones H3 and H4 have been shown to 

be related to transcriptional activation or repression of genes (Kaimori et al., 2015), while 

phosphorylation of the same histones during mitosis and meiosis have been linked to 

chromosome condensation (Banerjee and Chakravarti, 2011; Ramazi et al., 2020).  

The first histone modification to be studied in-depth after its discovery in 1964 was 

histone acetylation (Crane-Robinson et al., 1997; Ramazi et al., 2020). It was initially linked 
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to transcriptional activation, but later found to also be involved with gene silencing, DNA 

repair, and cell-cycle progression (Vendone et al., 2005; Ramazi et al., 2020). The ‘writer’ 

enzymes that catalyze the transfer of an acetyl group from acetyl Co-A to the lysine on the 

N-terminal of the histone tail are called histone acetyltransferases (HATs) (Vendone et al., 

2005; Ramazi et al., 2020). The addition of the acetyl group to the histone tail causes a shift 

in the charge of the histone protein which results in chromatin opening, therefore the 

chromatin is permissive to transcription (Han et al., 2016; Ramazi et al., 2020). The ‘eraser’ 

enzymes that remove acetyl groups from the N-terminal lysine are called histone 

deacetylases (HDAC) (Li et al., 2017; Ramazi et al., 2020). Removal of acetyl groups result 

in the DNA wrapping more tightly around nucleosomes, which is not permissive to gene 

transcription (Bannister and Kouzarides, 2011; Ramazi et al., 2020). Histone acetylation is 

associated with transcriptional activation, however the exact mechanism(s) underlying this 

association has yet to be fully uncovered (Ramazi et al., 2020).  

Histone methylation occurs mainly on the arginine and lysine amino acids of histone 

tails (Bannister and Kouzarides, 2011). The addition of one, two, or three methyl groups does 

not alter the charge of the histone protein unlike acetylation or phosphorylation (Bannister 

and Kouzarides, 2011). Histone methyltransferase enzymes such as SUV39H1 methylate N-

terminal tails of histones (Bannister and Kouzarides, 2011). Most histone methyltransferases 

have a SET domain that is relatively conserved across vertebrate species (Ng et al., 2009; 

Ramazi et al., 2020). The amino acids that differ in these SET domains play an important 

role in enzyme function and regulation in different species (Wood and Shilatifard, 2004; 

Ramazi et al., 2020). Erasers of methyl groups from histone tails occurs with histone 

demethylase enzymes (Greer and Shi, 2012; Sadakierska-Chudy and Filip, 2015; Wesche et 

al., 2017; Ramazi et al., 2020).  

Active chromatin domains are characterized by histone methylation at lysine 4 in 

addition to histone acetylation (Zhang et al., 2015). Histone modifications are often denoted 

by nomenclature that includes the histone, such as H3, followed by the amino acid that is 

modified, such as K4, and the modification, such as one methyl group (me1). Enhancer 

regions are found to be enriched for H3K4me1 often with H3K27ac (Creyghton et al., 2010; 

Zhang et al., 2015), promoters are enriched H3K4me3 (Barrera et al., 2008; Zhang et al., 
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2015), and gene bodies are enriched with H3K36me3 and H3K79me3 (Ng et al., 2003; 

Pokholok et al., 2005; Zhang et al., 2015). H3K4me3 is often present near CpG islands found 

at 50-70% of unmethylated vertebrate promoters, and the addition of H3K27me3 indicates a 

bivalent promoter (Zhang et al., 2015). Methylation of histone tails does not always indicate 

active regulatory domains (Zhang et al., 2015). Methylation on H3K9, H3K20, and H3K27 

indicate repressed regulatory domains and heterochromatin regions (Lohrum et al., 2007; Ng 

et al., 2009; Zhang et al., 2015). H3K27me3 is present at repressed enhancers and is 

identified by polycomb group proteins (LeRoy et al., 2013; Zhang et al., 2015), and 

H3K9me2 and H3K9me3 is involved in heterochromatin formation including centromere and 

telomere regions (Barski et al., 2007; Malezewska et al., 2016; Zhang et al., 2015).  

 

DNA Methylation 

 The methylation of 5-methylcytosine (5mC) is another regulator of transcription in 

the mammalian genome (Zemach et al., 2010; Greenberg & Bourc’his, 2019). Mammalian 

genomes exhibit a high level of methylation with 70-80% of all CpGs methylated compared 

with other eukaryotes (Li & Zhang, 2014; Greenberg & Bourc’his, 2019). DNA methylation 

plays a large role in genomic imprinting and repressing transposons that may be harmful 

(Walsh et al., 1998; Borgel et al., 2010; Arand et al., 2012; Greenberg & Bourc’his, 2019). 

The inactivation of the X chromosome in females also involves DNA methylation in order to 

silence transcription from one X chromosome (Lock et al., 1987; Grant et al., 1992). Mis-

regulation of DNA methylation during developmental and adult stages of life can lead to 

embryonic lethality and cancer (Li et al., 1992; Okano et al., 1999; Baylin et al., 2016). Two 

important stages of DNA methylation reprogramming occur during embryonic development, 

which influences CpG methylation patterns following fertilization and also during germ cell 

differentiation in both males and females (Monk et al., 1987; Sanford et al., 1987; Greenberg 

& Bourc’his, 2019).  

 DNA methylation involves three different phases: establishment (de novo 

methylation), maintenance, and demethylation. Different enzymes write, maintain, and erase 

these methylation patterns. The writers of DNA methylation are termed DNA 

methyltransferases (DNMT). The most prevalent DNMT enzymes in mammals are 
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DMNT3A and DMNT3B which are active in somatic cells and in the germline when 

partnered with DNMT3L (Okano et al., 1998; Okano et al., 1999; Bourc’his et al., 2001; Ooi 

et al., 2007). Maintenance of DNA methylation during cell division is also aided by DNMT, 

mainly DMNT1 which interacts with E3 ubiquitin-protein ligase (UHRF1) to methylate 

daughter DNA identically to the parental DNA strand (Nishiyama et al., 2013; Qin et al., 

2015; Greenberg & Bourc’his, 2019). The demethylation of DNA occurs with TET 

methylcytosine dioxygenases by oxidizing 5mC to 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC) (Tahiliani et al., 2009; He et al., 2011; 

Ito et al., 2011; Greenberg & Bourc’his, 2019).  

 The relationship of DNA methylation to open chromatin, histone modifications, and 

transcription has been studied in several species. Open chromatin regions that are accessible 

for transcription factor binding generally have very low levels or absence of DNA 

methylation (Stadler et al., 2011; Greenberg & Bourc’his, 2019). In general, DNA 

methylation can block transcription factors binding to their specific motifs, therefore 

inhibiting transcription (Yin et al., 2017; Greenberg & Bourc’his, 2019). The modification 

H3K4me3 repels the binding of a chromatin reading domain of DNMTs, therefore deterring 

the methylation of CpG sites at promoters of actively transcribed genes (Zhang et al., 2010; 

Piunti & Shilatifard, 2016; Greenberg & Bourc’his, 2019). DNA methylation is also present 

in repressive polycomb regions characterized by H3K27me3, which are inversely related to 

gene expression (Tanay et al., 2007; Brinkman et al., 2012; Jermann et al., 2014). 

Heterochromatin regions are also characterized by the presence of DNA methylation 

(Greenberg & Bourc’his, 2019). DNA methylation is often present within actively 

transcribed gene bodies which are often also marked by the H3K36me3 histone modification 

(Lister et al., 2009; Dhayalan et al., 2010; Zemach et al., 2010; Greenberg & Bourc’his, 

2019). This suggests that DNA methylation is not always acting in a repressive way (Sun et 

al., 2005; Dhayalan et al., 2010; Greenberg & Bourc’his, 2019). DNA methylation is 

involved in many different biological pathways that influence the transcription of genes. 
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Functional Annotation of Animal Genomes (FAANG) 

 The functional annotation of animal genomes project (FAANG) aims to define 

genetic regulatory elements in domestic species. The encyclopedia of DNA elements 

(ENCODE) project has completed functional annotation of regulatory elements in human 

(ENCODE Project Consortium, 2012), mouse (Shen et al., 2012; Yue et al., 2014), 

Drosophila (Roy et al., 2010), Caenorhabditis elegans (Gerstein et al., 2010), and zebrafish 

(Sivasubbu et al., 2013) cells and tissues. Regulatory elements have yet to be defined across 

domestic and farmed animal species including sheep (Barbosa-Morais et al., 2012; 

Andersson et al., 2015). Many complex traits that are important in livestock industries are 

likely not controlled by variation in coding regions alone (Andersson, 2013; Schaub et al., 

2012; Andersson et al., 2015). A variant in an enhancer region, which is also subject to polar 

overdominance, is the causal mutation for callipyge in sheep (Cockett et al., 1996; Freking et 

al., 2002; Bidwell et al., 2014). Myostatin protein expression is decreased by a new 

microRNA binding site caused by a single nucleotide change in the 3’ untranslated region of 

the sheep myostatin gene (Clop et al., 2006; Andersson et al., 2015). Growth in pigs is 

influenced by a variant in an intron of IGF2, which also happens to be a regulatory region 

(Van Laere et al., 2003; Andersson et al., 2015). The functional annotation of domestic and 

farm animal genomes will provide further insight into the biological mechanisms behind 

complex, important traits.  

 Gene transcription and regulation can be characterized by defining transcribed loci, 

chromatin accessibility and architecture, histone modifications, DNA methylation, 

transcription factor binding sites, and genome conformation. To characterize transcribed loci, 

sequencing information is obtained from RNAs which include messenger RNA (mRNA), 

micro-RNA (miRNA), and long non-coding RNA (lncRNA). Sequencing different types of 

RNA molecules may help to identify novel transcripts, splice sites, coding regions, and 

allele-specific expression (Kukurba and Montgomery, 2015). There are many different types 

of non-coding RNA (ncRNA) that can regulate gene expression (Kukurba and Montgomery, 

2015). The non-coding RNAs that were first discovered include ribosomal RNA (rRNA), 

transfer RNA (tRNA) involved with translation of mRNA, small nuclear RNA (snRNA) 

involved with splicing, and small nucleolar RNA (snoRNA) involved with modification of 

rRNA (Mattick and Makunin, 2006; Kukurba and Montgomery, 2015). Other types of 
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ncRNA were discovered and linked to the regulation of gene expression including micro-

RNA (miRNA) and piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) 

(Okazaki et al., 2002; Stefani and Slack, 2008; Kukurba and Montgomery, 2015).  

 The FAANG community has begun to characterize the transcriptome across several 

species and a large collection of tissues. A gene expression atlas was created for the sheep 

using RNA-seq data (Clark et al., 2017). This dataset used network clustering to identify 

expression specific to tissues and prenatal, neonatal, juvenile, and adult developmental stages 

of Texel and Scottish Blackface sheep (Clark et al., 2017). A goat gene expression atlas was 

created from 17 tissues using RNA-seq which allowed for identification of expression unique 

to specific groups of tissues and identified unannotated genes in the current reference 

(Muriuki et al., 2019). A gene expression atlas created for the water buffalo included three 

different breeds (Mediterranean, Padharpuri, and Bhadawari) and clustered genes based on 

expression profiles (Young et al., 2019). The pig gene expression atlas took the approach of 

mining RNA-seq data from public repositories and attempted to normalize and compare the 

data to identify tissue and cell specific transcript expression (Summers et al., 2020). Allele-

specific mRNA expression was also characterized in a Texel-crossed Scottish Blackface 

sheep, which sets the precedent for similar experiments in the future (Salavati et al., 2019). 

lncRNA has been characterized in cattle, chicken, and pigs across 8 tissues and compared 

between species (Kern et al., 2018). An experiment in cattle from divergent residual feed 

intake groups examined lncRNA differences related to this important phenotype (Nolte et al., 

2020).  

 Additional methods to capture transcription information includes cap analysis of gene 

expression (CAGE) and RNA annotation and mapping of promoters for analysis of gene 

expression (RAMPAGE). The CAGE method captures the first 20 nucleotides from the 5’ 

end of mRNA followed by sequencing to identify transcription start sites (TSS) (Shiraki et 

al., 2003). The RAMPAGE method uses reverse transcribed RNA to sequence the 5’ 

complementary strand in order to identify TSS (Batut and Gingeras, 2013). Both methods 

have been utilized by the FAANG community to identify TSS throughout the genome in 

several tissues. TSS were identified in sheep with CAGE across 56 tissues and compared 

with both mRNA-seq and DNA methylation data (Salavati et al., 2020). This study revealed 
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novel, un-annotated TSS across this large collection of tissues, and found that these sites 

were devoid of methylation (Salavati et al., 2020). A survey of RAMPAGE sequencing in 31 

tissues in cattle also identified novel TSS throughout the genome and in a tissue specific 

capacity (Goszczynski and Halstead et al., 2021).  

 Chromatin accessibility 

can be highly indicative of 

transcriptional activity 

throughout the genome (Yan 

et al., 2020). Several assays 

including assay of 

transposable accessible 

chromatin with sequencing 

(ATAC-seq) (Figure 1.6), 

DNase I hypersensitive sites 

sequencing (DNase-seq) 

Figure 1.6), and 

formaldehyde-assisted 

isolation of regulatory 

elements with sequencing 

(FAIRE-seq) (Figure 1.6) can 

all define chromatin 

accessibility (Buenrostro et 

al., 2013; Buenrostro et al., 

2015; Song and Crawford, 

2010; Thurman et al., 2012; Boyle et al., 2008; Giresi et al., 2007; Yan et al., 2020). The 

ATAC-seq assay incorporates a hyperactive Tn5 transposase to cut chromatin accessible to 

the enzyme and leaves a 9bp nick to ligate adaptors for sequencing (Yan et al., 2020). 

ATAC-seq is comparable in sensitivity and specificity to DNase-seq but generally 

outperforms FAIRE-seq as this method requires a much larger sample input (Buenrostro et 

al., 2013; Yan et al., 2020). The DNase-seq assay is similar to ATAC-seq in that it uses an 

enzyme, DNase I, that cleaves sites accessible and hypersensitive to the enzyme throughout 

Figure 1.5: Workflow of ATAC-seq protocol involving 

the Tn5 enzyme cleaving accessible regions of 

chromatin, isolation of cleaved chromatin, and ligation 

of adapters prior to sequencing. Adapted from 

https://www.genewiz.com/Public/Services/Next-

Generation-Sequencing/Epigenomics/ATAC-Seq/  
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the genome (Boyle et al., 2009). Both assays have been used prevalently to characterize open 

chromatin, but ATAC-seq has gained popularity due to the fact that it requires less sample 

input and is less labor intensive to perform (Li et al., 2019; Yan et al., 2020). Finally, 

FAIRE-seq involves crosslinking chromatin with formaldehyde, sonicating the chromatin, 

and then separating the “free” chromatin from the chromatin crosslinked to histones for 

sequencing (Giresi et al., 2007).  

 The FAANG 

community has performed 

some characterization of open 

chromatin in livestock using 

ATAC-seq and DNase-seq. 

The methodology for ATAC-

seq with homogenized, 

cryopreserved tissue was 

recently published to show 

proof of concept in chicken 

lung by comparing ATAC-

seq data to DNase-seq, ChIP-

seq, and RNA-seq assays 

(Halstead et al., 2020). Both 

ATAC-seq and DNase-seq 

were integrated with different 

data types including ChIP-seq 

and RNA-seq across 8 tissues 

in cattle, chicken, and pig 

(Kern et al., 2021). This study 

displayed how open 

chromatin overlapped with 

other regulatory elements and 

transcription across the 

Figure 1.6: A comparison of open chromatin 

characterization methods. A) DNase–seq relies on 

digestion by the DNaseI nuclease to identify regions of 

nucleosome-depleted open chromatin where there are 

binding sites for all types of factors, but it cannot identify 

what specific factors are bound. B) Formaldehyde-

assisted identification of regulatory elements (FAIRE–

seq) similarly identifies nucleosome-depleted regions by 

extracting fragmented DNA that is not crosslinked to 

nucleosomes. Adapted from Furey, 2012.  

B A 



29 

 

genome and compared these regions both within and across cattle, chicken, and pig (Kern et 

al., 2021).   

 Histone modifications are commonly characterized by chromatin 

immunoprecipitation with sequencing (ChIP-seq) (Figure 1.7). The goal of ChIP-seq is to 

sequence the DNA wrapped around histones with specific modified tails or transcription 

factors (Landt et al., 2012). 

The ENCODE consortium 

has outlined a protocol for 

ChIP-seq that involves 

treating cells or tissues with 

formaldehyde to crosslink 

bound transcription factors 

or histones to DNA (Ren et 

al., 2000; Iyer et al., 2001; 

Landt et al., 2012). This step 

is followed by sonication or 

enzymatic digestion to shear 

chromatin into 100-300 bp 

fragments (Ren et al., 2000; 

Iyer et al., 2001; Landt et al., 

2012). Chromatin is then 

enriched for the protein or 

histone modification of 

interest using targeted 

antibodies (Landt et al., 

2012). Both monoclonal and 

polyclonal antibodies can be 

used depending on the goal 

of the project (Ma and 

Zhang, 2020). Monoclonal 

antibodies can generate the 

Figure 1.7: Chromatin immunoprecipitation followed by 

sequencing (ChIP–seq) for A) DNA-binding proteins 

such as transcription factors. Recent variations on the 

standard protocol include using endonuclease digestion 

instead of sonication (ChIP–exo) to increase the 

resolution of binding-site detection and to eliminate 

contaminating DNA, and DNA amplification after ChIP 

for samples with limited cells. B) ChIP–seq for histone 

modifications uses micrococcal nuclease (MNase) 

digestion to fragment DNA and can also now be run on 

low-quantity samples when combined with the additional 

post-ChIP amplification. Adapted from Furey, 2012. 
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most precise results from immunoprecipitation experiments if the antibody is produced for a 

specific epitope that exists in a particular species, while polyclonal antibodies capture a 

greater number of epitopes and can be used across different species (Kidder et al., 2011; Ma 

and Zhang, 2020). Following immunoprecipitation, the crosslinks in the chromatin are then 

reversed and DNA is isolated for high-throughput sequencing (Ren et al., 2000; Iyer et al., 

2001; Landt et al., 2012). The ChIP-seq protocol can be performed without crosslinking the 

chromatin and rather relying on the innate binding strength of proteins and histones to DNA, 

which is termed native or natural ChIP-seq (O’neill, 2003; Kasinathan et al., 2014; Gilfillan 

et al., 2012; Ma and Zhang, 2020). This can result in some loss of enrichment for sites that 

are not bound well enough to withstand the immunoprecipitation protocol (Ma and Zhang, 

2020).  

 Few studies have completed ChIP-seq for histone modifications and transcription 

factors such as CTCF in livestock species. A comparison of promoter and enhancer activity 

in liver defined by H3K4me3 and H3K27ac across mammals, including cattle and pigs, and 

found regions conserved across 20 species and regions that differed and related to 

evolutionary distance (Villar et al., 2015). A study examining differences in longissimus 

dorsi muscles of differing tenderness in cattle also utilized H3K4me3 peak enrichments as 

promoters to define potential variation in histone modifications related to a phenotype 

important to livestock industries (Zhao et al., 2015). Regulatory elements in sheep were first 

characterized by lifting over regions annotated by the ENCODE project in humans (Naval-

Sanchez et al., 2018). The data used in this study included lifted over ChIP-seq and 

chromatin states for H3K4me3, H3K4me1, H3K36me3, H3K9me3, and H3K27me3 and one 

ChIP-seq experiment with H3K4me3, H3K27ac, and H3K27me3 in adipose tissue (Naval-

Sanchez et al., 2018).  

In cattle cell lines, the effect of butyrate on regulatory elements including H3K4me3, 

H3K4me1, H3K27ac, H3K27me3, H3K9ac, H3K9me3, and CTCF along with ATAC-seq, 

RNA-seq, and DNA methylation by whole genome bisulfite sequencing was examined (Fang 

et al., 2019; Kang et al., 2020). A study by Fang et al. found differences in these regulatory 

elements based on treatment with the histone deacetylase butyrate which is a prevalent 

volatile fatty acid produced in the stomach of ruminant species (Fang et al., 2019). In 
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addition, a comparison of transcriptional regulation between chicken, pig, and cattle was 

performed using ChIP-seq of H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF as 

well as DNase-seq, ATAC-seq, and RNA-seq (Kern et al., 2021). A number of conserved 

and different regulatory regions were defined throughout the genome in these three species 

(Kern et al., 2021). Further, CTCF was used to predict TADs and define regulatory domains 

and target genes of promoter and enhancer regions (Kern et al., 2021). Integration of ChIP-

seq with other datasets is important to defining regulatory elements and creating a better 

understanding of transcriptional regulation.  

Characterizing DNA methylation is also important for defining regulatory elements 

throughout the genome. Methylation of CpG islands in promoter regions often indicate 

inactivity or silencing of that gene (Greenberg & Bourc’his, 2019). DNA methylation is also 

known to influence many phenotypes related to disease and development and is involved 

with genomic imprinting which was discussed in a previous section (Greenberg & Bourc’his, 

2019).  

  Two common and 

effective methods to characterize 

DNA methylation include whole 

genome bisulfite sequencing 

(WGBS) and reduced 

representation bisulfite 

sequencing (RRBS) (Doherty 

and Couldrey, 2014). Bisulfite 

treatment is used to convert 

unmethylated cytosines into 

uracil in both WGBS and RRBS, 

while methylated cytosines are 

protected (Figure 1.8) (Frommer 

et al., 1992; Doherty and 

Couldrey, 2014). The entire 

genome is then sequenced, often 

Figure 1.8: Bisulfite treatment of DNA involves 

conversion of unmethylated cytosine bases to uracil, 

followed by library preparation and sequencing. The 

unmethylated and methylated cytosine bases are then 

differentiated when the sequence is mapped to the 

reference genome (Adapted from 

https://www.genewiz.com/Public/Services/Next-

Generation-Sequencing/Epigenomics/Whole-

Genome-Bisulfite-Sequencing/).  
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with short-read sequencing, for WGBS while the RRBS method employs preferential 

selection of CpG-rich regions throughout the genome prior to sequencing (Meissner et al., 

2005; Gu et al., 2011; Doherty and Couldrey, 2014). Methylation is informative 

independently and can complement other FAANG data from CAGE, ChIP-seq, ATAC-seq, 

and RNA-seq experiments (Fang et al., 2019; Salavati et al., 2020).  

  An additional assay that helps to define regulatory regions in the genome is Hi-C, 

which uses proximity ligation to characterize the three-dimensional organization and folding 

of the genome (Figure 1.9) (Oluwadare et al., 2019). This technology is used to not only 

identify topologically associated domains, but also assemble genomes by linking assembled 

contigs together during the scaffolding process (Oluwadare et al., 2019). This technology has 

been coupled with ChIP-seq to examine three-dimensional contacts of histone modifications 

and transcription factors (Mumbach et al., 2016; Bhattacharyya et al., 2019). This method is 

performed by using proximity ligation before chromatin is sheared, followed by biotinylation 

of sticky ends, immunoprecipitation of the biotin tagged DNA, and sequencing (Mumbach et 

Figure 1.9: Overview of Hi-C. Cells are cross-linked with formaldehyde, resulting in 

covalent links between spatially adjacent chromatin segments (DNA fragments: dark 

blue, red; Proteins, which can mediate such interactions, are shown in light blue and 

cyan). Chromatin is digested with a restriction enzyme (here, HindIII; restriction site: 

dashed line, see inset) and the resulting sticky ends are filled in with nucleotides, one 

of which is biotinylated (purple dot). Ligation is performed under extremely dilute 

conditions to create chimeric molecules; the HindIII site is lost and a NheI site is 

created (inset). DNA is purified and sheared. Biotinylated junctions are isolated with 

streptavidin beads and identified by paired-end sequencing. Adapted from 

Lieberman-Aiden et al., 2009.  
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al., 2016; Bhattacharyya et al., 2019). This method is similar to chromatin interaction 

analysis by paired-end tag sequencing (ChIA-PET) except Hi-ChIP requires less input 

material (Mumbach et al., 2016; Bhattacharyya et al., 2019).   

 Other new and evolving technologies that require less input material include cleavage 

under targets and release using nuclease (CUT&RUN) and single cell sequencing. The 

CUT&RUN methodology is similar to ChIP-seq in that it requires an antibody specific to the 

target, such as a transcription factor or histone modification, to isolate and sequence regions 

of interest (Skene et al., 2018; Hainer & Fazzio, 2019). However, with CUT&RUN, the 

micrococcal nuclease is tethered to a recombinant protein A or G which recognizes the 

antibody, binds, and enzymatically cleaves the target region (Skene et al., 2018; Hainer & 

Fazzio, 2019). The small chromatin fragments are then separated and purified for sequencing 

(Skene et al., 2018; Hainer & Fazzio, 2019). This requires less input and can be performed at 

a single-cell level after sorting and separation of individual cells (Skene et al., 2018; Hainer 

& Fazzio, 2019). Other technologies that have been performed and sequenced at a single-cell 

level include RNA-seq and ATAC-seq (Buenrostro et al., 2015; Haque et al., 2017; 

Cusanovich et al., 2018; Stuart et al., 2019). This allows for precise separation of cell types 

which provides a snapshot of transcriptional and regulatory profiles in the many cell types 

that compose a tissue (Buenrostro et al., 2015; Haque et al., 2017; Cusanovich et al., 2018; 

Stuart et al., 2019).  

 Defining the location of regulatory elements will lead to a better understanding of the 

factors that influence transcriptional activity throughout the genome. Genetic variation within 

these regions is also important to characterize, as it can influence the regulation of 

transcription and affect a particular phenotype. Defining these regulatory regions and how 

variation influences regulatory mechanisms will lead to a better understanding of complex 

traits that are important to the sheep industry.   
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Conclusion 

 Sheep provide meat, milk, and wool to humans on a global scale. This important 

agricultural species has been selected for different production systems across the world and 

the genetic variation in sheep populations reflect this. Sheep have unique biological traits and 

features, and many research efforts aim to characterize the mechanisms that influence these 

traits. The use of genetics in sheep production is being integrated slowly into management 

practice. Sheep genetics research, however, is making vast progress as technology advances, 

with the end goal of helping the sheep industry in the United States and across the world 

select animals to best fit production goals. Advances such as more accurate genomes and 

functional annotation of regulatory regions will help uncover the biology behind many 

complex traits and gain a more precise understanding of the sheep species as well as 

mammals.
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Summary 

Selection for performance in diverse production settings has resulted in variation across 

sheep breeds worldwide. Although sheep are an important species to the United States (U.S.), 

the current genetic relationship among many terminal sire breeds is not well characterized. 

Suffolk, Hampshire, Shropshire, and Oxford (terminal) and Rambouillet (dual purpose) 

sheep (n=248) sampled from different flocks were genotyped using the Applied Biosystems 

Axiom Ovine Genotyping Array (50K), and additional Shropshire (n=26) using the Illumina 

Ovine SNP50 BeadChip. Relationships were investigated by calculating observed 

heterozygosity, inbreeding coefficients, eigenvalues, pairwise Wright’s FST estimates, and an 

identity by state (IBS) matrix. The mean observed heterozygosity for each breed ranged from 

0.30 to 0.35 and is consistent with data reported in other U.S. and Australian sheep. Suffolk 

from two different regions of the U.S. (Midwest and West) clustered separately in eigenvalue 

plots and the rectangular cladogram. Further, divergence was detected between Suffolk from 

different regions with Wright’s FST estimate. Shropshire animals showed the greatest 

divergence from other terminal breeds in this study. Admixture between breeds was 

examined using ADMIXTURE, and based on cross validation estimates, the best fit number 

of populations (clusters) was K=6. The greatest admixture was observed within Hampshire, 

Suffolk, and Shropshire breeds. When plotting eigenvalues, U.S. terminal breeds clustered 

separately in comparison to sheep from other locations of the world. Understanding the 

genetic relationships between terminal sire breeds in sheep will inform us about the potential 

applicability of markers derived in one breed to other breeds based on relatedness.  

 

 

Keywords genetic admixture, sheep, terminal sheep breeds, genetic relationships 
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Introduction 

The production of lamb and wool is an important agricultural industry in the United States 

(U.S.), with approximately 5 million sheep and 80,000 operations (USDA ERS 2019). 

According to the American Sheep Industry National Animal Health Monitoring System’s 

most recent study, 81.6% of operations raise sheep for meat purposes (American Sheep 

Industry 2011). The most popular breeds used for meat production include Suffolk, 

Hampshire, Shropshire, Oxford, and Southdown (American Sheep Industry 2011). To make 

progress in their own flocks, some U.S. lamb and wool producers have implemented 

quantitative genetic selection strategies using estimated breeding values (EBV) through the 

National Sheep Improvement Program (NSIP) to identify and select animals with desirable 

traits (Wilson & Morrical 1991; Notter 1998; Lupton 2008). As this program is more widely 

utilized, improvement of product quality and yield of lamb and wool products in the U.S. is 

anticipated to accelerate. 

 

Previous research indicates that selection for various traits such as wool or growth within 

breeds of sheep has led to greater breed specialization across the world (Kijas et al. 2012; 

Zhang et al. 2013). However, many breeds of sheep have retained greater heterozygosity in 

comparison to other species, including cattle (Bovine HapMap Consortium et al. 2009; Kijas 

et al. 2012). Furthermore, sheep from similar locations have been reported to have high 

levels of admixture (Blackburn et al. 2011; Kijas et al. 2012).  

 

The current genetic structure and level of admixture among terminal sire breeds in the U.S. 

has not been well characterized (Zhang et al. 2013). The objective of this study was to 

examine population structure and admixture in sheep from terminal breeds from U.S. sheep 

operations in collaboration with producers engaged with NSIP. Understanding the genetic 

relationships between terminal sire breeds in the U.S. will allow us to better understand the 

genetic relatedness of these breeds of sheep and assess potential applicability of information 

based on breed relatedness. Further, this study can help elucidate how biological differences 

segregate in different breeds, as well as between breeds of sheep. 
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Materials and methods 

Sample collection and DNA isolation 

A total of 248 sheep from terminal breeds of sheep including Hampshire (n = 45 from 6 

flocks), Suffolk (n = 68 from 9 flocks in the Midwest and n = 37 from one flock, the 

University of Idaho Suffolk flock, in the West), Oxford (n = 11 from 2 flocks), and 

Shropshire (n = 44 from 5 flocks), as well as wool/dual purpose Rambouillet (n=43 from one 

flock) were genotyped for this study. Blood, semen, or tissue samples were collected by 

individual producers and shipped to the University of Idaho and DNA was isolated using the 

phenol chloroform method previously described (Sambrook et al. 1989).  

 

Genotyping and quality control 

Samples were genotyped using the Applied BiosystemsTM  AxiomTM Ovine Genotyping Array 

(50K) consisting of 51,572 single nucleotide polymorphisms (SNPs) (Thermo Fisher 

Scientific, catalog number 550898). A subset of Shropshire samples (n = 26) previously 

genotyped on the Ovine Illumina SNP50 Bead Chip consisting of 54,241 SNPs (Illumina 

catalogue number WG-420-1001) were also included in this dataset. The genotypic data for 

these samples, from each platform, were merged by SNP name and location in PLINK v1.90, 

with a total of 47,485 SNPs overlapping between the two panels. Quality control of genotype 

data was performed using PLINK v1.90 specifically excluding SNPs with a call rate of less 

than 0.90 and minor allele frequency less than 0.01, resulting in 45,864 SNPs remaining in 

the analyses (Purcell et al. 2007; Chang et al. 2015).  

 

Observed heterozygosity, inbreeding coefficients, and FST calculations 

The observed heterozygosity was estimated for each animal using PLINK v1.90 and 

averaged by breed (Purcell et al. 2007; Chang et al. 2015). Inbreeding coefficients were 

calculated for each animal based on the observed and expected homozygosity in PLINK 

v1.90, and the mean and 95% confidence interval were calculated with the R package 

‘rcompanion’ in R version 3.6.1. To remove redundancy and provide a more accurate 

representation of variation, linkage disequilibrium (LD) pruning was performed using the --

indep-pairwise function in PLINK v1.90 with an r2 = 0.5, sliding window size of 50 SNPs, 

and shifts of 5 SNPs (Visser et al. 2016; Gilbert et al. 2017). After LD pruning, 40,121 SNPs 
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remained for further analyses. Pairwise FST was estimated in PLINK v1.90 between breeds of 

sheep using the LD pruned dataset (Purcell et al. 2007; Chang et al. 2015).  

 

Eigenvalue analyses 

Eigenvalues were calculated using the filtered SNP dataset for terminal breeds only and then 

with Rambouillet in SNP and Variation Suite (SVS) version 8.7.2 (Golden Helix, Inc., 

Bozeman, MT, www.goldenhelix.com). The top two eigenvalues were plotted against each 

other in SVS.  

 

Hierarchical clustering 

An identity by state matrix (IBS) was calculated from the LD pruned dataset pairwise 

between all sheep using PLINK v1.90 --distance flag (Purcell et al. 2007; Chang et al. 2015). 

The matrix was read into R version 3.5.2 and hierarchical clustering based on the IBS matrix 

of Hamming distances between each animal using the ‘hclust’ function. The Bioconductor 

package ‘ctc’ was used in R version 3.5.1 to write a Newick file to import into Dendroscope 

3 software (Huson & Scornavacca 2012). A rectangular cladogram was drawn from the 

Newick file in Dendroscope version 3.5.9 (Huson & Scornavacca 2012). Individual branch 

labels were coloured according to producer reported breed of sheep.  

 

Admixture analysis 

The program ADMIXTURE version 1.3.0 was implemented to examine admixture between 

all samples using the LD pruned genotypes in BED format (Alexander et al. 2009; Decker et 

al. 2014). The most probably number of K given populations was estimated using the lowest 

cross-validation error (Alexander et al. 2009; Akanno et al. 2018). Euclidean distances were 

calculated in R version 3.6.1 with the adegenet package and an analysis of molecular 

variance (AMOVA) was performed with the pegas package with 1000 permutations to 

statistically examine differences between populations (McKay et al. 2008; Paradis 2010; 

Jombart & Ahmed 2011). 

 



93 

 

International Breed Comparisons 

Genotypes from 2,819 sheep from 74 breeds across the world were retrieved from the 

International Sheep Genome Consortium Sheep HapMap Database and used in comparison 

with U.S. terminal breeds including the addition of n=5 Dorset and n=7 Southdown from the 

U.S. The same set of 45,864 SNPs used with the U.S. terminal breeds were then merged with 

the same SNPs from the Sheep HapMap dataset. Eigenvalues were calculated between U.S. 

terminal breeds and the same breeds from other locations in the HapMap dataset, all U.S. 

breeds in this study and the same breeds present from other locations in the HapMap dataset, 

and all U.S. breeds in this study and the Sheep HapMap dataset.  

 

 

Results 

Observed Heterozygosity and Inbreeding Coefficient 

To examine the relatedness of animals within each of the breeds, observed heterozygosity 

and average inbreeding coefficient were calculated. These statistics were calculated based on 

observed and expected homozygosity, estimated for each individual, and averaged for each 

breed (Table 2.1). The Oxford animals exhibited the greatest (0.35) observed heterozygosity 

and lowest inbreeding coefficients. Similar observed heterozygosity was exhibited by 

Shropshire (0.34), Western Suffolk (0.34), Suffolk (0.33), and Hampshire (0.33). Shropshire 

had the lowest inbreeding coefficient (0.09) in comparison to the Suffolk (0.13), Western 

Suffolk (0.14), and Hampshire (0.14). The group with the lowest observed heterozygosity 

(0.30) and highest inbreeding coefficient (0.16) was Rambouillet. 

 

Wright’s FST 

Wright’s FST was calculated pairwise between each group of animals to examine 

differentiation between breeds (Table 2.2) (Wright 1965; Weir & Cockerham 1984; Lenstra 

et al. 2012). In general, values between 0 and 0.05 are categorized as “little to no 

differentiation,” values between 0.05 and 0.15 as “moderate differentiation”, values between 

0.15 and 0.25 as “great differentiation”, and values above 0.25 as “very great differentiation” 

between populations tested (Weir & Cockerham 1984; Frankham et al. 2002). Rambouillet is 

considered greatly differentiated from all terminal breeds. Interestingly, Western Suffolk are 
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considered moderately differentiated from other terminal breeds. Little to no difference was 

detected between Hampshire and Suffolk or Hampshire and Shropshire. Furthermore, 

although Western Suffolk and other Suffolk are not reported as different breeds, they too 

exhibit moderate differentiation.  

 

Eigenvalue Analyses 

To investigate how individuals from reported terminal breeds the U.S. group or cluster, 

eigenvalues were calculated and plotted for all samples (Figure 2.1). An eigenvalue plot for 

only terminal breeds of sheep (Figure 2.1A) as well as terminal breeds and Rambouillet 

sheep (Figure 2.1B) is displayed. In Figure 1A, the largest difference of eigenvalues is 

between Western Suffolk and Shropshire and can be observed on the x-axis of the plot 

shown. Further, the animals sampled for the Shropshire breed exhibited the largest spread of 

eigenvalue points. Interestingly, all Suffolk did not group together. The Suffolk animals 

sampled from most cluster closely with Hampshire animals, however, the Western Suffolk 

flock clusters separately from Hampshire and other Suffolk animals. 

 

In Figure 2.1B, Rambouillet animals cluster together, and the entire breed clusters distinctly 

and away from the terminal sheep breeds on the largest eigenvalue axis. Similar to Figure 

2.1A, sheep clustered primarily by breed with the exception of four Shropshire animals. The 

Suffolk samples do not all group together, with Western Suffolk clustering separately from 

other Suffolk animals. With these notable exceptions, animals within a breed clustered 

together. 

 

Hierarchical Clustering Based on Identity by State  

To examine how animals from breeds of sheep in the U.S. related to other breeds, 

hierarchical clustering was performed using an identity by state matrix. A rectangular 

cladogram was constructed to visualize the hierarchical clustering (Figure 2.2). All Western 

Suffolk, Oxford, and Rambouillet animals cluster together by breed. Rambouillet animals 

cluster in a distinct, separate branch from all other breeds, which is consistent with the 

eigenvalue plot. In general, most sheep are more identical by state to other animals within the 

same breed with a few notable exceptions. 
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Several reported Shropshire animals cluster with the Hampshire branches; these are the same 

animals that clustered with the Hampshire breed in the eigenvalue plots. A branch of 

Shropshire animals also clusters closely with a larger branch of Hampshire sheep. 

Additionally, Suffolk and Hampshire animals overlap and appear to cluster closely within the 

branches of the cladogram. Still, overall most breeds cluster independently with the few 

before mentioned exceptions.  

 

Admixture Analysis 

An admixture analysis was performed using the program ADMIXTURE to investigate the 

extent of admixture between different breeds of sheep in this study (Alexander et al. 2009; 

Decker et al. 2014; Getachew et al. 2017). The analysis was conducted using 2 through 10 

given populations. The best fit of K given populations was determined as K=6 based on the 

cross-validation (CV) values calculated in ADMIXTURE (Supplemental Figure 2.1) 

(Akanno et al. 2018). Further, the AMOVA analyses showed significant (P<0.01) differences 

between the K=6 assigned populations.  

 

In the best fit K=6 plot, admixture was detected within terminal breeds (Figure 2.3). 

Admixture between terminal breeds was observed in Hampshire, Oxford, Suffolk, and 

Shropshire, but the Western Suffolk population showed little admixture with other terminal 

breeds except Suffolk. Not surprisingly, the dual purpose Rambouillet sheep were different 

than the U.S. terminal breeds examined.  

 

Eigenvalue Plots of U.S. and International Comparisons 

To examine how U.S. sheep compare to other sheep across the world, genotyping data from 

this study was merged with data from the Sheep HapMap (Kijas et al. 2012; Kijas 2013). 

Eigenvalues were calculated and plotted with U.S. terminal breeds including additional 

Dorset and Southdown sheep from the U.S., and animals of the same breeds from the Sheep 

HapMap dataset (Figure 2.4A). Interestingly, the U.S. terminal breeds cluster closer to other 

breeds from the U.S. than the same reported breed, including Suffolk and Dorset, from other 

locations. When the genetic information for wool breeds of sheep are included, they cluster 
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apart from the terminal breeds (Figure 2.4B). Figure 2.4B also shows the Irish Suffolk 

clustering closely with Suffolk from the U.S. Finally, when all samples are considered, the 

U.S. terminal breeds cluster with similar breeds from Australia and the United Kingdom 

(Figure 2.4C). In summary, animals cluster closest with those of similar geographic location 

in the eigenvalue plots. 

 

 

Discussion 

The observed heterozygosity results from this study are consistent with data reported in other 

breeds of sheep across the world (Kijas et al. 2012; Ciani et al. 2013; Gaouar et al. 2017). 

More specifically, the observed heterozygosity in most breeds was close to what was 

reported in Australian sheep (Kijas et al. 2012; Al-Mamun et al. 2015). In addition, the 

observed heterozygosity is consistent with other U.S. sheep including Suffolk, Rambouillet, 

Columbia, Polypay, and Targhee (Zhang et al. 2013). However, the breeds in this study had 

lower observed heterozygosity when compared to Boutsko, Karagouniko, and Chios breeds 

from Greece (Michailidou et al. 2018).  

 

In our study, Oxford sheep exhibited the lowest average inbreeding coefficient and highest 

observed heterozygosity, similar to Finnsheep (Li et al. 2011). This is likely because these 

sheep were selected based on pedigree diversity from NSIP, whereas Western Suffolk had 

one of the highest inbreeding coefficients and is only represented by one flock. However, to 

our surprise the inbreeding coefficient for Western Suffolk was similar to Suffolk, which 

included animals from 10 separate flocks. Perhaps this is because these animals are the result 

and representative of the breeding strategies of purebred flocks. Other work in 97 sheep 

breeds across the world and Ethiopian sheep reported inbreeding coefficients between -0.07-

0.16 and observed heterozygosity between 0.061-0.343, which was similar to our results 

(Edea et al. 2017; Zhang et al. 2018).  

 

Despite similarity in inbreeding coefficient and heterozygosity estimates, Western Suffolk 

shows moderate differentiation from Suffolk whereas Hampshire, Oxford, Shropshire, and 

Suffolk show little to moderate differentiation from each other. The Western Suffolk consists 
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of representatives from a “closed flock”, which may explain the divergence from the more 

broadly sampled Suffolk. The lack of differentiation observed between the Suffolk, 

Hampshire, and Shropshire is not surprising considering the prevalence of crossbreeding in 

many U.S. terminal breed flocks. It is worth noting that Southdown is thought to be a 

common ancestor for Hampshire, Shropshire, and Oxford breeds ancestor (Ryder 1964). 

These points are strongly supported by the results of the ADMIXTURE analysis. 

Furthermore, these results concur with previous research that reported a Wright’s FST = 

0.1621 between Suffolk and Rambouillet, these breeds differ in origin as the Rambouillet 

breed was derived from Merino bloodlines (Dickinson & Lush 1933; Zhang et al. 2013). 

 

Differences between breed groups can be visualized in the eigenvalue plots, where sheep 

cluster primarily by reported breed with the exception of a few animals. The separation of 

Suffolk from Western Suffolk is apparent, which is consistent with previous work that 

identified regional differences in Suffolk from the U.S. (Kuehn et al. 2008). The Shropshire 

breed has a large spread of eigenvalues and a few animals cluster with Oxford and 

Hampshire, suggesting the occurrence of crossbreeding. The distinct clustering of the 

Rambouillet away from other breeds clearly displays the genetic difference between terminal 

and wool/dual-purpose breeds in the U.S.  

 

The K=6 plot, supported by the AMOVA analysis, shows sheep cluster primarily by breed 

with some level of admixture between all terminal breeds, with the exception of Western 

Suffolk which exhibits little admixture except with other Suffolk. The observed admixture 

within Hampshire, Suffolk, Oxford, and Shropshire is potentially due to the use of sires with 

composite influence from other breeds in U.S. commercial operations (Ercanbrack & Knight 

1991; Norberg & Sørensen 2007). Rambouillet sheep showed little to no admixture with the 

U.S. terminal breeds examined in this study.  

 

When U.S. sheep were compared with other populations across the world, sheep primarily 

cluster closest to other animals in similar geographic locations than to the same reported 

breeds in other parts of the world (Kijas et al. 2012). More specifically, Suffolk and Dorset 

animals cluster closer to other U.S. groups than to Suffolk from Australia and Ireland, or 
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Dorset from Australia or the United Kingdom. This observation may be partially attributed to 

the differences in selection and breeding strategies and in production systems across the 

world (Andersson 2012; Ćurković et al. 2014; Wang et al. 2015). In addition, the difference 

between terminal breeds and wool breeds is clearly observed, suggesting that there are clear 

genetic differences between breeds that have been selected for alternate production 

objectives and purposes (Blackburn et al. 2011; Zhang et al. 2013; Fariello et al. 2014).  

 

In summary, we characterized relationships between sheep from terminal sire breed 

populations in the U.S. Internationally, there has been an increased emphasis on genetic 

selection of sheep for a variety of traits and purposes. Marker assisted selection is growing in 

popularity as new technology is rapidly developed, along with an increase in use of 

quantitative genetic programs that calculate EBVs. By better understanding the population 

structure and admixture between terminal breeds in the U.S. compared to breeds across the 

world, we can improve the effectiveness of this developing technology. Our research 

provides insight into current relatedness of the popular terminal breeds in the U.S. and the 

framework for future analyses on a larger scale. 
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Tables 

 

Table 2.1: The mean observed heterozygosity and average estimated inbreeding coefficient 

including the 95% confidence interval for each group 

Breed 
Observed 

Heterozygosity 

Inbreeding 

Coefficient* 

95% Confidence Interval 

for Inbreeding Coefficient 

Hampshire 0.33 0.14 0.12-0.15 

Suffolk 0.33 0.13 0.12-0.15 

Western Suffolk 0.34 0.14 0.13-0.15 

Oxford 0.35 0.05 0.01-0.09 

Shropshire 0.34 0.09 0.04-0.11 

Rambouillet 0.30 0.16 0.15-0.17 

 

*Inbreeding coefficients are reported as Fhat2 and calculated by: (observed heterozygosity – 

expected) / (total – expected). 
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Table 2.2: Pairwise FST* between breeds of sheep. 

 

 Hampshire Suffolk 
Western 

Suffolk 
Oxford Shropshire 

Hampshire 0     

Suffolk 0.03 
0    

Western 

Suffolk 
0.09 0.07 

0   

Oxford 0.06 0.06 0.13 
0  

Shropshire 0.05 0.06 0.11 0.06 
0 

Rambouillet 0.17 0.17 0.23 0.18 0.16 

 

*Wright’s FST values between 0-0.05 are categorized as no differentiation, 0.06-0.15 as 

moderate differentiation, 0.16-0.25 as great differentiation, and >0.26 as very great 

differentiation. 
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Figures 

 

 

Figure 2.1: Plot of calculated Eigenvalues for breeds of U.S. sheep. (a) Eigenvalues plotted 

for U.S. terminal breeds of sheep. (b) Eigenvalues plotted for U.S. terminal breeds and 

Rambouillet sheep. Each point represents an individual animal and points are colored by 

reported breed.
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Figure 2.2: Rectangular cladogram of individuals clustered based on identity by state and coloured by reported breed. 
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Figure 2.3: ADMIXTURE model clustering output with K-6 populations. Each bar represents an individual animal for each terminal 

breed and Rambouillet, and the six colours represent each K population cluster. 
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Figure 2.4: Eigenvalue plots of U.S. sheep in this study compared to other breeds across the 

world as part of the Sheep HapMap study. (a) Eigenvalue plot of U.S. terminal breeds and 

Dorset and Suffolk HapMap breeds. (b) Eigenvalue plot of all U.S. sheep in this study 

compared to HapMap terminal and wool sheep. (c) Eigenvalue plot of U.S. sheep in this 

study compared to all breeds present in the Sheep HapMap study. 
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Supplementary Figure 2.1: ADMIXTURE cross-validation (CV) output plotted across K 

populations. The lowest CV value represents the most probable K number of populations for 

this dataset, K=6, which is highlighted in blue. 

.
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Abstract 

We report here the complete mitochondrial genome sequence of a Rocky Mountain bighorn 

sheep (Ovis canadensis) in the United States. The circular genome has a size of 16,466 bp 

and contains 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. 

 

Manuscript  

The bighorn sheep (Ovis canadensis) is an important ecological model for studying natural 

selection and evolution in Western North America (1,2,3,4). The population of bighorn sheep 

drastically declined in the early 20th century due to habitat loss, disease, and overharvest 

coinciding with European settlement, but has substantially rebounded because of 

conservation efforts and management strategies (5,6). However, this population decrease led 

to a bottleneck effect and reduced genetic diversity (4). Investigating genetic diversity and 

effective population sizes in bighorn sheep will aid in continued management and 

conservation of this species (4).   

 

Mitochondrial genetic sequence has been used in many species for population genetics 

analyses and discerning phylogeny (7,8,9). Numerous mitochondrial genomes are available 

for different breeds of domestic sheep (Ovis aries), however only one has been released for 

bighorn sheep from Canada (10). Here, we report a complete mitochondrial genome of the 

Rocky Mountain bighorn sheep from an 8-month-old male in the United States. The animal 

was raised in a small cohort in captivity at Washington State University in Pullman, WA 

under the guidelines of the Institutional Animal Care and Use Committee and Association for 

Assessment and Accreditation of Laboratory Animal Care.  

 

Mitochondrial DNA was extracted from liver with the Mitochondrial DNA Isolation Kit 

(Abcam, Cambridge, MA). Nextera shotgun libraries were produced and sequenced using a 

v3 600 cycle kit and Illumina MiSeq by the IBEST Genomics Resources Core at the 

University of Idaho. Adapter sequences were trimmed, low-quality ends were removed, and 

pair-end reads were overlapped by HTStream (https://github.com/ibest/HTStream). Cleaned 

data were assembled by the ARC software package v1.1.4-beta 
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(https://github.com/ibest/ARC) using Ovis aries isolate GP092 mitochondrial genome (NCBI 

accession number KF302455) as seed reference to initialize the iterative assemblies. The 

assembly resulted in one circular contig, as confirmed by dot plot. The ends were overlapped 

and joined, and the resulting sequence was linearized such that the orientation started with 

tRNA-Phe to match other sheep mitochondrial genomes. The complete genome is 16,466bp 

with a GC content of 38.9%. The structural and functional annotation was performed with the 

mitochondrial genome annotation (MITOS) web server (11). Annotations of genes were 

checked using homology searches on GenBank and further improved by manual curation in 

Geneious version 9.1.8 (http://www.geneious.com) (12). The bighorn sheep mitochondrial 

genome is predicted to have 22 tRNA genes, 2 rRNA genes (12S and 16S) and 13 respiratory 

genes common to most animal mtDNA (ATP6, ATP8, CYTB, COX1, COX2, COX3, ND1, 

ND2, ND3, ND4, ND4l, ND5, and ND6). Alignment with other sheep mitochondrial genome 

sequences showed 99.6% identity with that of bighorn sheep, and 96% with sequences of 

domestic sheep, which is 3 million years divergent (2). This suggests that the mtDNA 

sequence we obtained is consistent with phylogenetic relationships for the studied 

populations of Ovis species. This complete mitochondrial genome provides an additional 

resource for phylogeographic and population genetic investigations in bighorn sheep, which 

contributes to future studies on sheep evolution and conservation efforts. 

 

Accession Number. The mtDNA genome sequence has been deposited in GenBank under 

accession number MH094035. 
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Abstract 

Background 

The domestic sheep (Ovis aries) is an important agricultural species raised for meat, wool, 

and milk across the world. A high-quality reference genome for this species enhances the 

ability to discover genetic mechanisms influencing biological traits. Further, a high-quality 

reference genome allows for precise functional annotation of gene regulatory elements. The 

rapid advances in genome assembly algorithms and emergence of increasingly long sequence 

read length provide the opportunity for an improved de novo assembly of the sheep reference 

genome. 

 

Findings 

Short-read Illumina (55x coverage), long-read PacBio (75x coverage), and Hi-C data from 

this ewe retrieved from public databases were combined with an additional 50x coverage of 

Oxford Nanopore data and assembled with canu v1.9. The assembled contigs were scaffolded 

using Hi-C data with Salsa v2.2, gaps filled with PBsuitev15.8.24, and polished with 

Nanopolish v0.12.5. After duplicate contig removal with PurgeDups v1.0.1, chromosomes 

were oriented and polished with two rounds of a pipeline which consisted of freebayes v1.3.1 

to call variants, Merfin to validate them, and BCFtools to generate the consensus fasta. The 

ARS-UI_Ramb_v2.0 assembly has improved continuity (contig N50 of 43.18 Mb) with a 19-

fold and 38-fold decrease in the number of scaffolds compared with Oar_rambouillet_v1.0 

and Oar_v4.0. ARS-UI_Ramb_v2.0 has greater per-base accuracy and fewer insertions and 

deletions identified from mapped RNA sequence than previous assemblies. 

 

Conclusions 

 The ARS-UI_Ramb_v2.0 assembly is a substantial improvement that will optimize the 

functional annotation of the sheep genome and facilitate improved mapping accuracy of 

genetic variant and expression data for traits in sheep. 

 

Keywords: Rambouillet, genome assembly, reference genome, sheep 
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Context 

The domestic sheep (Ovis aries) is a globally important livestock species raised for a variety 

of purposes including meat, wool, and milk. Domestication likely occurred in multiple events 

approximately 11,000 years ago [1-4]. Selection for desirable traits including meat, wool, and 

milk began approximately 4,000-5,000 years ago [2,4]. Modern sheep breeds exhibit a wide 

variety of phenotypes and adaptations to specific environments, for example the enhanced 

parasite tolerance evident in hair sheep [5,6]. As many as 1,400 breeds of sheep exist today 

[7-9] including the Rambouillet breed developed in France from a Merino fine wool lineage 

that is regarded for its ability to produce high quality wool as well as meat products in 

production systems across the world [10,11].  

 

Genome research in sheep holds promise to improve efficiency and sustainability of 

production and reduce the environmental effects of animal agriculture [12]. The first sheep 

reference genome assembly was based on whole genome shotgun (WGS) short-read 

sequencing, scaffolded by genetic linkage and radiation hybrid maps. The sequence came 

from two unrelated Texel breed sheep, with the first assembly draft (Oar_v3.1; International 

Sheep Genomics Consortium, 2010) having a contig N50 of 40 kilobases (kb) and the update 

(Oar_v4.0) [13] boosting the N50 metric to 150 kb. More recently, the Ovine Functional 

Annotation of Animal Genomes (FAANG) project proposed to perform a variety of genome 

annotation assays for dozens of tissues from a single animal [14,15]. To maximize the 

success of assays that depend on mapping sequence data to a reference, the FAANG project 

assembled the genome of that animal, a female of the Rambouillet breed. The assembly, 

released in 2017 (Oar_rambouillet_v1.0, GenBank accession GCF_002742125; Worley et 

al., unpublished) is based on a combination of Pacific Biosciences RSII WGS long-read and 

Illumina short-read sequencing. It has an improved contig N50 of 2.6 megabases (Mb) and is 

generally regarded as the official reference assembly for global sheep research.  

 

The continued maturation of long read sequencing technologies provided an opportunity to 

improve upon the sheep reference genome assembly. Since most of the proposed FAANG 

annotation assays had already been performed on the Rambouillet ewe, lung tissue from the 

same animal was chosen for DNA extraction. This allowed the use of existing long read data 
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to supplement new, longer-read, Oxford Nanopore PromethION sequencing. We report a de 

novo assembly of the same Rambouillet ewe used for Oar_rambouillet_v1.0, based on 

approximately 50x coverage of nanopore reads (N50 47kb) and 75x coverage PacBio reads 

(N50 13kb). The new assembly, ARS-UI_Ramb_v2.0 offers a 20-fold improvement in 

contiguity and increased accuracy, providing a basis for regulatory element annotation in the 

FAANG project and facilitating the discovery of biological mechanisms that influence traits 

important in global sheep research and production. 

 

 

Methods 

Sampling Strategy 

The fullblood Rambouillet ewe used for this genome assembly (Benz 2616, USMARC ID 

200935900) (Figure 4.1) was selected by the Ovine Functional Annotation of Animal 

Genomes project and acquired from the USDA. Tissues were collected postmortem from the 

healthy six-year-old ewe as approved by the Utah State University Institutional Animal Care 

and Use Committee. A full description of the tissue collection strategy is available in the 

FAANG Data Coordination Center [15,16]. Details regarding the tissues collected from the 

animal are available under BioSample number SAMEG329607 [17].  

 

Sequencing and Data Acquisition 

DNA was extracted from approximately 50 mg of lung tissue using phenol:chloroform-based 

method as described (Logsdon 2019). Briefly, the frozen tissue was pulverized in a 

cryoPREP CP02 tissue disruption system (Covaris Inc., Woburn MA) as recommended by 

the manufacturer.  The powdered tissue was transferred to a 50 mL conical tube and mixed in 

200 µL of phosphate buffered saline (Sigma-Aldrich, St. Louis MO). The tissue was then 

diluted in 10 mL of buffer TLB (100mM NaCl, 10mM Tris-HCl pH 8.0, 25 mM EDTA, 

0.5% SDS) and mixed by vortexing, then incubated with 20 µL 10 mg/mL RNase A at 37ºC 

for one hour with gentle shaking. Protein digestion was performed with 100 µL Proteinase K 

(20 mg/mL) at 50ºC for 2 hours, with slow rotation of the tube to mix every 30 minutes. The 

lysate was distributed equally into two 15 mL Phase Lock tubes (Quantabio, Beverly MA) 

and each tube received 5 mL of TE-saturated Phenol (Sigma-Aldrich, St. Louis MO) 
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followed by mixing on a tube rotator at 20 RPM for 10 minutes at 22ºC. The aqueous layer 

was collected after separating at 2300xg for 10 minutes and transferred to another Phase 

Lock tube. A second extraction performed in the same way as the first was conducted using 

2.5 mL phenol and 2.5 mL chloroform:isoamyl alcohol (Sigma). The final aqueous phase 

was transferred to a 50 mL conical tube and the DNA precipitated with 2 mL of 5M 

ammonium acetate and 15 mL of ice-cold 100% ethanol. The DNA was pulled from the 

alcohol using a Pasteur pipet “hook” and placed in 10 mL of cold 70% ethanol to wash the 

pellet. The ethanol was poured off and the DNA pellet dried for 20-30 minutes, then 

dissolved in a dark drawer at room temperature for 48 hours in 1 mL of 10mM Tris-Cl pH 

8.5. Library preparation for Oxford Nanopore long read sequencing was performed with an 

LSK-109 template preparation kit as recommended by the manufacturer (Oxford Nanopore, 

Oxford U.K.) with modifications as described by Logsdon 

(https://www.protocols.io/view/hmw-gdna-purification-and-ont-ultra-long-read-data-

bchhit36?comment_id=88927). The ligated template was sequenced with a PromethION 

instrument using four R9.4 flow cells. (Oxford Nanopore Technologies, Oxford, United 

Kingdom). Output as fast5 files were basecalled with Guppy v3.1 [18].  

 

Sequence data used in the previous Oar_rambouillet_v1.0 assembly was retrieved from the 

Sequence Read Archive listed under project number PRJNA414087 [15]. PacBio RS II 

sequence generated from DNA extracted from whole blood was retrieved from SRX3445660, 

SRX3445661, SRX3445662, and SRX3445663. The Hi-C sequence data generated from 

liver using HindIII enzyme and sequenced at 150 bp paired end with an Illumina HiSeq X 

Ten was retrieved from SRX3399085 and SRX3399086. Short read whole genome 

sequencing from DNA extracted from whole blood collected from the Rambouillet ewe was 

performed with an Illumina HiSeq X Ten sequenced at 150 bp paired end and was retrieved 

from SRX3405602. Further details about these sequences can be found under the umbrella 

project number PRJNA414087. Short read 45 bp paired end whole genome sequence from an 

Illumina Genome Analyzer II generated from Texel sheep used in previous genome 

assemblies were retrieved from the Sequence Read Archive under accessions SRX511533-

SRX511565 (BioProject PRJNA169880).  
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Assembly 

Contigs were assembled with Oxford Nanopore and PacBio reads generated as described 

above using canu v1.8 through the trimmed reads stage of assembly. Parameters for contig 

construction were set as “batOptions=-dg 4 -db 4 -mo 1000” [19]. Canu v1.9 was used to 

complete the contig assembly because this update demonstrates better consensus generation 

of the overlapped contigs in the final step in the assembly process [20,21]. The corrected 

error rate option was set as “correctedErrorRate=0.105.” 

 

Scaffolding 

Two Hi-C datasets from liver tissue from two different library preparations were retrieved as 

described above. The Hi-C reads were first aligned to the polished contigs using the Arima 

Genomics mapping pipeline [22]. This pipeline first maps paired end reads individually with 

bwa-mem, then removes the 3’ end of reads identified as chimeric and span ligation 

junctions. Reads were then paired, filtered by mapping quality with samtools [23], and PCR 

duplicates removed with Picard [24]. The two Hi-C libraries were merged in the final step in 

the Arima pipeline to generate the merged BAM file. The BAM file was converted to a BED 

file for input into Salsa using the bedtools command bamToBed [25]. Salsa v2.2 was used for 

scaffolding by implementing “python run_pipeline.py -a contigs.fasta -l contigs.fasta.fai -b 

alignment.bed -e HindIII -o scaffolds -m yes” [26]. 

 

The Hi-C reads were aligned to the scaffolded assembly with the Arima Genomics mapping 

pipeline and then processed with PretextMap to visually evaluate the scaffolds as a contact 

map in PretextView [27]. The scaffolded assembly was also compared to 

Oar_rambouillet_v1.0 by aligning the two genomes with “minimap2 -cx asm5 

Oar_rambouillet_v1.0_genomic.fasta scaffolds.fasta > alignment.paf” [28]. A dotplot of the 

alignment was visualized with D-Genies [29]. Scaffolds were edited based on visual 

inspection of the contact map and dotplot, as well as the Hi-C alignment file. Scaffold joins 

and rearrangements were incorporated to the assembly using the agp2fasta mode of 

CombineFasta [30].  

 



125 

 

 

Gap Filling and Polishing 

Gap filling was completed with pbsuite v15.8.24 using both the PacBio and Oxford 

Nanopore reads. Nanopolish v0.12.5 [31] with the NanoGrid parallel wrapper [32] was 

employed with the raw fast5 files generated from the PromethION sequencing to polish the 

assembly. Duplicates were removed using PurgeDups v1.0.1 [33]. The chromosome 

orientation was confirmed in the polished assembly by identifying telomeres and centromeres 

using RepeatMasker v4.1.1 [34]. The mitochondrial genome was identified by aligning the 

previously annotated mitochondrial sequence from Oar_rambouillet_v1.0 (RefSeq 

NC_001941.1) to the assembly contigs. Chromosomes were oriented centromere to telomere 

and placed in chromosome number order. The final polishing was performed with two rounds 

of freebayes v1.3.1 using the Illumina short read data after final chromosome orientations 

and mitochondrial genome were confirmed [35]. Variants used for polishing with both 

Nanopolish and freebayes were screened with Merfin [36] which evaluates the k-mer 

consequences of variant calls and filters unsupported variants. 

 

RNA Sequencing 

RNA sequencing data was generated from five tissues including skin, thalamus, pituitary, 

lymph node (mesenteric), and abomasum pylorus collected from the animal used to assemble 

the reference genome. Details regarding the RNA isolation protocol, library preparation, and 

sequencing as well as the raw data can be found in GenBank under BioProject PRJEB35292, 

specifically under SRA run numbers ERR3665717 (skin), ERR3728435 (thalamus), 

ERR3650379 (pituitary), ERR3665711 (lymph node mesenteric), and ERR3650373 

(abomasum pylorus). Reads were trimmed with Trim Galore v0.6.4 [37] and alignment to 

both Rambouillet genomes was performed with STAR v2.7 using default parameters [38]. 

Indels were identified with bcftools mpileup, filtering allele depth (AD) at > 5 [39].  

 

Annotation  

The annotation for ARS-UI_Ramb_v2.0, NCBI Ovis aries Annotation Release 104, is 

available in RefSeq and other NCBI genome resources 

(https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/9940/104).  
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Here we also provide a liftover of the annotation for Oar_rambouillet_v1.0 onto ARS-

UI_Ramb_v2.0. The annotation used for the liftover was NCBI v103 

GCF_002742125.1_Oar_rambouillet_v1.0_genomic.fna.gz. The GFF3 format gene 

annotation file was prepared for processing using liftOffv1.5.2 [40]. A set of matching 

chromosome names for Oar_rambouillet_v1.0 and ARS-UI_Ramb_v2.0 were generated 

according to the instructions for liftOff (paste -d "," <(cut -d' ' -f1 ramb1.chr) <(cut -d' ' -f1 

ramb2.chr) > chroms.txt). The GFF file (annotation Ramb1LO2) generated by liftOff is 

included in Supplementary File 1 (Ramb_v1.0_NCBI103_lifted_over_ARS-

UI_Ramb_v2.0.gff.gz).  

 

To compare the breakdown of transcripts captured by the three annotations 

(Oar_Rambouillet_v1.0, Ramb1LO2 (liftover) and ARS-UI_Ramb_v2.0), we generated 

transcript expression estimates using Kallisto v0.44.0 [41]. For the lifted over gene 

annotation the GFF file (Ramb_v1.0_NCBI103_lifted_over_ARS-UI_Ramb_v2.0.gff.gz) 

was used to generate transcriptome sequence FASTA files, as a Kallisto index, for transcript 

expression estimation. Briefly, exonic blocks were extracted from the GFF3 file using the 

awk command (awk '($3~/exon/ )' input.gff). The getfasta and groupby plugins from bedtools 

v2.30.0 [42] were used to extract the exonic sequences and group them by transcript name. 

Exonic sequences for each transcript were appended in the correct order, to produce the 

complete sequence for each transcript. The FASTA format file for the whole transcriptome 

was created using all of the transcript level FASTA sequences for the liftover annotation 

Ramb1LO2 (liftover; Ramb1LO2_NCBI103_geneBank_rna.fa). The set of scripts used for 

this step are included in Supplementary File 1. The Kallisto indices for 

Oar_Rambouillet_v1.0 (GCF_002742125.1_Oar_rambouillet_v1.0_rna.fna.gz), Ramb1LO2 

(liftover; Ramb1LO2_NCBI103_geneBank_rna.fa) and ARS-UI_Ramb_v2.0 

(GCF_016772045.1_ARS-UI_Ramb_v2.0_rna.fna.gz) were then used with the RNA-Seq 

data from the 61 tissues from Benz2616 (GenBank BioProject PRJNA414087 and 

PRJEB35292) to estimate transcript level expression for every tissue as transcript per million 

mapped reads (TPM) and compared across the three annotations.     
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Data Validation and Quality Control 

 

Assembly Quality Statistics 

The four flow cells of PromethION data produced 136 gigabases (Gb) of WGS sequence 

(approximately 51x coverage) in reads having a read N50 of 47 kb. The initial generation of 

contigs used this data as well as 198.1 Gb of RSII data with a read N50 of 12.9 kb. The ARS-

UI_Ramb_v2.0 assembly was submitted to NCBI GenBank under accession number 

GCA_016772045.1, and statistics of contigs and scaffolds following initial polishing, 

scaffolding with Hi-C data and manual editing, gap-filling, and final polishing, are shown in 

Table 1. The assembly improved on the Oar_v4.0/Oar_rambouillet_v1.0 sheep reference 

assemblies in all continuity measures (Table 4.1) including a 286/17-fold increase in contig 

N50 (the size of the shortest contig for which all larger contigs contain half of the total 

assembly), a 214/33-fold reduction in the number of contigs in the assembly and concomitant 

209/13-fold reduction of contig L50 (the number of contigs making up half of the total 

assembly), and 38/19-fold reduction in total number of scaffolds. Manual curation of 

scaffolds using Hi-C data improved scaffold continuity and led to chromosome length 

scaffolds (Figure 4.2).  

 

The Themis-ASM pipeline [43] was implemented to further assess assembly quality and 

compare sheep genome assemblies. Short read sequence from both the Rambouillet ewe used 

in this assembly and Texel sheep from previous sheep genome assemblies were used to 

compare ARS-UI_Ramb_v2.0 with Oar_rambouillet_v1.0 and Oar_v4.0 assemblies. 

 

The k-mer based quality value and error rates improved with ARS-UI_Ramb_v2.0 compared 

with Oar_rambouillet_v1.0 and Oar_v4.0. This is also reflected in the proportion of complete 

assembly based on k-mers (merCompleteness), which is similar between ARS-

UI_Ramb_v2.0 and Oar_rambouillet_v1.0 and both are higher than Oar_v4.0. Further, the 

SNP and indel quality value (baseQV) were greatest overall in ARS-UI_Ramb_v2.0 (41.84), 

followed by Oar_rambouillet_v1.0 (40.69) and Oar_v4.0 (32.40). The percentage of short 

reads not mapped to the genome was <1% in all three assemblies. 
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The completeness of ARS-UI_Ramb_v2.0 was evaluated by examining the presence or 

absence of evolutionarily conserved genes in each assembly using Benchmarking Universal 

Single-Copy Ortholog (BUSCO) scores generated as an output of the Themis-ASM pipeline. 

The percent of single copy complete BUSCOs were higher (90.7%) in ARS-UI_Ramb_v2.0 

when compared with Oar_rambouillet_v1.0 (90.1%) and Oar_v4.0 (86.1%). Complete 

duplicated BUSCO percentage was highest in Oar_rambouillet_v1.0 (1.6%) compared with 

ARS-UI_Ramb_v2.0 (1.4%), and lowest in Oar_v4.0 (1.0%). Further, ARS-UI_Ramb_v2.0 

had the lowest percent of fragmented and missing BUSCOs (2.0% and 5.9%, respectively) 

compared with Oar_rambouillet_v1.0 (2.1% and 6.2%, respectively) and Oar_v4.0 (3.7% and 

9.2%, respectively).  

 

The three sheep genome assemblies were also compared with a feature response curve in 

which the quality of the assembly is analyzed as a function of the features, or maximum 

number of possible errors, allowed in the contigs (Figure 4.3) [44]. Both the ARS-

UI_Ramb_v2.0 and Oar_v4.0 feature response curves peak higher and to the left of 

Oar_rambouillet_v1.0, which indicate fewer errors in these assemblies (Figure 4.3A). The 

ARS-UI_Ramb_v2.0 genome also has fewer regions with either low or high coverage overall 

and for paired reads, suggesting fewer coverage issues, as well as fewer improperly paired or 

unmapped single reads when compared with other assemblies (Figure 4.3B). The number of 

high Comp/Expansion (CE) statistics in ARS-UI_Ramb_v2.0 was intermediate between 

Oar_rambouillet_v1.0 (higher) and Oar_v4.0 (lower), however this latest assembly had the 

lowest number of regions with low CE statistics. 

 

Comparative alignment of ARS-UI_Ramb_v2.0 with previous assemblies 

Oar_rambouillet_v1.0 and Oar_v4.0 and visualization with a dotplot revealed a high amount 

of agreement between assemblies (Figure 4.4). Interestingly, chromosome 11 was improperly 

oriented in Oar_rambouillet_v1.0, and after confirming centromere and telomere locations on 

this chromosome, this was resolved in the ARS-UI_Ramb_v2.0 assembly. The percent 

identity between ARS-UI_Ramb_v2.0 is very high when compared with 

Oar_rambouillet_v1.0 which was expected considering the same animal was used in both 
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assemblies. However, Oar_v4.0 was assembled from Texel sheep, which is apparent in the 

percent identity in the dotplot.  

 

In summary, ARS-UI_Ramb_v2.0 offers greater contiguity, improved quality, more 

complete BUSCOs, and fewer assembly errors when compared with previous assemblies.  

 

RNA sequencing alignment 

Insertions and deletions (indels) in the ARS-UI_Ramb_v2.0 assembly were characterized and 

compared with Oar_rambouillet_v1.0 by mapping 150 bp paired-end RNA-seq data from 

skin, thalamus, pituitary, lymph node (mesenteric), and abomasum pylorus generated from 

the same animal used to assemble the reference genome. In all five tissues, ARS-

UI_Ramb_v2.0 had nearly half of the number of indels compared with 

Oar_rambouillet_v1.0. Most indels identified in both assemblies were 1bp in length. The 

ARS-UI_Ramb_v2.0 had a greater number of uniquely mapped reads in each tissue when 

compared with Oar_rambouillet_v1.0, leading to an approximate 2% increase in the percent 

of uniquely mapped reads in most tissues except pituitary, which saw an almost 13% 

improvement. The number of reads that mapped to multiple loci decreased in the new 

assembly by 12.59% in pituitary, and 1-2% in other tissues. Further, ARS-UI_Ramb_v2.0 

had fewer unmapped reads than Oar_rambouillet_v1.0 across all five tissues by an average of 

0.15%.  

 

Annotation 

The ARS-UI_Ramb_v2.0 annotation represents a substantial improvement over the 

annotation on Oar_rambouillet_v1.0. For example, for ARS-UI_Ramb_v2.0 16,500 coding 

genes have an ortholog to human (compared to 16,319 for Oar_rambouillet_v1.0), and the 

BUSCO scores demonstrate that 99.1% of the gene models (cetartiodactyla_odb10) are 

complete in the new annotation versus 98.8% in the previous one. The annotation for ARS-

UI_Ramb_v2.0 includes Iso-Sequencing for 8 tissues to improve contiguity of gene models, 

and CAGE sequencing for 56 tissues to define TSS, that were not used to annotate 

Oar_rambouillet_v1.0. The full report for the annotation release is available at: 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Ovis_aries/104). 
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Using Kallisto we compared the number of expressed transcripts, for the RNA-Seq dataset of 

61 tissue samples from Benz2616, across the three annotations (Oar_Rambouillet_v1.0, 

Ramb1LO2 (liftover) and ARS-UI_Ramb_v2.0). There was a considerable increase in the 

number of transcripts captured by the annotation for ARS-UI_Ramb_v2.0 (60,064) relative 

to Oar_Rambouillet_v1.0 (42,058) and the liftover annotation (Ramb1LO2) (40,910) 

(Supplemental Figure x). This equates to approximately 20,000 new annotated gene models 

for ARS-UI_Ramb_v2.0 and further reflects the substantial improvement over the annotation 

for Oar_Rambouillet_v1.0.  

 

The lifted over annotation we have generated will provide a resource for those who wish to 

compare their results for ARS-UI_Ramb_v2.0 to previous work using 

Oar_Rambouillet_v1.0.  Only 2.7% of protein coding transcripts were lost (1148) lifting over 

the annotation for Oar_Rambouillet_v1.0 onto ARS-UI_Ramb_v2.0. According to the 

annotation report provided by NCBI 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Ovis_aries/104/), 70% of the 

annotations were identical or had only minor changes between and Oar_Rambouillet_v1.0 

and ARS-UI_Ramb_v2.0.  

 

Re-use potential 

The ARS-UI_Ramb_v2.0 genome assembly serves as a reference for genetic investigation of 

traits important in sheep research and production across the world. This genome is assembled 

from the same animal used in the Ovine FAANG Project, which provides a high-quality basis 

for epigenetic annotation to serve the international sheep genomics community and scientific 

community at large.  

 

Availability of supporting data 

The data sets supporting the results of this article are available in the GenBank repository, 

GCA_016772045.1. 
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Tables 

 

Table 4.1: Assembly quality statistics comparison 

Assembly Statistic 
ARS-

UI_Ramb_v2.0 

Oar_rambouillet

_v1.0 
Oar_v4.0 Description 

Total Length (Mb) 2628.15 2869.91 2615.52 Assembly length in Mbp 

Contig Number 226 7,486 48,482 Total number of contigs 

Contig N50 (bp) 43,178,051 2,572,683 150,472 

Half the length of the 

assembly is in contigs of this 

size or greater 

Contig L50 

(number of 

contigs) 

24 313 5,008 

The smallest number of 

contigs whose length sum 

make up half of the assembly 

size 

Scaffold Number 142 2,641 5,466 

Total number of scaffolds 

and unplaced contigs in the 

assembly 

merQV 44.7721* 32.1705* 31.9131** 

Kmer based quality from 

Merqury, which estimates 

the frequency of consensus 

errors in the assembly [45] 

merErrorRate 0.000033327*  0.00060662*  0.000643714** 

Kmer based error rate from 

Merqury, which estimates 

error rate of the assembly 

based on errors in kmers [45] 

merCompleteness  93.0479*  93.4711*  92.2182** 

Proportion of complete 

assembly estimated by 

Merqury based on “reliable” 

kmers, or kmers unlikely to 

be caused by sequencing 

error [45] 

baseQV  41.84*  40.69*  32.40** 

SNP and INDEL quality 

value estimated from short 

read data mapped to the 

assembly [46] 

Unmap%  0.96* 1.00* 0.73** 

Percentage of short reads 

that are unmapped to each 

assembly [46] 

COMPLETESC 90.7 90.1 86.1 
Percent of complete, single 

copy BUSCOs 

COMPLETEDUP 1.4 1.6 1.0 
Percent of complete, 

duplicated BUSCOs 

FRAGMENT 2.0 2.1 3.7 
Percent of fragmented 

BUSCOs 

MISSING 5.9 6.2 9.2 Percent of missing BUSCOs 

 

*Short read sequencing from the Rambouillet ewe used to assemble both ARS-

UI_Ramb_v2.0 and Oar_rambouillet_v1.0 was used in these quality values. 

**Short read sequencing from the Texel animal used to assemble Oar_v4.0 was used in these 

quality values. 
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Table 4.2: RNA-seq alignment statistics to ARS-UI_Ramb_v2.0 and Oar_rambouillet_v1.0 

from five different tissues. 

 

* Genomes include v2.0 (ARS-UI_Ramb_v2.0) and v1.0 (Oar_rambouillet_v1.0) and the 

difference (Δ). 

 

 

 

 

 

Tissue 
Genome

* 

# input 

reads 

# reads 

uniquely 

mapped 

% of 

reads 

uniquely 

mapped 

# reads 

multi-

mapped 

% reads 

multi-

mapped 

# reads 

unmapped 

% reads 

unmapped 
# indels 

Skin 

v2.0 

62,630,134 

53,990,480 86.20% 6,684,213 10.67% 1,955,441 3.12% 962 

v1.0 52,523,732 83.86% 8,114,599 12.96% 1,991,803 3.18% 2,512 

Δ N/A 1,466,748 2.34% -1,430,386 -2.29% -36,362 -0.06% -1,550 

Thalamus 

v2.0 

54,655,873 

45,721,452 83.65% 5,414,620 9.91% 3,519,801 6.44% 649 

v1.0 44,904,096 82.16% 6,126,363 11.21% 3,625,414 6.63% 1,054 

Δ N/A 817,356 1.49% -711,743 -1.30% -105,613 -0.19% -405 

Pituitary 

v2.0 

43,368,663 

39,710,031 91.56% 2,405,103 5.55% 1,253,529 2.89% 604 

v1.0 34,115,417 78.66% 7,866,251 18.14% 1,386,995 3.20% 960 

Δ N/A 5,594,614 12.90% -5,461,148 -12.59% -133,466 -0.31% -356 

Lymph node 

– mesenteric 

v2.0 

43,673,576 

38,819,419 88.88% 3,562,121 8.16% 1,292,036 2.96% 684 

v1.0 38,296,065 87.69% 4,057,915 9.29% 1,319,596 3.02% 999 

Δ N/A 523,354 1.19% -495,794 -1.13% -27,560 -0.06% -315 

Abomasum 

pylorus 

v2.0 

45,977,534 

41,018,529 89.21% 2,978,042 6.48% 1,980,963 4.31% 512 

v1.0 40,403,981 87.88% 3,533,015 7.68% 2,040,538 4.44% 846 

Δ N/A 614,548 1.33% -554,973 -1.20% -59,575 -0.13% -334 
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Figures  

 

 

 

 

Figure 4.1: Image of Benz 2616 Rambouillet ewe selected for the ovine reference genome 

assembly. This image was shared by Dr. Michael P. Heaton, USDA ARS USMARC.  
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Figure 4.2: Hi-C contact map comparison of ARS-UI_Ramb_v2.0 A) directly after scaffolding and before manual curation and B) 

after manual curation with scaffold rearrangements and joins. 
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Figure 4.3: Assembly error comparison between ARS-UI_Ramb_v2.0, Oar_rambouillet_v1.0, and Oar_v4.0 in A) a feature response 

curve displaying sorted lengths of the assemblies with the fewest errors and B) specific feature counts for each genome and 

descriptions. 
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Figure 4.4: Dotplot comparison of genome assemblies between A) ARS-UI_Ramb_v2.0 and Oar_rambouillet_v1.0, and B) ARS-

UI_Ramb_v2.0 and Oar_v4.0.  
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Supplementary Material 

 

Supplementary Figure 4.1: Expressed transcripts (TPM > 0) in Benz2616 tissues (n=61) 

based on Oar_rambouillet_v1.0 and ARS-UI_Ramb_v2.0 (RefSeq v103 & 104 respectively).  
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Supplementary Document 4.1 

#Reconstructing the transcriptome FASTA sequence for the lifted over gene annotation 

#Tools used  

module load pigz/2.3.3 

module load BEDTools/2.30.0 

module load samtools/1.9 

module load kallisto/0.44.0 

 

#Extracting the exonic block from the GFF file 

zcat Ramb_v1.0_NCBI103_lifted_over_ARS-UI_Ramb_v2.0.gff.gz | \ 

awk '($3~/exon/)' | \ 

pigz > Ramb1LO2_NCBI103_exons.gff.gz 

 

#Creating a modified GFF3 file format  

paste <(zcat Ramb1LO2_NCBI103_exons.gff.gz | cut -f1-2) \ 

<(zcat Ramb1LO2_NCBI103_exons.gff.gz | cut -f9 | cut -d";" -f2| sed 's/Parent\=rna-//g') \ 

<(zcat Ramb1LO2_NCBI103_exons.gff.gz | cut -f4- ) > Ramb1LO2.gff 

  

#Coversion to BED6 format 

awk '{OFS="\t"; print $1,$4,$5,$3,0,$7}' Ramb1LO2.gff > Ramb1LO2.bed 

   

#Example output 

CM028704.1      42238   42395   XM_027962292.1  0       - 
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CM028704.1      42690   43127   XM_027962292.1  0       - 

CM028704.1      43130   43378   XM_027962292.1  0       - 

CM028704.1      43381   43588   XM_027962292.1  0       - 

CM028704.1      43591   43756   XM_027962292.1  0       - 

CM028704.1      43853   44085   XM_027962292.1  0       - 

CM028704.1      45265   45335   XM_027962292.1  0       - 

CM028704.1      46081   46232   XM_027962292.1  0       - 

CM028704.1      46503   46709   XM_027962292.1  0       - 

CM028704.1      74992   75652   XR_003588699.1  0       - 

CM028704.1      76859   78063   XR_003588699.1  0       - 

CM028704.1      78522   79261   XR_003588700.1  0       + 

CM028704.1      79410   79494   XR_003588700.1  0       + 

CM028704.1      147143  147427  XM_027962305.1  0       - 

CM028704.1      147429  148122  XM_027962305.1  0       - 

CM028704.1      148124  148170  XM_027962305.1  0       - 

CM028704.1      148172  148597  XM_027962305.1  0       - 

CM028704.1      150156  150304  XM_027962305.1  0       - 

CM028704.1      158201  158296  XM_027964169.1  0       + 

CM028704.1      164690  165052  XM_027964169.1  0       + 

CM028704.1      165371  165532  XM_027964169.1  0       + 

CM028704.1      166287  166321  XM_027964169.1  0       + 

CM028704.1      166520  167538  XM_027964169.1  0       + 
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#Verifying the collapse of exon to transcript models and uniqueness 

#Exons were grouped by transcript and counted per group (should be 1 == score column in 

the output bed) 

#After sorting by the transcript id (-k 4,4) the grouping was based on the transcript name and 

strand (-g 4,6) and computation was done on chr,start,end and transcript id (-c 1,2,3,4). The 

distinct count of transcript ids for verification 

 

sort -k4,4 Ramb1LO2.bed | \ 

bedtools groupby -g 4,6 -c 1,2,3,4 -o distinct,min,max,count_distinct | \ 

awk '{OFS="\t";print $3,$4,$5,$1,$6,$2}' | \ 

sort -V -k1,2 > Ramb1LO2_groupby.bed 

  

#Example output 

CM028704.1      42238   46709   XM_027962292.1  1       - 

CM028704.1      74992   78063   XR_003588699.1  1       - 

CM028704.1      78522   79494   XR_003588700.1  1       + 

CM028704.1      147143  150304  XM_027962305.1  1       - 

CM028704.1      158201  167538  XM_027964169.1  1       + 

CM028704.1      176125  178445  XM_027964177.1  1       - 

CM028704.1      183267  193065  XM_027962318.1  1       - 

  

#Checking the total number of records in the final sorted BED file. 

wc -l Ramb1LO2_groupby.bed 
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49899 Ramb1LO2_groupby.bed 

awk '$5!=1' Ramb1LO2_groupby.bed | wc -l 

0 

 

#Extracting exonic level FASTA sequences 

bedtools getfasta \ 

 -fi GCA_016772045.1_ARS-UI_Ramb_v2.0_genomic.fna \ 

 -bed Ramb1LO2.bed \ 

 -s -split -nameOnly > Ramb1LO2_NCBI103_geneBank_exons.fa 

  

#Appending all exonic sequences from the same transcript id in the correct order 

 

awk '/^>/ {if(prev!=$0) {prev=$0;printf("\n%s\n",$0);} next;} {printf("%s",$0);} END 

{printf("\n");}' \ 

 Ramb1LO2_NCBI103_geneBank_exons.fa > 

Ramb1LO2_NCBI103_geneBank_rna.fa 

 

#Cleaning up the strand information from the fasta header 

sed -i 's/(-)//g;s/(+)//g' Ramb1LO2_NCBI103_geneBank_rna.fa 

  

#Buidling Kallisto index for the quantification step. 

samtools faidx Ramb1LO2_NCBI103_geneBank_rna.fa 

kallisto index -i Ramb1LO2_NCBI103.idx Ramb1LO2_NCBI103_geneBank_rna.fa 
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################################## TPM expression estimation  

#!/bin/bash 

#SGE flags 

#$ -l h_rt=4:00:00 

#$ -l h_vmem=8G 

#$ -pe sharedmem 4 

#$ -V 

#$ -t 1-61 

  

#Required modules 

module load pigz/2.3.3 

module load kallisto/0.44.0 

 

#Kallisto runs 

kallisto quant --bias -t ${vcpu} -i Ramb2_refseq104.idx -o ${sra_id}_kallisto_Ramb2 <(zcat 

${infile}) <(zcat ${infile/_1P.fq.gz/_2P.fq.gz}) 

kallisto quant --bias -t ${vcpu} -i Ramb1_NCBI103.idx -o ${sra_id}_kallisto_Ramb1 <(zcat 

${infile}) <(zcat ${infile/_1P.fq.gz/_2P.fq.gz}) 

kallisto quant --bias -t ${vcpu} -i Ramb1LO2_NCBI103.idx -o 

${sra_id}_kallisto_Ramb1LO2 <(zcat ${infile}) <(zcat ${infile/_1P.fq.gz/_2P.fq.gz}) 
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Chapter 5: Characterizing Genetic Regulatory Elements in Ovine Tissues 
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Abstract 

The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader 

livestock species FAANG initiative, aims to identify and characterize gene regulatory 

elements in domestic sheep.  Regulatory element annotation is essential for identifying 

genetic variants that affect health and production traits in this important agricultural species, 

as greater than 90% of variants underlying genetic effects are estimated to lie outside of 

transcribed regions. Histone modifications that distinguish active or repressed chromatin 

states, CTCF binding, and DNA methylation were used to characterize regulatory elements in 

liver, spleen, and cerebellum tissues from four yearling sheep.  Chromatin 

immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, 

H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active 

enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each 

tissue using ChromHMM. Whole genome bisulfite sequencing (WGBS) was performed, to 

determine the complement of whole genome DNA methylation with the ChIP-seq data. 

Hypermethylated and hypomethylated regions were identified across tissues and these 

locations were compared with chromatin states to better distinguish and validate regulatory 

elements in these tissues. Interestingly, chromatin states with the poised enhancer mark 

H3K4me1 in spleen and cerebellum, and CTCF in liver displayed the greatest number of 

hypermethylated sites. Not surprisingly, active enhancers in liver and spleen, and promoters 

in cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin 

states defined by histone marks and CTCF occupied approximately 22% of the genome in all 

three tissues. Further, liver and spleen displayed the greatest percent of active promoter 

(65%) active enhancer (81%) states in common, and liver and cerebellum displayed the 

greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites 

(75%), and hypomethylated sites (73%) in common. In addition, both known and de novo 

CTCF binding motifs were identified in all three tissues, with the highest number of unique 

motifs identified in cerebellum. In summary, this study has identified the regulatory regions 

of genes in three tissues that play key roles in defining health and economically important 

traits and has set the precedent for the characterization of regulatory elements in ovine tissues 

using the Rambouillet reference genome. 
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Introduction 

Regulatory element characterization and chromatin state determination in relevant tissues 

was identified as a critical need for implementing precision breeding within the livestock 

industry by the Agricultural Animal Genomics Community (Rexroad et al., 2019). To this 

end, the Functional Annotation of Animal Genomes (FAANG) consortium and the Ovine 

FAANG project members seek to molecularly define the epigenome in food animals, 

including sheep (Andersson et al., 2015; Giuffra & Tuggle, 2019; Tuggle et al., 2016). 

Modelled upon the ENCODE project, (The ENCODE Project Consortium, 2012) FAANG 

aims to characterize the epigenome including chromatin histone modifications and DNA 

methylation (Andersson et al., 2015). The core objectives of the Ovine FAANG Project 

Consortium are to develop a deep and robust public database of transcriptional regulatory 

features in the sheep genome.   

 

Sheep production for meat, milk, and wool is an important agricultural industry across the 

globe with more than 1 billion sheep suited to a diverse range of climates (Hegde 2019). This 

diversity is reflected in genetic differences between sheep breeds utilized for varied purposes 

(Al-Mamun et al., 2015; Meadows et al., 2008). Populations bred for different environments 

and for contrasting production traits provide the opportunity to study a range of phenotypes 

within the species.  Analysis of elements that control gene expression in sheep tissues is 

needed as many complex traits such as rumen fatty acid metabolism, lanolin and wool 

production, growth, and carcass traits cannot be explained solely by variation in transcribed 

regions (Clark et al., 2017; Jiang et al., 2014; Villar et al., 2015; Kingsley et al., 2020). In 

vivo analysis of regulatory elements will allow researchers to test hypotheses of biological 

function of putative causal mutations in relevant production tissues. Understanding the 

phenotypic influences of genetic variance that lie in promoter and enhancer regions is 

important for trait prediction and the improvement of sheep production. 

 

Functional variants that are causally implicated in phenotypic variation are increasingly 

found to lie outside of transcribed regions within DNA regulatory elements (Albert & 

Kruglyak, 2015; Xiang et al., 2019). These regulatory elements can be defined by epigenetic 
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analyses that have not been systematically conducted in sheep.  A library of putative 

regulatory elements in the sheep genome was recently predicted using inference from 

chromatin states defined in humans (Naval-Sanchez et al., 2018). However, direct 

experimental characterization of regulatory elements in individual ovine tissues is needed.  

 

The work presented here represents the foundation in preparation for a deep survey using the 

same methodology across tissues of the index animal from which the new sheep reference 

genome was developed.  Since the larger FAANG effort has N=2 for each tissue by design 

(i.e. a large array of tissues from the individual from which the genome was derived), the 

data collected here also provide a resource for evaluating the larger effort by permitting 

estimation of inter-individual variation in the appearance and tissue distribution of regulatory 

elements. Three tissues were selected for this study based on their prominence in defining 

production traits and to span tissues of endodermal, mesodermal, and ectodermal origin, and 

because each present unique procedural challenges for performing ChIP-seq assays. Liver is 

an endodermal-derived tissue that is a key metabolic component of the alimentary system 

(Villar et al., 2015) and contains a variety of complex carbohydrates that can inhibit various 

enzymatic reactions required in the ChIP-seq protocol. Spleen is a mesodermal-derived 

parenchymatous organ important for immune cell production and maturation and contains 

many natural deoxyribonucleases (DNase) which can present challenges to obtaining 

sufficient yield of high-quality DNA (Young & Sinsheimer, 1965).  Cerebellum is an 

ectodermal-derived tissue representative of brain tissue and contains a high lipid content 

which can affect the efficiency of DNA extraction. With these three varied tissues, we 

developed workflows for assessing chromatin-associated histone modifications, CTCF 

binding sites, and DNA methylation to define regulatory elements.  

 

The histone modifications characterized in this study include the trimethylation of histone 3 

lysine 4 (H3K4me3) which denotes promoters and acetylation of histone 3 lysine 27 

(H3K27ac) which denotes active enhancers (Barski et al., 2007; Wang et al., 2008). The 

monomethylation of histone 3 lysine 4 (H3K4me1) was characterized to explore poised 

enhancers, and the trimethylation of histone 3 lysine 27 (H3K27me3) was utilized to define 
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repressed enhancers which silences gene expression in broad regions (Barski et al., 2007; 

Wang et al., 2008; Pauler et al., 2009). The CCTC-binding factor protein (CTCF) is a key 

component of the anchors at topologically associated domain boundaries (Ghirlando & 

Felsenfeld, 2016; Lee & Iyer, 2012). Determination of CTCF and multiple histone 

modifications, referred to as marks, allowed us to take advantage of the combinatorial nature 

of chromatin structure and gene expression regulation (Jenuwein & Allis, 2001; Wang et al., 

2008) to categorize the sheep genome into chromatin states. 

 

DNA methylation data derived from WGBS was incorporated to validate regulatory regions 

and chromatin states. In mammals, several groups have identified CpG islands that lack 

methylation are located at gene promoters (Deaton & Bird, 2011). Repressed promoters are 

marked by higher degrees of methylation associated with transcriptionally silenced gene 

expression (Weber et al., 2007).  Histone methylation and DNA methylation are co-

dependent epigenetic marks as enzymatic formation of one will guide the formation of the 

other and H3K4me3 may physically inhibit methylation of DNA during development 

(Meissner et al., 2008). Histone methylations and DNA methylation serve as templates for 

rebuilding one another during mitosis and meiosis and further reinforce segmentation of the 

genome into functional regions of active or repressed chromatin in adult somatic cells (Cedar 

& Bergman, 2009) justifying the utility of combined analysis in sheep.   

 

Our objective for this study was to identify the locations of gene regulatory elements in sheep 

by characterizing histone modifications, CTCF binding, and DNA methylation for 

cerebellum, liver, and spleen. Defining regulatory elements in the sheep genome will provide 

the basis for a greater understanding of the mechanisms that underpin phenotypic variation in 

important health and production traits in sheep.  
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Materials & Methods 

Sample collection 

Tissue was collected postmortem from two pairs of healthy half siblings (one ewe and one 

wether per pair) totaling four yearling crossbred sheep (Columbia, Polypay, Rambouillet, 

Suffolk, Targhee) as approved by the Washington State University Institutional Animal Care 

and Use Committee. Small pieces of liver, spleen, and cerebellum tissues were collected 

within 30 minutes postmortem, briefly rinsed with ice cold 1 X PBS and promptly snap 

frozen in liquid nitrogen. Samples were transferred from liquid nitrogen directly into a -80 °C 

freezer for storage.  

 

Chromatin immunoprecipitation 

Chromatin Immunoprecipitation (ChIP) was performed using commercial antibodies for the 

histone modifications H3K4me3 (Abcam, cat. #ab8580), H3K4me1 (Abcam, cat. # ab8895), 

H3K27ac (Abcam, cat. #ab4729), H3K27me3 (Abcam, cat. #ab6002), and CTCF (Millipore, 

cat. #07-729) with SimpleChIP Plus Enzymatic Chromatin IP Kit according to 

manufacturer’s instructions (Cell Signaling Technologies cat. #9005, Danvers, MA, USA) 

(Johnson et al., 2007; Barski et al., 2007; Robertson et al., 2007; Mikkelsen et al., 2007; Park 

2009). Briefly, tissue was cross-linked with 37% formaldehyde and disaggregated with a 

Dounce homogenizer. After cell membrane lysis, micrococcal nuclease (MNase) was added 

and incubated at 37°C and 200 rpm for 20 minutes to shear the chromatin. Next, the nuclear 

membrane was lysed, and the sheared chromatin isolated by centrifuging at 15,000 x g for 1 

minute at 4°C. Chromatin was incubated with 1 µg of antibody overnight at 4 °C in a Hula 

mixer for 16 hours. The following morning, protein G-coated magnetic beads were added 

and incubated 2 hours at 4°C in a Hula mixer. The sample was washed twice with a low salt 

and once with a high salt buffer. Cross-links were reversed by incubating the sample at 65 °C 

for 30 minutes at 400 rpm in a thermomixer. Purification was performed with the DNA 

Purification Buffers and Spin Columns Kit following manufacturer’s instructions (Cell 

Signaling Technologies cat. #14209, Danvers, MA, USA).   
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ChIP-seq library preparation and sequencing 

Purified DNA samples were quantified using the Qubit dsDNA HS Assay Kit (Thermo 

Fisher Scientific catalog number Q32854, Waltham, MA, USA). The DNA size and integrity 

were verified using a Fragment Analyzer (Agilent, Santa Clara, CA, USA). Libraries were 

prepared with the TruSeq ChIP Library Preparation Kit (Illumina, Inc. catalog number IP-

202-1012, San Diego, CA, USA) for 75 base pair paired-end reads following manufacturer’s 

instructions and sequenced to at least 20 million mapped reads for “narrow” histone marks 

H3K4me3, H3K27ac, and CTCF libraries and at least 40 million mappable reads each for 

“broad” histone marks H3K4me1 and H3K27me3 libraries. 

 

Whole genome bisulfite sequencing library preparation and sequencing 

Whole genome bisulfite sequencing (WGBS) was performed as a service by Novogene 

(Novogene, Beijing, China) on liver, spleen, and cerebellum in all four animals. Briefly, 

DNA extracted from these tissues were subjected to agarose gel electrophoresis to test for 

DNA degradation and potential RNA contamination. The DNA was then quantified using 

Nanodrop spectrophotometer (NanoDrop Technologies, Rockland, DE), and Qubit2.0 

fluorometer (Life Technologies, Carlsbad, CA, USA). Lambda phage DNA was spiked in as 

a negative control for DNA methylation. Since lambda phage DNA lacks DNA methylation, 

all the cytosines in its DNA should be converted to uracil during bisulfite conversion. Any 

unchanged cytosine in the lambda phage DNA can thus be used to determine the efficiency 

of bisulfite conversion. For library construction, DNA samples were fragmented into 200-

400 bp using sonication (Covaris S220, Woburn, MA, USA). Next, end repair, A-ligation, 

and methylation sequencing adapter ligation was performed. The adapter sequences were 5’ 

adapter (5’- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA

TCT – 3’) and 3’ adapter (5'-

GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCT

TCTGCTTG-3’). Following this, the DNA library was subjected to bisulfite treatment (EZ 

DNA Methylation Gold Kit, Zymo Research, Irvine, CA, USA). Library concentration was 

first quantified by Qubit2.0, was diluted to 1 ng/µl before checking insert size on Agilent 
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2100 (Agilent Technologies, Santa Clara, CA, USA), and was quantified with more accuracy 

by quantitative PCR (effective concentration of library > 2 nM). Libraries were then pooled 

per sample and sequenced paired end. 

 

ChIP-seq data quality control, mapping, and peak calling 

Quality control assessment of ChIP-seq reads were performed with FastQC, and Trim Galore 

was used to trim adapter sequences and low-quality bases. PCR duplicates were removed 

with Picard and the remaining read pair sequences were then mapped to the sheep reference 

genome Oar_rambouillet_v1.0 with Bowtie2 (Langmead and Salzburg, 2012; Broad 

Institute, 2019). Cross-correlations were calculated using MACS2 predictd in Galaxy 

Version 2.1.1.20160309.1 (Supplementary Figure 5.1) (Afgan et al., 2018). Peaks for narrow 

histone marks H3K4me3 and H3K27ac as well as transcription factor CTCF were called 

using MACS2 with an input control and a false discovery rate of 0.05 (Zhang et al., 2008; 

Feng et al., 2012; Thomas et al., 2017). For broad peak histone modifications H3K4me1 and 

H3K27me3, SICER was implemented with the same input control and a false discovery rate 

of 0.05 to better account for broader sequence pileup distributions (Zang et al., 2009; 

Micsinai et al., 2012; Siska and Kechris, 2017). The number of uniquely mapped sequence, 

non-redundant fraction (NRF), and fraction of reads in peaks (FRiP) for each ChIP-seq 

sample was calculated using Picard (Afgan et al., 2018; Heinz et al., 2010; Landt et al., 2012; 

Friedman and Alm, 2012; Siska and Kechris, 2017) (Supplementary Table 5.1). Peak 

numbers were averaged across samples. Peaks common to multiple samples were determined 

with BEDTools intersect. The peaks common to three samples with the greatest NRF were 

determined for H3K4me3 (F1, M1, and M2 for liver, F2, M1, and M2 for spleen, and F1, 

M1, and M2 for cerebellum), H3K27ac (F1, M1, and M2 for liver, F2, M1, and M2 for 

spleen, and F1, M1, and M2 for cerebellum), H3K4me1 (F1, M1, and M2 for liver, F2, M1, 

and M2 for spleen, and F1, M1, and M2 for cerebellum), H3K27me3 (F1, M1, and M2 for 

liver, F2, M1, and M2 for spleen, and F2, M1, and M2 for cerebellum), and CTCF (F2, M1, 

and M2 for liver, F2, M1, and M2 for spleen, and F2, M1, and M2 for cerebellum). These 

consensus peaks were compared with transcription start site locations identified with CAGE 

assays from the ewe used to generate the reference genome using the deepTools 
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computeMatrix function and heatmaps were plotted with the plotHeatmap function (Ramirez 

et al., 2016; Salavati et al., 2020). Further, peaks were annotated with the GTF file from 

reference genome Oar_rambouillet_v1.0 and peaks were categorized as near a TSS (+2Kb to 

-2Kb), Exonic, Intronic, TTS (+1Kb to -1Kb), and Intergenic using the Homer 

annotatePeaks.pl function (Heinz et al., 2010). Further, normalized bigwig files depicting the 

sequence enrichment for each library were directly visualized with Integrative Genomics 

Viewer (IGV) for some gene regions which are known to be active and repressed in each 

tissue (Robinson et al., 2011). Spearman correlations were calculated between sample BAM 

signal files using deepTools in Galaxy Version 2.1.1.20160309.1 (Friedman and Alm, 2012; 

Ramírez et al., 2014; Siska and Kechris, 2017; Afgan et al., 2018).  

 

DNA methylation data quality control, mapping, and methylation level characterization 

The quality of raw sequences from whole genome bisulfite sequencing was assessed using 

FastQC v0.11.5. Adapters and low-quality bases (phred score < 20) were trimmed using 

Trimgalore v0.4.5 with default parameters. Cleaned data for each sample was aligned to the 

sheep reference genome Oar_rambouillet_v1.0 using Bowtie2 aligner within BSseeker2 

v2.1.8 with default parameters (Langmead et al., 2012; Guo et al., 2013). The X-chromosome 

was removed from the analysis to make male and female samples comparable. After 

mapping, bam files for the same individual sequenced on multiple lanes were merged, 

fixmated, sorted and PCR duplicates were removed using Samtools v1.6 (Li et al., 2009). 

The methylation level in each cytosine was determined using BSseeker2 with default 

parameters. Basic statistics on methylation were determined using the mstat fnction in 

CGmaptools v0.0.6 (Guo et al., 2018). Regions of the genome hypomethylated and 

hypermethylated for each sample were determined with methPipe v3.4.3 following the 

manual with default parameters (Song et al., 2013). 

 

Chromatin state and CTCF motif analysis 

Chromatin states were characterized by employing a Hidden Markov Model in ChromHMM, 

which assessed signal overlap between histone marks within a tissue and binned the genome 

into a given number of chromatin states (Ernst and Kellis 2010; Ernst and Kellis 2012; Ernst 

and Kellis, 2017; Gorkin et al., 2017; Gorkin et al., 2020). The two male samples (M1 and 
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M2) exhibited the greatest NRF and Spearman correlations and were therefore used in 

chromatin state analysis. The LearnModel function in ChromHMM was implemented with 

given chromatin states of 2 through 20 for each animal, and the model with the optimal 

number of chromatin states was examined using the CompareModels function in 

ChromHMM (Gorkin et al., 2017; Gorkin et al., 2020). The optimal number of chromatin 

states was determined as the model where the median Pearson correlation for all states 

plotted against each chromatin state model plateaued and were tightly correlated with the 

model with greatest number of states (Supplementary Figure 5.2) (Gorkin et al., 2017; 

Gorkin et al., 2020). The consensus of chromatin states between two animals (M1 and M2) 

was used to generate the heatmap and for further comparative analyses. Location similarities 

and differences between chromatin states, hypermethylated regions, and hypomethylated 

regions were assessed with BEDTools intersect within each tissue, and the consensus within 

each tissue was used to examine chromatin state and DNA methylation similarities and 

differences between liver, spleen, and cerebellum tissues (Quinlan, 2014).  An UpsetR plot 

was generated to display chromatin state similarities and differences between tissues (Lex et 

al., 2014; Conway et al., 2017). Significantly enriched known and de novo CTCF motifs 

were identified and compared to other species by implementing the findMotifs.pl script in 

HOMER (Heinz et al., 2010). The proximity of annotated TSS generated from CAGE data to 

promoter chromatin states was examined with deepTools computeMatrix and plotHeatmap 

functions (Supplementary Figure 5.7) (Ramirez et al., 2016; Salavati et al., 2020). 

 

 

Results 

Genetic regulatory elements were characterized across the sheep genome in liver, spleen, and 

cerebellum using CTCF binding and chromatin immunoprecipitation with sequencing (ChIP-

seq) of four histone marks, as well as DNA methylation status.  Locating regulatory elements 

within and between tissues will provide the basis for identifying variation in these elements 

that may influence various phenotypic traits in sheep. Further, these results represent a 

resource for estimating inter-individual variation in the regulatory states of tissues to provide 

context for the FAANG project that aims to characterize these states in a broad array of 

tissues in a single individual from which the reference genome was produced.   
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Mapping summary and statistics 

Mapping statistics were calculated to assess the assay quality, library preparation, and 

sequence coverage for each sample. Across animals, ChIP-seq reads had a consistent average 

mapping rate of 78.23%, 78.39%, and 76.82% to the Oar_rambouillet_v1.0 genome for liver, 

spleen, and cerebellum, respectively. The number of uniquely mapped paired end reads 

averaged 40,757,252 for H3K4me3, 42,306,275 for H3K27ac, 53,171,657 for H3K4me1, 

55,901,184 for H3K27me3, and 45,491,017 for CTCF across all three tissues. The number of 

uniquely mapped reads, NRF, and FRiP for each sample are displayed in Supplementary 

Table 5.1. 

 

Whole genome bisulfite sequencing of cerebellum, liver, and spleen samples from the four 

sheep generated a total of 986, 1070, and 904 million paired end reads, respectively with a 

read length of 2 x 150 bp. The number of reads uniquely mapped to the reference genome 

was 84.24%, 78,86% and 82.48% for cerebellum, liver and spleen, respectively. The 

uniquely mapped bases covered the reference genome (Oar_rambouillet_v1.0; genome size 

~2.87 Gb) at an average depth of 21x (range 18x to 26x). Bisulfite conversion rate was 

~99.9% for all the samples. Mapping statistics for each tissue sample per sheep are displayed 

in Supplementary Table 5.2. 

 

ChIP-seq peak calling 

The locations of sequence signal enrichment were identified for all four histone marks and 

CTCF for each liver, spleen, and cerebellum sample by mapping the reads to the reference 

genome Oar_rambouillet_v1.0. The number of peaks normalized by chromosome length (in 

Mb; Figure 5.1) and the width of the peaks along the assembly were calculated from the 

mapped read depth. For each mark, the percent of the total number of peaks observed in the 

genome that lie on each chromosome is plotted in Figure 1 which shows an overall even 

distribution across chromosomes with some exceptions.  The lowest number of peaks were 

called in narrow mark H3K4me3 (means of 10,458 in liver, 13,389 in spleen, and 16,911 in 

cerebellum), with the lowest number of peaks per Mb on chromosome 23 2.77 peaks/Mb), 26 

(2.64 peaks/Mb), and 16 (2.47 peaks/Mb) in liver, spleen, and cerebellum, respectively. The 



161 

 

 

greatest number of H3K4me3 peaks per Mb for liver, spleen, and cerebellum were on 

chromosomes 14 (6.16 peaks/Mb), 20 (5.17 peaks/Mb), and 11 (4.61 peaks/Mb), 

respectively. The average widths of H3K4me3 peaks were 168 bp, 178 bp, and 313 bp for 

liver, spleen, and cerebellum. The mean number of peaks called for the H3K27ac mark was 

30,553 in liver, 35,327 in spleen, and 35,877 in cerebellum with the lowest number of peaks 

called on chromosomes 10 (2.54 peaks/Mb), 26 (2.25 peaks/Mb), and 6 (2.72 peaks/Mb) for 

the respective tissues. The greatest number of H3K27ac peaks were called on chromosome 

11 for all three tissues and peak widths averaged 239 bp, 240 bp, and 238 bp in liver, spleen, 

and cerebellum for this narrow mark. The final narrow mark, CTCF, averaged 26,517 peaks 

in liver, 28,362 in spleen, and 26,244 in cerebellum. The lowest number of CTCF peaks were 

called on chromosome 24 (1.56 peaks/Mb for liver, 1.49 peaks/Mb for spleen, and 2.05 

peaks/Mb in cerebellum), and the greatest number of peaks were called on chromosome 6 

(5.50 peaks/Mb in liver, 5.73 peaks/Mb in spleen, and 5.07 peaks/Mb in cerebellum) for all 

three tissues. The width of CTCF peaks were similar to other narrow marks, with averages of 

114 bp in liver, 265 bp in spleen, and 144 bp in cerebellum.  

 

The greatest number of peaks were called in broad mark H3K4me1 (means of 47,828 in 

liver, 33,931 in spleen, and 51,766 in cerebellum), which is consistent with several tissues in 

cattle (Fang et al., 2019). Chromosomes with the lowest number of H3K4me1 peaks per Mb 

included 21 (2.34 peaks/Mb) for liver, 26 (2.90 peaks/Mb) for spleen, and 20 (3.12 

peaks/Mb) for cerebellum, and the greatest number of peaks per Mb were on chromosome 7 

(4.99 peaks/Mb for liver, 7.79 peaks/Mb for spleen, and 4.98 peaks/Mb in cerebellum) for all 

three tissues. The average width of broad peak H3K4me1 was greater than for the narrow 

peaks described above, as expected, at 948 bp for liver, 2,963 bp for spleen, and 1,909 bp for 

cerebellum. And lastly, the broad mark H3K27me3 had a lower average number of peaks 

called compared to H3K4me1 (mean of 39,162 in liver, 29,939 in spleen, and 26,244 in 

cerebellum). The lowest number of H3K27me3 peaks per Mb of chromosome length were on 

chromosomes 26 (3.04 peaks/Mb), 24 (2.58 peaks/Mb), and 11 (1.84 peaks/Mb) for liver, 

spleen, and cerebellum, respectively. The greatest number of peaks on chromosomes 13 (4.86 

peaks/Mb) for liver, and 6 for both spleen (4.39 peaks/Mb) and cerebellum (4.94 peaks/Mb). 

The average width of broad H3K27me3 peaks was 440 bp in liver, 2,143 bp in spleen, and 
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653 bp in cerebellum. Peaks in common across the animals were calculated for all five ChIP-

seq experiments and displayed for liver, spleen, and cerebellum (Supplementary Figure 5.2). 

Interestingly, half siblings (F1 and M1, F2 and M2) displayed a greater number of peaks in 

common with each other. 

 

The proximity of H3K4me3 peaks to transcription start sites (TSS) was investigated by 

comparing consensus H3K4me3 peaks and CAGE data generated by Salavati et al., 2020. 

Not surprisingly, H3K4me3 peaks were detected on both sides of the TSS in liver, spleen, 

and cerebellum tissues. The signal distributions and heatmaps from 2 kilobases upstream and 

downstream of the TSS locations are displayed in Figure 2. In addition, the consensus peaks 

for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF were annotated with the 

Oar_rambouillet_v1.0 genome annotation file and these classifications are displayed in 

Supplementary Figures 3-5. The histone modification H3K4me3 had the greatest proportion 

of peaks annotated as near a TSS when compared with other histone modifications in all 

three tissues. H3K27ac and H3K4me1 histone modifications displayed intronic annotation 

most commonly, and H3K27me3 and CTCF displayed mostly intergenic peak annotation.  

 

Visual assessment of sequence pileup 

The peak predictions were directly examined in the Integrative Genomics Viewer (IGV; 

Robinson et al., 2011) for regions known to be active or repressed in the three tissues, to 

provide an evaluation of the success of the process in properly classifying chromatin states. 

One example of an expected active region for each liver, spleen, and cerebellum tissue as 

well as one region expected to be repressed in all tissues is displayed in Figure 5.3. Albumin 

(ALB), a gene that encodes a plasma protein synthesized in hepatocytes and expected to be 

active in liver, has one promoter and two enhancers annotated in humans that are within 2 kb 

upstream from the start of the gene (Frain et al., 1990; Hayashi et al., 1992; Bernardi et al., 

2012; Fagerberg et al., 2014). Sequence pileup for active histone marks in liver were 

observed in all four sheep that overlap with approximate locations of regulatory elements of 

ALB in humans, and low levels of DNA methylation in these regions (Figure 5.3A). The 

region upstream of Solute carrier family 11 member 1 (SLC11A1), a gene expected to be 

active in spleen and encodes a membrane protein involved with macrophage development, 
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displayed sequence pileup for active marks H3K4me3 and H3K27ac and low levels of DNA 

methylation directly upstream (Figure 5.3B) (Hedges et al., 2014). Paired box 6 (PAX6) is 

known to be involved in development of neural tissues and maturation of granule neurons in 

the cerebellum, and is known to have a promoter and multiple enhancers both upstream and 

downstream of the gene (Ha et al., 2015; Divya et al., 2016). Further, PAX6 has greater 

expression in cerebellum than other tissues in sheep which is supported by the sequence 

pileup of active histone marks H3K4me3 and H3K27ac, with some activity of H3K4me1 and 

little DNA methylation (Figure 5.3C) (Jiang et al., 2014). In contrast, the REC8 meiotic 

recombination protein (REC8) is a gene that encodes a meiosis specific protein involved in 

synapsis of sister chromatids that is not expected to be active in liver, spleen, or cerebellum 

(Xu et al., 2005). This gene location shows no sequence pileup in all four sheep in liver, 

spleen, or cerebellum and several methylated regions (Figure 5.3D). 

 

Variability in histone marks between animals 

Correlations were calculated for histone marks and for DNA methylation between samples to 

evaluate inter-animal variation in sequence pileup signal for liver, spleen, and cerebellum 

(Friedman and Alm, 2012; Siska and Kechris, 2017). Correlations of ChIP-seq data 

(Spearman) and DNA methylation data (Pearson) averages for all four animals and males 

only (in parentheses) are provided in Table 1. The narrow mark H3K4me3 was moderately 

correlated between all four animals in liver (0.66) and spleen (0.54), and highly correlated in 

cerebellum (0.85). In males, H3K4me3 was highly correlated in liver (0.86), spleen (0.71), 

and cerebellum (0.88). The narrow mark H3K27ac was highly correlated between samples 

across all three tissues in liver (0.89 overall and 0.95 in males), spleen (0.78 overall and 0.84 

in males), and cerebellum (0.70 overall and 0.91 in males).  

 

The broad mark H3K4me1 also showed high correlation in two tissues including liver (0.71 

overall and 0.93 in males) and cerebellum (0.82 overall and 0.91 in males) but the correlation 

in spleen was markedly lower (0.47 overall and 0.56 in males) and overall the correlations 

between spleen samples were lower than liver and cerebellum for all four histone marks. This 

is evident in H3K27me3 in spleen (0.37 overall and 0.44 in males) compared to liver (0.58 

overall and 0.74 in males) and cerebellum (0.72 overall and 0.83 in males). The correlations 
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of DNA methylation signal between samples ranged from 0.70-0.76, with liver and 

cerebellum displaying the greatest correlation between the two males (0.76). However, sex 

differences in correlations were not observed, as each female has a moderate to high 

correlation with both the other female (0.54-0.84) and both males (0.44-0.92) for each mark 

within all three tissues. 

 

Principal component analysis of DNA methylation 

A principal component analysis was performed with the DNA methylation data to investigate 

similarity and differences between samples and tissues. Eigenvalues were calculated based 

on position of CG methylation signal in all animals for all three tissues, and the first two 

eigenvalues (PC1 and PC2) were plotted (Figure 5.4). Samples cluster distinctly by tissue 

type rather than by sex or individual animal.  The greatest spread of points within a tissue 

was observed in liver. The first eigenvalue (PC1, 27.56%) shows separation of liver, spleen, 

and cerebellum. The second eigenvalue (PC2, 12.16%) shows another dimension of 

separation of cerebellum and liver from spleen.  

 

Methylation level at CG and non-CG sites 

Average methylation levels were calculated and compared in each of the three tissues in both 

the CG and non-CG sites (Figure 5.5A). Non-CG sites are defined as CHG and CHH where 

H is either A/T/C. CG sites have an average methylation level ranging between 70-81% 

across different tissues. Specifically, cerebellum samples have an average methylation level 

of 81.4% whereas liver and spleen samples have an average methylation level of 70.3% and 

76.9%, respectively.  The average methylation level of cytosines at non-CG contexts (CHG 

and CHH) is nine-fold higher in cerebellum (1.7-2.1%) compared to spleen and liver samples 

(0.2%) (Figure 5.5B).  

 

Chromatin state assignment and correlation with methylation status 

The relative positions of the combination of specific histone marks provide a more complete 

definition of the overall regulatory chromatin state than individual peak calling. Regulatory 

elements were defined for two animals (M1 and M2) using a hidden Markov model 

employed by ChromHMM which assigns 200bp bins across the genome to a given number of 
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chromatin states based on combined histone modification signal profiles (Ernst and Kellis 

2010; Ernst and Kellis, 2017). The genome was categorized into 2 through 20 chromatin 

states using ChromHMM. The optimal number of states was determined to be 9, as it was the 

lowest number of states that had greater than 0.95 correlation of all samples to 20 states, 

which captures the complexity of the data with fewer states (see Supplementary Figure 5.2) 

(Gorkin et al., 2017; Gorkin et al., 2020). These 9 chromatin states are categorized as: 

promoter, active enhancer, poised enhancer, repressed enhancer, CTCF, and three or four 

states of quiescent/low signal. The consensus of chromatin states assigned to both M1 and 

M2 was used for further analyses. 

 

The signal of all the histone marks and the 9 chromatin states for each tissue is displayed as 

heatmaps in Figure 6. Regions with primarily H3K4me3 signal often overlapping with 

H3K27ac are considered promoters, regions with strong H3K27ac signal are considered 

active enhancers, regions with H3K4me1 often paired with weak H3K27me3 signal are 

considered poised enhancers, and regions with strong H3K27me3 signal are considered 

repressed enhancers (Wang et al., 2008; Creyghton et al., 2010; Core et al., 2011; Carelli et 

al., 2018). All four of these categories of regulatory elements were observed and displayed in 

the heatmaps, with the addition of a weak poised enhancer state in spleen and weak repressed 

enhancer state in cerebellum which both displayed lower but still distinguishable signal. In 

addition, regions with CTCF signal which overlap with other marks including H3K4me1 and 

H3K27me3 were observed in liver and cerebellum. Lastly, quiescent/low states had very 

little signal in any of the five marks. 

 

The correlation of DNA methylation status with predicted chromatin state was examined by 

estimating the number of hyper- and hypomethylated regions per Mb within the boundaries 

of the regulatory elements in the 9 defined chromatin states. The greatest number of 

hypomethylated regions were observed in active enhancer regions in liver and spleen, and in 

active promoter regions in cerebellum, as expected if our process was correctly identifying 

regulatory elements and classifying them as actively transcribed genes. The greatest number 

of hypermethylated regions were observed in poised enhancers and CTCF in liver, weak 
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poised and poised enhancer regions in spleen, and poised enhancer regions in cerebellum, 

also consistent with the process correctly classifying regulatory elements.  

 

Distribution of chromatin states in the genome and proximity to TSS 

The chromosomal segments spanned by regulatory elements, as defined by the histone mark 

peaks, were combined and summarized to estimate the overall extent and percent of the 

genome representing regulatory elements and their chromatin state among the three tissues 

examined. Chromatin states from the ChromHMM analyses were categorized and combined 

into promoter, active enhancer, poised enhancer including weak poised enhancers, repressed 

enhancer including weak repressed enhancers, and quiescent or low signal categories and 

averaged for each tissue (Figure 5.7). Promoters comprise 2.95% of the genome in liver, 

3.35% in spleen, and 1.85% in cerebellum, and active enhancers occupy 5.04% of the 

genome in liver, 4.30% in spleen, and 3.74% in cerebellum. In addition, 4.38% of the 

genome in liver, 4.63% in spleen, and 2.68% in cerebellum are categorized as poised 

enhancers while 7.78% of the genome in liver, 4.96% in spleen, and 9.89% are cerebellum 

are considered repressed enhancers. The percent of the genome that had primarily CTCF 

signal was 2.92% in liver, 3.19% in spleen, and 2.94% in cerebellum. Cumulatively, states 

considered as enriched with histone mark and CTCF signal intensity by ChromHMM, which 

includes promoter, enhancer, and CTCF functional elements, comprises approximately 

23.08% of the genome in liver, 20.44% in spleen, and 21.10% in cerebellum. Not 

surprisingly, the largest percent of the genome, 76.91% in liver, 79.56% in spleen, and 

78.90% in cerebellum was categorized as quiescent or low signal.  

 

The locations of assigned promoter chromatin states were compared with TSS generated 

from CAGE data for liver, spleen, and cerebellum. Both the signal distribution and heatmap 

plots display a strong signal before and after the TSS in all three tissues (Supplementary 

Figure 5.7). This signal is similar to the distribution of the H3K4me3 peak signal before and 

after TSS, which is not surprising as the ChromHMM model assigns promoter states based 

on the presence of H3K4me3 signal. It is worth noting that the CAGE data used in this study 

was generated from the reference genome animal, a Rambouillet, which is different from the 

crossbred animals used in this study and may explain some of the signal noise.  
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Similarities and differences of chromatin states between tissues 

Similarities and differences of promoters, enhancers, and methylated regions within and 

between tissues were examined and percentages of overlap are displayed in Figure 8. Active 

promoters were 64.76% similar between liver and spleen, 25.39% between liver and 

cerebellum, and 35.69% between spleen and cerebellum. Liver had 81.09% and 51.10% of 

active enhancers in common with spleen and cerebellum, respectively. Spleen and 

cerebellum had 53.85% similarity of active enhancers. Poised enhancers were shared 51.90% 

between liver and spleen, 52.72% between liver and cerebellum, and 38.27% between spleen 

and cerebellum. The percent of repressed enhancers that overlapped between liver and spleen 

was 56.05%. Liver and cerebellum repressed enhancers overlapped 67.90%, and spleen and 

cerebellum repressed enhancers overlapped 41.66%. Hypermethylated genomic locations 

overlapped 4.42% and hypomethylated regions overlapped 56.05% between liver and spleen. 

Liver and cerebellum displayed more similar hypermethylated and hypomethylated regions, 

75.42% and 72.89% respectively, than spleen and cerebellum, 19.44% and 32.51% 

respectively.  

 

CTCF binding motifs 

The insulator CTCF is often present at the boundaries of topologically associated domains 

(TADs), compartments of chromatin interactions, across the genome (Beagan & Phillips-

Cremins, 2020). The location of significant (P<0.00001) CTCF binding motifs both known 

from previous research and de novo were identified across the genome in liver, spleen, and 

cerebellum (Heinz et al., 2010). Of these, thirteen were present in at least three animals 

(Table 2). Three motifs, MYB3R4, MYB3R1, and Pdx1, were significantly enriched in liver, 

spleen, and cerebellum tissues. Liver and spleen exhibited the most significantly enriched 

CTCF motifs in common (TAGL, Six2, RRTF1, Sox6, SVP, TGA2). One motif, ZBTB19, 

was enriched in spleen and cerebellum. Cerebellum had three enriched motifs (Elk4, Pho2, 

BZR1) not present in liver or spleen.  In addition, de novo motifs were identified in all three 

tissues. The top three most significant de novo motifs per sample in liver, spleen, and 

cerebellum are reported in Table 3, Table 4, and Table 5, respectively. Of the total number of 

de novo motifs, sixteen, thirteen, and twenty-one were identified as unique to liver, spleen, 
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and cerebellum, respectively. Sixteen de novo motifs were identified in both liver and spleen, 

while cerebellum had only three de novo motifs in common with the other tissues.  

 

 

Discussion 

The goal of this study was to characterize regulatory elements in ovine liver, spleen, and 

cerebellum using ChIP-seq and WGBS. The three selected tissues, liver, spleen, and 

cerebellum each represent a different developmental origin and are important to metabolism, 

immune response, and motor control, respectively. We have demonstrated the successful 

application of the micrococcal nuclease ChIP protocol across these tissues and the 

bioinformatic pipeline for the analysis of ChIP-seq in sheep. Furthermore, this study has 

incorporated the value of coupled histone modification and DNA methylation data towards a 

better understanding of regulatory regions in the sheep genome.  

 

Micrococcal nuclease was used to shear the chromatin because it provided a consistent and 

reproducible shearing across samples and tissue types. A limitation of the micrococcal 

nuclease may be increased likelihood of the appearance of duplicated reads due to similarity 

of cut sites in the chromatin; however, several studies have not found substantial bias when 

duplicates were removed (Allan et al., 2012; David et al., 2017; Gutiérrez et al., 2017; 

Chereji et al., 2019). Further, shearing with micrococcal nuclease to approximately 1-2 

nucleosome lengths may contribute to slightly different characteristics, including width, of 

peaks called from these experiments.  

 

Sequence read pileups were examined in IGV near genes known to be active and inactive in 

humans and expected to be conserved across species. This provided a means of examining 

genes with of known promoters and expression patterns as positive and negative controls for 

both ChIP-seq experiments and WGBS and provided insight into potential similarity of 

regulatory elements across species. Several genes known to be active across different 

mammalian species in liver, spleen, and cerebellum showed sequence pileup of active histone 

marks which likely indicated the presence of active regulatory elements. Inversely, genes 

known to be active during meiotic processes and quiescent during adult stages in several 
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mammalian species showed no sequence pileup of histone marks and presence of DNA 

methylation, which likely indicates inactivity of regulatory elements.  

 

Consistency of regulatory element identification by ChIP-seq and DNA methylation for each 

tissue between the four individual animals was evaluated by calculating Spearman and 

Pearson correlations, respectively. Correlations between samples for both ChIP-seq and DNA 

methylation were within the ranges previously reported with sequence data (Peng et al., 

2010; Siska and Kechris, 2017). Further, correlations between ChIP-seq biological replicates 

have been reported as low as 0.3-0.4, with technical replicates reported as high as 0.9 

(Friedman and Alm, 2012; Siska and Kechris, 2017). The results for these sheep tissues 

therefore achieve equivalent or improved results compared with previously reported pipelines 

for regulatory element identification and characterization and demonstrate a tissue-specific 

moderate variation across biological replicates.  Spleen displayed the highest variation 

between biological replicates, with correlations between 0.44 and 0.84 among histone marks, 

although DNA methylation was consistent across replicates including spleen. Given that 

splenic tissue is an acutely responsive immunological tissue, perhaps it is not surprising that 

we observed greater variation in the biological replicates.  

 

The CG methylation signal for all four samples clustered distinctly by tissue in a principle 

component analysis, indicating the clear differences in DNA methylation between tissues 

(Figure 3). This finding is supported by others that have shown the greatest differences in 

methylation occur between tissue types rather than between individuals (Pai, 2011; Zhang, 

2013) and consistent with the requirement for a particular set of genes to be active and 

therefore de-methylated depending on tissue function. Cerebellum samples demonstrated a 

higher level of both CG and non-CG methylation compared to liver and spleen. Brain tissues 

are known to differ from other tissues in methylation patterns in other species, and further 

cerebellum has been shown to be different than other brain tissues (Gibbs et al., 2010; 

Cantrell et al., 2019) 

 

The enrichment of individual histone marks was examined by identifying peaks in each 

sample. The number of peaks identified in these sheep liver, spleen, and cerebellum samples 
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were consistent with other studies in sheep adipose, cattle liver, cattle muscle, cattle rumen 

epithelium, human liver, and mouse liver (Supplementary Table 3) (Naval-Sanchez et al., 

2018; Villar et al., 2015; Zhao et al., 2015; Fang et al., 2019). Many chromosomes had 

differences in peak numbers normalized by chromosome length between tissues, indicating 

potential tissue specificity of some peaks. Narrow marks H3K3me3, H3K27ac, and CTCF 

had a shorter average width than broad marks H3K4me1 and H3K27me3, which may be 

influenced by the program and statistical model used to call peaks as well as the shearing 

method (Zhang et al., 2088; Zang et al., 2009). Because micrococcal nuclease as used for 

shearing, the length of the narrow peaks more closely resembles the size of a single 

nucleosome.  

 

H3K4me3 peaks were enriched annotated TSS inn all three tissues. The peaks and heatmap 

signature signals are similar to several other ChIP-seq experiments in human PBMCs and 

CD14+ cells, as well as mouse liver (Schones et al., 2008; Quinodoz et al., 2014; Uchiyama 

et al., 2018). Peaks from all histone modifications and CTCF were also annotated with 

regions defined in the Oar_rambouillet_v1.0 genome. In liver, spleen, and cerebellum, the 

most TSS were identified near (within 2 kilobases of distance on either side) to H3K4me3 

peaks, which is not surprising. Many H3K27ac and H3K4me1 peaks, which indicate the 

presence active or poised enhancers, were located in intronic regions. Repressed enhancers 

marked by H3K27me3 were located mostly in intergenic regions, along with CTCF, which 

may be indicative of insulated TAD boundaries not in close proximity of genes. Further work 

with additional animals in combination with RNA expression and TSS analyses are needed to 

examine regulatory element activity outside of previously annotated regions of the sheep 

genome. 

 

The genomic segments identified by histone mark peaks were evaluated for overlap between 

marks and CTCF binding. This broader view of the regulatory landscape lends a better 

understanding of gene regulation at each location than individual marks (Park 2018). Active 

promoters have been shown to exhibit greater enrichment of H3K4me3 than other histone 

marks in addition to the often present H3K27ac (Wang et al., 2008; Creyghton et al., 2010; 

Carelli et al., 2018). However, if lysine 4 is monomethylated (H3K4me1), this indicates the 
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presence of a poised enhancer, in which enrichment of lysine 27 can be acetylated or 

trimethylated depending on the state and activity of the enhancer (Heintzman et al., 2007; 

Wang et al., 2008; Creyghton et al., 2010; Carelli et al., 2018). Low H3K4me3 coincident 

with high H3K27ac signal has been reported to be common at enhancers near genes 

undergoing highly active transcription (Core et al., 2011; Carelli et al., 2018). Repressed 

enhancers are generally characterized by H3K27me3 signal (Carelli et al., 2018). However, 

H3K27me3 has also been shown to be enriched near the promoter or gene body in genes 

being expressed at a relatively low rate (Young et al., 2011; Flensburg et al., 2014). The 

chromatin states characterized in this study are similar to what others have previously 

described in cattle (Fang et al., 2019). Further, the weak poised enhancer category detected in 

spleen and weak repressed enhancer category detected in cerebellum demonstrate that 

different tissues may have varying chromatin states, which supports the importance of 

characterizing chromatin states across tissues within a species. 

 

Hypermethylated and hypomethylated regions of the sheep genome were defined across 

liver, spleen, and cerebellum tissues. The number of hypermethylated and hypomethylated 

regions per Mb in each of the nine chromatin states were quantified. The data presented in 

this study demonstrates an enrichment of hypermethylated regions in chromatin states with 

prominent H3K4me1 (primarily poised enhancers), and hypomethylated regions in active 

enhancers and promoters enriched with H3K27ac and H3K4me3. These results agree with 

previous research in humans and mice which indicate that active enhancer activity is 

inversely correlated with DNA methylation (Aran and Hellman, 2013; Barwick et al., 2016; 

Bell and Vertino, 2017). Interestingly, the presence of H3K4me1 was found to be positively 

correlated with DNA methylation, specifically intermediate methylation (25-75%), in mice 

(Zhang et al., 2009; Teng and Tan, 2012; Sharifi-Zarchi et al., 2017). Further, enhancers 

enriched with H3K27ac and promoters enriched with H3K4me3 had less DNA methylation 

than other regions (Sharifi-Zarchi et al., 2017).  

 

Approximately 20% of the sheep genome was assigned to a chromatin state category 

including promoters, active, poised, and repressed enhancers, and CTCF in liver, spleen, and 

cerebellum. In cattle, a previous study similarly assigned approximately 30% of the genome 
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to a either chromatin state or areas with open chromatin in rumen epithelium (Fang et al., 

2019). The locations of many regulatory elements were similar between liver and spleen in 

this study; however, a greater difference was observed in active enhancers and promoters 

between cerebellum compared with liver and spleen. Since distinct differences in gene 

expression and regulation have been observed between cerebellum and other tissues in sheep, 

this difference is not surprising (Jiang et al., 2014).  

 

The CCCTC-binding factor (CTCF) along with cohesins were shown to be present at the 

boundaries of TADs in humans and mice (Dixon et al., 2012; Phillips-Cremins et al., 2013; 

Rao et al., 2014; Vietri Rudan et al., 2015; Szabo et al., 2019). Depending on cell type, 75-

95% of TAD boundaries defined by Hi-C chromatin capture have shown CTCF signal in 

mice (Bonev et al., 2017; Szabo et al., 2019). The chromatin states in this study that display 

primarily CTCF could be representative of these domain boundaries, however Hi-C data is 

required to confirm which will be possible for the data produced in the FAANG study of the 

reference ewe, where Hi-C data is also available. In addition to helping define TAD 

boundaries, CTCF has also been identified near enhancers and promoters within TADs in 

humans and mice, which then form smaller loop domains with cohesins and the protein YY1 

(Phillips-Cremins et al., 2013; Weintraub et al., 2017; Szabo et al., 2019). The chromatin 

state analysis may be detecting some of these within-TAD loop interactions, with overlap 

between CTCF and H3K27me3 as well as H3K4me1 signal shown in the chromatin state 

heatmaps in liver and cerebellum. Signal from CTCF, H3K27me3, and H3K4me1 marks 

within one chromatin state was also observed in another study in cattle rumen epithelial 

tissue and Madin-Darby bovine kidney epithelial cells (Fang et al., 2019).  

 

Motif analysis of CTCF resulted in both known and de novo motifs identified in more than 

one tissue.  A large number CTCF binding motifs are similar in sequence across mammalian 

species including cattle (Filippova et al., 1996; Schmidt et al., 2012; 25; Wang et al., 2018). 

Wang and associates identified putative CTCF binding motifs in the bovine genome with 82 

CTCF motif profiles with similar sequence in human, mouse, dog, and macaque (Schmidt et 

al., 2012; Wang et al., 2018). In this study, significant motifs identified in ovine liver, spleen, 
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and cerebellum were also identified in human, mouse, fly (Drosophila melanogaster), and 

yeast (Saccharomyces cerevisiae) within the HOMER motif database (Heinz et al., 2010).  

 

This experiment examines regulatory elements in multiple sheep tissues and individuals with 

ChIP-seq and WGBS methylation assays. These data provide putative categories of 

biological functions for regulatory DNA and will facilitate identification of epigenetic 

variation that control phenotypic traits in sheep. Epigenetic annotation is especially important 

for revealing the biology behind interesting complex traits since genetic variation does not 

always reveal the entire story. Epigenetic variation may play a larger role in traits uniquely 

expressed in a specific tissue or recently evolved rare traits. Identification of causal 

regulatory variants will allow more rapid genetic improvement for health and production 

traits in the meat, milk, and wool industries across sheep populations. Causal variants have 

the highest utility across breeds and allow more efficient assimilation of genetic markers into 

marker-assisted selection and genomic selection algorithms. The protocols and analysis 

pipeline optimized here for validation and the eventual annotation of DNA regulatory 

elements are valuable resources for The Ovine FAANG Project consortium and the 

International Sheep Genomics Consortium.  
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Functional annotation of regulatory elements in sheep is vital for understanding complex 

phenotypic traits related to health as well as food and fiber production in this globally 

important species. Greater than 90% of variation underlying genetic effects on phenotypic 

traits are estimated to lie outside of transcribed regions. Therefore, it is important to define 

regions that regulate gene transcription across the genome to gain a greater understanding of 

the mechanisms that influence economically important traits. This study defines four histone 

modifications H3K4me3 (promoters), H3K27ac (active enhancers), H3K4me1 (poised 

enhancers), and H3K27me3 (repressed enhancers) and CTCF as well as global DNA 

methylation across three tissues that play key roles in health and production traits. This study 

provides novel regulatory element annotation from histone modifications, CTCF, and DNA 

methylation in liver, spleen, and cerebellum tissues in sheep. This will set the precedent for 

the characterization of regulatory elements in ovine tissues. 
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Tables 

 

Table 5.1: Average correlations of sequencing signal between all four animals. Spearman 

correlations were used for ChIP-seq data and Pearson correlations were used for DNA 

methylation data. Parentheses indicate correlations between the replicates used in the 

ChromHMM chromatin state analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tissue H3K4me3 H3K27ac H3K4me1 H3K27me3 DNA Methylation 

Liver 0.66 (0.86) 0.89 (0.95) 0.71 (0.93) 0.58 (0.74) 0.72 (0.76) 

Spleen 0.54 (0.71) 0.78 (0.84) 0.47 (0.56) 0.37 (0.44) 0.70 (0.74) 

Cerebellum 0.85 (0.88) 0.70 (0.91) 0.82 (0.91) 0.72 (0.83) 0.73 (0.76) 
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Table 5.2: Known CTCF motifs present in the top 10 most significant motifs across multiple 

samples. 

 

Known Motif 

Name 
Known Motif Tissue 

Number 

of 

Samples 

Mean    

P-

value 

Mean 

Percent of 

Target 

Sequences 

with Motif 

Mean 

Percent of 

Background 

Sequences 

with Motif 

MYB3R4 

(MYB)  

Liver, 

Spleen, 

Cerebellum 

7 
1E-

2612 
13.54% 1.27% 

TAGL1 

(MADS)  

Liver, 

Spleen 
6 

1E-

2167 
44.33% 18.98% 

MYB3R1 

(MYB)  

Liver, 

Spleen, 

Cerebellum 

6 
1E-

1632 
12.85% 2.42% 

Pdx1 

(Homeobox)  

Liver, 

Spleen, 

Cerebellum 

6 
1E-

1475 
37.21% 17.82% 

Six2 

(Homeobox)  

Liver, 

Spleen 
5 

1E-

1486 
30.93% 13.64% 

RRTF1 

(APTEREBP

) 
 

Liver, 

Spleen 
4 

1E-

1655 
7.16% 0.55% 

Sox6  

(HMG)  

Liver, 

Spleen 
4 

1E-

931 
40.23% 23.32% 

ZBTB19  

(Zf)  

Spleen, 

Cerebellum 
4 

1E-

418 
8.27% 3.07% 

SVP  

(MADS)  

Liver, 

Spleen 
3 

1E-

1897 
28.39% 9.82% 

TGA2  

(bZIP)  

Liver, 

Spleen 
3 

1E-

1792 
16.14% 3.27% 

Elk4  

(ETS)  

Cerebellum 3 
1E-

61 
3.69% 2.07% 

Pho2  

(bHLH) 
 

Cerebellum 3 
1E-

32 
1.72% 0.92% 

BZR1  

(BZR)  

Cerebellum 3 
1E-

29 
0.68% 0.25% 
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Table 5.3: Top three de novo CTCF motifs present in each sample in liver. 

 

Animal De novo Motif P-value 

Percent of 

Target 

Sequences 

with Motif 

Percent of 

Background 

Sequences 

with Motif 

F1 

 

1E-3278 31.57% 3.37% 

 

1E-3012 23.91% 1.74% 

 

1E-2873 23.31% 1.76% 

F2 

 

1E-1388 7.03% 0.62% 

 

1E-1349 6.55% 0.54% 

 

1E-1345 6.11% 0.45% 

M1 

 

1E-8604 21.40% 0.41% 

 

1E-7739 26.14% 1.17% 

 

1E-7299 21.19% 0.63% 

M2 

 

1E-10234 44.68% 4.07% 

 

1E-8614 34.87% 2.59% 

 

1E-8422 42.53% 4.89% 
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Table 5.4: Top three de novo CTCF motifs present in each sample in spleen. 

 

Animal De novo Motif P-value 

Percent of 

Target 

Sequences 

with Motif 

Percent of 

Background 

Sequences 

with Motif 

F2 

 

1E-12441 29.41% 0.72% 

 

1E-12221 38.23% 2.03% 

 

1E-12174 38.03% 2.01% 

M1 

 

1E-7022 24.88% 1.16% 

 

1E-6916 30.15% 2.24% 

 

1E-6704 25.65% 1.42% 

M2 

 

1E-5921 24.42% 0.88% 

 

1E-5710 24.12% 0.93% 

 

1E-5440 20.87% 0.61% 
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Table 5.5: Top three de novo CTCF motifs present in each sample in cerebellum. 

 

Animal De novo Motif P-value 

Percent of 

Target 

Sequences 

with Motif 

Percent of 

Background 

Sequences 

with Motif 

F1 

 

1E-910 2.92% 0.01% 

 

1E-756 2.50% 0.01% 

 

1E-735 2.44% 0.01% 

F2 

 

1E-

1078 
3.49% 0.04% 

 

1E-875 1.85% 0.00% 

 

1E-842 2.01% 0.01% 

M1 

 

1E-946 1.42% 0.00% 

 

1E-800 1.24% 0.01% 

 

1E-697 1.25% 0.01% 

M2 

 

1E-677 1.02% 0.00% 

 

1E-565 0.88% 0.01% 

 

1E-509 0.80% 0.01% 
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Figure 5.1: The percent of the total number of peaks normalized per Mb on each 

chromosome for (A) H3K4me3, (B) H3K27ac, (C) H3K4me1, (D) H3K27me3, and (E) 

CTCF averaged from all four animals (F1, F2, M1, M2). 
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Figure 5.2: Signal of H3K4me3 ChIP-seq peaks 2 kilobases upstream and downstream of 

transcription start sites (TSS) identified by CAGE assays. A) Liver H3K4me3 signal (from 

F1, M1, and M2 consensus peaks) near TSS annotated in the reference genome, B) spleen 

H3K4me3 signal (from F2, M1, and M2 consensus peaks) near annotated TSS, C) 

cerebellum H3K4me3 signal (from F1, M1, and M2 consensus peaks) near annotated TSS.  
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Figure 5.3: Integrative Genomics Viewer (IGV) screenshot of sequence pileup normalized 

with the input control for active and repressive histone marks and DNA methylation in two 

representative samples (M1 and M2) for (A) positive control Albumin (ALB) gene in liver, 

(B) positive control Solute carrier family 11 member 1 (SLC11A1) in spleen, (C) positive 

control Paired box 6 (PAX6) in cerebellum, (D) negative control REC8 gene (REC8) in all 

three tissues. 
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Figure 5.4: Principal component analysis plot based on CG methylation. Four animals are 

labelled as F1, F2, M1 and M2. Cerebellum, liver, and spleen samples are labelled as C, L 

and S, respectively. 
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Figure 5.5: (A) Methylation level at CG compared to non-CG sites in liver, spleen, and cerebellum, and (B) Methylation level at non-

CG sites (CHG and CHH) sites in each tissue enlarged. 
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Figure 5.6: Chromatin state description and ChromHMM heatmap with histone mark signal 

overlap consensus from M1 and M2 compared with the number of hypermethylated regions 

and hypomethylated region consensus per Mb for M1 and M2 for (A) liver, (B) spleen, and 

(C) cerebellum. 
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Figure 5.7: Percent of the genome in liver, spleen, and cerebellum (from M1 and M2) 

assigned to each category of quiescent/low (grey), CTCF (black), repressed enhancer (blue), 

poised enhancer (green), active enhancer (gold), and promoter (red) depicted visually in (A) 

the bar graph, and numerically in (B) the table. 
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Figure 5.8: Percent of overlapping promoter (red), active enhancer (grey), poised enhancer (green), and repressed enhancer (blue) 

chromatin state categories, and hypermethylated (purple) and hypomethylated (orange) regions between liver, spleen, and cerebellum 

tissues the consensus categories from M1 and M2. The total number of chromatin states for each tissue is displayed in black horizontal 

bars 
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Supplementary Material 

 

Supplementary Table 5.1: ChIP-seq quality metrics for each library. In the sample label 

column, L, S, and C represent liver, spleen, and cerebellum, respectively. F and M followed 

by a number represent female and male animal numbers, respectively. NRF represents the 

non-redundant fraction of the library and FRiP represents the fraction of reads in peaks. 

 

Tissue 
Histone 

Mark 
Sample 

Unique 

Mapping % 

Number of Uniquely 

Mapped Reads 
NRF 

Number 

of Peaks 
FRiP 

Liver 

H3K4me3 

L_F1 76.26% 91,892,045 0.43 10,648 0.01 

L_F2 75.41% 51,369,218 0.27 9,062 0.01 

L_M1 74.35% 27,240,631 0.82 10,745 0.01 

L_M2 74.04% 37,575,540 0.83 11,376 0.01 

H3K27ac 

L_F1 83.57% 21,882,178 0.69 25,464 0.02 

L_F2 84.38% 55,814,359 0.04 29,661 0.07 

L_M1 83.66% 59,037,311 0.81 27,123 0.01 

L_M2 82.24% 28,313,543 0.91 39,965 0.02 

H3K4me1 

L_F1 80.26% 31,870,135 0.65 40,632 0.14 

L_F2 84.06% 74,783,676 0.62 30,153 0.15 

L_M1 82.98% 33,532,918 0.90 60,874 0.25 

L_M2 80.56% 54,530,540 0.91 59,655 0.26 

H3K27me3 

L_F1 78.98% 46,772,724 0.31 33,340 0.01 

L_M1 79.98% 42,684,307 0.59 44,710 0.16 

L_M2 76.54% 46,898,657 0.84 33,583 0.08 

CTCF 

L_F1 62.41% 69,727,193 0.01 29,893 0.07 

L_F2 70.58% 40,958,273 0.03 30,762 0.03 

L_M1 78.55% 41,219,481 0.07 16,036 0.14 

L_M2 81.50% 39,388,145 0.19 29,378 0.13 

Spleen 

H3K4me3 

S_F1 73.77% 25,536,400 0.27 16,936 0.01 

S_F2 77.72% 25,364,432 0.78 10,381 0.01 

S_M1 78.84% 34,624,081 0.79 12,640 0.01 

S_M2 77.63% 28,406,550 0.80 13,601 0.01 

H3K27ac 

S_F1 83.45% 38,909,684 0.47 43,423 0.02 

S_F2 82.32% 73,276,800 0.49 37,966 0.07 

S_M1 84.98% 41,271,154 0.84 38,294 0.02 

S_M2 79.74% 53,722,712 0.60 21,626 0.01 

H3K4me1 

S_F1 75.54% 46,268,769 0.04 24,923 0.28 

S_F2 82.21% 91,786,917 0.06 39,769 0.15 

S_M1 77.83% 49,634,682 0.42 22,742 0.09 
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S_M2 77.08% 37,868,373 0.06 30,762 0.25 

H3K27me3 

S_F2 79.22% 56,617,636 0.04 22,051 0.76 

S_M1 79.03% 59,598,255 0.14 36,974 0.12 

S_M2 77.21% 40,734,132 0.06 22,482 0.39 

CTCF 

S_F2 77.92% 73,893,274 0.02 33,599 0.16 

S_M1 76.93% 43,394,622 0.18 29,006 0.03 

S_M2 74.08% 41,908,970 0.06 22,482 0.06 

Cerebellum 

H3K4me3 

C_F1 80.47% 38,211,509 0.86 16,542 0.01 

C_F2 80.14% 57,349,641 0.81 16,116 0.01 

C_M1 78.49% 24,280,387 0.95 21,463 0.01 

C_M2 79.31% 37,236,584 0.89 13,524 0.01 

H3K27ac 

C_F1 75.77% 36,868,004 0.83 19,850 0.01 

C_F2 82.61% 40,111,785 0.71 40,069 0.01 

C_M1 83.27% 32,440,683 0.81 37,388 0.01 

C_M2 83.53% 26,027,091 0.93 30,174 0.01 

H3K4me1 

C_F1 77.99% 31,415,709 0.94 47,600 0.10 

C_F2 82.35% 90,253,571 0.89 58,760 0.26 

C_M1 80.24% 38,566,786 0.92 51,334 0.36 

C_M2 79.97% 57,547,807 0.95 49,369 0.26 

H3K27me3 

C_F1 75.56% 53,713,322 0.84 59,107 0.16 

C_F2 71.92% 54,875,161 0.94 31,614 0.14 

C_M1 74.11% 107,690,841 0.89 29,032 0.07 

C_M2 74.88% 98,190,441 0.98 27,818 0.09 

CTCF 

C_F1 75.56% 53,713,322 0.25 22,405 0.01 

C_F2 75.51% 39,423,803 0.59 20,455 0.01 

C_M1 74.71% 28,256,482 0.74 30,170 0.01 

C_M2 75.00% 34,533,188 0.95 31,945 0.01 
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Supplementary Table 5.2: DNA methylation quality metrics for each library. In the sample 

label column, L, S, and C represent liver, spleen, and cerebellum, respectively. F and M 

followed by a number represent female and male animal numbers, respectively.  

 

Tissue Sample 
Total PE 

Reads 

Validated PE 

Reads 

Uniquely 

mapped PE 

Reads 

Unmapped 

read pairs 

Bases used for 

mapping 

Bases uniquely 

mapped 

mCG 

(%) 

mCHG 

(%) 

mCHH 

(%) 

Mappability 

(%) 

Liver 

L_F1 250802363 250773326 197117104 53656222 74105547825 58284149715 69.36 0.24 0.25 78.60 

L_F2 305118183 305106713 234081202 71025511 90938436967 69802293190 69.75 0.25 0.25 76.72 

L_M1 272377520 272367391 225870709 46496682 81189499413 67357790499 71.40 0.24 0.24 82.93 

L_M2 251382724 251374337 194073342 57300995 74923337158 57872016595 66.72 0.24 0.23 77.20 

Spleen 

S_F1 218460634 218451691 177966878 40484813 65111181250 53071678722 75.68 0.25 0.26 81.47 

S_F2 201358535 201273605 168451070 32822535 58730553503 49198143343 77.69 0.21 0.29 83.69 

S_M1 271369128 271357982 222096734 49261248 80874164415 66226685025 76.44 0.25 0.25 81.85 

S_M2 213583077 213573474 177063138 36510336 63652634020 52796851913 75.80 0.24 0.24 82.91 

Cerebellum 

C_F1 217567096 217558899 183491333 34067566 64855584915 54720375734 79.50 1.60 2.01 84.34 

C_F2 301162248 301152811 254518260 46634551 89774041124 75900622947 81.06 1.60 2.03 84.51 

C_M1 210546324 210540044 178412725 32127319 62755392823 53201279166 80.33 1.88 2.38 84.74 

C_M2 256873526 256864142 214165602 42698540 76567651870 63867562503 80.39 1.54 1.99 83.38 

            

Average 

per tissue 

Liver 1,079,680,790 1,079,621,767 851,142,357 228,479,410 321,156,821,363 253,316,249,999 69.31 0.24 0.24 78.86 

Spleen 904,771,374 904,656,752 745,577,820 159,078,932 268,368,533,188 221,293,359,003 76.40 0.24 0.26 82.48 

Cerebellum 986,149,194 986,115,896 830,587,920 155,527,976 293,952,670,732 247,689,840,350 80.32 1.65 2.10 84.24 
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Supplementary Figure 5.1: (A) Peak model and (B) cross-correlation graph for narrow marks (MACS2). 
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Supplementary Figure 5.2: Histone and CTCF peaks in common between all samples (A, C, and E) and total peak numbers (B, D, 

and F) per sample in (A) and (B) liver samples, (C) and (D) spleen samples, and (E) and (F) cerebellum samples. 

 

F 
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Supplementary Figure 5.3: Liver annotation (Oar_rambouillet_v1.0) for A) H3K4me3, B) 

H3K27ac, C) H3K4me1, D) H3K27me3, E) CTCF, F) hypermethylated regions, and G) 

hypomethylated regions.  
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Supplementary Figure 5.4: Spleen annotation (Oar_rambouillet_v1.0) for A) H3K4me3, B) 

H3K27ac, C) H3K4me1, D) H3K27me3, E) CTCF, F) hypermethylated regions, and G) 

hypomethylated regions.  
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Supplementary Figure 5.5: Cerebellum annotation (Oar_rambouillet_v1.0) for A) 

H3K4me3, B) H3K27ac, C) H3K4me1, D) H3K27me3, E) CTCF, F) hypermethylated 

regions, and G) hypomethylated regions.  
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Supplementary Figure 5.6: The median correlation of each chromatin state model in male 1 (M1) and male 2 (M2) with 2-20 given 

emissions compared with 20 emission states. The optimal number of states was selected as the lowest number of states with above 

0.95 correlation (9 states).  
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Supplementary Figure 5.7: Promoter chromatin state proximity to annotated transcription 

start sites identified with CAGE assays in A) liver, B) spleen, and C) cerebellum. 
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Abstract 

Defining the locations of genetic regulatory elements is critical for understanding the 

regulatory mechanisms of complex phenotypic traits related to production traits and health in 

all species. The Ovine Functional Annotation of Animal Genomes (FAANG) Project aims to 

characterize transcriptional regulatory elements across the sheep genome in a large collection 

of tissues to facilitate a better understanding of the biological mechanisms influencing 

phenotypic traits in sheep. Approximately 100 tissues were collected from the Rambouillet 

ewe, Benz 2616, used to assemble the ovine reference genome ARS-UI_Ramb v2.0. Assays 

including sequencing of messenger RNA (mRNA-seq), microRNA (miRNA-seq), and long 

non-coding RNA (Iso-seq), cap analysis of gene expression (CAGE), chromatin 

immunoprecipitation with sequencing (ChIP-seq), assay for transposase-accessible chromatin 

with sequencing (ATAC-seq), whole genome bisulfite sequencing (WGBS) and reduced 

representation bisulfite sequencing (RRBS) were performed on a subset of these tissues. This 

manuscript details the ChIP-seq (H3K4me3, H3K27ac, H3K4me1, and H3K27me3), ATAC-

seq, DNA methylation, and RNA-seq overlay between tissues. Nine chromatin states 

depicting promoters and enhancers (active, poised, and repressed) across the genome were 

defined using ChromHMM with histone modifications and compared across tissues. These 

chromatin states in combination with ATAC-seq, DNA methylation, and RNA-seq provide 

the basis of functional annotation in the ovine genome. These data suggest that active 

promoter and enhancer states reside in open chromatin regions with a greater number of both 

transcriptional activity and hypomethylated regions than other states. Further, poised and 

repressed enhancers did not primarily reside in open chromatin and had less transcriptional 

activity and more hypermethylated sites compared with active states. Together these data 

support each other to define transcriptional regulatory regions throughout the ovine genome. 

Characterizing regulatory elements in sheep will provide a valuable resource to facilitate a 

deeper understanding of how gene-regulation control influences complex traits in this 

globally important livestock species. 

 

 

Keywords: FAANG, Sheep, ChIP-seq, ATAC-seq, RNA-seq, WGBS, RRBS, gene 

regulation, transcription, regulatory elements, functional annotation 
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Introduction 

Defining the locations of genetic regulatory elements in the genome is extremely 

important for understanding transcriptional regulation and how it relates to phenotypes of 

interest. The encyclopedia of DNA elements (ENCODE) project has performed functional 

annotation in human cells and tissue types (ENCODE Project Consortium, 2012; Andersson 

et al., 2015). This project was closely followed by other model species including mouse 

(Shen et al., 2012; Yue et al., 2014), Caenorhabditis elegans (Gerstein et al., 2010), and 

zebrafish (Sivasubbu et al., 2013). These studies have already revealed numerous differences 

in regulatory elements across species (Gerstein et al., 2010; Barbosa-Morais et al., 2012; 

Sivasubbu et al., 2013; Yue et al., 2014). The functional annotation of animal genomes 

initiative (FAANG), that aims to identify genetic regulatory elements across the genomes of 

in domesticated species, will not only contribute to comparative and evolutionary 

perspectives of the control of transcription but also to enabling studies of the genetic control 

of economically important complex traits (Andersson et al., 2015; Tuggle et al., 2016; 

Giuffra et al., 2019; Clark et al., 2020). Transcribed loci, transcription start site locations, 

chromatin accessibility, histone modifications, methylation, and transcription factor binding 

sites are all important to complete the FAANG initiative in agricultural species. It is critical 

to define these regulatory regions in sheep to better understand phenotypes related to 

important traits such as meat, milk, and wool. 

The FAANG community has begun to characterize the transcriptome across several 

species and a large collection of tissues. A gene expression atlas was created for the sheep 

using RNA-seq data (Clark et al., 2017). This study identified tissue specific expression at 

four developmental stages in Texel and Scottish Blackface sheep (Clark et al., 2017). Gebe 

expression atlases have also been established for other farmed animals including cattle 

(Harbay et al., 2010; Fang et al., 2020), water buffalo (Young et al., 2019), pigs (Summers et 

al., 2020), and chickens (Bush et al., 2018). Several studies have now advanced to the 

identification of regulatory sequences in the genomes of farmed animal species including 

cattle (Fang et al., 2019; Kang et al., 2020; Kern et al., 2021), pig, (Kern et al., 2021), 

chicken (Kern et al., 2021), and sheep (Massa et al., 2021; Davenport et al., 2021). 

Regulatory regions were first characterized in sheep by lifting over annotation from the 

human genome and using this enhanced annotation of the sheep genome to examine selection 
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and domestication (Naval-Sanchez et al., 2018). Other studies have characterized regulatory 

elements with ChIP-seq in alveolar macrophages (Massa et al., 2021), and ChIP-seq and 

WGBS in liver, spleen, and brain tissue (Davenport et al., 2021). Here we report the first 

definition of transcriptional regulatory elements in a large collection of tissues with 

integration of data from the FAANG core assays to define gene regulatory regions in the 

reference sheep genome.  

 

 

Materials & Methods  

Tissue Collection 

 Tissues were collected from a healthy six-year-old Rambouillet ewe (Benz 2616, 

USMARC ID 200935900) as approved by the Utah State University Institutional Animal 

Care and Use Committee on April 29, 2016, at the Utah Veterinary Diagnostic Laboratory. 

This animal was selected by the Ovine Functional Annotation of Animal Genomes project 

and acquired from the USDA. Tissue samples collected postmortem were immediately 

transferred to cryogenic vials, followed by snap freezing in liquid nitrogen and subsequent 

transfer to -80°C freezers for storage. Lungs were subjected to a bronchiolar lavage to collect 

alveolar macrophages as described in Cordier et al., 1990. Further details regarding the tissue 

collection protocol are available through the FAANG Data Coordination Center’s data portal 

(data.faang.org), and metadata information logged according to FAANG guidelines can be 

found under BioSample accession SAMEG329607 (Harrison et al., 2018; Salavati et al., 

2020).  

 

Chromatin Immunoprecipitation with Sequencing 

 Chromatin immunoprecipitation (ChIP) was performed for 47 tissues (Supplementary 

Table 6.1) as described in Davenport et al., 2021. The SimpleChIP Plus Enzymatic 

Chromatin IP Kit (Cell Signaling Technologies, cat. #9005, Danvers, MA, USA) was used 

for immunoprecipitation according to the manufacturer’s instructions (Johnson et al., 2007; 

Barski et al., 2007; Robertson et al., 2007; Mikkelsen et al., 2007). Antibodies specific for 

histone modifications H3K4me3 (Abcam, cat. #ab8580), H3K27ac (Abcam, cat. #ab4729), 

H3K4me1 (Abcam, cat. #ab8895), and H3K27me3 (Abcam, cat. #ab6002) were used for 
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immunoprecipitation. Tissues were crosslinked with 37% formaldehyde, disaggregated with 

Dounce homogenization, and chromatin was sheared with micrococcal nuclease (MNase) by 

incubating on a thermomixer for 20 minutes at 200 rpm and 37°C., Chromatin was incubated 

with 1 µg of antibody overnight (16 hours) at 4°C on a Hula mixer following nuclear 

membrane lysis and isolation of sheared chromatin by centrifugation at 15,000 x g for 1 

minute. An input control (20 µl from each immunoprecipitation) was removed from the 

sheared chromatin for each tissue prior to incubation with antibodies and stored at -20°C 

until purification. Protein-G coated magnetic beads were used to isolate chromatin bound to 

specific antibodies and purification of enriched chromatin was performed with the DNA 

Purification Buffers and Spin Columns Kit following manufacturer’s instructions (Cell 

Signaling Technologies, cat. #14209, Danvers, MA, USA).  

Purified DNA was then quantified using a Qubit dsDNA HS Assay Kit (Thermo 

Fisher Scientific cat. #Q32854, Waltham, MA, USA), and size and integrity of DNA was 

verified with a Fragment Analyzer (Agilent, Santa Clara, CA, USA). Libraries were prepared 

as 75 base pair paired end reads with the TruSeq ChIP Library Preparation Kit (Illumina, 

Inc., cat. #IP-202-1012, San Diego, CA, USA) following manufacturer’s instructions. 

Sequencing libraries for H3K4me3, H3K27ac, and input controls were sequenced to achieve 

at least 20 million uniquely mapped reads, and H3K4me1 and H3K27me3 libraries were 

sequenced to achieve at least 45 million uniquely mapped reads to comply with ENCODE 

standards for ChIP-seq (ENCODE Project Consortium, 2012).  

Quality control of sequence data was performed with FastQC and MultiQC, followed 

by trimming of low-quality bases and adaptors with Trim Galore v0.64.1. Sequences were 

then mapped to the ARS-UI_Ramb_v2.0 sheep genome using Bowtie2 (Langmead & 

Salzburg, 2012). Duplicates were removed with Picard (Broad Institute, 2019). Peaks were 

called for H3K4me3 and H3K27ac with MACS2 using a tissue specific input control and a 

false discovery rate of 0.05 (Zhang et al., 2008; Feng et al., 2012). Peaks for H3K4me1 and 

H3K27me3 were called with SICER with an input control and false discovery rate of 0.05 to 

better account for broad sequence pileup distributions (Zang et al., 2009; Micsiani et al., 

2012; Siska and Kechris, 2017; Davenport et al., 2021). Quality statistics including the 

number of mapped reads, number of uniquely mapped reads, and non-redundant fraction 
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(NRF) were calculated for each sample using Samtools and Picard (Afgan et al., 2018; Heinz 

et al., 2010; Landt et al., 2012; Friedman and Alm, 2012; Siska and Kechris, 2017). 

The average overall mapping percentages were 98.69%, 98.59%, 98.72%, and 

97.79% for H3K4me3, H3K27ac, H3K4me1, and H3K27me3, respectively (Supplementary 

Table 6.2). The unique mapping percentages were 78.95%, 77.86%, 79.90%, and 77.78% for 

H3K4me3, H3K27ac, H3K4me1, and H3K27me3, respectively. All H3K4me3 and H3K27ac 

libraries reached above 20 million uniquely mapped reads, while all H3K4me1 and 

H3K27me3 libraries reached above 45 million uniquely mapped reads (Supplementary Table 

6.3). The overall average duplication rate across sequence libraries was 0.16 (Supplementary 

Table 6.3). 

Peaks were annotated using Homer with the annotatepeaks.pl function and classified 

as near a TSS (+2kb to -2kb), near a TTS site (within 2kb), within an exon, and intergenic. 

Dendrograms were created from ChIP-seq sequence signal from each of the histone 

modifications using a Spearman correlation calculated with deepTools and displayed as a 

cluster dendrogram in the factoextra package of R v3.6.2 (Salavati et al., 2020).  

 

Assay for Transposase-Accessible Chromatin with Sequencing 

 Assay for Transposase Accessible Chromatin (ATAC) was performed for 33 tissues 

(Supplementary Table 6.1) by the University of California San Diego Center for 

Epigenomics. Libraries were sequenced to greater than 45 million reads. Quality control was 

performed with FastQC and MultiQC, and low-quality bases and adapters were trimmed with 

Trim Galore v0.64.1. Sequence reads were mapped to ARS-UI_Ramb_v2.0 with Bowtie2 and 

subsequently, reads that mapped to the mitochondrial genome were removed with Samtools. 

Duplicates were then removed with Picard. Mapped files were indexed for visualization in 

IGV using Samtools. Peaks were called with MACS2 following ENCODE guidelines with -

B -p 0.01 --nomodel --shift -75 --extsize 150 --SPMR flags (Gorkin et al., 2020; ENCODE 

Project Consortium, 2012). Peaks were annotated with the GTF file from the ARS-

UI_Ramb_v2.0 genome using the Homer annotatePeaks.pl function. ATAC-seq peaks were 

classified as near a TSS (+2kb to -2kb), Exonic, near a TTS (+1kb to -1kb), and Intergenic. 

Tissue similarities and differences between peaks were examined with BEDTools intersect. 

The dendrogram was created from raw ATAC-seq sequence signal using a Spearman 
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correlation calculated with deepTools and displayed as a cluster dendrogram in the factoextra 

package of R v3.6.2 (Salavati et al., 2020). 

 The mapping and quality statistics of ATAC-seq is displayed in Supplementary Table 

6.2. The overall average mapping percentage for ATAC-seq data was 95.78%, and the 

unique mapping percentage was 64.95% on average. The average proportion of duplicated 

reads across ATAC-seq sequence libraries was 0.19. 

  

Whole Genome and Reduced Representation Bisulfite Sequencing  

 The DNA was extracted from flash frozen tissue (n=59 tissues, Supplementary Table 

6.1) using phenol:chloroform:isoamyl alcohol following the protocol outlined in Salavati et 

al., 2020. The DNA was quantified with a Qubit dsDNA HS Assay Kit (Qiagen) and libraries 

were prepared by the Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 

Australia.  Bisulfite conversion was performed using the EZ DNA Methylation-Gold Kit 

(Zymo Research, CA, United States) following manufacturer’s instructions, and then 

libraries were indexed with the Accel-NGS Methyl-seq DNA kit (Swift Biosciences, MI, 

United States) following manufacturer’s instructions (Salavati et al., 2020). Libraries were 

sequenced 150bp paired end on an Illumina HiSeq X to achieve a minimum of 10x genome 

coverage for WGBS. Both WGBS and RRBS data were mapped to ARS-UI_Ramb_v2.0. 

Hypermethylated and hypomethylated regions were identified using the same methodology 

described in Salavati et al., 2020. Further details regarding these protocols are available at the 

FAANG Data Coordination Center (Salavati et al., 2020). The data processing, hierarchical 

clustering and dendrogram creation, and analyses were performed as described in Salavati et 

al., 2020 except the reads were mapped to the ARS-UI_Ramb_v2.0 genome.  

 

RNA Sequencing 

 RNA was isolated from snap frozen tissues by cryopulverizing tissue and placing in 2 

mL of Trizol. The tissues were then homogenized in the Trizol and split into 1mL aliquots in 

1.5 mL microcentrifuge. Samples were then centrifuged for 5 minutes at 14,000 x g and 4°C. 

The aqueous (clear) layer for each tissue was transferred to a new tube, avoiding any fat that 

may have risen to the top of the liquid. Exactly 400 µL of chloroform was added to each 

tube, shaken vigorously, and incubated at room temperature for 15 minutes. The samples 
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were centrifuged for 15 minutes and 14,000 x g and 4°C, followed by transfer of the aqueous 

layer into another 1.5 mL microcentrifuge tube. 500 µL of isopropanol was then added to 

each tube and incubated for 10 minutes at room temperature, followed by centrifugation at 

14,000 x g and 4°C for 30 minutes. The supernatant from each tube as discarded, and the 

pellet washed with 75% ethanol. The purified RNA from each tissue was resuspended in 

nuclease free water and quantified with a Nanodrop, as well as quality evaluated with a 

Fragment Analyzer. RNA was then treated with DNase I (1 µL of 2000U/mL per 10µL 

RNA) and cleaned up with the RNeasy MinElute spin column kit (Qiagen).  

 Sequencing libraries were prepared using the Illumina TruSeq Stranded mRNA 

Library Preparation Kit (Illumina, Inc.) according to manufacturer’s instructions. Libraries 

were sequenced on an Illumina NextSeq 500 to achieve at least 65 million reads. Further 

details and metadata for these samples are available in GenBank under BioProject 

PRJEB35292. The quality of RNA-seq libraries for each tissue was examined with FastQC 

and MultiQC, followed by trimming of adapters and low-quality sequence with Trim Galore 

v0.6.4. The RNA-seq data had an overall average percent of reads mapped of 96.06%, and 

87.90% uniquely mapped reads. These libraries on average reached approximately 40 million 

reads each. Transcripts per million (TPM) counts were calculated with Kallisto using the 

ARS-UI_Ramb_v2.0 genome and annotation.  

 

Chromatin State Characterization 

Chromatin states were defined using ChromHMM, which employs a Hidden Markov 

Model to assess histone modification signal enrichment overlap within a tissue (Ernst and 

Kellis 2010; Ernst and Kellis 2012; Ernst and Kellis, 2017; Gorkin et al., 2020). The optimal 

number of chromatin states was determined following Gorkin et al., 2020 by implementing 

ChromHMM with 2 through 16 chromatin states in the LearnModel function, followed by 

calculating the median Pearson correlation with the CompareModels function. The optimal 

number of states was determined at the point where each tissue plateaued and was tightly 

correlated with the model with the greatest number of states (Supplementary Figure 1) 

(Gorkin et al., 2020). The percent of the genome occupied by each chromatin state was 

averaged across tissues. Chromatin state location similarities and differences between tissues 
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was examined with BEDTools intersect and displayed with an UpsetR plot (Quinlan et al., 

2014; Conway et al., 2017).  

 

Assay Integration 

 Overlay of ChIP-seq, ATAC-seq, DNA methylation, and RNA-seq was performed to 

define regulatory regions in the sheep genome. The overlap between ATAC-seq peaks and 

chromatin states for each tissue was determined with BEDTools intersect and averaged 

across tissues. The number of hypermethylated and hypomethylated regions in transcription 

start site and enhancer regions was evaluated with BEDTools intersect and the number of 

regions were quantified and averaged across tissues. The TPM counts from RNA-seq were 

overlayed with chromatin states to determine transcriptional activity across tissues. 

 

 

Results 

 Defining the locations of genetic regulatory elements in the sheep genome was 

achieved by characterizing open chromatin, histone modifications, DNA methylation, and 

RNA expression across a large collection of tissues. These experiments were performed on 

tissues collected from the same animal used to assemble the ARS-UI_Ramb_v2.0 genome and 

were accordingly mapped to this genome to provide a resource for annotation. The 

relationships between the locations of defined regulatory elements as well as regulatory 

regions across tissues were examined to explore gene regulation in sheep.  

 

 

Hierarchical Clustering of Sequence Signal 

 Similarities between tissues were examined for RRBS, ATAC-seq, and ChIP-seq 

experiments with sequence signal from mapped reads using Spearman correlations and 

hierarchical clustering into dendrograms (Figure 6.1). The dendrogram displaying clustering 

of RRBS data (Figure 6.1A, generated by Alex Caulton) displays clear clustering by tissue 

type, including several branches with the ruminant stomach complex, intestinal tissues, 

immune-related tissues, muscle tissues, and nervous tissues clustering together. The ATAC-

seq dendrogram (Figure 6.1B) also displays distinct clustering by tissue type including 
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adrenal, nervous, GI, and muscle tissues. The ATAC-seq dendrogram also suggests similarity 

in open chromatin regions between GI tissues including ileum and Peyer’s patch with 

immune related tissues including spleen and lung, with tonsil and spiral colon in a separate 

branch. The close clustering of GI and immune tissues is also present in the ChIP-seq 

dendrograms for H3K4me3, H3K27ac, H3K4me1, and H3K27me3 (Figure 6.1 C-F, 

respectively).  

Muscle tissue and tissues that have a muscular layer also cluster together, including 

the left ventricle with skeletal muscle in the ATAC-seq dendrogram, abomasum and cecum 

with the biceps femoris in the H3K4me3 dendrogram, the rumen (ventral location) with the 

longissimus dorsi and diaphragm in the H3K27ac dendrogram, the biceps femoris and 

esophagus in the H3K4me1 dendrogram, and the rumen (ventral location) with the biceps 

femoris and rectum in the H3K27me3 dendrogram. This clustering suggests similarity of 

muscle tissue even across smooth, skeletal, and cardiac.  

 

ATAC-seq and ChIP-seq Peak Annotation 

The annotation file from ARS-UI_Ramb_v2.0 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Ovis_aries/104/) retrieved from 

NCBI was used to determine the proximity of ATAC-seq and ChIP-seq peaks to genes and 

gene features including promoters/transcription start sites (TSS), exons, and transcription 

termination sites (TTS) (Figure 6.2). A mean of 28% of ATAC-seq peaks were identified 

within 2 kb from a promoter/TSS, 4% of peaks were in an exon, 9% of peaks were within 

2kb from a TTS, and 59% were not located within 2 kb these features and considered 

intergenic on average across tissues (Figure 6.2A). The number of ATAC-seq peaks in close 

proximity to genes was similar across tissues. The greatest percent of H3K4me3 peaks were 

near promoters/TSS locations (mean of 41%), followed by intergenic areas (mean of 36%), 

TTS (mean of 20%), and within exons (mean of 3%) (Figure 6.2B). The number of 

H3K4me3 peaks near genes varied across tissues with many of the GI tissues having a higher 

percent of peaks in intergenic regions. The greatest percent of H3K27ac peaks were located 

in intergenic regions (mean of 61%), followed by promoter/TSS (mean of 27%), TTS (mean 

of 10%), and exonic (mean of 2%). The greatest percent of H3K4me1 peaks were also 

located in intergenic regions (mean of 72%), followed by promoter/TSS (mean of 19%), TTS 
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(mean of 7%), and exon (mean of 2%). The greatest percent of the H3K27me3 peaks was in 

intergenic regions (mean of 88%), followed by promoter/TSS (mean of 8%), TTS (mean of 

3%), and exons (mean of 1%). The percent of peaks in close proximity to genes was 

consistent across tissues for H3K4me1 and H3K27me3.  

 

 

Chromatin State Characterization 

 Chromatin states were defined with a Hidden Markov Model in ChromHMM to 

characterize overlap between histone modifications which indicate the presence of promoter, 

enhancer, and repressor states throughout the genome (Figure 6.3). The optimal number of 

states was determined to be 9 based on the median correlation of each model of 2 through 16 

states to the largest number of states (Roadmap Epigenomics Consortium et al., 2015; Gorkin 

et al., 2020). The 9 states define specific regulatory element locations throughout the genome 

with minimal redundancy.  

The regulatory elements represented in each chromatin state were defined previously 

by the Roadmap Epigenomics Consortium based on the presence of sequence signal from 

each histone modification (Roadmap Epigenomics Consortium et al., 2015). The active TSS 

states were defined by H3K4me3 in combination with the presence of signal from H3K27ac, 

H3K4me1, and H3K27me3 histone modifications, active enhancer states were defined with 

primarily H3K27ac signal, poised enhancer states were defined with primarily H3K4me1 

signal, and repressed enhancer states were defined with H3K27me3 signal (Roadmap 

Epigenomics Consortium et al., 2015; Gorkin et al., 2020). States with very low or absent 

signal were considered quiescent (Roadmap Epigenomics Consortium et al., 2015; Gorkin et 

al., 2020). The chromatin states defined as active, poised, and repressed in this study 

represent approximately 13% of the genome (Figure 6.3C). Almost 1% of the genome was 

occupied by active TSS and flanking active TSS, while only approximately 0.25% of the 

genome was occupied by bivalent flanking TSS. Active enhancers occupied approximately 

1.75% of the genome, poised enhancers occupied approximately 2.5% of the genome, and 

repressed enhancers occupied approximately 2.25% of the genome. The weak repressor state 

had the greatest genome occupancy of the regulatory states (just over 3% of the genome).  
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Chromatin State Overlap with Open Chromatin 

 The overlap of open chromatin regions defined by ATAC-seq peaks and chromatin 

states was performed by examining common peak locations and calculating the percent of 

each chromatin state that resides in an ATAC-seq peak across tissues (Figure 6.4). This 

analysis provided further insight into the activity and characteristics of each chromatin state. 

The ATAC-seq data resulted in an average of 176,864 peaks across tissues with an average 

width of 536 bp. The greatest number of ATAC-seq peaks (n=239,409) was identified in 

Peyer’s patch tissue, while the lowest number of peaks (n=105,845) was identified in biceps 

femoris tissue. The widest peak (705 bp) was identified in heart left ventricle tissue, while 

the narrowest peak (364 bp) was identified in mesenteric lymph node tissue. 

The chromatin states exhibiting the highest percent overlap with ATAC-seq include 

TssA (mean of 86.24% across tissues) and TssAFlnk (mean of 77.86% across tissues), which 

denotes active transcription start sites, as well as EnhA (mean of 69.17% across tissues) 

which denotes active enhancer states. Cerebellum tissue had the greatest overlap of TssA 

states with open chromatin (99.66%), whereas reticulum tissue had the least overlap 

(71.17%). A greater percent of the TssAFlnk chromatin state from gallbladder tissue resided 

in open chromatin regions (89.25%), while jejunum had the least percent of TssAFlnk states 

in open chromatin (44.08%). The EnhA state had the greatest percent of that state in open 

chromatin in biceps femoris muscle tissue (92.17%), while the lowest was in cerebellum 

tissue (40.51%). The BivFlnk state, which represents a transcription start site that exists in a 

bivalent state and includes the presence of the repressor mark H3K27me3 along with the 

active promoter mark of H3K4me3, has less overlap (mean of 60.37% across tissues) with 

ATAC-seq than other TSS-related states. The tissue with the least BivFlnk chromatin state 

overlay with open chromatin was kidney medulla (38.93%), while the greatest overlap was 

diaphragm tissue (81.03%).  

Poised enhancers also have fewer states that overlap with ATAC-seq (mean of 

40.98% across tissues). The greatest percent of EnhP chromatin states that overlapped with 

open chromatin were from ileum tissue (67.24%) while the lowest percent of EnhP chromatin 

state overlap were from spleen tissue (16.39%). Repressed polycomb states had the least 

overlap with ATAC-seq (mean of 17.54% across tissues for ReprPC and mean of 19.26% 

across tissues for ReprPCWk). The lowest percent of ReprPC chromatin state overlap with 
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open chromatin was in biceps femoris muscle tissue (0.69%), while the greatest overlap was 

with duodenum tissue (36.56%). The ReprPCWk chromatin state had the greatest overlap 

with open chromatin in adrenal medulla tissue (37.87%) and the least overlap in longissimus 

dorsi muscle tissue (12.93%). An average of 71.96% of the quiescent (Quies) states 

overlapped with ATAC-seq peaks. The greatest overlap of the Quies state with open 

chromatin was in lung tissue (87.57%) and the lowest overlap was in cerebral cortex tissue 

(48.68%). The active chromatin states that displayed histone modifications H3K4me3 and 

H3K27ac signal resided in open chromatin, while repressed chromatin states that displayed 

H3K27me3 signal did not reside in open chromatin regions.  

 

Chromatin State and ATAC-seq Overlap with Hypermethylated and Hypomethylated Regions 

 The number of hypermethylated and hypomethylated sites identified in the genome 

from the RRBS data was similar across tissues. Hypermethylated sites ranged from 18,744 

sites in jejunum tissue to 27,327 sites in kidney medulla and averaged 21,565 sites across 

tissues. Hypomethylated sites averaged 20,451 across tissues and ranged from 18,679 sites in 

omasum tissue to 22,705 sites in ovary tissue.  

Chromatin state locations were compared with hypermethylated (Figure 6.5A) and 

hypomethylated (Figure 6.5B) sites throughout the genome (Figure 6.5). The chromatin 

states with the greatest number of hypermethylated regions include the repressed polycomb 

states (ReprPC, 545 sites and ReprPCWk, 860 sites) as well as the poised enhancer state 

(EnhP, 634 sites, Figure 6.5A). Fewer hypermethylated regions (240 sites) resided in active 

enhancer states (EnhA) when compared with other enhancer states, and the least number of 

hypermethylated regions were identified in the active promoter/TSS states (TssA, 132 sites 

and TssAFlnk, 116 sites) (Figure 6.5A). The bivalent/flanking transcription start site state 

(BivFlnk) displayed 448 hypermethylated sites, which was greater than other promoter states. 

The greatest number of hypomethylated sites was observed in active TSSs (TssA, 6,239 

sites), followed by active enhancer states (EnhA, 4,367 sites) and flanking active TSSs 

(TssAFlnk, 4,164 sites). The bivalent flanking TSS state exhibited the fewest number of 

hypomethylated regions that resided in that state (663 sites). The poised enhancer (EnhP) 

state as well as the repressed enhancer states (ReprPC and ReprPCWk) displayed fewer 
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hypomethylated sites (2,017, 1,178, and 2,133 sites, respectively) when compared with other 

chromatin states.  

 The number of hypermethylated and hypomethylated sites that resided within open 

chromatin were also quantified across tissues (Figure 6.5C). The number of hypomethylated 

sites that resided in ATAC-seq peaks was greater than the number of hypermethylated sites 

that overlapped by almost four-fold. The average number of overlapping hypermethylated 

sites was 5,297, which was approximately 24.74% of the total number of hypermethylated 

sites identified in the genome across tissues. The number of hypomethylated sites averaged 

16,461 which was approximately 80.60% of the total number of hypomethylated sites 

identified across tissues. Some tissues had a greater number of both hypermethylated and 

hypomethylated sites that resided in ATAC-seq peaks, such as the rectum (16,729 

hypermethylated and 12,088 hypomethylated sites). Ovary had very few hypermethylated 

sites (18 hypermethylated sites) that resided in open chromatin compared to hypomethylated 

sites (19,500 hypomethylated sites) in open chromatin. This information suggested that some 

tissue specificity was observed, and highly methylated regions existed outside of open 

chromatin, and lowly methylated regions resided within open chromatin regions.  

 

Chromatin State and ATAC-seq Overlap with Transcript Expression 

 The expression of RNA transcripts that occurred in each promoter and enhancer state 

as well as within ATAC-seq peaks was determined by quantifying TPM in each tissue 

(Figure 6.6). The active promoter states (TssA and TssAFlnk) had the most TPM counts 

within these states across tissues with averages of 472,377 and 366,054, respectively (Figure 

6.6A). Bladder and oviduct tissues had the greatest numbers of TPM (665,421 and 634,382 

TPM) in TssA and TssAFlnk states, respectively. The lowest numbers of TPM in TssA and 

TssAFlnk were 230,479 and 136,790 TPM in cerebellum and tongue tissues, respectively.  

The active enhancer state (EnhA) had the next largest TPM counts within this state with an 

average of 300,932, followed by the poised enhancer state (EnhP) with an average of 

170,884 TPM (Figure 6.6A). The EnhA state had the greatest TPM overlay of 452,994 in 

lung tissue, and the least TPM overlay of 131,507 in jejunum tissue. The greatest number of 

TPM in the EnhP state (348,113) was in skin tissue, while the lowest number of TPM 

(17,925) was in descending colon tissue. The repressed enhancer states (ReprPC and 
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ReprPCWk) had the lowest TPM counts and were over ten-fold less than active promoter 

states with averages of 20,092 and 30,229 TPM, respectively (Figure 6.6A). The greatest 

number of TPM in ReprPC and ReprPCWk chromatin states was 54,710 TPM in descending 

colon and 110,532 TPM in rumen atrium, respectively, while the lowest TPM in these states 

was 554 TPM in omasum and 682 TPM in semimembranosus muscle, respectively.  

The open chromatin regions designated by ATAC-seq peaks had greater transcript 

expression across tissues than regions with no ATAC-seq peaks (Figure 6.6B). Regions with 

ATAC-seq peaks displayed 683,771 TPM on average across tissues, while regions without 

ATAC-seq peaks displayed 49,271 TPM tissue average. The percent of the total number of 

TPM that resided in open chromatin regions was 92.92% on average across tissues, whereas 

a tissue average of 7.08% of the total TPM resided in regions outside of ATAC-seq peaks. 

The greatest TPM overlay within ATAC-seq peaks was 848,414 TPM in spleen tissue, and 

the lowest TPM overlay was 320,053 TPM in gallbladder tissue. The regions without ATAC-

seq peaks displayed the least overlay of 19,804 TPM in heart left ventricle tissue and the 

greatest overlay of 100,556 TPM in ileum tissue.  Regions defined as active promoter and 

enhancer states, as well as open chromatin, had greater overall transcript expression than 

regions defined as repressed and devoid of ATAC-seq peaks.  

 

Tissue Comparisons of Chromatin States  

 The chromatin states were then compared across tissues to examine potential 

similarities and differences in the location of these regulatory regions (Figure 6.7). Active 

promoter states (Tss and TssA) demonstrated the greatest similarity between muscular tissues 

such as the diaphragm, biceps femoris, and GI tract with muscular layers such as the spiral 

colon (Figure 6.7A). Brain tissues cerebellum and cerebral cortex showed similar active 

promoter states as well. Tissues that had the least number of active promoter states in 

common were cerebral cortex and diaphragm. The active enhancer states (EnhA) displayed 

the greatest similarity between abomasum and abomasum pylorus, ileum and Peyer’s patch, 

and longissimus dorsi and semimembranosus (Figure 6.7B). The tissues that displayed the 

least similarity of active enhancer states with other tissues were skin and ovary.  

 Poised enhancer states showed the greatest similarity between tissues with muscular 

layers (omasum and longissimus dorsi), skeletal muscle (longissimus dorsi, 
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semimembranosus, and biceps femoris), and GI tissues (ileum, Peyer’s patch, and jejunum) 

(Figure 6.7C). Brain tissues also showed great similarity of poised enhancer states. The 

tissues that had the least number of poised enhancer states in common were alveolar 

macrophages, ovary, and bladder. Repressed enhancers showed a similar pattern to poised 

enhancers regarding chromatin state similarity (Figure 6.7D). Abomasum pylorus and 

abomasum, all three skeletal muscles, ileum and Peyer’s patch, and brain tissues showed the 

greatest similarity in repressed enhancer states. The tissues with the least repressed enhancer 

states in common with other tissues were vagina, parathyroid, and uterus.   

 A pattern observed most prominently in the promoter and active enhancer chromatin 

state tissue comparison was the overlap between GI, brain, and immune tissues (Figure 6.8). 

The ileum and Peyer’s patch tissues showed 84% and 88% similarity of promoter and active 

enhancer states to each other, respectively. These two tissues also demonstrated over 60% 

similarity to spleen, mesenteric lymph node, and tonsil in promoters and active enhancers. 

The jejunum and descending colon also showed similarity to immune-related tissues in 

promoter and active enhancer states, along with spiral colon in active enhancer states. The 

cerebral cortex and cerebellum tissues showed great similarity to each other (95% in 

promoters and 81% in active enhancers). Cerebral cortex has 67% and 63% of active 

enhancers in common with descending colon and lymph node mesenteric, respectively. The 

relationship between the gut, brain, and immune system was further examined by 

visualization of sequence signal tracks in the Integrative Genomics Viewer (IGV). The genes 

encoding IL-10 and one of its receptors were chosen as an example because these genes are 

involved in gut/brain/immune signaling. An example of IL-10 and IL-10RA signal tracks is 

displayed in Figure 6.9. Promoter H3K4me3 signal was apparent for ileum and lymph node, 

as well as ATAC-seq signal in lymph node (Figure 6.9A). The IL-10 receptor alpha was 

expressed in cerebellum as shown with RNA-seq tracks and H3K4me3 signal directly 

upstream of the 5’ end and within this gene (6.9B). 
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Discussion 

 This study identified key regulatory elements in the sheep genome, specifically 

promoters and enhancers across almost 50 tissues that represent all three developmental 

tissue types. The identification of enhancers is more challenging and requires additional data 

as described here although promoters might be readily identified as sequences within 2 kb of 

transcription start sites identified by RNA-seq data alone. We have been able to identify 

regulatory sequences that are active across many tissues, active in some tissues and not 

others, and those in a poised state.  

The data were processed through quality control metrics, which met standards 

previously set by the ENCODE consortium (ENCODE Project Consortium et al., 2012). The 

peaks called for ATAC-seq open chromatin regions and histone modifications H3K4me3, 

H3K27ac, H3K4me1, and H3K27me3 were compared with gene locations as annotated by 

NCBI on the ARS-UI_Ramb_v2.0 genome assembly. The ATAC-seq peaks resided in mostly 

intergenic locations, and the percent of total peaks near (+/- 2kb) promoter/TSS, within 

exons, and near (+/- 2kb) TTS was similar across tissue. Histone modification H3K4me3 

annotations had a greater percent of peaks near promoter/TSS and TTS regions, however this 

value was not consistent across tissues. Fewer peaks are called for H3K4me3 (approximately 

15,000) compared with ATAC-seq (over 100,000) and H3K4me3 is more closely related to 

tissue specific gene expression (Tian et al., 2011; Zhang & Zhang, 2011; Benayoun et al., 

2015; Ishibashi et al., 2021), this may contribute to the differences in annotation. The 

differences between tissues may be indicative of tissue specific expression and regulation, in 

which some tissues may have a greater number of active regulatory elements near genes than 

others. The H3K27ac histone modification also displayed variation across tissues in the 

percent of peaks in proximity to or within genic elements (TSS, TTS, and exons). Fewer 

H3K4me1 and H3K27me3 peaks were identified near TSS and TTS and within genes 

compared to H3K4me3 and H3K27ac, however the percent of peaks in proximity to or that 

directly overlay these elements were more consistent across tissues. This suggested that 

histone modifications that mark the presence of active regulatory elements may have been 

more related to tissue specific gene activation and expression than poised or repressed 

regulatory elements.  
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The number of chromatin states assessed using H3K4me3, H3K27ac, H3K4me1, and 

H3K27me3 revealed 9 states which were consistent with the states reported in previous 

studies in sheep (Davenport et al., 2021), cattle (Fang et al., 2019; Kern et al., 2021), and 

humans (Gorkin et al., 2020). The active chromatin states, including TssA, TssAFlnk, and 

EnhA, resided in open chromatin regions which indicated that these regions were available 

for transcription. Hypomethylated regions were also found in active promoter and enhancer 

states, whereas hypermethylated regions resided in poised and repressed enhancer states. 

This study found that most of the hypomethylated sites resided in open chromatin regions as 

defined by ATAC-seq peaks. These active, poised, and repressed regulatory locations across 

different data types agreed with previous research in humans, mice, and other mammals 

(Aran and Hellman, 2013; Barwick et al., 2016; Bell and Vertino, 2017; Sharifi-Zarchi et al., 

2017; Davenport et al., 2021).  

The hypermethylated sites were more frequently located in the repressor polycomb 

and poised enhancer states, which agreed with previous studies in humans, mice, and sheep 

(Zhang et al., 2009; Teng and Tan, 2012; Sharifi-Zarchi et al., 2017; Davenport et al., 2021). 

DNA methylation has been found to be inversely correlated with active enhancer activity 

(Aran and Hellman, 2013; Barwock et al., 2016; Bell and Vertino, 2017). The H3K4me1 

histone modification which is indicative of poised enhancer regions has been found to be 

positively correlated with DNA methylation in mice (Zhang et al., 2009; Teng and Tan, 

2012; Sharifi-Zarchi et al., 2017). DNA methylation in poised enhancer regions is 

hypothesized to play a role in enhancer switching between active and repressed states (Teng 

and Tan, 2012; Sharifi-Zarchi et al., 2017).  

This study identified a greater number of hypermethylated sites in open chromatin 

regions in the rectum when compared with other tissues. Mis-regulation of DNA methylation 

in the rectum and colon have been linked to colorectal cancers in humans, specifically 

increased methylation in tumors compared with non-cancerous rectal tissues (Molinari et al., 

2013; Kaz et al., 2014; Exner et al., 2015). The ovary conversely had very few 

hypermethylated sites identified in open chromatin regions. Previous studies in mice and pigs 

have found that global DNA methylation decreased in ovarian tissue with advancing 

maternal age which is also associated with decreased fertility (Xi et al., 2019; Uysal & 

Ozturk, 2020). There may have been less methylation in the ovary because of the age of the 



239 

 

 

ewe, especially in locations that overlapped with open chromatin. Previous studies in 

humans, mice, and cattle have also shown a difference in methylation across tissues and 

during the aging process (Bjornsson et al., 2008; Zhang et al., 2013; Bell et al., 2019; Zhou et 

al., 2020). These tissue specific differences have likely influenced the variation in 

hypermethylated sites in open chromatin observed in this study. 

Greater gene transcription was identified in active and open chromatin states across 

tissues. The highest TPM counts were found in active chromatin states and open chromatin, 

which indicated that the histone modifications and open chromatin regions were indicative of 

transcript expression in tissues. The repressor regions and regions without ATAC-seq peaks 

had very few TPM counts, which indicated that transcript expression is indeed repressed in 

these regions. The bivalent flanking promoter state (BivFlnk) also had very little transcript 

expression. This lack of transcript expression in bivalent promoters was also seen in studies 

with tissues and cell lines from mice and humans (Stergachis et al., 2014; Kinkley et al., 

2016; Yan et al., 2016; Mas et al., 2018; van der Velde et al., 2021). Promoter bivalency was 

hypothesized to be important during both development and adult stages in mammals as some 

genes were only actively transcribed during specific developmental states and in response to 

environmental signaling transcription of some genes were activated or repressed based on 

developmental and environmental signaling (Stergachis et al., 2014; Kinkley et al., 2016; 

Yan et al., 2016; Mas et al., 2018; van der Velde et al., 2021). 

Data from complimentary assays and across tissues in this study provided a 

comprehensive collection of regulatory element locations across tissues to inform the 

functional annotation of the reference Rambouillet sheep genome. The overall mapped reads 

and uniquely mapped reads percentage were both improved in this study which used the 

ARS-UI_Ramb_v2.0 genome (Massa et al., 2021; Davenport et al., 2021). The clustering of 

sequence signal displayed resemblance between tissues with similar functions and 

developmental lineages, such as the gastrointestinal tract. This hierarchical clustering of 

histone modification and open chromatin signal also implied a close relationship between the 

GI and immune tissues, especially the ileum and Peyer’s patch with lung, spleen, and 

mesenteric lymph node.  

Shared regulatory elements in the GI and immune tissues are also implied in 

chromatin state similarities and differences across tissues. These relationships are especially 
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apparent in the promoter and active enhancer states. Chromatin states in the brain also had 

shared regulatory elements with GI and immune tissues in the active enhancer state. The 

similarity of active regulatory elements across GI, brain, and immune related tissues alludes 

to the important physiological feedback mechanism of the gut/brain/immune axis (Rutsch et 

al., 2020; Gwak & Chang, 2021). The gut and the brain communicate in multiple ways 

including the autonomic and enteric nervous system, endocrine system, hypothalamic-

pituitary-adrenal axis, microbiota metabolites, and the immune system (Rutsch et al., 2020). 

Much of the communication between the gut, brain, and immune system has not been well 

understood. Feedback between the central nervous system and the gut has been shown in 

previous studies with microbial metabolites and immune cells and their products that have 

passed the blood brain barrier in both normal and disease states (Kipnis et al., 2012; Ellwardt 

et al., 2016; Engelhardt et al., 2016; Kipnis, 2016; Inserra et al., 2018 Negi & Das, 2018; 

Rutsch et al., 2020).  

Communication between the gut, brain, and immune systems has been required for 

homeostasis and signaling of a disease state in the body, in which pro-inflammatory and anti-

inflammatory cytokines have played a major role (Iyer & Cheng, 2012; Rutsch et al., 2020; 

Wei et al., 2020; Jacobson et al., 2021). An example of an anti-inflammatory cytokine 

involved with gut mucosal homeostasis and maintenance of neuronal cells including 

microglia is interleukin 10 (IL-10). The IL-10 gene is known to be involved with innate and 

adaptive immune response and signaling in the GI tract (Franke et al., 2008; Jostins et al., 

2012; Shouval et al., 2014). This gene has been studied in relation to inflammatory bowel 

disease (IBD), in which genetic variation in both IL-10 and IL-10 receptor alpha was 

associated with IBD risk in humans (Franke et al., 2008; Glocker et al., 2009; Jostins et al., 

2012; Kotlarz et al., 2012; Moran et al., 2013). Tissue of the GI tract has been shown to 

express IL-10 in addition to immune cells such as macrophages (Autschbach et al., 1998; 

Rutsch et al., 2020; Wei et al., 2020; Jacobson et al., 2021). The gene IL-10 and its receptor 

were also expressed in neurons such as microglia in the brain as part of maintenance of 

homeostasis in the central nervous system (Lobo-Silva et al., 2016; Burmeister & Marriott, 

2018; Kathrin Uhde et al., 2018). The Th2 immune response involved IL-10 and was 

previously shown to be involved with parasite resistance in humans and sheep (Schopf et al., 

2002; Gautam et al., 2011; Shouval et al., 2014; Becker et al., 2020). Parasite resistance has 
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been a trait selected for in sheep by producers across the world. The IL-10 gene and its 

receptor were therefore chosen as an example to demonstrate expression and regulatory 

element presence in a gene known to be involved with the communication between the gut, 

brain, and immune system.  

 Defining genetic regulatory element locations in the sheep genome across a large 

collection of tissues provided an important resource for the scientific community. This study 

provided an important first step in providing the annotation of regulatory elements in ovine 

tissues. Sheep have been an important species raised for food, fiber, and milk across the 

world, and defining these regulatory elements will better equip researchers to understand 

biological mechanisms that influence economically important traits such as growth, wool 

quality, milk production, and disease resistance. 
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Figure 6.1: Cluster dendrograms of raw sequence signal displaying tissue relationships in A) DNA methylation, B) ATAC-seq, C) 

ChIP-seq of H3K4me3, D) ChIP-seq of H3K27ac, E) ChIP-seq of H3K4me1, and F) ChIP-seq of H3K27me3 data. 
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Figure 6.2: Annotation of peaks as percent of peaks overlapping with each feature from A) ATAC-seq and ChIP-seq B)H3K4me3, C) 

H3K27ac, D) H3K4me1, and E) H3K27me3 using the NCBI annotation release for the ARS-UI_Ramb_v2.0 genome.  
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Figure 6.3: Chromatin states across tissues incorporating signal from all four histone 

modifications (H3K4me3, H3K27ac, H3K4me1, and H3K27me3). A) Heatmap of histone 

modification sequence signal in all nine chromatin states. B) Short name and description of 

each chromatin state based on the characteristic ChIP-seq signal (adapted from Roadmap 

Epigenomics Consortium and Gorkin et al., 2020). C) Genome occupancy of each chromatin 

state displayed as a percent of the genome.  
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Figure 6.4: Chromatin state overlap with open chromatin regions. A) Chromatin state 

heatmap with states 1-9 defined by ChromHMM. B) Chromatin state name abbreviation. C) 

Percent of each chromatin state that overlaps with open chromatin as defined by ATAC-seq 

peaks as a boxplot with defined mean (solid line) and median (x) of the 33 tissues with 

ATAC-seq information.  
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Figure 6.5: Comparison of hypermethylated and hypomethylated sites with chromatin states 

and open chromatin regions. A) The average number of hypermethylated and B) 

hypomethylated regions across tissues that overlap with chromatin states containing 

regulatory elements. C) The number of hypermethylated and hypomethylated regions that 

overlap with open chromatin denoted by ATAC-seq peaks across tissues. 
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Figure 6.6: Transcript per million (TPM) counts in A) different chromatin states and B) in open chromatin regions denoted by ATAC-

seq peaks (ATAC) and regions without ATAC-seq peaks (No ATAC).  
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Figure 6.7: Comparison of A) promoter, B) active enhancer, C) poised enhancer, and D) repressed enhancer chromatin states across 

tissues. The tissues are listed and each pairwise overlap is represented by a dot and line. The percent of chromatin states in common is 

represented by the bar chart value. 
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 Figure 6.8: Comparison of A) promoter and B) active enhancer chromatin states in a subset of brain tissues, GI tissues, and tissues 

with immune related function. The bars indicate the percent similarity between tissues and the dots with lines indicate which tissues 

are being compared. Tissue comparisons are sorted to display the tissues with the most in common to the least in common for each 

chromatin state. 
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Figure 6.9: Screenshots from the Integrative Genomics Viewer (IGV) in the A) IL-10 gene 

for H3K4me3 signal in ileum and lymph node mesenteric tissues, and ATAC-seq signal in 

lymph node tissue, and B) the IL-10 receptor alpha in cerebellum tissue H3K4me3 signal and 

RNA-seq signal. This cytokine is known to be involved with signaling between the GI, 

immune system, and brain. 
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Supplementary Material 

 

Supplementary Table 6.1: List of tissues used in each assay. 

Assay Tissues Total number of tissues 

Chromatin 

immunoprecipitation 

with sequencing 

(ChIP-seq) 

Abomasum 

Abomasum Pylorus 

Adipose Subcutaneous 

Adrenal Cortex 

Adrenal Medulla 

Alveolar Macrophages 

Bladder 

Cecum 

Cerebellum 

Cerebral Cortex 

Descending Colon 

Diaphragm 

Duodenum 

Esophagus 

Gallbladder 

Heart Left Ventricle 

Heart Right Atrium 

Heart Right Ventricle 

Ileum 

Ileum Peyers Patch 

Jejunum 

Kidney Cortex 

Kidney Medulla 

Liver 

Lung 

Lymph Node Mesenteric 

Mammary 

Muscle BF (biceps femoris) 

Muscle LD (longissimus dorsi) 

Muscle SM (semimembranosus) 

Omasum 

Ovary 

Oviduct 

Parathyroid 

Rectum 

Reticulum 

Rumen Atrium 

Rumen Ventral 

Skin 

Soft Palate 

Spinal Cord 

Spiral Colon 

Spleen 

Tongue 

Tonsil 

Uterus 

Vagina 

47 
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Assay for 

transposase 

accessible 

chromatin with 

sequencing (ATAC-

seq) 

Adipose Subcutaneous 

Adrenal Cortex 

Adrenal Medulla 

Bladder 

Cerebellum 

Cerebral Cortex 

Diaphragm 

Duodenum 

Esophagus 

Gallbladder 

Heart Left Ventricle 

Heart Right Atrium 

Heart Right Ventricle 

Ileum 

Ileum Peyer’s Patch 

Jejunum 

Kidney Cortex 

Kidney Medulla 

Liver 

Lung 

Lymph Node Mesenteric 

Muscle BF (biceps femoris) 

Muscle LD (longissimus dorsi) 

Muscle SM (semimembranosus) 

Ovary 

Rectum 

Reticulum 

Soft Palate 

Spinal Cord 

Spiral Colon 

Spleen 

Tongue 

Tonsil 

33 

Reduced 

representation 

bisulfite sequencing 

(RRBS) 

Abomasum 

Abomasum Pylorus 

Adipose Subcutaneous 

Adrenal Cortex 

Adrenal Medulla 

Alveolar Macrophages 

Atrioventricular valve, left 

Bladder 

Cecum 

Cerebellum 

Descending Colon 

Diaphragm 

Duodenum 

Esophagus 

Eye (retina) 

Gallbladder 

Heart Right Atrium 

Heart Right Ventricle 

Ileum 

Ileum Peyer’s Patch 

Jejunum 

Kidney Cortex 

Kidney Medulla 

51 



283 

 

 

Liver 

Lung 

Lymph Node Mesenteric 

Mammary 

Muscle BF (biceps femoris) 

Muscle LD (longissimus dorsi) 

Muscle SM (semimembranosus) 

Omasum 

Ovary 

Pituitary 

Pons 

Rectum 

Reticulum 

Rumen Atrium 

Rumen Ventral 

Skin 

Soft Palate 

Spinal Cord 

Spiral Colon 

Spleen 

Thalamus 

Thyroid 

Tongue 

Tonsil 

Uterus 

Vagina 

Vena Cava (heart) 

Whole genome 

bisulfite sequencing 

(WGBS) 

Alveolar Macrophages 

Cerebral Cortex 

Cerebellum 

Lung 

Muscle BF (biceps femoris) 

Muscle LD (longissimus dorsi) 

Ovary 

Rumen Atrium 

8 

RNA sequencing 

(RNA-seq) 

Abomasum 

Abomasum Pylorus 

Adrenal Cortex 

Adrenal Medulla 

Alveolar Macrophages 

Bladder 

Caudal Vena Cava 

Cecum 

Cerebellum 

Cerebral Cortex 

Descending Colon 

Diaphragm 

Duodenum 

Esophagus 

Gallbladder 

Heart Left Ventricle 

Heart Right Atrium 

Heart Right Ventricle 

Hippocampus 

Ileum 

Ileum Peyer’s Patch 

60 
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Jejunum 

Kidney Cortex 

Kidney Medulla 

Left Atrioventricular Valve 

Liver 

Lung 

Lymph Node Mandibular 

Lymph Node Mesenteric 

Lymph Node Prescapular 

Mammary 

Muscle BF (biceps femoris) 

Muscle LD (longissimus dorsi) 

Muscle SM (semimembranosus) 

Muscle SS (supraspinatus) 

Omasum 

Ovary 

Oviduct 

Pituitary 

Pons 

Rectum 

Reticulum 

Retina (eye) 

Rumen Atrium 

Rumen Ventral 

Skin 

Soft Palate 

Spinal Cord 

Spiral Colon 

Spleen 

Thalamus 

Thyroid 

Tongue 

Tonsil 

Ureter 

Urethra 

Uterus 

Vagina 
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Supplementary Table 6.2: Mapping statistics for ATAC-seq data of the 33 tissues collected 

from Benz 2616. 

Sample Number of 

reads 

sequenced 

Number of 

reads 

mapped 

% of total 

reads 

mapped 

% 

uniquely 

mapped 

Proportion 

of 

duplication 

Jejunum 58,923,671 57,273,449 97.20 64.21 0.12 

LymphNodeMesenteric 57,974,995 57,132,608 98.55 64.14 0.11 

Reticulum 60,334,457 20,356,093 33.74 44.14 0.15 

CerebralCortex 60,81,0682 60,065,604 98.77 59.58 0.25 

Cerebellum 75,8116,39 74,770,240 98.63 64.69 0.23 

Tongue 61,639,525 58,490,545 94.89 68.25 0.15 

Tonsil 64,654,489 62,090,200 96.03 66.62 0.17 

SoftPalate 77,743,714 75,142,117 96.65 71.25 0.20 

Duodenum 77,394,800 76,075,603 98.30 65.76 0.15 

Ileum 70,784,691 68,005,758 96.07 65.73 0.14 

IleumPeyersPatch 66,399,065 64,356,660 96.92 65.70 0.14 

SpiralColon 74,221,101 71,816,346 96.76 70.21 0.15 

Rectum 72,777,399 69,601,828 95.64 65.56 0.17 

Gallbladder 60,464,950 59,717,929 98.76 65.10 0.15 

Liver 71,684,845 70,834,466 98.81 55.45 0.33 

Spleen 62,928,779 62,067,418 98.63 68.05 0.15 

AdrenalCortex 59,283,162 58,499,859 98.68 66.92 0.18 

AdrenalMedulla 67,598,623 66,834,629 98.87 61.81 0.21 

KidneyCortex 57,444,492 56,769,574 98.83 63.43 0.25 

KidneyMedulla 58,136,547 57,469,910 98.85 63.06 0.17 

Bladder 71,670,850 70,879,177 98.90 68.37 0.16 

Ovary 60,900,338 60,009,863 98.54 66.59 0.15 

Lung 84,617,326 83,508,578 98.69 66.86 0.14 

HeartLeftVentricle 53,483,251 52,144,748 97.50 61.32 0.27 

HeartRightAtrium 46,108,019 45,436,348 98.54 70.32 0.13 

HeartRightVentricle 58,664,953 57,538,982 98.08 50.80 0.34 

Diaphragm 53,887,012 52,943,272 98.25 67.93 0.22 

Esophagus 52,795,396 49,668,705 94.08 63.51 0.18 

MuscleLD 51,359,597 49,879,210 97.12 69.29 0.19 

AdiposeSubcutaneous 61,223,902 58,979,513 96.33 69.40 0.20 

MuscleSM 55,760,963 54,750,250 98.19 75.83 0.20 

MuscleBF 49,700,991 48,982,274 98.55 70.18 0.21 

SpinalCord 57,003,960 56,175,834 98.55 63.33 0.22 
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Supplementary Table 6.3: Mapping statistics for ChIP-seq data from the 47 tissues 

collected from Benz 2616. 

Tissue Number 

of reads 

sequenced 

Number 

of reads 

mapped 

% of 

reads 

mapped 

Number 

of reads 

uniquely 

mapped 

Proportion of 

duplication 

H3K4me3 

Abomasum 59533622 58932445 98.99 47001795 0.28 

AbomasumPylorus 37434682 37087853 99.07 29554682 0.04 

AdiposeSubcutaneous 56656894 55826911 98.54 44730618 0.42 

AdrenalCortex 72064162 70514810 97.85 56894656 0.31 

AdrenalMedulla 46689098 46262245 99.09 36861043 0.13 

AlveolarMacrophages 30951270 30521775 98.61 24436028 0.09 

Bladder 70067972 69191745 98.75 55318664 0.19 

Cecum 50837904 50388306 99.12 40136526 0.27 

Cerebellum 77098054 76112385 98.72 60868914 0.35 

CerebralCortex 61032508 60451086 99.05 48185166 0.03 

DescendingColon 73286752 72728850 99.24 57859891 0.03 

Diaphragm 46844792 45862285 97.9 36983964 0.03 

Duodenum 40957636 40520871 98.93 32336054 0.03 

Esophagus 58783200 58171482 98.96 46409337 0.03 

Gallbladder 51243926 50728754 98.99 40457080 0.03 

HeartLeftVentricle 40401084 39921713 98.81 31896656 0.43 

HeartRightAtrium 51325062 50742736 98.87 40521137 0.31 

HeartRightVentricle 50805426 49915396 98.25 40110884 0.13 

Ileum 51676892 51255811 99.19 40798907 0.02 

IleumPeyersPatch 39783460 39455614 99.18 31409042 0.03 

Jejunum 56069742 55571484 99.11 44267062 0.04 

KidneyCortex 60322406 59927416 99.35 47624540 0.97 

KidneyMedulla 66534074 65955572 99.13 52528652 0.42 

Liver 46909948 46555377 99.24 37035404 0.05 

Lung 59648666 58912259 98.77 47092622 0.22 

LymphNodeMesenteric 77173236 75831918 98.26 60928270 0.05 

Mammary 89105700 87332202 98.01 70348951 0.72 

MuscleBF 60039886 59431645 98.99 47401490 0.06 

MuscleLD 45753170 45300644 99.01 36122128 0.04 

MuscleSM 38027324 37576259 98.81 30022573 0.04 

Omasum 57752794 57194470 99.03 45595831 0.04 

Ovary 92050280 90648492 98.48 72673697 0.42 

Oviduct 86746398 85192426 98.21 68486282 0.52 

Parathyroid 57395074 56216784 97.95 45313411 0.06 

Rectum 54282262 53690878 98.91 42855846 0.15 

Reticulum 42557644 41865807 98.37 33599260 0.41 
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RumenAtrium 64859256 64079416 98.8 51206383 0.06 

RumenVentral 41381154 40805783 98.61 32670422 0.05 

Skin 67256388 66340975 98.64 53098919 0.15 

SoftPalate 36778256 36412893 99.01 29036434 0.08 

SpinalCord 85787896 83900354 97.8 67729544 0.47 

SpiralColon 56129794 55042234 98.06 44314473 0.04 

Spleen 38116320 37868834 99.35 30092835 0.05 

Tongue 77948428 76024847 97.53 61540284 0.08 

Tonsil 68655640 67526875 98.36 54203628 0.12 

Uterus 103177318 101827096 98.69 81458493 0.34 

Vagina 62771856 61525806 98.01 49558381 0.77 

H3K27ac 

Abomasum 61525992 60873901 98.94 47904138 0.25 

AbomasumPylorus 52023452 51494086 98.98 40505460 0.03 

AdiposeSubcutaneous 52673024 51892855 98.52 41011217 0.13 

AdrenalCortex 105187854 103128275 98.04 81899264 0.3 

AdrenalMedulla 31259430 30959973 99.04 24338593 0.04 

AlveolarMacrophages 74455406 73465952 98.67 57970980 0.15 

Bladder 64037774 63349746 98.93 49859811 0.11 

Cecum 49640298 49119125 98.95 38649937 0.02 

Cerebellum 51075184 50614197 99.1 39767139 0.04 

CerebralCortex 41582644 41150821 98.96 32376247 0.03 

DescendingColon 32581578 32267865 99.04 25368017 0.02 

Diaphragm 48419952 47263481 97.61 37699775 0.03 

Duodenum 45165746 44765291 99.11 35166050 0.02 

Esophagus 51521138 50989724 98.97 40114359 0.02 

Gallbladder 50678474 50087840 98.83 39458260 0.05 

HeartLeftVentricle 31946058 31394126 98.27 24873201 0.06 

HeartRightAtrium 70360882 69658927 99 54782983 0.14 

HeartRightVentricle 47110534 46544770 98.8 36680262 0.05 

Ileum 60755496 60231268 99.14 47304230 0.03 

IleumPeyersPatch 45490366 45138860 99.23 35418799 0.03 

Jejunum 56285096 55836090 99.2 43823576 0.04 

KidneyCortex 47826524 47542241 99.41 37237732 0.97 

KidneyMedulla 52481548 52071654 99.22 40862134 0.47 

Liver 46800868 46469245 99.29 36439156 0.79 

Lung 55309844 54767893 99.02 43064245 0.04 

LymphNodeMesenteric 86197870 84564990 98.11 67113662 0.3 

MuscleBF 49722910 49114925 98.78 38714258 0.34 

MuscleLD 55047960 54457680 98.93 42860342 0.07 

MuscleSM 57891660 57043165 98.53 45074447 0.03 

Omasum 52753408 52204768 98.96 41073804 0.05 

Ovary 61581182 60773006 98.69 47947109 0.19 

Oviduct 49538666 48983692 98.88 38570806 0.13 
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Parathyroid 47636396 46759286 98.16 37089698 0.06 

Rectum 34995448 34560773 98.76 27247456 0.06 

Reticulum 53353414 52531719 98.46 41540969 0.09 

RumenAtrium 60438186 59680848 98.75 47057172 0.02 

RumenVentral 65001844 63678260 97.96 50610436 0.04 

Skin 42063106 41673000 99.07 32750335 0.06 

SoftPalate 75474156 74735450 99.02 58764178 0.13 

SpinalCord 95475094 93377408 97.8 74336909 0.19 

SpiralColon 77075588 75546231 98.02 60011053 0.03 

Spleen 54814518 54474283 99.38 42678584 0.32 

Tongue 76198678 74142192 97.3 59328291 0.06 

Tonsil 37376302 36746566 98.32 29101189 0.11 

Uterus 56064144 55539477 99.06 43651543 0.21 

Vagina 47372536 46886259 98.97 36884257 0.1 

H3K4me1 

Abomasum 97536006 95601830 98.02 75941535 0.32 

AbomasumPylorus 81100114 80059174 98.72 63144549 0.03 

AdiposeSubcutaneous 63216732 62227020 98.43 49220548 0.23 

AdrenalCortex 108708406 106908934 98.34 84640365 0.34 

AdrenalMedulla 73514844 72755785 98.97 57238658 0.04 

AlveolarMacrophages 118087904 116806862 98.92 91943243 0.15 

Bladder 64475714 63824692 98.99 50200791 0.06 

Cecum 51963396 51545463 99.2 40458701 0.02 

Cerebellum 65057816 64406075 99 50654016 0.04 

CerebralCortex 69534344 68889583 99.07 54139441 0.03 

DescendingColon 65655046 65138908 99.21 51119019 0.02 

Diaphragm 52173962 50766598 97.3 40622647 0.03 

Duodenum 75719558 74765287 98.74 58955248 0.02 

Esophagus 60258028 59578130 98.87 46916901 0.02 

Gallbladder 67452112 66716401 98.91 52518215 0.03 

HeartLeftVentricle 128732094 126263033 98.08 100230809 0.04 

HeartRightAtrium 52573384 51993355 98.9 40933637 0.08 

HeartRightVentricle 55993524 54965823 98.16 43596558 0.05 

Ileum 60576812 59967180 98.99 47165106 0.02 

IleumPeyersPatch 60301648 59695419 98.99 46950864 0.02 

Jejunum 59001800 58507839 99.16 45938802 0.04 

KidneyCortex 48635658 48308581 99.33 37867724 0.97 

KidneyMedulla 88441658 87630674 99.08 68860675 0.24 

Liver 47296152 46913756 99.19 36824784 0.16 

Lung 64530968 63793887 98.86 50243812 0.06 

LymphNodeMesenteric 68676656 67047026 97.63 53471645 0.05 

Mammary 63370290 62818257 99.13 49340108 0.27 

MuscleBF 55970974 55310927 98.82 43579001 0.04 

MuscleLD 72990418 71959538 98.59 56830340 0.08 
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MuscleSM 69918370 68649963 98.19 54438443 0.03 

Omasum 63801906 63262176 99.15 49676165 0.03 

Ovary 58315174 57288890 98.24 45404195 0.1 

Oviduct 51037720 50516940 98.98 39737969 0.09 

Parathyroid 101598294 99930545 98.36 79104432 0.06 

Rectum 64257610 63369112 98.62 50030976 0.05 

Reticulum 74595696 73468848 98.49 58080209 0.1 

RumenAtrium 51989214 51423328 98.91 40478803 0.03 

RumenVentral 82330202 81275849 98.72 64102296 0.05 

Skin 68816764 68109441 98.97 53580733 0.04 

SoftPalate 77709902 76939784 99.01 60504930 0.23 

SpinalCord 48173990 47594536 98.8 37508269 0.14 

SpiralColon 76521306 75262605 98.36 59579489 0.04 

Spleen 50754512 50299523 99.1 39517464 0.1 

Tongue 76999506 75157273 97.61 59951816 0.04 

Tonsil 52064832 51367494 98.66 40537679 0.12 

Uterus 65614474 65037724 99.12 51087430 0.1 

Vagina 97304122 96129915 98.79 75760990 0.51 

H3K27me3 

Abomasum 76046116 75144060 98.81 59148670 0.48 

AbomasumPylorus 82484288 81352012 98.63 64156280 0.05 

AdiposeSubcutaneous 86178814 84117851 97.61 67029882 0.33 

AdrenalCortex 65023764 63698597 97.96 50575484 0.09 

AdrenalMedulla 66530654 65838443 98.96 51747543 0.13 

AlveolarMacrophages 72610458 71649415 98.68 56476415 0.1 

Bladder 58157152 57492336 98.86 45234633 0.09 

Cecum 75462276 64340305 85.26 58694559 0.04 

Cerebellum 92154006 91090298 98.85 71677386 0.14 

CerebralCortex 72437098 71643242 98.9 56341575 0.07 

DescendingColon 81747298 80512941 98.49 63583049 0.05 

Diaphragm 76106572 74723187 98.18 59195692 0.03 

Duodenum 56424992 55875539 99.03 43887359 0.02 

Esophagus 77236326 76448704 98.98 60074415 0.02 

Gallbladder 53792356 53351957 99.18 41839695 0.03 

HeartLeftVentricle 107180636 105908364 98.81 83365099 0.11 

HeartRightAtrium 61201878 60673183 99.14 47602821 0.06 

HeartRightVentricle 57090060 56588332 99.12 44404649 0.32 

Ileum 59207088 58680045 99.11 46051274 0.03 

IleumPeyersPatch 63005144 62260977 98.82 49005402 0.04 

Jejunum 87742980 62000554 70.66 68246490 0.06 

KidneyCortex 60692712 60035327 98.92 47206792 0.08 

KidneyMedulla 64335354 63859899 99.26 50040039 0.77 

Liver 66836674 66207847 99.06 51985566 0.93 

Lung 81070052 80297142 99.05 63056287 0.06 
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LymphNodeMesenteric 55783150 54543848 97.78 43388135 0.15 

Mammary 59981452 58889130 98.18 46653574 0.78 

MuscleBF 75574726 74725266 98.88 58782022 0.1 

MuscleLD 60136916 59533949 99 46774494 0.04 

MuscleSM 75474572 74245908 98.37 58704123 0.03 

Omasum 68665934 67490789 98.29 53408364 0.03 

Ovary 55876452 55116628 98.64 43460705 0.15 

Oviduct 68661448 67615291 98.48 53404875 0.17 

Parathyroid 96798568 95277580 98.43 75289927 0.15 

Rectum 133364284 131378982 98.51 103730741 0.42 

Reticulum 61975694 61207986 98.76 48204695 0.08 

RumenAtrium 344114132 337553106 98.09 267651972 0.08 

RumenVentral 87861134 86269784 98.19 68338391 0.04 

Skin 86717954 85690942 98.82 67449225 0.09 

SoftPalate 76995168 76129394 98.88 59886842 0.29 

SpinalCord 61375616 60288328 98.23 47737955 0.42 

SpiralColon 76570534 75239920 98.26 59556562 0.14 

Spleen 61361852 60796383 99.08 47727249 0.72 

Tongue 42811994 41934050 97.95 33299169 0.05 

Tonsil 82072404 81185674 98.92 63835916 0.69 

Uterus 66946702 66354629 99.12 52071145 0.29 

Vagina 57770606 57196729 99.01 44933978 0.15 
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Supplementary Figure 6.1: Median correlation of each chromatin state to 16 states across tissues. At 9 states, the average median 

correlation from all tissues reached above 0.98 and was chosen as the optimal number of states.  
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Chapter 7: Conclusion 

 

Sheep are a globally important species raised for meat, milk, and wool. The continued 

improvement of sheep production will rely on genomic technologies for selection of animals 

that exhibit desirable traits earlier in life. A brief overview of sheep production in the United 

States and research in genetics and genomics is presented in the first chapter of this 

dissertation. The selection and adaptation of sheep to diverse production systems and 

environments result in breed specialization and differences in phenotypic traits. Global 

studies across breeds reveal that sheep from similar lineages, such as those selected for meat 

or wool, exhibit greater genetic relatedness when compared with sheep selected for a very 

different trait. Sheep within breeds also show genetic divergence based on location and 

regional selection. The second chapter of this dissertation characterizes the relationships 

between sheep breeds in the United States compared with similar breed lineages from across 

the world as part of the Sheep HapMap Project. This study observes genetic differentiation 

between meat and wool breeds as well as regional genetic differences in the Suffolk breed. 

Sheep within the same breed, such as Suffolk and Rambouillet, are genetically distinct 

depending on geographic locations. This study aids sheep researchers and the sheep industry 

in understanding genetic differences across breeds of sheep in the United States and 

assessing applicability of genomic technologies developed in one breed to another breed 

based on genetic relatedness.  

Research in sheep genetics to improve sheep production is reliant on an accurate 

reference genome to assess genetic variation and define the locations of genes and regulatory 

elements. The rapid progress in sequencing technologies, including the advent of next-

generation sequencing, paired with enhanced computational resources allow for updated and 

improved genome assemblies. Genome assemblies, including mitochondrial assemblies, also 

aid in discerning phylogeny and relatedness between wild and domestic Ovis species, such as 

bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries). The third chapter of this 

dissertation describes the first mitochondrial genome assembly of a Rocky Mountain Bighorn 

Sheep from the United States. This study provides a valuable resource for phylogenetic and 
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comparative studies between the bighorn sheep and other species. Mitochondrial genome 

assemblies from domestic sheep are often included with the whole genome assembly 

releases. The fourth chapter of this dissertation introduces a genome assembled from a 

Rambouillet ewe selected as part of the functional annotation of animal genomes project. 

This updated genome features vast improvements in contiguity and quality when compared 

with previous sheep genome assemblies and is comparable in quality with other livestock 

reference genomes. The updated Rambouillet genome, ARS-UI_Ramb_v2.0, will serve as the 

reference for the sheep species and provide a valuable resource for the scientific community 

to investigate genetic relationships to traits of interest using a more accurate reference.  

The improved quality and contiguity of the most recent sheep reference genome 

offers more accurate locations of genes and the opportunity to more accurately define the 

locations of genetic regulatory elements across different tissues. Regulatory elements are 

known to influence gene transcription contain genetic variation that can influence 

phenotypes. Defining regulatory elements throughout the genome will provide the resources 

for the functional annotation of the sheep genome and facilitate further research in the 

influence of genetic regulatory elements on traits of interest in sheep. The fifth chapter of this 

dissertation describes the locations of histone modifications and DNA methylation in sheep 

liver, spleen, and cerebellum tissues. The study identifies tissue specific chromatin states and 

depicts the overlay of active promoter and enhancer states with hypomethylated regions, and 

conversely repressed and poised states with hypermethylated regions. The protocols and 

analyses pipelines developed in this study are used in the larger study of genetic regulatory 

elements in the sixth chapter of this dissertation. This study characterizes histone 

modifications, open chromatin, DNA methylation, transcription start sites, and transcript 

expression across almost 50 tissues collected from the same Rambouillet sheep used in the 

reference genome assembly. Active promoter and enhancer regions across tissues overlay 

with transcript expression, open chromatin, and hypomethylated sites. The repressed and 

poised enhancer states contain hypermethylated regions and are not present in open 

chromatin with greater transcript expression. Similarities and differences in genetic 

regulatory elements, particularly active regions, also allude to the physiological and 

regulatory relationship between the gut, brain, and immune tissues.  
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The studies in this dissertation describe improvements to efforts in sheep genomics 

research to further understand relationships between genetics and phenotypes of interest to 

the sheep industry. Examining population genetics and genetic relatedness of sheep, 

assembling the sheep reference genome, and defining genetic regulatory elements in the 

sheep genome provide valuable information and resources for the improvement of sheep 

research and production. The sheep industry will rely on genomic information for greater 

improvement of meat, wool, and milk production to feed and clothe a growing global 

population. This research contributes to this effort in several different aspects of sheep 

genetics and genomics research.  


