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Abstract

In this thesis, a unit commitment model is developed that integrates economic dispatch

and demand response into a single mixed integer linear program which is formulated to in-

clude renewable generation and electric vehicle charging. The objective function is expressed

as a cost function formulated to minimize cost of generation and to penalize curtailment of

load. The constraints ensure that energy balance, ramp rate limits, and transmission limits

are observed. To support the integrated model, separate generation and load models are

developed from historical data collected from Department of Energy research laboratories

and from stochastic approximations. Renewable generation is integrated into the generation

model as non-curtailable sources to demonstrate the variability introduced into the system

and to stress the model. In addition, electric vehicle charging systems are included in the

load model to determine the impact that various levels of electric vehicle penetration has

on residential and commercial loads. The model is then used to simulate a hypothetical

grid connected microgrid that can import power from external sources. An interactive user

interface allows the user to modify the system to observe the response with the objective

of maximizing profit. The thesis concludes by presenting a novel approach to the solution

of difference equations using mixed integer linear programs that have been developed in

this project and that can be further developed and extended to provide an alternative to

z-transform analysis or iterative numerical methods.
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Chapter 1: Introduction

Renewable energy resources coupled with the introduction of electric vehicle technology

has the potential to significantly reduce dependence on carbon emitting generation from coal

and gas fired power plants and thereby help to reduce green house gas emissions. Current

policy recognizes this and has introduced incentives to encourage investment in both renew-

able generation and electric vehicle technologies. As a result, estimates from 2010 show that

approximately 11.6% of the total electrical energy capacity of the United States was from

renewable generation [1], which is expected to represent 70% of all new generation capacity

added between now and 2030 [2]. In addition, it was estimated in 2012 that there were

approximately 40,000 electric vehicles sold in the United States [3] and sales were expected

to grow by 12.2% annually until 2035.

The driving factors behind these technologies however are not the incentives. Investment

in renewable generation and electric vehicle technology represent sound investments that can

generate significant profits and lower the cost of generation or operation. As an example,

a study by Deloitte Touche Tohmatsu Limited, an audit and financial services consultant,

reported that wind turbines generally require four to six years to provide a return on invest-

ment and the probability of generating an internal rate of return exceeding 9% was 86% [4].

Given the expected service life is approximately 25 years, investments in wind generation

facilities represent a 20 year revenue stream that is only impacted by maintenance and op-

erational expenses. In the case of electric vehicles, it is estimated that for the current state

of technology, the equivalent fuel cost would be $0.70 per gallon and that two out of every

three gallons of gasoline could be eliminated if the vehicle had an operating range of only

40 miles [7]. However, while these technologies provide sound investment opportunities and

greatly benefit the environment, they are not without challenges. In the next two sections,

a brief introduction to electric vehicles and renewable generation is presented along with a

summary of some of the challenges that these technologies present.
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1.1 Electric Vehicle Technology and Charging Systems

Early development of electric vehicles resulted from the introduction of the dynamo and

the lead acid battery in the mid 19th century. Steam technology during that period went

through a significant growth phase and, as a result, the potential of early electric vehicles

was unrealized and only occupied a niche market. At the beginning of the 20th century,

several competing technologies including hydrogen powered vehicles, electric vehicles, and

the internal combustion engine were vying for market share. Ultimately, the introduction

of the assembly line by Henry Ford to produce the first generation of vehicles powered by

the internal combustion engine trumped the other technologies and led the electric vehicle

to near extinction until the 1980’s. Figure 1.1 shows the significant events that influenced

electric vehicles since the Faraday first demonstrated the electro-magnetic phenomena in

1821 to the introduction of the first hybrid electric vehicle by General Electric in 1982.

Figure 1.1: Projected Hybrid and Electric Vehicle Sales [5]

Today, electric vehicle technology has developed along several different pathways. As

outlined in [7], these pathways have led to two distinct types of electric vehicles. The first to

develop were the pure electric vehicles which evolved from the early research. These vehicles

are characterized as only possessing an electric motor and on-board battery storage available

for locomotion and that can be recharged by either using a plug-in connector or by replacing

the depleted battery packs. Vehicles of this type that are recharged using a connector are

commonly referred to as plug-in electric vehicles (PEV) and are experiencing a significant
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amount of investment and research. While these vehicles have high efficiency ratings, they

tend to have a limited range as opposed to vehicles with internal combustion engines due

to the lower energy density of the batteries. This limitation is becoming less of an issue as

battery technology and vehicle efficiency improves but still limits market share when coupled

with the additional expense introduced by the battery packs.

The second type of electric vehicle to emerge is referred to as a hybrid-electric vehicle.

This type of electric vehicle uses both an internal combustion engine and an electric motor for

locomotion. These vehicles have different configurations and are referred to as either parallel

or series hybrids. In the case of the parallel hybrid, both the internal combustion engine and

electric motor are mechanically coupled to the transmission and can be used in conjunction

with each other to improve fuel efficiency. In the latter case, the series hybrids, which are

sometimes referred to as extended range electric vehicles, mechanically couple the electric

motors to the drive system and use the internal combustion engine for on-board charging

of the batteries. Both types of hybrids improve mileage, however they still produce tailpipe

emissions. In addition, since both an internal combustion engine and electrical system are

present, these type of vehicles are technically more complex than pure electric vehicles. They

do benefit however from a lower initial cost as a result of lower reliance on battery storage.

As mentioned earlier, sales of electric vehicles are expected to grow by approximately 12%

per year until the mid-2030’s. As seen in Figure 1.2, hybrid vehicles are expected to outpace

pure electric vehicles with an expected annual sales in excess of 100,000 units per year by

2030. As electric vehicles become more common, charging systems are being developed to

provide various types of charging options for the consumer. As shown in Table 1.1, there are

four primary modes defined for electric vehicle charging systems [7]. The first two modes are

representative of residential based charging systems and can result in electrical loads of up

to 10kW with charge times between four and eight hours. While this will increase the total

load on the grid, slow charging will likely occur in the evening hours during periods of low

demand and therefore limit the need for significant investment in additional infrastructure.
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Figure 1.2: Projected Hybrid and Electric Vehicle Sales [3]

Further, the advent of smart charging systems will allow utilities to control charge periods

and supplement existing demand response strategies, which provides load leveling capability

by curtailment of electric vehicle charging which will be beneficial to grid operations.

Table 1.1: Electric Vehicle Charging System Characteristics

Type Vnominal Inominal Pnominal Charge Time Application
1 120 V 15 A 1.4 kW 18 hours Residential
2 220 V 15 A 3.3 kW 8 hours Residential
3 220 V 30 A 6.6 kW 4 hours Residential/Commercial
4 480 V 167 A 50-70 kW 20-50 minutes Commercial

The latter two modes of electric vehicle charging systems are targeted for commercial

installations with electrical loads ranging from 22 kW to 120 kW depending on the type of

charging system deployed. These systems will reduce charge times to between 10 minutes and

two hours depending on the type of system used, but will represent a significant short term
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load on the distribution network. In particular, since it is anticipated that these charging

systems will be highly utilized during the afternoon hours for the return commute, this new

load will occur during peak load hours and will introduce significant stress on the distribution

system. This can be offset by dynamic scheduling of charging, but will require development

of infrastructure before a strategy such as this is realized.

1.2 Renewable Energy Resources and Challenges

Many technologies have been developed to harness power from renewable resources.

Various cultures have used hydro power for centuries to grind grain into flour while others

used wind to fill the sails that allowed early exploration and establishment of trade routes.

It is only natural then that hydro-electric generation was among the earliest form of renew-

able generation to be developed for electrical power production. The modern hydro-electric

turbine was developed from the water turbine introduced by Bernard Forest de Bélidor in

the mid 18th century [6]. A little more than a century later, this technology was coupled

with the recently developed dynamo in the late 1880’s to power the electric street lamps in

Michigan and New York. Since that time, advances in material science and civil engineer-

ing have allowed earthen dams to be replaced with concrete dams that not only create the

hydraulic head required to generate electricity, but also provide flood control in the river

valleys and navigable waterways for commerce.

Today, new development of hydro-electric generation facilities is limited due to regula-

tory constraints and limited availability of hydro-geological resources. Because of this, the

renewable energy supply from hydro-electric facilities has remained relatively constant for

the past ten years as seen in Figure 1.3. Fortunately, hydro-electricity is but one of a mul-

titude of renewable energy resources that are used to meet the electrical demand. Other

resources include wind, solar, geothermal, and a variety of biomass fuels with each present-

ing opportunities and challenges. As an example, current trends show that the majority of

investment in renewable generation is in the form of wind turbine facilities with forecasts
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expecting generation from wind to reach 6% of the United States total energy capacity by

the end of 2017 [8]. This is partially driven by the short term return on investment and

the long service life that wind generation facilities provide. Unfortunately, wind is currently

among the most difficult renewable resource to utilize because of high variability. Generally,

site selection is based on extended average wind speed studies that attempt to assess the

viability of the wind resources in region. Since wind speed can vary rapidly, short term vari-

ability can significantly limit the amount of power that a wind turbine can produce or that

the electrical grid can use. As with other renewable energy technologies, this will become

less of a challenge as large scale grid storage becomes available.

As seen in Figure 1.3, the overall renewable energy supply available is increasing by

approximately 5% per year with significant growth in both solar and wind capacity. This

trend is expected to continue as the United States and other countries move away from

technologies that generate greenhouse gasses and adopt environmentally friendly renewable

generation.

Figure 1.3: Annual Renewable Energy Supply [8]
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1.3 Objectives and Path Forward

Because of the rapid increase in the penetration of renewable generation and electric ve-

hicle charging systems, efforts are underway to develop models that can adequately commit

and dispatch resources to satisfy consumer demand while adequately modeling the physics

of the system. Most research is currently focused on considering renewable generation and

electric vehicle charging systems in isolation from the context of either the economic dis-

patch or the unit commitment problem. Therefore, there exists a need to identify a method

that allows for the inclusion of generation from renewable resources and load from electric

vehicle charging systems. This paper will propose such a method by satisfying the following

objectives.

1. Select an appropriate level of control that allows for inclusion of traditional generation

and storage, renewable energy resources, and electric vehicle charging systems.

2. Identify data sources of sufficient fidelity to accurately model renewable generation

resources.

3. Identify data sources and models of sufficient fidelity to accurately model residential,

commercial, and industrial loads.

4. Implement the control algorithm iteratively so that system behavior can be considered

for extended periods.

To satisfy these objectives, this work is organized as follows. Chapter 2 provides a brief

introduction to linear programming followed by a description of the unit commitment, eco-

nomic dispatch and demand response problems. It concludes with a discussion of the mixed

integer linear program developed for their integration. Chapter 3 provides an in-depth de-

scription of the generation and load models used as inputs to the integrated dispatch model.

Chapter 4 continues by describing the simulation developed to test the linear programming

model. The results, which were published in the fourth annual IEEE Technologies for Sus-

tainability Conference, are presented in Chapter 5. Finally, Chapter 6 presents and discusses
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the conclusions drawn from this research and highlights opportunities for future works that

could be developed from it.
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Chapter 2: Development of the Integrated Dispatch Algorithm

In their infancy, power systems developed from localized distribution systems connecting

one or more load centers to centralized generation. As population centers expanded and

demand increased, technological advances allowed the migration to large bulk generation

sources such as coal fired generation which were required to provide a more economically

viable means of power production. As a result, transmission systems were developed to

interconnect the generation resources to increase reliability and reduce costs. This approach

lead to the formation of complex, non-linear systems which were difficult to analyze and

introduced stability and reliability issues as well as environment concerns.

To address these issues, current trends are moving away from bulk generation and instead

are utilizing distributed generation to satisfy all or part of local demand. If these distributed

generation resources are locally controlled, they can allow a distribution network to operate

independent of the larger power system. These systems are often referred to as microgrids and

can include distributed generation in the form of diesel or gas-fired generators, photovoltaic

arrays, wind turbines, or a variety of other technologies that are still in early stages of

development. As mentioned previously, grid level storage tends to be impractical, however

storage becomes more feasible in a microgrid configuration due to the smaller scale. But

what is a microgrid? In 2012, CIGRÉ study committee C6 defined a microgrid as:

”a group of interconnected loads and distributed energy resources within clearly

defined electrical boundaries that acts as a single controllable entity with respect

to the grid. A microgrid can connect and disconnect from the grid to enable it

to operate in both grid-connected or island-mode.” [13]

As is evidenced by this definition, microgrids can provide better reliability and power

quality because of their ability to operate independent of the larger system. In addition,

they can reduce peak power requirements by locally controlling unit commitment and dis-

patch in response to changes in demand [12]. However, in order to achieve this, microgrid

control systems need to adequately control the system during both grid connected and is-
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landed modes of operation. As a result, these control systems have been developed to utilize

a hierarchical topology composed of four levels [10]. Each level has different tasks and re-

sponsibilities assigned to it and must coordinate with the other levels to allow the system to

operate either independently or in grid connected mode. Further, the control system must

maintain synchronism with the external grid to allow the system to reconnect to the grid

after operating in island-mode.

At the lowest level of the microgrid control system hierarchy is the primary level which

provides primary frequency control for the system through the use of a droop frequency

controller. The droop controller responds to input from the secondary level which uses a

proportional-integral (PI) controller to respond to changes in bus voltage magnitudes and

phase angles in the system. These voltages are assigned at the tertiary level to achieve

the desired active and reactive power flow between the buses. Finally, at the quaternary

level, the active and reactive power flows themselves are determined from the economic

dispatch and unit commitment problems in order to satisfy energy conservation and other

system constraints. The low level control of the system at the primary and secondary levels

requires real time response to maintain system stability. At the higher levels, the control

system predicts power requirements across multiple prediction horizons to allow for 15 minute

ahead, hour ahead, and even day ahead forecasting of demand. This allows the system to

commit thermal and other generation units in advance of demand to ensure availability of

the generation resources.

Earlier investigations and simulations of microgrids developed for a course offered by

Idaho National Lab led to a gamefication referred to as the ”GridGame”[11]. This simulation

was developed to represent the behavior of a microgrid control system from the point of

view of the secondary level of this hierarchy and used a finite difference approximation of

a PI controller to maintain frequency stability in the system. In order to allow for the

gamification of the simulation, a pricing structure was assigned to the energy generation

along with limited control capability for the player, who acted as an independent system
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operator (ISO). This implementation provided high fidelity as a result of the short timestep

required by the swing equation but limited the size of the data sets that could be analyzed.

In addition, this implementation included only a limited number of generation types and did

not include support for electric vehicle charging systems. As a result, a conceptual model

was developed at a longer time scale that could integrate a variety of generation and load

types. This conceptual model, developed by Tim McJunkin at Idaho National Laboratory,

is represented by the block diagram shown in Figure 2.1.

Figure 2.1: Medium Time Scale Block Diagram

The simulation described in Chapters 3 and 4 use the GridGame and this block diagram

as its basis. It implements the microgrid control at the tertiary level where the economic

dispatch, demand response, and unit commitment problems determine the combination of

generation units and levels of production required to meet demand. This allows the simu-
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lation to be implemented over extended periods and can be used with multi-year data-sets

to analyze long term behavior of the system. These problems, as described above, make

predictions based on current and historical demand. Before proceeding to the formulation

of the resulting integrated approach developed in this research, a brief review of linear pro-

gramming will be provided followed by a summary of each of these problems in the following

sections.

2.1 Summative Review of Linear Programming

Linear programming refers to an optimization technique used to determine the optimal

value that an objective function can achieve when subject to one or more constraints [16].

It distinguishes itself from other optimization techniques in that both the objective function

and the constraints are modeled as linear relations constructed as linear combinations of

decision variables (xi) and constant coefficients ci. Because of this, each decision variable

is required to be linearly independent. In some circumstances, it is desirable to couple two

or more decision variables such that an action on one influences the outcome of the other.

To maintain independence of the decision variables, a coupling constraint can be used to

restrict the behavior of the coupled variables.

The standard form of a linear programming problem, as seen in Eq. (2.1), defines the

objective to maximize the function, but can be defined to minimize functions as well [16].

The constraints define the feasibility region for the system as a convex polytope and are here

represented as a system of inequalities. As will be seen, these are more commonly expressed

singularly to allow for descriptors to be included in the linear programming model. In

addition, while it is common to express the constraints as strict inequalities, each constraint
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can represent either an inequality defined on an open or closed interval or as an equality.

Objective Function:

maximize

N∑
n=1

(cnxn)

Subject to: 

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn





x1

x2

...

xn


≤



b1

b2

...

bm



(2.1)

A variety of techniques have been developed to solve linear programming optimization

problems. To demonstrate one such elementary technique, consider the optimization problem

given in Eq. (2.2).

Objective:

maximize (2x+ 3y)

Subject to:

−3x+ y ≤ 0

x− 4y ≤ 0

−x+ 2y ≤ 5

x+ 2y ≤ 11

2x− y ≤ 7

(2.2)

In this case, the constraints are listed individually, but since all constraints are inequalities

of the same type, they could be expressed as seen in Eq. (2.1). The graphical representation

of the feasibility region defined by the constraints is shown in Figure (2.2). As is evident, this

region is convex and, as stated previously, must be convex in order to guarantee a unique

solution if one exists. This is relatively easy to verify for small systems such as this for which



14

graphical solutions are available, but can become more challenging for systems of higher

dimension. An additional observation of this figure will lead to the realization that when a

unique solution exists, it always occurs at a vertex. This suggests that the optimal solution

for any linear program can be determined by evaluating the objective function at each vertex

of the feasible region as seen in Table 2.1. This observation was made by George Dantzig

in 1946 and led to the development of the Simplex algorithm which is widely used to solve

problems of this type today. Rather than solving for all vertexes as was done in Table (2.1),

the simplex algorithm evaluates the objective function at a single vertex. It then advances

along the perimeter of the feasibility region in a strictly increasing or decreasing direction

until a maximum or minimum is identified. This approach takes advantage of the convexity

of the polytope and will yield poor results if the constraints result in a concavity in the

feasibility region.

Figure 2.2: Feasible Region for Example Linear Program

To apply linear programming techniques to the problems described in the next three

sections, linearity is assumed for each decision variable. Since the system is often non-linear
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Table 2.1: Linear Program Solution Table

Vertex (x, y) 2x+ 3y
1 (0, 0) 0
2 (1, 3) 11
3 (3, 4) 18
4 (5, 3) 19
5 (4, 1) 11

as a result of dependencies in the coefficients, the coefficients are evaluated prior to evaluation

of the linear program. Specific examples include the coefficients that are determined from

fuel consumption function for coal-fired plants and the volumetric flow rate function for

hydro-electric generation units which will be introduced in Chapter 3. However, before these

are introduced, the microgrid control problem will be introduced and defined in the following

sections.

2.2 The Unit Commitment Problem

Unit commitment (UC) is an optimization problem that attempts to optimize the com-

mitment of generation units such that the load is satisfied [9]. This implies that the unit

commitment decisions produce binary results corresponding to a committed (on) or an un-

committed state (off) and as such, a subclass of the linear programming model, known as

integer linear program, is used. In some cases, such as that of particularly large systems,

this problem can be deconstructed into two problems to control the commitment and de-

commitment separately. In both cases however, the objective of the UC problem is either

to minimize cost or to maximize profit. Unit commitment problems formulated to minimize

cost are referred to as security constrained unit commitment (SCUC) and include constraints

that maintain security in the system by requiring the system to maintain adequate spinning

reserve to satisfy sudden changes in demand. As outlined in [14], the typical SCUC problem
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is formulated as in Eq. (2.3)

Objective:

min

Ng∑
i=1

Nt∑
t=1

[Ci (P (i, t)) I (i, t) + S (i, t)]

Subject to:
Ng∑
i=1

PG (i, t) I (i, t) =

Nl∑
j=1

PL (j, t) Energy Balance

Ng∑
i=1

rs (i, t) I (i, t) ≥ Rs (t) Spinning Reserve

PGmin
≤ PG (i, t) ≤ PGmax , i ∈ {1, Ng} Generation Limits

PG (i, t)− PG (i, t− 1) ≤ Ru (i) Ramp Up Constraints

PG (i, t− 1)− PG (i, t) ≤ Rd (i) Ramp Down Constraints

(2.3)

In the objective function of the SCUC problem, the production cost for the ith unit is

represented by Ci (P (i, t)) while the S (i, t) represents the startup costs for the corresponding

unit. The decision variables are defined by I (i, t) and as mentioned previously, are binary

states that indicate if the ith unit is committed or decommitted at time t. The constraints

force the objective function to choose a solution that adheres to the physics of the system.

The energy balance constraint ensures that adequate generation is committed in the system

to satisfy the load. In some instances, both the active and reactive components of the

complex power are considered as part of the constraints. However as seen here, only the real

component of the power is included in this formulation. The second constraint represents

the spinning reserve of the system which requires the commitment of units that will maintain

a minimum level of spinning reserve to maintain system security. Additional constraints, as

shown in eq.(2.3) force the generation to operate within predefined operational limits and

limits the rate of change of ramping of thermal units. In addition to the constraints shown,

some formulations include fuel, emission, and start up/down time constraints [14] which were

not deemed necessary for the application in this thesis and are therefore not specified in the
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above formulation.

As an alternate approach to SCUC, unit commitment problems can be formulated to

maximize profit. This method is referred to as Price Based Unit Commitment (PBUC) and is

commonly used by independent power producers (IPP) in competitive unregulated markets.

In this implementation, security does not represent a hard constraint, as maximal profit

may result in limiting production or curtailing demand. As a result, the objective function

is redefined as a maximization problem and the spinning reserve constraint is relaxed to

operate within an upper and lower bound. In addition, PBUC often includes a transmission

constraint because transmission congestion can limit the profitability by decreasing an IPP’s

ability to deliver power to customers. As seen in Eq.(2.4), the formulation for PBUC is

similar to that of SCUC:

Objective:

max

Ng∑
i=1

Nt∑
t=1

{ρc (i) I (i, t) + ρnc [1− I (i)]}

Subject to:

Pmin ≤
Ng∑
i=1

PG (i, t) I (i, t) ≤ Pmax Energy Balance

Rmin ≤
Ng∑
i=1

rs (i, t) I (i, t) ≤ Rmax Spinning Reserve

PGmin
≤ PG (i, t) ≤ PGmax , i ∈ {1, Ng} Generation Limits

PG (i, t)− PG (i, t− 1) ≤ Ru (i) Ramp Up Constraints

PG (i, t− 1)− PG (i, t) ≤ Rd (i) Ramp Down Constraints

(2.4)

As mentioned previously, the most notable difference between PBUC and SCUC is that

formulation of the objective function now chooses to commit or decommit each unit based on

the profit function defined by ρ. In this case, ρc represents the profit function for committing

unit i and ρnc represents the profit function for decommitting each unit. In addition, the

energy balance and spinning reserve constraints now specify a range of operation representing
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the region of anticipated profitability. Not shown in this formulation is the transmission

congestion constraint which would limit power transmission through congested corridors

which was added in the final stages of the simulation development and will be described in

Chapter 3.

Since this project sought an integrated approach to the unit commitment and economic

dispatch problem, aspects of both the security constrained and price based unit commitment

approaches were introduced in the final formulation. The resulting problem was formulated

as a minimization problem and therefore most closely follows the security constrained unit

commitment problem. Unlike the SCUC approach however, the model did not account for

spinning reserve in the system but did specify transmission limits as established in the project

master plan. With this in mind, we will now introduce the economic dispatch problem.

2.3 The Economic Dispatch Problem

Economic dispatch has been defined in the Energy Policy Act of 2005 as:

”the operation of generation facilities to produce energy at the lowest cost to

reliably serve consumers, recognizing any operational limits of generation and

transmission facilities.” [15]

As this definition suggests, the economic dispatch (ED) problem determines optimal

utilization of generation resources and shares many similarities to the unit commitment

problem discussed in the previous section. In this case however, the optimal dispatch of

generation is achieved by minimizing either the fuel consumption or total costs associated

with the generation units. In addition, unlike the UC problem that produced binary results,

the decision variables for the ED problem represent actual dispatch levels of the generation

units expressed either on per unit or proportional bases which allows for traditional linear

programming techniques to be used rather than relying on mixed integer techniques.

The following formulation of the ED problem expresses the objective function as a min-
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imization of a cost function to allow for integration with the unit commitment and demand

response models in Section 2.4. The operating cost function for each unit is represented as

the sum of the operating costs which are assumed to be fixed and the fuel costs which are a

scalar multiple of the fuel consumption function as seen below:

C(i, t) = Cop(i) + Cf (i)F (i, t) (2.5)

In this formulation, the operating costs Cop(i) and the fuel costs Cf (i) are fixed for the

ith unit. For thermal units, the fuel consumption function, F (i, t) is defined for the current

timestep t between the minimum and maximum generation limits. In the case of hydro-

electric generation, the fuel consumption function is replaced with a volumetric flow rate

function with similar bounds. Generally, both the fuel consumption function and the volu-

metric flow rate function are quadratic in nature, however for this study, a linear approxi-

mation was used so that existing Matlab tools could be utilized in the simulation.

For large systems, the constraints for the economic dispatch problem are generally mini-

mally defined to ensure convergence to a solution and to decrease solution time. To satisfy

the law of conservation of energy, an energy balance constraint is introduced as was done

in the unit commitment problem. Additionally, generation limits are placed on each unit to

constraint its operational range. These, in conjunction with the objective function, establish

the ED problem as seen in [17]:

Objective:

min

Ng∑
i=1

Ci (Fi)

Subject to:
Ng∑
i=1

PG (i, t) =

NL∑
j=1

PL (j, t) Energy Balance

PGmin
≤ PG (i, t) ≤ PGmax , i ∈ {1, Ng} Generation Limits

(2.6)
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To integrate economic dispatch and unit commitment into the single problem statement

defined in section 2.5, the objective function will be expressed as a function of the generated

power, rather than of the fuel consumption function. This assumes that the power produced

is proportional to the fuel consumption when in fact the two share a quadratic relationship.

Further, the integrated problem assumes that the generation limits are defined on the interval

[0, 1] pu when in fact, the lower limit is generally between 25% to 70% of the design capacity

[17]. Both of these assumptions were justified given the objectives of the project as defined

in Section 1.3. Before formally discussing the integrated model however, a brief introduction

to the demand response problem is given in the following section.

2.4 The Demand Response Problem

The demand response (DR) problem often does not refer to a formulative statement as

was the case with the economic dispatch and unit commitment problems. Instead, demand

response is a set of strategies that can be used to reduce customer demand during peak and

off-peak hours. These strategies can include incentives for consumers to use energy efficient

devices, implementation of time based pricing schemes, integration of smart technologies

that allow direct curtailment of non critical loads, and traditional load shedding techniques.

Each of these provide distinct benefits that lower energy consumption both directly and

indirectly. As an example, consider the development of the compact fluorescent lamp which

reduces energy consumption by 25-80% when compared to a typical incandescent bulb. The

compact fluorescent bulbs have a direct impact on energy consumption and so the direct

benefit is obvious. What is less obvious however is the increased energy demand associated

with production as a result of the extended service life, which can be anywhere from 2 to 20

times that of an equivalent incandescent bulb.

An alternate strategy for demand response was developed in response to the energy crisis

of the 1970’s that incorporated time based pricing schemes to encourage consumption during
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off peak periods. These strategies use a tiered pricing structure that can be dependent on

the type of contract that a customer chooses or periodic demand. Demand response clauses

allow customers to take advantage of lower utility rates in exchange for curtailment and

load shedding agreements for non-critical loads during periods of high demand. In addition,

pricing structures based on periodic variability are intended to shift consumer usage to off

peak hours where they can take advantage of lower utility rates. This strategy provides

the additional benefit of providing some degree of load leveling which can limit the need to

ramp up or down thermal generation units. This strategy can also take advantage of smart

metering technologies and other smart devices that allow utilities to directly control their

operation.

Finally, load shedding and curtailment can be used to remove load from a system when

generation does not satisfy demand. This strategy generally uses a priority schedule to

select the loads to be curtailed so that non-critical loads are shed before critical loads. In

the next section, this approach to demand response will be used because of the high degree

of compatibility between it and the early problem statements.

2.5 Integrated Problem Definition

The integrated dispatch algorithm was developed to determine the unit commitment,

economic dispatch, and demand response for a microgrid modeled after a moderately sized

utility in eastern Idaho that has the ability to purchase power from external sources. In

reality, this utility is currently not characterized as a microgrid, however it has significant

interest in pursuing energy independence and has worked with Idaho National Laboratory

to investigate feasible approaches. This model assumes that the microgrid is capable of

expanding generation by adding hydro-electric, wind, solar, and diesel fired generation to

satisfy demand when a grid disconnect occurs, but actual hydrological resources are at or

near full utilization in the area and the feasibility of adding these generation resources have

not been studied.
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The initial development of the simulation described in Chapter 4 used a linear cost func-

tion dependent on energy production of the generation units instead of a fuel consumption

function. This approach provided a close approximation to the quadratic relationship be-

tween the variable fuel cost and energy produced, but allowed for the implementation of the

problem as an LP which decreased the amount of computational overhead present in the

loop structure. This approach carried over as the integrated model was developed since it

allowed the objective function for each discrete problem to be of the same form.

Additionally, the early implementation used a traditional approach that evaluated the

unit commitment and economic dispatch problems independently. In this case, unit commit-

ment was evaluated for extended periods of time on six hour intervals, while the economic

dispatch of the generation units were evaluated on short intervals of 15 minutes. This

avoided non-linearity of the system by segregating the commitment and dispatch decisions

but introduced significant overhead in the simulation as the result of multiple evaluations

per iteration. As a result, iteration cycle times were typically between 50 to 100 millisec-

onds which was unacceptable since the game resolution was limited to approximately 9000

time-steps per year. In order to reduce the cycle time, the economic dispatch and demand

response were integrated into a single mixed integer linear programming problem as in (2.7).

Objective:

min

 −
∑Ng

i=1 Cg (i)Pg(i, t)

−
∑NL

j=1 FL (j)Cp (j)PL (j, t)


Subject to:

Ng∑
i=1

PG (i, t) =

NL∑
j=1

PL (j, t) Energy Balance

PGmin
(i) ≤ PG (i, t) ≤ PGmax (i) , i ∈ {1, Ng} Generation Limits

FL (j) ∈ {0, 1} Binary Constraint

(2.7)
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For this formulation, the decision variables included the dispatch level of the generation

Pg(i, t) on a per unit basis and the binary commitment flag of the loads Fd(j, t). Since

renewable generation is assumed to be non-dispatchable, it only serves as inputs to the

energy balance equation and does not appear in the objective function. To prevent the

model from choosing to shed load rather than ramp generation, a penalty cost Cp(j) was

assigned to the load shed decision variables that artificially represented the loss of revenue

and customer satisfaction. This also includes the energy from spot market purchases Psm and

the change in the energy storage ∆PST . Critical loads such as hospitals were assigned the

highest penalty cost and non-critical loads where assigned the lowest. This implementation

retained a lower generation limit of 50% for both thermal and hydro-electric units. As a

result of implementing this approach independent of the unit commitment problem, the

desired cycle time was reduced to less that 1 millisecond, which allowed the simulation to

evaluate approximately one year of data in 15 minutes.

Objective:

min


−
∑NG

i=1CG (i)PG(i, t)

−
∑NL

j=1 FL (j)Cp (j)PL (j, t)

+CsmPsm + Cs∆PST


Subject to:

Ng∑
i=1

PG (i, t) + Psm + ∆PST =

Nd∑
j=1

PL (j, t) Energy Balance

0 ≤ PG (i, t) ≤ PGmax (i) , i ∈ {1, Ng} Generation Limits

PSM ≤ PTL Transmission Limit

0 ≤ PST ≤ PSTmax Storage Constraint

FL (j) ∈ {0, 1} Binary Constraint

(2.8)

The integration of the unit commitment problem into this framework proved to be somewhat

challenging. When implemented directly into the objective function as a binary constrained
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decision variable as was done for the demand response, the system became non-linear. To

resolve this issue, the unit commitment was implemented as a relaxation of the generation

limit constraints. This approach limits the realism of the model for thermal units, but

allowed the system to retain the desired simulation speed. In addition, to allow for power

to be imported and storage to be included in the system, eq.(2.7) was modified to include

storage, ramp rate restrictions and transmission constraints as seen in Eq. (2.8). With the

formulation of the integrated dispatch algorithm in place, the definition of the model inputs

was developed which are described next in Chapter 3.
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Chapter 3: Definition of System Inputs

The development of the integrated dispatch algorithm provides a generalized platform

capable of scaling to large systems and is primarily limited by the computational power of

the microprocessor. It allows for a variety of generation and load elements, each with unique

attributes, to serve as inputs while also constraining the problem by imposing generation

ramp rate limits, storage limits, transmission line limits, and energy conservation in the sys-

tem. This provides the opportunity to include many types of generation and load models in

the simulation, but to limit the scope of the project, only those types that are representative

of a broad class of elements were included. As an example, generation was categorized as

renewable, dispatchable, and spot market energy purchases in the event that local energy

supply does not satisfy demand. In the case of the load in the system, each load type was

segregated into either residential, commercial and industrial types. In addition, while elec-

tric vehicle charging system models are still in the developmental stages, loads from these

systems are included to stress the model. Grid scale storage is represented in the system in a

coupled source/sink configuration and is assumed to be locally available for energy storage.

The models for each of these microgrid inputs will be developed in the following sections.

3.1 Renewable Generation Models

Renewable generation is available from a variety of sources which include wind, solar,

hydroelectric, geothermal, and biomass sources. Of these, only the first three are modeled

in the project since they represent the majority of investment in renewable energy and

are prevalent in the Pacific Northwest. Each of these renewable resources are assumed to

be non-dispatchable and non-curtailable, which serves to demonstrate the challenges faced

when integrating renewable resources into a power system. Because of this, the renewable

resources are only constrained by the peak capacity of the resource and not by the integrated

dispatch algorithm. The renewables therefore do not appear in the objective function of the

integrated dispatch algorithm and only appear in the energy balance constraint as part of
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the total available generation. In the event that an independent power producer chooses to

significantly increase the penetration of renewable resources in the microgrid, the opportunity

for significant variability in total generation capacity is possible since these resources cannot

be curtailed. The formulation of the renewable models follows in the following sections.

3.1.1 Solar Energy Model

The energy from the available solar resources was determined by normalizing the measured

solar radiation incident to the surface of the solar array. This measurement was preferred

over other data sources because it accurately represented daily and seasonal solar variabil-

ity. In addition, the data-set includes variability as the result of cloud cover and other

inclement weather conditions which adds additional realism to the simulation. This data-set

was collected from the National Solar Radiation Database [18] which is maintained by the

Renewable Resource Data Center (RRDEC) at the National Renewable Energy Laboratory

(NREL). The renewable energy available from solar installations is defined in Eq. (3.1) for

the nth timestep.

GRS (n∆t) = NsPs∆t
Hs (n∆t)

max (Hs)
(3.1)

This formulation assumes that all solar installations have a maximum power capacity Ps.

The number of solar arrays available Ns is specified by the user to allow for different degrees

of solar penetration in the microgrid. The measured solar radiation Hs is from the data-set

for the specified timestep and is normalized to the maximum annual solar radiation. This

normalization process allows for scaling of the generation as additional solar resources are

brought online while maintaining the short and long term periodic variability in the data-set.
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3.1.2 Wind Energy Model

The energy from the available wind resources was determined by approximating the char-

acteristic power curve of the Vestas V110 2 MW wind turbine [19] which has characteristics

typical of wind turbines of comparable size as seen below in Figure 3.1. The figure shows

the turbine has a cut-in speed of 3 meters per second and reaches full production for wind

speeds between 12 and 20 meters per second.

Figure 3.1: Vestas V110-2MW Power Curve [19]

From this, the energy available from the wind resources was defined as a piece-wise linear

function as in Eq.(3.2) that approximates this power curve characteristic. Similar to the

energy calculation for solar energy model, the wind energy model assumes that all wind

turbines share the same characteristic and therefore the peak available power is determined

by the product of the peak available power per unit Pw and the total number of units Nw.

GRW (n∆t) =


NWPW∆tνW (n∆t)

9
, 3 < νW (n∆t) ≤ 12

NWPW , 12 < νW (n∆t)

0, otherwise

(3.2)
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The wind speed data νw, was collected from the System Advisory Model [20] developed

by the National Renewable Energy Laboratory and represents wind speed data collected at

Idaho Falls Regional Airport. The data was collected on an hourly bases. It was therefore

necessary to interpolate the sub-hour datapoints within this data-set to provide the 35,040

points of data required for the simulation. Similar to the solar energy model, significant

challenges are presented to the independent power producer if the penetration of wind energy

becomes substantial.

3.1.3 Hydro-Electric Energy Model

The energy from the available hydro-electric resources was formulated in a similar manner

to that of the solar resources as seen in Eq. (3.3). In this case however, the volumetric flow

rate used in the formulation rather than the solar radiation to determine the energy available

from the resource. The volumetric flow rate data-set represents historical flow rate data for

the Snake River which was collected by Idaho Falls Power and the Center for Advanced

Energy Studies [21] with sampling performed at 15 minute intervals. The volumetric flow

rate data-set was normalized to the peak flow rate in the data-set and scaled to the number

of Hydro-Electric installations selected by the independent power producer and assumes a

common peak power capacity of each installation.

GRH (n∆t) = NRHPRH∆t
QRH (n∆t)

max (QRH)
(3.3)

This model does not account for over utilization of the hydro-geological resources and

therefore can misrepresent the total available power from these resources. However, unlike

energy from solar and wind, higher penetration of hydro-electric generation, which experi-

ences relatively long term seasonal variability, does not present a significant challenge when

integrating into the dispatch model.
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3.2 Dispatchable Generation and Spot Market Contracts

Dispatchable generation refers to generation sources that are available to a system oper-

ator which can be dispatched to satisfy the electrical load in a system. In the context of this

project, dispatchable generation represents the local generation sources that the independent

power producer has direct control of and includes local gas-fired generation, coal-fired gen-

eration, and hydro-electric generation facilities. In this case, the dispatchable hydro-electric

generation is distinguished from renewable hydro-electric generation discussed previously by

assuming that dispatchable hydro-electric sources have adequate storage available to allow

for some degree of spinning reserve to be provided by the resource. In the case of hydro-

electric sources classified as renewable, these sources are considered to be run of the river,

which implies that they have no storage available and prevents them from being considered

dispatchable.

Since the dispatchable generation sources are controlled by the integrated dispatch algo-

rithm, no data is required from data-sets as seen in Eq. (3.4). Similar to the other models,

it determines the peak energy capacity of the respective sources given the number of units

available and the peak power output of each unit. The integrated dispatch algorithm then

determines the optimal dispatch level, d{C,G,H} (n∆t), for the current timestep, where the

dispatch level is defined on the interval [0, 1] and constrained by the ramp rate limits assigned

to the particular generation type and the energy balance equation.

GD{C,G,H} (n∆t) =
(
N{c,g,h}P{c,g,h}∆t

)
d{c,g,h} (n∆t) (3.4)

The energy available from spot market purchases is similarly formulated as seen in Eq.

(3.5) and allows for energy to be purchases from external sources that are assumed to be

ideal. The energy from spot markets assumes that NSM contracts have been purchased and

that any portion of the total energy available may be used. Because of this, the decision

variable dSM is defined on the interval [0, 1] as was the case for the dispatchable generation.
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Unlike the dispatchable energy model however, the energy purchased from spot markets

does not have a ramp rate limit imposed since the energy is assumed to be pre-allocated

by the contract. This allows the integrated dispatch algorithm to choose any dispatch level

and prevents ramp rate restriction of the dispatchable generation or variability in renewable

generation from violating the energy balance constraint.

GSM (n∆t) = (NsmPsm∆t) dsm (n∆t) (3.5)

3.3 Load Models

Loads are commonly segregated into segments of the distribution system that predomi-

nantly service residential, commercial, and industrial customers. Each of these segments may

be curtailable depending on the design of the distribution system and can include critical

loads. While electric vehicle charging systems are commonly included in one or more of these

load segments, they are implemented separately so that the performance of the integrated

dispatch algorithm can be evaluated for different levels of penetration. The demand response

strategy implemented by the utility generally includes provisions for load shedding in the

event that generation cannot adequately meet the demand of the load. The models that

follow assume that the microgrid has such provisions and determines if one or more of the

loads must be shed to maintain system stability. Each of the loads included in this project

are described in the next two sections.

3.3.1 Primary Load Models

The primary load models represent the residential, commercial and industrial loads

which are assumed to be aggregate models of distribution feeders servicing each of these

load types and assumes that load sheddding provisions exist for each load type. Each of the

primary loads display periodic daily behavior and therefore tend to be relatively simple to
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include into a dispatch algorithm. For this study, the residential and commercial load models

use data-sets derived from the the System Advisory Model [20] which are constructed from

average historical demand profiles for population centers that share common characteristics

as the study area. The data-set for industrial loads are derived from data collected by the

Center for Advanced Energy Studies [21] and represents actual historical load demand from

a distribution feeder serviced by Idaho Falls Power that primarily services an industrial

zone. Each element from these data-sets, represented by Y{R,C,I} (n∆t), is normalized and

multiplied by the peak energy demand of the corresponding load as seen in Eq. (3.6). The

demand response flag, d{R,C,I}, is defined on the set {0, 1} and represents the binary decision

variable determined by the integrated dispatch algorithm that indicates if the load is active

or inactive.

L{R,C,I} (n∆t) =
(
N{r,c,i}P{r,c,i}∆t

) Y{r,c,i} (n∆t)

max
(
Y{r,c,i}

)d{r,c,i} (n∆t) (3.6)

To force the integrated dispatch algorithm to prefer to ramp generation rather than shed

load, a penalty cost was assigned to loads in the objective function which represents both

the cost of lost revenue and customer satisfaction. As will be seen in Chapter 4, the penalty

cost provided a mechanism to tune the behavior of the integrated dispatch algorithm.

3.3.2 Electric Vehicle Load Models

Electric vehicle charging systems are unique in that they can represent significant, non-

periodic loads on the electrical grid. While some periodicity can be assumed for residential

based charging systems that schedule the recharge cycle, Table 1.1 shows that these loads

are typically less that 7 kW and therefore not likely to present significant challenges to a

microgrid operator or distribution system. Further, since these loads will likely occur in

the evening, some degree of daily load leveling can be assumed. The commercially installed

electric vehicle charging systems however are anticipated to present significant challenges
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both to microgrids and the larger electrical grid as a whole as a result of the high power

requirements of up to 120 kW over very short intervals. Since these systems will likely be used

predominantly in preparation for the return commute, significant loading will occur during

peak demand periods that could be difficult to distinguish from system fault conditions.

Electric vehicle charging loads were modeled separately from the primary load types to

allow the system operator the option to investigate the impact of increased electric vehicle

penetration. While these loads will be included as part of distribution feeders that aggre-

gately represent the types of loads previously introduced in the last section, it is likely that

individual metering and control will be possible since these charging systems often feature

smart metering technology. Currently however, the impact of these types of loads have not

been extensively researched. While efforts have attempted to develop representative models

[22], many have not been widely accepted. Because of this, the electric vehicle charging

loads were determined for the product of the nominal load per charger type and a uniformly

distributed variable nEV {r,c}.

LEV {R,C} (n∆t) =
(
nEV {r,c}PEV {r,c}∆t

)
dEV {r,c} (n∆t) (3.7)

Where:

nEV {r,c} ∈
{

0, 1, ..., NEV {r,c}
}

(3.8)

The number of electric vehicle charging systems active during any iteration of the simula-

tion is determined at the beginning of the iteration for inclusion into the integrated dispatch

algorithm evaluation. This provided dynamic loading of the system in terms of these charging

systems which provides a reasonable approximation for the commercially installed systems

since the charging period roughly corresponds with the selected timestep of the simulation.

In the case of the residential based units however, Table 1.1 indicates that the charge times

can be in excess of 12 hours. Therefore, this approach needs to be refined to provide a more

accurate representation of these systems.
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3.4 The Energy Storage Model

While grid scale storage is still prohibitive both economically and technologically, energy

storage was included in the simulation as an optional element of the microgrid that can be

added by the system operator. The model used to represent energy storage assumes that the

change in storage, ∆ST , is a result of the excess or deficient energy in the microgrid. As such,

the change in storage is represented in the integrated dispatch algorithm as the difference

between the discharging, STsource, and charging, STsink, state of the storage element. These

elements are modeled in the same manner as generation and load elements, but require

separate coupling and state of charge constraints to be added that ensure that the rate of

charge is limited and that charge and discharge do not occur simultaneously. This allowed

the change in storage to be formulated as seen in Eq. (3.9).

∆ST = STsink − STsource (3.9)

The state of charge of the energy storage element is evaluated after the optimal change in

storage is determined for each iteration. The state of charge is defined in Eq. (3.10).

STSOC (n∆t) = STSOC ((n− 1) ∆t)−∆ST (3.10)

This implementation allowed the change in storage to be implemented directly into the

objective function and energy balance equation of the integrated dispatch algorithm. The

state of charge of the energy storage model was evaluated after the integrated dispatch

algorithm determined the optimal change in storage allowed for additional constraints to be

placed on the storage element to define minimum and maximum storage levels.
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Chapter 4: Simulation Development

The simulation developed to test the integrated dispatch algorithm was created in

MATLAB R© R2015b and uses functionality from the Optimization ToolboxTM, which pro-

vides several tools useful for optimization problems such as those presented in Chapter 2. The

simulation requires two input parameters designated as Ng and Nl which are single dimen-

sional arrays containing the number of generation and load elements as defined in Chapter 3.

The function begins by initializing and importing the data-sets and then iteratively evaluates

the integrated dispatch algorithm until the end of data is reached. The flowchart shown in

Figure 4.1 illustrates the high level structure of the simulation. A complete listing of the

simulation code is available in Appendix A.

Figure 4.1: Simulation Flowchart
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In the following sections, the simulation will be divided into three primary areas that

include the data initialization, the implementation of the integrated dispatch algorithm,

and error handling of the data. Each of these sections will describe the formulation and

implementation of the integrated dispatch model developed in Chapter 2 as well as the

generation and load models described in Chapter 3.

4.1 Data Initialization

The data initialization section of the code includes the declaration of the global constants

and data structures used within the simulation. In addition, the historical data-set used by

the renewable generation and load models is imported from the external sources and utilized

to generate the 15 minute data-set.

The simulation defines two global constants represented by scalar quantities that include

the simulation timestep and the width of the plot window, labeled dt and plotwidth respec-

tively. In addition, the data structures defined for the generation, load, and storage models

contain static parameters that are passed within the structures to the functions that require

them. These static parameters are summarized in Tables 4.1, 4.2 and 4.3.

4.1.1 Data Structure Initialization

There are three data structures in the simulation that store static and dynamic data for

the generation, load, and storage elements of the simulation. Each structure is represented

by an mxn array using a similar syntax so that data can be easily interpreted. As the

name suggests, these arrays were initially implemented as structures, however the manner

that these structures are implemented in Matlab presented challenges when storing dynamic

data; therefore, array elements were used instead.

The generation data structure is represented by an 8x10 array arranged such that the rows

represent the specific generation types as described in Chapter 3 while the column definitions
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are described in Table 4.1. Several of the parameters within this array are reserved for future

implementation and are currently not implemented in the simulation. These include the

maximum number of units allowed in the simulation and the start up cost associated with

starting or restarting a coal or gas-fired generator.

Table 4.1: Generator Data Structure

Column Name Associated Variable Type
1 Number of units N{s,w,rh,g,c,h,sm} Input Parameter
2 Max Number of units Reserved
3 Peak power per unit P{s,w,rh,g,c,h,sm} Static Parameter
4 Ramp up rate (MW/dt) Static Parameter
5 Ramp down rate (MW/dt) Static Parameter
6 Fuel Cost (USD/MWhr) Cf{s,w,rh,g,c,h,sm} Static Parameter
7 Start Up Cost (USD) Not Implemented
8 Operations Cost (USD/MWhr) Static Parameter
9 Instantaneous Value (MWhr) G{R,D,SM}{S,W,H,G,C} Dynamic Parameter
10 Percent dispatched d{c,g,h} Dynamic Parameter

The load data structure is represented as an 7x8 array and is similarly constructed so

that the first six rows represent the different types of loads discussed in Chapter 3. The

seventh row is included to allow for system faults and is represented as an instantaneous

250MW load on the system. This mechanism was included for later implementations and

therefore serves as a placeholder for future development. The column definitions for the load

data structure are seen in Table 4.2.

Table 4.2: Load Data Structure

Column Name Associated Variable Type
1 Number of units N{r,c,i,EV r,EV c} Input Parameter
2 Max Number of units Reserved
3 Peak demand (MW) P{r,c,i,EV r,EV c} Static Parameter
4 Energy Cost (USD/MWhr) C{r,c,i,EV r,EV c} Static Parameter
5 Penalty Cost (USD/MWhr) CP{r,c,i,EV r,EV c} Static Parameter
6 Load Shed Preference Not Implemented
7 Instantaneous Value (MWhr) L{R,C,I,EV R,EV C} Dynamic Parameter
8 Unit Commitment Flag d{r,c,i,EV r,EV c} Dynamic Parameter
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The storage data structure is represented by a 3x8 array, where the rows represent the

storage source element, storage sink element, and the grid storage state of charge. While

the state of charge element was not required to be included in this array, it was included to

provide a similar implementation for all three components. In addition, the storage elements

include charge and discharge characteristics which were incompatible with the generation and

load data structures. Table 4.3 shows the column definition for the storage data structure.

Table 4.3: Storage Data Structure

Column Name Associated Variable Type
1 Number of units NST Input Parameter
2 Max Number of units Reserved
3 Storage Capacity/unit (MW) PST Static Parameter
4 Charge/Discharge Rate (MWhr/dt) Static Parameter
5 Charge/Discharge Cost (USD/MWhr) CST Static Parameter
6 Operation Cost (USD/MWhr) COST Static Parameter
7 Instantaneous Value (MWhr) STSOC Dynamic Parameter
8 Change in charge (MWhr) ∆ST Dynamic Parameter

4.1.2 Imported Data Initialization

Data-sets were imported for both the renewable energy and load profiles. The data-sets

used for the renewable energy and industrial load profiles represent historical data while

the residential and commercial load profiles were generated from models developed by the

National Renewable Energy Laboratory as described in Chapter 3. The solar radiation data

was accessed directly from the solar radiation database available from NREL [18] which

was collected hourly. The residential and commercial data was similarly collected from an

hourly dataset from the System Advisory model [20]. This data was linearly interpolated to

produce the quarter hour and half hour data points which resulted in 35,040 data points per

year for each data-set and stored into FifteenMinuteData array. Figure 4.2 illustrates the

algorithm used to interpolate the data.

The historical data-sets for wind speed, flow rate, and industrial load were collected on
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Figure 4.2: Interpolation Algorithm Flow Chart

10 minute intervals by the Center for Advanced Energy Studies [21]. The data was imported

into a spreadsheet format and interpolated for the fifteen minute data points using a modulus

operation which resulted in the 35,040 data points representing one year’s worth of data.

This data was similarly stored in the FifteenMinuteData array for use within the iterative

loop which is summarized in Table 4.4.

4.2 Integrated Dispatch algorithm Implementation

The integrated dispatch algorithm was implemented using the MATLAB R© function

intlinprog which is included in the Optimization ToolboxTM. This function evaluates mixed

integer linear programming problems and requires at least three parameters that define the

objective function and constraints of the problem. The general format of the function is seen
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Table 4.4: Storage Data Structure

Row Data-set Data Source Description
1 Solar Radiation NREL Interpolated from hourly data
2 Wind Speed CAES Interpolated from 10 minute data
3 Normalized Hydro CAES Interpolated from 10 minute data
4 Normalized Residential NREL Interpolated from hourly data
5 Normalized Commercial NREL Interpolated from hourly data
6 Normalized Industrial CAES Interpolated from 10 minute data

in Eq. (4.1).

intlinprog (f, intcond, A, b, Aeq, beq, lb, ub) (4.1)

The function f was formulated as a 1x12 array containing the coefficients of the objective

function as formulated in Eq. (2.8). The inequality constraints which included the generation

and transmission limits and storage constraints were included in a 9x12 coefficient matrix A

and a 9x1 constant array b which were expressed in the general form as seen in Eq. (2.1).

The equality constraint included only the energy balance constraint which was represented

as a 1x12 coefficient matrix Aeq and a scalar quantity represented by beq. Since only the

load demand response flags were defined as integer quantities, the integer condition vector

intcon included references to each of the associated decision variables. Finally, the lower and

upper bound for each decision variable was defined by the lb and ub arrays.

4.2.1 Error Handling and Convergence Testing

In addition to the solution, the inlinprog function returns an exitflag which was used

for error handling and convergence testing in the simulation. Under normal conditions, the

function will return an exit flag of 1 to indicate that a convergent solution was achieved. In

the event that exit flag is not equal to 1, a counter, which is initialized to zero, is incremented.

This provided a mechanism to identify the number of non-feasible solutions and the rate of

divergence of the simulation.
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Chapter 5: Results

The results of this research are discussed in the following two sections. Section 5.1 presents

the results as published in Proceedings of the 2016 IEEE Conference on Technologies for

Sustainability and presents evidence of the convergence of the integrated dispatch algorithm.

Section 5.2 expands on the results by introducing the simulation behavior under additional

conditions.

5.1 IEEE Technologies for Sustainability Conference Publication

The results of this project were published in the fourth annual IEEE Technologies

for Sustainability Conference (SusTech 2016) and are reprinted here following the specified

formatting requirements of the College of Graduate Studies. the numbers for all citations,

equations and tables have been updated for inclusion in this thesis and therefore differ from

the publications originally accepted form. The original paper is available upon request.

Dispatch Control with PEV Charging and Renewables for

Multiplayer Game Application

Nathan Davis, Student Member, IEEE, Brian Johnson, Senior Member, IEEE, Timothy

McJunkin, Senior Member, IEEE, Don Scoffield, Sera White

ABSTRACT:

This paper presents a demand response model for a hypothetical microgrid that integrates

renewable resources and plug-in electric vehicle (PEV) charging systems. It is assumed that

the microgrid has black start capability and that external generation is available for purchase

while grid connected to satisfy additional demand. The microgrid is developed such that

in addition to renewable, non-dispatchable generation from solar, wind and run of the river

hydroelectric resources, local dispatchable generation is available in the form of small hy-

droelectric and moderately sized gas and coal fired facilities. To accurately model demand,
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the load model is separated into independent residential, commercial, industrial, and PEV

charging systems. These are dispatched and committed based on a mixed integer linear

program developed to minimize the cost of generation and load shedding while satisfying

constraints associated with line limits, conservation of energy, and ramp rates of the gen-

eration units. The model extends a research tool to longer time frames intended for policy

setting and educational environments and provides a realistic and intuitive understanding of

beneficial and challenging aspects of electrification of vehicles combined with integration of

green electricity production.

Index Terms: Plug in electric vehicle, demand response, real time dispatch, gamification.

I. INTRODUCTION:

The introduction of charging stations for plug-in electric vehicles (PEVs) is intended

to decrease greenhouse emissions by relying on bulk power generation rather than internal

combustion engines for short to medium length commutes. This will inherently increase the

load on the power grid and has the potential to stress existing distribution feeders, but can

be beneficial if the charging cycles are scheduled during off peak hours. This is supported by

studies that suggest that load leveling is positively impacted if residential charging occurs

during the off-peak hours from midnight to 6:00 AM [22]. The impact of publicly accessible

direct current fast charging systems (DCFC) is less well understood but they are anticipated

to be used on the reverse commute and, as a result, increase the burden on the power

grid during peak-load hours. To further complicate the issue, renewable generation from

photovoltaic and wind technologies are inherently intermittent and, without storage, cannot

be relied upon for demand response.

In this regard, various authors have developed models to solve the dispatch and com-

mitment problems for PEV charging systems and renewable resources when considered in

isolation [23][24]. However, there is a need to develop a demand response model that in-

corporates these elements while providing reliable dispatch to satisfy the energy balance

equation.
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This paper proposes a model formulated as a mixed integer linear program that incorpo-

rates generation from renewable and dispatchable resources, energy from contract markets

and grid scale storage, and load shedding decisions for distribution feeders servicing residen-

tial, commercial, and industrial loads. While PEV charging systems have been aggregated

into these loads in some studies, the model described in this paper integrates them separately

and discretely with the assumption that they can be remotely curtailed for load shedding

purposes. The model defines the objective function as a cost function associated with unit

dispatch and commitment of local generation and load resources while satisfying the con-

straints associated with energy conservation and equipment rating limitations. This model

is used to demonstrate the dynamic response of the system to variability of the renewable

generation and the increased demand on the system by the PEV charging systems. These

are then aggregated into the energy balance equation and used to minimize the cost of the

dispatchable resources for the current time step. This model is applied to extend a multi-

player game simulation of microgrids [11] to extended time frames for exploration of greater

transportation electrification.

This paper is arranged as follows. Section II specifies the scope and assumptions of the

proposed work. It is followed in Section III by a description of the model development.

Section IV provides a summary of the results followed by the conclusion in Section V.

II. SCOPE:

The model presented in this paper is limited to a single hypothetical microgrid acting

independent of surrounding utilities. External generation may be purchased on spot markets

from polluting and non-polluting sources which are represented by infinite buses constrained

only by the contract amount. The generation and load models were developed from historical

and stochastic sources in order to demonstrate the dynamic behavior of the demand response

model for determining the optimal dispatch of the local resources. Further, the simulation

has been developed with the flexibility to allow for system faults but has not integrated

them at this time. Finally, in order to demonstrate the challenges associated with renewable



43

resource integration into power systems, the renewables are assumed to be non-curtailable

and therefore are always connected to the microgrid after installation. Finally, to allow

for adequate fidelity and compatibility with DCFC system charge times, the simulation is

developed for a medium time scale simulation that uses a time step of 15 minutes to represent

the primary loading periods of the day in order to approximate the response of the model

to variable renewable generation and PEV charging systems.

III. MODEL DEVELOPMENT:

The objective of the study is to develop a demand response model that can be used to

determine the optimal dispatch of the local dispatchable generation resources and perform

load shedding as needed to maintain energy balance when renewable generation variation is

non-curtailable. To accomplish this, the model allows for grid-scale energy storage and for

purchase decisions from spot markets. In order to achieve these objective, three primary

aspects were developed to demonstrate this principle:

A. The Generator Model

The generation model considers three primary contributions to total generation. These

include local renewable generation, local dispatchable generation and energy purchased and

imported from spot markets. Each generation resource is assigned an operation cost, a fuel

cost, and a ramping cost. Local renewable generation cannot be curtailed and represents

distributed generation within the microgrid. The costing structure assigns no fuel or ramping

cost to renewable resources, but assigns high operating costs, which, in this case, is used to

represent the capital and regulatory contract costs. The three types of renewable generation

include solar, wind, and run of the river hydro-electric. The solar generation model uses

normalized normal incident radiation data collected by the Renewable Resource Data Center

(RREDC) at the National Renewable Energy Laboratory (NREL) [8]. This dataset was

selected because it accounted for output variations as a result of climatic, geographic and

seasonal characteristics. The wind generation model uses hourly wind speed datasets from
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the System Advisory Model (SAM) developed at NREL [18] which was interpolated to

satisfy the desired time step selected for the model. The energy output produced from the

wind resources was defined using the characteristics of the Vestas V110 2MW turbine [19].

The run of the river hydroelectric generation model was developed by normalizing historical

volumetric Snake River flow rate data sampled at 15 minute intervals provided by Idaho

Falls Power [21] and interpolating for the simulation time step, as required.

The renewable energy generation for each resource, expressed in units of MWhrs, is

expressed in Eq. (5.1).

GRS (n∆t) = NsPs∆t
Hs (n∆t)

max (Hs)

GRW (n∆t) =


NwPw∆tνW (n∆t)

9
, 3 < ν (n∆t) ≤ 12

NwPw, 12 < ν (n∆t)

0, otherwise

GRH (n∆t) = NHPH∆t
QH (n∆t)

max (QH)

(5.1)

Where:

GR{S,W,H} → Generated Renewable energy (MWhr)

N{S,W,H} → Total number of units

P{S,W,H} → Peak Power output (MW)

HS → Solar Irradiance
(
W
m2

)
νw → Wind Speed

(
m
s

)
QH → Volumetric Flow Rate

(
m3

s

)
∆t → timestep (s)

n → index

Note: a linear approximation of wind generation from minimum to name plate (maximum)

power from the cut in wind speed of 3m/s to peak generation wind speed of 12m/s for the

Vestas turbine. The cut off speed at which the turbine shuts down operation is 20m/s.

Local dispatchable generation is assumed to exist within the microgrid and represents
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fixed assets that can be dispatched at any level between 0 and 100%. The costing struc-

ture for dispatchable resources includes operational, fuel, and ramping costs. In addition,

asymmetric ramp up and ramp down rates are associated with each dispatchable resource

to realistically limit the rate at which the resource can respond to load changes. The three

types of dispatchable generation include coal fired generation, gas fired generation, and hy-

droelectric generation. Coal fired generation incurs the highest ramp cost and lowest ramp

rate while hydro-electric resources incurring the lowest ramp cost, no fuel cost and highest

ramp rate. For the purpose of this paper, limits on the availability of feedstock (e.g. coal,

natural gas, and stored water) are not considered.

Energy purchased from spot markets is limited to a predefined upper boundary defined

by the purchased contract. The energy is assumed to be delivered from an infinite bus and

therefore is not constrained by ramp rate restrictions. Since energy purchased from spot

markets is assumed to be external to the microgrid, it is subject to transmission line limits

and losses. While not implemented at this time, future implementations will allow for day

ahead energy contracts. For this reason, any amount of energy may be purchased on each

timestep within the predefined limits. However, because of restrictive pricing associated with

the spot markets, preference is always given to fully utilize the local dispatchable resources

before utilizing spot markets. Variable pricing in the spot market can be implemented given

a specification of a model of the market or multiplayer game interaction.

The peak energy capacity of local dispatchable generation resources and spot market

contracts are similarly modeled and are of the form:

∣∣GD{C,G,H}
∣∣ = N{C,G,H}P{C,G,H}∆t

|GSM | = NSMPSM∆t
(5.2)

It follows then that the energy generated per timestep is a function of the peak energy

capacity and the dispatch level as determined by the mixed integer linear program described
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by Eq. (5.3).

GD{C,G,H} (n∆t) =
∣∣GD{C,G,H}

∣∣ d{C,G,H} (n∆t)

GSM (n∆t) = |GSM | dSM (n∆t)
(5.3)

Where:

GD{C,G,H}, GSM → Generated Dispatchable energy (MWhr)

N{C,G,H,SM} → Total number of units

P{C,G,H,SM} → Peak Power output (MW)

d{C,G,H,SM} → Dispatch Level

∆t → timestep (s)

n → index

B. A load model with PEV charging system

The load model is composed of residential, commercial, and industrial loads. The resi-

dential and commercial loads are modeled from load profiles, normalized by dividing by the

maximum value, from the System Advisory Model [20]. The industrial load profile for the

model was developed with normalized historical load profiles from Idaho Falls Power [21].

Each of the normalized load profiles were scaled by a user defined Peak Power Demand factor

and the number of units for each type of load to allow variations of load magnitude and mix

to be applied.

L{R,C,I} (n∆t) = N{R,C,I}P{R,C,I}∆t
Y{R,C,I} (n∆t)

max
(
Y{R,C,I}

) (5.4)
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Where:

L{R,C,I} (n∆t) → Load Demand (MWhr)

N{R,C,I} → Total number of units

P{R,C,I} → Peak Power demand (MW)

Y{R,C,I} → Data Source Value

∆t → timestep (s)

n → index

In addition, PEV charging systems associated with residential based slow charging sys-

tems and commercially available DC fast charging systems are included as separate control-

lable loads. The simulation currently assigns the charging load using uniformly distributed

variables to represent the PEV charging systems. Future integration of the residential PEV

slow charging model developed by Scoffield and Kunz [22] into the simulation is planned

to approximate the charging cycle that predominantly contributes to the load during the

evening and morning hours (6:00 PM to 6:00 AM). Since the literature review did not pro-

vide evidence that a model has been developed for DC fast chargers, a uniformly distributed

variable was similarly used. Extending the statistical residential charging model to fast

charging stations for the time periods that are expected to predominantly contribute to the

load in the late afternoon (6:00 PM to 12:00 AM), is left to future work.

C. The Storage Model

Grid-level storage was integrated into the simulation in order to demonstrate the benefits

of such technology when used in conjunction with intermittent renewable resources. In order

to account for the energy transferred to or from the grid-level storage, the storage model

was developed as a coupled sink and source system. Using this approach, the storage sink

behaved as a load element while the storage source element behaved as generation with

constraints limiting only one to be active at a time. Initial approaches introduced non-

linearity in the objective function which was resolved by modifying the cost structure of the

storage prior to evaluation of the MILP based on the current level of charge. The storage
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model was integrated into the cost function defined in Eq. (5.5) and modeled as a change in

the grid storage.

∆ST = STsink − STsource

STSOC = STSOC + ∆ST
(5.5)

Where ∆ST is the change in state of charge of the storage element, STsink and STsource are

the sink and source variables for power supplied to or take from the grid, and STSOC tracks

the state of charge in energy units. It is noted that this approach does not currently account

for losses in the storage system.

D. Dispatch and commitment model

The dispatch and unit commitment model is similar in nature to the Robust Energy and

Reserve Dispatch model presented in [24]. It is formulated as an optimization problem that

minimizes the cost of dispatch of the local resources subject to the energy conservation,

energy production levels, and physical constraints associated with resources defined in Eq.

(5.6).

Objective function:

min C =
∑

CrtWrt

Constraints: ∑
Wg =

∑
Wl

0 ≤ Pda + Prt ≤ Pmax

(5.6)
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Where:

C → Dispatch cost

Crt → Price per MWhr for real time dispatch

Wrt → Energy produced through real time dispatch

Wg → Total energy generated

Wl → Total energy requirement of load

Pda → Power allocated by day ahead dispatch

Prt → Power allocated by real time dispatch

Pmax → Maximum power available from resource

This approach was extended such that the initial formulation of the objective function

accounted for the cost of energy purchased on the spot market, the cost of generation and

the cost of load shedding. The formulation was later extended to include grid level storage.

In order to account for costs associated with ramping the local dispatchable generation, the

ramping costs were determined using the change in dispatch level from the previous timestep

and was evaluated separately from the operations and fuel costs of the unit. The inclusion of

the ramping term as a function of the change in dispatch level was included for clarification

during the objective function formulation, and was later simplified as seen in Eq. (5.8).

In addition, the load commitment flags were integrated into the objective function using

Boolean negation. While these practices clarified the objective function formulation, they

also resulted in a sub-optimal formulation as seen in Eq. (5.7).

Objective function:

min C =


∑[

(Cop + Cf )i di + Cj (di (n)− di (n− 1))
]
Gi

+
∑

[pj (1− dj)Lj] + CSMGSM + CST (STsource + STsink)
(5.7)

To optimize the objective function, constant terms were eliminated which resulted in

the simplified objective function in Eq. (5.8). This resulted in the elimination of both the



50

di(n − 1) term of the ramping term as well as the negation term of the load curtailment

penalty terms.

min C =


∑

[(Cop + Cf + Cr) diGi]−
∑

[pjDjLj]

+CSMGSM + Cst |∆ST |
(5.8)

The constraints were similarly extended to account for the ramp rate restrictions placed

on the dispatchable generation sources, the storage limits, the dispatch levels all treated as

continuous on the interval [0, 1] and the load commitment flag as treated as discreet in the

set {0, 1}. The author is aware of the simplification of a static ramping cost that should be

considered as a function of the ramp rate. However, this introduces a non-linearity, which

eliminates the possibility of using straightforward linear programming. For the purpose

of the initial gamification with a tractable time to solve, the solution is left sub-optimal.

Constraints:

∑
diGi −

∑
djLj + dsmGsm = 0 Energy balance constraint∑

[diGi (n)− di (n− 1)Gi (n− 1)] ≤
∑

Gri Ramp rate constraint

STsource − STsink + STSOC ≤ max (ST ) Upper storage limit

STsource − STsink + STSOC ≥ 0 Lower storage limit

di ∈ [0, 1] Generation dispatch level

dj ∈ {0, 1} Load commitment flag

(5.9)

The constraints above were then reformulated in terms of the decision variables which
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resulted in Eq. (5.10):

∑
diGi −

∑
djLj + dsmGsm = 0 Energy balance constraint∑

diGi (n) ≤
∑

[Gri + di (n− 1)Gi (n− 1)] Ramp rate constraint

STsource − STsink ≤ max (ST )− STSOC Upper storage limit

−STsource + STsink ≤ STSOC Lower storage limit

di ∈ [0, 1] Generation dispatch level

dj ∈ {0, 1} Load commitment flag

(5.10)

Where:

Cop → Operation cost of generation (USD/MWhr)

Cf → Fuel cost of generation (USD/MWhr)

Cr → Ramp up/down cost of generation (USD/MWhr)

d → Dispatch level

G → Generation capacity (MWhr

p → Penalty for load shedding (USD/MWhr

L → Load (MWhr)

The simulation was implemented in a Matlab script using the mixed-integer linear pro-

gramming function, intlinprog(), to compute the minimum solution to the cost function

applying the applicable constraints at each time step.

IV. Results:

To evaluate the effectiveness of the dispatch model, simulations were performed utilizing

varying levels of renewable generation and PEV charging system penetration in the micro-

grid. Each simulation evaluated the model for 35,040 time steps which represents one year’s

worth of data.
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Four simulations were performed which include:

• Baseline Case

– Peak Generation Capacity: 175 MW
– Peak Load: 140 MW
– No Renewable Generation
– No PEV Charging systems

• Case 2:

– Peak Generation Capacity: 470 MW
– Peak Load: 334.3 MW
– No Renewable Generation
– Peak PEV Charging Load: 9.1 MW

• Case 3:

– Peak Generation Capacity: 410 MW
– Peak Load: 350 MW
– Peak Renewable Capacity: 200 MW
– No PEV Charging systems

• Case 4:

– Peak Generation Capacity: 410 MW
– Peak Load: 370 MW
– Peak Renewable Capacity: 200 MW
– Peak PEV Charging Load: 40 MW

Table 5.1 summarizes the results of the four test cases described above.

TABLE 5.1: Summary of Test Case Feasibility
Total Number of Feasible Solution

Non-Feasible Convergence Rate
Solutions

Case 1 22 99.94%
Case 2 11 99.97%
Case 3 85 99.76%
Case 4 79 99.77%

As illustrated, the results from all four test cases show a high feasible solution conver-

gence rate. This indicates that the linear program converged to a solution for the objective

function while satisfying the constraints. The first two test cases which did not include any

renewable generation produced the fewest number of infeasible solutions while the latter

two cases produced the highest number of infeasible solutions. This suggested that the fea-

sible solution convergence rate was influenced by the renewable generation penetration in
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the microgrid. This was supported by observations when it was noted that the non-feasible

solutions occurred during instances for which the microgrid was not importing power from

the spot market contracts and was relying only on local dispatchable and renewable gener-

ation. During these instances, sudden significant decreases in load or increases in renewable

generation resulted in non-feasible solutions that failed to satisfy the energy balance con-

straint. In both of these cases, the down ramp rate restricted the dispatchable generation

from spinning down quick enough to achieve equilibrium. This resulted in instances of over-

production when non-feasible solutions were encountered. The “price” of over production

becomes energy that is provided to the connect transmission system without compensation,

burned off as heat, or creation of a frequency instability.

V. Conclusion:

As described in Section IV, the dispatch and commitment model was generally able

to determine a feasible solution. The test cases demonstrated that the model was more

likely to converge to a feasible solution in the absence of renewable generation. Further,

the model showed no sensitivity to increased penetration of PEV charging systems. This

was observed to be the result of the limitations placed on the ramp down rate for the

dispatchable generation in instances when no power is imported from spot markets. The

dispatch model appears to be a feasible, albeit suboptimal, mechanism to explore time frames

in a game context that will allow players to experience the effects of increased number of

PEVs connected to the electricity grid. It is suggested that future work investigate the

impact of curtailment of renewable resources to the feasible solution convergence rate. More

optimal dispatch algorithms could be introduced given computationally tractable solutions

for variable ramp rates can be implemented in future work.
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5.2 Simulation Characteristics

In addition to convergence testing of the integrated dispatch algorithm as presented in

Section 5.1, observations were made directly from the simulation interface, an example of

which is shown in Figure 5.1.

(a) Renewable Generation and Storage

(b) Dispatchable Generation and Spot Market Contracts

(c) Demand

(d) Total Generation and Load

Figure 5.1: Simulation Interface Overview
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As seen here, the interface is divided into four plot areas. Each plot includes the increment

timestep on the horizontal axis and energy produced or consumed on the vertical axis. The

plot areas were scaled to represent the previous two days of the simulation and were separated

to allow the user to easily distinguish between the different types of generation and load in

the system as well as to segregate elements with comparable magnitudes. In Figure 5.1, only

the first 80 timesteps are illustrated to allow for adequate resolution of the data.

The upper plot area shown in Figure 5.1a represents the renewable generation and grid

scale storage. This plot shows the significant variability of the wind resource compared to

the limited variability of the hydroelectric resource. In addition, the plot shows on significant

output from the solar resource which suggests that the data occurred during evening hours or

during a period of significant cloud cover. In addition, the upper plot area shows the charge

and discharge cycles of the storage element which are conditioned to prefer an average state

of charge of 50% in the simulation model settings. The second plot area shown in Figure 5.1b

includes the dispatchable generation, referenced in the legend as DCoal, DHydro, DLP and the

spot market energy purchases, represented as SMCoal and SMNuclear. The energy from the

spot markets were separated into these two types to allow developers to include an option

to purchase energy from ’green’ and ’polluting’ sources. The third region shown in Figure

5.1c illustrates the load profiles for each of the load types. This particular simulation does

not include load from either of the electric vehicle charging systems. Finally, in Figure 5.1d,

the total load and generation are represented. Since the problem is constrained to satisfy

the energy balance equation, the total generation and load will overlay each other whenever

the integrated dispatch algorithm converges to a solution as shown.

5.2.1 Generation Ramp During Startup Conditions

At the beginning of the simulation, all dispatchable generation is assumed to be in an

idle state. This requires the simulation to initially purchase all energy from spot markets

to satisfy demand while the dispatchable generation resources to ramp up. It is expected
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that the “ramp up” condition is observable during startup. Figure 5.2 shows this behavior

for approximately the first 50 timesteps of the simulation. Since the dispatchable generation

from coal has the slowest ramp rate of 0.05pu
dt

, it takes the longest to ramp to full produc-

tion. Gas-fired generation has a slightly faster ramp rate of 0.1pu
dt

and therefore reaches full

production before dispatchable coal. Dispatchable hydroelectric has the fastest ramp rate of

0.5pu
dt

and reaches full production well in advance of the thermal units.

Figure 5.2: Startup Behavior of Simulation

It is noteworthy to point out that after the dispatchable units satisfy demand, the dis-

patchable generation with the fastest response and greatest cost is decreased while the gen-

eration with the slowest response and lowest cost is increased. Figure 5.2 additionally shows

the dependency between each of the dispatchable resources and spot market contracts. As

suggested, the energy purchased from spot market contracts is at the maximum during ini-

tialization and decreases as the dispatchable generation becomes available. Further, since the

dispatchable generation with quick ramp rates are assigned higher costs than the resources

with slower responses, the simulation prefers to ramp the slow resource to full production

and decrease the dependence on the more expensive alternatives.

5.2.2 Simulation Behavior During Divergent Behavior

The results presented in Section 5.1 demonstrate the rate of convergence of the in-

tegrated dispatch algorithm during the four scenarios presented, but did not discuss the

behavior of the simulation when the algorithm failed to achieve a convergent solution. Un-
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der these non-convergent conditions, the simulation was developed to use the solution from

the previous timestep for the current timestep. This method was developed after analysis

of the simulation revealed that divergent behavior only occurred during instances when the

system was operating independent of the external system. It was determined that under

this condition, the integrated dispatch algorithm would fail to converge if either a sudden

decrease in demand or an increase in renewable generation occurred which prevented the

dispatchable generation from decreasing production quick enough to maintain the energy

balance constraint. This resulted in generation exceeding demand until convergence was

achieved, which generally occurred on the subsequent timestep.

Figure 5.3 shows one such non-convergent event discovered during the analysis of the

third scenario described in Section 5.1. In this instance, Figure 5.3c shows a point-wise

drop in the industrial load profile near timestep 52. This point-wise drop in industrial load

is suspected to be the result of a recloser operation recorded in the dataset. As a result,

the previous solution for the dispatchable generation was carried forward and resulted in no

change in production for that timestep as seen in Figure 5.3b. This caused the generation

to exceed demand for the subsequent timestep, and thereafter, the simulation converged to

a solution and consequently restored energy balance in the system as seen in Figure 5.3d.
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(a) Renewable Generation and Storage

(b) Dispatchable Generation and Spot Market Contracts

(c) Demand

(d) Total Generation and Load

Figure 5.3: Energy Balance during Divergent Solution
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Chapter 6: Summary and Future Work

6.1 Conclusion

This thesis presented the development of an integrated dispatch algorithm, which was

developed to determine the optimal economic dispatch and demand response decisions given

a set of inputs from generation and load elements. This algorithm is unique in that it

allows both traditional generation and load elements as well as generation from renewable

resources and loads from electric vehicle charging systems. The work presented a brief discus-

sion of renewable energy resources and electric vehicle charging systems and the challenges

these present for traditional economic dispatch and demand response methods. It then pro-

vided a short introduction to linear programming techniques which serve as the optimization

technique used in this study as well as the economic dispatch, demand response and unit

commitment problems in the context of linear programming. The thesis then presented

the integrated dispatch algorithm, which combined these three problems and described the

definition of the inputs representing the generation and load types used for testing and

evaluation.

The subsequent development of the simulation in MatLab allowed for testing of the algo-

rithm under various conditions. These results showed that under a variety of test conditions,

the algorithm converged in excess of 99.97% of the time. Additionally, the behavior of the

system during startup and under periodic variations was demonstrated.
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6.2 Future Work

In evaluating the project, several key aspects were highlighted that provide opportunities

for future development of this work.

These opportunities for the future development of this work include.

1. Revise the integrated dispatch algorithm such that the decision variables for the gen-

eration units represent the change in level of generation rather than the dispatch level.

2. Implement inputs as discrete generation sources and loads rather than aggregate ele-

ments.

3. Include provisions to allow for critical non-curtailable loads to represent critical infras-

tructure such as hospitals and emergency response centers.

4. Implement a model such as that presented by Scoffield [22] for the residential based

electric vehicle charging systems.

5. Develop or identify a model for commercial based electric vehicle charging systems, in

particular direct current fast chargers.

In the current implementation, the generation and load levels are evaluated in the ob-

jective function to determine the optimal dispatch of generation and curtailment of load to

satisfy the energy balance equation. In reflection, this is unnecessary as suggested above.

In fact, only the change in generation or load level needs to be evaluated in the objective

function, similar to the manner that the energy storage was evaluated. This was observed

late in the project and therefore it was not feasible to revise the implementation. In the

second case, the scope of the project limited the development to aggregate models of the

generation and load elements. This provided a simplified approach that was transferable to

other programming environments, but included only a few representative elements. As an

alternative, non-aggregated inputs could be developed to provide multiple models for the

different types of loads and generation resources. This would also allow for the inclusion of

critical loads such as those suggested above.
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In addition to these opportunities for improvement, this project also identified that es-

tablished models for electric vehicle charging systems are still in the developmental stages.

While effort has been exerted to develop models for residential charging systems, no such

models were identified for commercially installed charging systems such as the high volt-

age direct current systems. Because of this, significant opportunity exists to develop these

models as data becomes available.
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Appendix A: Matlab Code for Simulation

The following MATLAB code represents the simulation developed to test the integrated

dispatch model.

f unc t i on MedTimeSimV5(Ng , Nl )
%
% Desc r ip t i on :
% Function to t e s t s o l u t i o n convergence and f e a s i b i l i t y f o r mixed
% in t e g e r l i n e a r program model developed f o r 15 minute un i t commitment
% and di spatch
% Input :
% Ng −> Number o f g ene ra to r s
% [ Sol R , Wind R , Hydro R , Coal ND , Nuclear ND ,
% Coal D , Hydro D , LP D , Storage ]
% Nl −> Number o f load elements
% [ Res , Comm, Ind , DR, EVSC, DCFC]
% Test Case 1 :
% MedTimeSimV5 ( [ 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 ] , [ 4 , 2 , 1 , 0 , 0 , 0 ] )
% 175 MW capac i ty , 140 MW load , no renewable gene ra t i on /PEV
% penetrat ion , No s to rage
% Non−Feasable So lu t i on s : 22 (0.063%%)
% Test Case 2 :
% MedTimeSimV5 ( [ 0 , 0 , 0 , 4 , 2 , 2 , 4 , 3 ] , [ 1 0 , 5 , 2 , 0 , 8 0 0 , 1 5 0 ] )
% 470 MW peak capac i ty , 334 .3 MW peak load , No Renewable/
% High PEV penetrat ion ,
% No s to rage
% Non−Feasable So lu t i on s : 11 (0.0314%)
% Test Case 3 :
% MedTimeSimV5 ( [ 2 0 , 1 0 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 0 , 4 , 3 , 0 , 0 , 0 ] )
% 410 MW capac i ty , 350 MW load , high renewable /PEV penetrat ion ,
% Non−Feasable So lu t i on s :
% Test Case 4 :
% MedTimeSimV5 ( [ 2 0 , 1 0 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 0 , 4 , 2 , 0 , 1 0 000 , 1 0 00 ] )
% 410 MW capac i ty , 350 MW load , high renewable /PEV penetrat ion ,
% Non−Feasable So lu t i on s :
% =========================================================================
%Time step d e f i n i t i o n

dt = 0 . 2 5 ; %1/4 hour t imestep
%Accumulated Revenue i n i t i a l c ond i t i on

Acc Net Income = 1e6 ;
% I n i t i a l i z e s parameter s e t s

[ Gen Data , Load Data , Storage Data , Line Data ]= I n i t i a l i z eDa t a S t r u c t u r e s ( ) ;
% Import Raw and Normalized data from ex t e rna l s ou r c e s
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FifteenMinuteData=ImportData ( dt ) ;
% =========================================================================
% Update number o f un i t s from Ng and Nl input ve c t o r s
Gen Data (1 :8 ,1)=Ng ’ ;
Load Data (1 :6 ,1)=Nl ’ ;
% =========================================================================
% Star t S imulat ion
Star tS imu lat i on ( dt , Gen Data , Storage Data , Load Data , . . .

Line Data , FifteenMinuteData ) ;
end

func t i on Star tS imulat i on ( dt , Gen Data , Storage Data , . . .
Load Data , Line Data , FifteenMinuteData )

%Pr i c ing data sourc e s :
% https : // en . w ik iped ia . org /wik i / C o s t o f e l e c t r i c i t y b y s o u r c e
% http ://www. ne i . org /CorporateS i t e /media/ f i l e f o l d e r / Po l i cy /
% Papers /Nuclear−Costs−in−Context . pdf ? ext=.pdf

% Customer Cost w i l l be $115/MWhr from average Re s i d en t i a l
% U t i l i t y Rate f o r Idaho

%Weekly Load/Gen h i s t o r y
%Row De f i n i t i o n :

%1 −> So la r (MWhr)
%2 −> Wind (MWhr)
%3 −> Hydro−ROR (MWhr)
%4 −> ND Coal (MWhr)
%5 −> ND Nuclear (MWhr
%6 −> D Coal (MWhr)
%7 −> D Hydro (MWhr)
%8 −> D Natural Gas (MWhr)
%9 −> Res i d en t i a l (MWhr)
%10 −> Commercial (MWhr)
%11 −> I n du s t r i a l (MWhr)
%12 −> EV Slow charge (MWhr)
%13 −> EV Fast charge (MWhr)
%14 −> System Faults (MWhr)
%15 −> Total Generation (MWhr)
%16 −> Total Load (MWhr)
%17 −> Storage (MWhr)
%18 −> So la r − Storage
%19 −> Wind − Storage
%20 −> Hydro−ROR − Storage

Daily Data = ze ro s ( 20 , 1 92 ) ;
%==========================================================================

index = 1 ;
[DatRow , DatCol ] = s i z e ( FifteenMinuteData ) ;
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plotwidth = 192 ;
IndVar = 1 : p lotwidth ;
count=0
whi le ( index<=DatCol ) %upper l im i t g en e r a l l y s e t to DatCol

Dai ly Data ( : , 1 : plotwidth−1)=Daily Data ( : , 2 : p lotwidth ) ;
% =========================================================================

% Renewable Generation
%So la r Data f o r cur rent Timestep
Gen Data (1 ,9)= dt∗Gen Data (1 ,1 )∗Gen Data ( 1 , 3 ) ∗ . . .

Fi fteenMinuteData (1 , index ) ;
%Wind Data f o r cur rent Timestep
Gen Data (2 ,9)= dt∗Gen Data (2 ,1 )∗Gen Data ( 2 , 3 ) ∗ . . .

Fi fteenMinuteData (2 , index ) ;
%Hydro Data f o r cur rent Timestep
Gen Data (3 ,9)= dt∗Gen Data (3 ,1 )∗Gen Data ( 3 , 3 ) ∗ . . .

Fi fteenMinuteData (3 , index ) ;
% =====================================================================
% Load P r o f i l e s

%Re s i d en t i a l Load Data
Load Data (1 ,7)= dt∗Load Data (1 ,1 )∗ Load Data ( 1 , 3 ) ∗ . . .

Fi fteenMinuteData (4 , index ) ;
%Commercial Load Data
Load Data (2 ,7)= dt∗Load Data (2 ,1 )∗ Load Data ( 2 , 3 ) ∗ . . .

Fi fteenMinuteData (5 , index ) ;
%I ndu s t r i a l Load Data
Load Data (3 ,7)= dt∗Load Data (3 ,1 )∗ Load Data ( 3 , 3 ) ∗ . . .

Fi fteenMinuteData (6 , index ) ;
%PEV Slow Charge Data

%Randomly ca l c u l a t ed to s t r e s s model
Load Data (5 ,7)= dt∗Load Data (5 ,1 )∗ Load Data (5 ,3 )∗ (0 . 3+0 .7∗ rand ( 1 ) ) ;
%PEV Fast Charge Data

%Randomly ca l c u l a t ed to s t r e s s model
Load Data (6 ,7)= dt∗Load Data (6 ,1 )∗ Load Data (6 ,3 )∗ (0 . 2+0 .8∗ rand ( 1 ) ) ;

% =========================================================================
% Determine optimal gene ra t i on d i spatch l e v e l and load commitment based
% on con s t r a i n t s and co s t func t i on

Storage Data=CostOfStorage ( Storage Data , Gen Data , dt ) ;
[ r e s u l t , f va l , f l a g ] = MILP( dt , Gen Data , Load Data , . . .

Storage Data , Line Data ) ;
i f f l a g ˜=1

count=count+1
end
count

% =========================================================================
i f (˜ isempty ( r e s u l t ) )
%Record Dispatch /Commit d e c i s i o n

Gen Data (4 :8 ,10)= r e s u l t ( 1 : 5 ) ;
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Load Data (1 :3 ,8)= r e s u l t ( 6 : 8 ) ;
Load Data (5 :6 ,8)= r e s u l t ( 9 : 1 0 ) ;
Storage Data ( 1 : 2 , 8 ) = r e s u l t ( 1 1 : 1 2 ) ;

%Record Instantaneous Value
Gen Data (4 :5 ,9)= dt∗Gen Data ( 4 : 5 , 1 ) . ∗ . . .

Gen Data ( 4 : 5 , 3 ) . ∗Gen Data ( 4 : 5 , 1 0 ) ;
Gen Data (6 :8 ,9)= dt∗Gen Data ( 6 : 8 , 1 ) . ∗ . . .

Gen Data ( 6 : 8 , 3 ) . ∗Gen Data ( 6 : 8 , 1 0 ) ;
Load Data (1 :3 ,7)= Load Data ( 1 : 3 , 8 ) . ∗ Load Data ( 1 : 3 , 7 ) ;
Load Data (5 :6 ,7)= Load Data ( 5 : 6 , 8 ) . ∗ Load Data ( 5 : 6 , 7 ) ;
Storage Data (1 ,7)= dt∗Storage Data ( 1 , 1 ) . ∗ . . .

Storage Data ( 1 , 4 ) . ∗ r e s u l t ( 1 1 ) ;
Storage Data (2 ,7)= dt∗Storage Data ( 2 , 1 ) . ∗ . . .

Storage Data ( 2 , 4 ) . ∗ r e s u l t ( 1 2 ) ;
Storage Data (3 ,7)= Storage Data ( 3 , 7 ) − . . .

Storage Data ( 1 , 7 )+ . . .
Storage Data ( 2 , 7 ) ;

end
% =========================================================================

% Determine Cost o f Storage and charge ra t e from current
% s t a t e o f charge
% Update Dai ly Data

Daily Data ( 1 : 8 , p lotwidth)=Gen Data ( 1 : 8 , 9 ) ;
Dai ly Data ( 9 : 1 3 , p lotwidth )=[Load Data ( 1 : 3 , 7 ) ; Load Data ( 5 : 6 , 7 ) ] ;
Dai ly Data (15 : 17 , p lotwidth )=[sum(Gen Data ( 1 : 3 , 9 ) )+ . . .

(1−Line Data (1 , 2 ) )∗ sum(Gen Data ( 4 : 5 , 9 ) )+ . . .
sum(Gen Data (6 :8 ,9 ) )+ Storage Data ( 1 , 7 ) − . . .
Storage Data ( 2 , 7 ) ;
sum( Load Data ( 1 : 6 , 7 ) ) ;
Storage Data ( 3 , 7 ) ] ;

% =========================================================================
Update Plot ( IndVar , Dai ly Data ) ;

index=index+1;
end
a s s i g n i n ( ’ base ’ , ’ Gen Data ’ , Gen Data ) ;
a s s i g n i n ( ’ base ’ , ’ Load Data ’ , Load Data ) ;
a s s i g n i n ( ’ base ’ , ’ Storage Data ’ , Storage Data ) ;
a s s i g n i n ( ’ base ’ , ’ Daily Data ’ , Dai ly Data ) ;
a s s i g n i n ( ’ base ’ , ’ dt ’ , dt ) ;

end

func t i on [ Gen Data , Load Data , Storage Data , . . .
Line Data ]= I n i t i a l i z eDa t a S t r u c t u r e s ( )

%Generation Data
%Row De f i n i t i o n :

%1 −> So la r (Renewable , Non−Dispatchable )
%2 −> Wind (Renewable , Non−Dispatchable )
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%3 −> Hydro (Run o f River , Non−Dispatchable )
%4 −> Spot Market Coal (Non−Dispatchable )
%5 −> Spot Market Nuclear (Non−Dispatchable )
%6 −> Local Coal ( Dispatchable )
%7 −> Hydro ( Spinning Reserve , Dispatchable )
%8 −> Natural Gas ( Flat Star t capable , Dispatchable )

%Column De f i n i t i o n :
%1 −> Current # Units
%2 −> Max # Units
%3 −> Power/Unit (MW)
%4 −> Ramp up ra t e (MW/dt )
%5 −> Ramp down ra t e (MW/dt )
%6 −> Fuel Cost (USD/MWhr)

%http ://www. e i a . gov/ coa l /markets /
%Average co s t per ton o f coa l : $35/ ton

%http ://www. ne i . org /Master−Document−Folder /Backgrounders /
% White−Papers /Nuclear−Costs−in−Context

%Average nuc l ea r f u e l co s t per MWhr: $7/MWhr
%7 −> Ramp up co s t s (USD/???)
%8 −> Operation co s t (USD/MWhr)

%http ://www. ne i . org /Master−Document−Folder /Backgrounders /
% White−Papers /Nuclear−Costs−in−Context

%Average Operating Cost per MWhr: $35/MWhr
%9 −> Instantaneous Value
%10−> Percent Dispatched

%Pr i c ing i s s e t a r t i f i c i a l l y and w i l l need to be r e f i n e d .
Gen Data = [ 0 , 10 , 1 , 0 , 0 , 0 , 0 , 115 , 0 , 1 ;

0 , 20 , 2 , 0 , 0 , 0 , 0 , 105 , 0 , 1 ;
0 , 1 , 10 , 0 , 0 , 0 , 0 , 95 , 0 , 1 ;
0 , 10 , 25 , 0 , 0 , 90 , 0 , 35 , 0 , 1 ;
0 , 5 , 50 , 0 , 0 , 35 , 0 , 80 , 0 , 1 ;
0 , 10 , 50 , 10 , 1 , 80 , 50 , 10 , 0 , 0 ;
0 , 5 , 20 , 20 , 10 , 0 , 10 , 75 , 0 , 0 ;
0 , 5 , 30 , 10 , 2 , 60 , 30 , 25 , 0 , 0 ] ;

%Storage Data
%Row d e f i n i t i o n :

%1 −> Storage Source ( ac t s l i k e gene ra t i on )
%2 −> Storage Sink ( ac t s l i k e load )
%3 −> State o f charge ( Pre se rve s charge s t a t e )

% Only Instantaneous value i s used .
%Column d e f i n i t i o n

%1 −> Current # Units
%2 −> Max # Units
%3 −> Storage Capacity /Unit (MW)
%4 −> Charge/Discharge ra t e (MW/dt )
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%5 −> Charge/Discharge c o s t s (USD/MWhr)
%6 −> Operation co s t (USD/MWhr)
%7 −> Instantaneous Value
%8 −> change in charge /Percent charged ( row 3)

% Storage va lue s are i n i t i a l i z e d assuming no i n i t i a l charge
Storage Data = [10 , 20 , 2 , 0 . 001 , 100 , 10 , 0 , 0 ;

10 , 20 , 2 , 0 . 010 , 10 , 10 , 0 , 0 ;
10 , 20 , 2 , 0 , 0 , 0 , 0 , 0 ] ;

%Load Data
%Row De f i n i t i o n :

%1 −> Res i d en t i a l ( high rate , low shed p r e f e r en c e )
%2 −> Commercial (medium rate , medium shed p r e f e r en c e )
%3 −> I n du s t r i a l (medium rate , low shed p r e f e r en c e )
%4 −> Demand Response ( low rate , high shed p r e f e r en c e )
%5 −> EV Slow charge ( low rate , high shed p r e f e r en c e )
%6 −> EV Fast charge ( low rate , high shed p r e f e r en c e )
%7 −> System Faults ( no rate , no shed pre f e r ence , high burden )

%Column De f i n i t i o n :
%1 −> Current # zones
%2 −> Max # zones
%3 −> Peak Power demand/zone (MW)
%4 −> Energy co s t (USD/MWhr)
%5 −> Penalty co s t f o r cur ta i lment (USD/MWhr)
%6 −> Load Shed Pre f e r ence ( s e r v e s as weight ing c o e f f i c i e n t )

%0 = no load shedding capable
%1 = low
%2 = medium
%3 = high

%7 −> Instantaneous Value
%8 −> Unit Commit Flag

Load Data = [ 1 , 25 , 10 , 120 , 360 , 1 , 0 , 1 ;
1 , 25 , 25 , 110 , 330 , 2 , 0 , 1 ;
0 , 10 , 50 , 105 , 315 , 2 , 0 , 1 ;
0 , 10 , 10 , 100 , 300 , 3 , 0 , 1 ;
0 , 100000 , 2e−3, 95 , 285 , 3 , 0 , 1 ;
0 , 1000 , 50e−3, 95 , 285 , 3 , 0 , 1 ;
0 , 1 , 250 , 0 , 0 , 0 , 0 , 1 ] ;

%Line Data
%Only ex t e rna l c on t r a c t s incur t ransmi s s i on c o s t s and are sub j e c t
%to l i n e l im i t s . S p e c i f i c a l l y , Spot market con t r a c t s and in the
%fu tu r e day ahead con t r a c t s and p laye r con t r a c t s w i l l be sub j e c t to
%these r e s t r i c t i o n s .

%Row De f i n i t i o n :
%1 −> Transmiss ion l i n e data

%Column De f i n i t i o n :
%1 −> Transmiss ion Cost (USD/MWhr)
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%2 −> Line l o s s ( Percent o f t o t a l energy t ransmi s s i on )
%3 −> Line l im i t (MW)

Line Data = [ 5 , 0 . 02 , 2 0 0 ] ;
end

func t i on FifteenMinuteData=ImportData ( dt )
%==========================================================================
%Raw Data from ex t e rna l s ou r c e s

%Row Desc r ip t i on
% 1 Normalized So la r Radiat ion
% 2 Raw Wind Speed (MPH)
% 3 Normalized RoR Hydro
% 4 Normalized Re s i d en t i a l Load
% 5 Normalized Commercial Load
% 6 Normalized I n du s t r i a l

i f (˜ e x i s t ( ’C:\ Users \DAVING\Documents\FifteenMinuteData . x lsx ’ , ’ f i l e ’ ) )
FifteenMinuteData = ze ro s (6 ,8760/ dt ) ;

% ===========================================
% Read So la r Radiat ion Data from NREL r epo s i t o r y

URL = s t r c a t ( ’ http :// r redc . n r e l . gov/ s o l a r / o ld data / ’ , . . .
’ nsrdb /1991−2010/data/ hour ly / 7 2 5 7 8 5 / ’ , . . .
’725785 2 0 1 0 s o l a r . csv ’ ) ;

opt i ons=weboptions ( ’ Timeout ’ , 6 0 ) ;
websoldata = webread (URL, opt ions ) ;
s o lda ta = websoldata .METSTATDir Wh m 2 ;

% ============================================
% Read Re s i d en t i a l and Commercial Load p r o f i l e from NREL SAM model
% Data from NREL System Advisor Model (SAM)
% https : //www. n r e l . gov/ ana l y s i s /sam/help /html−php/
% index . html? e l e c t r i c l o a d . htm
NREL Data=x l s r e ad ( ’NREL ResComm 8760 Data . x lsx ’ ) ;
comdata=NREL Data ( : , 1 ) ;
r e sdata=NREL Data ( : , 2 ) ;

%Extract Measured Direc t Normal So la r Radiat ion from data
%source
[NREL Row,NREL Col ] = s i z e (NREL Data ) ;
%In t e r p o l a t e raw s o l a r data f o r 15 minute data
index = 1 ;
f o r i =1:NREL Row/dt

i f index<8760
%Raw So la r
FifteenMinuteData (1 , i )=((mod( i ,4 )+1)/4)∗ ( s o lda ta ( index +1)− . . .

s o lda ta ( index ))+ so lda ta ( index +1);
%Raw Re s i d en t i a l
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FifteenMinuteData (4 , i )=((mod( i ,4 )+1)/4)∗ ( r e sdata ( index +1)− . . .
r e sdata ( index ))+ resdata ( index +1);

%Raw Commercial
FifteenMinuteData (5 , i )=((mod( i ,4 )+1)/4)∗ ( comdata ( index +1)− . . .

comdata ( index ))+comdata ( index +1);
e l s e

FifteenMinuteData (1 , i )= so lda ta ( index ) ;
FifteenMinuteData (4 , i )=resdata ( index ) ;
FifteenMinuteData (5 , i )=comdata ( index ) ;

end
i f (mod( i ,4)==0)

index=index+1;
end

end

%Read Windspeed , Hydro Gen , Load data from Idaho Fa l l s Data
%from CAES webs i te :
%http ://wind−f o r−s choo l s . caesenergy . org /phphydrodata . php?num=10000

CAES Data = x l s r e ad ( ’ IFPSolarHydroDataCorrected . x lsx ’ ) ;
[CAES Row, ˜ ] = s i z e (CAES Data ) ;
index = 1 ;
f o r i =1:CAES Row

switch (mod( i −1 ,6))
case {0 , 3} %Top/Hal f past the Hour Raw Data

FifteenMinuteData (2 , index ) = CAES Data( i , 9 ) ;
%Wind Speed

FifteenMinuteData (3 , index ) = CAES Data( i , 3 ) ;
%Average Raw o f
% ROR hydro Data

FifteenMinuteData (6 , index ) = CAES Data( i , 5 ) ;
%Raw Load Data

index=index+1;
case 1 %15 past / to the hour Raw Data

FifteenMinuteData (2 , index ) = (CAES Data( i , 9 ) + . . .
CAES Data( i +1 ,9))/2 ;

%Wind Speed
FifteenMinuteData (3 , index ) = (CAES Data( i , 3 ) + . . .

CAES Data( i +1 ,3))/2 ;
%Average Raw o f
%ROR hydro Data

FifteenMinuteData (6 , index ) = (CAES Data( i , 5 ) + . . .
CAES Data( i +1 ,5))/2 ;

%Raw Load Data
index=index+1;

case 5 %15 past / to the hour Raw Data
FifteenMinuteData (2 , index ) = (CAES Data( i −1 ,9)+. . .

CAES Data( i , 9 ) ) / 2 ;
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%Wind Speed
FifteenMinuteData (3 , index ) = (CAES Data( i −1 ,3)+. . .

CAES Data( i , 3 ) ) / 2 ;
%Average Raw o f
%ROR hydro Data

FifteenMinuteData (6 , index ) = (CAES Data( i −1 ,5)+. . .
CAES Data( i , 5 ) ) / 2 ;

%Raw Load Data
index=index+1;

end
end
% Normalize So la r data
FifteenMinuteData (1 , : )= FifteenMinuteData ( 1 , : ) / . . .

max( FifteenMinuteData ( 1 , : ) ) ;
% Normalized f o r 2MW, Vesta V110 Power Curve Cha r a c t e r i s t i c s
%http ://www. ve s ta s . com/en/ products / tu rb ine s /
% v110−2 0 mw#!power−curve−and−aep
FifteenMinuteData ( 2 , : )= ( ( ( 2 . 5∗ FifteenMinuteData ( 2 , : ) − 3 ) / 9 ) . ∗ . . .

( ( 2 . 5∗ FifteenMinuteData (2 , : )>=3)− . . .
( 2 . 5∗ FifteenMinuteData (2 , : ) >=12))+. . .

( ( 2 . 5∗ FifteenMinuteData (2 , : )>=12)− . . .
( 2 . 5∗ FifteenMinuteData (2 , : ) >=20))) ;

% Normalize ROR Hydro data
FifteenMinuteData (3 , : )= FifteenMinuteData ( 3 , : ) / . . .

max( FifteenMinuteData ( 3 , : ) ) ;
% Normalize I n du s t r i a l data
FifteenMinuteData (6 , : )= FifteenMinuteData ( 6 , : ) / . . .

max( FifteenMinuteData ( 6 , : ) ) ;
% Average data f o r smoothing
f o r i =2:NREL Row/dt−1

FifteenMinuteData (1 , i ) =sum( FifteenMinuteData (1 , i −1: i +1))/3;
i f ( FifteenMinuteData (1 , i )<0)

FifteenMinuteData (1 , i )=0;
end
FifteenMinuteData (2 , i ) =sum( FifteenMinuteData (2 , i −1: i +1))/3;
FifteenMinuteData (4 , i ) =sum( FifteenMinuteData (4 , i −1: i +1))/3;
FifteenMinuteData (5 , i ) =sum( FifteenMinuteData (5 , i −1: i +1))/3;

end
a s s i g n i n ( ’ base ’ , ’ FifteenMinuteData ’ , FifteenMinuteData ) ;
x l sw r i t e ( ’ FifteenMinuteData . x lsx ’ , . . .

FifteenMinuteData ’ ) ;
e l s e

FifteenMinuteData=x l s r ead ( ’ FifteenMinuteData . x lsx ’ ) ’ ;
a s s i g n i n ( ’ base ’ , ’ FifteenMinuteData ’ , FifteenMinuteData ) ;

end

end
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f unc t i on Storage Data=CostOfStorage ( Storage Data , Gen Data , dt )
% This i t e r a t i o n a s s o c i a t e s s t o rage with renewable gene ra t i on
% A s im i l a r s t r u c tu r e can be used to a s s o c i a t e s t o rage with hour ahead
% pr ed i c t i o n s
i f (Gen Data (1 ,9)+Gen Data (2 ,9)+Gen Data (3 ,9) >=.. .

dt∗Storage Data (3 ,1 )∗ Storage Data ( 3 , 3 ) )
% =================================================================
% Cost o f energy s to rage − High Renewable Generation

Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 1 ; 0 . 0 5 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [100 ; −120 ] ; % Discharge /Charge c o s t s

e l s e i f (Gen Data (1 ,9)+Gen Data (2 ,9)+Gen Data ( 3 , 9 ) < . . .
1e−4∗dt∗Storage Data (3 ,1 )∗ Storage Data ( 3 , 3 ) )

% =================================================================
% Cost o f energy s to rage − High Renewable Generation

Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 5 ; 0 . 0 1 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [ −120 ;100 ] ; % Discharge /Charge c o s t s

e l s e
% =================================================================
% Cost o f energy s to rage − Nominal case
i f ( Storage Data (3 ,7)<0.10∗ Storage Data (3 ,1 )∗ Storage Data ( 3 , 3 ) )

Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 1 ; 0 . 0 5 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [100 ; −100 ] ; % Discharge /Charge c o s t s

e l s e i f ( Storage Data (3 ,7)<0.35∗ Storage Data (3 ,1 )∗ Storage Data ( 3 , 3 ) )
Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 2 ; 0 . 0 4 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [50 ; −50 ] ; % Discharge /Charge c o s t s

e l s e i f ( Storage Data (3 ,7)<0.65∗ Storage Data (3 ,1 )∗ Storage Data ( 3 , 3 ) )
Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 3 ; 0 . 0 3 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [ 0 ; 0 ] ; % Discharge /Charge c o s t s

e l s e i f ( Storage Data (3 ,7)<0.80∗ Storage Data (3 ,1 )∗ Storage Data ( 3 , 3 ) )
Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 4 ; 0 . 0 2 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [ −50 ; 50 ] ; % Discharge /Charge c o s t s

e l s e
Storage Data ( 1 : 2 , 4 ) = [ 0 . 0 5 ; 0 . 0 1 ] ; % Discharge /Charge r a t e s
Storage Data ( 1 : 2 , 5 ) = [ −100 ;100 ] ; % Discharge /Charge c o s t s

end
end

end

func t i on [ r e su l t , f va l , f l a g ]=MILP( dt , Gen Data , . . .
Load Data , Storage Data , Line Data )

% Dec i s i on v a r i a b l e s r ep r e s en t % of f u l l capac i ty o f r e s ou r c e
% In case o f Generation and storage , the se are cont inuous on the i n t e r v a l
% [ 0 , 1 ]
% In the case o f load , the se are d i s c r e t e and are e lements o f {0 ,1}
% MILP f o r UC/UD
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%f De f i n i t i o n
% Line 1−2: Spot Market − Coal
% Line 3−4: Spot Market − Nuclear
% Line 5 : Dispatchable Coal
% Line 6 : Dispatchable Hydro
% Line 7 : Dispatchable Gas
% Line 8 : Re s i d en t i a l Load
% Line 9 : Commercial Load
% Line 10 : I n du s t r i a l Load
% Line 11 : PEV Slow Charge
% Line 12 : PEF Fast Charge DCFC
% Line 13 : Storage Source ( Generation )
% Line 14 : Storage Sink (Load )
f = [(1−Line Data ( 1 , 2 ) )∗ ( Gen Cost (Gen Data ( 4 , 6 : 8 ) )+ . . .

Line Data (1 , 1 ) )∗ dt∗Gen Data (4 ,1 )∗Gen Data ( 4 , 3 ) ;
(1−Line Data ( 1 , 2 ) )∗ ( Gen Cost (Gen Data ( 5 , 6 : 8 ) )+ . . .
Line Data (1 , 1 ) )∗ dt∗Gen Data (5 ,1 )∗Gen Data ( 5 , 3 ) ;

Gen Cost (Gen Data ( 6 , 6 : 8 ) ) ∗ dt∗Gen Data (6 ,1 )∗Gen Data ( 6 , 3 ) ;
Gen Cost (Gen Data ( 7 , 6 : 8 ) ) ∗ dt∗Gen Data (7 ,1 )∗Gen Data ( 7 , 3 ) ;
Gen Cost (Gen Data ( 8 , 6 : 8 ) ) ∗ dt∗Gen Data (8 ,1 )∗Gen Data ( 8 , 3 ) ;
−Load Data (1 ,7 )∗ Load Data ( 1 , 5 ) ;
−Load Data (2 ,7 )∗ Load Data ( 2 , 5 ) ;
−Load Data (3 ,7 )∗ Load Data ( 3 , 5 ) ;
−Load Data (5 ,7 )∗ Load Data ( 5 , 5 ) ;
−Load Data (6 ,7 )∗ Load Data ( 6 , 5 ) ;
sum( Storage Data ( 1 , 5 : 6 ) ) ∗ dt∗Storage Data (1 ,1 )∗ Storage Data ( 1 , 4 ) ;
sum( Storage Data ( 2 , 5 : 6 ) ) ∗ dt∗Storage Data (2 ,1 )∗ Storage Data ( 2 , 4 ) ] ;

in tcon = [ 6 , 7 , 8 , 9 , 1 0 ] ;

A = [(1−Line Data (1 , 2 ) )∗ dt∗Gen Data (4 ,1 )∗Gen Data ( 4 , 3 ) , . . .
(1−Line Data (1 , 2 ) )∗ dt∗Gen Data (5 ,1 )∗Gen Data ( 5 , 3 ) , . . .

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , dt∗Gen Data (6 ,1 )∗Gen Data (6 , 3 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , dt∗Gen Data (7 ,1 )∗Gen Data (7 , 3 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , dt∗Gen Data (8 ,1 )∗Gen Data (8 , 3 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , −dt∗Gen Data (6 ,1 )∗Gen Data (6 , 3 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , −dt∗Gen Data (7 ,1 )∗Gen Data (7 , 3 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , −dt∗Gen Data (8 ,1 )∗Gen Data (8 , 3 ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . .
−dt∗Storage Data (1 ,1 )∗ Storage Data ( 1 , 4 ) , . . .
dt∗Storage Data (2 ,1 )∗ Storage Data ( 2 , 4 ) ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . .
dt∗Storage Data (1 ,1 )∗ Storage Data ( 1 , 4 ) , . . .
−dt∗Storage Data (2 ,1 )∗ Storage Data ( 2 , 4 ) ] ;

% b De f i n i t i o n :
% Line 1 : Line l im i t
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% Line 2−4: Gen Ramp Up Constra int
% Line 5−7: Gen Ramp Down Constra int
% Line 8 : Storage Upper Limit
% Line 9 : Storage Lower Limit
b =[dt∗Line Data ( 1 , 3 ) ;

dt∗Gen Data (6 , 1 )∗ ( Gen Data (6 ,5)+Gen Data (6 ,10)∗Gen Data ( 6 , 3 ) ) ;
dt∗Gen Data (7 , 1 )∗ ( Gen Data (7 ,5)+Gen Data (7 ,10)∗Gen Data ( 7 , 3 ) ) ;
dt∗Gen Data (8 , 1 )∗ ( Gen Data (8 ,5)+Gen Data (8 ,10)∗Gen Data ( 8 , 3 ) ) ;
dt∗Gen Data (6 , 1 )∗ ( Gen Data (6 ,4)−Gen Data (6 ,10)∗Gen Data ( 6 , 3 ) ) ;
dt∗Gen Data (7 , 1 )∗ ( Gen Data (7 ,4)−Gen Data (7 ,10)∗Gen Data ( 7 , 3 ) ) ;
dt∗Gen Data (8 , 1 )∗ ( Gen Data (8 ,4)−Gen Data (8 ,10)∗Gen Data ( 8 , 3 ) ) ;
dt∗Storage Data (3 ,1 )∗ Storage Data (3 ,3)− Storage Data ( 3 , 7 ) ;
Storage Data ( 3 , 7 ) ] ;

% Aeq De f i n i t i o n :
% Line 1 : Spot Market Coal
% Line 2 : Spot Market Nuclear
% Line 3 : Dispatchable Coal
% Line 4 : Dispatchable Hydro
% Line 5 : Dispatchable Gas
% Line 6 : Re s i d en t i a l Load
% Line 7 : Commercial Load
% Line 8 : I n du s t r a i l Load
% Line 9 : Load from PEV Slow Charge
% Line 10 : Load from PEV Fast Charge
% Line 11 : Energy from sto rage
% Line 12 : Energy to s to rage
Aeq =[(1−Line Data (1 , 2 ) )∗ dt∗Gen Data (4 ,1 )∗Gen Data ( 4 , 3 ) , . . .

(1−Line Data (1 , 2 ) )∗ dt∗Gen Data (5 ,1 )∗Gen Data ( 5 , 3 ) , . . .
dt∗Gen Data (6 ,1 )∗Gen Data ( 6 , 3 ) , . . .
dt∗Gen Data (7 ,1 )∗Gen Data ( 7 , 3 ) , . . .
dt∗Gen Data (8 ,1 )∗Gen Data ( 8 , 3 ) , . . .
−Load Data ( 1 , 7 ) , . . .
−Load Data ( 2 , 7 ) , . . .
−Load Data ( 3 , 7 ) , . . .
−Load Data ( 5 , 7 ) , . . .
−Load Data ( 6 , 7 ) , . . .
dt∗Storage Data (1 ,1 )∗ Storage Data ( 1 , 4 ) , . . .
−dt∗Storage Data (2 ,1 )∗ Storage Data ( 2 , 4 ) ] ;

beq = −sum(Gen Data ( 1 : 3 , 9 ) ) ;

lb = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;
ub = [ 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ] ;

[ r e s u l t , f va l , f l a g ] = i n t l i n p r o g ( f , intcon ,A, b , Aeq , beq , lb , ub )

end
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f unc t i on r e s u l t = Gen Cost ( Cost )

r e s u l t = Cost (1)−Cost (2)+Cost ( 3 ) ;

end

func t i on Update Plot ( IndVar , Dai ly Data )

%======================================================================
subplot ( 4 , 1 , 1 )
h1 = p lo t ( IndVar , Dai ly Data ( 1 , : ) , IndVar , Dai ly Data ( 2 , : ) , . . .

IndVar , Dai ly Data ( 3 , : ) , IndVar , Dai ly Data ( 1 7 , : ) ) ;
s e t (h1 , ’ LineWidth ’ , 2 )
legend ( ’ R S o l a r ’ , ’ R W i n d ’ , ’ R H y d r o ’ , ’ Storage ’ , . . .

’ l o ca t i on ’ , ’ northwest ’ ) ;
y l ab e l ( ’ Energy (MWhr) ’ )
x l ab e l ( ’ Time Step ( dt ) ’ )
%======================================================================
subplot ( 4 , 1 , 2 )
h2 = p lo t ( IndVar , Dai ly Data ( 4 , : ) , IndVar , Dai ly Data ( 5 , : ) , . . .

IndVar , Dai ly Data ( 6 , : ) , IndVar , Dai ly Data ( 7 , : ) , . . .
IndVar , Dai ly Data ( 8 , : ) )

s e t (h2 , ’ LineWidth ’ , 2 )
legend ( ’ SM C o a l ’ , ’ SM N u c l e a r ’ , ’ D C o a l ’ , . . .

’ D H y d r o ’ , ’ D L P ’ , . . .
’ l o ca t i on ’ , ’ northwest ’ ) ;

y l ab e l ( ’ Energy (MWhr) ’ )
x l ab e l ( ’ Time Step ( dt ) ’ )
%======================================================================
subplot ( 4 , 1 , 3 )
h3 = p lo t ( IndVar , Dai ly Data ( 9 , : ) , IndVar , Dai ly Data ( 1 0 , : ) , . . .

IndVar , Dai ly Data ( 1 1 , : ) , IndVar , Dai ly Data ( 1 2 , : ) , . . .
IndVar , Dai ly Data ( 1 3 , : ) )

s e t (h3 , ’ LineWidth ’ , 2 ) ;
l egend ( ’ L R e s ’ , ’ L C o m m ’ , ’ L I n d ’ , ’ L E V S C ’ , ’ L H V D C ’ , . . .

’ l o ca t i on ’ , ’ northwest ’ ) ;
y l ab e l ( ’ Energy (MWhr) ’ )
x l ab e l ( ’ Time Step ( dt ) ’ )
%======================================================================
subplot ( 4 , 1 , 4 )
h4 = p lo t ( IndVar , Dai ly Data ( 1 5 , : ) , IndVar , Dai ly Data ( 1 6 , : ) )
s e t (h4 , ’ LineWidth ’ , 2 ) ;
l egend ( ’ G t ’ , ’ L t ’ , . . .

’ l o ca t i on ’ , ’ northwest ’ ) ;
y l ab e l ( ’ Energy (MWhr) ’ )
x l ab e l ( ’ Time Step ( dt ) ’ )
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drawnow ;
end


