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Abstract

Coinfections with more than one respiratory virus can enhance or inhibit virus growth

kinetics and disease severity depending on the underlying mechanism of interaction. Al-

though some mechanisms are known (e.g., enhanced virus entry), viral-viral coinfections

are only beginning to be examined in the laboratory and clinic. Thus, to understand

how different mechanisms of viral interactions can affect viral titer kinetics, we developed

and analyzed a mathematical model. Here, we focused on how coinfection leading to

increases or decreases in viral infection rate, viral production rate, viral clearance rate,

and infected cell death rate alters viral kinetics. While each of these types of interactions

can lead to increases or decreases in total virus produced, each interaction type alters

the viral kinetics in characteristic ways. We found that decreasing the viral clearance

rate leads to the largest increase in total virus produced relative to coinfection without

direct interactions. We varied the strength of interactions and timing of viral infections

to determine how these critical factors impact results. Our results suggest that the

mechanisms underlying virus-virus interactions and the relative timing of infection of

the two viruses impact the rate of viral titer increase, the timing of peak, and the rate

of viral titer decrease after peak, and thus the total duration and severity of disease.
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CHAPTER 1

Introduction

During a respiratory infection, a host can be infected by one or more viruses. These

respiratory viruses target the same cells, epithelial cells in a host, and can cause a range

of symptoms including death among young children, the elderly, and immunocompro-

mised individuals [1, 2]. Our understanding of how virus-virus interactions in coinfection

impact disease severity is limited. Knowing how viruses interact within the host is im-

portant in determining whether specific virus-virus combinations increase or decrease

disease severity. In this chapter we will introduce general information about respiratory

viruses and respiratory coinfections, including the history of mathematical modeling the

spread of virus within a host.

1.1 Respiratory Virus Infection and Coinfection

Respiratory viruses such as influenza virus (IV), respiratory syncytial virus (RSV),

rhinovirus (RV), parainfluenza virus (PIV), human metapnuemovirus (hMPV), aden-

oviruses (ADV), and coronavirus (CoV) share many common features, and infection by

each leads to similar symptoms for the host (Table 1.1). Infection occurs when a person

breaths virus through the nose or mouth, leading to viral infection of epithelial cells

in the respiratory tract. As the virus spreads and infects epithelial cells, more virus

is produced. After a person is infected by one of the viruses, the person will become

infectious for four to seven days until the innate and adaptive immune systems clear the

virus from the host. The innate response is the basic response to general pathogens,

and works towards removal of foreign material while initiating a more specific response,

the adaptive response. Adaptive responses typically take around seven to ten days to

develop the specific immune cells to target the pathogen, but once the cells are devel-

oped, the host develops immunological memory for the pathogen and the removal time
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is reduced if the pathogen is encountered again.

Many respiratory viruses target similar cells and circulate in the population at the

same time, so it is possible that an individual may be coinfected with multiple viruses at

the same time. Indeed, studies have shown that IV, RV, RSV, PIV, hMPV, ADV, and

CoV can simultaneously infect humans [3–9]. The few controlled studies of respiratory

coinfection have shown a variety of effects on viral kinetics. For example, PIV has been

shown to increase the viral load of IV, in-vitro [10], while RV reduces viral load of IV

within a mouse, in-vivo [11]. While there are relatively few empirical studies that track

viral kinetics in coinfection with respiratory viruses, we can imagine that coinfection

could alter viral dynamics in numerous ways, with some combinations increasing the

severity of infection while others reduce disease severity.

1.2 Comparison of Respiratory Viruses

Respiratory viruses vary in their seasonality, number of serotypes, and availability of

a vaccine (Table 1.1). In the United States, seasonality of the viruses vary, but all

peak during the winter. RV is detected year round but is less prevalent in the summer

months [12]. The respiratory viruses discussed here all have multiple types and some

are specifically known for the differences in types. For example, IV, is known by the

different subtypes [13]. Influenza viruses are further subdivided into different subtypes

based on the surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) [14].

The recombination of these proteins is the cause of the major IV outbreaks throughout

the years [15]. The two subgroups of RSV are divided into two antigenic subgroups A

and B [16]. Most of the viruses do not have a vaccine or treatment, though there are

vaccines and therapeutics available for IV and a prophylactic for RSV. Every year a

vaccine is developed to target all four of the serotypes of IV [17]. For high risk infants

there is an antibody prophylactic, Palivizumab, which targets the fusion protein of RSV
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inhibiting its entry into the cell and thereby preventing infection [18].

Table 1.1: Comparisons of respiratory viruses. Comparison of different respira-
tory viruses, including influenza virus (IV), respiratory syncytial virus, (RSV), rhinovirus
(RV), parainfluenza (PIV), human metapneumovirus (hMPV), adenovirus (ADV), and
coronaviruses (CoV).

Virus
Baltimore
Classification

Seasonality Vaccine Type

IV (-)ssRNA October-May [19] Quadrivalent
vaccine [17]

A, B, C, D [13]

RSV (-)ssRNA September-May [12] N/A 1 with antigenic
groups A, B [12]

RV (+)ssRNA August-April [20] N/A 160 with 3
species (A, B,
and C) [21]

PIV (-)ssRNA Varies depending on
serotype [22]

N/A 5 with 2 genera:
4a and 4b [8]

hMPV (-)ssRNA November-February [23] N/A 2 [24]

ADV dsDNA November-May [25] N/A 51 [25]

CoV (+)ssRNA November-May [26] N/A 4 [27]

1.3 Viral Load Kinetics

Most viruses increase exponentially for 3-4 days and for acute infections like respiratory

viruses, the virus is usually cleared within 10 days [28]. Several techniques have been

developed to quantify the amount of virus in a given volume, also known as viral load

or viral titers, including plaque assays, endpoint dilution, and quantitative polymerase

chain reaction (qPCR)[29–31]. Each type of quantification provides information on the

viral load, but they measure fundamentally different quantities. Plaque assays calculate

the virus concentration in terms of the infectious dose by determining the number of

plaque forming units (PFU). Endpoint dilution is a measure of infectious virus titers and

quantifies the amount of virus required to kill half of the infected cells or to produce a

cytopathic effect in half of inoculated tissue culture cells (TCID50). Another laboratory
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technique, qPCR, utilizes polymerase chain reaction chemistry to amplify viral DNA

or RNA to produce high enough concentrations for detection and quantification by

fluorescence.

1.4 Within-Host Modeling

Mathematical modeling has been used for over twenty years to better interpret viral

kinetic data and to predict effects of treatment [32–38]. In an effort to understand human

immunodeficiency virus (HIV) infection, mathematical models (‘viral dynamics models’)

were developed to predict viral titers of HIV in infected patients [39, 40]. The viral

dynamics model uses a system of three coupled differential equations to track the number

of target cells, infected cells, and free virus in the host over time and is parameterized

with measurements of viral titers over time. The model includes replenishment of cells,

cell death, viral infection of target cells, virus production by infected target cells, and

clearance of the virus by immune responses. When parameterized with viral titer data

from HIV positive patients, the model successfully predicted the virus peak and matched

overall viral kinetics [39, 40]. Because of the success in HIV, numerous models have

since been developed to study other viruses, including Hepatitis B and C viruses, West

Nile virus, Dengue virus, yellow fever virus, Zika virus, BK virus, Human Papilloma

virus, ADV, and IV, often with modifications to capture details specific to a particular

virus [34–36, 41–50]. The time scale and dynamics of these viruses may differ, but the

foundation of the viral dynamics model can help predict the viral kinetics of each of

these viruses within a host.

Viral dynamics models have been developed for respiratory viruses including IV. To

account for the difference in infectious period of IV compared to HIV, a simplified viral

dynamics model called the target cell-limited model (TCL) was developed that excludes

the replenishment of target cells, as target cells are not generated in significant quantity
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over the time period of IV infection [51]. The model consists of four classes: target

cells (T ), infected cells in the eclipse phase (E), infected cells secreting virus (I), and

free virus (V ). The model is given by Equations (1.1)–(1.4). Target cells are infected

by the virus at per capita rate βV . The model excludes cell regeneration due to the

short time scale of IV infection. Once infected, cells enter the eclipse phase, at which

point the cells are infected but not yet producing virus. Cells transition from the eclipse

phase to an active infection phase at per capita rate k. Infected cells are removed at

per capita rate δ. This removal may be due to apoptosis or removal by immune cells.

Free virus is produced at rate p virus per cell per day, and is cleared at per capita rate

c per day. This model also includes a new state variable to capture the eclipse phase

of IV infection, the time it takes a virus to enter a cell and start producing virus. The

inclusion of an eclipse was shown by Baccam et al. to not be statistically significant

but was still included because it is biologically relevant to include a period before IV

can start producing more virus [51]. In a well-mixed homogeneous environment, these

assumptions lead to the following system of ordinary differential equations:

dT

dt
= −βTV (1.1)

dE

dt
= β1TV1 − k1E1 (1.2)

dI

dt
= k1E1 − δ1I1 (1.3)

dV

dt
= p1I1 − c1V1. (1.4)

Although there is a well-established history of modeling within host dynamics of

infection of a single virus, modeling coinfection is still in its infancy [35]. Recently, a

coinfection model was developed to study two respiratory viruses that simultaneously

infect a host [52]. The model uses the foundation of the target cell-limited model,
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but includes three additional classes to capture the dynamics of a second virus that

simultaneously infects target cells. Direct interactions were not included in the model;

instead, the only interaction between the viruses is via indirect competition for target

cells. In analyzing this model, Pinky and Dobrovolny [52] found that the virus with

the largest growth rate outcompetes the virus with a lower growth rate. In Chapter 2,

we will extend this work to include direct interactions between viruses, where one virus

affects the growth and survival of the other virus during coinfection.
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CHAPTER 2

Modeling the Kinetics of Viral-Viral Coinfection

2.1 Introduction

During a respiratory infection, there is a possibility that multiple viruses are present

and working in conjunction to cause disease [3, 4, 6]. Several respiratory viruses, in-

cluding rhinovirus (RV), respiratory syncytial virus (RSV), influenza A and B viruses

(IAV, IBV), human metapneumovirus (hMPV), human parainfluenza viruses (PIV), ade-

noviruses (ADV), and coronavirus (CoV), have been found concurrently within a host

[3, 4, 6, 9, 13, 53–57]. Although ADV is the most common virus found in multi-virus

infections [54], several other virus pairings have been detected (e.g., RV and RSV, and

RSV and IV) [3, 4, 6, 54, 55]. Children are more likely to be infected with multiple

respiratory viruses, and studies have shown that up to 30 percent of infected children

are infected with more than one respiratory virus [9, 57].

Several mechanisms have been shown by which viruses interact during coinfection

[10, 11, 58]. These mechanisms can be either beneficial or detrimental to the growth

of each virus. One way that viruses interact is through competition for target cells.

Mathematical modeling has shown that in this type of interaction, the virus with the

larger infection rate or the larger production rate would likely out compete the other

virus [52]. However, this is not the only form of interaction. Studies have indicated

that viruses can also interact through other mechanisms like when one virus reduces

the infectivity of another virus by blocking the entry to a cell or reducing susceptibility

[7, 11, 58–61]. Another example is enhanced cell-cell fusion, which results in increased

viral entry into cells [10]. Goto et al. [10] showed that the rate IAV infects target cells was

enhanced due to the presence of PIV. Other mechanisms have been proposed for virus-

virus interactions (e.g., altered host susceptibility due to altered receptor expression,
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modification of the interferon-induced antiviral state, or viral exclusion), but have not

been shown in cell culture or an animal model for respiratory viruses [62]. Classifying

the mechanisms involved in respiratory coinfections and their effects on viral dynamics

will aid our understanding about why some respiratory virus pairs are more frequently

observed than others [6, 7, 54, 55].

Mathematical modeling has been used to study the dynamics of single infections,

including HIV, hepatitis B, hepatitis C viruses (HCV, HBV), and IAV [34–36, 39–42],

and to predict the time course of viral loads within a host. With the success of these

single infection models, Pinky and Dobrovolny [52] developed a respiratory viral-viral

coinfection model that focused on target cell competition as the mechanism of interaction

between viruses.

Here, we build on this work by using mathematical modeling to test how different

mechanisms of interaction alter viral load dynamics. We expand the target cell-limited

model [51] to include states for two viruses and assess direct and indirect modes of

interactions between the viruses. We examine numerous scenarios in which one virus

enhances or inhibits different aspects of the infection (e.g., virus infectivity, production,

clearance, and infected cell clearance). In addition, we assess how viral load dynamics

change given different timings between infections. The results show the range of possible

viral load dynamics given a variety of interaction mechanisms, including those outside

the range previously studied experimentally.

2.2 Methods

2.2.1 Coinfection Model Without Direct Interactions

To study how various types of virus-virus interactions affect viral kinetics, we extend

the coinfection model developed by Pinky and Dobrovolny [52]. In their model, the only
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interaction between viruses is through competition for target cells. We will refer to this

model as the baseline model with states shown in Figure 2.1. In this model target cells

(T ) are infected by both viruses (V1) and (V2) at per capita rates β1V1 and β1V2 per

day, respectively, and cells can only be infected by one of the viruses. We excluded the

possibility for coinfection within cells for simplicity. The remaining populations follow

the same structure as the TCL model, yielding the baseline model presented in Pinky

and Dobrovolny [52]:

dT

dt
= −β1TV1 − β2TV2 (2.1)

dE1

dt
= β1TV1 − k1E1 (2.2)

dI1
dt

= k1E1 − δ1I1 (2.3)

dV1
dt

= p1I1 − c1V1 (2.4)

dE2

dt
= β2TV2 − k2E2 (2.5)

dI2
dt

= k2E2 − δ2I2 (2.6)

dV2
dt

= p2I2 − c2V2 (2.7)

2.2.2 Coinfection Model with Direct Interactions

To study the effects of virus-virus interactions, the parameters for both viruses were set

equal, so that the only variation in the model is due to virus-virus interactions (Table

2.1). Because Virus 1 and Virus 2 are identical, modifying the transition rates for Virus

1 will be the same as for Virus 2. We focused on the presence of Virus 2 modifying

the infection rate β1, virus production rate p1, infected cell death rate δ1, and the viral

clearance rate c1 of Virus 1. Two functions, Equation (2.8) and Equation (2.9), were

used to modify the rates to represent an increase or decrease to the specific parameter,
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respectively:

α(V2) = 1 + κV2 (2.8)

ζ(V2) =
1

1 + κV2
. (2.9)

Equation (2.8) is an increasing function while Equation (2.9) is a decreasing function of

Virus 2 (V2). We modify the rates by multiplying Equation (2.8) or (2.9) by the rate

affected by Virus 2. For example if the infection rate (β1) of Virus 1 is increased by

Virus 2, the new infection rate becomes (1 + κV2)β1TV1. The parameter κ represents

the strength of the interaction. If κ = 0, then the baseline model is achieved.

Equation (2.8) and Equation (2.9) were individually multiplied by each rate of the

baseline model, the model without direct interactions (κ = 0), for a total of eight models.

The total virus produced or area under the curve (AUC) was calculated using MATLAB’s

Figure 2.1: Coinfection model schematic. Schematic diagram of the mathematical
model presented in Pinky and Dobrovolny [52] for viral coinfections. Target cells (T)
are concurrently infected by Virus 1 (red; V1) and Virus 2 (blue; V2). Once infected,
cells undergo an eclipse phase (E1 and E2) before actively producing virus (I1 and I2).
Each parameter is labeled with subscripts 1 and 2 to denote Virus 1 (V1) and Virus 2
(V2), respectively.
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Table 2.1: Coinfection model parameter descriptions. All parameters used in
Equations (2.1)–(2.7) were taken from Smith et al. [63]. The parameters were calibrated
using viral load data from mice infected with influenza virus A/Puerto Rico/8/34 (PR8).
Here, i = 1, 2 denotes Virus 1 and Virus 2, respectively.

Parameter Description Units Value

βi Virus infectivity (TCID50)
−1day−1 2.8 x 10−6

ki Eclipse phase day−1 4.0

δi Infected cell death day−1 0.89

pi Virus production (TCID50)
−1day−1 25.1

ci Virus clearance day−1 28.4

T0 Initial uninfected cells cells 107

Ei(0) Initial eclipse cells cells 0

Ii(0) Initial infected cells cells 0

Vi(0) Initial virus TCID50 2

κ Strength of interaction (TCID50)
−1 See text

trapz function for the baseline and the eight models with different interactions. We

compared the total virus produced (Vint) of both viruses for each of the eight models

with an interaction to the AUC of the virus of the baseline (Vbase) (e.g., κ = 0). The fold

change (Vfold) in virus produced in coinfection due to virus-virus interaction relative to

baseline was calculated as:

Vfold =
Vint − Vbase

Vbase
. (2.10)

The system of differential equations (Equations (2.1)–(2.9)) was numerically solved with

the MATLAB (R017b) ODE solver ode15s. We use the parameters from Smith et al. [63],

which were calibrated using viral load data from mice infected with IAV. Balb/cJ mice

were infected with a mouse adapted IAV. The lungs were harvested and the infectious

viral load (TCID50) was measured.
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2.3 Results

We developed a mathematical model of virus-virus coinfection that allows for viral

enhancement or inhibition of one virus due to the presence of another virus (Equa-

tions (2.1)–(2.7) with Equations (2.8) or (2.9)). Viral kinetics in coinfection depend

on the underlying mechanism of interaction, the interaction strength, and the relative

timing of infection of the two viruses. Typically, in a single infection, viral infection

kinetics are characterized by two phases, with an initial exponential increase in viral

titers, a peak, and a later a exponential decay in viral titers [51, 64]. To study how coin-

fection alters these typical viral kinetics, we modify positively or negatively the virus

infection rate, rate of virus production, virus clearance rate, and infected cell death rate

to determine how various mechanisms of interactions during coinfection alter viral ki-

netics. Further we tested how these effects on viral kinetics depend on the strength of

interaction and relative timing of the infection of the two viruses.

2.3.1 Simultaneous Coinfection

We first studied the case where two viruses are introduced at the same time. We assume

that the two viruses share identical parameters. Because in all cases Virus 2 is only

indirectly affected by Virus 1, the only interaction affecting Virus 2 is from competition

for target cells. Thus, the viral growth curves for Virus 2 maintain similar shape to

the baseline case where there are no interactions (Figures 2.2–2.3). In all cases, Virus 2

maintains nearly identical rates of increase and decay as when there is no interaction.

In cases where there is viral enhancement, Virus 2 peaks at lower values than baseline,

while when there is viral inhibition, Virus 2 peaks at higher values than baseline.
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Enhanced Infection

We studied viral enhancement of Virus 1 from the presence of Virus 2 due to increased

infection rate (β1+), increased viral production (p1+), decreased viral clearance (c1−),

and decreased infected cell death rate (δ1−) (Figure 2.2). Depending on the mecha-

nism, Virus 1 titers will increase during the growth phase or the decay phase, or both

(Figure 2.2). When the infection rate of virus 1 is increased (β1+) by Virus 2, Virus 1

titers peak earlier compared to the baseline and decrease at the same rate as the baseline

(Figure 2.2A). When the viral production is increased (p1+) or viral clearance rate is

decreased (c1−) by Virus 2, the peak of Virus 1 is increased during the growth phase

and decays at a faster rate during the decay phase (Figure 2.2B–C). The rate at which

Virus 1 decays during the decay phase varies for the two interactions, p1+ and c1−,

and this is shown with different strengths of interactions (κ). When infected cell death

rate is decreased (δ1−) by Virus 2, there is no change in the rate during the growth

phase compared to the baseline and there is no decay in Virus 1 titers (Figure 2.2D).

The smallest fold change in virus is when the infection rate is increased (β1+) and the

largest fold change is when the viral clearance rate is decreased (c1−) (Figure 2.2E).

Inhibited Infection

We studied viral inhibition of Virus 1 from the presence of Virus 2 due to decreased

infection rate (β1−), decreased viral production (p1−), increased viral clearance (c1+),

and increased infected cell death rate (δ1−). When Virus 1 is inhibited, the titers will be

lower than the baseline and Virus 1 may be eliminated from the host depending on the

strength of interaction (Figure 2.3). Initially during the growth phase, between zero and

one day post infection, there is no difference in the rate of viral increase for β1−, p1−,

c1+, and δ1− compared to the baseline. When the infection rate is decreased (β1−), the
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peak of Virus 1 is lower, but the virus decays starting at a lower titer at the same rate

as the baseline (Figure 2.3A). Decreasing the viral production rate (p1−) and increasing

the viral clearance rate (c1+) have similar dynamics; Virus 1 titers peak at a lower value

and decay at a faster rate compared to the baseline (Figure 2.3B–C). The virus obtains

the highest viral titer peak when the infected cell death rate is increased (δ1−), but Virus

1 decays at a faster rate while approaching zero or removal from the host (Figure 2.3D).

Each case produces the same fold change in total virus produced, even though the viral

dynamics for each scenario produce fundamentally different shapes. This is because each

modified rate is decreasing different parts of the viral curve, growth or decay phase of

Virus 1. (Figure 2.3E).

Strength of Interaction

We varied the strength of interaction (κ) to determine its effect on viral titer dynamics.

In Figure 2.4, Virus 1 titers increase as the strength of the interaction (κ) increases.

Even for a small change, κ =1e-6 to 1e-4 per virus, increasing the viral production rate

(p1) increases the viral titers of Virus 1 by a log (Figure 2.4B). The timing of the peak

occurs earlier for all cases except when the infected cell death rate is reduced (δ1−)

(Figure 2.4).

Larger strengths of interactions (κ) further decrease the titers of Virus 1 (Figure 2.5).

Virus 1 may even be removed from the host within two days post-infection if κ is

larger than 1e-6 per virus. Decreasing the viral production rate (p1−) or increasing the

viral clearance rate (c1+) produce similar curves given similar strength of interactions

(Figure 2.5B–C).
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Figure 2.2: Viral kinetics during positive virus interference. Equations (2.1)-
(2.7) together with Equation (2.8) or Equation (2.9) were used to simulate the interaction
of two viruses in cases where the interaction of Virus 2 on Virus 1 leads to an increase
in viral titers. Virus 1 (red), Virus 2 (blue), and virus without interactions (black line;
“baseline”). Changes in viral load are shown for (A) increasing the rate of infection
(β1+) with Equation (2.8), (B) increasing the rate of viral production (p1+) with Equa-
tion (2.8), (C) decreasing the rate of infected cell death (δ1−) with Equation (2.9), or
(D) decreasing the rate of viral clearance (c1−) with Equation (2.9). (E) The relative
change in viral loads compared to the baseline for Virus 1 (red bars) and Virus 2 (blue
bars) for the indicated interaction. The strength of interaction was set to κ = 1e − 4
per virus. All other parameters are given in Table 2.1.
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Figure 2.3: Viral kinetics during negative virus interference. Equations (2.1)–
(2.7) together with Equation (2.8) or Equation (2.9) were used to simulate the interaction
of two viruses in cases where the effect of Virus 2 on Virus 1 leads to an decrease in
viral titers. Virus 1 (red), Virus 2 (blue), and virus without interactions (black line;
“baseline”). Changes in viral loads are shown for (A) decreasing the rate of infection
(β1−) with Equation (2.9), (B) decreasing the rate of viral production (p1−) with Equa-
tion (2.9), (C) increasing the rate of infected cell death (δ1+) with Equation (2.8), or
(D) increasing the rate of viral clearance (c1+) with Equation (2.8). (E) The relative
change in viral loads compared to the baseline for Virus 1 (red bars) and Virus 2 (blue
bars) for the indicated interaction. The strength of interaction was set to κ=1e-4 per
virus. All other parameters are given in Table 2.1.
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Figure 2.4: Effective interaction strength during positive virus interference.
Equations (2.1)–(2.7) together with Equation (2.8) or Equation (2.9) were used to sim-
ulate the interaction of two viruses with varying interaction strengths (κ). Virus 1 with
varying interaction strengths (κ) (red) and virus without interactions (black line; “base-
line”). Changes in viral loads are shown for (A) increasing the rate of infection (β1+)
with Equation (2.8) for κ =1e-5, 1e-3, or 10 per virus, (B) increasing the rate of viral
production (p1+) with Equation (2.8) for κ =1e-6, 1e-4, or 0.1 per virus, (C) decreasing
the rate of infected cell death (δ1−) with Function (2.9) for κ = 1e-6, 1e-5 or 1 per virus,
or (D) decreasing the rate of viral clearance (c1−) with Function (2.9) for κ =1e-6, 1e-4,
or 1 per virus. The strength of interaction compared to viral loads for (E) Virus 1 or
(F) Virus 2 for the given interactions. Parameters are given in Table 2.1.
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Figure 2.5: Effective interaction strength during negative virus interference.
Equations (2.1)–(2.7) together with Equation (2.8) or Equation (2.9) were used to sim-
ulate the interaction of two viruses with varying interaction strengths (κ). Virus 1
with varying interaction strengths (κ) (red) and virus without interactions (black line;
“base”). Changes in viral loads are shown for (A) decreasing the rate of infection (β1−)
with Equation (2.9) for κ =1e-5, 1e-3, or 10 per virus, (B) decreasing the rate of viral
production (p1−) with Equation (2.9) for κ =1e-6, 1e-4, or 0.1 per virus, (C) increasing
the rate of infected cell death (δ1+) with Function (2.8) for κ = 1e-6, 1e-5 or 1 per virus,
or (D) increasing the rate of viral clearance (c1+) with Function (2.8) for κ =1e-6, 1e-4,
or 1 per virus. The strength of interaction compared to viral loads for (E) Virus 1 or
(F) Virus 2 for the given interactions. Parameters are given in Table 2.1.
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2.3.2 Effect of Relative Timing of Infection on Viral Kinetics

There is a critical time window of infection in which the two viruses can interact, which

for our parameters is -1 to 2 days post infection. If the viruses infect the host within this

time window, then viral kinetics are qualitatively similar regardless of timing (Figure 2.6)

and (Figure 2.7). Scenarios in which Virus 2 infects 1 day prior to Virus 1 led to similar

viral kinetics as simultaneous infections (Figures 2.2–2.3) and (Figures 2.6–2.7).

We further compared the relative timing of infections by varying the infection start

times for both viruses, Virus 1 and Virus 2. While the viral kinetics are qualitatively

similar with variable timing of infections as simultaneous coinfection, the total virus

produced strongly depends on the relative timing of viruses (Figure 2.8). When Virus

1 is enhanced by the presence of Virus 2, the largest effect occurs if the host is infected

with Virus 1 between one and two days after Virus 2 (Figure 2.8A). When Virus 1 is

inhibited by the presence of Virus 2, the viral curves produce similar dynamics, the fold

change in Virus 1 is one and then decays to minus one, but the time it takes to reach

minus one varies for decreasing the infection rate (β1−), decreasing the viral production

rate (p1−), increasing the viral clearance rate (c1+), and increasing the infected cell

death rate (δ1+). (Figure 2.8B). The fold change in Virus 2 ranges between minus one

and one for both enhancement and inhibition of Virus 1 (Figure 2.8A–B).

The strength of interaction plays a role in determining the magnitude and timing of

the viral peaks (Figures 2.8–2.9). For large κ values (κ=1e-4), rates that enhance Virus

1 can lead to large amounts of virus compared to the baseline (Figure 2.8A). As the

strength of interaction between viruses is reduced, the fold change in Virus 1 is reduced

for rates that enhance Virus 1 (Figure 2.9B).
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Figure 2.6: Effect of timing of infections on viral kinetics during positive virus
interference. Equations (2.1)–(2.7) together with Equation (2.8) or Equation (2.9)
were used to simulate the interaction of two viruses in cases where the interaction of
Virus 2 on Virus 1 leads to an increase in viral titers with Virus 2 infecting one day
before Virus 1. Panels A–D show comparisons of Virus 1 and 2 for the model without
interaction, Virus 1 baseline (black dotted lines), and Virus 2 baseline (black solid lines),
against the given interaction, Virus 1 (red), and Virus 2 (blue). (A) shows an increase
in the infection rate (β1), (B) shows an increase in the production rate (p1), (C) shows
a decrease in viral clearance rate, c1 and (D) shows a decrease in infected cell death rate
(δ1). (E) shows the fold change in virus titers compared to the baseline titers for Virus
1 (red bars), or Virus 2 (blue bars). Parameters were taken from Table 2.1 with the
strength of interaction, κ = 10−4 per virus, all other parameters are given in Table 2.1.
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Figure 2.7: Effect of timing of infections on viral kinetics during negative
virus interference. Equations (2.1)–(2.7) together with Equation (2.8) or Equa-
tion (2.9) were used to simulate the interaction of two viruses in cases where the in-
teraction of Virus 2 on Virus 1 leads to an decrease in viral titers with Virus 2 infecting
one day before Virus 1. Panels A–D show comparisons of Virus 1 and 2 for the model
without interaction, Virus 1 baseline (black dotted lines), and Virus 2 baseline (black
solid lines), against the given interaction, Virus 1 (red), and Virus 2 (blue). (A) shows a
decrease in the infection rate (β1), (B) shows a decrease in the production rate (p1), (C)
shows an increase in viral clearance rate, c1 and (D) shows an increase in infected cell
death rate (δ1). (E) shows the fold change in virus titers compared to the baseline titers
for Virus 1 (red bars), or Virus 2 (blue bars). Parameters were taken from Table 2.1
with the strength of interaction, κ = 10−4 per virus, all other parameters are given in
Table 2.1.
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Figure 2.8: Effect of timing of infections on total virus produced with strong
interactions. Each panel shows the fold change in virus produced over the course of
infection as a function of the relative timing of virus infections. Equations (2.1)–(2.7)
together with Equation (2.8) or Equation (2.9) were numerically solved for a range of
relative timings of infection between the two viruses. (A) shows the change in Virus 1 and
Virus 2 for an increase in infection rate (β1+) (green), an increase in virus production,
(p1+) (pink), a decrease in viral clearance, (c1−) (yellow), and a decrease in infected
cell death, (δ1−) (cyan). (B) shows the change in Virus 1 and Virus 2 for a decrease in
infection rate, (β1−) (green), a decrease in virus production (p1−) (pink), an increase
in viral clearance (c1+) (yellow), and an increase in infected cell death (δ1+) (cyan).
Parameters were given in Table 2.1 with κ=1e-4 per virus. Initial conditions were taken
from the single infection model from [51] for the given infection start time.
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Figure 2.9: Effect of timing of infections on total virus produced with weak
interactions. Each panel shows the fold change in virus produced over the course of
infection as a function of the relative timing of virus infections. Equations (2.1)–(2.7)
together with Equation (2.8) or Equation (2.9) were numerically solved for a range of
relative timings of infection between the two viruses. (A) shows the change in Virus 1 and
Virus 2 for an increase in infection rate (β1+) (green), an increase in virus production,
(p1+) (pink), a decrease in viral clearance, (c1−) (yellow), and a decrease in infected
cell death, (δ1−) (cyan). (B) shows the change in Virus 1 and Virus 2 for a decrease in
infection rate, (β1−) (green), a decrease in virus production (p1−) (pink), an increase
in viral clearance (c1+) (yellow), and an increase in infected cell death (δ1+) (cyan).
Parameters were given in Table 2.1 with κ=1e-6 per virus. Initial conditions were taken
from the single infection model from [51] for the given infection start time.
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2.4 Discussion

Studies have shown patients can be infected by more than one virus [3, 4, 6, 9, 13, 53–

57, 60]. In coinfection, interactions between multiple viruses within a host can increase

disease severity and may enhance transmission while other interactions can reduce dis-

ease severity and possibly block the infection of a second virus [6, 11, 54, 55, 58]. Under-

standing the mechanisms that drive disease severity is important to prevent and treat

viral infections. Experimental data on viral-viral coinfections is limited, but studies

have shown that certain virus combinations increase viral loads while others decrease

viral loads [10, 11, 58]. These interactions can be caused by numerous mechanisms

that alter key rates that govern viral kinetics. While these mechanisms have not all yet

been observed in respiratory viral coinfections, some mechanisms observed in other viral

coinfections are blocking entry to cells decreasing infection rates, altering receptor ex-

pression increasing infection rates, modification of the interferon-induced antiviral state

increasing or decreasing viral clearance or infected cell death rates, and viral exclusion

decreasing infection or virus production rates [59, 60, 62].

Several studies have shown that viral-viral coinfections in the respiratory tract can

have consequences in vitro and in vivo [10, 11, 56]. In one study, an in vitro cell

culture system was used to investigate coinfection between PIV-2 and IAV [10]. In those

experiments, IAV titers were elevated during PIV-IAV coinfection compared to a single

infection while PIV titers were not altered. The authors further determined that PIV

enhanced the fusion of epithelial cells to each other, and thus increased the growth rate

of IAV [10]. In our model, numerous mechanisms are consistent with the increase in IAV

titers during the growth phase, including increasing the infection rate (β+), increasing

the viral production rate (p+), and decreasing the viral clearance rate (c−) (Figure 2.4).

More data leading to higher resolution and longer time series in conjunction with our
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mathematical model may allow us distinguish between these mechanisms.

There is a critical time window during which viruses can interact in coinfection.

When IAV and RSV are coinfected within a ferret, IAV can reduce disease severity of

RSV depending on the timing of infection of the two viruses. When RSV is introduced

in the ferret 3 days or 7 days after IAV, disease severity of RSV is reduced by increasing

the levels of pro-inflammatory cytokines within the respiratory tract; however, this effect

is not observed when RSV is introduced 11 days after IAV. Moreover, when RSV was

given before IAV, morbidity in the ferrets was reduced, but viral loads were similar [58].

These results are consistent with our model that timing of virus infections can affect

viral dynamics and outcome (Figures 2.8–2.9).

Gonzalez et al. [11] also found that outcomes can depend on timing of infections

and the virus pairing. In one set of experiments, when mice were infected with RV

then IAV two days later, IAV titers were lower late in the infection. This corresponded

with reduced inflammation. This effect was not seen in vitro, suggesting the interaction

between the two viruses is not direct and may be mediated by the host response. They

also found that when mice were infected with MHV two days before PR8, PR8 titers

were reduced in lungs early in infection. This corresponded with an upregulation of

IFN-β. Our model shows similar results when Virus 2 inhibits Virus 1 by increasing

the infected cell death rate (c+) or viral clearance rate (δ+), both of which could be

mediated by immune responses (Figure 2.5C–D).

Some viruses are more likely to be detected in coinfection than others [3, 4, 6, 9, 13,

53–57]. Martin et al. [54] showed that ADV was the most commonly detected pathogen

in multi-virus infection. Coronaviruses were also common, but disease severity was

decreased in most multi-virus coinfections involving CoV [54]. Presently, the mechanisms

underlying the increased frequency of ADV or CoV in coinfections is unknown. Our

model may be useful for understanding why some viruses appear more often than others.
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If a virus tends to benefit from coinfection, it may be more likely to be found in coinfected

individuals than a virus that does not benefit from coinfection.

Our model focuses on the interaction between different respiratory viruses. We kept

the virus inoculum (V0) constant and focused on modifying a single rate at a time. How-

ever, Pinky and Dobrovolny [52] showed that varying the virus inoculum and infection

rates could drastically change viral dynamics and the outcome of the coinfection. Pinky

and Dobrovolny [52] used viral interference in the form of competition for target cells to

explain the variation between viruses in coinfection. They also determined that a pri-

mary factor determining which virus outcompeted the other was the growth rate, which

is a combination of the target cell infection rate (β) and viral production rate (p) [64].

Our model shows that modifying a single process either through enhancing the rate or

inhibiting it, can also result in differences in viral titers, without needing to alter the

virus inoculum (V0) or changing the infection rates (β) of viruses.

By developing and analyzing a general mathematical model of within-host viral coin-

fection, we have mapped the landscape of how viral interactions affect viral kinetics and

thus disease severity. While we considered respiratory viruses in parameterization, the

model is general enough that it applies broadly to acute coinfections where both viruses

target the same cells. As more temporal viral titer data become available in coinfection,

comparisons with our model can serve to better interpret the data by generating hy-

potheses of underlying mechanisms governing viral interactions. With this information

in hand, further studies can then be designed to test and verify mechanisms, ultimately

leading to a more complete understanding of coinfection.
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