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Abstract

As the percentage of wind energy continues to increase in the overall energy portfolio, two

essential components of integrating wind energy are designing wind turbines to withstand

the forces created by the wind and correctly predicting the power production from wind

farms. Accurate wind modeling over complex terrain is paramount to both applications.

Existing wind forecasting techniques use computational resolutions on the order of a kilome-

ter, whether the terrain be flat or complex. In this dissertation, a computational framework

that applies the large-eddy simulation (LES) technique with resolutions on the order of 10

m is developed to improve predictions of turbulent winds over complex terrain. LES is a

computationally expensive technique and a distinguishing aspect of the proposed framework

is that the entire simulation is developed for massive-parallelism using clusters of graphics

process units (GPUs). To reduce the near-wall resolution requirements, Reynolds-averaged

Navier-Stokes (RANS) is used in tandem with LES as a wall-model. The hybrid use of RANS

and LES leads to modeling artifacts such as a mismatch in the theoretical logarithmic law-

of-the wall. A forcing technique that splits the driving mean pressure gradient based on

conservation of mass principle is proposed. The split-forcing approach was found to reduce

the modeling artifacts on coarse grids. A new turbulent inflow condition based on buoy-

ancy perturbations is proposed for both smooth-wall-engineering and complex-terrain flows.

For complex terrain winds, an improved immersed-boundary method is developed based on

the equilibrium assumptions in the atmospheric surface layer, along with a pre-processor

to process terrain geometry. The computational framework and individual components are

thoroughly tested and validated using well-known benchmark cases. Finally, the compu-

tational framework is applied to study the feasibility of dynamic line-rating concept over

complex terrain. Potential avenues of further research are also recommended.
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CHAPTER 1

Introduction

The wind engineering field encompasses many applications, with wind-structure in-

teraction being perhaps the most commonly-known example. Wind loading on bridges,

light-weight flexible structures, and wind turbines are common examples of wind-structure

interactions. In the particular application of wind-structure interaction for wind turbines,

quantities often sought after with high accuracy include wind shear and turbulence inten-

sity. Wind shear refers to the wind speed profile tending to lower values as the height above

ground level, hagl, becomes smaller with the shape of the profile greatly depending on the

surface roughness of the ground. Turbulence intensity refers to the root-mean-square amount

of turbulent fluctuations in the wind flow. Both contribute to structural stresses within the

turbine.

A wind velocity profile typically has increasing velocity with increasing hagl. As a wind

turbine rotates, the wind speed that a blade tip experiences at the highest position in a

rotation will be considerably higher than when the same blade tip is at its lowest position in

a rotation. To illustrate this concept, an example wind shear profile is given in Figure 1.1. A

127 m diameter swept area of a large wind turbine with a hub height of 135 m is represented

as the rectangle in Figure 1.1 and will experience a wind speed of 14.8 m/s at the top of the

rotation and a speed of 12.2 m/s at the bottom of the rotation, making for a difference of

2.6 m/s between the highest and lowest positions of the turbine blades. Turbulence intensity

also has a similar effect, with the wind turbine experiencing variations in wind speed at high

levels of turbulent intensity. For example, if the turbulence intensity is 20 % at the hub

height of the previously-mentioned turbine wind shear example (the hub height is often used

as the measuring height for turbulence intensity (International Electrotechnical Commission,

2017)), then the turbine blades can be expected to experience variations of wind speed 2.8

m/s from the mean value of 14.2 m/s at the hub height over short periods of time and will

experience even higher variations as turbulence intensity is a root-mean-square quantity.
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Overall, the forces experienced by a wind turbine vary with hagl and time and if this cyclic

loading is not designed against, the turbine can fail prematurely, e.g. gearbox failure (Jain,

2011).

Wind resource assessment is the in-depth process of determining the economic feasibility

of a potential wind farm (Jain, 2011). A wind-measurement campaign is performed for one

to two years to mean wind speed and turbulence intensities. Data assimilation of histori-

cal satellite data is performed to adjust the mean wind speed. Using the adjusted value,

economic feasibility of the project over a target lifetime is performed using various wind

turbine models Jimenez (2013). With multiple turbines, wakes behind the turbine need to

be accounted for in the resource assessment to avoid decreased power production from tur-

bines in the wake of other turbines. Wake-turbine interactions need to be minimized when

siting wind turbines. The wakes depend on the atmospheric conditions and the turbulence

intensities of the incoming wind (Stevens and Meneveau, 2017).

Once a wind farm is operational, balancing authorities, such as the Bonneville Power

Administration (Bonneville Power Administration, 2017), require accurate forecasts of wind

power production. A balancing authority’s responsibility is to efficiently schedule unit com-

mitment of power-producing resources and dispatch electricity where it is in demand. Con-

stant generation sources, such as natural gas burners or hydroelectric dams, have known spin

up times and known power production estimates. Wind energy is categorized as variable

generation because wind speed that is high enough to spin a wind turbine rotor occurs at

various times of day with variable duration. To meet the demand on the electrical grid, i.e.

the amount of electricity being used by consumers, a balancing authority needs to use both

variable and constant generation. Without predictive capabilities for variable generation, a

balancing authority may not be able to effectively commit and balance both constant and

variable generation resources. If not enough generation units are committed, then not enough

electricity will be produced to meet demand, leaving some consumers without electricity. If

too many generation units are committed, then curtailment is a possibility to avoid damage
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to the electrical grid. An example of curtailment with respect to wind energy is to engage the

brakes of wind turbines to avoid the grid receiving more power from variable wind resources

than the grid was designed to transport. The disadvantage is that renewable energy is lost

for both the balancing authority and the wind farm owner who expects to sell the electricity

produced.

Wind power forecasting models can be classified as either a physical, statistical, or learn-

ing (Foley et al., 2012). A physical model, such a numerical weather prediction (NWP)

model, is a simulation of atmospheric flow dynamics. A statistical model, the more tra-

ditional approach, analyzes a historical data to make a prediction. The learning approach

uses artificial intelligence concepts to make predictions based on historical data. Combining

classifications is referred to as hybrid methods. There is another prediction approach, the

persistence approach (Soman et al., 2010), that is not a model but is the concept that the

wind speed and power production will not vary over a given period of time. Obviously,

the approach is not robust and loses accuracy with a longer time frame but the persis-

tence approach can be used as a benchmark for other methods. Long-term predictions, i.e.

monthly, quarterly, or annual time frames, and very-short-term predictions, i.e. subhourly

time frames, are usually well predicted by models requiring statistical input. Short-term pre-

dictions, i.e. one-hour-ahead, six-hour-ahead, and daily time frames, rely on the dynamics

of the atmosphere and are expected to be better predicted by physical approaches. However,

accurately capturing the dynamics of the atmosphere has multiple challenges, depending

both on the time horizon and the physical size of the area of interest.

The aforementioned applications of wind turbine design, wind turbine siting, and wind

farm power production would all benefit from a tool that is able to model the wind accurately,

particularly when the farm or potential farm is located in areas of complex terrain such as

hills, valleys, or canyons. The focus of this dissertation is on physical models of turbulent

wind within the atmospheric boundary layer (ABL) over complex terrain. The ABL is

defined as the lowest part of the atmosphere, typically being approximately 1 km above the
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Earth’s surface. The end goal that starts with the research presented in this dissertation is

to accurately predict wind velocity and turbulence intensities on the physical length scales

with the same order of magnitude as a wind turbine or a wind farm, e.g. numerical model

resolution of 10-100 m in the horizontal directions and 1-20 m in the vertical direction.

Models of the ABL at this resolution are referred to as microscale models in meteorology.

The industry standard is to use mesoscale models, i.e. horizontal numerical resolutions of

1-100 km, for predicting wind power production meaning that the wind passing through a

wind farm is modeled by a few points which will have to be interpolated. The algorithms

are also chosen to perform well on the chosen graphics processing unit (GPU) computational

accelerator (Jacobsen and Senocak, 2011, 2013; DeLeon et al., 2013), i.e. the algorithm

is well-suited to memory architecture of the GPU. The goal is to forecast the wind for

power predictions and a distinguishing aspect of this work is the development of a LES

framework exclusively for massively-parallel, multi-GPU supercomputers. The contribution

of this dissertation is developing new approaches for components of an LES framework

to simulate winds over complex terrain from a computational fluid dynamics perspective.

However, before stating the goals of the research more specifically, the ABL is discussed

in more detail to present the challenges and the difference from an aerodynamic boundary

layer.

1.1 Atmospheric Boundary Layer

The ABL differs drastically from the smooth-wall boundary layer defined for aerodynamic

applications. Perhaps the most significant is the diurnal cycle the ABL experiences. The

diurnal cycle creates a different yet well-defined flow structure depending on time of day as

shown in Figure 1.2. A typical diurnal cycle is described here although other atmospheric

conditions can lead to the same atmospheric stability. During the day, the turbulence is

convectively driven by heat fluxes from the warm ground or radiative cooling from clouds and

driven mechanically by wind shear (Stull, 1988, pg. 12). This is referred to as the convective



6

Figure 1.2: Sketch of diurnal cycle in the atmospheric boundary layer (Stull, 1988).

boundary layer. When buoyancy is negligible and driven predominantly by mechanical

means, the ABL is said to be neutral. The lowest 10%, approximately the lowest 100 m, is

driven mechanically and the mean velocity profile exhibits logarithmic behavior. At night,

the cool ground creates a stably stratified flow structure with a bottom nocturnal boundary

layer exhibiting intermittent turbulence and a residual layer above that is neutrally stratified

(Stull, 1988, pg. 14). A surface layer is still present, although does not extend as high above

the surface as during the daytime. These observations are made over flat terrain. As the

terrain topography becomes more complex, the flow behavior becomes more difficult to

model.

The surface of the Earth is composed of roughness elements of varying dimensions, e.g.

buildings, trees, grass, rocks, meaning that the distinct turbulent flow regions, viz. the

viscous sublayer or buffer layer, that develop in smooth-wall, wall-bounded turbulent flows,

e.g. pipe flows or smooth-wall turbulent boundary layer, are not as distinctly observed in

the atmosphere. Thus, the law-of-the-wall for smooth-wall, wall-bounded turbulence does

not apply for ABLs. Earth’s surface is also thermally active, meaning moisture and heat

fluxes are significant surface boundary conditions for the turbulent flow. In the surface layer,
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the mean velocity does exhibit logarithmic behavior as in engineering flows. However, the

definition is a rough-surface log-law with a term for stability correction, ψ,

U

uτ
=

1

κ

[
ln

(
z + z0
z0

)
+ ψ (z, z0, L)

]
(1.1)

with an aerodynamic roughness length, z0, which represents the location where the velocity

is zero in the mean sense. For statically neutral or statically near-neutral atmospheric

conditions, i.e. buoyancy effects do not change the laminar or turbulent state of the flow, the

stability correction term goes to zero. The aerodynamic roughness length varies depending

on the heights and shapes of the roughness elements but is always higher than ground level.

To further illustrate the difference between an aerodynamic boundary layer mean velocity

profile and a rough-surface boundary layer, Figure 1.3 compares the smooth-wall law-of-the-

wall with a rough-wall log-law (Equation 1.1) using the same friction velocity value for both

laws. Note that the slope of the velocity is similar away from the surface yet the rough-wall

law does not start at the wall due to the aerodynamic roughness length.

Similar challenges shared by the ABL and general engineering flows are part of the moti-

vation for investigating application of CFD techniques to microscale meteorological applica-

tions. While there are many more challenges than discussed here, three are presented that

will be the focus of this dissertation. One shared challenge is to resolve turbulent fluctua-

tions using the large-eddy simulation (LES) technique without requiring impractically-large

computational resources. For context, Choi and Moin (2012) showed that wall-resolved LES

of a high-Reynolds-number boundary layer takes approximately Re
13/7
Lx

grid points, where

Lx in this case is the streamwise flat-plate length. The computational cost is a result of the

essential idea of LES; LES is a turbulence modeling technique that filters turbulent eddies

depending on their characteristic size. Eddies passing below the filter width are considered

statistically universal and are modeled whereas the eddies passing above the filter width are

numerically calculated, or resolved. A rule of thumb for a resolved LES is that 80% of the
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Figure 1.3: A sketch of a rough log-law and a smooth-walled law-of-the-wall using the same
friction velocity value in both laws.

turbulent kinetic energy needs to be resolved, which is contained within scales larger than

one-sixth the integral length scale of turbulence (Pope, 2000, pg 242). As the length scales of

turbulence diminish as a surface is approached leading to smaller and smaller integral length

scales, more numerical grid resolution is required to properly resolve 80% of the turbulent

kinetic energy at these scales. As the order of magnitude of Reynolds number is O(106) in

the ABL, these near-surface scales are very, very small compared to the larger scales away

from the surface. One approach to alleviate computational costs of LES is to use a wall

model (Deardorff, 1970; Schumann, 1975), which has commonly been in ABL simulations

since Moeng (1984) proposed a wall-modeled LES approach for the ABL. The idea of a wall

model is to use a coarse mesh near the surface and a model for the velocity and Reynolds

stresses to provide accurate information to the rest of the LES, which is resolved. The chal-

lenge is then to combine the wall-model with the resolved LES without introducing modeling

artifacts.

A second shared challenge, again concerning computational requirements, is the impo-
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sition of boundary conditions from complex geometries, or in the case of ABL, complex

terrain. Even with a perfect wall-model, complex geometries present a meshing challenge as

concavities and convexities can lead to skewed grid cells if using structured meshing types.

Unstructured grids are able to capture complex geometries with high mesh quality but also

may require high mesh refinement, defeating the purpose of saving computational resources.

The immersed boundary method (Mittal and Iaccarino, 2005; Sotiropoulos and Yang, 2014)

uses Cartesian grids to immerse a solid thus avoiding cumbersome meshing and poor mesh

quality. The challenge becomes imposing the boundary conditions on the Cartesian grid.

IBM has been studied extensively in the CFD community and has been extended to ABL

but research is an ongoing area.

A third shared challenge is the inflow boundary conditions. Idealized boundary condi-

tions, such as periodic, are not suitable for obtaining realistic flow predictions. Inflow and

outflow conditions are much better suited. However, LES requires inflow information on the

structure of the turbulence, i.e. correct spatial and temporal correlations. If not present,

the LES will require an impractically long development region, increasing the computational

cost tremendously. Turbulent inflow conditions for LES is an on-going research area in the

engineering and atmospheric communities (Keating et al., 2004; Tabor and Baba-Ahmadi,

2010; Wu, 2017). Wu (2017) highlights the need for more robust methods that maintain the

three-dimensionality of the mean velocity in atmospheric flows. However, few studies have

investigated turbulent inflows that have time-varying mean flow directions as experienced in

the ABL. An example mean flow direction as a function of time that is a polynomial fit to

actual wind directional measurements is shown in Figure 1.4.

1.2 Research Questions

The aforementioned shared challenges between the ABL and general engineering flows are

the focus of the dissertation. The research questions that motivated the research presented

in this dissertation are as follows:
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Figure 1.4: Time-varying mean flow direction example. A polynomial fitted to actual wind
speed measurement data.

1. How reliable is the wall-modeled LES approach of hybrid RANS-LES for turbulent

winds over complex terrain?

2. How accurate is the wind flow predicted when using equilibrium attached-flow assump-

tions to impose boundary conditions created by an immersed complex terrain?

3. How can buoyancy-driven flow physics be used as a turbulence inflow generation tech-

nique for LES of wind flow over complex terrain?

The investigation of these research questions are presented in this dissertation. Chapters

2 and 3 are a proposed method resulting from research into question 1. Chapters 4, 5, and

6 discuss the various aspects of research into question 2. Chapter 7 pertains to research

question 3 for applications in engineering-type flows. Chapter 8 also pertains to research

question 3 and focuses on wind flow over complex terrain. An application of the methods

proposed in this dissertation can be found in Chapter 9. Recommendations for future work

are discussed in Chapter 10.
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1.2.1 Discussion of Hybrid RANS-LES

Hybrid RANS-LES encompasses a broad range of approaches that use RANS when grid

resolution is insufficient for an LES to resolve 80% of the turbulent kinetic energy (TKE) in

a flow. A discussion on the eighty-percent-TKE, fully-resolved LES criteria can be found in

Pope (2000, pg 240-42, 570). The goal of hybrid RANS-LES is to alleviate computational

cost of high-Reynolds-number simulations by taking advantage of the lower mesh resolution

requirements of RANS. A RANS model is used near the wall such that the small scales in the

viscous sublayer need not be resolved but are rather the contributions to the flow far away

from the wall are modeled. The challenge becomes the interface condition between RANS

and LES. RANS simulates only the largest of turbulent scales, i.e. the mean values, and

models all turbulent fluctuations. LES resolves the larger scales of turbulence and models

the smaller isotropic scales, the separation of larger and smaller scales accomplished with a

low-pass filter operation. For accurate results, the LES region requires information on the

resolved Reynolds stress components, otherwise the model for isotropic small-scales will push

the LES result to an inaccurate solution. The reason is that not all TKE is being accounted

for by the lack of Reynolds stresses coming from the RANS region and the LES will push

another variable towards an unnatural value to maintain a global momentum balance, often

times the mean velocity gradients. The unnatural deformation of mean velocity gradients is

referred to as the log-layer mismatch problem.

As Reynolds numbers in atmospheric flows are on the order of O(106), wall-modeled

LES is a necessity. Hybrid RANS-LES was chosen as the model can be formulated without

knowledge of the surface stresses. In Chapters 2 and 3, work into reducing the log-layer

mismatch problem in a hybrid RANS-LES of turbulent channel flow is presented. The idea

is to validate the approach in a known canonical case before moving onto more general flows,

such as turbulent wind over complex terrain. A systematic investigation of approaches led

to the proposal of a method referred to as split forcing, details of which will be described in
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the following sections. However, split forcing is ‘channel-friendly’ and does not extend easily

to general flows. The idea is that the concept can lead to other developments to reduce

log-layer mismatch in general flows. More discussion to this matter is given in Chapter 10.

Log-layer mismatch arises when hybridizing LES with a Reynolds-averaged Navier-Stokes

(RANS) descriptions of turbulence for a wall model. RANS only provides mean quantities

and does not provide the necessary resolved Reynolds shear stresses to the LES zones. Most

research to eliminate the log-layer mismatch involves adding forcing terms in the momentum

equations that are not based on physical principles. The split-forcing method is presented

in Chapters 2 and 3 using two high Reynolds number for a turbulent, periodic channel

flow. The split-forcing approach is distinct from other approaches in literature as it relies on

conservation of mass to calculate the magnitude of the forcing terms to reduce the log-layer

mismatch in wall-modeled LES. While not necessarily applicable to flows other than a plane

channel flow, the study stemmed from searching for an answer to research question 1 and

provided interesting results with insight into hybrid RANS-LES. The work in Chapter 2 is

presented as a work-in-progress manner for a prognostic hybrid RANS-LES approach while

the work in Chapter 3 is presented as a numerical experiment.

1.2.2 Discussion of Immersed Boundary Methods

An immersed boundary (IB) method is an alternative to body-fitted or unstructured meshes.

The general idea is to immerse a geometry in a Cartesian grid to greatly simplify the meshing

process. The challenge is then the imposition of the boundary conditions at the surface as the

immersed surface does not coincide with the Cartesian grid. With laminar flows or turbulent

flows with mesh resolution in the viscous sublayer, the velocity behavior can be represented

by linear or quadratic laws and a reconstruction scheme, i.e. interpolation scheme, can be

used to impose velocity boundary conditions. However, in turbulent flows without resolution

of the viscous sublayer, the IB method can be a bit more challenging. Also, with regards

to turbulent wind flow over complex terrain, IB methods are highly desirable to avoid the
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possibility of skewed cells in terrains exhibiting a variety of concavities and convexities whose

characteristic size are on the order of the mesh resolution. Poor aspect ratio of mesh cells

can pollute a solution and complex terrain is susceptible to skewed mesh cells. Chapter 4

addresses the issue of obtaining geometric information for IB methods in regards to complex

terrain. Chapter 5 is the validation of an immersed boundary method use in a DNS of

katabatic slope flow. Finally, Chapter 6 explores an IB method for turbulent wind flows over

complex terrain.

1.2.3 Discussion of Buoyancy-Perturbations Turbulent Inflow

Similar to the discussion in Chapter 2, LES requires accurate turbulent flow structure with

the proper correlations, otherwise resolved quantities are pushed to unnatural values due

to missing or improper resolved Reynolds stresses. While Chapter 2 looked at the lack

of resolved Reynolds stresses LES receives from a RANS wall model in hybrid RANS-LES,

Chapter 7 looks at the incoming flow boundary condition in non-periodic, fully-resolved LES.

Unlike in Chapter 2, the viscous sublayer is resolved. Chapter 7 focuses on the development

of the perturbation box turbulent inflow generation method in canonical engineering-type

flows. Again, the idea is to validate the method in a canonical case before applying to more

general flow conditions. Chapter 8 applies the proposed turbulent inflow method to complex

terrain. The purpose is to investigate if the parameters from the engineering-type flow cases

apply to turbulent wind flow over complex terrain. The mean flow characteristics of the wind

flowing over hills are investigated. Turbulent quantities are not included in this study as the

hybrid RANS-LES approach does not allow for accurate representation of the second-order

moments very close to the surface where the measurement campaigns gathered data. More

discussion on this issue in Chapter 10.

With regard to LES of atmospheric flows, incoming flow may be prescribed from a larger

mesoscale weather model that only provides a mean flow direction and magnitude. Thus, a

method that can generate realistic and non-periodic turbulence at the LES inflow is needed
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as LES requires accurate turbulent flow field information. Also, the mean flow direction may

change in time. An inflow condition needs to accommodate this. However, most turbulent

inflow techniques are developed for engineering-type flows where time-varying mean flow

direction is not present. The work presented in this dissertation accommodates meandering

winds.

1.2.4 Discussion of Dynamic Transmission Line Rating

In Chapter 9, the wall-modeled LES simulation with IB methods presented in this disserta-

tion in a proof-of-concept of the dynamic line rating concept. The simulation presented in

Section 9.4 was over an area 18 km × 24 km that required 327 hours (13.6 days) to complete

on 32 GPUs. The dynamic line rating concept is to use the convective cooling of wind flowing

over transmission lines to dynamically change the maximum limit of electricity that can be

safely transmitted along the lines.
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CHAPTER 2

A Novel Fix to Reduce the Log-layer Mismatch in Wall-Modeled

Large-eddy Simulations of Turbulent Channel Flow

DeLeon, R. and Senocak, I. “A novel fix to reduce the log-layer mismatch in wall-modeled

large-eddy simulations of turbulent channel flow” In ASME 2016 Fluids Engineering

Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer

Conference and the ASME 2016 14th International Conference on Nanochannels,

Microchannels, and Minichannels. 2016.

2.1 Abstract

The log-layer mismatch arises when a Reynolds-averaged Navier-Stokes (RANS) model is

blended with a large-eddy simulation (LES) model in a hybrid fashion. Numerous researchers

have tackled this problem by simulating a turbulent channel flow. We show that the log-

layer mismatch in hybrid RANS-LES can be reduced substantially by splitting the mean

pressure gradient term in the wall-normal direction in a manner that keeps the mass flow

rate constant. Additionally, an analysis of the wall-normal variation of the friction velocity

shows a constant value is recovered in the resolved LES region different than the value at

the wall. Second-order turbulence statistics agree very well with direct numerical simulation

(DNS) benchmarks when scaled with the friction velocity extracted from the resolved LES

region. In light of our findings, we suggest that the current convention to drive a turbulent

periodic channel flow with a uniform mean pressure gradient be revisited in testing eddy-

viscosity-based hybrid RANS-LES models as it appears to be the culprit behind the log-layer

mismatch.
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2.2 Introduction

A common drawback for broad adoption of wall-bounded large-eddy simulation (LES) in

engineering flows is the high computational cost of fully resolving the near-wall region. The

stringent resolution requirement arise from the scales of turbulence diminishing drastically

as the wall is approached Pope (2000). Wall-modeled LES (WMLES) is an alternative to a

fully-resolved LES which alleviates the stringent near-surface grid requirements and allows

adoption of LES in general engineering flows.

WMLES has two major elements: modeling the wall shear stress directly and modeling

the inner part of the boundary layers with a Reynolds-averaged Navier-Stokes representation

of turbulence. Modeling the wall shear stress is often accomplished by replacing the no-slip

condition with a wall shear stress derived from flow variables Schumann (1975). In this

regard, a coarse grid can be used as the fine resolution needed to resolve the viscous sublayer

with the no-slip condition at the wall is no longer required. The disadvantage of modeling

the wall shear stress is that a general theory is needed to compute the wall shear stress

during computations. A RANS description of turbulence does not require resolution of

energy-containing eddies meaning the grid can be much coarser than an LES grid. However,

RANS and LES fields produce statistically different quantities. The process of hybridizing

RANS and LES, referred to as hybrid RANS-LES, is often considered an ad-hoc approach as

modeling artifacts resulting from two different quantities are often remedied by introducing

empirical mechanisms to energize the flow. The focus of this study is to demonstrate that

modeling artifacts can be remedied with the use of conservation principles only.

The commonly known log-layer mismatch has plagued hybrid RANS-LES approaches

when the velocity profile overshoots the theoretical log-law profile above the interface be-

tween the RANS and LES regions, often observed in hybrid RANS-LES of channel flows.

The periodic channel is a common testbed for hybrid RANS-LES models. An early study

that highlighted the existance of log-layer mismatch in a turbulent channel flow simulation
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was by Nikitin et al. Nikitin et al. (2000), who used the detached-eddy simulation (DES)

Spalart et al. (1997) technique as the wall-modeled LES. Turbulence was sustained but ve-

locity gradients were too steep and the issue was referred to as the “DES buffer layer.”

Hamba Hamba (2003) observed the log-layer mismatch issue in channel flow with simple

eddy viscosity models and proposed different filters to alleviate the log-layer mismatch.

Studies by Keating and Piomelli Keating and Piomelli (2006) and Davidson and Billson

Davidson and Billson (2006) demonstrated methods of energizing the flow at the RANS-

LES interface by using stochastic forcings and imposing turbulent fluctuations, respectively.

However, both of these approaches would be difficult to generalize to other flows. Dual-

mesh approaches have also been proposed, the first being the two-layer model by Balaras

and Benocci Balaras and Benocci (1994). Here, the RANS and LES are solved on separate

domains and the solutions are hybridized together. Xiao and Jenny Xiao and Jenny (2012)

is a more recent example of a dual-mesh hybrid RANS-LES. For more hybrid RANS-LES

methodologies, the reader is referred to reviews by Frölich and von Terzi Fröhlich and von

Terzi (2008) and Piomelli Piomelli (2008).

With regards to hybrid RANS-LES approaches that employ eddy-viscosity-type models,

the log-layer mismatch in periodic channel flow stems from a combination of missing resolved

shear stresses and high eddy viscosity when transitioning from RANS to LES. Because of

this fact, many approaches focus on energizing the flow at the RANS-LES interface through

empirical techniques, even leading some to argue that hybrid RANS-LES are not a viable

approach because of these empirical remedies to fix the log-layer mismatch. We propose an

alternative methodology that relies upon conservation principles only to reduce the log-layer

mismatch. The proposition is simple, give the conservation of momentum another degree of

freedom by allowing the driving mean pressure gradient to vary in the wall-normal direction

depending on the magnitude of the eddy viscosity. We test our hypothesis on a periodic

channel flow with a driving mean pressure gradient that varies in the wall-normal direction

while maintaining a constant mass flow rate.
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In addition to fixing the log-layer mismatch, we also place our first grid point in the

logarithmic region of the channel flow. As is commonly known and performed, the placement

of the first grid point at approximately one wall unit away from the wall gives the best results.

Most, if not all, studies of hybrid RANS-LES for a periodic channel flow place the first point

in the viscous sublayer and alleviate computational costs by coarsening the grid in the

streamwise and spanwise directions only. Hence, a distinguishing feature of our investigation

is demonstrating channel flow simulations where the grid is coarsened in all three directions.

We use the standard wall shear stress model proposed by Schumann and Grötzbach in our

simulations where the first off-wall grid point falls into the logarithmic region, i.e. y+ ≈ 30.

2.3 Methodology

We solve the filtered form of the governing equations for incompressible flows which are

written as

∂uj
∂xj

= 0, (2.1)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − τij

)
, (2.2)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.3)

is the deformation tensor, and

τij = uiuj − uiuj, (2.4)

is the tensor representing the interaction of the modeled subgrid-scales on the resolved

energy-containing scales.
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The governing equations are solved using a three-dimensional, incompressible, GPU-

accelerated flow solver Thibault and Senocak (2012); Jacobsen and Senocak (2013); DeLeon

et al. (2013). The code uses the projection algorithm Chorin (1968) on directionally-uniform

Cartesian grids with second-order central differences for spatial derivatives and a second-

order Adams-Bashforth scheme for time advancement. The pressure Poisson equation is

solved by an amalgamated 3D geometric parallel multigrid solver specifically designed for

GPU clusters Jacobsen and Senocak (2011).

2.3.1 Mean Streamwise Pressure Gradient in Periodic Channel

Flow

As periodic boundary conditions do not introduce an incoming mass flow rate, a mean

streamwise pressure gradient forcing term, 〈 dp
dx
〉, must be applied to the streamwise momen-

tum equation to drive the flow. There are two ways to formulate 〈 dp
dx
〉: impose a constant

body force balancing the wall shear stress but causing the mass flow rate to fluctuate, or

dynamically adjust 〈 dp
dx
〉 to maintain a constant target mass flow rate. The latter is advan-

tageous when the wall shear stress is not known. With both approaches, 〈 dp
dx
〉 is applied

uniformly to the entire domain at any given time step.

The forcing method chosen for this study to ensure mass conservation is that of Benocci

and Pinelli (1990), which can be formulated as follows

〈
dp

dx

〉n+1

=

〈
dp

dx

〉n
− 2

∆t

(
ṁn+1

Ac
− ṁ0

Ac

)
+

1

∆t

(
ṁn

Ac
− ṁ0

Ac

)
, (2.5)

where the superscript n is the time step counter, ∆t is the physical time step value required

to be held constant throughout the simulation as per the original formulation, ṁ0 is the

prescribed mass flow rate, and Ac is the constant cross-subsectional area. Other examples

of forcing terms that maintain constant mass flow rate are those of You et al. (2000) that
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modifies the psuedo-pressure term in a fractional step method and Brandt (2003) which

uniformly corrects the velocity field to match the correct mass flow rate.

2.3.2 Split Forcing of Mean Streamwise Pressure Gradient

Our proposed approach for hybrid RANS-LES using blended eddy viscosity models is to sim-

ply allow dp
dx

to vary in the wall-normal direction. The hypothesis is that the velocity gradient

can then relax toward a more natural value with a spatially-varying mean pressure gradient.

The driving mean pressure gradient, referred to as forcing hereinafter, is decomposed into a

piece-wise function of distance from the wall. To uphold conservation of mass, the magnitude

in each piece, referred to as a forcing region hereinafter, is governed by modifying Eq. 2.5 to

〈
dp

dx

〉n+1

r

=

〈
dp

dx

〉n
r

− 2

∆t

(
ṁn+1
r

Ac
− ṁ0

r

Ac

)
+

1

∆t

(
ṁn
r

Ac
− ṁ0

r

Ac

)
, (2.6)

where the subscript r represents the region and ṁ0
r is the target mass flow rate for the

corresponding forcing region. Conservation of mass in enforced by

ṁ0
T =

N∑
r=1

ṁ0
r, (2.7)

where ṁT is total mass flow rate through the channel. For this study, the mass flow rate

is calculated at the inflow plane and the target mass flow rate is obtained from a direct

numerical simulation (DNS). We refer to this approach as split forcing.

The demarcations of each forcing region are chosen based on the magnitude of eddy

viscosity for the conventional forcing approach. Figure 2.1 shows an eddy viscosity profile

for a conventionally-forced WMLES Reτ = 2000 channel flow with 65 wall-normal grid

points and the first grid point placed in the logarithmic region. The mean eddy viscosity

is normalized by the value in the core of the flow which is nearly constant, i.e. determined
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Figure 2.1: Mean eddy viscosity profile. Obtained from WMLES of Reτ = 2000 channel flow
with 65 wall-normal grid points and the first grid point placed in the logarithmic region.
The eddy viscosity is normalized by the eddy viscosity obtained from the core region of the
channel flow. The dashed line represents the RANS-LES interface as the first split forcing
demarcation and the dotted line represents the chosen height for the second split forcing
demarcation.
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solely by the sub-grid model. The choice of normalization is based on illuminating the

magnitude difference between RANS and LES regions. For this study we investigate three

forcing regions. The RANS-LES interface is chosen as the first demarcation and the second

demarcation chosen where the eddy viscosity is approximately eight times that of the LES

core value as shown in Fig. 2.1. While not shown in this paper, two forcing regions were also

investigated but did not perform as well as three regions due to high eddy viscosity present

in the LES region.

2.3.3 Turbulence Modeling

Turbulence closure in the LES region is accomplished by the eddy viscosity sub-grid scale

(SGS) model. We use both a constant model coefficient (Smagorinksy, 1963) and a dynamic

model coefficient with the methodology of the Lagrangian dynamic model (Meneveau et al.,

1996). The eddy viscosity model is given by

τ ij = νtSij, (2.8)

where the eddy viscosity is calculated by

νt = (CS∆)2 |Sij|, (2.9)

where ∆ is the filter width and CS is the model coefficient. When using a constant coefficient,

0.16 is the prescribed CS value.

An eddy viscosity model is also used for the RANS region and is the mixing length model

of Prandtl (1925)

νt = (κy)2 |Sij|, (2.10)

where κ is the von Kármán constant of 0.41 and y is the distance from the wall.
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The hybrid RANS-LES approach used in this study is similar to that of Senocak et al.

(2007). In their study, they hybridize RANS and LES by blending the square of the length

scales with an exponential blending function. We slightly modify their approach by blending

the length scale, not the square of the length scale, creating a mixing length to blend RANS

and LES in a fashion similar to DES by defining lmix as,

lmix = [1− exp (−y/h)]CS∆ + exp (−y/h)κy, (2.11)

where y is the wall-normal coordinate and h is the RANS-LES transition height. The eddy

viscosity then becomes,

νt = l2mix|S|. (2.12)

2.3.4 Wall Boundary Conditions

As we aim to place the first off-wall grid point in the logarithmic region (y+ > 30), we obtain

the wall shear stress through the wall model of Schumann (1975), later modified to a more

general form by Grötzbach (1987). The essence of the Schumann model is to provide an

instantaneous wall shear stress boundary condition by providing components of the total

wall shear stress and explicitly enforcing the impermeability condition. The model is

τxy,w (x, z, t) =
u (x, y1, z, t)

〈u (y1)〉
〈τxy,w〉, (2.13)

v = 0, (2.14)

τ zy,w (x, z, t) =
w (x, y1, z, t)

〈u (y1)〉
〈τxy,w〉, (2.15)

where y1 is the first off-wall grid point. Schumann originally obtained the mean wall shear

stress from the momentum balance in a channel flow, 〈τxy,w〉 = −δ〈 ∂p
∂x
〉, where 〈 ∂p

∂x
〉 was given
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Table 2.1: Physical domain parameters and grid sizes.

Case Reτ NX NY NZ LX LY LZ
1 2000 65 65 65 2πδ 2 δ πδ
2 2000 257 65 193 8πδ 2 δ 3 πδ

a priori. Grötzbach generalized this wall model by determining the stress from the log-law:

〈u (y1)〉
uτ

=
1

κ
ln
(y1uτ

ν

)
+B, (2.16)

〈τxy,w〉 = ρu2τ , (2.17)

where κ is the von Kármán constant, B is a intercept constant, and ρ is density (set to unity

in this study). While eliminating the need for an a priori 〈 ∂p
∂x
〉, Grötzbach’s modification

requires knowledge of κ and B. For this study, we adopt the commonly used values of κ =

0.41 and B = 5.2, but various other possible values exist (Nagib and Chauhan, 2008; Lee

and Moser, 2015).

To avoid contamination from discretization and SGS modeling errors near the wall (Cabot

and Moin, 2000; Kawai and Larsson, 2012), Eq. 2.16 is solved at the third off-wall grid point

such that y1 becomes y3 (Lee et al., 2013). The strain rate tensor in Eq. 2.12 requires the

computation of wall-normal derivatives and will be incorrect due to the coarseness of the

grid if calculated explicitly. Therefore, the eddy viscosity in the first off-wall grid cell is

computed via linear extrapolation from the second and third off-wall grid cells (Cabot and

Moin, 2000).

2.4 Results and Discussion

The periodic boundary conditions in all channel flows were applied in the streamwise and

spanwise directions corresponding to the x-direction and z-direction, respectively. The wall

shear stress boundary conditions were applied in the wall-normal direction. The flow was ini-
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Table 2.2: Non-dimensional domain parameters. The superscript, +, indicates normalization
by friction velocity, uτ , and molecular viscosity, ν. y+1 represents the wall units of the first
off-wall grid point.

Case Reτ ∆x+ ∆y+ ∆z+ y+1
1 2000 200 64 1004 32
2 2000 198 64 99 32

Table 2.3: Split forcing parameters. The SGS model (SM for the original Smagorinsky model
and LD for the Lagrangian dynamic model), the RANS-LES transition height, h, and the
split forcing height, hSP , for each set of domain parameters, normalized by friction velocity,
uτ , and molecular viscosity, ν, indicated by the superscript, +, and by channel half-height,
δ.

Case Reτ Model h+ h+SP h / δ hsplit/δ
1 2000 SM 254 444 0.127 0.222
2 2000 LD 254 444 0.127 0.222

tialized with high amplitude, low-frequency, divergence-free sinusoidal velocity gradients im-

posed on a smooth-wall logarithmic mean profile. Development time was 200 eddy turnover

times (δ/uτ where δ is the channel half-height) and turbulent statistic samples were collected

over an additional 200 eddy turnover times. For quantities normalized by uτ , the friction ve-

locity is the time average of uτ calculated during the simulation by the Schumann-Grötzbach

model in Eq. 2.16. The initial results shown here reflect this normalization. We later discuss

how this normalization does not hold for our split forcing approach and propose a alternate

method to obtain a normalization factor.

We present results for friction Reynolds number, Reτ , of 2000. The domain and grid

parameters for each of the three cases are given in Tab. 2.1. The non-dimensional grid

spacing normalized by the theoretical uτ and the kinematic viscosity are given in Tab. 2.2.

We show benefits of the split forcing approach with three forcing regions, which we refer to

as tri-split forcing. The parameters for the forcing regions demarcations of the RANS-LES

interface, h and the splitting height, hSP , discussed in the methodology are given in Tab. 2.3.

In all plots, h is represented by a dashed black line and hSP is represented by a dotted black
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Figure 2.2: Non-dimensional mean velocity profiles. Reτ = 2000 using case 1 and case 2
demonstrating the traditional single forcing region in hybrid RANS-LES and three forcing
regions (tri-split forcing) in the split forcing approach. Friction velocity derived from wall
shear stress.

line. We originally attempted two forcing regions (one for RANS, the other for LES) but

the results were not as beneficial as the results for three regions and are not shown here. We

also use two different SGS models (also given in Tab. 2.3) to demonstrate the applicability

of the split forcing approach. We use the DNS data of Hoyas and Jiménez (2006) for Reτ =

2000 comparisons.

2.4.1 The Effect of Split Forcing

The primary motivation behind pursuing the split forcing approach was to reduce the log-

layer mismatch problem. Figure 2.2 shows how using a single forcing region (the traditional

uniform body force) on the smaller Case 1 domain at Reτ = 2000 creates an overshoot in
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the mean velocity profile. For the small domain, we used the original Smagorinsky model.

Figure 2.2 also shows the effect of the split forcing approach with three forcing regions has on

the mean velocity profile on the same small domain, also using the Smagorinsky model. By

creating the different forcing regions, implicit shear stresses are introduced at the interfaces

of these forcing regions allowing the velocity gradient to conform to a more natural form

while Reynolds stresses have yet to develop near the RANS-LES interface. As the original

Smagorinsky model tends to be overly dissipative, we perform the tri-split forcing approach

on the larger Case 2 domain with the Lagrangian dynamic Smagorinsky model which also

gives the same result of improving the mean velocity profile.

2.4.2 Variation of Friction Velocity

We discovered that our proposed split forcing approach results in a different normalizing

factor for turbulence statistics in the LES region that is not the wall shear stress. In theory,

a channel flow with no mean acceleration has a total shear stress profile (Pope, 2000) of

τ = τw

(
1− y

δ

)
, (2.18)

where τw is a constant and gives the normalization factor of uτ =
√
τw (density is set to

unity). However, we are introducing shear stresses into the total shear stress with the split

forcing approach. It follows that Eq. 2.18 no longer holds with split forcing, more specifically

τw being the normalizing scale for the entire flow no longer holds. Instead of having a single

friction velocity, we now have a friction velocity dependent on the normal distance from

the wall, or a friction velocity profile. The concept of a “local” friction velocity is not

unprecedented as it has been used to normalize Reynolds stresses in the study of prescribing

mean velocity profiles to DNS performed by Tuerke and Jiménez (2013).
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Figure 2.3: Friction velocity profile. Derived from total shear stress profile obtained from
three forcing regions in case 2 at Reτ = 2000. Dashed line: h, RANS-LES interface; dotted
line: hSP , split height

To obtain a friction velocity profile, we solve Eq. 2.18 for uτ ,

uτ (y) =

√
〈τ〉

1− y/δ . (2.19)

Figure 2.3 shows the friction velocity profile obtained from Eq. 2.19 using the total shear

stress profile corresponding the the tri-split forcing one the Case 2 domain. This approach

is essentially “pinning” the simulated total shear stress profile to the theoretical one, i.e.

calculating a uτ value at each wall-normal distance such that the two non-dimensional profiles

match. The profile shows how friction velocity varies linearly in the first two off-wall forcing

regions then approaches a constant value in the LES outer layer region. The friction velocity

is no longer constant near the wall where the shear stresses created by different forcing
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Figure 2.4: Effect of friction velocity scaling on streamwise turbulent intensity for Reτ =
2000. Case 2 is simulated. uτ,w is computed from wall shear stress. uτ,c is the friction
velocity extracted as a constant from the core les region as plotted in Fig. 2.3. Dashed line:
h, RANS-LES interface; dotted line: hSP , split height

regions alter the friction velocity value. A constant value is recovered in the core of the flow,

i.e. in the LES outer region above y/δ = 0.22 where the results are desired away from the

wall. This shows the LES recovers a constant scaling even with wall modeling, however, the

scaling is not equal to the one obtained at the wall. As the constant value resides in the

core region of the flow, we label this as the core friction velocity, uτ,c. The friction velocity

obtained at the wall is uτ,w.

To see the effect of using uτ,c as the normalization factor, we look at the fluctuation

intensities in Figs. 2.4, 2.5, and 2.6. Two profiles for each quantity are shown; one for the

normalization with the friction velocity value obtained from the wall shear stress (uτ,w) and

one for normalization with the constant scaling factor obtained from the friction velocity
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Figure 2.5: Effect of core friction velocity scaling on wall-normal turbulent intensity. Same
legend used as in Fig. 2.4.

profile (uτ,c). When using uτ,w, all three profiles overshoot the DNS. But when uτ,c is

used as the normalization factor, the results do not drastically overshoot and show better

agreement in the LES outer layer above the split height. The fact that the streamwise

intensity undershoots in Fig. 2.4 may be due to the filtering of the LES region. Figure 2.7

shows the modeled and resolved components of shear stress normalized by the friction velocity

profile value. Looking at the region where the resolved shear stress dominates the modeled

shear stress, normalizing by the friction velocity profile value gives good agreement with

the DNS. While not shown, normalizing the resolved shear stress with the wall shear stress

would not show good agreement with the DNS. These results indicate that the recovered LES

region constant friction velocity is the proper normalizing factor for the turbulence statistics

when using the split forcing approach.
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Figure 2.6: Effect of core friction velocity scaling on spanwise turbulent intensity. Same
legend used as in Fig. 2.4.

The constant value of the friction velocity in the LES outer layer should not be used to

nondimensionalize the mean velocity profile. This makes sense as the mean velocity profile

emerges from a balance of the mean pressure gradient and the stresses at the wall. The

friction velocity obtained from the core LES region is an appropriate scale for the LES flow

field developing over a RANS field. Therefore, turbulence statistics need to be normalized by

uτ,c. To emphasize the fact that mean velocity cannot be normalized by the friction velocity

profile, we show the dimensionalized mean velocity for the large domain in Case 2 in Fig. 2.8,

along with the commonly used single forcing approach. If normalized by anything other than

uτ,w obtained from the wall shear stress, the tri-split forcing profile would miss the target

non-dimensional DNS profile in Fig. 2.2. Also note, the mismatch for the single forcing does

not look as significant as when plotted on a semi-logarithmic plot, but the mismatch does
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Figure 2.7: Modeled and resolved shear stresses. Obtained from case 2 at Reτ = 2000.
The friction velocity is obtained from the constant core value in Fig. 2.3. Dashed line: h,
RANS-LES interface; dotted line: hSP , split height

indeed exist.

2.5 Conclusions

We showed that the log-layer mismatch that commonly arises from hybrid RANS-LES can

be reduced substantially via our proposed split forcing approach. We split the forcing term

to drive the flow field in a periodic channel into different regions in a piece-wise fashion

based on the eddy viscosity profile. The magnitude of the forcing terms in different regions

is determined such that mass flow rate is held constant meaning our proposed split forcing

approach only relies on conversation principles and avoids any tunable model parameters.

The split forcing also enables the emergence of a unique velocity scale (i.e., friction velocity)
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Figure 2.8: Dimensionalized mean velocity. Obtained from case 2 at Reτ = 2000 using three
forcing regions. DNS profile dimensionalized by using prescribed kinematic viscosity and
theoretical friction velocity satisfying Reτ = 2000.

in the LES region above the RANS region. When the friction velocity derived from the core

LES region is used as the normalizing factor for turbulence statistics, very good agreement

with DNS in the LES region is achieved.

We also demonstrated that a basic hybrid RANS-LES model along with a wall-stress

boundary conditions can produce results in good agreement with DNS on a mesh that is

coarse in the wall-normal direction. This is very encouraging as it would enable the study of

very high Reynolds number turbulent flows. In light of these new findings, we suggest the

current convention to drive a turbulent periodic channel flow with a uniform mean-pressure

gradient term be revisited to test eddy-viscosity-based hybrid RANS-LES models, as the

single forcing approach appears to be the culprit behind the log-layer mismatch. Simulating
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higher Reynolds number channel flows to further test and validate our split forcing approach

will be part of our future work.
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CHAPTER 3

Investigation of a Split-forcing Approach to Simulate

Wall-modeled Turbulent Channel Flows with Hybrid RANS-LES

Methods

3.1 Abstract

We investigate the effect of splitting the constant mean pressure gradient when forcing a

periodic turbulent channel flow, simulated by a hybrid RANS-LES approach. We find that

splitting the driving pressure gradient into wall-parallel layers while maintaining the same

flow rate can reduce the log-layer mismatch problem and recover scaled second-order statistics

of turbulence. We simulate turbulent channel flows at friction Reynolds numbers of 2000 and

5200 on coarse meshes that necessitate wall-modeling and demonstrate good agreement with

benchmark data. When the mean pressure gradient is split, the LES region develops over

the RANS region, attaining its own velocity scale that is different than the friction velocity

calculated from the wall shear stress. Second-order turbulence statistics and turbulence

spectra agree well with the benchmark data when normalized by the core friction velocity,

whereas the friction velocity at the wall remains the appropriate scale for the mean velocity

profile. The reason for this duality in velocity scale becomes clear when the mean split-force

is integrated across the channel height, confirming a global force balance.

3.2 Introduction

The computational cost of large-eddy simulation (LES) of wall-bounded flows at high Reynolds

numbers is expected to remain a challenge in the foreseeable future. The stringent resolution

requirements arise from the scales of turbulence diminishing drastically as the wall is ap-

proached (Pope, 2000). The computational burden of resolving the near-wall region can be

relaxed through wall-modeled LES (WMLES) (Deardorff, 1970; Schumann, 1975), in which
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the inner part of the boundary layer is modeled with a Reynolds-averaged Navier-Stokes

(RANS) representation of turbulence. The resulting method is known as hybrid RANS-LES.

In cases where the viscous layer is not resolved, a shear stress boundary condition can replace

the no-slip condition at the wall. The shear stress at the wall is derived from flow variables

with the help of the law-of-the-wall (Schumann, 1975). There have been numerous studies

and proposals to merge RANS and LES calculations in a single simulation.

One of the popular approaches to alleviate computational costs of LES is detached eddy

simulation (DES), first proposed by Spalart et al. (1997); Spalart (2009) for high-Reynolds-

number, massively-separated external aerodynamics where governing equations in the thin

boundary layer are solved in the RANS sense and LES is used away from the boundary layer

where the grid size is adequate for resolving turbulent motions. Nikitin et al. (2000) applied

DES as a sub-grid scale model in an LES of turbulent channel flow. Turbulence was sustained

but there was the appearance of a “DES buffer layer” where too steep velocity gradients

created a drastic mean profile mismatch relative to the expected logarithmic velocity profile.

The large velocity gradients were deemed to be the result of diminishing eddy viscosity when

transitioning from the RANS near-wall flow to LES outer flow. Nikitin et al. observed that

turbulent eddies did not form during this transition. Large “super-streaks,” or eddies that

are unrealistically large, have been observed in the transition region (Piomelli et al., 2003).

This issue of an artificial overestimation of the mean velocity profile in the LES region is

later coined as the log-layer mismatch problem, which is not specific to the DES model and

has been reported in other hybrid RANS-LES studies as well.

Hamba (2003) observed the log-layer mismatch when hybridizing RANS and LES with a

simple eddy viscosity model, and attributed the mismatch to the discrepancy in filter widths

between the RANS and LES regions in the transition zone. Hamba introduced additional

filtering to create two separate velocity components at the interface each having a different

filter width. The log-layer mismatch was reduced but the problem still persisted.

Both Keating and Piomelli (2006) and Davidson and Billson (2006) introduced a stochastic-
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type forcing in the LES-RANS interface region to generate fluctuations that mimick Reynolds

stresses. Keating and Piomelli (2006) used a proportional controller to force the flow based

on the difference between resolved and modeled Reynolds stress in the transition zone. This

approach generates enough Reynolds stress to correct the log layer mismatch and break up

the so-called “super-streaks” that occur in transition regions (Piomelli et al., 2003). Rad-

hakrishnan et al. (2006) later observed accurate results without stochastic forcing in unstable

flows where the mean values tend to have perturbations. Davidson and Billson (2006) intro-

duced turbulent fluctuations that were obtained from synthesized homogeneous turbulence.

Shur et al. (2008) proposed an idea to combine the delayed DES (DDES) approach of

Spalart et al. (2006) for areas where grid resolution prevents resolving dominant eddies and

WMLES for grid resolutions that can resolve dominant eddies. The method, referred to as

improved DDES (IDDES), blends together these two approaches. IDDES performed just

as well in massively separated flows as DES or DDES (the latter improved upon DES by

allowing for more grid refinement and thicker boundary layers), and improved upon the log-

layer mismatch in plane channel flow. IDDES also performed very well in flows with both

attached and separated flow regions.

Instead of merging RANS and LES solutions in a single domain, Balaras and Benocci

(1994) proposed a dual-mesh approach that solves the RANS and LES governing equations

on two different meshes allowing for each mesh to be refined in the directions important to the

respective turbulence simulation method. More recently, Xiao and Jenny (2012) developed a

dual-mesh framework for hybrid RANS-LES where relaxation terms are introduced into the

LES momentum equations to relax under-resolved LES towards a RANS solution and into

the RANS momentum equations to ensure consistency in turbulent kinetic energy between

RANS and LES in the well-resolved LES region. Results showed an improvement over using

LES on the same mesh.

Abe (2013) proposed a sub-grid-scale model (SGS) combining an isotropic linear eddy

viscosity model with an extra anisotropic term obtained from subtracting an eddy viscosity



38

SGS model from the Bardina scale-similarity model (Bardina et al., 1983). The model agreed

well with DNS results at a friction Reynolds number of 395 but started showing mean velocity

and Reynolds stress discrepancies at higher friction Reynolds numbers of 1020 and 1200.

Davidson (2014) applied the partially-averaged Navier-Stokes (PANS) framework proposed

by Girimaji (2006) as a zonal hybrid RANS-LES model, setting the PANS coefficients to

unity in the RANS region and a lesser value in the LES region. Results from channel flow

and flow over a hump gave good agreement as long as the RANS-LES transition height was

sufficiently high, i.e. ≈ 500 wall units. Also found in Piomelli et al. (2003) and Davidson

and Billson (2006), bringing the RANS-LES interface too close to the wall, say less than 200

wall units, resulted in poor results.

There have been several other proposed hybrid RANS-LES methodologies. For com-

prehensive reviews, the reader is referred to the works of Fröhlich and von Terzi (2008)

and Piomelli (2008). As one can glean from previous work in hybrid RANS-LES, the vast

majority of approaches are tested in a turbulent channel flow with periodic boundary condi-

tions with eddy-viscosity-type models and the first off-wall grid point residing in the viscous

sublayer. We note that blended eddy viscosity models create a large variation in effective

viscosity in the wall-normal direction that permeates well into the LES region. In the sim-

ulations the LES core develops over a very viscous RANS region. Formation of an artificial

boundary layer between RANS and LES region has been suggested (Baggett, 1998) which

acts as a displacement height to the core LES region. We hypothesize that the LES core de-

velops differently than the near-wall region due to this displacement created by large effective

viscosity variation. To validate our hypothesis, we drive LES and RANS regions separately

with a split-forcing approach and investigate resulting first and second-order statistics of

turbulence.

The aforementioned studies reduced the log-layer mismatch by introducing an additional

degree of freedom into the global momentum balance, often by introducing an empirical

forcing term into the governing equations that mimics resolved shear stresses or by altering
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the mixing length to accommodate lack of resolved shear stress. Based on our hypothesis,

we introduce an additional degree of freedom to the momentum balance by splitting the

mean pressure gradient. The splitting is accomplished by introducing zonal layers across the

channel. The driving mean pressure gradient takes on a different value in each zonal layer

in a way to keep the mass flow rate constant. Forcing each zone separately allows shear

stresses to emerge naturally between RANS and LES regions. Hereinafter, we refer to the

driving mean pressure gradient that drives a channel flow with periodic boundary conditions

as forcing and our approach as split-forcing.

In most hybrid RANS-LES methods, as those reviewed above, the greatest computational

cost savings often come from coarsening the resolution in the streamwise and spanwise di-

rection. The first off-wall grid point is commonly placed in the viscous sublayer to avoid the

prescription of wall-stress as boundary conditions. A distinguishing aspect of our present

work is the coarse resolution used in the wall-normal direction, in addition to the coarse

resolution in the spanwise and streamwise directions, which results in significant savings in

computational cost of performing high Reynolds turbulent flows.

3.3 Numerical Formulation

We solve the following filtered form of the governing equations for incompressible flows.

∂uj
∂xj

= 0, (3.1)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − τij

)
+ fi, (3.2)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)
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is the strain rate tensor, and

τij = uiuj − uiuj (3.4)

is the tensor for the SGS Reynold stresses, and fi is a body forcing term. For a fully-

developed channel flow, f1 represents the mean streamwise pressure gradient to drive the

flow in the x direction. For the spanwise and wall-normal directions, respectively, f2 and f3

are zero.

The governing equations are solved using a GPU-accelerated, three dimensional incom-

pressible flow solver (Thibault and Senocak, 2012; Jacobsen and Senocak, 2013; DeLeon

et al., 2013). The code uses the projection algorithm (Chorin, 1968) on directionally-uniform

Cartesian grids with second-order central differences for spatial derivatives and a second-

order Adams-Bashforth scheme for time advancement. The pressure Poisson equation is

solved by an amalgamated parallel 3D geometric multigrid solver designed for GPU clusters,

specifically (Jacobsen and Senocak, 2011).

3.3.1 The Mean Pressure Gradient in a Periodic Channel Flow

As periodic boundary conditions alone cannot sustain a constant mass flow rate in the chan-

nel, f1, referred to as fx hereinafter, has to be introduced as a mean streamwise pressure

gradient in the streamwise momentum equation to drive the flow field. There are two ap-

proaches to impose a mean pressure gradient: prescribe a constant body force that would

balance the target shear stress at the wall, or dynamically adjust a uniform body force to

maintain a target mass flow rate through the channel. We adopt the latter approach, which

is preferable when the wall shear stress is not known a priori.

In our study we force the flow field through the channel by keeping a constant mass flow

rate. The particular method chosen for this study is that of Benocci and Pinelli (1990),
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Figure 3.1: Split-forcing demarcations. (a) Sketch of three forcing regions in a channel
flow. (b) The normalized mean eddy viscosity profile obtained from a hybrid RANS-LES
simulation of Reτ = 2000 turbulent channel flow. The dashed line represents the RANS-LES
blending height, hRL, and the first split-forcing demarcation. The dotted line represents the
second split-forcing demarcation, hsp.

which can be formulated as follows

f t+1
x = f tx −

2

∆t

(
ṁt+1

Ac
− ṁ0

Ac

)
+

1

∆t

(
ṁt

Ac
− ṁ0

Ac

)
, (3.5)

where the superscript t is the time step level, ∆t is the physical time step value (which needs

to be held constant throughout the simulation as per the original formulation), ṁ0 is the

prescribed mass flow rate, and Ac is the constant cross-sectional area. Other formulations

to maintain constant mass flow rate can be found in the literature (You et al., 2000; Brandt,

2003).
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3.3.2 Split-forcing Technique

The log-layer mismatch observed in turbulent channel flow simulations with eddy-viscosity-

based hybrid RANS-LES methods has been attributed to a lack of resolved Reynolds shear

stress provided to the LES zone near the RANS-LES interface (Davidson and Billson, 2006;

Keating and Piomelli, 2006; Larsson et al., 2007). Here, we revisit how the log-layer mismatch

arises in eddy-viscosity-based hybrid RANS-LES methods of channel flows and propose our

split-forcing technique to reduce it. Our explanation pertains to blended eddy viscosity

models, but several other explanations and solutions for the log-layer mismatch can be

found in literature Davidson and Billson (2006); Larsson et al. (2007); Shur et al. (2008); Hu

(2013).

For a fully-developed, statistically-stationary channel flow, the mean streamwise momen-

tum equation reduces to the following

dτ

dy
= −dp

dx
. (3.6)

The driving mean pressure gradient is constant on the right hand side of Eq. 3.6 (Pope,

2000). Integrating Eq. 3.6 from the wall (y = 0) to some wall-normal distance y and solving

for τw, we obtain,

τw =
dp

dx
y︸︷︷︸

I

+ ν
dU

dy

∣∣∣∣
y︸ ︷︷ ︸

II

+ νt(y)
dU

dy

∣∣∣∣
y︸ ︷︷ ︸

III

− 〈uv〉|y︸ ︷︷ ︸
IV

, (3.7)

where term I represents the driving pressure gradient, term II represents the viscous shear

stress, term III is the shear stress modeled with an eddy-viscosity approach, and term IV

represents the resolved Reynolds shear stress. In a wall-resolved LES at a wall-normal

distance sufficient to ignore viscous effects (i.e. ignore term II), we can argue that Eq. 3.7
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has two degrees of freedom to achieve force balance through terms III and IV as dp
dx

is constant

( dp
dx

is fx in Eq. 3.5).

We now evaluate Eq. 3.7 when a hybrid RANS-LES model is adopted in which wall-

normal variation of the eddy viscosity is significant, taking on a large value in the RANS

region and a small value in the LES region. We place the RANS-LES transition height

sufficiently away from the wall to ignore term II. In theory, the RANS turbulence model

simulates the ensemble averaged field, thus approaching the interface from the RANS side

means negligible resolved stresses, therefore term IV can be ignored within the RANS region.

Now the previous two degrees of freedom in a wall-resolved LES (terms III and IV) are

reduced to one in a hybrid RANS-LES (term III). Consequently, the mean velocity profile

will conform to unexpected profiles to maintain the force balance in Eq. 3.7.

As numerous studies have shown, introducing a second degree of freedom through an

empirical forcing term around the RANS-LES interface reduces the log-layer mismatch

markedly. However, we note that when using eddy viscosity models, the molecular vis-

cosity and eddy viscosity are combined to create an effective viscosity in the shear stress

term in the governing momentum equations. This effective viscosity is significantly larger

when blending RANS and LES eddy viscosity models as opposed to sub-grid-scale viscosity

in a wall-resolved LES. Loosely speaking, we can imagine a less viscous fluid flowing over

a highly viscous fluid with variable viscosity. Based on this analogy, we sought to alter

the spatially-uniform mean streamwise pressure gradient to drive a channel flow and split

the mean streamwise pressure gradient, hereinafter referred to as forcing, into wall-parallel

layers in an approach dubbed split-forcing. The hypothesis is that split-forcing will reduce

the log-layer mismatch in hybrid RANS-LES of channel flow by introducing the missing

second degree of freedom (term IV in Eq. 3.7) and propose to force flow regions affected by

different effective viscosities with different pressure gradients, while keeping mass flow rate

unchanged.

We sketched the split-forcing approach in Fig. 3.1a applied to a channel flow. Each region
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of the flow, referred to as a forcing region, is driven by a constant forcing value different than

in the other regions in one channel half-height and reflected about the centerline to enforce

symmetry. Figure 3.1a shows three streamwise forcing regions, f1, f2 and f3 (note the x

script was dropped). Each forcing region has its own target mass flow rate such that the

mass flow rate for the entire channel remains unchanged. We adjust Eq. 3.5 by introducing

a subscript, n, as an index for the forcing region as

f t+1
n = f tn −

2

∆t

(
ṁt+1
n

Ac
− ṁ0

n

Ac

)
+

1

∆t

(
ṁt
n

Ac
− ṁ0

n

Ac

)
, (3.8)

where ṁt
n now represents the mass flow rate through a particular forcing region. We prescribe

the target mass flow rate for each forcing region following a target mean profile, usually

obtained from benchmark data. Target mass flow rate for the channel is ensured by the

following constraint,

ṁ0
T =

N∑
n=1

ṁ0
n, (3.9)

where ṁ0
T is the total mass flow rate through the channel and N is the total number of

forcing regions.

To determine the boundaries of the forcing regions, we inspect the mean eddy viscosity

profile from a hybrid RANS-LES simulation using a spatially-uniform forcing that we refer to

as single forcing. Note that we do not deploy any remedies to reduce the log-layer mismatch

in single forcing. Fig. 3.1b shows the mean eddy viscosity profile from a single-forcing hybrid

RANS-LES on Reτ = 2000 channel flow with simulation parameters given in Table 3.1. The

dashed line in Fig. 3.1b is the RANS-LES interface. The mean eddy viscosity is normalized

by the value in the core of the flow, which is nearly constant, i.e. determined solely by the

LES sub-grid model.

Maximum value of eddy viscosity occurs near the RANS-LES interface, hRL, and is a

logical place for a split-forcing demarcation. We initially attempted using only two forcing
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regions but the results did not show satisfactory improvement because the eddy viscosity is

still large above the RANS-LES interface relative to the LES value. A second splitting height,

hsp, is placed in the large eddy viscosity region approximately where the eddy viscosity is 10

to 12 times that of the core value. The hypothesis was that one more additional forcing region

will introduce enough shear stress in the blending region to provide satisfactory results. The

use of three forcing regions is referred to as tri-split. We use approximately the same splitting

heights in nondimensional wall units for the Reτ = 5200 case (see Tab. 3.1). Note that using

more forcing regions than three may not be necessary as the goal of this experiment is to

force regions of high eddy viscosity independent of the LES core where the eddy viscosity

profile is nearly constant. Also, when eddy viscosity is nearly uniform, splitting the mean

pressure gradient would run against the theory described by Eq.3.7.

3.3.3 Turbulence Modeling

We adopt the localized Lagrangian dynamic Smagorinsky eddy viscosity model (Meneveau

et al., 1996) for LES. In the RANS region, we use the mixing length model of Prandtl

(1925) as it is an adequate model for attached flows. Hybridization of RANS and LES

is often accomplished by blending either SGS stress terms, eddy viscosities, or turbulent

length scales (Sagaut, 2002; Fröhlich and von Terzi, 2008). In this study, we follow the work

of Senocak et al. (2007) and blend only the length scales in the eddy viscosity formula.

lmix = [1− exp (−y/hRL)]CS∆ + exp (−y/hRL)κy, (3.10)

νt = l2mix|S|, (3.11)

τij =νtSij, (3.12)

where hRL is the RANS-LES transition height. Note that we blend the length scales instead

of blending the squared values as was originally proposed in Senocak et al. By blending

only the length scale instead of stresses or eddy viscosity, our approach essentially becomes
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similar to that of DES.

3.3.4 Wall Boundary Conditions

As we wish to place the first off-wall grid point in the logarithmic region (y+ > 30) to mimic

a resolution situation in LES of ABL in practice, we obtain the wall shear stress through

the wall model of Schumann (1975), later modified to a more general form by Grötzbach

(1987). Moeng (1984) extended these wall shear stress boundary conditions to simulate ABL

and are still commonly used to this day. The essence of the Schumann model is to provide

an instantaneous wall shear stress boundary condition by providing components of the total

wall shear stress and explicitly enforcing the impermeability condition via

τxy,w (x, z, t) =
u (x, y1, z, t)

〈u (y1)〉
〈τxy,w〉, (3.13)

v = 0, (3.14)

τ zy,w (x, z, t) =
w (x, y1, z, t)

〈u (y1)〉
〈τxy,w〉, (3.15)

where y1 is the first off-wall grid point. Schumann originally obtained the mean wall shear

stress from the momentum balance in a channel flow, 〈τxy,w〉 = −δ〈 ∂p
∂x
〉, where 〈 ∂p

∂x
〉 was given

a priori. Grötzbach generalized this wall model by determining the stress from the log-law:

〈u (y1)〉
uτ

=
1

κ
ln
(y1uτ

ν

)
+B, (3.16)

〈τxy,w〉 = ρu2τ , (3.17)

where κ is the von Kármán constant, B is a constant, and ρ is the density, set to unity in this

study. While eliminating the need for an a priori 〈 ∂p
∂x
〉, Grötzbach’s modification requires

knowledge of κ and B. For this study, we adopt the commonly used values of κ = 0.41 and

B = 5.2, but various other possible values exist (Pope, 2000; Nagib and Chauhan, 2008; Lee
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Table 3.1: Simulation parameters. The superscript, +, indicates nondimensional quantities
in wall units. y+1 is the distance of the first off-wall streamwise velocity component.

Reτ Nx Ny Nz Lx Ly Lz ∆x+ ∆y+ ∆z+ y+1
2000 257 65 193 8πδ 2 δ 3 πδ 200 64 100 32
5200 513 129 513 8πδ 2 δ 3 πδ 250 82 100 41

Table 3.2: Split-forcing parameters. The superscript, +, indicates nondimensional quantities
in wall units. hRL is the RANS-LES transition height and hsp is the splitting height applicable
to tri-split forcing.

Reτ h+RL h+sp hRL / δ hsp/δ

2000 250 440 0.127 0.222
5200 250 490 0.047 0.094

and Moser, 2015).

To avoid contamination from discretization and SGS modeling errors near the wall (Cabot

and Moin, 2000; Nicoud et al., 2001; Kawai and Larsson, 2012), Eq. 3.16 is solved at the

third off-wall grid point at every time step such that y1 becomes y3 (Lee et al., 2013). The

strain rate tensor in Eq. 3.11 requires the computation of wall-normal derivatives and will

be incorrect due to the coarseness of the grid if calculated explicitly. Therefore, the eddy

viscosity in the first off-wall grid cell is computed via linear extrapolation from the second

and third off-wall grid cells (Cabot and Moin, 2000). Also, as friction velocity cannot be

specified for a general case, we believe the true performance of wall-modeled LES comes

about when surface stresses (i.e. friction velocity) are computed in-situ from the simulated

velocity field. We note that not every study in literature respects this subtle issue.

3.4 Results and Discussion

Tables 3.1 and 3.2 present the simulation parameters and the split-forcing parameters for

each turbulent channel flow case, respectively. The friction Reynolds number is based on

friction velocity, uτ , and channel half-height, δ. We compare Reτ = 2000 channel flow to the

readily-available DNS data of Hoyas and Jiménez (2006), and Reτ = 5200, to the recent DNS
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Figure 3.2: Nondimensional mean velocity profiles. (a) Log-layer mismatch reproduced using
the single forcing approach. Reτ = 2000. (b) Reτ = 5200 (shifted up by 3.0) and Reτ = 2000
simulated with the tri-split approach. All results are normalized by uτ,w obtained from the
wall shear stress.

data of Lee and Moser (2015). In all of our simulations, periodic boundary conditions were

applied in the streamwise and spanwise directions (x-direction and z-direction, respectively).

Spin-up time for turbulence was 200 δ/uτ and sampling for turbulence statistics took place

over an additional 200 δ/uτ .

The effect of split-forcing on the mean velocity profile is shown in Fig. 3.2a for Reτ =

2000. The single forcing of the channel flow reproduces the well-known log-layer mismatch

problem. The tri-split forcing significantly reduces the mismatch from the DNS mean ve-

locity, demonstrating a clear improvement over the single forcing approach. The effect of

split-forcing is to introduce shear stresses into the flow to compensate for the lack of re-

solved shear stress in the RANS-LES interface region and enable the mean velocity field to

match the expected profile. In Fig. 3.2b we demonstrate the effectiveness of our tri-split

forcing approach for an even higher Reynolds number flow, Reτ = 5200. The corresponding

bulk Reynolds number (based on channel height) for Reτ = 5200 is approximately 250,000.
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Figure 3.3: Tri-split forcing time series for (a) Reτ = 2000 and (b) Reτ = 5200 normalized
by δ and uτ,w. Results are shown over two eddy turnover times, δ/uτ,w. The bottom time
series in the figure is the near-wall region and the topmost time series is for the core forcing
region. The solid horizontal line is the mean of the time series found over the entire statistical
sampling period. The other two tickmarks are one standard deviation above and below the
mean found over entire statistical sampling period.

Both profiles agree very well with the DNS benchmark data despite a mesh resolution that

is coarse in the wall normal direction (y+1 ≈ 30). For context, Lee and Moser (2015) used

roughly 121 billion mesh points for DNS of Reτ = 5200 whereas we used 33.9 million mesh

points without any stretching in the mesh.

Figures 3.3a and 3.3b show a time series of the forcing values for the tri-split for for

both Reτ = 2000 and Reτ = 5200, respectively, over a time lapse of two eddy turnover

times, δ/uτ,w. We plot the evolution of the forcing in each zone to better understand the

impact of split-forcing on the flow field. As will be discussed later, the wall shear stress can

be recovered by converting the mean forcing values to a shear stress by integrating along

channel height. The time series shows that the near-wall region and the middle forcing region

have much greater variations than the core forcing region, with the middle forcing region

being predominantly negative in value while the other two regions are positive in value.

The magnitude of the eddy viscosity explains this behavior. In the RANS region, the eddy

viscosity is dominantly defined by the mixing length model, exhibiting a positive gradient.
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Figure 3.4: (a) Nondimensional total shear stress distribution for Reτ = 2000 and 5200
using single and tri-split forcing, normalized by the wall friction velocity uτ,w. Note that the
mismatch with theoretical profile disappears when normalized by the core friction velocity.
(b) Profiles of normalized friction velocity calculated from Eq. 3.18 using tri-split forcing at
both Reτ = 2000 and Reτ = 5200. Dashed vertical lines, hRL; dotted vertical lines, hsp.

The core forcing region, above hsp, the eddy viscosity is dominantly defined by the sub-grid

scale model and does not vary significantly. However, the second forcing region between hRL

and hsp has a negative gradient in eddy viscosity, as the model is decreasing from a RANS

value to an LES value, leading to the middle forcing region being predominantly negative

in value. The opposite signs of the forcing help energize the interface between each zone

stochastically.

Analyzing the total shear stress profiles generated by the split-forcing produced an

anomaly, which has led us to discover a duality of the friction velocity when using split-

forcing. Note that we are not suggesting a duality in velocity scale as part of the physics

of turbulent channel flows. The observed duality is a consequence of applying split-forcing

to hybrid RANS-LES. When the total shear stress profile is normalized by the wall friction

velocity, uτ,w, a significant mismatch between tri-split forcing and the theoretical linear pro-
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file exists as shown in Fig. 3.4a. However, simulations do indicate a statistically stationary

state. Therefore, something must be amiss. Also of note here is that the profiles in the LES

region exhibit a linear variation albeit a wrong slope.

Because a statistically stationary state has been reached, the total shear stress profile

should follow the expected theory, which led us to think that a different velocity scale must

be in play when the LES region is forced above a RANS region affected by a high effective

viscosity. Therefore, we probe the wall-normal variation of the friction velocity as each region

may develop a different scale. Tuerke and Jiménez (2013) used a friction velocity profile,

which they termed a “local” friction velocity, to collapse Reynolds stress profiles in their

inverse RANS (IRANS) study where mean velocity profiles were prescribed as a forcing term

to a DNS. We follow the same approach and calculate a local friction velocity profile as

follows

uτ (y) =

√
〈τ(y)〉

1− y/δ . (3.18)

Equation 3.18 is derived by solving the theoretical total shear stress profile in a channel flow

Pope (2000) (the theoretical profile is shown in Fig. 3.4a),

〈τ(y)〉 = u2τ (1− y/δ) (3.19)

for uτ except that uτ becomes a function of wall-normal distance, y, to satisfy the linear

profile shown in Fig. 3.4a. The variation of the friction velocity along the wall normal

distance is shown in Fig. 3.4b for Reτ 2000 and 5200. A consistent feature of both friction

velocity profiles is that a constant value is recovered above the split height, hsp, for each

Reynolds number case where the LES SGS model is active. We refer to the constant value

in the core as uτ,c.

We study the use of uτ,c by assessing the second-order statistics of turbulence. In Figs.

3.5a and 3.5b, we compare normalized RMS velocity fluctuations with the scaling factors
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of uτ,c and uτ,w. For Reτ = 2000 in Fig. 3.5a, the normalization by uτ,c shows a clear

improvement over scaling by uτ,w for the spanwise and wall-normal components, matching

the DNS benchmark data very well. The agreement with the streamwise component u′rms is

slightly worse. However, the u′rms profile normalized by uτ,c does not overestimate the DNS

data, which makes sense as this is a filtered field obtained from a coarse mesh. Also for Reτ

=5200, u′rms results scaled by uτ,c are closer to the DNS normalized values than they are

when scaled by uτ,w. Turbulent motions are damped by the high RANS eddy viscosity as

expected, therefore we do not seek any agreement with DNS data near the wall and use only

uτ,c as the scaling, and not the entire local friction velocity profile. Relative to the streamwise

component, the spanwise and wall-normal components of the RMS velocity fluctuations take

some distance past hsp before agreeing with the DNS benchmark data in the core region of

the channel, suggesting that the three-dimensionality of turbulence emerges at some distance

away from the RANS-LES interface. The lack of agreement below y/δ <0.4 for Reτ = 2000

and y/δ <0.2 for Reτ = 5200 is mainly an outcome of the RANS-LES model at hand. A

sophisticated RANS model might perform better closer to the wall. We note that our focus

in this work is not to develop a new SGS model, but instead investigate the effect of splitting

the mean pressure gradient on hybrid RANS-LES simulations.

From the profiles of nondimensional mean velocity, total shear stress, and turbulent

fluctuation intensities, we observe two distinct velocity scales to nondimensionalize these

quantities: uτ,w and uτ,c. We reiterate that duality in velocity scale is an artifact of the

split-forcing approach and does not come from the actual flow physics. The only aspect that

is consistent with expected flow physics is that uτ,c attains a constant profile. It also makes

sense to use uτ,c to scale the fluctuations in the LES region, as this region develops above a

RANS region with its own forcing. But a worthy question comes up: Why is uτ,w a better

velocity scale for the mean velocity profile? To answer this question we further analyze the

force balance in the mean sense.

As the split regions evolve under the constraint of maintaining the target mass flow rate,
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Figure 3.5: Profiles of rms velocity fluctuations and the effect of velocity scale choice on the
results. (a) Reτ = 2000 and (b) Reτ = 5200. Streamwise and spanwise components shifted
up by 2.0 and 1.0, respectively. Dashed vertical lines, hRL; dotted vertical lines, hsp.

Table 3.3: Normalized values for verification of Eq. 3.20. Each subscript represents a forcing
region. All forcing values are normalized by uτ,w and δ. All heights are normalized by δ.
Mean forcing values can be found in Figs. 3.3a and 3.3b.

Reτ h1 h2 h3 < f1 > < f2 > < f3 >
∑3

i=1 < fi > hi
2000 0.127 0.095 0.778 3.502 -4.873 1.312 1.001
5200 0.047 0.047 0.906 7.496 -2.445 0.841 1.000
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Figure 3.6: Streamwise velocity spectra. Streamwise velocity spectra for Reτ = 2000 (a) in
streamwise direction (b) in spanwise direction.

a global force balance is satisfied as follows

〈f1〉h1 + 〈f2〉h2 + 〈f3〉h3) = τw =
u2τ,w
δ
δ = fxδ, (3.20)

where h1 = hRL, h2 = hsp − hRL, and h3 = δ − hsp. From the above relationship, we clearly

see that uτ,w is an average velocity scale for the entire channel flow. Table 3.3 presents

the normalized values that can be used to verify the above equation. Therefore, it is not

surprising that uτ,w is still the adequate velocity scale to normalize the mean velocity profile

across the channel. It is also evident why we cannot use uτ,c to scale the entire velocity

profile, because it does not satisfy the global force balance.

Split-forcing allows different regions of the flow to develop semi-independently, and it

is not unreasonable to expect a different velocity scale to emerge in the core LES region.

One-dimensional normalized streamwise velocity spectra as shown in Fig.3.6 further supports

our arguments about duality in velocity scale. Fig.3.6 presents E+
uu, for Reτ = 2000 at the

channel centerline for both streamwise and spanwise directions. The simulations capture
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Table 3.4: Comparison of computed skin friction coefficient with Dean’s correlation of
Dean (1978). Reb is bulk Reynolds number. Computed skin friction coefficient: Cf,comp =
τw/

1
2
ρU2

b . Dean’s correlation for skin friction coefficient Cf,Dean = 0.073Re−0.25b .

Reτ Forcing Ub / uτ,w Reb Cf,comp Cf,Dean % error
2000 Single 23.44 87793 3.64 × 10−3 4.24 × 10−3 14.1
2000 Tri-split 21.99 87698 4.14 × 10−3 4.24 × 10−3 2.5
5200 Tri-split 24.26 250543 3.40 × 10−3 3.26 × 10−3 4.1

well the large eddies as well as a portion of the inertial subrange at the lower wavenumbers.

Note that it is not realistic to expect capturing the spectra at higher wave numbers because

of the coarse mesh at hand. The simulation with tri-split forcing when scaled with uτ,c agrees

better with the normalized DNS spectra than both the single forcing and the tri-split forcing

when scaled with uτ,w.

Early studies of hybrid RANS-LES pointed out the formation of so-called “super-streaks”

near the RANS-LES interface (Piomelli et al., 2003). This modeling artifact has been al-

leviated in several studies (Keating and Piomelli, 2006; Davidson and Billson, 2006). We

observe that our split-forcing approach is able to break up these “super-streaks” as shown

in Fig. 3.7 where y / δ ≈ 0.13 - 0.18. The coarseness of the current mesh does not ac-

commodate formation of physical streaks, but the ability for the split-forcing to reduce the

size of the unphysical streaks relative to single forcing simulation is promising. Away from

the RANS-LES interface, the tri-split forcing and the single forcing produced similar flow

structures.

Tri-split forcing also improves skin friction estimates relative to the single forcing simu-

lation. Table 3.4 compares the skin friction coefficient, Cf , computed from the simulations

and the Dean’s correlation based on the bulk Reynolds number (Dean, 1978). The bulk ve-

locity, Ub, is the averaged velocity through the channel cross section, and the bulk Reynolds

number, Reb, is based on the full channel height. The percent error presumes the Dean cor-

relation as the correct value. There is a notable reduction in percent error of tri-split forcing

over single forcing with skin friction coefficient calculations in the Reτ = 2000 case. The Reτ

= 5200 also gives a small percent error. These values are below the reported error values
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(a) (b)

(c) (d)
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Figure 3.7: Visualization of instantaneous streamwise velocity for Reτ = 2000 at wall-normal
heights of: (a) and (b) y / δ ≈ 0.13; (c) and (d) y / δ ≈ 0.18; (e) and (f ) y / δ ≈ 0.27. Reτ
= 2000. Single forcing results are shown in the left column and tri-split forcing results are
shown in the right column. All velocities and lengths are normalized by the bulk velocity
and channel half-height, respectively.
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found in early studies of hybrid RANS-LES (Nikitin et al., 2000), which were approximately

10% and above.

3.5 Summary and Conclusions

We investigated the impact of splitting the mean pressure gradient when eddy-viscosity-

type hybrid RANS-LES models are used to simulate a turbulent channel flow with periodic

boundary conditions. The core idea is to split the driving streamwise mean pressure gradient

into three wall-parallel layers such that we can force the RANS, the RANS-LES blended,

and the LES core regions separately but under the constraint of a target mass flow rate.

Because the effective viscosity in RANS-LES can vary substantially across the channel height,

splitting the mean pressure gradient enables each region to develop semi-independently, while

keeping the target mass flow rate unchanged.

The split-forcing approach improved upon single-forcing predictions of mean velocity and

skin friction coefficients along with reducing the size of unphysical streaks at the RANS-LES

interface. We achieved good agreement with normalized DNS benchmarks despite our use

of coarse mesh resolutions in all three directions. We uncovered a duality in velocity scale

as an artifact of the split forcing approach. We used the concept of local friction velocity

(Tuerke and Jiménez, 2013) to find that a constant friction velocity is attained in the LES

region, different than the value at the wall. We observed that mean velocity profile scales

well with the wall friction velocity, as enforced by a global force balance, whereas the friction

velocity value in the LES core is a better scale to normalize the second-order moments. We

emphasize that the observed duality is a consequence of the split-forcing approach applied to

hybrid RANS-LES and does not apply to the actual physics of turbulent channel flows. We

further explained the origins of duality in split-forcing by studying the global force balance

in the mean sense.

Split-forcing, as formulated in this work, is currently limited to channel flows. However,

it can serve as a useful setup to study turbulent motions in the LES core for much higher
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Reynolds number flows without overwhelming computational resources. The current channel

flow setup with split forcing could also help formulate a versatile parameterization to energize

RANS-LES interface region that can augment existing hybrid RANS-LES models.
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CHAPTER 4

An Immersed Boundary Geometric Preprocessor for Arbitrarily

Complex Terrain and Geometry

Senocak, I., Sandusky, M., DeLeon, R., Wade, D., Felzien, K., and Budnikova, M. “An

immersed boundary geometric preprocessor for arbitrarily complex terrain and geometry.

J. Atmos. Ocean. Tech.,32 (11): (2015) pp. 2075-2087. ( c© American Meteorological

Society. Used with permission.)

4.1 Abstract

There is a growing interest to apply the immersed boundary method to compute wind fields

over arbitrarily complex terrain. The computer implementation of an immersed boundary

module into an existing flow solver can be accomplished with minor modifications to the

rest of the computer program. However, a versatile preprocessor is needed at the first place

to extract the essential geometric information pertinent to the immersion of an arbitrarily

complex terrain inside a 3D Cartesian mesh. Errors in the geometric information can nega-

tively impact the correct implementation of the immersed boundary method as part of the

solution algorithm. Additionally, the distance field from the terrain is needed to implement

various subgrid-scale turbulence models, and initialize wind fields over complex terrain. De-

spite the popularity of the immersed boundary method, procedures used in the geometric

preprocessing stage have received less attention. We find that concave and convex regions

of complex terrain are particularly challenging to process with existing procedures discussed

in the literature. To address this issue, we present a geometric preprocessor with a distance

field solver, and demonstrate its versatility for arbitrarily complex geometry, terrain and

urban environments. The distance field solver uses the initial distance field at the immersed

boundaries and propagates it to the rest of the domain by solving the Eikonal equation with

the fast sweeping method.
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4.2 Introduction

The immersed boundary (IB) method was first proposed by Peskin (1972) for use in biomed-

ical engineering. The intended purpose was to simulate flow through a human heart valve as

a fluid-structure interaction problem on a fixed structured mesh. In the original IB method,

the effect of the moving or stationary boundaries were explicitly represented as a body-force

term in the momentum equations. However, researchers have reported numerical stability

issues associated with having an explicit body-force in the equations. The direct forcing

approach introduced by Mohd-Yusof (1997) and Fadlun et al. (2000) provided an alternative

formulation for the body-force, and eliminated the stability issues arising from the explicit

body-force formulation. The popularity of the immersed boundary approach has increased

markedly after the introduction of the direct-forcing approach (Mittal and Iaccarino, 2005).

In the direct forcing approach, the body force to represent an immersed boundary is implic-

itly taken into account by a reconstruction step on the primitive variables at the cells cut

by the solid boundaries.

There is a growing interest to adopt Cartesian immersed boundary methods to simulate

environmental flows under realistic conditions (Senocak et al., 2004; Lundquist et al., 2010,

2012; Kang et al., 2011; DeLeon et al., 2012). Simulations of wind over arbitrarily complex

terrain is an active area of research because of the rapidly expanding wind energy field.

However IB methods have been primarily proposed for engineering fluid flow applications at

modest Reynolds numbers, and therefore do not readily extend to atmospheric flows over

arbitrarily complex terrain. Successful simulations of atmospheric flows over arbitrarily com-

plex terrain necessitate reconstruction methods and subgrid-scale models that are suitable

for the underlying rough terrain resolved by a relatively coarse spatial resolution used in

the computations. In order to make progress on this front for arbitrarily complex terrain,

we need a versatile IB preprocessor that can calculate the geometric information needed for

a variety of reconstruction methods. In addition, the preprocessor needs to calculate the
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distance field to an arbitrarily complex terrain, because distance information is needed in

several turbulence models, in initializing three dimensional wind fields over complex terrain,

and extracting flow variables over a surface contour at a specified height above ground level

for data analysis.

Computer implementation of the IB method inside an existing flow solver can be done

with minor modifications to the rest of the solver. The non-intrusive nature of the implemen-

tation is one of the reasons why IB methods have become so popular for various applications.

Researchers have adopted different interpolation methods (e.g., linear, quadratic, logarith-

mic) as part of the reconstruction of the primitive variables at the cells cut by an immersed

boundary (Fadlun et al., 2000; Gilmanov and Sotiropoulos, 2005; Choi et al., 2007; Mittal

et al., 2008). In most validation studies, researchers have relied on analytical shapes (e.g.

sphere, Witch of Agnesi Curve, sinusoidal ridges etc.) to validate the underlying numer-

ical method for fluid flow simulation. However, for arbitrarily complex geometries, such

as a mountainous terrain or a three dimensional complex geometry, a robust preprocessing

program is needed to correctly tag the cells as fluid, solid and immersed boundary nodes,

identify neighboring cells for interpolation, bind an IB node to a surface element, and calcu-

late the distance to the surface for use in the interpolation part of the reconstruction step.

The preprocessing stage for arbitrarily complex geometry is composed of algorithms from

the computational geometry field. Majority of published work on IB method has focused

on the numerical accuracy of the flow solution over analytical geometries. Description and

computer implementation of the preprocessor for arbitrarily complex geometry has received

scant coverage. An exception is the work of Gilmanov and Sotiropoulos (2005), who applied

the immersed boundary method to complex geometries such as undulating fish-like body

and planktonic copepod, and described the algorithms used in treating the complex flexi-

ble immersed boundaries. Although, Gilmanov and Sotiropoulos claimed their preprocesing

procedure to be general, we find that their procedure does not readily apply to arbitrarily

complex mountainous terrain. Choi et al. (2007) and Edwards et al. (2010) also point to
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Figure 4.1: A triangulated surface mesh fitted to the terrain of Buckman Springs, CA.

problems with existing procedures and describes an alternative approach.

In what follows, we present a new procedure to handle arbitrarily complex geometry,

terrain and urban environments. Additionally, we apply the fast sweeping method (Zhao,

2004) to solve the Eikonal equation to efficiently calculate the distance field from any complex

geometry for the full flow domain. We test these two components of the preprocessor for

challenging test cases to demonstrate the versatility of the geometric preprocessor. We do

not perform any flow simulations in this study, because the preprocessing stage for arbitrarily

complex terrain is imperative for correct implementation of any IB method and subgrid-scale

models. Therefore we focus entirely on detailing the steps in the geometric preprocessor,

and conduct a thorough investigation over different kinds of geometry.

4.3 Review of Existing Procedures

Consider a small portion of the terrain geometry intersecting the background Cartesian

mesh as illustrated in Figure 4.1. Note that the Cartesian mesh spacing does not have to be

uniform (i.e. ∆x 6= ∆y 6= ∆z) First, we must identify all the Cartesian points that are in close
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proximity of the terrain. These are called near boundary nodes. This can be accomplished by

sweeping through all triangular elements of the surface mesh, and identifying all the Cartesian

points that are within a search radius, rs, from the centroid of the triangular element of

interest. An optional bounding box can be created to eliminate Cartesian points irrelevant

to the search problem and the search can be distributed to multiple parallel processes.

Gilmanov and Sotiropoulos (2005) suggest rs to be approximately equal to the smallest

Cartesian mesh dimension, which we find to be insufficient in practice.

Next, we sweep through all the near boundary nodes to distinguish them as being interior

or exterior relative to the terrain. We find the centroid of all triangular elements within a

search radius of rs from each node. We create a position vector d from the centroid of the

triangular element to the near boundary node at hand. We then perform a dot product

between the position vector and the surface normal vector of the triangular element. The

dot product is evaluated for every triangular element that is found to be within the search

radius of a near boundary node. Gilmanov and Sotiropoulos (2005) suggest that if the dot

product is greater than zero for at least one boundary node within the search radius, then

the node is exterior to the geometry. If the dot product is less than zero for all triangular

elements, then the node is interior to the geometry.

Gilmanov and Sotiropoulos (2005) state that the above procedure is general and appli-

cable to arbitrarily complex geometry. However, we find that the above procedure is not

entirely general for all concave configurations of a terrain. Depending on the resolutions of

the surface terrain, and the Cartesian mesh at hand, we are not able to separate a node as

exterior or interior to a terrain for some challenging concave configurations following their

procedure. Choi et al. (2007) also report that the above procedure does not work for some

complex geometries.

A problematic configuration, which can be common on a complex terrain surface mesh,

is illustrated in 2D in Figure 4.2a. In this schematic we tag the nodes manually to illustrate

how some of the existing procedures can fail. The filled circular markers show the near
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boundary solid points, and the filled square markers show the immersed boundary nodes

upon which a reconstruction scheme is to be imposed.

Application of the interior/exterior identification stage of the above procedure to the

grid point of interest identified in Figure 4.2a will result in two iterations of the dot product

check as two triangular elements fall within the search radius. Triangular element 1 gives

d ·n > 0, terminating the identification state, incorrectly labeling the grid point as exterior.

To remedy the above logic failure for some complex geometries, Choi et al. (2007) and

Edwards et al. (2010) proposed an angle-weighted pseudo-normal vector, which essentially

averages the variations in the local surface normal vector to ensure smoothness of the un-

derlying geometry. However, as also mentioned by Choi et al., there is no guarantee that the

angle-weighted normal vector fixes the issue for all cases. Mittal et al. (2008) use a slightly

different method for distinguishing between solid, fluid, and IB nodes, which involves finding

the closest triangular element to a node, and then taking the dot product of the position

vector from centroid of the triangular element to the node with the surface normal vector

of the same triangular element. We find that this procedure works as long as the surface

mesh has nearly uniform triangular elements. However, when the surface mesh is composed

of large and small triangular elements, the procedure also fails to correctly tag all the points.

Figure 4.2b displays an area in which a procedure described in Mittal et al. (2008) could

fail. In this convex scenario, test node #1 would wrongly pick the triangular element to its

left because its centroid is the closest, despite being positioned above a different triangular

element. Consequently, the dot-product with the surface normal of the triangular element

would cause test node #1 to be wrongly tagged as solid. Therefore identifying triangular

elements based on the closest centroid is not a fail proof logic.

Figure 4.2b illustrates another potential problem that arises when binding a node to a

surface element. In the reconstruction stage of the IB method, boundary conditions need

to be assumed on a surface element. In analyzing test node #2 we see that distance to the

surface should be the Euclidean distance calculated between the test node and the vertex.
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Figure 4.2: 2D schematics illustrating inherent discrepancies in published work. ~d is the
distance vector from the centroid of the triangular element to the near boundary node, and
~n is the surface normal of the triangular element. (a) Concave region, (b) Convex region.
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Figure 4.3: Isosurface visualization of the solid node flags for a section of complex terrain.
The cylindrical dips from the surface indicate unflagged nodes where the interior/exterior
logic fails.

However, because of binding the test node with a surface triangular element, the distance

can be wrongly calculated as the shortest distance between the test node and the plane that

includes the triangular element as illustrated in Figure 4.2b. This issue does not cause the

IB method to fail, but it introduces geometry errors by altering the underlying geometry,

which would affect both the reconstruction step and calculation of the distance field using

the Eikonal equation. In situations like this, an additional logic is needed to decide whether

the appropriate distance is to the triangular element, the edge or the vertex.

We emphasize that these logic failures only occurs for some portion of the complex

terrain. Figure 4.3 demonstrates the result of these logic failures as four dips in the isosurface

visualization of solid/interior node flags for only a portion of Buckman Springs terrain. For

a reasonably large complex terrain area (e.g., 10km × 10km) these dips result from errors in

the solid/fluid node tagging process and can be numerous. These errors may go unnoticed,

which will result in missing or incorrect geometric information for the IB method, and will

also pollute the calculation of the distance field through the solution of the Eikonal equation.
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We should emphasize that the deficiencies we have identified in the above procedures may

not manifest in all geometries. The resolutions of the Cartesian and the triangular surface

meshes relative to each other can cause these inherent discrepancies to go undetected. We

have experienced this issue in our own practice. In the following section, we introduce a new

procedure that addresses the shortcomings described above.

4.4 Description of the Geometric Preprocessor

Our new procedure to obtain the essential geometric information (i.e., node tagging, distance

to surface from nodes used in the reconstruction, binding an IB node with a surface element)

to implement the immersed boundary method benefits from various components discussed

in different studies (Gilmanov and Sotiropoulos, 2005; Mittal et al., 2008; Choi et al., 2007;

Sunday, 2001a; D. Eberly, 2008; Holcombe, 2012).

In our practice, we obtain terrain maps from the U.S. Geological Survey website and con-

vert it to a Digital Elevation Model (.dem) file. The publicly available MicroDEM software

(Guth, 2013) can be used to crop a smaller area of interest from a DEM map. We use DEM

maps with 10m resolution in the horizontal. We then fit a triangulated surface mesh to the

terrain using a function from MATLAB Central File Exchange (McDonald, 2004), and save

the surface mesh in stereolithography (STL) file format. An STL file contains the vertices,

centroid, and surface normal of every triangular element in the mesh. Figure 4.1 shows the

triangulated surface mesh for an area in Buckman Springs, CA.

The first component of our procedure is to classify Cartesian mesh points as interior or

exterior relative to the immersed geometry. Concave and convex zones resulting from the

surface mesh of the complex geometry require a robust method. We developed our own

procedure by using some of methods from Holcombe (2012). We follow a 2D approach for

the interior/exterior classification step. We first define a 2D search radius that is a multiple

of the norm of the maximum x and y span of an STL triangle. We use a conservative search

radius which is four times the norm. Note that the size of the search radius only affects the



68

~u

~v

V0

V2
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Figure 4.4: Illustration of the methods used to determine if a point is within a triangle.

execution time. Next, a cylindrical slab of this radius is projected down in the z direction

from each Cartesian point. Triangular elements of the surface mesh that fall within this slab

are tagged, and then those elements are examined to identify the triangular elements that

intersect a ray projection from the Cartesian point in the z direction.

There are a few methods for determining whether or not a ray projection intersects a

triangle. Figure 4.4 helps illustrate the method presented by (Sunday, 2001a). This method

involves, first, finding the intersection of the ray, projected in the z direction with the plane

of the triangular element. After the intersection point is identified, an inclusion check is

applied to find out if this point is within the triangular element or not. Following Sunday

(2001a), the intersection point can be parameterized in terms of s, and t coordinates:
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s =
(~u · ~v)(~w · ~v)− (~v · ~v)(~w · ~u)

(~u · ~v)2 − (~v · ~v)(~u · ~u)
(4.1)

t =
(~u · ~v)(~w · ~u)− (~u · ~u)(~w · ~v)

(~u · ~v)2 − (~v · ~v)(~u · ~u)
(4.2)

As long as these parameters follow the inequalities s ≥ 0, t ≥ 0 and (s + t) ≤ 1, the

point is within the bounds of the triangle. For the interior/exterior classification step of

our procedure, we rely on the winding algorithm presented in O’Rourke (1994) with an

implementation similar to the one presented by Holcombe (2012). In this 2D approach,

the triangle in question and the Cartesian point are projected onto the xy plane by simply

neglecting their Z coordinates. The same ~u, ~v, and ~w are constructed, as in Figure 4.4, for

each of three vertices. The angles between ~w and ~u, ~w and ~v, and ~u and ~v are found from

the dot product of the unit vectors as follows:

θ1 = arccos (ŵ · û),

θ2 = arccos (ŵ · v̂),

θ3 = arccos (v̂ · û).

(4.3)

Note that quantities with a hat symbolˆare unit vectors. If the condition θ1 ≤ θ3 and θ2 ≤ θ3

holds true when applied to each of the vertices (i.e., V0, V1, V2), then the point lies within

the triangle in the xy plane. If no triangle intersects the 2D projection of the point then the

point is exterior, and marked as fluid.

Note that a ray projected in the z direction may intersect multiple triangular elements for

a watertight geometry. Therefore, we identify the triangular element closest to the Cartesian

point in the z direction by comparing the z coordinate of the Cartesian node against the

z coordinate of the centroid of the triangular elements that have been intersected. Once

the closest triangle is identified, we perform a three dimensional dot product between the

surface normal ~n of the closest triangular element, and the position vector ~r drawn from the

centroid to the Cartesian node. If the dot product is greater than zero, then the Cartesian
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node is exterior to the geometry and tagged as a fluid node. Else, the node is interior to

the geometry, and it is tagged as a solid node. Once all the Cartesian nodes are tagged as

exterior (fluid) or interior (solid), we then sweep through the fluid nodes and tag any fluid

node that has, at least in one direction, a neighboring solid node as an immersed boundary

(IB) node.

This procedure does not produce any false outputs from the dot product as the Carte-

sian point is always positioned directly above or below the triangular element, avoiding the

problematic situations described in Figure 4.2.

4.5 Preprocessing for the IB Reconstruction Step

In our approach the immersed boundary reconstruction method relies on interpolation along

the vector pointing from the closest point on the STL surface to the IB node. In this step,

a separate logic is needed to bind the IB node to the closest surface element, which can be

a triangle, an edge or a vertex. Flow reconstruction can then be done on a line along this

unit vector n̂BV that binds the IB node to the closest surface element. Depending on the

flow regime the reconstruction could assume a linear or a logarithmic profile.

After all of the IB nodes are determined, the shortest distance to the solid must be

found for each IB node. This initial distance is then propagated to the rest of the fluid

domain through the solution of the Eikonal equation with the fast sweeping algorithm of

Zhao (2004). First, the closest triangle vertex is established for each IB Node. Next, the

triangles that share this vertex are identified and their indices are stored. A line that passes

through the IB node and is parallel to the surface normal of the triangular element at hand

is intersected with the plane that includes the triangular element. Equations 4.1 and 4.2 are

used to determine if the intersection point falls inside the triangular element or not. If the

intersection point is within the triangular element, the IB node is bound to that triangular

element. The distance from the intersection point to the IB Node is stored as the closest

distance.
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If none of the triangles are intersected by the line that passes through the IB node, we

move on to check the edges sharing the common vertex using an algorithm described in D.

Eberly (2008) and Sunday (2001b). We calculate a vector ~w pointing from the vertex to the

Cartesian IB node, and separate unit vectors ûi along each triangle edge with a common

origin at the vertex. The shortest distance d to each edge is calculated as follows:

d = min(‖ûi × ~w‖), (4.4)

where the subscript i is an identifier index that refers to the set of edges that share the

closest the vertex to the IB node. Note that if the angle between û and ŵ is greater than

90◦ for an edge, then the intersection point is not contained within the edge element, and

that edge is ignored.

If we do not find an intersection point lying within any of the edges that share the closest

vertex to the IB node, we then simply calculate the Euclidean distance from the IB Node

to the closest vertex. Whether it is a triangle, edge or a vertex, we refer to the unit vector

along the line that connects the intersection point on the closest element to the IB node as

the binding vector n̂BV .

When we applied these binding methods to the Stanford Bunny geometry, 68.4% of the

IB nodes were bound to triangular elements, 31.5% were bound to edges, and 0.1% were

bound to vertices. The respective proportions for the Buckman Springs terrain were 74.4 %,

25%, and 0.6%. These percentages suggest that the IB node binding step is an important

part of the preprocessor.

Once the IB node is bound to its closest element on the surface mesh, a line that passes

through the IB node in the direction of binding unit vector ˆnBV is extended toward the fluid

domain. Figure 4.5 illustrates the situation for an IB node bound to a triangular element.

The geometric information needed to interpolate values onto the projected line is extracted

as follows.
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1. Identify the closest Cartesian cell face intersected by the projected line. To accomplish

this task, we solve the plane-line intersection problem for each face of the Cartesian

cell and compare the Euclidean distances. The parametric equation of a 3D line is

substituted into the standard vector equation of a plane. Cartesian cell faces in x, y, z

directions will have the following unit normal vectors: [1,0,0], [0,1,0], [0,0,1]. Therefore,

the parameter, t, of the parametric equation of the line can be found by

t =
rP,i − rBV,i
n̂BV,i

=
δi

n̂BV,i
(4.5)

where the subscript i indicates the direction, and no summation over repeated indices

is implied. n̂BV,i is the i component of the unit vector in the direction of the line. rP,i

is a coordinate of a point on the plane, and rBV,i is the coordinate of reference point

for the 3D line. Note that we calculate the parameter, t, for each face of the Cartesian

cell. Regardless of their values, the quantity rP,i − rBV,i is equal to a Cartesian mesh

spacing δi in the direction of a unit normal vector belonging to a cell face. We then

make use of the parameter t of the parametric equation of the line. At this stage, we

do not know which of three faces have been intersected first by the line. The closest

Cartesian cell face is determined by the smallest Euclidean distance.

2. Find the coordinates of the intersection point on the cell face using the parametric

equation of the line that passes through the IB node as follows:

xint = xIB + n̂BV,xt,

yint = yIB + n̂BV,yt,

zint = zIB + n̂BV,zt,

(4.6)

where subscripts int and IB represent the intersection point and IB node, respectively,

for each of the coordinate directions. The subscript BV indicates the unit binding

vector as discussed earlier.
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Figure 4.5: 3D example of the surface normal of a triangle intersecting the nearest Cartesian
cell face after passing through the immersed boundary node.

3. Calculate the weights to apply a bilinear interpolation on the flow variables on the cell

face.

Knowing the flow variables at the intersection point and the immersed surface enables

the reconstruction of flow variables (e.g. velocity components and scalar quantities) at the

IB node using linear, logarithmic, quadratic, or any other interpolation methods (Fadlun

et al., 2000; Gilmanov and Sotiropoulos, 2005; Choi et al., 2007; Mittal et al., 2008).

4.6 Parallel Implementation

The above procedure is implemented in parallel to accelerate the preprocessing stage. In our

computer implementation, we partition the surface mesh in STL format in the same manner

as the computational domain (i.e., in the x direction), but with a buffer zone on both

sides to make sure all triangular element information pertinent to the process is available to

each Message Passing Interface (MPI) process. We then execute each section independently

because communication between processors is not necessary. We successfully tested our

parallel implementation up to 32 processors. We use bounding boxes to find where the

terrain sits in the Cartesian domain, meaning the processors do not have to waste computer
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memory on empty space.

4.7 Distance Field Calculation

Signed distance fields and level set methods have been used in a number of applications

such as computer generated water surfaces for visualization (Osher and Fedkiw, 2003) and

improved imaging for medical applications (Pu et al., 2008). The distance field is especially

important for our application, because we wish to implement a variety of turbulence models

to simulate winds over complex terrain. The distance from a surface is an essential piece

of information to apply near-surface parameterizations in subgrid-scale (SGS) turbulence

models. Additionally, the distance field information helps to impose specific wind profiles

(e.g. power law) at lateral boundary conditions and also for solution initialization.

The level-set method is a fast algorithm to calculate the signed distance from a surface.

Two popular approaches to implement the level-set method are the fast-marching method

(FMM) (Sethian, 1999), and the fast sweeping method (FSM) (Zhao, 2004). FMM loops

over the grid points closest to the surface and moves outward. FMM has the advantage of

allowing for calculations of narrow bands of data near the surface when only that data is

desired. This approach can be advantageous for dynamic surfaces. The runtime complexity

of FMM is O(N log(N)), where N is the number of mesh points. On the other hand,

computer implementation of FSM is relatively easier as compared to FMM, and has runtime

complexity of O(N). Therefore we use FSM as part of our geometric preprocessor.

4.8 Signed Distance Calculation and Discretization

After the application of the immersed boundary preprocessor, we are left with a computa-

tional domain that is split into three parts: the solid, the fluid, and a layer separating the

solid from the fluid. This separation layer contains the immersed boundary points that holds

the shortest distance to the underlying geometry. However, we also need the distance field
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in the fluid points away from the surface for use in certain turbulence models and wind field

initialization. Therefore, we propagate the distance field at the immersed boundary points

to other mesh points using the FSM.

The signed distance function implicitly defines the terrain on which φ(~x) = 0. The

distance field is positive in the fluid domain, and negative in the solid domain.

Following the derivation in Osher and Fedkiw (2003), the Eikonal equation is written as

follows.

‖∇φ‖ = 1. (4.7)

We follow the work of Zhao (2004) to numerically solve the Eikonal equation, but allow a

directionally non-uniform mesh (i.e. dx 6= dy 6= dz) in our formulation. The discretized form

of the Eikonal equation in three dimensions can be written as follows.

(
φi,j,k − φxmin

dx

)2

+

(
φi,j,k − φymin

dy

)2

+

(
φi,j,k − φzmin

dz

)2

= 1

i = 2, ..., NX − 1, j = 2, ..., NY − 1, k = 2, ..., NZ − 1,

(4.8)

where φxmin = min(φi−1,j,k, φi+1,j,k),φymin = min(φi,j−1,k, φi,j+1,k), and φzmin = min(φi,j,k−1, φi,j,k+1).

After solving the above equation for φi,j,k, we are able to calculate the signed distance at

any mesh point. The distance field propagation requires initialization which is provided by

the immersed boundary geometric processor, as stated earlier.

4.9 Fast Sweeping Algorithm

Now that we have a method to solve Equation 4.7 at any point on our computational domain,

we must select a method of iteration that will ensure convergence. Since the calculation at

any given point depends on the distance values surrounding that point, it is not sufficient

to arbitrarily cycle through the grid points in the domain. Initially, there are only distance

values on one layer near the implicit surface which were calculated during the immersed

boundary process. As in Zhao (2004), all other points outside the surface (not including our
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initialization layer) are set to a large positive number which will be updated later during

the iteration process. We then sweep the domain and update the distance values, φi,j,k, in

the following way: φnewi,j,k = min(φoldi,j,k, φ
calc
i,j,k), where φcalci,j,k is the value calculated in Equation

4.8 for the current sweep iteration. This step ensures that the distance value at each grid

point remains non-increasing and the value will only update when a smaller distance value

has been calculated. The order for a single complete sweep of the domain is critical, and it

is given as follows:

(1)i = 1 : NX, j = 1 : NY, k = 1 : NZ; (2)i = NX : 1, j = 1 : NY, k = NZ : 1;

(3)i = NX : 1, j = 1 : NY, k = 1 : NZ; (4)i = 1 : NX, j = 1 : NY, k = NZ : 1;

(5)i = NX : 1, j = NY : 1, k = NZ : 1; (6)i = 1 : NX, j = NY : 1, k = 1 : NZ;

(7)i = 1 : NX, j = NY : 1, k = NZ : 1; (8)i = NX : 1, j = NY : 1, k = 1 : NZ

The above loop order covers all possible sweep directions for a three-dimensional domain. As

suggested in Bridson (2008), the sweep process may be repeated several times for increased

accuracy.

4.10 Results

Our geometric preprocessor can handle mountainous terrain, urban environments and com-

plex geometry. We use 3D test models that are popular within the computer graphics

community to demonstrate versatility of our preprocessor. To illustrate the success of the

interior/exterior node tagging algorithm, a contour plot of the interior (solid) nodes for the

so-called Stanford Dragon geometry can be viewed in Figure 4.6. This image shows that the

highly complex geometric detail of the dragon can be handled with our procedure.

Figure 4.7a and b presents CAD geometries of the Stanford Dragon and Bunny stored

as an STL file. These geometries are immersed inside a 3D Cartesian domain to calculate

the geometric information in the vicinity of the surface. The distance field at the immersed
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Figure 4.6: Contour plot of the solid nodes for the Stanford Dragon showing good detail. A
2D plane of the Cartesian mesh with 1 of every 8 lines is also displayed.

boundary cells are then propagated using the fast sweeping method. From these images one

can see that the distance field emanates smoothly away from the surface without any kinks

or disturbances. Kinks or disturbances in the distance field typically hint problems in the

initial distance field that the geometric preprocessor calculates. The underlying Cartesian

meshes used in the calculations are also displayed in these images. Once the interior/exterior

classification is done, we place an IB node between a solid and fluid node. A check that

we perform on the preprocessor is to make sure there is always an immersed boundary

node between a fluid and a solid node. To perform this check, we color code each of the

Cartesian mesh points in the vicinity of the geometry. Figure 4.8 shows that this condition is

successfully satisfied for the complex terrain of the Buckman Springs, CA. Figure 4.9a shows

the terrain for a portion of the Buckman Spring area in California. The terrain was immersed

into a Cartesian domain of approximately 8.8 km × 6.8 km with horizontal and vertical mesh

spacings of 35m and 10m, respectively. The initial distance field is then propagated to the

rest of the domain using the FSM approach. We can observe from contour plots that the
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(a)

(b)

Figure 4.7: Composite view of the distance field around the Stanford Dragon and Bunny
geometries. (a) A 2D plane of the Cartesian mesh with 1 of every 8 lines shown can be
seen below the dragon (b) A 2D plane of the Cartesian mesh with 1 of every 4 lines shown
is visible below the bunny. A portion of the surface mesh is also displayed over the bunny
head.
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Figure 4.8: Placement of IB Nodes (blue squares) on Buckman Springs, CA. The IB nodes
conform well to the STL surface. The fluid (green) points are all above the surface, and the
solid (red) points are all below the surface.

shortest distance to the terrain is computed as expected.

Finally, we tested our procedure with different Cartesian mesh resolutions successfully.

The bunny and the dragon geometries were both tested on meshes with 1283 and 2563 points.

The size of the Cartesian domain was 1003m3 for the bunny, and 100 × 60 × 70m3 for the

dragon. The surface meshes had 88, 753 triangular elements with an average edge length of

0.53m, and 66, 991 triangular elements with an average edge length of 0.27 for the bunny

and dragon geometries, respectively.The Cartesian domain for the Buckman terrain covers

a volume of 8800 × 6800 × 1270m3 The Cartesian domain was discretized on meshes with

256 × 192 × 128, 1923, and 512 × 256 × 192 points. The surface mesh for the terrain had

9962 triangular elements with an average edge length of 27.04m. For the urban environment

shown in Figure 4.9b , we used a single 2563 mesh for a Cartesian domain 80 × 90 × 50m3

with a surface mesh of 987, 523 triangular elements with an average edge length of 0.12m.
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(a)

(b)

Figure 4.9: (a) Distance field propagation for the complex terrain of Buckman Springs (b)
Distance field propagation for a portion of Oklahoma city urban environment. Cartesian
mesh shows 1 of every 8 lines.
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4.11 Conclusions

We presented a geometric preprocessor for arbitrarily complex geometry, terrain and urban

environments that calculates the necessary geometric information needed to implement the

Cartesian immersed boundary method within a flow solver. We identified potential discrep-

ancies in published work, and addressed those issues with a new procedure that combines

elements from various studies. The preprocessor classifies Cartesian mesh points as fluid,

solid, and immersed boundary nodes. It then proceeds to calculate necessary information for

reconstruction along a surface normal direction. Additionally, the preprocessor calculates

the shortest distance to the surface from the Cartesian mesh nodes through the solution

of the Eikonal equation with the fast sweeping method of Zhao (2004). We successfully

demonstrated the versatility of the preprocessor for complex geometries, terrain, and ur-

ban environment. We expect our geometric procedure to help broaden the adoption of the

immersed boundary method for atmospheric flows over arbitrarily complex terrain.
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CHAPTER 5

Direct Numerical Simulation of Turbulent Katabatic Slope Flows

with an Immersed Boundary Method

Umphrey, C., DeLeon, R., and Senocak, I. “Direct numerical simulation of turbulent

katabatic slope flows with an immersed-boundary method.” in-press for Bound.-Lay.

Meteorol. (2017).

5.1 Abstract

We investigate a Cartesian mesh immersed boundary (IB) formulation within an incompress-

ible flow solver to simulate laminar and turbulent katabatic slope flows. As a proof-of-concept

study, we consider four different IB reconstruction schemes for imposing a Neumann type

boundary condition on the buoyancy field. We use Prandtl’s laminar solution to demonstrate

the second-order accuracy of the numerical solutions globally. Direct numerical simulation

(DNS) of turbulent katabatic flow is then performed to investigate the applicability of the

proposed schemes in the turbulent regime by analyzing both first- and second-order statistics

of turbulence. First-order statistics show that turbulent katabatic flow simulations are no-

ticeably sensitive to the specifics of the IB formulation. We find that reconstruction schemes

that work well in the laminar regime may not perform as well when applied to a turbulent

regime. We propose an IB reconstruction scheme that produced results in close agreement

with the terrain-fitted reference solutions in both flow regimes.

5.2 Introduction

Turbulent katabatic flows with stable stratification commonly occur in the atmospheric

boundary layer with important implications for weather forecasting, air pollution and wind

energy. The subject has been the focus of several numerical and experimental investigations

aimed at establishing a better understanding of the underlying flow physics (Mahrt, 2014).
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Skyllingstad (2003) conducted large-eddy simulations (LES) of katabatic flows to demon-

strate the effect of terrain slope changes on drainage winds that can hinder formation of very

stable regimes. Cuxart et al. (2007) carried out mesoscale simulations of an island in the

Mediterranean to study the interaction of different scales of motion during the night time.

Papadopoulos and Helmis (1999) investigated evening and morning transition of katabatic

slope flows experimentally and elucidated the processes involved in their formation and de-

sctruction. Mahrt (2016) studied stably stratified flow in a shallow valley experimentally,

and identified oscillations within the valley with a period of 10 min. Shapiro and Fedorovich

(2007) considered inhomogeneity of sloping surfaces by developing an analytical model in

which buoyancy varied linearly down the slope. Shapiro and Fedorovich observed physical

processes that are not accounted for in the Prandtl’s laminar solution (Prandtl, 1942).

There are many physical processes involved in a katabatic flow over complex terrain

with heterogeneous surface conditions (Mahrt, 2014). It can be difficult to unravel the

interplay of these processes without introducing certain simplifications. To this end, an

inclined, homogeneous flat terrain assumption can serve as an idealized test bed to develop

a fundamental understanding of katabatic flows. An inclined flat surface is also a realistic

simplification to study katabatic flows in the Great Plains of the United States and Antarctica

(Parish and Waight III, 1987). Equally important, slope flows over homogeneous surfaces

serve as a canonical test case to validate new numerical methods and physical models, which

is our primary interest in the present study.

In the present study our motivation is to evaluate and refine an immersed boundary (IB)

approach for katabatic slope flows. The IB method is an attractive approach to represent

complex geometry on a Cartesian mesh without the need for a manual mesh generation

process. The simplicity of the Cartesian formulation also eases the computer parallelization

of the flow solver. The method, pioneered by Peskin (1972), traces its origins back to the

numerical simulation of blood flow through a heart. The essence of the IB method is to

immerse a geometry inside a Cartesian mesh and impose surface boundary conditions upon
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the nodes of the intersected cells using either a forcing function or a reconstruction scheme.

The IB method has been an active area of research in computational fluid dynamics (CFD)

analysis of engineering applications. IB method has also been proposed as an alternative

meshing approach for geophysical flows (Tseng and Ferziger, 2003; Senocak et al., 2004;

Smolarkiewicz et al., 2007).

Various approaches have been proposed to implement the IB method (Mittal and Iac-

carino, 2005; Sotiropoulos and Yang, 2014). Despite the importance of heat transfer in many

engineering or geophysical flows, majority of IB studies have focused on velocity boundary

conditions with little coverage given to boundary conditions related to scalar transport.

Boundary conditions can be imposed as Dirichlet (i.e. prescribed temperature), Neumann

(i.e. prescribed heat flux) or a mixed type. Reconstruction schemes developed for velocity

boundary conditions can be applied to impose a prescribed temperature boundary condi-

tion. On the other hand, there are not that many studies focusing on the implementation of

Neumann type boundary conditions within an IB formulation. Pacheco-Vega et al. (2007)

describe a generalized immersed boundary approach applicable to both the Dirichlet and

Neumann type boundary conditions. For the Neumann type, a numerical stencil is created

around a surface point where the Neumann boundary condition is required, not necessarily

aligning with the numerical stencils on the Cartesian grid. Therefore, linear and bilinear

interpolations are used to bring neighboring values to the imposed numerical stencil before

calculating the Neumann boundary condition. Zhang et al. (2008) use a feedback-forcing

type IB method where values at neighboring grid points are interpolated on to a surface point

to determine heat transfer from the surface of a cylinder. Kang et al. (2009) performed a

DNS of conjugate heat transfer consisting of a solid cylinder in a channel flow with a heated

bottom plane using the IB reconstruction found in Fadlun et al. (2000). A Dirichlet type

boundary condition was imposed for temperature field by linearly interpolating the temper-

ature in the solid to the fluid boundary. Neumann boundary condition for temperature was

satisfied by a one-sided finite difference in the fluid domain.
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Our chief objective in this study is to develop an IB reconstruction scheme to impose

a Neumann type boundary condition on the buoyancy field, and assess its performance in

both laminar and turbulent flow regimes. To date, the issue of consistent performance in

both flow regimes has not received any attention. To achieve our objectives we consider

an idealized katabatic flow above an inclined surface as a canonical problem. Admittedly,

an IB method does not provide any obvious advantage over a body-fitted mesh to simulate

a flat surface. However, an idealized slope flow establishes a benchmark case that can be

simulated with a body-fitted approach, which can then be used to assess the formal accuracy

of reconstruction schemes and their predictive performance in both laminar and turbulent

flow regimes.

5.3 Numerical Formulation

Cartesian grid nodes generally do not coincide with the immersed geometry or terrain. There-

fore, a challenge in the IB method is to indirectly enforce the boundary conditions on the

discretized form of the governing equations. The original IB method introduced a body

force term in the momentum equations (Peskin, 1972). The method worked well for elastic

surfaces, but issues with numerical stability limited the applicability of the original method.

Mohd-Yusof (1997) proposed the direct forcing approach that alleviated numerical stability

constraints by indirectly incorporating a body force term, Fi, into the discretized for of the

momentum equations as

un+1
i − uni

∆t
= RHSi + Fi, (5.1)

where RHSi includes advective, diffusive, and pressure gradient terms. If the velocity at the

boundary can be prescribed as un+1
i = Vi for all n, then the body force becomes

Fi = −RHSi +
Vi − uni

∆t
(5.2)
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from Eq. (5.1). Substituting Eq. (5.2) into Eq. (5.1), the body force can be taken into account

implicitly by prescribing the velocity field, Vi. As the Cartesian grid is not coincident with

the immersed surface, a reconstruction scheme is required to impose the boundary conditions

on the Cartesian nodes near the surface, which in turn become boundary conditions for the

rest of the flow.

In the present study, we adopt the GIN3D flow solver (Thibault and Senocak, 2012;

Jacobsen and Senocak, 2011, 2013; DeLeon et al., 2013). An IB method based on the

aforementioned direct forcing approach was implemented in GIN3D for the velocity field

(DeLeon et al., 2012). A separate geometric preprocessor is available to immerse an arbi-

trarily complex geometry into a Cartesian grid (Senocak et al., 2015). In the GIN3D solver,

the velocity reconstruction scheme for laminar conditions follows a linear approach along

the surface normal direction similar to the works of Gilmanov et al. (2003), Gilmanov and

Sotiropoulos (2005) and Gilmanov and Acharya (2008). In wall-resolved LES of turbulent

flows, in which the viscous sublayer is resolved, the same linear reconstruction schemes can

be used albeit at modest Reynolds numbers and with a high computational cost. However,

for wall-modeled LES, the linear reconstruction of the no-slip boundary condition is not

adequate because spatial resolution is too coarse to resolve any part of the viscous sublayer.

In those cases, GIN3D adopts the logarithmic reconstruction scheme proposed by Senocak

et al. (2004) along with a subgrid-scale model (Senocak et al., 2007) that is consistent with

the logarithmic law-of-the-wall theory (Pope, 2000).

Figure 5.1 shows a schematic describing the implementation of the boundary reconstruc-

tion scheme where a line in the normal direction from the nearest triangular element of the

immersed boundary (point a) is projected through the IB node, which is defined as the

nearest fluid node to the surface (point b), and onto a Cartesian cell face in the fluid domain

(point c). This line will be referred to as the IB line. Values at a are known as prescribed

boundary conditions and values at c are reconstructed by bilinear interpolation from the

neighboring Cartesian grid nodes marked by Greek letters α, β, γ, and δ. In the case of
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Figure 5.1: Sketch of the general indirect boundary reconstruction scheme at an IB node by
projecting a line in the normal direction from the nearest triangular element of the boundary
into the fluid domain.

linear velocity reconstruction, another linear interpolation along the IB line between a and c

is performed to overwrite the current value at b. We emphasize that a linear reconstruction

for velocity is appropriate for the present problem because the simulation resolves the flow

field down to the surface.

5.4 Buoyancy Reconstruction Schemes

We investigate four reconstruction schemes to impose a Neumann type boundary condition

within the context of a direct-forcing IB approach. The buoyancy quantity is solved for

convenience of imposing boundary conditions for katabatic slope flows. Following the work

of Fedorovich and Shapiro (2009), we prescribe a constant buoyancy flux at the surface to

establish a canonical test case for both laminar and turbulent flow regimes. We note that

constant surface buoyancy flux may not be ideal to study physics of actual katabatic flows

over sloped terrain, but it serves the purpose of the present study well. A spatially-varying

surface buoyancy flux (Shapiro and Fedorovich, 2007) could also be considered.

Scheme 1 makes use of the buoyancy gradient boundary condition at the surface and

buoyancy gradient in the fluid node calculated with a central difference formula. These two



88

data points are then used to calculate the buoyancy at the IB node. Gilmanov et al. (2003)

proposed this approach to impose a Neumann type boundary condition on the pressure field

for an incompressible solution but it was not tested for the transport of a generic scalar field.

Scheme 1 is outlined in the following steps for a general scalar φ with the help of Fig. 5.1:

1. Calculate
(
∂φ
∂xi

)
at α-β-γ-δ in all three Cartesian coordinate directions (i = 1, 2, 3).

2. Linear interpolate these to c to get
(
∂φ
∂xi

)
c
.

3. Then the normal gradient of φ at c is

(
∂φ

∂n

)
c

= na · (∇φ)c , (5.3)

where na is the surface normal vector at a.

4. With the normal φ gradient boundary condition at the surface,
(
∂φ
∂n

)
a
, and the known

normal φ gradient at c,
(
∂φ
∂n

)
c
, linear interpolate along the IB line to the midpoint

between b and c to determine
(
∂φ
∂n

)
bc

.

5. Linear interpolate to bring φ from α-β-γ-δ to c, giving φc.

6. The value of φ at the IB node is then calculated using a central difference approximation

φb = φc −∆sbc

(
∂φ

∂n

)
bc

, (5.4)

where ∆sbc is the distance along the IB line from b to c.

In step 1, Gilmanov et al. (2003) does not mention a method for calculating the first deriva-

tives, so we approximate those derivatives with a second order accurate central difference

formula because the scheme was originally applied to the pressure field. The central differ-
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ence formula to compute the first derivative of φ with respect to z can be written as

(
∂φ

∂z

)
k

=
φk+1 − φk−1

2∆z
, (5.5)

where k represents grid index, and ∆z is the uniform mesh spacing in the z direction. We

note that Scheme 1 has not been validated for the transport of a generic scalar field. The

remaining reconstruction schemes are unique to our present work to the best of our knowl-

edge. In designing these reconstruction schemes we devote special attention to include only

computational cells that are not intersected by the immersed boundary to avoid including

unreconstructed values at the IB node. We find that this subtle issue is important and was

not addressed in Scheme 1.

Scheme 2 assumes the φ gradient along the IB line from a to c is constant. Analogous to

Eq. (5.4), a central difference using the φ gradient boundary condition is used to calculate

the buoyancy at the IB node,

φb = φc −∆sbc

(
∂φ

∂n

)
a

. (5.6)

Scheme 3 is identical to Scheme 1, except first derivatives in Step 1 are approximated with

a one-sided difference formula, to avoid including IB nodes in the reconstruction, because

values at those nodes may yet to be updated and can introduce errors into the scheme

otherwise. We use a second-order-accurate, one-sided difference formula (Tannehill et al.,

1997), which can be written for a 1D uniform mesh as follows:

(
∂φ

∂z

)
k

=
−3φk + 4φk+1 − φk+2

2∆z
. (5.7)

Scheme 4 adopts a nearest neighbor interpolation to compute the φ gradient at point

b. To calculate φ at the IB node, a second-order-accurate, one-sided difference is used that

includes the φ gradient at b and two cell face intersubsection points from the fluid side. This



90

reconstruction requires an additional fluid point not shown in Fig. 5.1, referred to here as

d, where the IB line intersects the next cell face after point c. Values of φ are brought to d

through linear interpolation from neighboring Cartesian grid points in the same way values

are brought to c through linear interpolation from α, β, γ, and δ. The reconstruction is

performed by solving for φb in the following equation:

(
∂φ

∂n

)
b

=
−φd (hc − hb)2 + φc (hd − hb)2 − φb[(hd − hb)2 − (hc − hb)2]

(hc − hb) (hd − hb) (hd − hc)
, (5.8)

where h refers to the distance from the surface of each respective point b, c, and d. Equa-

tion (5.8) is the version of Eq. (5.7) for non-uniform grid spacing (Ferziger and Perić, 2012).

A fifth scheme was also proposed in Umphrey et al. (2016). Combination of these schemes

with different velocity reconstruction schemes was investigated in that study as well. We

leave those options out in the present study for clarity and sake of space.

5.5 Results

We simulate katabatic flows above an infinite plane inclined at slope angle α to validate the

aforementioned immersed boundary reconstruction schemes for imposing a Neumann type

boundary condition for the buoyancy field. A one-dimensional model for laminar flow of a

stratified fluid along a uniformly cooled or heated sloping plane was developed by Prandtl

(1942). Figure 5.2 illustrates an instance from Prandtl’s laminar solution for the case of a

uniformly cooled sloping plane. A katabatic flow develops with a low-level down-slope jet

topped by a weak up-slope return flow. Both velocity and bouyancy fields approach zero

away from the surface. Fedorovich and Shapiro (Shapiro and Fedorovich, 2004; Fedorovich

and Shapiro, 2009) published a non-dimensional form of the Prandtl model solution with
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Figure 5.2: Sketch of an instance of the Prandtl’s laminar solution of katabatic flow on an
infinite plane with constant surface buoyancy flux. Note that in the simulations the gravity
vector is rotated and a flat surface is considered.

the following formulation:

un = sin(zn/
√

2)exp(−zn/
√

2), (5.9)

bn = cos(zn/
√

2)exp(−zn/
√

2), (5.10)

where

zn = zν−1/2N1/2sin1/2α, (5.11)

un = uν1/2N3/2B−1s sin1/2α, (5.12)

bn = bν1/2N3/2B−1s sin1/2α. (5.13)

In the above equations, subscript n refers to normalised quantities, u is velocity parallel to

the slope, z is the normal distance from the slope surface, b is buoyancy (b = gθ/Θr, g is the

gravitational acceleration, θ is the potential temperature perturbation, Θr is the constant
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reference potential temperature value), ν is the kinematic viscosity equal to the thermal

diffusivity, N is the Brunt − V äisälä (or buoyancy) frequency (N2 = (g/Θr)
(
dΘe/dz

′)
,

Θe is the environmental potential temperature), Bs is the surface buoyancy flux (Bs =

−ν (db/dz) |z=0), and α is the slope angle. Furthermore, this analytical solution has the

boundary conditions u(0) = 0, (dbn/dzn) |zn=0 = −1, and un → 0, bn → 0 as zn → ∞. The

above analytical solution serves as an excellent benchmark to evaluate various numerical

methods and formal order of accuracy of numerical solutions. However, it does not guarantee

success in the turbulent regime, as we show in the present study.

It is common to include buoyancy effects in the incompressible Navier-Stokes equations

through the Boussinesq approximation, which is valid when density variations are small and

vary linearly with temperature difference (Ferziger and Perić, 2012). Following the work of

Fedorovich and Shapiro (2009) the momentum balance equations for the slope flow can be

written as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − ∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ b sinα, (5.14)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − ∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (5.15)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − ∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ b cosα, (5.16)

For convenience, the heat balance equation is written in terms of buoyancy

∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y
+ w

∂b

∂z
= ν

(
∂2b

∂x2
+
∂2b

∂y2
+
∂2b

∂z2

)
−N2 (u sinα + w cosα) . (5.17)

In the above equations, u, v, and w are velocity components in the up-slope, cross-slope, and

slope-normal directions, respectively; p is pressure, b sinα and b cosα are buoyancy forcing

terms. The Prandtl number is assumed to be unity.
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Quantity Symbol (Units) Laminar Value Turbulent Value
Slope angle α (degrees) 30 60

Surface buoyancy flux Bs (m2 s−3) -0.005 -0.5
Brunt− V äisälä frequency N (s−1) 1 1

Kinematic viscosity ν (m2 s−1) 0.0005 0.0001
Thermal diffusivity γ (m2 s−1) 0.0005 0.0001

Table 5.1: Simulation parameters for both laminar and turbulent katabatic slope flows.

5.5.1 Laminar Katabatic Flow Simulation

We adopt the nondimensional form of Prandtl’s laminar solution to assess four different

IB reconstruction schemes. We simulate an infinite flat plate with a slope angle of α =

30◦. To establish a body-fitted solution within a Cartesian flow solver, the gravity vector,

instead of the horizontal surface, is rotated according to the slope angle. The flat plate is

placed at the bottom of the domain such that IB Cartesian scalar nodes (staggered grid)

were 0.25∆ above the flat plate, where ∆ is the uniform grid spacing. The domain height

in the z -direction is H = 1.27 m. The no-slip condition and a constant buoyancy flux are

enforced at the immersed surface while the top of the domain receives a free-slip condition

for velocity and zero-flux condition for buoyancy. Lateral boundaries are assumed to be

periodic. Relevant simulation parameters are presented in Table 5.1. Three mesh spacings

(∆) are used throughout the laminar katabatic slope study: 0.005 m, 0.0025 m, 0.00125 m.

Figure 5.3 shows comparison for the normalised down-slope velocity for the schemes

discussed in Sect. 5.4 using mesh spacing of ∆ = 0.005 m. Schemes 2–4 agree very well with

the analytical solution. However, Scheme 1 as proposed by Gilmanov et al. (2003) clearly

falls short for the peak velocity of the low level jet. In Step 1 of Scheme 1, buoyancy gradient

approximation in the slope-normal direction of the fluid domain is performed using a central

difference stencil that includes the IB node. This is problematic as the IB node needs to

be reconstructed before it can be used in a stencil. Scheme 3 resolves this issue by using a

second order accurate one-sided finite difference scheme that does not include the IB node.

Central differences are still used in directions parallel to the slope as those stencils do not
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include IB nodes.

Figure 5.4 shows the normalised buoyancy produced by the same schemes compared to

the analytical solution. Discrepancies in buoyancy are less apparent, but Scheme 1 shows

lower buoyancy values near the surface compared to the benchmark solution. Based on these

results we exclude Scheme 1 from the rest of the present study.

A grid convergence study is often performed to identify the formal accuracy of a numerical

solution. In computational analysis, a globally second-order-accurate solution is desirable

at a minimum. To this end, we investigated the order of accuracy of Scheme 4 using three

systematically refined grids as shown in Fig. 5.5. As expected from an L∞ norm of numerical

error, first order accuracy is achieved locally at the IB node. However, the global solution is

second order accurate as evident by the slopes of the L1 and L2 norms. Formal accuracy of

Scheme 2 and 3 was also studied in Umphrey et al. (2016) with the same outcome as Scheme

4. Note that we do not expect an order of accuracy higher than two, because the baseline

flow solver adopts second order numerics in time and space.

5.5.2 Turbulent Katabatic Flow, First-Order Statistics

We hypothesize that reconstruction schemes that produce satisfactory results in the laminar

regime may not readily apply to turbulent flow regimes. To validate our hypothesis, we

consider Prandtl’s model for katabatic slope flows in the turbulent regime. Because Scheme

1 failed to reproduce Prandtl’s laminar solution, we only consider Schemes 2–4 in this sub-

section. Fedorovich and Shapiro (2009) performed DNS of idealized turbulent slope flows,

in which they derived an integral slope-flow Reynolds number as ReI = |Bs|/νN2 sinα. Val-

ues of ReI greater than 3000 are considered to have reasonably developed turbulence. For

reference, the laminar simulation in Sect. 5.5.1 had an ReI = 20. The flat plate is once

again placed at the bottom of the domain at 0.25∆ below the scalar node in the staggered

grid configuration. Relevant flow parameters are given in Table 5.1. The size of the domain

is 0.64 m × 0.64 m × 1.6 m in the x -direction, y-direction and z -direction, respectively.
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Figure 5.3: Normalized down-slope velocity. Comparison of results from different buoy-
ancy reconstruction schemes with the analytical solution of the Prandtl model for laminar
katabatic flow.

The x -direction, y-direction and z -direction correspond to the down-slope, cross-slope and

slope-normal directions, respectively. Boundary conditions are the same as those used in the

laminar case (see Sect. 5.5.1). The grid dimensions are (NX ×NY ×NZ) = 257×257×641

with uniform spacing of ∆ = 0.00025 m. The resulting integral slope-flow Reynolds num-

ber is ReI = 5773. Given the analog of the Kolmogorov microscale Lm = ν3/4|Bs|−1/4, the

resolvability condition for DNS (Pope, 2000) is met by ∆ ≤ 2Lm.

The performance of IB schemes are assessed relative to simulations performed with a

body-fitted mesh using the same flow solver. Additionally, a second reference solution from

Fedorovich and Gibbs (2015),designated as FG, and a third reference solution produced by

the MicroHH code (van Heerwaarden et al., 2016) as presented in Fedorovich and Gibbs

(2015) are included as additional body-fitted mesh reference solutions to better assess the

sensitivities of the simulations to numerical methods. Figure 5.6 shows a volume rendering

of the instantaneous velocity magnitude obtained with DNS. The comparison of mean ve-
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Figure 5.4: Normalized buoyancy. Comparison of results from different buoyancy recon-
struction schemes with the analytical solution of the Prandtl model for laminar katabatic
flow.

locity profiles is shown in Fig. 5.7. Although these schemes gave good agreement with the

analytical solution in laminar flow simulations, errors in the peak velocity of the low level

jet are easily seen for Schemes 2 and 3 for the turbulent case, validating our hypothesis on

consistent performance in both flow regimes. Scheme 4 agrees well with the body-fitted mesh

simulation and deviates slightly near the up-slope return flow region. As in the laminar case,

discrepancies in buoyancy are less apparent in Fig. 5.8; however, Scheme 4 agrees well with

the body-fitted mesh simulation.

5.5.3 Turbulent Katabatic Flow, Second-Order Statistics

Of the three schemes applied to the turbulent katabatic slope flow, Scheme 4 exhibited

the best agreement with the first-order statistics of the body-fitted mesh reference solution.

Therefore, only Scheme 4 is used for investigation of the second-order statistics. The first
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Figure 5.5: Grid convergence study of Scheme 4. The L1 and L2 norms show second order
accuracy globally for both velocity and buoyancy fields. The L∞ norm shows first order
accuracy locally at the IB node.

quantity presented is the slope-normal buoyancy flux in Fig. 5.9. Scheme 4 agrees well with

the body-fitted mesh approaches, deviating slightly from the reference solution in the up-

slope return flow region. All four approaches exhibit similar trends with slight variations in

this region. The slope-normal momentum flux in Fig. 5.10 shows a similar variation among

the four approaches as well. Scheme 4 agrees best with FG in the low-level jet and best with

our body-fitted approach in the up-slope return flow.

In Fig. 5.11, variation among the four approaches is more pronounced than variations

observed in other figures. The comparison suggests that the down-slope velocity variance

in the vicinity of the surface is sensitive to the details of the numerical approach. In the

up-slope return flow region and above, the agreement of Scheme 4 with the other approaches

is quite good. Of the other variances shown in Figs. 5.12, 5.13 and 5.14, all four approaches

have excellent agreement among themselves. A critical inspection of Scheme 4 reveals the

peaks near the surface for cross-slope and slope-normal velocity variances are slightly the
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Figure 5.6: 3D volume rendering of instantaneous velocity magnitude from direct numerical
simulation of turbulent katabatic flow. The simulation is for an infinite plane inclined at
slope angle α = 60o, however, the slope is rotated down into an isometric view here to better
show the turbulence throughout the domain.

lowest in magnitude compared to the other three DNS approaches. In the cross-slope and

slope-normal velocity variances in Figs. 5.12 and 5.13, Scheme 4 produces the lowest variance

magnitude in the up-slope return flow region and above, although this difference from the

other three approaches can be assumed negligible. The buoyancy variance in Fig. 5.14 shows

very little variation among the different solutions considered in the present study. Overall,

the agreement of Scheme 4 with the other three approaches is very good in all the second-

order statistics and encourages us to consider it in a future work to study turbulent katabatic

flows over complex terrain with heterogeneous surface boundary conditions.
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Figure 5.7: Down-slope velocity in a turbulent katabatic flow. Comparison of IB reconstruc-
tion scheme results and results from three different DNS studies using body-fitted meshes.

5.6 Conclusions

We studied the performance of four immersed boundary reconstruction schemes as a proof-

of-concept for imposing a Neumann type boundary condition on the buoyancy field of an

idealized katabatic slope flow. We have shown that the choice of IB reconstruction scheme

for Neumann boundary conditions has a significant impact on the accuracy of the results.

Despite having the same formal order of accuracy globally, second-order turbulence statistics

obtained from direct numerical simulations showed significant differences among the schemes

considered. Therefore we suggest validating IB reconstruction schemes in both laminar and

turbulent flow regimes.

In designing an IB reconstruction scheme, we paid particular attention to exclude neigh-

boring IB nodes in the reconstruction of a quantity at the IB node. We find this subtle issue

to be important even for the laminar flow case. Consequently, we developed a reconstruction
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Figure 5.8: Buoyancy in a turbulent katabatic flow. Comparison of IB reconstruction scheme
results and results from three different DNS studies using body-fitted meshes.

scheme (i.e. Scheme 4) for imposing a Neumann type boundary condition at an immersed

boundary. Scheme 4 performed well in both the laminar and turbulent flow regimes. First-

and second-order turbulence statistics obtained from direct numberical simulations agree well

with reference body-fitted solutions. The current flat terrain simulation constitutes a proof-

of-concept to demonstrate critical issues pertinent to the IB method. In future work we will

focus on extending and testing the proposed scheme for complex terrain with heterogeneous

surface conditions.
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Figure 5.9: Slope-normal buoyancy flux in a turbulent katabatic flow. Comparison of IB
reconstruction Scheme 4 with three different DNS studies using body-fitted meshes.
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Figure 5.10: Slope-normal momentum flux in a turbulent katabatic flow. Comparison of IB
reconstruction Scheme 4 with three different DNS studies using body-fitted meshes.
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Figure 5.11: Down-slope velocity variance in a turbulent katabatic flow. Comparison of IB
reconstruction Scheme 4 with three different DNS studies using body-fitted meshes.
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Figure 5.12: Cross-slope velocity variance in a turbulent katabatic flow. Comparison of IB
reconstruction Scheme 4 with three different DNS studies using body-fitted meshes.
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Figure 5.13: Slope-normal velocity variance in a turbulent katabatic flow. Comparison of IB
reconstruction Scheme 4 with three different DNS studies using body-fitted meshes.
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Figure 5.14: Buoyancy variance in a turbulent katabatic flow. Comparison of IB reconstruc-
tion Scheme 4 with three different DNS studies using body-fitted meshes.
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CHAPTER 6

Simulations of Turbulent Winds over Complex Terrain Using an

Immersed Boundary Method

6.1 Abstract

Technological advances in computing power enables us to simulate winds over complex terrain

with finer spatio-temporal resolutions than ever before. As such, large-eddy simulation and

immersed boundary techniques are finding applications in micro-scale modeling of complex

terrain winds. In this study we investigate the Askervein Hill field study and the Bolund Hill

study—both the field and wind tunnel cases—to extend an immersed boundary formulation

to simulate neutrally-stratified turbulent winds over complex terrain. We reconstruct both

the velocity and the eddy-viscosity fields in the terrain normal direction to produce the

turbulent stresses as would be expected from a surface parameterization scheme based on

the Monin-Obukhov similarity theory. We rely on the logarithmic profile for the wind field

to formulate the eddy-viscosity in the vicinity of the surface and reconstruct the velocity

field. We found that it is essential to be consistent in the underlying assumptions for the

velocity reconstruction and the eddy-viscosity formula to produce good results. Our approach

works well for attached turbulent wind fields and shows slight disagreement in separated

regions, which we attribute to our reliance on the Monin-Obukhov similarity theory over

the entire terrain. Further research is needed to improve the parameterization of turbulent

stresses in separated wind regions, to account for varying aerodynamic roughness lengths,

and incorporate the stability effects into the immersed boundary formulation.

6.2 Introduction

Modern computing hardware with multi- and many-core architectures has enabled researchers

to deploy fine resolutions in studying the physics of atmospheric flow. The large-eddy sim-
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ulation (LES) technique has become an obvious beneficiary of increased computing power.

However, there are thorny issues to be resolved when the computational mesh resolution

approaches on the order of meters. Chief among these is the resolution of terrain details.

A complex terrain may be composed of many convex and concave geometric features with

steep changes in elevation. If present, these features are a challenge for numerical methods

that adopt terrain-following coordinates due to poor mesh quality. When meshing a com-

plex terrain three options are available: an unstructured mesh, a terrain-following mesh,

or a fixed Cartesian mesh. Immersing a geometry in a fixed Cartesian mesh and imposing

the boundary conditions on grid points that do not coincide with the solid surface is re-

ferred to as immersed boundary (IB) methods. IB methods have desirable features such as

a good mesh quality, semi-automation of the meshing step and a better fit to the memory

layout of emerging computational accelerators. However, the technical challenge is to im-

pose boundary conditions and surface parameterization accurately on non-coincident mesh

points.

The original IB method was developed to simulate blood flow through a heart valve (Pe-

skin, 1977). Since then researchers have proposed numerous versions to tackle issues related

to the original method or to extend its domain of application. Majority of these meth-

ods have been tested in fluids engineering domain at low to moderate Reynolds numbers

(Iaccarino and Verzicco, 2003; Mittal and Iaccarino, 2005; Sotiropoulos and Yang, 2014).

Sharp-interface IB methods were developed to address some of the numerical stability is-

sues related to the original IB method. One class of sharp-interface methods is the cut-cell

method (Ye et al., 1999). In this approach control volumes around the embedded geometry

are created by reshaping the cells intersected by the boundary such that faces of the control

volumes conform to the boundary exactly. A second class is referred to as immersed-interface

methods, which incorporate the jump conditions of the discrete delta function directly into

a finite difference stencil without relying on a continuous approximation of a discrete delta

function (Leveque and Li, 1994; Lee and LeVeque, 2003). A third class is the direct forcing
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approach (Mohd-Yusof, 1997; Verzicco et al., 2000; Fadlun et al., 2000; Tseng and Ferziger,

2003), which directly reconstructs flow variables in boundary-neighboring grid cells via in-

terpolation or distribution functions between the known conditions at the boundary and the

surrounding cells. This class of IB methods is also referred to as hybrid Cartesian/immersed

boundary approaches when applied as a sharp-interface method Gilmanov and Sotiropoulos

(2005) and has the distinguishing aspect that the forcing term in the governing equations

does not need explicit calculation.

Most IB methods have been investigated for flow over aerodynamically smooth surfaces.

However, IB methods extended to simulate atmospheric flows are much more involved as

the boundary conditions take the form of surface stresses to parameterize surface roughness

effects and compensate for the lack of resolution relative to the length scales of turbulent

flow near the surface. Additionally, parameterization of heat and moisture fluxes are needed

to better represent atmospheric flows. Therefore, a straightforward implementation of the

IB method with no-slip boundary conditions in atmospheric flows can only produce visually

appealing results.

Studies that have accounted for surface roughness over topographies include studies over

a single (Tseng and Ferziger, 2003) or double (Bhaganagar et al., 2004) undulations of a

sinusoidal wave. Chester et al. (2007) developed an IB approach for spectral differentiation

where the surface shear stress is determined from a rough-wall log-law using tangential

velocity near the IB, then extrapolated and successively smoothed into the interior of the IB

which results in a slight smearing of variables near the surface. Diebold et al. (2013) applied

the approach of Chester et al. (2007) to the Bolund Hill complex terrain benchmark (Berg

et al., 2011). Anderson (2013) generalized the approach of Anderson and Meneveau (2010) to

create a forcing term that creates momentum depletion for flow impinging upon the surface

based upon the gradient of the distance field. Tests were performed over many surfaces such

as prisms, mounds, sinusoids, fractal-like surfaces and synthetic cities. While this approach

has unresolved roughness elements, this forcing term does not explicitly account for mass
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conservation near the surface. Yuan and Piomelli (2014a) and Yuan and Piomelli (2014b)

used a volume-of-fluid IB method where the velocities and eddy viscosities are reduced by

an amount proportional to the volume of fluid contained within the grid cell intersected by

the immersed boundary. This approach requires resolution of the roughness elements.

One of the desirable features of IB methods is its non-intrusive implementation in existing

simulation codes, which makes it easy to parallelize as well. We made it a goal in our work

to retain the ease of computer implementation. To this end, we pursue a direct-forcing IB

approach as originally proposed by Mohd-Yusof (1997) and later extended to neutral atmo-

spheric boundary layer over flat terrain by Senocak et al. (2004). Unlike other approaches

where the stress tensor terms are reconstructed, we restrict ourselves to reconstruct only

the primitive variables of the governing equations such as the velocity components and the

scalar quantities and thereby retaining the simplicity of computer implementation.

Modeling the ABL at the microscale with the LES technique, even at the order of meters,

requires wall-modeling. Therefore, the IB method needs to be formulated in a way to include

wall-modeling. Many IB approaches have been proposed for wall-modeled LES (Tessicini

et al., 2002; Cristallo and Verzicco, 2006; Ji et al., 2012; Roman et al., 2009; Chang et al.,

2014). To this end, the IB method we are investigating for complex terrain will reconstruct

the tangential velocity components using logarithmic reconstruction to be consistent with the

log-law assumption embedded in the chosen near-surface grid-scale (SGS) model. Because

the end goal is to produce the expected turbulent stresses and retain computational ease,

we also reconstruct the eddy viscosity to avoid the calculation of velocity gradients at the

immersed surface. We investigate the Askervein Hill and Bolund Hill cases to validate our

approach. Because these are turbulent flow problems with separated flows region, our results

are influenced by the underlying assumption of attached flow in the chosen subgrid-scale

model. Some of the discrepancies cannot be directly attributed to the IB method at hand.

In what follows, we present the details of our IB method and simulate both the Askervein

Hill and Bolund Hill cases. We compare against available field data, but we also simulate
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the wind tunnel experiment for Bolund Hill (Yeow et al., 2015), and compare our results

against detailed measurements to better assess vertical velocity profiles across the complex

terrain.

6.3 Immersed Boundary Methodology

Figure 6.1: Sketch of the IB reconstruction in surface normal direction. The interpolation
occurs along line projected from TC through IB until intersection with cell face away from
surface is intersected at FI. Cartesian nodes α, β, γ, and δ are interpolated onto FI. TC -
triangle centroid; IB - immersed boundary Cartesian node; FI - cell face intersection; α,β,γ,δ
- Cartesian nodes that form cell face

The implementation of the IB method using a direct forcing approach, as detailed in

Mohd-Yusof (1997); Fadlun et al. (2000), is based on solving the following discretized gov-

erning momentum equation,

ut+1
i − uti

∆t
= RHSti + f ti , (6.1)

for f t such that ut+1
i = ut+1

i,bc , where ut is the velocity at time step t, ui,bc is the velocity

boundary condition known at all time steps. RHS encompasses the convective, viscous and
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pressure gradient terms, and f t is a body-force term, which can be written as follows after

rearranging the terms and enforcing that the forcing term produces the desired velocity at

the boundary (i.e. ut+1
i = ut+1

bc )

f ti = −RHSt +
ut+1
bc − uti

∆t
, (6.2)

where the boundary condition value ut+1
bc at the immersed surface is known for every time

step. However, with Cartesian grids, ubc does not necessarily coincide with the Cartesian

grid points. Therefore, an interpolation scheme is required to reconstruct the velocities at

the near-surface Cartesian grid points with respect to the boundary condition information

at the surface. An example of reconstruction is sketched in Fig. 6.1. Here, a line is pro-

jected from the triangular element shown—used in representing the terrain—through the IB

Cartesian node until the line intersects a cell face away from the solid surface. The Carte-

sian nodes forming the cell face are interpolated onto the face intersection. The velocity is

then reconstructed via an interpolation scheme at the IB node by imposing the boundary

condition at the surface. Note that by reconstructing the velocity field at the IB node, the

forcing term f ti is implicitly accounted for in the governing equations.

When the flow is laminar, or the mesh resolves the viscous layer of a turbulent flow, a

linear reconstruction scheme is adequate as the velocity varies linearly. However, in LES

of atmospheric flows, the mesh is underresolved relative to turbulent length scales and a

surface parameterization scheme, also known as a wall-model, is required. Therefore, a

linear reconstruction of tangential velocity is no longer applicable for LES of atmospheric

flows with a surface parameterization scheme.

Although the applicability of Monin-Obukhov similarity theory for complex terrain or the

logarithmic law of the wall for separated flows are questionable, they are commonly used to

formulate surface parameterization schemes or wall-models for turbulent stresses because of

a lack of comprehensive theory. In this study, our goal is not to develop a new wall-model or
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surface parameterization scheme, but rather develop an IB method that embeds an existing

wall-model in its formulation. To this end, we adopt a reconstruction scheme upholding the

logarithmic law of the wall to reconstruct the velocity field. Specifically, we use the log-law

IB reconstruction developed for rough flat terrain in Senocak et al. (2004), who proposed

a logarithmic reconstruction scheme for velocity tangent to the terrain surface and a linear

reconstruction scheme for velocity normal to the surface to explicitly enforce the imper-

meability condition. The underlying assumptions in the log-law reconstruction scheme are

equilibrium between turbulence production and destruction and a constant friction velocity

in the vicinity of the surface. To demonstrate how the reconstruction is developed, we start

with the rough log-law,

U =
u∗
κ

ln

(
h+ z0
z0

)
, (6.3)

where u∗ is the friction velocity, κ is the von Kármán constant, where h is the height normal

to the surface and z0 is the aerodynamic roughness length. If the friction velocity is constant,

the similarity between two heights in the logarithmic region allows the following relationship

to be obtained by dividing the log-law at surface-normal heights, h = hIB and h = hFI

(notation from Fig. 6.1 where location TC is h = 0),

UIB
UFI

=
u∗/κ ln

(
hIB+z0
z0

)
u∗/κ ln

(
hFI+z0
z0

) . (6.4)

Then the logarithmic reconstruction scheme for the tangential velocity is

UIB = UFI
ln
(
hIB+z0
z0

)
ln
(
hFI+z0
z0

) . (6.5)

where UFI is obtained via bilinear interpolation among nodes α, β, γ, and δ in Fig. 6.1. The

normal component is reconstructed at node IB with linear interpolation between location
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FI and TC in Fig. 6.1,

UIB =
hIB
hFI

UFI + UTC , (6.6)

where UTC is the no-slip condition in this study, i.e. UTC = 0, and UFI is the same value as

in Eq. 6.5. Once the surface-normal and surface-parallel projections have been individually

reconstructed, the projections are then formed into a vector with the same direction as the

velocity vector at the face intersection. The underlying assumption here is that the direction

of the flow remains constant along the surface normal in the close proximity of the surface. A

similar procedure can also be found in Roman et al. (2009) where the velocity at an IB node

is broken into tangential and normal components and reconstructed using different schemes

to simulate a turbulent channel flow. In their study, smooth-wall logarithmic reconstruction

was used for the tangential component and a quadratic polynomial was used to reconstruct

the normal component.

As we are reconstructing the velocity near the surface and setting the velocity field to

zero inside the terrain, one can expect incorrect velocity gradients calculated on the faces

of an IB Cartesian grid cell that then go into the calculation of the eddy viscosity. The

reconstruction of the eddy viscosity in IB simulation of turbulent flows has not received

much attention. As shown later in §6.4, we adopt an eddy-viscosity-based SGS model which

relies on the existence of a logarithmic law for the velocity field. The intent here is to be

consistent with the logarithmic reconstruction for the velocity field. If the goal is to impose

the correct turbulent stresses with the wall model, the incorrect velocity gradients will inject

errors into the eddy-viscosity model and produce incorrect results. To avoid this problem,

we use the same linear reconstruction scheme given in Eq. 6.6 on the near-surface eddy

viscosity. We justify the use of linear reconstruction in §6.4.

For any IB method, it is essential to use accurate geometric information related to the

immersion of complex boundaries within a Cartesian domain. For this study, we use the
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geometric pre-processing algorithms detailed in Senocak et al. (2015), which describes a

procedure to immerse a complex geometry with convex and concave regions inside a three-

dimensional Cartesian domain. The preprocessor also computes the distance field from a

complex terrain using an Eikonal equation. A distance field is an integral part of the grid-

scale model used in this study. We refer the reader to Senocak et al. (2015) for details, and

stress the importance of correct geometric information to implement an IB method for flow

computations.

6.4 Numerical Formulation

We solve the filtered form of the incompressible Navier-Stokes equations

∂uj
∂xj

= 0, (6.7)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − τij

)
, (6.8)

where the Sij is the strain rate tensor and τij are the filtered Reynolds stresses which are

modeled with an eddy-viscosity assumption as follows

τij = νtSij, (6.9)

νt = l2mix|S|. (6.10)

We use a second-order Adams-Bashforth scheme for time advancement and discretize the

spatial derivatives with a second-order central difference scheme on a directionally-uniform

Cartesian grid. The three dimensional incompressible flow solver, for which density is set

to unity, has been parallelized for fast computing on a cluster of graphics processing units

(GPU) (Thibault and Senocak, 2012; Jacobsen and Senocak, 2013; DeLeon et al., 2013). The

Poisson equation for pressure is solved with an amalgamated parallel geometric multigrid

technique (Jacobsen and Senocak, 2011).
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Case z0 (m) Periodic Shift (m) Target Mass Flow Rate (kg s−1)
Askervein FS 0.03 1000 9.01 ×107

Bolund FS 6.0 × 10−4 150 1.26×106

Bolund WT 1.02 × 10−5 0.4 38.39

Table 6.1: Summary of simulation parameters used for the three test cases. FS, Field Study;
WT, Wind Tunnel.

We use the near-surface model described in Senocak et al. (2007), which is a hybrid

RANS-LES that blends the mixing length of the LES -grid scale (SGS) eddy viscosity model

with the Prandtl mixing length (Prandtl, 1925), such that lmix in Eq. 6.10 becomes

lmix = (1− exp (−h/hB))CS∆ + exp (−h/hB)κh, (6.11)

Note that we blend the length scales directly instead of the squared quantities that was

originally proposed in Senocak et al. (2007). The Smagorinsky coefficient CS is computed

using the localized Lagrangian dynamic Smagorinsky SGS model (Meneveau et al., 1996).

In Eq. 6.11, h is the surface-normal distance from the terrain, hB represents the RANS-LES

blending height, and ∆ is the LES filter width defined from the cube root of a grid cell

volume as 3
√

∆x∆y∆z. At the IB Cartesian nodes close to the surface, the hybrid RANS-

LES scheme will be exclusively RANS meaning the SGS model will be described by the

Prandtl mixing length model, which can be written as,

νt = (κh)2 |S| = κhu∗. (6.12)

The far right-hand-side of Eq. 6.12 shows a linear dependence on h indicating we can use a

linear IB reconstruction.



114

Case Mesh 1 Mesh 2 Mesh 3
Askervein FS 321 × 257 × 129 513 × 385 × 193 641 × 513 × 257
Bolund FS 385 × 193 × 129 513 × 257 × 193 769 × 385 × 257
Bolund WT N/A N/A 1025 × 193 × 513

Table 6.2: Summary of simulation mesh sizes used for the three test cases. FS, Field Study;
WT, Wind Tunnel.

6.5 Askervein Hill

We first apply the IB method described in section 6.3 to the Askervein Hill case, which

was the focal point of a field measurement campaign in the 1980s (Taylor and Teunissen,

1987; Mickle et al., 1988; Salmon et al., 1988; Walmsley and Taylor, 1996). The experiment

has a very high density of measurements making it one of the most widely used isolated

complex terrain benchmarks. The topography, as shown in Fig. 6.2, can be described as

gently sloping that is suitable to be represented by a terrain-following grid. Lopes et al.

(2007) performed a wall-modeled LES (i.e., hybrid RANS-LES) using a Lagrangian dynamic

Smagorinsky model coupled with the rough surface model of Marusic et al. (2001) and the

near-surface derivative correction of Porté-Agel et al. (2000). Chow and Street (2009) used

the Advanced Regional Prediction System (ARPS) (Xue et al., 2003) to evaluate LES SGS

models with a specified surface stress boundary condition (Raithby et al., 1987). Golaz

et al. (2009) used the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS

R©) with LES (Golaz et al., 2005) using a rough-surface log-law boundary condition. The

aforementioned studies perform LES on terrain-fitted meshes. In general, the windward side

of the hill is captured well with little sensitivity to mesh resolution. The leeward side where

intermittent flow separation occurs exhibits significant sensitivity to SGS model parameters

and mesh resolution, which can be attributed to the use of equilibrium assumptions in the

models when intermittent flow separation is not in equilibrium (Lopes et al., 2007).

In our simulations, we set the aerodynamic roughness length, z0, to 0.03 m (Taylor and

Teunissen, 1987). The domain size was 8218.0 m × 5800.0 m × 1000.0 m in the stream-
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wise, horizontal spanwise and vertical directions with a starting grid resolution of 641 ×

513 × 257 in the same respective directions. The top boundary condition was a zero-shear-

stress wall, the spanwise lateral boundary conditions were periodic, and all the streamwise

boundary conditions were the shifted periodic boundary conditions of Munters et al. (2016a).

The shifted periodic boundary conditions are designed to avoid the spanwise locking of flow

structures by shifting the outflow condition a set distance in the spanwise direction during

the periodic recycling. The end result is shorter domains than are required with standard

periodic conditions, because the flow structures near the boundary become more decorre-

lated. For Askervein, we use a shift of 1000.0 m for the shifted periodic boundary conditions

and drive the flow by dynamically calculating the driving mean pressure gradient to keep a

constant target mass flow rate of approximately 9.01 × 107kg s−1 using the formulation of

Benocci and Pinelli (1990). We use the terrain map that does not include neighboring hills

(Walmsley and Taylor, 1996) and we compare results to the case of MF03-D taken between

1400-1700 BST (British Summer Time = UTC + 1h) on 3 October 1983 (Taylor and Teu-

nissen, 1985) that is commonly used for the close to neutral atmospheric conditions. For this

field study, and the rest of the results presented in this study, we use the fractional speed-up

ratio (Jackson and Hunt, 1975) to compare with the experimental benchmarks. Fractional

speed-up ratio is the horizontal velocity speed up relative to an undisturbed mean velocity

profile,

S =
U(hagl)− Uref (z)

Uref (z)
, (6.13)

where hagl and z are both vertical heights above ground level of the terrain except z contains

the global elevation datum.

We first probe the effects of the turbulence model before investigating the impact of

different mesh resolutions on the performance of the IB method. Figures 6.3 and 6.4 show

fractional speed-up ratios of the IB method compared to the Askervein Hill field study
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measurements. We tested RANS-LES blending heights of 15.0 m, 25.0 m 35.0 m , and 45.0

m. Overall, little sensitivity occurs on the windward side of the hill for both A and AA lines,

indicating the blending height does not have much effect on the fractional speed-up ratio of

the wind velocity. Good agreement is achieved with the field data (Taylor and Teunissen,

1985) on the windward side on both A and AA lines. This is consistent with attached flow

assumptions that are integral to the formulation of the current IB method. We observed some

disagreement with measured data on the leeward side at about 200 m after the hill centre

point (CP in figure 6.2), where intermittent flow separation is present. The disagreement

within separated flow regions is not unexpected as the current method is based on attached

flow assumptions. The A line shows a large dependency on the RANS-LES blending height

past 200 m past the hilltop (HT in figure 6.2). As seen in Fig. 6.4, increasing the blending

height increases the fractional speed-up ratio on the leeward side of the hill. By analyzing

the results from these two figures, we decided to use hB = 35.0 m in our simulations.

The difference in sensitivities observed on the leeward side between the A and AA lines

can be explained by the A line being located behind the tallest and steepest part of the hill

while the leeward locations along the AA line are behind a much shorter part of the hill.

Regarding the direction of the mean incoming flow, the leeward locations of line A are in

a larger shadow of hill than line AA. Consequently, the flow separation is expected to be

larger at the leeward locations along line A. Figure 6.5 is a visualization of the wake region

behind the hill. Clearly, line A passes through a large region of separated flow while line

AA passes through a much smaller region. We note that the attached flow assumptions

in the turbulence model and the log-law reconstruction do not prevent us from capturing

separation, but the accuracy is affected by such assumptions.

Next, we proceed to discuss the sensitivity of the IB method mesh resolution. We use

three grids given in Tab. 6.2. As suggested in Senocak et al. (2007), we keep the relation

hB(2∆)−1 > 1 to ensure the LES technique is not applied in regions of insufficient resolution.

hB = 35.0 m satisfies this relation on all three meshes. Figures 6.7 and 6.6 are the fractional
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speed-up ratios at 10 m above ground level along the A and AA lines in the mesh resolution

study. The IB method mostly shows good agreement along the AA line in Fig. 6.6 with

minor sensitivity to mesh resolution for most of the terrain.

Similar to the situation with line AA, we also observe good agreement on the windward

side of the hill along line A in Fig. 6.7, more so with the two finer meshes, Mesh 2 and Mesh

3. The coarsest mesh, Mesh 1, experiences a noticeable reduction in speed 200 m before HT.

Careful examination of the hill elevation map (Walmsley and Taylor, 1996) reveals that the

STL representation has a slight convex feature on the windward face. Mesh 1 has horizontal

resolution of approximately 25 m, which is too coarse to correctly capture this convexity,

leading to the observed dip in fractional speed-up ratio. Mesh sensitivity is low at the

hill top and approximately 200 m downstream of HT. However, mesh sensitivity becomes

more pronounced further downstream, and more so than what we observe along line AA.

This is consistent with the sensitivities observed in the blending height study. A careful

examination of the terrain profiles (Walmsley and Taylor, 1996) reveal small convexities

approximately 200 m after HT along line A. A much finer adaptive resolution is needed to

capture this terrain feature correctly. The results from figures 6.7 and 6.6 indicate that the

immersed boundary method performs well on various meshes, provided that terrain features

are adequately resolved.

We show the wind speed profile at the Askervein Hill reference site (RS) in Fig. 6.8 for

all three meshes. All three meshes produced nearly-identical mean profiles that agree better

with the field measurements at RS than the recommended log-law profile with z0 = 0.03 m

and u∗ = 0.654 m s−1. These results confirm that the shifted periodic boundary condition

driven by a constant mass flow rate forcing is able to produce the expected wind profile for

the lowest 100 m. The lack of agreement roughly above 100 m is not unexpected as we do

not account for the vertical structure of the atmospheric boundary in our formulation.

The fractional speed-up ratio at hill top (HT) is given in Fig. 6.9. The profiles at HT

show little difference among the three meshes. This is consistent with the same observation
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for the wind profiles at the reference site. The only significant difference is below 20 m. In

this particular case, because the complex terrain is immersed and of fixed position in the

domain, the IB node ended up being closer to the terrain on the coarsest mesh. At sequent

refinements the IB node moved away from the surface for Mesh 2 and Mesh 3, producing a

counter-intuitive result of better prediction on a coarser mesh. Attention must be given to

details such as this if prediction near the surface is of importance.

Figure 6.2: Askervein Hill elevation map. The lines designated A and AA are the sampling
locations for comparison to the actual Askervein Hill field experiment. The large spheres
represent locations designated hill top (HT) and centre point (CP) during the measurement
campaign. The arrow indicates mean flow direction as well as positive x-direction.

6.6 Bolund Hill Full Scale

Bolund Hill is a coastal approximately 12-meter-high hill located in Denmark. It was the

focus of a field study (Berg et al., 2011) followed by a blind evaluation of computer models

(Bechmann et al., 2011). The hill is completely surrounded by water at certain times of the

year and features a steep escarpment which makes it a challenging case for wind solvers as

seen by the large span of results in the blind evaluation study. IB methods have previously

been applied to Bolund Hill in RANS (Jafari et al., 2012) and LES simulations (Diebold

et al., 2013). Jafari et al. (2012) used the approach of Fadlun et al. (2000) to enforce the
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Figure 6.3: Fractional speedup sensitivity to RANS-LES transition heights along the AA
Line at 10 m above ground level. The Askervein Hill field data is from Walmsley and Taylor
(1996).

no-slip condition at the surface while using wall functions to reduce computational expense

in the vicinity of the surface. Diebold et al. (2013) used the approach of Chester et al. (2007)

and imposed surface stresses derived from the logarithmic law of a rough wall. The study

found sensitivity to using only one roughness length rather than two roughness lengths for

land and water. Conan et al. (2016) performed a comparison between a wind tunnel, an LES

with wall functions Vuorinen et al. (2015) and the field experiment of Bolund Hill. Both

Diebold et al. (2013) and Conan et al. (2016) found sources of error in the turbulent flow

close to the ground that did not significantly affect the flow away from the surface. Along

with the wind tunnel experiment of Conan et al. (2016), Bolund Hill was also the ject of

a wind tunnel experiment by Yeow et al. (2015), which we use to assess our simulations in

addition to the field data.

We use a computational domain of 1533.0 m × 765.0 m × 127.0 m in the streamwise,

horizontal spanwise and vertical directions to simulate actual-scale Bolund Hill. We tested

three grid resolutions given in Tab. 6.2. The finest mesh used gave resolution of 2.0 m × 2.0

m× 0.5 m, in the x, y, z directions, respectively. The RANS-LES blending height, hB, was set

to 5.3 m to maintain hB(2∆)−1 > 1 with all three meshes as recommended in Senocak et al.
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Figure 6.4: Fractional speedup sensitivity to RANS-LES transition heights along the A Line
at 10 m above ground level. The Askervein Hill field data is from Walmsley and Taylor
(1996).

(2007). The boundary conditions are identical to the Askervein Hill setup except that the

shift for the periodic boundary conditions (Munters et al., 2016a) was set to 150 m and the

incoming mass flow rate was approximately 1.26×106 kg s−1. The aerodynamic roughness

length, z0, was set to 0.0006 m. We chose to compare with Line B for the 270-degree wind

direction as described in Berg et al. (2011) and shown in Fig. 6.10.

Figure 6.11 shows streamlines of instantaneous velocity over the hill. By using the mean

horizontal wind speed at the location for the reference mast designated M0 in Berg et al.

(2011), we calculated the fractional speedup ratio along line B, consisting of masts M7, M6,

M3, and M8 in the field study, for each mesh. Figure 6.12 compares these results to the field

data from Berg et al. (2011). Overall, the sensitivity between the different mesh resolutions

is minor except for near the surface at M6. The regions of attached flow where M7 and M3

reside show very good agreement among all three meshes. As we discuss later, the IB results

in Fig. 6.13 show a better agreement with the wind and water tunnel data than they do with

field study measurements. This is not unexpected, because it is much easier to represent

the conditions in a laboratory experiment than in a field study. Also, our single roughness

length is more similar to a laboratory setting than the field experiment.
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Figure 6.5: Visualization of the flow around Askervein Hill. Horizontal wind speed given in
units of m s−1. Visualization is aligned with mean flow direction, left to right and is only a
set of the entire domain, with a 3000 m ruler given for reference.

The mast M6 lies directly behind the escarpment making it the most uncertain to capture,

as evidenced by the spread in benchmark data and disagreement between field and laboratory

experiments as shown in Fig. 6.13. As observed in the mesh sensitivity results for the

Askervein Hill case, the placement of the surface relative to the Cartesian mesh can influence

results obtained from the first few grid points off of the surface. At some locations, the first

off-surface grid points show a slight increase in fractional speed-up ratio. At M6 for example,

the coarser resolutions of Mesh 1 and Mesh 2 have grid points closer to the surface than Mesh

3 and produce different behavior than is expected. M6 is in an area of flow separation and the

attached flow assumptions affect the accuracy in this region, which has also been observed

on terrain-fitted approaches (Lopes et al., 2007).

6.7 Bolund Hill Wind Tunnel

The wind tunnel experiment of Yeow et al. (2015) recreated the Bolund Hill on a 1:115 scale.

An elevation map is shown in Fig. 6.10. The reported Reynolds number was 4.15 × 105

based on the hill height. We generate a computational domain that is the same size as the

wind tunnel experiment at 10.5 m × 2.2 m × 2.2 m in the streamwise, horizontal spanwise,
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Figure 6.6: Fractional speedup sensitivity to mesh resolution along the AA Line at 10 m
above ground level. Mesh 1, 2, and 3 refer to the three meshes in Tab. 6.2. The Askervein
Hill field data is from Walmsley and Taylor (1996).

and vertical directions with a grid resolution of 1025 × 193 × 513 in the same respective

directions. The mesh resolution used to replicate the wind tunnel study corresponds to 1.2

m × 1.2 m × 0.5 m when scaled to the actual hill size.

The IB method was applied to the geometry with an aerodynamic surface roughness of

z0 = 1.02 × 10−5 (Yeow et al., 2015). The top wall of the wind tunnel was modelled as a

smooth-surface, wall-shear-stress boundary conditions via the Schumann-Grötzbach model

Schumann (1975); Grötzbach (1987) with standard values for the smooth-wall log-law with

von Kármán constant being 0.41 and log-law intercept constant being 5.2 Pope (2000). We

applied the same lateral boundary conditions we did for Askervein Hill but with periodic shift

of 0.4 m and target mass flow rate of 38.39 kg s−1. While not shown in this paper, we did test

the sensitivity in fractional speedup ratios using wall models for the spanwise boundaries

and standard periodic boundary conditions for the streamwise direction. The results did

not show significant difference in fractional speedup with the boundary conditions presented

in this study, and we chose the shifted periodic boundary conditions for the decorrelation

advantage. The RANS-LES blending height, hB, was set to 0.0217 m, which is equivalent to

2.5 m when scaled to the actual hill size.
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Figure 6.7: Fractional speedup sensitivity to mesh resolution along the A Line at 10 m above
ground level. Mesh 1, 2, and 3 refer to the three meshes in Tab. 6.2. The Askervein Hill
field data is from Walmsley and Taylor (1996).

Figure 6.13 shows the fractional speed-up ratios compared to the experimental results

of Yeow et al. (2015), the field measurement campaign Berg et al. (2011) and the water

tunnel experiment Bechmann et al. (2011). The reference location corresponds to the same

location used in the study by Yeow et al. (2015). The mast locations correspond to those

shown in Fig. 6.10. Mast M7 is captured well by the IB method, agreeing well with all

three benchmarks. The most challenging mast, M6, is directly behind the escarpment of

the hill. The challenge is evident as all three benchmark cases each have different fractional

speed-up ratios near the surface at M6. Yeow et al. (2015) attributes this to the intermittent

recirculation found after the escarpment as well as the ratio of the boundary layer height

to the hill height being different than at full scale. The IB method falls between the field

study and the wind tunnel near the surface. Good agreement with all three benchmarks is

achieved further away from the surface where the benchmark results collapse.

Comparing the IB method results for the wind-tunnel scale and the actual hill scale

shows some differences. We also note the differences among laboratory and field experiments,

highlighting the challenges to validate complex terrain wind simulations. Our results for the

actual hill scale and the laboratory scale show differences as well. One contributing factor is
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Figure 6.8: Mean velocity at the reference site (RS). Mesh 1, 2, and 3 refer to the three
meshes in Tab. 6.2. The Askervein Hill field data is from Walmsley and Taylor (1996). The
log-law is plotted with Eq. 6.3 with z0 = 0.03 m and u∗ = 0.654 m s−1.

the top boundary condition is different between those two simulations (i.e. zero-shear-wall

vs. wall-stress boundary condition). Another major factor, perhaps the most influential, is

the slightly finer mesh resolution (when scaled to actual size) in our wind tunnel simulation.

As was observed in Figs. 6.6 and 6.7, the finer mesh produced better agreement in the wake

of the hill, which we again observe in Fig. 6.13 at M8 compared to Fig. 6.12. Reynolds

number and incoming flow profile also differ between actual hill scale and laboratory scale

simulations.

6.8 Summary and Conclusions

We investigated the use of a direct-forcing immersed boundary method to perform LES of

neutrally stratified turbulent winds over complex terrain. In our approach we reconstructed

the tangential velocity using a rough-wall logarithmic wind profile. We reconstructed the

normal component of the velocity using a linear interpolation to enforce the impermeabil-

ity condition. We adopted a near-surface eddy-viscosity model based on the logarithmic
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Figure 6.9: Fractional speedup sensitivity to different meshes at the hill top (HT). Mesh 1, 2,
and 3 refer to the three meshes in Tab. 6.2. The Askervein Hill field data is from Walmsley
and Taylor (1996).

wind profile and used a linear reconstruction on the eddy viscosity to produce the expected

turbulent stresses. Consistent adoption of the logarithmic wind assumption in the velocity

reconstruction and in the definition of the eddy viscosity was paramount to the success of the

simulations. Through this consistent formulation, we were able to retain ease of computer

implementation of the direct-forcing IB method.

We simulated wind fields over Askervein Hill and Bolund Hill to validate our approach.

The current IB method works well in attached flows when terrain features are adequately

resolved. In our study the vertical mesh resolution was about 4.0 m for the Askervein Hill

case and 0.5 m for the Bolund Hill case. Results showed minor sensitivity to the RANS-LES

blending height in attached flow regions. Fractional speed-up ratios in regions of separated

flow showed some sensitivity to both mesh resolution and turbulence model parameters. This

is not unexpected as the assumptions behind both the IB method and the near-surface eddy

viscosity model are not intended for flow separation.
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Figure 6.10: Bolund Hill elevation map. The scale is that of the wind tunnel experiment of
Yeow et al. (2015). The measurement locations, represented by the large spheres, are those
used in the field measurement campaign.

The current IB reconstruction scheme and the eddy viscosity model could benefit from

theories applicable to separated flow. Similar conclusions about separated flow have been

made in other LES studies using terrain-fitted approaches (Lopes et al., 2007). Nevertheless,

the current IB methods showed good agreement in fractional speed-up ratios for attached

flow regions, while showing some disagreement in regions with flow separation. In future

work, we intend to extend the current IB framework to study both stable and unstable

stratification over complex terrain.
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Figure 6.11: Streamlines of instantaneous velocity over Bolund Hill at the field study scale.
A triangulated stereolithography (STL) representation of the hill is used for the IB method.

Figure 6.12: Fractional speedup along line B for the 270-degree wind direction in the Bolund
Hill field study. Masts M7, M6, M3, and M8 respectively as described in Berg et al. (2011).
Horizontal dashed line is the RANS-LES blending height. Field data obtained from Berg
et al. (2011).
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Figure 6.13: Fractional speedup comparison at M7, M6, M3, and M8 for Bolund Hill wind
tunnel domain. Wind tunnel data are from the experiment of Yeow et al. (2015); water tunnel
and field data are from Bechmann et al. (2011). Dashed horizontal line is the RANS-LES
blending height.
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CHAPTER 7

A Turbulent Inflow for Large-eddy Simulation Using Stochastic

Buoyancy Perturbations

7.1 Introduction

The essential idea of large-eddy simulation (LES) is to resolve the large scales of turbulence

while modeling the small scales, the separation of scales achieved with a low-pass filtering

operation. For accurate results, the resolved scales of the LES require the correct turbulent

structure and correlations at the boundaries of the domain. The standard periodic boundary

conditions can accomplish this once a flow has reached a developed turbulent state. However,

standard periodic boundary conditions are not desirable as generalized boundary conditions

as periodicity is not applicable to all flows. Inflow and outflow boundary conditions have

much more general applicability but offer a challenge when used in LES. Unlike Reynolds-

averaged Navier-Stokes (RANS), smooth velocity information at the LES inflow does not

work as the flow will need an unreasonable distance to develop into realistic turbulence.

Therefore, the inflow condition for LES needs to be able to generate turbulent flow structure

within a practical distance efficiently. Such an turbulence inflow generation technique is

highly desirable for a broader adoption of LES in engineering applications.

Concerning turbulent boundary layers, perhaps the most basic way to provide accurate

turbulent flow to an LES is to allow a flow to transition from a smooth mean profile to

a fully-developed turbulent flow. As wall-bounded LES is computationally-expensive, the

domain size and mesh resolution requirements would make this basic approach impractical

at higher Reynolds numbers. Therefore, a method to shorten the computational domain by

providing accurate turbulent information at the inflow is an area of active research (Tabor

and Baba-Ahmadi, 2010; Wu, 2017). Turbulent inflow methods fall into two broad categories:

precursor methods and synthetic methods (Tabor and Baba-Ahmadi, 2010). The essential

idea of precursor methods is to fully develop a boundary layer in an auxiliary simulation
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using periodic boundary conditions, then subsequently feed sampled flow field information

from the developed auxiliary simulation into the target simulation. The obvious advantage

is that the inflow boundary condition will have developed turbulent flow field information

but the obvious disadvantage is having extra computational cost (i.e. two domains and data

transfer between them).

Synthetic methods seek to avoid the extra computational cost by synthetically producing

turbulent flow information or accelerating the onset of turbulence at the inflow of the domain.

This is very challenging, more so than imposing small white-noise random perturbations on a

mean profile. In a periodic turbulent channel flow, imposing stochastic white-noise on a mean

profile as an initial will quickly dissipate as the turbulent energy cascade cannot develop, and

the same will happen for a turbulent inflow boundary condition. Initialization of periodic

channel flow needs to be such that large flow structures can trip and engage the energy

cascade. For inflow conditions, correct Reynolds stresses will engage the energy cascade, but

these stress tensors are typically not known a priori for general flows. Synthetic methods

thus require a development fetch before flow exhibits the correct turbulent flow structure and

correlations. The development fetch may add significant cost to a simulation, possibly even

more than an auxiliary domain. Research in synthetic methods aim to reduce the length of

the fetch.

The challenges of turbulent inflows are evident in reviews of the subject. Keating et al.

(2004) evaluated several generation methods and found that turbulent information needs to

contain scales larger than the integral length scale to achieve the turbulent energy cascade.

The recent comprehensive review of Wu (2017) highlights many of the future challenges with

turbulent inflow generation, including the need to develop more robust methods without re-

quiring ad-hoc calibrations. Also highlighted is the need for robust methods for atmospheric

flows with stable or unstable stratification and three-dimensional mean flow as well as high-

Mach-number flows and the related acoustic disturbances caused by inflow techniques.

Lund et al. (1998) proposed an improved precursor method for flat-plate boundary layers
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where the velocity field is sampled several boundary-layer thicknesses downstream in the

precursor simulation. The sampled velocity is rescaled using inner and outer layer scaling

laws before being reintroduced at the inlet to create a spatially-developing boundary layer. In

order to use similarity laws to perform the rescaling, the flow would need to be in equilibrium.

For general flows, this methodology may create a large domain assuming a downstream region

if equilibrium exists.

Klein et al. (2003) applied a digital filtering synthetic approach to normally-distributed

random fluctuations to achieve proper two-point correlations. As two-point correlations are

not known in general cases, the filter coefficients were calculated assuming the two-point

correlations were Gaussian in shape. The purpose of the filter is to have the larger scales

become more prominent in the random fluctuations to have a more natural energy cascade.

di Mare et al. (2006) further investigated the digital filtering approach by finding exact

filter coefficients from known two-point correlations. Better agreement was achieved with

the exact coefficients, however the disadvantage still remained of not knowing the Reynolds

stress tensor a priori.

Jarrin et al. (2006) proposed the synthetic eddy method that creates a box of artificial

eddies of prescribed shape but random sign and position around the inflow area. These

artificial eddies are convected at a constant velocity through the box. The actual velocity

field then has fluctuations imposed on it by a Cholesky decomposition of the vortex field

produced by the synthetic eddies. The method performed well in channel flows and has also

been tested on a variety of flows that transition from upstream Reynolds-averaged Navier-

Stokes (RANS) simulations to LES Jarrin et al. (2009). However, the synthetic eddy method

does not produce divergence-free turbulent fields. Poletto et al. (2013) improved upon this

shortcoming of the original method.

Pamiès et al. (2009) also expanded upon the method of Jarrin et al. (2006) by splitting the

single stochastic signal in the original synthetic eddy method into multiple modes. The idea

was to closer replicate the length and time scales of wall-bounded turbulence with multiple
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modes than is possible with a single mode. The modified synthetic eddy method worked

well when calibrated to a turbulent flat-plate boundary layer.

Most turbulent inflow methods for LES are designed for stationary mean flow direction.

However, growing interest has led to recent proposals for turbulent inflows that accommodate

time-varying mean flow directions. Munters et al. (2016b) proposed a precursor methodology

that rotates the sampling regions of a concurrent precursor simulation (Stevens et al., 2014)

according to a known mean flow direction before feeding the flow field information into

the target simulation. The method was applied as an inflow condition for an LES of an

atmospheric boundary layer flow over an off-shore wind farm, with good agreement in wind

velocity compared to other LES simulations of the same wind farm. The approach has the

limit that if the mean inflow direction varies too drastically, turbulent structures may be

compressed or stretched when fed into the target domain.

Muñoz-Esparza et al. (2014) proposed a turbulent inflow that accelerates the onset of tur-

bulence in neutrally-stratified atmospheric boundary layers by introducing stochastic buoy-

ancy perturbations. The buoyancy is generated by uniformly-random perturbations directly

imposed on the potential temperature field at a uniform frequency. Muñoz-Esparza et al.

(2014) dub the approach the cell perturbation method where perturbations are applied in

cells of 8 × 8 grid points in the horizontal and one grid cell in height. The maximum am-

plitude of the temperature perturbations and the perturbation frequency were optimized in

Muñoz-Esparza et al. (2015) by a single Eckert number and a single convective time scale.

The method agrees well with other synthetic methods and a periodic simulation when used

in a compressible, non-hydrostatic numerical weather prediction model.

The cell perturbation method has shown potential in neutral atmospheric boundary lay-

ers. In this study, we investigate and modify the cell perturbation method for wall-resolved

LES of wall-bounded turbulent flows. These modifications originate from Umphrey and

Senocak (2016), who attempted using the Eckert-number guidance in Muñoz-Esparza et al.

(2015) but found that the optimal value for atmospheric boundary layers did not pertain to



133

an incompressible turbulent channel flow. Umphrey and Senocak (2016) reformulated the

direct application of temperature perturbations as a source term in the temperature trans-

port equation, converting the white-noise perturbations into colored-noise perturbations as

the temperature transport equation is solved. The stochastic noise is colored in the sense

that the LES filter operation will have some effect on the noise. The buoyancy is introduced

through a Boussinesq approximation. The original perturbation cell shape was modified

to have height greater than one grid cell to make the source term effective. Umphrey and

Senocak (2016) referred to the technique as the perturbation box method. We build upon

the perturbation box method by developing a non-dimensional formulation that can be ap-

plied to variety of flows. The improvements to the perturbation box method are tested in

both a turbulent channel flow and turbulent flow over a backward-facing step, showing good

agreement with DNS benchmarks.

7.2 Perturbation Box Technique

In this subsection, we describe the cell perturbation method proposed by Muñoz-Esparza

et al. (2014). We then describe the modifications performed by Umphrey and Senocak

(2016) to the cell perturbation method. Finally, we propose further modifications to the

perturbation box method found in Umphrey and Senocak (2016).

7.2.0.1 Cell Perturbation Method for Atmospheric Flow

The cell perturbation method of Muñoz-Esparza et al. (2014) was applied to neutrally-

stratified atmospheric boundary layers over flat terrain in the Weather Research and Fore-

casting (WRF) model (Skamarock et al., 2008), a compressible, non-hydrostatic numeri-

cal weather prediction model with LES capabilities. The cell perturbation method applies

uniform-random distribution of finite-amplitude perturbations to the temperature field in a

buffer region near the inlet that are continuously updated at a certain frequency. The tem-
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perature perturbations create vertical instabilities through buoyancy effects that transition

rapidly into realistic turbulence within an amplitude range of ±0.5 K. The perturbations

are applied directly to the temperature field as white-noise in cells of 8 × 8 grid points in

the horizontal and one grid cell in the vertical, i.e. horizontal planes of 8 × 8 grid points.

The optimum value of maximum perturbation amplitude and perturbation frequency were

studied in Muñoz-Esparza et al. (2015). The optimal value for perturbation amplitude was

formulated as a perturbation Eckert number given by

Ec =
U2
g

ρcp∆φmax
, (7.1)

where Ug is the geostrophic wind for the atmospheric boundary layer, cp is the specific

heat at constant pressure, and ∆φmax is the maximum perturbation amplitude defined as

(φ− φ0)max where φ0 is the reference temperature. The optimum value was found to be Ec =

0.16, which gave rapid transition to turbulence that did not dissipate or create unrealistically

long flow structures. The recommendation for perturbation frequency was a dimensionless

time scale set to unity that took into account the time the mean flow is convected through

a cell by the weakest velocity,

tpU1

dc
= 1, (7.2)

where tp is the perturbation update interval, U1 is the velocity at the first grid point off of

the surface, and dc is the diagonal of the 8 × 8 perturbation cell given by dc =
√

2nc∆x,

where nc is the number of grid points on a perturbation cell side and ∆x is the mesh spacing.

7.2.0.2 Perturbation Box Technique for Wall-bounded Flows

Umphrey (2015) and Umphrey and Senocak (2016) attempted adopting the cell perturba-

tion method for incompressible, turbulent channel flow at Reτ = 395 by adding a Boussinesq

approximation for buoyancy into the governing momentum equations. Using the bulk veloc-
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ity in the perturbation Eckert number in Eq. 7.1 with a value of 0.16, the performance of

the cell perturbation method was not adequate in the channel flow. An Eckert number of

very small magnitude was needed. However, values that improved the first-order moments

created more disagreement among the second-order moments and no optimal Eckert number

could be found.

As the Eckert number does not appear to be an applicable non-dimensional number for

turbulent channel flow, Umphrey and Senocak (2016) reformulated the maximum pertur-

bation amplitude as a small fraction of the reference temperature. Umphrey and Senocak

(2016) also formulated the temperature perturbations as a source term in the temperature

transport equation rather than directly applying the perturbations to the temperature field.

Due to the an implicit filtering operation, the white-noise perturbations of the cell pertur-

bation method then became colored-noise perturbations. The noise is colored in the sense

that the LES filter operation and the numerical solution of a transport equation mean the

noise is no longer white. The horizontal planes of single-grid-cell height in the cell perturba-

tion method then became volumes containing more than a single grid cell in height to make

the source term effective, and the method was referred to as the perturbation box method.

The value of the temperature perturbation is constant in a perturbation box just like in a

perturbation cell, the difference being that more than one grid is contained in the vertical

direction with the perturbation box method. The maximum perturbation amplitude, ∆φmax,

was specified as a constant value that was a fraction of the reference temperature. The per-

formance was better than with the Eckert number cell perturbation method as second-order

moments exhibited a consistent response to parameter tuning, which was not the case with

the cell perturbation method. While Umphrey and Senocak (2016) found better response

characteristics, the technique was not generalized to work with other flows and improvements

in performance could still be made.

Wall-bounded turbulence has length and time scales varying with distance from the wall

Pope (2000). Therefore in this study, we propose a formulation that adjusts the perturbation
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amplitude and perturbation frequency based on the incoming mean velocity profile. Before

presenting these formulations, we first discuss the sizing of the perturbation boxes. As

shown in Keating et al. (2004), a proper turbulent cascade is achieved when turbulent scales

larger than four times the integral length scale are generated by the turbulent inflow. Our

proposition is to size the box height such that they are larger than the integral length scale

but similar in scale and order of magnitude. Larger boxes may create large motions that

take a significant development fetch to breakdown non-turbulent vortices, so we rely on the

combinations of multiple boxes to create the larger vortical structures. The idea is that

the large energy-containing range and the larger length scales in the inertial subrange are

energized through the large buoyant motions. Therefore, we recommend sizing the wall-

normal height of the box, HPB, to 0.125 δ, where δ is the boundary-layer height at the inlet

or the channel half-height. The reasoning is grounded in a discussion in Pope (2000, pg

240-42) explaining the demarcation between the energy-containing scales and the inertial

subrange as one-sixth of the longitudinal integral length scale at high Reynolds numbers.

Our suggested HPB should fall within the lower range of the energy-containing scales and the

combination of boxes should create necessary large-scale motions observed in Keating et al.

(2004). We recommend maintaining a square shape in the horizontal directions, or close

to a square shape, to preserve the advantage of being able to have time-varying mean flow

directions with this method. To introduce some degree of anisotropy into the perturbations,

we suggest 2HPB for the length, LPB, and width, WPB, of the perturbation boxes. Muñoz-

Esparza et al. (2015) used three perturbation cells in the inlet-normal direction. We adopt

the same number perturbation boxes in the inlet-normal direction.

We propose to decide on the perturbation amplitude and perturbation frequency based

on the incoming mean velocity profile while attempting to maintain simplicity in the method.

For the amplitude, we propose a perturbation Richardson number, RiPB, formulation as the

definition includes the buoyancy and mean shear. The bulk Richardson number to determine
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the maximum perturbation amplitude is

RiPB =
gβ∆φmaxHPB

〈U(z)〉2PB
, (7.3)

where g is the gravitational constant, β is the thermal expansion coefficient, and 〈U(z)〉PB is

the incoming mean velocity profile averaged to the center of the perturbation box. Note that

given a constant RiPB value, ∆φmax will vary with distance from the wall unlike previous

approaches that used a uniform maximum amplitude for the entire perturbation zone. For

the perturbation frequency, we adopt the same form of time scale given in Eq. 7.2 and set

it to unity, but replace the velocity with 〈U(z)〉PB resulting in

tp 〈U(z)〉PB
dc

= 1. (7.4)

For this study, dc = LPB. With this perturbation frequency, the update time will vary with

wall normal distance, albeit the update time will be largest in the first off-wall perturbation

box. While not coinciding with physical turbulent time scales, our proposition is to update

the perturbation amplitude within a box once the previous perturbation has been convected

through the streamwise length of the box. Note, Umphrey and Senocak (2016) formulated

the update frequency in the same manner.

A plan view of the computational domain for the perturbation box method is sketched in

Fig. 7.1. The perturbation zone was offset five grid cells from the inlet where a mean velocity

profile is prescribed. To ensure that the buoyancy effects do not appear in the target domain,

the Boussinesq approximation was removed from the momentum equations 6 LPB after the

initial offset. The region where the Boussinesq approximation was present is referred to as

the buoyant region in Fig. 7.1. To ensure the global energy balance was not disrupted, all

temperature perturbations were uniformly shifted every time step such that integration of

the buoyant forces leads to thermal energy input. In this study, we used the properties of

air at a reference temperature of φ0 = 293 K. As an ideal gas, β = φ−10 .
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Figure 7.1: Plan-view sketch of the computational domain for the perturbation box tech-
nique. y-direction is orthogonal to x and z in the sketch.

7.3 Numerical Formulation

We solve the filtered Navier-Stokes equations for incompressible flows, starting with the

continuity equation,

∂uj
∂xj

= 0, (7.5)

and the momentum equations,

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − τij

)
+ gβ

(
φ− φ0

)
δi3, (7.6)

where δ is the Kronecker delta in this equation, the strain rate is defined as,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (7.7)

and the residual Reynolds stresses are defined as,

τij = uiuj − uiuj. (7.8)
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We also solve a temperature transport equation,

∂φ

∂t
+

∂

∂xj

(
φuj
)

=
∂

∂xj

(
Γ
∂φ

∂xj
+ τφj

)
+ φPB, (7.9)

where the residual turbulent heat flux is defined as,

τφj = φuj − φuj, (7.10)

and φPB is the source term create by the perturbation box method.

The governing equations are solved using a GPU-accelerated, three dimensional incom-

pressible flow solver (Thibault and Senocak, 2012; Jacobsen and Senocak, 2013; DeLeon

et al., 2013; Umphrey et al., 2017). The code uses the projection algorithm (Chorin, 1968)

on directionally-uniform Cartesian grids. The finite-difference schemes used were second-

order central differences for spatial derivatives in the momentum equation and the diffusion

term in Eq. 7.9, a first-order upwind difference for the convective term in Eq. 7.9, and a

second-order Adams-Bashforth scheme for time advancement. The pressure Poisson equa-

tion is solved by an amalgamated parallel 3D geometric multigrid solver specifically designed

for GPU clusters (Jacobsen and Senocak, 2011). Turbulence closure of the momentum equa-

tions is achieved using the localized Lagrangian dynamic Smagorinsky eddy viscosity model

Meneveau et al. (1996) for LES. The sub-grid-scale (SGS) Reynolds stresses become

τij = −2νtSij = −2 (CS∆)2 |S|Sij, (7.11)

where the Smagorinsky model coefficient, CS, is calculated through the Lagrangian dynamic

procedure and the filter width, ∆, is set to the cube root of the grid cell volume. Turbu-

lence closure for the energy equation is accomplished using a simple definition for turbulent
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Figure 7.2: A wall-normal layer of the streamwise velocity component in the Reτ = 395
channel flow located at y/δ ≈ 0.25. The perturbation box method corresponds to Ri =
0.042 and HPB = 0.125 δ. Streamwise velocity is normalized by bulk velocity.

diffusivity of

τφj = Γt
∂φ

∂xj
=

νt
Prt

∂φ

∂xj
, (7.12)

where Prt is a turbulent Prandtl number set to 0.85.

7.4 Channel Flow

In this subsection, we apply the perturbation box method described in § 7.2.0.2 to a turbulent

channel flow at Reτ = 395. The entire computational domain was 6πδ× 2 δ × πδ in the

streamwise, wall-normal, and spanwise directions, respectively, where δ is the channel half-

height. The target domain to gather statistics was 3πδ× 2 δ × πδ and was placed such that

30 grid cells were between the downstream end of the target domain and the outlet (see

Fig. 7.1). A directionally-uniform Cartesian grid of size 641 × 257 × 129 was used, placing

the first off-wall grid point at y+ = 1.5. A mean velocity profile obtained from the direct

numerical simulation (DNS) of Moser et al. (1999) was imposed at the inlet and the outlet

was a convective type using the bulk velocity as the characteristic velocity scale. Spanwise

boundary conditions were periodic and the no-slip condition was enforced at the walls. The

simulation was allowed to develop for 13 convective time units, Lx/Ubulk, from a quiescent

field and turbulent statistics were sampled for 17 convective time units thereafter.
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As discussed in § 7.2.0.2, HPB = 0.125 δ and LPB = WPB ≈ 2 HPB, where LPB and WPB

are equal but slightly adjusted such that dividing the spanwise dimension by WPB results

in an integer value. After a systematic sensitivity analysis(DeLeon and Senocak, 2017), we

found that RiPB = 0.042 gave good agreement with the DNS benchmark. A visualization

of the developing channel flow is given in Fig. 7.2 under these criteria. The volumetric

buoyancy perturbations are observed as faded boxes near the inlet as they perturb the flow

in the wall-normal direction and subsequently trigger the formation of three-dimensional

vortices. Once the turbulent energy cascade begins, the vortices start to break down into

realistic turbulence.

(a) (b)

Figure 7.3: Perturbation box method sensitivity to RiPB in Reτ = 395 channel flow. (a) is
the mean velocity and (b) is the root-mean-square of the turbulent fluctuations.

The mean velocity profile produced from RiPB of 0.037, 0.042, and 0.047 are presented

in Fig. 7.3a. All three RiPB showed little to no sensitivity below y+ ≈ = 80. Past y+ ≈

= 80, sensitivity to RiPB is observed with an increasing velocity deficit at the core as RiPB

increases. RiPB = 0.037 performs best regarding mean velocity. Figure 7.3b shows the

root-mean-squares of the turbulent fluctuations with the same set of RiPB. Overall, good

agreement is achieved with the spanwise and wall-normal components. The streamwise
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Figure 7.4: Shear stress sensitivity to RiPB in Reτ = 395 channel flow. Profile labeled
modeled includes viscous shear stress.

component was captured well near the wall but the turbulence intensity falls short of the

DNS in the core region, perhaps due to insufficient grid resolution. Also in the channel core,

the fluctuation intensities increase with increasing RiPB. Near the wall, good agreement is

achieved by all three RiPB but RiPB = 0.042 shows the best agreement among all three

components in Fig. 7.3b, particularly with the streamwise intensity below y / δ ≈ 0.3.

Figure 7.4 shows both the resolved and modeled shear stresses. RiPB = 0.047 clearly shows

the best agreement with the DNS benchmark regarding the resolved Reynolds shear stress.

One possible explanation is that the increased buoyancy perturbations create an ‘artificial’

turbulence production effect that transfers too much energy from the mean flow to the

fluctuations. Hence, the decreased mean velocity in Fig. 7.3a with RiPB = 0.047. However,

too small of buoyancy perturbations tends to not distribute the correct amount of energy

to each of the components. Thus, we observe good agreement with mean velocity but too

high Reynolds shear stresses and too low Reynolds normal stresses. A larger domain with a

longer development fetch will most likely form the correct turbulent flow structure with the

given buoyancy perturbations but the goal of synthetic methods is to reduce the required

development length.
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(a) (b)

Figure 7.5: Perturbation box method sensitivity to HPB in Reτ = 395 channel flow using
RiPB = 0.042. (a) mean velocity (b) root-mean-square of the turbulent fluctuations

To gain a sense of the sensitivity varying perturbation-box size, we performed simulations

with HPB = 0.1 δ and HPB = 0.167 δ. Judging from Figs. 7.3 and 7.4, RiPB = 0.042 had the

best balance in agreement among the mean velocity and Reynolds stresses and use that value

here. The same relation of LPB = WPB ≈ 2 HPB in the RiPB sensitivity study is kept as well.

Figure 7.5a shows the effect of altering the box size. Decreasing HPB has a very similar effect

as decreasing RiPB on the mean velocity. Again, the larger buoyancy perturbations could

create an artificial production-term effect by transferring too much energy away from the

mean velocity as the large vortical structures act against the mean velocity gradients. This

hypothesis is reinforced by Fig. 7.5b as the larger perturbation box size exhibits a drastic

increase in turbulent intensities relative to the baseline while the smaller perturbation box

size produces too low of intensities. This means that too large of perturbation sizes will lead

to very large waves in the flow, possibly requiring unreasonably long distances for realistic

turbulence to develop. If the perturbations are too small, then there will not be enough

production of turbulent kinetic energy.

Another objective is the reduction of the development fetch (see Fig. 7.1). For the
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aforementioned perturbation box sizes, the development fetches were 10.52 δ, 10.77 δ, and

10.92 δ for HPB = 0.1 δ, HPB = 0.125 δ, and HPB = 0.167 δ, respectively. We note that

these numbers are not the exact lengths needed to obtain realistic turbulence. However, in

the case of RiPB = 0.042 with HPB = 0.125 δ, the exact length to fully-developed turbulent

channel flow may not be that much greater than 10.77 δ. For reference, Poletto et al. (2013)

was able to recover the streamwise normal stress in approximately 3.6 δ and the wall-normal

stress in approximately 20 δ. Our hypothesis is that further optimization of the perturbation

box method can lead to shorter development fetches.

7.5 Backward-facing Step

Applicability to a variety of flows is desirable for a turbulent inflow generation technique.

We tested the same perturbation box parameters in §7.4 to a turbulent boundary-layer flow

experiencing a sudden expansion when flowing over a backward-facing step. We compare

to the Reh = 5100 DNS results of Le et al. (1997), where Reh is based on the freestream

velocity, U0, and h. Our domain is the same as in the DNS benchmark except with a

smaller spanwise direction such that the domain size is 30 h × 6 h × 4 h, h being the step

height, in the streamwise, wall-normal, and spanwise directions, respectively. The Cartesian

resolution was 513 × 513 × 65. The step expansion was located at 10 h from the inlet. A

zero-shear wall was applied to the top boundary while periodic boundary conditions were

applied to the homogeneous spanwise direction. A convective outlet was used opposite the

perturbation box inflow with a characteristic velocity equal to the U0 scaled by the expansion

ratio of 1.2. A mean profile from the flat-plate boundary-layer DNS of (Spalart, 1988)

was imposed at the inlet corresponding to Reθ = 670 (θ being the momentum thickness).

The bottom wall boundary conditions were imposed with an immersed boundary method

using linear reconstruction schemes (Mohd-Yusof, 1997; Fadlun et al., 2000). To capture

the large separation region accurately, the first off-wall grid point was placed at y+ = 0.3

(normalization by viscous scales determined from the incoming mean profile of the Reθ =
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670 boundary layer).

The incoming turbulent boundary layer height can be expected to grow over a 10 h

distance. The perturbation box method produces realistic turbulence after a development

fetch but the question regarding a spatially-developing turbulent boundary layer is how far

from the wall does the flow need to experience buoyancy perturbations to achieve the correct

turbulent structure at the expansion? Therefore, two perturbation box heights were tested.

The first height, HPB,1, was 0.125 δ where δ is the boundary layer height based on the mean

velocity profile at the inlet, where δ is 0.99 U0 or δ+ = 0.99 U+ in nondimensional form.

From nondimensional plots of mean velocity in Reθ = 670 turbulent boundary layer flow

(Spalart, 1988), the nondimensional height corresponding to 0.99 U+ would be y+ ≈ 273.

The second height, HPB,2, was 0.125 × 1.2 h, which was the boundary layer height reported

in Le et al. (1997). There is approximately a 10% difference between the two heights. This

leaves approximately 8.90 h as a development fetch before the expansion. Based on results

from the channel flow, RiPB = 0.042 showed the best balance between mean velocity and

turbulent statistics. RiPB = 0.047 could have been used as well but we opted to use RiPB

= 0.042 below the chosen heights, i.e. δ and 1.2 h. To maintain the freestream flow, we do

not apply perturbation above the two respective heights.

Figure 7.6 is a snapshot of instantaneous streamwise velocity using RiPB = 0.042 and

HPB,1. The turbulence generates but does not seem to reach a realistic state before the step.

Figure 7.7 shows the mean streamwise velocity at various streamwise locations in the domain

and shows good agreement with the DNS benchmark with both perturbation box heights.

The recirculation is captured very well in the mean sense. There are some overshoots in the

streamwise velocity near y / δ ≈ 1.5 after the step and the profile has some disagreement with

the DNS before the step is reached. Figure 7.8 shows the second-order moments at the same

streamwise locations. Overall, there is very little sensitivity to the perturbation box heights

except for the spanwise and wall-normal turbulent intensities before the step. This indicates

that the perturbation box size may not be a major factor, although the difference was only
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10%. The second-order moments before the step indicate that the development fetch was not

adequate prior to the expansion. As observed in the channel flow, the streamwise turbulence

intensity is underestimated relative to the DNS more so than the spanwise or wall-normal

intensities. The Reynolds shear stress before the step shows good agreement. Regardless, the

streamwise and spanwise intensities show good agreement below y / δ ≈ 1.25 after the step,

and the wall-normal and Reynolds shear stress show good agreement for the entire domain

height after the step. Possible explanations for the streamwise and spanwise discrepancies

in the region between y / δ ≈ 1.25 and 2.25 could be attributed to the way the perturbation

box method generates the turbulence at the top of the boundary layer and the interaction

of the dynamic SGS model with the generated vortices that have yet to breakdown in the

upper regions of the incoming turbulent boundary layer.

Figure 7.6: Instantaneous streamwise velocity generated from the perturbation box turbulent
inflow in flow over a backward-facing step at Reh = 5100 using RiPB = 0.042 and HPB,1.
Velocity normalized by U0.

7.6 Summary and Conclusions

The improved version of the perturbation box turbulent inflow was presented. We proposed

a Richardson number, RiPB, based on the incoming mean velocity profile and perturbation

box height to specify the maximum temperature-perturbation amplitude. The temperature

differences created by applying the stochastic temperature perturbations generate buoyancy

effects near the inflow that accelerate the onset of realistic turbulence. The height of the
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Figure 7.7: Mean streamwise velocity in flow over a backward-facing step at Reh = 5100
using RiPB = 0.042. HPB,1 = 0.125 δ; HPB,2 = 0.125 × 1.2 h

perturbation boxes was suggested to be 0.125 δ and the length and width of the boxes be

0.25 δ, δ being a channel half-height or a turbulent boundary-layer height. The improved

perturbation box method was applied to turbulent channel flow and turbulent boundary-

layer flow over a backward-facing step. The results show the potential of the perturbation

box method as a turbulent inflow generation technique for LES or DNS. For the channel

flow, the mean velocity and the second-order moments showed overall good agreement with

a DNS benchmark. Of the RiPB tested, RiPB = 0.042 was chosen as having the best balance

between accuracy of first and second-order moments, particularly for its performance near

the wall with turbulence intensities and Reynolds shear stress in the core. Using the same

perturbation Richardson number for the backward-facing step, overall good agreement with

a DNS benchmark was achieved among first and second-order moments after the step. The

length before the step was not adequate to achieve good agreement with benchmark results

before the expansion was reached.

The perturbation box method as presented in this study was intended to be a practical,

low-cost model that could be used with a time-varying mean flow direction. The model

does not require knowledge of turbulent moments beyond the first order. The method could

benefit from introducing a recycling-type mechanism to reduce the development length.
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(a) (b)

(c) (d)

Figure 7.8: Second-order moments in flow over a backward-facing step at Reh = 5100 using
RiPB = 0.042. (a) streamwise intensity (b) spanwise intensity (c) wall-normal intensity (d)
Reynolds shear stress. HPB,1 = 0.125 δ; HPB,2 = 0.125 × 1.2 h

Further testing is required for use in wall-modeled LES. Both will be part of future efforts.
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CHAPTER 8

Globally-neutral Buoyancy Perturbations to Generate Turbulent

Winds over Complex Terrain

8.1 Introduction

Large-eddy simulation (LES) is increasingly becoming the turbulence modeling technique of

choice when modeling wind flow in the atmospheric boundary layer (ABL). The increasing

interest in modeling wind farm power production and wind turbine wake dynamics in strat-

ified or neutral conditions is a major driving factor in the numerous LES studies of the ABL

(Mehta et al., 2014). LES presents many challenges, e.g. modeling the residual sub-grid-

scale Reynolds stresses, reducing the near-surface grid resolution requirements, and incoming

lateral boundary conditions. The focus of this paper will be regarding the turbulent inflow

conditions for LES.

The basic idea behind LES is to resolve turbulent eddies larger than a particular scale

while modeling eddies with isotropic behavior that are smaller than said scale, the separation

of scales performed by a low-pass filtering operation. The resolved flow field then has the

correlations and flow structure of the turbulent flow and for LES to perform well with inflow

and outflow boundary conditions, the inflow condition must contain or generate accurate

turbulent correlations for the rest of the LES domain. Turbulent inflow conditions have been

the focus of numerous studies over the past 25 years as discussed in the reviews of Keating

et al. (2004), Tabor and Baba-Ahmadi (2010), and Wu (2017). In particular, Wu (2017)

highlights the need for more robust inflow generation techniques for LES of atmospheric

flows that take into account surface roughness and the three-dimensionality of the mean

wind flow, i.e. time-varying mean flow directions.

Turbulent inflow generation techniques generally fall into two categories: precursor meth-

ods and synthetic methods (Tabor and Baba-Ahmadi, 2010). Precursor methods run an

auxiliary boundary-layer simulation and feeds fully-developed turbulent flow information
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into a target simulation at the boundaries. The obvious advantage is correct turbulent flow

correlations are introduced into the target simulation but the obvious disadvantage is having

to perform an auxiliary simulation. Synthetic methods seek to generate realistic turbulence

in the incoming flow. However, as the turbulent flow correlations are typically not known

in advance for general flows, synthetic methods require a development fetch before accu-

rate turbulence is realized. The potential of synthetic methods is that a development fetch

shorter than a separate auxiliary domain would greatly reduce computational overhead for

generating turbulence.

A common turbulent inflow generation technique for atmospheric-related LES is the pre-

cursor method (Lopes et al., 2007; Diebold et al., 2013; Porté-Agel et al., 2013; Munters

et al., 2016b). The auxiliary domain stage in the precursor method consists of obtaining a

converged solution in a doubly periodic domain driven by either a constant mass flow rate

(Lopes et al., 2007) or a constant mean pressure gradient (Diebold et al., 2013). Often, the

auxiliary domain is stored as an independent database that can be read in by the target

simulation. Stevens et al. (2014) proposed having a concurrent precursor methodology that

transferred the inflow data directly to the target simulation from a synced auxiliary simu-

lation without having to write a database. Munters et al. (2016b) proposed a concurrent

precursor that mapped the auxiliary flow field onto the target domain dependent on mean

flow direction.

A category of precursor methods that can also avoid the creation of inflow databases are

those referred to as recycling methods. Some authors refer to recycling methods as a different

category of turbulent inflows but recycling methods can be used to improve basic precur-

sor methods. The most well-known of the recycling methods is that of Lund et al. (1998)

applied to engineering-type boundary layers. The flow is sampled several boundary-layer

thicknesses downstream of the target and the developed turbulent field is then introduced

at the inlet after being scaled by inner-layer and outer-layer similarity laws to account for

the growing turbulent boundary layer. However, equilibrium is required for similarity laws
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to apply. Mayor et al. (2002) applied the recycling idea to develop homogeneous turbulence

that would then become the inflow condition for an inhomogeneous flow field when regarding

mesoscale internal boundary layers. The original method of Lund et al. (1998) used empir-

ical relationships when applying the scalings between the recycling location and the inflow

which led Araya et al. (2011) to propose using a test plane to determine flow parameters

dynamically.

Most synthetic methods attempt to apply turbulent flow structure directly on the velocity

field to generate turbulence. However, recent wind farm studies have found that applying

mean shear and turbulent fluctuations independently can lead to erroneous results (Mehta

et al., 2014; Park et al., 2014). Regardless, synthetic methods have shown potential. The

synthetic method of Mann (1998) constructs a spectral tensor by applying rapid distortion

theory to linearized Navier-Stokes equations. While turbulence is generated, it may not

necessarily be physical. Regardless, the Mann synthetic method has been used in a variety

of ABL-related studies (Munters et al., 2016b). Xie and Castro (2009) proposed generating

a two-dimensional turbulent plane using digital filters on zero-mean, unit-variance random

data. Using the observation that correlation functions in shear flows follow a decaying

exponential, each two-dimensional plane was correlated with planes at previous time steps

using a decaying exponential weighting function. Good agreement was achieved with wind-

tunnel experiments of urban canopies.

However, the aforementioned synthetic methods, as well as most synthetic methods, rely

on knowing the Reynolds stress tensors or turbulent spectral content in advance. If Reynolds

stresses aren’t known, then time-varying mean flow directions may not be possible. Addi-

tionally, a synthetic method may not be divergence-free depending on the imposition of the

correlations. A synthetic method that avoids these shortcomings is the cell perturbation

method of Muñoz-Esparza et al. (2014) for the Weather and Research Forecasting model

(Skamarock et al., 2008). Stochastic temperature perturbations, update at a certain fre-

quency, are directly imposed as white noise onto planes of the potential temperature field in
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a buffer region near the inlet. Through buoyancy created by the stochastic temperature dif-

ferences, the flow field experiences perturbations that develop into three-dimensional vortices

which will break down into realistic turbulence. The parameters of an Eckert number for

temperature perturbation amplitude and a time scale for the perturbation update frequency

were optimized in Muñoz-Esparza et al. (2015). The method has the advantages requiring

minimal knowledge of the turbulent flow structure and ability to adjust to time-varying mean

flow directions.

Umphrey and Senocak (2016) tested the proposition of Muñoz-Esparza et al. (2015) in a

canonical incompressible turbulent channel flow using a Boussinesq buoyancy approximation

and found that the Eckert number was not the appropriate nondimensional number for that

flow case. Umphrey and Senocak (2016) then proposed the perturbation box method. The

Eckert number guideline for maximum temperature perturbation amplitude was replaced

with a specified uniform maximum temperature perturbation. The direct imposition of

temperature perturbations on horizontal planes were reformulated as volumetric source terms

in a temperature transport equation, converting the white-noise perturbation into colored-

noise perturbation as the low-pass LES filter operation and solution of the transport equation

result in the noise no longer being white. The result was improved but was not formulated in a

general manner that could be applied to various wall-bounded flows. In the turbulent channel

flow study of DeLeon and Senocak (2017), a bulk Richardson number is formulated based on

an incoming mean velocity profile, meaning the temperature perturbation amplitude varies

with distance from a wall.

In this study, we present and explore the formulation in DeLeon and Senocak (2017),

originally derived for channel flows, and apply it to turbulent wind flow over complex ter-

rain. We apply the Richardson-number-based perturbation box method in a wall-modeled

LES with an immersed boundary method for complex terrain. We use the commonly-known

complex terrain benchmarks of Askervein Hill (Walmsley and Taylor, 1996) and Bolund Hill

(Berg et al., 2011) and compare the perturbation box method to a periodic solution and ex-
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perimental data. The focus of the study is to investigate perturbation box sizes and observe

the length of the development fetch. Good agreement is acheived with the perturbaiton box

technique with regard to acceleration of turbulent wind over complex terrain with larger per-

turbation boxes producing larger-scale flow structures that play a significant and necessary

role in the transport of momentum.

8.2 Perturbation Box Technique

Before presenting the perturbation box method, we first discuss the cell perturbation method

of Muñoz-Esparza et al. (2015) that was implemented in the Weather and Research Forecast-

ing numerical weather prediction model(Skamarock et al., 2008). First proposed by Muñoz-

Esparza et al. (2014), the cell perturbation method directly applied uniformally-random,

zero-mean perturbations as white noise to the potential temperature field in a buffer region

near the inlet. The perturbation cells were updated at a certain frequency. The perturba-

tions were applied in horizontal planes of 8 × 8 grid cells with the maximum perturbation

amplitude uniform in all planes. The size of the planes was motivated by the numerical dissi-

pation present in the WRF model(Skamarock et al., 2008). The inflow condition was tested

and compared to the synthetic method of Xie and Castro (2009) in neutral ABL flow over

flat terrain. Muñoz-Esparza et al. (2015) further optimized the perturbation cell method by

formulating a global perturbation Eckert number that governed the maximum perturbation

amplitude and a global perturbation time scale that controlled the update frequency. Every

perturbation cell had the same amplitude and frequency. The perturbation Eckert number

was defined as

EcCP =
U2
g

ρcp∆φmax
, (8.1)

where the subscript CP is for cell perturbation, Ug is the geostrophic wind for the at-

mospheric boundary layer, cp is the specific heat at constant pressure, and ∆φmax is the
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maximum perturbation amplitude. The optimum value was found to be Ec = 0.16, which

gave rapid transition to turbulence that did not dissipate or create unrealistically long flow

structures. The dimensionless time scale was defined as

ΓCP =
tpU1

dc
, (8.2)

where tp is the perturbation update interval, U1 is the velocity at the first grid point off of

the surface, and dc is the diagonal of the 8 × 8 perturbation cell given by dc =
√

2nc∆x,

where nc is the number of grid points contained along a perturbation cell side that were

spaced ∆x apart. The optimum time scale was reported as unity.

Umphrey and Senocak (2016) attempted using the perturbation cell method with EcCP

= 0.16 and ΓCP = 1 in an incompressible turbulent channel flow discovering that the Eck-

ert number needed to be very small in magnitude to work in this flow. The temperature

field was coupled to the momentum field by using a Boussinesq approximation for buoyancy.

Even so, tuning the parameter to agree well with the mean velocity resulted in increased

disagreement with second-order moments. This inconsistency motivated a reformulation of

the perturbation amplitude formulation and introduction of perturbations into the temper-

ature field. Instead, a fraction of the reference temperature, φ0, was used as the maximum

perturbation amplitude. The perturbation was formulated as a source term into the temper-

ature transport equation by dividing the stochastic perturbation by the update frequency,

converting the white-noise operation of direct addition of the perturbations into a colored-

noise operation due to LES filtering and numerical solution of a transport equation. To make

a source term effective, the horizontal planes of one grid cell in height become volumes of

multiple vertical grid cells. The time scale in Eq. 8.2 was also reformulated to replace U1

with U(z) and dc with the streamwise length of the perturbation box. The reformulation

was referred to as the perturbation box method.
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Figure 8.1: Plan-view sketch of the computational domain for the perturbation box tech-
nique. z-direction is orthogonal to x and y in the sketch.

DeLeon and Senocak (2017) advanced the perturbation box method by proposing a non-

dimensional formulation that could be applied to a variety of flows. A sketch of an example

domain is given in Fig. 8.1. The non-dimensional proposition for perturbation amplitude

was the following bulk Richardson number,

RiPB =
gβ∆φmaxHPB

〈U(z)〉2PB
, (8.3)

where g is the gravitational constant, β is the thermal expansion coefficient, and 〈U(z)〉PB
is the incoming mean velocity profile averaged to the center of the perturbation box. This

Richardson number formulation allows the temperature perturbation amplitudes to vary

with distance from a wall, consistent with the behavior of wall-bounded turbulence. The

same dimensionless time scale as in Umphrey and Senocak (2016) was used with 〈U(z)〉PB
and set to unity. When a perturbation is convected fully through the length of the box at

the average velocity at the box center, the box receives a new stochastic perturbation. To

ensure zero thermal energy input, we shift each perturbation amplitude uniformly such that

integration yields a global energy balance and the flow remains neutral. This perturbation

box method was tested in turbulent channel flow and turbulent flow over a backward-facing

step. For engineering flows, we only applied the Boussinesq buoyancy approximation to a

portion near the inflow, twice the streamwise length of the perturbation box buffer zone,

described as the buoyant region in Fig. 8.1. In this study, we adopt this perturbation box
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method as described here. An ABL flow simulation of complex terrain would typically not

remove the momentum-temperature interactions. However, the temperature perturbations

quickly dissipate past the buffer region and would not impact the neutral condition.

8.3 Numerical Formulation

We solve the filtered form of the incompressible Navier-Stokes equations

∂uj
∂xj

= 0, (8.4)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − τij

)
, (8.5)

where the Sij is the strain rate tensor and τij are the filtered Reynolds stresses which are

modeled with an eddy-viscosity assumption as follows

τij = νtSij, (8.6)

νt = l2mix|S|. (8.7)

We also solve a temperature transport equation,

∂φ

∂t
+

∂

∂xj

(
φuj
)

=
∂

∂xj

(
Γ
∂φ

∂xj
+ τφj

)
+ φS, (8.8)

where τφj is the filtered turbulent heat flux and φS is a source term, created by the pertur-

bation box method in this study. The turbulent heat flux is modeled by

τφj =
νt
Prt

∂φ

∂xj
, (8.9)

where Prt is a turbulent Prandtl number set to 0.85.

We use a second-order Adams-Bashforth scheme for time advancement and discretize the

spatial derivatives with a second-order central difference scheme on a directionally-uniform
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Cartesian grid. The temperature equation uses a first-order upwind for the convection term.

The three dimensional incompressible flow solver, for which density is set to unity and the

pressure Poisson equation is solved by a geometric multi-grid method, has been parallelized

for fast computing on a cluster of graphics processing units (Jacobsen and Senocak, 2011;

Thibault and Senocak, 2012; Jacobsen and Senocak, 2013; DeLeon et al., 2013; Umphrey

et al., 2017).

We make use of Reynolds-averaged Navier-Stokes (RANS) to reduce the surface resolution

requirements by using the hybrid RANS-LES model described in Senocak et al. (2007). The

mixing lengths of the LES sub-grid scale (SGS) eddy viscosity model are blended with the

Prandtl mixing length (Prandtl, 1925), such that lmix in Eq. 8.7 becomes

lmix = (1− exp (−h/hB))CS∆ + exp (−h/hB)κh, (8.10)

Note that we blend the length scales directly instead of the squared quantities that was

originally proposed in Senocak et al. (2007). The Smagorinsky coefficient, CS, is computed

using the localized Lagrangian dynamic Smagorinsky SGS model (Meneveau et al., 1996).

In Eq. 8.10, h is the surface-normal distance from the terrain, hB represents the RANS-LES

blending height, and ∆ is the LES filter width defined from the cube root of a grid cell

volume as 3
√

∆x∆y∆z.

For complex terrain boundary conditions, we use a direct-forcing immersed boundary (IB)

method (Mohd-Yusof, 1997; Fadlun et al., 2000; Umphrey et al., 2017). We use the same

procedure found in Umphrey et al. (2017) except we will perform wall-modeled LES rather

than direct numerical simulation, thus requiring an IB reconstruction scheme applicable to

logarithmic mean velocity profiles, i.e. linear reconstruction will give erroneous results. We

adopt the approach of Senocak et al. (2004) that applies a logarithmic reconstruction scheme

to velocity tangent to the surface and a linear reconstruction scheme to the surface-normal

velocity to ensure the impermeability condition is enforced. Eddy viscosity is also linearly
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reconstructed near the surface as the calculation of Sij will result in large errors at the

immersed surface.

8.4 Askervein Hill

Figure 8.2: Askervein Hill elevation map. The lines designated A and AA are the sampling
locations for comparison to the actual Askervein Hill field experiment. The large spheres
represent locations designated hill top (HT) and centre point (CP) during the measurement
campaign. The arrow indicates mean flow direction as well as positive x-direction.

We first apply the perturbation box method to the Askervein Hill case, which was the

focal point of a field measurement campaign in the 1980s (Taylor and Teunissen, 1987;

Mickle et al., 1988; Salmon et al., 1988; Walmsley and Taylor, 1996). The topography is

shown in Fig. 8.2. The hill has been the focus of many LES studies including the hybrid

RANS-LES of Lopes et al. (2007), the Advanced Regional Prediction System (ARPS) (Xue

et al., 2003) LES of Chow and Street (2009), and the Coupled Ocean/Atmosphere Mesoscale

Prediction System (COAMPS R©) (Golaz et al., 2005) LES of Golaz et al. (2009). We compare

the perturbation box method to the field data measurements as well as our own periodic

simulation. The RANS-LES blending height, hB, was set to 16.5 m to maintain the condition,

hB(2∆)−1 > 1, that ensures regions that lack of sufficient resolution for LES are modeled

with RANS instead Senocak et al. (2007).
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Case LPB (m) WPB (m) HPB (m) Boxes in x Boxes in y Boxes in z
Ask1 23 23 12 3 247 84
Ask2 76 76 38 3 76 26
Ask3 123 123 62 3 47 16

Table 8.1: Summary of perturbation box technique parameters used for flow over Askervein
Hill. LPB, WPB, and HPB are the length, width, and height of the perturbation boxes,
respectively.

In our simulations, the domain size for the Askervein simulation was 8218.0 m × 5800.0

m × 1000.0 m in the streamwise (x), horizontal spanwise (y) and vertical (z) directions with

a starting grid resolution of 641 × 513 × 257 in the same respective directions. We use

the terrain map that does not include neighboring hills (Walmsley and Taylor, 1996) and

immersed it such that the surrounding flat surface is located 14.7 m above the bottom of the

domain. As suggested by Taylor and Teunissen (1987), we use an aerodynamic roughness

length, z0, of 0.03 m. The top boundary condition was a zero-shear-stress wall and the terrain

surface boundary conditions are calculated by the IB method described in §8.3. Spanwise

lateral boundary conditions were standard periodic boundary conditions.

For the periodic reference case, the streamwise boundary conditions were the shifted

periodic boundary conditions of Munters et al. (2016a). The shifted periodic boundary

conditions are designed to avoid the spanwise locking of flow structures by shifting the

outflow condition a set distance in the spanwise direction during the periodic recycling. The

end result is shorter domains than are required with standard periodic conditions, because

the flow structures near the boundary become decorrelated. For Askervein Hill, we use a shift

of 1000.0 m for the shifted periodic boundary conditions and drive the flow by dynamically

calculating the driving mean pressure gradient to keep a constant target mass flow rate of

approximately 9.01× 107kg s−1 using the formulation of Benocci and Pinelli (1990).

For the perturbation box method, a mean profile was prescribed at the inlet based on a

neutrally-stable, rough-surface log-law using u∗ = 0.68 m s−1. Note the higher value than

the recommended u∗ = 0.654 (Walmsley and Taylor, 1996) is due to dissipation over the

development fetch. The inlet profile was set to a constant value approximately 850 m above
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the surrounding flat terrain to reduce the numerical stability constraints in our explicit

scheme. Testing with the full log-law extending to the top did not show any sensitivity in

the solution near the surface. The outflow was the convective type with the bulk velocity as

the characteristic velocity. φ0 was set to 293 K. Air was assumed meaning that β = φ−10 in

Eq. 8.3. We focus our study on the effect of perturbation box size, the values and number

of boxes in each respective direction are given in Tab. 8.1. Based on results from DeLeon

and Senocak (2017), we set RiPB = 0.042 and hold this constant for all trials. DeLeon

and Senocak (2017) recommended the perturbation box height, HPB, be approximately one-

eighth of the turbulent boundary layer height and the perturbation box length and width are

twice the height, i.e. LPB = WPB = 2HPB. Regarding the ABL, setting HPB to one-eighth

the boundary layer height would result in very large buoyancy perturbations that would take

a significant development fetch to break down into fine-scale turbulence. Therefore, we seek

perturbation box sizes based on fractions of other length scales. In Lopes et al. (2007), the

Obukhov length of 600 m was used in their analysis. Cases Ask2 and Ask3 in Tab. 8.1 are

approximately one-sixteenth and one-eighth of that Obukhov length scale, respectively. As

the turbulent stresses greatly affect the mean flow in the inner layer, we set the height of

HPB in Case Ask1 to the inner layer height as a physically-small buoyancy perturbation will

break down quickly. The value for the height of the inner layer is also given in Lopes et al.

(2007).

The turbulent eddies generated at 100 m above the flat terrain by each of the perturbation

box dimensions in Tab. 8.1 are shown in Fig. 8.3. Unsurprisingly, the smallest perturbation

boxes break down rapidly into smaller turbulent eddies while the larger boxes takes a much

longer development fetch. Given the current domain, case Ask1 and Ask 2 break down

into realistic turbulence before the wind flows over the hill. Case Ask3 does not, obviously

requiring a longer domain than the one used in the present study. To assess the impact

of the turbulent inflow on the mean flow, we compare results to the case of MF03-D taken

between 1400-1700 BST (British Summer Time = UTC + 1h) on 3 October 1983 (Taylor
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(a) (b)

(c) (d)

Figure 8.3: Visualization of the different perturbation box methods used for the Askervein
Hill case. Horizontal wind speed given in units of m s−1 and is taken at approximately 100
m above the surrounding flat surface. (a) Periodic (b) Case Ask1, HPB = 12 (c) Case Ask2,
HPB = 38 (d) Case Ask3, HPB = 62 (see Tab. 8.1)
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(a) (b)

Figure 8.4: (a) Mean velocity at the reference site (RS). (b) Fractional speedup ratio at hill
top (HT). The rough-surface log-law in (a) is plotted with z0 = 0.03 m and u∗ = 0.654 m s−1.
The insert in (a) is a focus between hagl = 3 m to hagl = 50 m.

and Teunissen, 1985) that is commonly used for near-neutral atmospheric conditions. For

comparison, we use the fractional speed-up ratio (Jackson and Hunt, 1975) to compare LES

results with the experimental benchmark. Fractional speed-up ratio is the horizontal velocity

speed up relative to an undisturbed mean velocity profile,

∆S =
U(hagl)− Uref (z)

Uref (z)
, (8.11)

where hagl and z are both vertical heights above ground level of the terrain except z contains

the global elevation datum.

Figure 8.4 shows the horizontal wind speed at the reference site (RS) and the fractional

speedup ratio at the hill top (HT). Locations RS and HT can be found in Walmsley and Tay-

lor (1996). Given that the inlet was prescribed a larger u∗ value than the recommended value

in Walmsley and Taylor (1996), the mean wind speed at RS produced by the perturbation

box method in Fig. 8.4a agrees well with both the experimental data and the surface-layer
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logarithmic profile for horizontal velocity with z0 = 0.03 m and u∗ = 0.654 m s−1. The

perturbation box method produces better agreement with the neutral-stability log-law than

does the reference periodic simulation. Upon close inspection, the larger perturbation boxes

produces more variation away from the neutrally-stable log-law when hagl < 60 m. Above

60 m, the profiles collapse onto the log-law. The deviation away from the log-law below

60 m could be attributed to the vortices created by the stochastic buoyancy requiring more

development.

The fractional speedup ratio in Fig. 8.4b shows the effect of the flow structure size on

how the flow accelerates over the gentle hill. The two largest perturbation boxes show a

significant impact on the flow acceleration close to the ground at HT. Both the two largest

perturbation box sizes also show the best agreement with the experimental data after a height

of hagl ≈ 15 m, outperforming the periodic reference simulation even though case Ask3 has

not fully developed into realistic turbulence. The smallest perturbation box is drastically

lower in fractional speedup ratio. The size of the flow structures has a significant effect on

the acceleration over the hill most likely due to the transfer of momentum away from the

ground being diminished with the fine-scale turbulent eddies. The larger eddies seem to play

an important role in the momentum transfer and are needed to observe the acceleration of

the experimental data. Note, we do not seek good agreement below the RANS-LES interface

in our hybrid RANS-LES approach as the RANS eddy viscosity will dampen the turbulence

near the surface.

Figures 8.5 and 8.6 show the fractional speedup ratio along the AA and A lines at 10

m above ground level. On the windward side of the hill, both the two largest perturbation

boxes and the periodic simulation show good collapse with minor sensitivity, even though

the largest perturbation box requires a longer development fetch. On the other hand, the

smallest perturbation box, which developed into full turbulence, shows a significantly lower

fractional speedup ratio. This could be due to the missing role large-scale eddies play in flow

over complex terrain. The periodic reference simulation and the two largest perturbation
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Figure 8.5: Fractional speedup ratio along the AA Line at 10 m above ground level.

Figure 8.6: Fractional speedup ratio along the A Line at 10 m above ground level.
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Case LPB (m) WPB (m) HPB (m) Boxes in x Boxes in y Boxes in z
Bol1 4 4 2 3 188 50
Bol2 35 35 17 3 22 7

Table 8.2: Summary of perturbation box technique parameters used for flow over Bolund
Hill. LPB, WPB, and HPB are the length, width, and height of the perturbation boxes,
respectively.

boxes do not show much sensitivity on the leeward side of the hill as seen in Fig. 8.5. The

separation behind the hill along the AA line is not quite captured, but explanation lies with

the attached-flow assumptions in the turbulence model. The leeward side of the A line is

experiences the full shadow of the hill and more flow separation as shown in Fig. 8.3. Thus,

we see large sensitivity on the leeward side of the hill along the A line. Understanding the

sensitivity in the wake of the hill would be of great benefit but such a study would require

a turbulence model more suitable for separated flow, which is outside the scope of the this

study.

8.5 Bolund Hill

We wish to observe the development of turbulence when a finer grid is used and the impact

that smaller-scale structures have on turbulent wind flow over a hill. A terrain benchmark

smaller than Askervein is Bolund Hill, a coastal hill approximately 12 m tall and located in

Denmark. It was the focus of a field study (Berg et al., 2011) followed by a blind evaluation

of computer models (Bechmann et al., 2011). The hill is completely surrounded by water

at certain times of the year and features a steep escarpment which makes it a challenging

case for wind solvers as seen by the large span of results in the blind evaluation study. Two

examples of LES of wind flow over Bolund Hill are Diebold et al. (2013) and Conan et al.

(2016). Both Diebold et al. (2013) and Conan et al. (2016) found that the flow away from

the surface was not significantly affected by errors near the surface.

We use a computational domain of 1533.0 m × 765.0 m × 127.0 m in the streamwise,

horizontal spanwise and vertical directions to simulate Bolund Hill. The surrounding flat
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surface at sea level is immersed at 5.25 m from the bottom of the domain. The RANS-

LES blending height, hB, was set to 2.5 m to maintain hB(2∆)−1 > 1 as recommended by

Senocak et al. (2007). The aerodynamic roughness length, z0, was set to 0.006 m. Note,

this is not the recommended value in Bechmann et al. (2011) nor is it truly representative

of the actual Bolund Hill as two roughness lengths should be used, one for the surrounding

water and another for the short-grass surface of the hill. However, we are only studying the

effect the perturbation box inflow technique has on speedup ratio, so only having a single

roughness should still be indicative of the sensitivity to perturbation box size. The boundary

conditions for the periodic reference and the perturbation box method are mostly identical

to the Askervein Hill simulation. The exceptions are that the shift for the periodic boundary

conditions (Munters et al., 2016a) was set to 150 m and the incoming mass flow rate was

approximately 1.26×106 kg s−1 for the periodic reference case. The perturbation box sizes

are given in Tab. 8.2. Case Bol1 is based on the inner layer height of the Bolund Hill

measurement campaign, reported as ≈ 2 m in Bechmann et al. (2011). Case Bol2 follows the

Obukhov length recommendation found in §8.4. As reported in Bechmann et al. (2011), one

of the criteria to determine if measurements contributed to the neutrally-stratified database

was an Obukhov length greater than 250 m. Let’s say the Obukhov length is 300 m, then the

one-eighth recommendation would result in three perturbation boxes in the vertical given

the vertical height of the domain. Thus, we only pursue the one-sixteenth recommendation,

giving an HPB = 17 m. Again, RiPB is set to 0.042 and air is once again used at 293 K.

We chose to compare with Line B for the 270-degree wind direction as described in

Berg et al. (2011) and shown in Fig. 8.7. Figure 8.8 shows the development of turbulence

from buoyancy perturbations generated by the two perturbation box sizes. The largest of

the perturbation boxes is similar in size to the smallest perturbation box in our Askervein

trials in §8.4. The stochastic buoyancy perturbations developed into turbulence within an

approximate 1000 m fetch. Given that the development region before the hill is less than

1000 m, it is not surprising that the flow has not reached a developed state. Turbulence
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Figure 8.7: Bolund Hill elevation map. The measurement locations, represented by the
spheres, are those used in the field measurement campaign.

is eventually developed, as seen in Fig. 8.8c. The smaller perturbation box breaks down

rapidly into fine-scale turbulent eddies, visualized in Fig. 8.8b.

Figure 8.9 shows the fractional speedup ratios at the four masts, M7, M6, M3, and M8,

shown in Fig. 8.7. Comparison with the reference periodic simulation shows very good

collapse among the periodic simulation and the two perturbation box sizes. The notable

differences are very close to the surface. A similar trend observed in Askervein is the larger

perturbation boxes create a higher acceleration when the wind flows over the hill. Even at

M6 that lies directly behind the escarpment that creates a challenging case for LES, there is

not significant sensitivity between the two perturbation box sizes. The smaller perturbation

box generates a lower wind speed than the larger box at M7 close to the surface. However,

this helps with the flow at M8. Overall, the periodic simulation and the turbulent inflow

technique agree well with the field data.



168

(a) (b)

(c)

Figure 8.8: Visualization of the different perturbation box methods used for the Bolund Hill
case. Horizontal wind speed given in units of m s−1 and is taken at approximately 10 m
above the surrounding flat surface. (a) Periodic (b) Case Bol1, HPB = 2 (c) Case Bol2, HPB

= 17 (see Tab. 8.2)
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Figure 8.9: Fractional speedup ratio along line B for the 270-degree wind direction in the
Bolund Hill field study. Masts M7, M6, M3, and M8 respectively as described in Berg et al.
(2011).
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8.6 Summary and Conclusions

We have presented a perturbation box turbulent inflow generation technique, originally pro-

posed for general engineering flows, applied to complex terrain benchmarks. The perturba-

tion box technique creates colored-noise buoyancy perturbations by introducing stochastic

temperature perturbations as a source term in a filtered temperature transport equation.

The amplitude of the temperature perturbations is determined by a bulk Richardson num-

ber based on the incoming mean velocity and the perturbation box height leading to tem-

perature perturbation amplitudes that vary with distance from the surface. The technique

retains the advantage of accounting for time-varying mean inflow directions while requiring

minimal knowledge of the turbulent flow correlations at the inflow region.

The perturbation box height was determined in two ways during this study: as a fraction

of the Obukhov length and as the height of the inner layer. The smaller perturbation boxes

developed into turbulence much more rapidly than their larger counterparts. However, the

fine-scale structures reduced the acceleration of wind flowing over a hill. Larger turbulent

eddies are required to obtain the necessary acceleration over the hills. Generating only eddies

of the finest scales results in low fractional speedup ratios.

However, the larger perturbation boxes that are capable of generating the larger flow

motions require a much longer development fetch to develop the stochastic buoyancy per-

turbations into realistic turbulence. While the vortices are not realistic turbulence, they do

not have a significant impact on the acceleration of mean velocity over a hill. Second-order

moments would definitely experience a greater impact but such a study would require a

turbulence model suitable for flow separation.
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CHAPTER 9

Dynamic Rating of Overhead Transmission Lines over Complex

Terrain Using a Large-eddy Simulation Paradigm

Phillips, T., DeLeon, R., and Senocak, I. “Dynamic rating of overhead transmission lines

over complex terrain using a large-eddy simulation paradigm.” Renewable Energy, 108:

(2017) pp. 380-389.

9.1 Abstract

Dynamic Line Rating (DLR) enables rating of power line conductors using real-time weather

conditions. Conductors are typically operated based on a conservative static rating that as-

sumes worst case weather conditions to avoid line sagging to unsafe levels. Static ratings

can cause unnecessary congestion on transmission lines. To address this potential issue, a

simulation-based dynamic line rating approach is applied to an area with moderately com-

plex terrain. A micro-scale wind solver — accelerated on multiple graphics processing units

(GPUs) — is deployed to compute wind speed and direction in the vicinity of powerlines.

The wind solver adopts the large-eddy simulation technique and the immersed boundary

method with fine spatial resolutions to improve the accuracy of wind field predictions. Sta-

tistical analysis of simulated winds compare favorably against wind data collected at multiple

weather stations across the testbed area. The simulation data is then used to compute excess

transmission capacity that may not be utilized because of a static rating practice. Our re-

sults show that the present multi-GPU accelerated simulation-based approach — supported

with transient calculation of conductor temperature with high-order schemes — could be

used as a non-intrusive smart-grid technology to increase transmission capacity on existing

lines.
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9.2 Introduction

Investments in renewable energy has been driven by several factors, including energy security

and stability, climate change, and economics. Since 2000, wind energy has been the largest

source of new renewable generation installed in the United States (win, 2015). However,

wind power generation is much more complex than installing wind turbines in windy areas.

Grid integration is a major challenge, many of the best locations for wind farms do not

have access to the needed transmission capacity (of Energy, 2008). Congestion in existing

transmission lines is a growing concern, resulting in inefficiencies for both renewable energy

producers, utilities and balancing authorities (Arroyo et al., 2015). At times, transmission

service providers (TSPs) may not be able to absorb the power generated, therefore, power

production can be curtailed.

Potential sites for wind power generation are usually found in remote open areas that

are away from populated cities, where electricity is needed most. Historically, transmission

systems have been built together with power production installations in order to meet the

electricity demand. For economic reasons they are usually not over-sized, therefore, current

transmission networks in many of these sites may not support additional generation. Many

wind projects have been able to patch into the existing transmission network, however, these

opportunities are shrinking. Further expansion of wind energy may require large investments

in transmission networks, creating an obstacle for cost-effective wind deployment (win, 2015;

Metevosyan, 2005).

Transmission capacity can be increased in several ways. The obvious way is to reinforce

the transmission network with new powerlines. However, this is constrained by the high costs

and legal challenges of building new powerlines (Jorge and Hertwich, 2013). Therefore, TSPs

have focused on innovative solutions that modifies existing network to increase transmission

capacity. Different techniques include prediction of meteorological conditions by means of

deterministic (Hall and Deb, 1988) or probabilistic (Reding, 1994) forecasting methods, and
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adopting the newest innovations in smart-grid real-time monitoring of temperature, sag, tilt,

power, current and weather conditions (Pytlak et al., 2011; Cho et al., 2014; Holyk et al.,

2014). In the case of wind energy integration, monitoring meteorological conditions in real-

time can be very beneficial for both power generation and transmission purposes. Strong

winds needed for wind generation, will also cool down the conductor of local transmission

lines, creating additional capacity, which would enable TSPs to “overload” the line when it

is needed most (Hosek, 2011; Heckenbergerova and Hosek, 2012).

Transmission conductor capacity is limited by its maximum allowable temperature. The

maximum amount of electric current a conductor can transmit before structural damage is

known as ampacity. Currently, ampacity is generally determined using a static line rating

(SLR) methodology. SLR is based on conservative assumptions regarding environmental

conditions, such as high ambient temperature and low wind conditions. These assumptions

were made to avoid lines sagging to unsafe levels. However, they are overly conservative for

areas where wind generation is abundant. Therefore, TSPs are investigating dynamic line

rating (DLR) methods to increase ampacity on existing lines. DLR utilizes real-time environ-

mental conditions to better predict the temperature of the conductor. Deployment of DLR

has the potential to reduce the estimated $60 billion needed in transmission infrastructure

to meet the 20% wind energy by 2030 (of Energy, 2008).

Fernandez et al. (2016) provide a comprehensive review of real-time DLR technologies

that have been developed over the last 30 years, endorsing the potential of DLR for wind

power integration. Commercially available DLR technologies include direct line sag, line

tension, and conductor temperature measurements (Uski-Joutsenvuo et al., 2012). Wind

turbines are increasingly being built in areas of complex terrain, as available sites on flat

terrain is diminishing. In complex terrain elevated positions like hill tops are favorable sites

due to the increased wind speed. However, complex terrain proves to be challenging for

the aforementioned DLR systems. Sag and tension monitoring systems can only inform

TSPs of the average sag or tension measurement over large subsectionalized transmission
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spans, therefore, only the average temperature of the conductor over large subsections can

be known. Direct temperature measurements at a single location may not necessarily repre-

sent the critical span, or the hottest subsection along a conductor. Studies have shown that

conductor temperature can vary spatially by 10–20◦C due to variations in wind speed and

direction (EPRI, 2005; Seppa, 1993; Seppa et al., 2010). Therefore, currently adopted DLR

systems may not be a good solution for determining the real-time transmission capacity in

regions of complex terrain. If implemented, they may potentially lead to severe overestima-

tion of the actual ratings, allowing the conductor to be overloaded and causing degradation

of the line. Adding more monitoring devices could be a solution, however these systems

are typically expensive for wide deployment that is needed to reduce risks to an acceptable

level (Gentle et al., 2012. INL/CON-12-27012). Additionally, implementation of direct DLR

systems can prove to be challenging, as transmission lines need to be de-energized during

installation and regular maintenance. Therefore, a non-intrusive DLR solution is highly

desirable, which also motivates the present study.

In Greenwood et al. (2014) two non-intrusive approaches were compared. One approach

adopted a CFD-based library approach to extract wind speeds and direction along the path of

transmission lines and the other approach used an uncertainty model based on a small num-

ber of weather stations. Greenwood et al. suggested that a more sophisticated wind model

that can accurately capture the time-dependent nature of winds over complex terrain coupled

with uncertainty quantification would be invaluable to expand the DLR concept. Michiorri

et al. (2010) used actual environmental conditions from a limited number of meteorological

stations as input to the steady-state thermal models. An inverse distance interpolation tech-

nique and a power law for wind profile were used to estimate the environmental conditions

at transmission line. A state-estimation algoritmh based on the Monte-Carlo approach was

then used to take into account the uncertainty in data. Michiorri et al identified the source

of errors as the physical models used in their approach, and suggested the use of wind flow

models based on the computational fluid dynamics (CFD) approach.
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With today’s improved wind and weather modeling and high performance computing

capabilities, the use of computer simulations to forecast wind and determine transmission

capacity has emerged as an alternative to intrusive hardware solutions. Short-term wind

forecasting can potentially be a valuable tool for TSPs, enabling conductor temperature

calculations at dense intervals along transmission lines in complex terrain. Michiorri et al.

(2015) reviewed current meteorological forecasting technologies for broadening the adoption

of DLR and particularly drew attention to the current need to improve low wind speed

modeling and turbulence. Michiorri et al. promote the viewpoint of moving from monitoring

technologies to an active management technology where wind forecasting for different time

horizons becomes critical. To this end, our large-eddy simulation approach directly addresses

the need to improve low wind speed modeling in the vicinity of transmission lines.

Meso-scale numerical weather prediction models have long been used to forecast winds

and other meteorological variables, however their application to micro-scale atmospheric

boundary layer flows over complex terrain with a horizontal spatial resolution ranging from

10 to 100m is still an on-going research and far from realizing the forecasting mode. Mesoscale

weather forecasting models typically adopt spatial resolutions on the order of a few kilome-

ters. Results from existing foresting models vary greatly depending on the locations and time

period investigated (David Carvalho and Santos, 2014, 2012; Bhaskar et al., 2010; Negnevit-

sky et al., 2009; Soman et al., 2010). On relatively flat terrain use of mesoscale models may

prove effective, but fine-scale forecasting solutions that can resolve complex terrain features

with horizontal resolution on the order of 10m are needed. For instance micro-scale complex

terrain forecasting models could be used to quantify the stochastic variations in line ratings,

which could then be converted to dynamic constraints as described by Banerjee et al. (2015).

In what follows, we present the equations for dynamic line rating, followed by our mas-

sively parallel micro-scale wind solver to predict wind speed and direction as a function of

time. An actual test area with moderately complex terrain is simulated, and predictions are

compared against available weather station data at multiple locations. Field and simula-
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tion data are then used to compute available ampacity for a dynamic line rating scenario,

demonstrating the potential of the current non-intrusive approach to increase transmission

capacity.

9.3 IEEE Standard 738-2012 Transmission Capacity Calculation

Transmission line capacity is commonly calculated using procedures described either in the

Institute of Electrical and Electronics Engineers (IEEE) 738 Standard (IEEE, 2012) or the

CIGRE Standard (CIGRE, 1992). In this study, we follow the IEEE standard and describe

the salient features of the calculation procedure for clarity.

Temperature of an overhead electrical conductor is a function of its material properties,

weather conditions, and electrical current. The steady-state heat balance is given as

qc + qr = qs + qj, (9.1)

where qc, qr, qs, and qj are the conductor convective heat loss, radiated heat loss, solar heat

gain, and Joule heating, respectively.

Joule heating is calculated using the electric current, I, and conductor resistance, R(Tave),

which is a function of its average temperature, Tave. Joule heating is given as

qj = I2 ·R(Tave). (9.2)

The steady-state thermal rating used to calculate conductor capacity is then expressed as

I =

√
qc + qr − qs
R(Tave)

, (9.3)

where resistance is determined at the maximum permissible conductor temperature from

lookup tables. It is common practice to use this equation under conservative assumptions

for weather conditions, especially for convective heat loss, to rate transmission lines. This
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Figure 9.1: Transient temperature response to a step change in current from 800 to 1200/1300
Amps. Graph adapted from IEEE (2012).

practice, known as the static line rating, often leads to stringent limits, not enabling the

real-time capacity of the line to be utilized.

9.3.1 Dynamic Ratings

The steady-state rating given in Eq. 9.3, is calculated using conservative estimates of weather

conditions. CIGRE (CIGRE Working Group B2.12, 2006) recommends that base ratings

should be calculated with an effective wind speed of 0.6 m/s, an air temperature near the

seasonal maximum (40◦C summer) and a solar radiation of 1,000 W/m2. In reality the

electrical current through the conductor and real-time weather conditions exposed to the

line are constantly changing. In response to these changes, conductor temperature varies

with an associated time scale. Since the temperature of the conductor is what limits its

capacity, we want to track its temperature in real-time. The change in temperature from an

increase in current from 800 to 1,200 and 1,300 Amps is shown by the digitized data (IEEE,

2012) in Fig. 9.1.

Transient response of a conductor’s temperature to changing current and weather condi-
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tions can be modeled as a first-order ordinary differential equation (ODE) expressed as

dTave
dt

=
1

mCp
[qj + qs − qc − qr] , (9.4)

where mCp is the total heat capacity of the conductor, given as

mCp =
∑

miCpi, (9.5)

where mi and Cpi are the mass per unit length of ith conductor material and the specific

heat of ith conductor material, respectively. Therefore, if the electrical current and real-time

conditions are known, the ODE can be solved numerically to calculate real-time temperature

of the conductor. With the use of a wind forecasting model, conductor temperature can

not only be potentially forecast, but it can be done at very dense intervals, which may

not be feasible with current hardware solutions. This would give TSPs an unprecedented

understanding of the current and future state of the transmission lines, allowing for better

efficiency of the transmission and generation network.

The ODE given in Eq. 9.4 represents an initial value problem (IVP). The general form

is expressed as

dy

dt
= f(t, y) (9.6)

over a time interval

a ≤ t ≤ b (9.7)

subject to an initial condition

y(a) = y0. (9.8)

The IEEE Standard 738-2012 does not give a recommended numerical method to solve the

ODE given in Eq. 9.4. However, it does supply a sample computer code as a convenience to

the user. In that sample code, a first-order accurate forward Euler method is used. In the
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standard, it is also pointed out that other numerical methods may well be more appropriate

in certain situations. Additionally, it is noted that time step size be kept small to reduce

numerical errors.

We believe a forward Euler method is too crude for a critical system such as transmis-

sion lines. Therefore we examine the use of a fourth-order accurate Runge-Kutta (RK4)

scheme (Chapra and Canale, 2010) for improved accuracy and computation time. The IEEE

standard states that there seems to be little advantage in using a time step greater than

one second. This may be true when doing a single transient temperature calculation for

demonstration purposes, as done in the IEEE standard. However, we are interested in im-

plementing a real-time dynamic rating in practice, which will likely require many thousands

of these calculations to be performed along the length of transmission lines. Therefore, com-

putational expense may become an issue when using a forward Euler method with small

time steps. An RK4 scheme allow us to assume larger time step sizes while keeping the error

low.

An RK scheme can be written as

yi+1 = yi + φ(ti, yi, h) · h, (9.9)

where φ(ti, yi, h) is called the increment function, which is a representative slope over the

interval h. The following 4th order RK scheme (RK4) is used in this study.

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) · h, (9.10)

where k’s represent slope estimates.

As a test case to compare both numerical methods, we have performed the same 800

to 1,200 step increase in current provided in the IEEE 738 Standard, shown in Fig. 9.1.

A normalized L2-norm is used to quantify the difference between the two methods. The
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Table 9.1: Normalized L2-norm of conductor temperature using a forward Euler and 4th

order Runge-Kutta method. The “exact” values are calculated using the RK4 and a time
step (dt) of 0.01s. The speedup is based of the Euler calculation with a time step of 1s.

L2-norm Speedup

dt(s) RK4 Euler RK4 Euler

1 1.8E-14 1.1E-4 0.3 1
10 9.4E-11 3.4E-3 3.0 10
30 1.3E-8 1.8E-2 9.2 31
60 3.1E-7 5.0E-2 19 61

300 5.1E-4 0.58 93 314
600 1.4E-2 1.8 186 616

1,200 0.52 7.5 367 1,266

normalized L2-norm is given by

‖ x ‖= 1

N

√
x2i , (9.11)

where N is the number of comparisons between the exact and numerical solution and xi is

the difference between them. There is no analytical solution, therefore, a reference value was

used as the exact solution. The exact value was calculated using the RK4 method and a

time step of 0.01 seconds.

The results are shown in Fig. 9.2, and tabulated in Table 1. This test case makes it

clear that care needs to be taken with the selection of a numerical method, the resulting

conductor temperature and computation time can be greatly affected. If a DLR system

is put in place it is critically important that temperature computations can be completed

in near real-time while keeping numerical errors to an acceptable level. Using the RK4

method allows a time step size of 300s over the Euler of 1s, while keeping numerical errors

at the same order of magnitude. This allows calculations to be completed over 90 times

faster, potentially reducing computation time from minutes to seconds. This time could

prove critical for TSP, giving them additional time to make needed transmission decisions.

Therefore, we recommend an RK4 scheme for calculating the temperature of a conductor as

it is easy to implement and there is a clear benefit to it.
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Figure 9.2: Transient conductor temperature solution using a forward Euler method (top)
and a 4th order Runge-Kutta method (bottom) with time steps of 5, 10, and 20 minutes.
The “Exact” value was calculated using the RK4 and a time step of 0.01s. IEEE standard
solution has been digitized.



182

9.4 Massively Parallel Wind Solver

The need for accurate wind modeling , especially at low speeds and over complex terrain,

were mentioned in recent studies (Michiorri et al., 2015; Fernandez et al., 2016). Steady-

state CFD solutions based on Reynolds-averaged Navier-Stokes (RANS) equations may not

capture the unsteady nature of winds over complex terrain. The large-eddy simulation

technique (LES) is inherently unsteady and generally produces better results for separated

flows over complex terrain. However, LES is expensive in terms of computational resources,

because fine spatial resolutions are needed to resolve energetic eddies. On the other hand,

fine resolutions could be beneficial to better monitor the conductor temperature along its

path. The unsteady nature of the wind simulations could also help capture the transient

response of the conductor to establish a reliable line rating technique. To this end, advances

in parallel computing technology can help broaden the adoption of LES technique in practical

problems. Graphics processing units offer a relatively economical solution as a small-footprint

computing platform because of their massively parallel architecture.

In this study, we adopt a multi-graphics-processing-unit-accelerated (multi-GPU), par-

allel wind solver, GIN3D (Thibault and Senocak, 2012; Jacobsen and Senocak, 2013, 2011;

DeLeon et al., 2012, 2013), as an improved solution for wind modeling over complex ter-

rain. Depending on the mesh size, GIN3D has the potential compute winds over arbitrarily

complex terrain faster than real-time. Computational domain size can range from meters

to several kilometers. The computations are accelerated on GPU clusters with a dual-level

parallel implementation that interleaves Message Passing Interface (MPI) with NVIDIA’s

Compute Unified Device Architecture (CUDA). For instance for an area of approximately

6.5km by 5.7km with a spatial resolution of 15m in the horizontal and 8m in the vertical,

simulations can be 2.2. times faster than real-time on four Tesla K20 GPUs. In this study, we

will execute GIN3D by imposing a wind direction inferred from local measurements to assess

potential of a simulation-based DLR approach. Our future goal is to forecast micro-scale
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atmospheric flows over complex terrain with a model-chain approach where lateral boundary

conditions are informed by a mesoscale weather forecasting model.

The large-eddy simulation (LES) technique is used in GIN3D for subgrid-scale turbulence

closure. In LES of atmospheric flows, it is common practice to employ a wall-model due to

the complexity and roughness of terrain and the inadequate resolution in the vicinity of the

surface. In particular we pursue a hybrid Reynolds-averaged Navier-Stokes (RANS) LES

technique. We employ the hybrid eddy viscosity model proposed in Senocak et al. (2007)

which can be written as follows,

νt =
[
([1− exp (−z/hRL)]CS∆)2 + (exp (−z/hRL)κz)2

]
|S|, (9.12)

where z is the surface-normal distance, hRL is the RANS-LES transition height, CS∆ rep-

resenting the sub-grid-scale (SGS) mixing length (CS being the model coefficient and ∆ the

LES filter width), and κz representing the RANS mixing length. The SGS mixing length

is determined using the Lagrangian dynamic SGS methodology (Meneveau et al., 1996) ap-

plied to the Smagorinsky eddy viscosity model. The Lagrangian dynamic model is a localized

SGS model that does not require any homogeneous directions in the computational domain.

Therefore, it is adequate for arbitrarily complex terrain. The RANS mixing length is that

of Prandtl (1925).

We prefer a Cartesian method to solve the governing equations as it maps well to the

computer architecture of modern GPUs. The immersed boundary (IB) method is used

to impose boundary conditions on the surface using logarithmic reconstructions (Senocak

et al., 2004) in conjunction with the above hybrid eddy viscosity model. Note that the goal

is to produce the correct Reynolds stresses at the surface. Therefore, it is important that

the velocity reconstruction scheme is consistent with eddy viscosity near the surface. A

logarithmic reconstruction therefore is suitable because it is consistent with the Prandtl’s

mixing length model near the surface.
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While IB methods eliminate cumbersome meshing and poor mesh quality (e.g. skewed

cells), the challenge is to impose the boundary conditions as the immersed surface will most

likely not coincide with the Cartesian grid points. We employ the direct-forcing approach

proposed by Mohd-Yusof (1997) and later applied by Verzicco et al. (2000). This IB method

can be classified as a “sharp interface” IB method, as the boundary condition at the surface

appears explicitly in the method. The first step of this IB method is to identify the Cartesian

grid cells cut by the surface, which can be challenging with arbitrarily complex terrain. The

details of the geometric pre-processing can be found in Senocak et al. (2015). Once the

geometric information is known, the values in near-surface grid cells cut by the immersed

surface can be reconstructed each simulation time step by interpolating between the known

boundary condition at the immersed surface, e.g. the no-slip condition for velocity, and

resolved values from the flow field where the grid cells are not cut by the immersed surface.

The logarithmic reconstruction scheme for velocity proposed by Senocak et al. (2004) is

revised to explicitly enforce the impermeability condition over complex terrain. First, the

velocity components are projected onto surface-parallel and surface-normal vectors, ui,t and

ui,n. The reconstruction scheme for the normal components is a linear interpolation between

the flow at a sufficient surface-normal distance, z2, and the no-slip condition at the immersed

surface,

ui,n|z1 = ui,n|z2
z1
z2
, (9.13)

where z1 is the IB node wall-normal distance. The impermeability condition is then explicitly

enforced. The tangential reconstruction scheme is based on logarithmic-similarity in the

atmospheric surface layer (Stull, 1988) and is given by

ui,t|z1 = ui,t|z2
log(z1/z0)

log(z2/z0)
, (9.14)

using the same surface-normal distances as in Eq. 9.13, where z0 is the aerodynamic rough-

ness length.
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Table 9.2: Simulation parameters. Target domain is centered in the total domain which
includes the extension and tapering regions for the periodic boundary conditions.

Domain size (km) Grid Points Resolution (m)

Lx Ly Lz Nx Ny Nz ∆x ∆y ∆z

16.0 23.0 1.94 1025 1025 513 29.3 34.2 3.9

9.4.1 Simulation Setup

The target computational domain is ∼368km2 shown in Fig. 9.3. Periodic boundary condi-

tions were applied in the lateral directions, deemed suitable as the elevation changes relative

to the total height of the computational domain are small. As complex terrain may not be

the same elevation on all sides of the domain, we extended and tapered the target domain

down such that the elevation is constant along the perimeter of the domain. This added ap-

proximately 6-7km to each side. The total domain height is ∼2km from the lowest elevation.

The Cartesian grid consisted of ∼539 million points, giving lateral resolution of ∼30m and

vertical resolution of 4m. Simulation parameters are given in Table 9.2.

The wind flow is driven by a constant 6.0e-05m/s2 pressure gradient coming from the

north-east at an angle of 63.3◦ using meteorological conventions (i.e. wind coming from

north is 0◦ and clock-wise is positive.). The pressure gradient was adjusted iteratively to

approximately match the observed wind speed at a weather station over flat terrain. The

top of the domain is set to a free-slip condition. Fluid properties are that of air at standard

temperature. Surface roughness, z0, is set to 0.15m, a value suggested in (Stull, 1988) for

rural farmland areas. Following Senocak et al. (2007), the RANS-LES interface, hRL, is set

to 31.6m, twice the size of the LES filter width, ∆ = 3
√

∆x∆y∆z. The flow is initialized by

superimposing high-amplitude, low-frequency sinusoidal perturbations onto a rough-surface

log-law profile. This was a necessary step as the terrain elevation changes were not enough

to trip turbulence unassisted, a further indication that periodic boundary conditions are

suitable for this case. The flow was allowed to develop for two hours of simulated time
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before reaching a stationary state. The wind solver assumes incompressible flow, solving the

Poisson equation with geometric multigrid designed for multi-GPUs (Jacobsen and Senocak,

2011) and uses second-order central difference schemes for spatial derivatives and a second-

order Adams-Bashforth scheme for time integration.

9.5 DLR Test Area

Idaho Power Company (IPCo) and Idaho National Laboratory joint test bed area for DLR

research is located on the Snake River Plain in southern Idaho. The test site lies in an

area of high desert with complex terrain, covering an area approximately 1,500km2 with an

elevation range of 754m to 1,1198m.

Seventeen weather stations were mounted by IPCo/INL team at a height of 10m agl in

strategic locations along more than 190km of high-voltage transmission lines. Data collection

through a cellular network has been underway by IPCo since August of 2010. The measured

quantities are wind speed, wind direction, ambient temperature, and solar irradiation. Data

from the weather stations is collected every 3 minutes, it is an average of 2s readings over

the 3-minute time interval. Weather stations use NRG 40C (NRG, 2015) or the APRS

#40R (APR, 2015) three cup anemometers. Both models have similar specifications; wind

speed accuracy of 0.1 m/s with a sensor range of 1–96m/s. In Phillips et al. (2014) a year-

long weather data was analyzed seasonally to demonstrate the limitation of the static rating

approach on ampacity.

For the simulations used in this paper, we chose a 16km×23km area with an elevation

change of over 330m. Figure 9.3 shows the elevation map and locations of the nine weather

stations located in this area.
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Figure 9.3: Section of INL/IPCo test site for DLR research, colored by terrain height.

9.5.1 Test Area Prevailing Winds

Wind flow patterns emerge from horizontal surface and atmospheric temperature contrasts

on all spatial scales, from global to local size (Emeis, 2013). Both local and global systems

exhibit large regularity of daily and seasonal wind and weather cycles (Deb, 2000). This

regularity can be largely attributed to the local terrain and surface properties. Using year-

long data starting July 1, 2012 the prevailing wind direction is illustrated by the wind rose

in Fig. 9.4. Two weather stations ∼2km east of the area investigated were selected because

they better represent the boundary conditions of the simulation, therefore used as discussed

in Section 9.4.1.

Because weather stations operate unattended for a long period and adverse weather

conditions can exist during winter months, it was necessary to validate the collected data

against a common statistical distribution. The distribution of wind speed is commonly

defined using the Weibull probability density function (Brower, 2012). During any time

interval the two parameter wind speed probability is given as

f(v) =

(
k

λ

)(v
λ

)k−1
e−( vλ)

k

(9.15)
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Figure 9.4: Wind rose of year-long wind data starting July 1, 2012 from two weather ∼2km
east of the area investigated.

where v is the wind speed, k is the shape parameter, and λ is the scale factor, which

is expected to be close to the mean speed. The Weibull probability density function of

year-long measured wind data at each of the weather stations is shown in Fig. 9.5. The

nondimensional shape parameter for the collected data is in agreement with the commonly

observed values (i.e. k ranging from 1.6 to 2.4) (Brower, 2012).

9.6 Results

To demonstrate the feasibility of a simulation-based DLR approach, we first compare our

wind solver predictions against field data. A horizontal slice of the eastern region of the

target domain in Fig. 9.3 is the focus of Fig. 9.6. Eddy sizes vary visibly over the terrain.

Long, streak-like structures with low wind speed are evident in the vicinity of the surface.

The location of the canyon can be inferred as the flow in to and out of the canyon breaks

down the larger eddies vertically above the canyon into much smaller ones. The wind breaks

into smaller eddies as it blows over the canyons. Additionally, acceleration of the flow above
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Figure 9.5: Weibull wind distribution using year-long wind data from each weather station.

the canyon can be observed from the color map. We next perform a statistical evaluation of

the wind flow simulation.

9.6.1 Statistical Validation of the Wind Solver

To evaluate the wind solver’s performance against anemometer data collected at select lo-

cations across the test bed area, we follow an approach similar to the one presented in

David Carvalho and Santos (2012) by using five statistical parameters: the mean and stan-

dard deviation, the root mean squared error (RMSE), the bias, and the standard deviation

of the error (STDE). The mean is given as

v =
1

N

N∑
i=1

vi (9.16)

where v is the mean speed, N is the number of data points, and vi is the ith wind speed of

either the real-time data or simulation results. The standard deviation, Sv, is given as

Sv =

√√√√ 1

N

N∑
i=1

(vi − v)2 (9.17)
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Figure 9.6: Flow visualization. Horizontal slice across domain focusing on eastern part of
the canyon in the target domain. Flow is from upper-right moving to lower-left. 2km × 2km
box provided to show scale.

and the RMSE is computed as

RMSE =

[
1

N

N∑
i=1

(v′i)
2

]1/2
(9.18)

where N is the total number of deviations, v′, between the the simulated wind speed, vsim,

and the respective observed wind speed at the weather station, vobs. The deviation is given

as

v′ = vobs − vsim (9.19)

The bias is defined as

Bias =
1

N

N∑
i=1

v′i (9.20)

and makes possible the evaluation of the data systematic errors. A positive bias means that

the simulations overestimate the measured values.

The standard deviation of the error (STDE), helps evaluate the dispersion of the error
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Figure 9.7: Mean and standard deviation of the field data and simulation results for wind
speed

and it can be written as

STDE =
[
RMSE2 −Bias2

]1/2
. (9.21)

The STDE removes from the RMSE possible offsets (biases). A low STDE shows if a given

error is mainly due to a kind of offset that can more easily be corrected because the underlying

physics is correct, whereas a high STDE represents random error and hints unphysical results.

Figure 9.7 shows that the mean and standard deviation of the wind speed between the

field data and simulation results. We observe that STDE is larger for weather stations

B, D and F than the rest of the weather stations. We attribute this difference to the

challenges of collecting seasonal data from weather stations that are unattended for long

periods. Another issue is that these weather stations were placed to be close to the powerlines

and not necessarily at locations that would capture the dominant wind patterns over the

area. It is likely that these weather stations are picking up local details that may not be

represented in the simulation.

The comparison between field and simulation data is further quantified in Table 3, with

an average RMSE value of 0.863, bias of 0.101, and STDE of 0.767. These values are much
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Table 9.3: Statistical comparison between the observed field data and simulated results at
each weather station. A negative bias represents a simulated wind speed that is greater than
the field data readings.

Weather Station RMSE (m/s) Bias (m/s) STDE (m/s)

A 0.684 0.082 0.679
B 1.047 0.634 0.834
C 0.672 -0.141 0.657
D 0.997 0.526 0.847
E 0.680 0.332 0.591
F 1.295 -0.835 0.990
G 0.855 -0.130 0.846
H 0.762 0.124 0.752
I 0.774 0.318 0.706

lower than the values reported in David Carvalho and Santos (2012). In Michiorri et al.

(2010) the standard deviation ranged from 0.9 to 1.5, whereas in our approach, it ranges

from 0.6 to 1.0. For these reasons, we judge our simulation a reasonable realization of the

wind conditions for the assumed global wind direction.

9.6.2 Dynamic Conductor Temperature

We perform the transient calculation of the ODE for temperature to demonstrate the dy-

namic thermal response of the conductor. Eq. 9.4, using field data from June 10, 2013 at

weather station B. Wind speed and ambient temperature values used in the time-marching

ODE are updated every three minutes, the rate of field data collection. The initial temper-

ature of the conductor is first solved using the initial wind speed and steady-state equation

in the form

R(T ) =
qc + qr − qs

I2
(9.22)

After calculating the resistance, the temperature T is extracted from tabulated data of

resistance versus temperature using a linear interpolation. For this hypothetical case we

picked ACSR 26/7 as the conductor type. Static rating was calculated under the summer
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Figure 9.8: Conductor dynamic temperature calculated using wind speed and temperature
from field data and compared with the assumed 100 ◦C static temperature when loaded with
1,025 Amps.

time assumptions of 0.61m/s wind, full sun on June 10 at 11AM (30◦ latitude, 0m elevation),

and an ambient temperature of 40◦C. Under these assumptions with an allowable maximum

conductor temperature of 100◦C the ampacity was calculated with Eq. 9.3, giving 1,025

Amps. We then imposed a current of 1,025A to the conductor and calculated the dynamic

temperature using the wind speed and ambient temperature field data. Results, presented in

Fig. 9.8, show that conductor temperature—overall—is much lower than the assumed static

temperature. Equally important, when adverse conditions persist over long periods of time,

TSPs will be informed when conductor temperature is in excess of their limits. Because of

these advantages we recommend using a dynamic calculation method over the static rating

practice.

As a feasibility test of a simulation-based approach, the conductor temperature was

calculated using both field data and simulation results over a four-hour period. Since we

are investigating the cooling effect of the wind, we kept other weather conditions constant.

The initial conductor temperature used in the ODE calculation was solved using Eq. 9.22.

We updated the wind speed every three minutes and solved the dynamic temperature with

a RK4 method over the four hours. Figure 9.9 shows the true mean estimate and highlights
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Figure 9.9: Resulting conductor temperature using the field data and simulation results.
The highlighted area represents the 99% confidence interval.

the 99% confidence interval (CI). Data from nine weather stations are used to quantify the

uncertainty or CI. The true mean estimate, v′ is given as

v′ = v ± CI (%P ) (9.23)

where CI is the confidence interval at a given probability, P , and is defined as

CI = tdf,P · Sv (9.24)

here tdf,P is the statistical t-value with degrees of freedom, df . The degrees of freedom is the

number of data points minus one. The standard error, Sv, is defined as

Sv =
Sv√
N

(9.25)

where Sv is the standard deviation and N is the number of data points.

There are two important conclusions to take away from Fig. 9.9. First, the conductor

temperature is much lower than the 100◦C imposed by the static rating. Second, conductor
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temperature variation relative to its location is significant as evidenced by the confidence

interval. Spatial variation of conductor’s temperature justifies the need to resolve wind field

along the length of the line to identify critical segments.

9.6.3 Dynamic Ampacity

When the conductor is below its maximum allowable temperature, any amount of current can

be put on the conductor for a limited amount of time. We therefore calculate the dynamic

ampacity using the conductors present temperature and use an iterative method to solve the

current that will heat the conductor to 100◦C in 15 minutes. To demonstrate this, we show

a hypothetical case using ACSR 27/6 conductor with an initial temperature of 60◦C, wind

speed of 3.5m/s, 40◦C ambient temperature, and full sun. The ampacity is calculated to be

1,616A and the heating can be seen in Fig. 9.10. If the steady-state thermal rating, Eq. 9.3,

is used under these conditions the ampacity would be at 1,571A and the conductor response

would have to be assumed instantaneous. In other words a dynamic ampacity calculation

method would enable the operator to see the actual thermal response of the conductor and

its ability to ride out sudden drops in wind speed as it takes some time for the conductor to

heat up.

The dynamic ampacity across the test area is therefore calculated using the temperature

calculated in subsection 9.6.2 and the 15 minute transient temperature response to reach

100◦C. The resulting ampacity mean and 99% CI using both field data and simulation

results are shown in Fig. 9.11. The results show that there is significant additional capacity

available that is not being utilized.

9.7 Conclusions

Dynamic line rating (DLR) holds great promise to alleviate transmission congestion that may

hinder integration of new power generation. Using actual weather data from measurements
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and an LES-based micro-scale wind solver, we demonstrated that ampacity of transmission

lines in windy areas with complex terrain can be increased by 40-50% through the DLR con-

cept. Our simulation-based approach is non-intrusive for the powerlines, and it is potentially

much-more economical than building new transmission lines.

The use of a multi-GPU accelerated solver was critical to the success of our study. In-

stead of using a commercially available general-purpose computational fluid dynamics solver,

we carefully selected our numerical methods and parameterizations to develop a fast wind

solver, which was a multi-year effort with multiple developers (Thibault and Senocak, 2012;

Jacobsen and Senocak, 2013, 2011; DeLeon et al., 2012, 2013). The hardware-oriented de-

sign of our numerical solver —combined with the superior computing power of GPUs—

enabled us to accommodate spatial and temporal resolutions that are much finer than the

current practice for complex terrain wind simulations. Adoption of fine spatial resolutions

is important for the resolution of terrain-induced motions, leading to more accurate line

ratings. A potential benefit of using a multi-GPU accelerated solver is that simulations can

be performed on workstations or clusters that have a much smaller footprint than central

processing unit (CPU) based computing platforms.

Statistical analysis of simulation data for wind speed showed a very good agreement

with field data. Additionally, we demonstrated that a transient calculation of the conductor

temperature offers many advantages over the current practice based on the steady-state

response of a conductor. A transient calculation enables us to take advantage of the thermal

capacity of a conductor under variable wind conditions when considering a dynamic rating

approach. We found that a fourth-order Runge-Kutta scheme performs much better in

terms of accuracy and computation time than the forward Euler method suggested in the

IEEE-738-2012 standard.
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CHAPTER 10

Recommendations for Future Work

As stated in Section 1.2, the research questions that motivated the work in this dissertation

were:

1. How reliable is the wall-modeled LES approach of hybrid RANS-LES for turbulent

winds over complex terrain?

2. How accurate is the wind flow predicted when using equilibrium attached-flow assump-

tions to impose boundary conditions created by an immersed complex terrain?

3. How can buoyancy-driven flow physics be used as a turbulence inflow generation tech-

nique for LES of wind flow over complex terrain?

The following summarizes the work regarding each research question. Also, recommendations

on future avenues of research are made for the different topics.

10.1 Research Question 1

The first research question led to investigation of multiple wall-modeled LES approaches

that reduced the log-layer mismatch problem. The observation was made in channel flow

that blending eddy-viscosity-type models leads to a lack of resolved Reynolds shear stresses,

forcing the velocity gradients to unnatural values to maintain the global momentum balance.

The proposal was to split the driving mean pressure gradient by splitting the mass flow rate

into different regions based on wall-normal distance. While conserving mass, the effect was

to give a missing degree of freedom that allowed the mean velocity to recover the expected

logarithmic behavior. Second-order statistics were recovered as well.

The split-forcing approach performed very well on a very coarse mesh. A notable accom-

plishment is the recovery of first and second-order moments at such a high Reynolds number

on a mesh that starts in the logarithmic region of the wall-bounded turbulent flow. However,
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an obvious disadvantage is the applicability to general flows. When the flow is over parallel

flat-plates, the determination of forcing regions is relatively simple as the cross-sectional area

is constant. When the cross-sectional area varies in a domain, the task becomes much more

challenging as the mass flow rate may not be known in advance at each streamwise location.

Thus, determining the distribution of different forcing regions may not be possible.

One possible idea would be to run multiple cases until the forcing regions converged.

First, an initial flow simulation without split-forcing is run to determine the mass flow rates

in variable cross-sections. With the mass flow rates now known (or at least estimated),

one could determine the forcing regions. Running again could lead to more adjustments to

the forcing regions. However, this method is not guaranteed to converge and the process

could be very time consuming. Another possible and more desirable idea would to use the

split-forcing concept in conjunction with a turbulent inflow technique. Depending on the

flow structures generated at the inflow, a forcing term may not need to be exact to provide

the LES region with the missing Reynolds stresses that the RANS region cannot provide.

This is just a hypothesis that two such methods can be used in conjunction and could be

the focus of an in-depth research project.

Regarding the wind flowing over complex terrain studies performed in this dissertation,

extending the split-forcing approach to complex terrain may not be possible. However,

looking at dimensional profiles of velocity in Fig. 10.1, the difference between the velocity

with a single forcing and the DNS benchmark velocity do not disagree much above y/δ = 0.2.

The logarithmic scales on the plots presented in Chapters 2 and 3 exaggerate the error. The

dimensional plot reveals the mismatch actually taking place near the wall. As the mismatch

is so close to the wall and the flow away from the surface agrees well in the dimensional

sense, the hybrid RANS-LES approach is acceptable for studying wind flows over complex

terrain. However, there is still room for improvement.
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Figure 10.1: Hybrid RANS-LES mean velocity profiles from Section 3 presented in dimen-
sional values. Single forcing refers to single driven mean pressure gradient with no split-
forcing. Tri-split forcing refers to results obtained from split-forcing.
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10.2 Research Question 2

The research question using IB methods for complex terrain was investigated in multiple

facets. First, the geometric preprocessor and issues that arise with complex terrain repre-

sentations was addressed. Next, the implementation of the immersed boundary method was

validated in a DNS of katabatic slope flow. Finally, the use of a logarithmic reconstruction

for velocity tangent to the terrain surface was investigated for complex terrain. Normal

velocity was reconstructed linearly. The key was performing reconstruction on the eddy vis-

cosity model to avoid the calculation of incorrect velocity gradients at the surface that could

create numerically-unstable eddy viscosity values or extremely-large eddy viscosity values

that pollute the solution.

Regarding the complex terrain IB investigation, the method gave good agreement in

mean flow characteristics when compared to experimental benchmarks. Results showed good

agreement and little sensitivity when the flow was attached, provided the mesh was adequate

to resolve significant features of the terrain. In regions of separation, the method showed

high sensitivity to mesh resolution. One explanation is the reconstruction scheme. Separated

flow does not follow an equilibrium logarithmic profile and reconstructing separated flow in

that manner is not ideal. A second explanation is the turbulence model. Prandtl’s mixing

length model assumes the flow is attached meaning the model is not adequate for separated

flow. Both explanations contribute to the sensitivity of this IB hybrid RANS-LES approach

in separated flows.

Future work should be in the investigation of more accurate reconstruction schemes

for separated flow. Working with the primitive variable, e.g. velocity, is highly desirable

for its simplicity and the reconstruction schemes should focus on that rather than surface

stresses. A reconstruction scheme varying dynamically in operation that is dependent on

attached or separated flow regimes would be highly desirable although not straightforward.

The dynamic scheme would need to determine if flow separation will occur and when the
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flow will reattach. There is also the matter of the appropriate interpolation reconstruction

scheme to use in separated flow. Also, investigations into alternate wall models not assuming

attached flow should be performed as well.

10.3 Research Question 3

The research question regarding turbulent inflow generation for LES was addressed by in-

vesting the perturbation box technique that uses stochastic buoyancy perturbations to create

vortices that will develop into realistic turbulence over a fetch. The perturbation box method

was applied to engineering-type turbulent flows and turbulent wind flowing over complex ter-

rain. Overall, the perturbation box method showed rapid development of turbulence. The

perturbation box method was able to generate accurate turbulence in engineering-type flows

within a reasonable development fetch. The size of the box had an integral role in the size

of turbulent eddies that developed.

The perturbation box method falls into the turbulent inflow generation category of syn-

thetic methods. The goal of synthetic methods is to reduce the length of the development

fetch. A development fetch is required as turbulent flow correlations are typically not known

in advance for general flows. Turbulent flow structures generated by the synthetic method

will require a distance to develop into realistic turbulence if the prescribed correlations are

different than those natural to the flow. The perturbation box method does not require di-

rect prescription of turbulent flow correlations. However, spatial correlations are implicitly

set by the size of a perturbation box and the temporal correlations are implicitly set by the

perturbation update frequency. As the correlations are implicitly prescribed, optimization is

challenging as systematic trial and error is involved. The advantages outweigh the challenge

as the perturbation box method can account for time-varying mean flow directions and also

does not independently prescribe turbulent fluctuations onto the mean velocity field.

As the correlations are implicitly prescribed, the perturbation box method can still be op-

timized further than presented in this dissertation. The focus of this work in turbulent inflow
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was to propose a simple model with parameter guidance that scaled to different flows and

Reynolds numbers. After this investigation, further optimizing the current proposition will

most likely not lead to significant reductions in development fetches. However, alterations

can be made to the current perturbation box method that may lead to further improvements.

One possibility is to vary the size of the boxes with distance from the wall and provide more

consistency with wall-bounded turbulence. This may alter the current Richardson number

suggestions. Another possibility is to have multiple Richardson number for different regions

of the flow, e.g. inner layer vs. outer layer. This approach would be similar to the split-

forcing method. A third possibility would be to alter the temporal correlations by having

a perturbation update frequency consistent with time scales in wall-bounded turbulence.

Again, this may require different Richardson number recommendations than those proposed

in this study.

Rather than focusing on the parameters of the perturbation box method, perhaps other

approaches could be used to accelerate the development of turbulence and should be the

focus of future study of the perturbation box method. For example, artificial perturbation

of the mean velocity profile coupled with the stochastic buoyancy perturbations could pos-

sibly generate turbulence more rapidly than demonstrated in this study. Another promising

approach, perhaps the most promising of the recommendations made so far, is to apply a

recycling plane technique, e.g. the approach of Lund et al. (1998). Recycling developed

turbulence as an inflow condition has been successfully demonstrated and the perturbation

box method may benefit from this approach.

10.4 Conclusion

The final recommendations regard the combination of the different research topics into a

tool for predicting wind flow over complex terrain. As shown in Chapter 8, the perturbation

box method can be used in conjunction with the immersed boundary method to produce

turbulent wind flow over complex terrain that produces good agreement with experimen-
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tal mean flow characteristics. If a solution to log-layer mismatch in general flows can be

found, then that solution can be integrated into the complex terrain simulations. The end

result will be a tool capable of simulating neutrally-stable wind flows over complex terrain.

True simulation of the ABL will require Coriolis forcing terms to account for the Earth’s

rotation. The mean inflow conditions can be provided by can be provided by a mesoscale

numerical weather prediction model. The addition of these components will allow for true

neutral ABL simulations at the microscale. For non-neutral atmospheric conditions, the in-

flow conditions, immersed boundary method, and turbulence modeling will need to account

for stable stratification, moisture effects, surface heat fluxes, and varying-surface-roughness

modeling.
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Hoyas, S. and Jiménez, J. “Scaling of the velocity fluctuations in turbulent channels up to

Reτ = 2003.” Phys Fluids, 18 (1): 011702.

Hu, N. “A rescaling method for correcting log-layer mismatch in detached eddy simulation.”

Science China Physics, Mechanics and Astronomy, 56 (6): (2013) pp. 1165–1175.



213

Iaccarino, G. and Verzicco, R. “Immersed boundary technique for turbulent flow simula-

tions.” Appl. Mech. Rev., 56 (3): (2003) pp. 331–347.

IEEE. “IEEE standard 738-2012: IEEE standard for calculating the current-temperature

relationship of bare overhead conductors.”

International Electrotechnical Commission. “IEC 61400 - online collection.” https:

//collections.iec.ch/iec61400?ref=gspromo (2017).

Jackson, P. and Hunt, J. “Turbulent wind flow over a low hill.” Quarterly Journal of the

Royal Meteorological Society, 101 (430): (1975) pp. 929–955.

Jacobsen, D. A. and Senocak, I. “A full-depth amalgamated parallel 3D geometric multigrid

solver for GPU clusters.” In 49th AIAA Aerospace Science Meeting. 2011.

Jacobsen, D. and Senocak, I. “Multi-level parallelism for incompressible flow computations

on GPU clusters.” Parallel Comput., 39 (1): (2013) pp. 1–20.

Jafari, S., Chokani, N., and Abhari, R. S. “An immersed boundary method for simulation

of wind flow over complex terrain.” J. Sol. Energ.-T. ASME, 134 (1).

Jain, P. Wind Energy Engineering. McGraw-Hill, 2011.

Jarrin, N., Benhamadouche, S., Laurence, D., and Prosser, R. “A synthetic-eddy-method

for generating inflow conditions for large-eddy simulations.” Int. J. Heat Fluid Fl., 27 (4):

(2006) pp. 585–593.

Jarrin, N., Prosser, R., Uribe, J.-C., Benhamadouche, S., and Laurence, D. “Reconstruc-

tion of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy

method.” Int. J. Heat Fluid Fl., 30 (3): (2009) pp. 435–442.

Ji, C., Munjiza, A., and Williams, J. “A novel iterative direct-forcing immersed boundary

method and its finite volume applications.” J. Comput. Phys., 231 (4): (2012) pp. 1797–

1821.



214

Jimenez, A. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota.

National Renewable Energy Laboratory, 2013.

Jorge, R. S. and Hertwich, E. G. “Environmental evaluation of power transmission in nor-

way.” Appl Energ, 101: (2013) pp. 513–520.

Kang, S., Iaccarino, G., and Ham, F. “DNS of buoyancy-dominated turbulent flows on a

bluff body using the immersed boundary method.” J Comput Phys, 228 (9): (2009) pp.

3189–3208.

Kang, S., Lightbody, A., Hill, C., and Sotiropoulos, F. “High-resolution numerical simulation

of turbulence in natural waterways.” Advances in Water Resources, 34 (1): (2011) pp. 98

– 113.

Kawai, S. and Larsson, J. “Wall-modeling in large eddy simulation: Length scales, grid

resolution, and accuracy.” Phys Fluids, 24 (1): (2012) p. 015,105.

Keating, A. and Piomelli, U. “A dynamic stochastic forcing method as a wall-layer model

for large-eddy simulation.” J Turbul, 7 (12): (2006) pp. 1–24.

Keating, A., Piomelli, U., Balaras, E., and Kaltenbach, H.-J. “A priori and a posteriori

tests of inflow conditions for large-eddy simulation.” Phys. Fluids, 16 (12): (2004) pp.

4696–4712.

Klein, M., Sadiki, A., and Janicka, J. “A digital filter based generation of inflow data

for spatially developing direct numerical or large eddy simulations.” J. Comput. Phys.,

186 (2): (2003) pp. 652–665.

Larsson, J., Lien, F., and Yee, E. “The artificial buffer layer and the effects of forcing in

hybrid LES-RANS.” Int J Heat Fluid Fl, 28 (6): (2007) pp. 1443–1459.

Le, H., Moin, P., and Kim, J. “Direct numerical simulation of turbulent flow over a backward-

facing step.” J. Fluid Mech., 330 (1): (1997) pp. 349–374.



215

Lee, J., Cho, M., and Choi, H. “Large eddy simulations of turbulent channel and boundary

layer flows at high Reynolds number with mean wall shear stress boundary condition.”

Phys Fluids, 25 (11): (2013) p. 110,808.

Lee, L. and LeVeque, R. J. “An immersed interface method for incompressible Navier–Stokes

equations.” SIAM J. Sci. Comput., 25 (3): (2003) pp. 832–856.

Lee, M. and Moser, R. “Direct numerical simulation of turbulent channel flow up to Reτ ≈

5200.” J Fluid Mech, 774: (2015) pp. 395–415.

Leveque, R. and Li, Z. “The immersed interface method for elliptic equations with dis-

continuous coefficients and singular sources.” SIAM J. Numer. Anal., 31 (4): (1994) pp.

1019–1044.

Lopes, A. S., Palma, J., and Castro, F. “Simulation of the Askervein flow. part 2: Large-eddy

simulations.” Bound.-Lay. Meteorol., 125 (1): (2007) pp. 85–108.

Lund, T. S., Wu, X., and Squires, K. D. “Generation of inflow data for spatially-developing

boundary layer simulations.” J. Comput. Phys., 140 (2): (1998) pp. 233–258.

Lundquist, K., Chow, F., and Lundquist, J. “An immersed boundary method for the weather

research and forecasting model.” Monthly Weather Review, 138: (2010) pp. 796–817.

Lundquist, K. A., Chow, F. K., and Lundquist, J. K. “An immersed boundary method

enabling large-eddy simulations of flow over complex terrain in the WRF model.” Monthly

Weather Review, 140 (12): (2012) pp. 3936–3955.

Mahrt, L. “Stably stratified atmospheric boundary layers.” Annual Review of Fluid Me-

chanics, 46 (1): (2014) pp. 23–45.

Mahrt, L. “Stably stratified flow in a shallow valley.” Boundary-Layer Meteorology : (2016)

pp. 1–20.



216

Mann, J. “Wind field simulation.” Probabilist. Eng. Mech., 13 (4): (1998) pp. 269–282.
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Appendix B: Split-forcing Supplemental Material

Total Shear Stress and Local Friction Velocity

The theoretical total shear profile, τ(y), in a turbulent channel flow is given by

τ(y) = τw

(
1− y

δ

)
(10.1)

where y is the wall-normal distance ranging from 0 to 2δ, δ is the channel half-height, and

τw is the wall shear stress at y = 0 or y = 2δ. The wall shear stress can also be represented

by the friction velocity, uτ , and density, ρ, as

τw =
u2τ
ρ
. (10.2)

where friction velocity is a constant value for the entire channel flow. For incompressible

flows, rho is typically set to unity an vanishes, which is applied here. Local friction velocity

is the idea that friction is no longer a constant value but varies with wall-normal distance

and is defined by

uτ (y) =

√
τ(y)

1− y/δ . (10.3)

Regarding using local friction velocity profile as normalization for total shear stress shown

in Fig. 3.4a, we obtain the result shown in Fig. 10.2. The normalized local friction velocity

is found in Fig. 3.4b.
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Figure 10.2: The total shear stress obtained from split-forcing normalized by local friction
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