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111
Abstract

In this dissertation, we discuss cycles of length at least six. We prove that (Theorem 1) if G
is a graph of order n > 6k + 1 and the minimum degree of GG is at least %, then G contains
k disjoint cycles of length at least six, and (Theorem 2) if G is a graph of order n > 6k + 6
and the minimum degree of GG is at least g, then G contains k disjoint cycles covering all

the vertices of G such that k£ — 1 are 6-cycles.
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Chapter 1

Preliminaries

1.1 Fundamental Graph Theory Definitions

We borrow notation and terminology from [2]. A graph G = (V, F) is a finite nonempty
set V' (or V(Q)) of elements called vertices, together with a set E (or E(G)) of 2-element
subsets of V, called edges. Let G = (V, E) be a graph. If u and v are vertices in V', we use
uv to denote the edge {u,v}. If uv € E, then we say that v and v are adjacent. Given a
vertex v € V, the set N(v,G) = {u € V(G) : wv € E} is called the neighborhood of v in
G, and the vertices in N (v, G) are called the neighbors of v. We define the degree of v in
G to be the order of N (v, &), and denote it by deg,v. If the graph G is understood, we write
just N(v) and degv to denote the neighborhood and degree of v, respectively. The minimum
degree among all vertices of G is denoted by 6(G), and the maximum degree among all
vertices of G is denoted by A(G). The vertices u and v are said to be incident with the
edge uv. The orders of V' and E are called the order and size of GG, respectively.

Let G’ be the graph in Figure 1.1. Then G’ has six vertices, nine edges, vertex set V(G') =
{v1,v9,v3, 04, V5, 06}, and edge set E(G') = {v1v2, V103, V106, VaUs, UaUs, V3Vy, VgUs, VgVg, V56 } -
The neighborhood N(v1,G’) of vy in G’ is {vq, v3,v6}. The degree of every vertex is three,
so 0(G") = A(G') = 3. The vertex vy is incident with the edges v4vs, v4v5, and vyvg. The

order and size of G' are 6 and 9, respectively.

V2 V5
V1 V6

V3 V4

Figure 1.1: The complement of a 6-cycle.



A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). If E(H) = {uwv €
E(G) : u,v € V(H)}, then H is called a vertex-induced subgraph (or just induced
subgraph) of G, and we say that H is induced by V(H). In general, we use G[X] to
denote the subgraph of G induced by the vertex set X. A graph in which every pair of
vertices is adjacent is called a complete graph. The complete graph of order n is denoted
by K,. A graph with vertex set {vy,vq,...,v,} and edge set {v;u;41 : 1 < i <mn—1}1is
called a path, and is denoted by P,. The vertices v; and v,, are called endvertices of the
path, and instead of saying that the path has endvertices v, and v,, we say that it is a v; —v,
path. If the edge v,v; is added to the edge set, we call it a cycle (specifically, an n-cycle),
denoted by C,. Another way of representing a cycle C,, is by writing vyvs ... v,v;, where
two vertices in the sequence are consecutive if and only if they are adjacent in the graph.
Similarly, we can write P, = v1vy...v,. The length of a path (or cycle) is the number of
edges in the path (or cycle), and we denote the length of the cycle C' by [(C). Clearly, the
length of P, is n — 1 and the length of C), is n. The distance between two vertices v; and
v9 in H is the length of a shortest path in H from v; to v, and is denoted by dg(vq,v2) (or
just d(vy,v9)).

The 6-cycle v1v9v5v6v4v3v1 is a subgraph of G' (Figure 1.1), but is not an induced sub-
graph of G’, because (for example) of the edge v;vg, which is not included in the cycle. On
the other hand, the 4-cycles vovsv4v3vV9, V1V2V5V6vV1, and vivgV4V3V7, are all induced subgraphs
of G'. The path viv9v5vg is a subgraph of G’, but not an induced subgraph because of the
edge v1vg. The path vivousvy is, however, an induced subgraph. The largest complete graph
contained in G’ is K3, which is represented in G’ by the subgraphs induced by {vy,vq, v3}
and {v4, vs,v6}. The distance between vy and vg is two, since vovg ¢ E but vevsvg is a path
of length two from vy to vg.

A graph is bipartite if it has no cycles with odd length. The complete bipartite graph
K, ¢ has vertex set V- = VjUV,, with [V1| = r and |V3| = s, and edge set E = {uv|u € Vi,v €

V,}. Clearly complete bipartite graphs are bipartite, since any cycle must alternate between



Vi and V;. Two graphs are said to be isomorphic if they can be labeled in such a way that
they have the same vertex set and edge set. A graph in which every vertex has degree k is
called k-regular. Clearly, (), is 2-regular and K,, is n — l-regular. The complement of
G, written G, is the graph with vertex set V(G) and edge set (V(G) x V(G)) — E(G). The
union of G; and G, denoted by G; U G, is the graph with vertex set V(G1) UV (Gs) and
edge set E(G1)U E(G3). The union of more than two graphs is defined similarly. The union
of k copies of GG is denoted by kG. The graphs Gy, Ga,. .. ,G;, are disjoint if they have no
vertex in common. Thus the graph kG contains & disjoint copies of G.

The complement G’ of G’ (Figure 1.1) is the 6-cycle vyv4v206v3v501, and we write G’ = Cg
(or equivalently, G’ = Cg). G’ is a 3-regular graph, which can be seen either by looking at

each of the degrees, or noting that G’ = C, and that Cg is (5 — 3 = 2)-regular.

1.2 Notation and Terminology

A large cycle is a cycle of length at least six. Let G be a graph. If H is a subgraph of G,
we say that G contains H, and write H C G. Let Hi,H,,...,H, C G. If v is a vertex
in V(H;), we will write v € H; instead of the more cumbersome v € V(H;). We will write
v ¢ H; if v is not a vertex in V(H;). The vertices in a cycle of length n will be indexed
modulo n. If € = vjvy...v,v;1 is a cycle, and v; and v; are consecutive in the sequence
V1Us . .. Uy, then we shall say that v; and v; are consecutive in €. We will use the same
terminology for a set of more than two consecutive vertices in v1vs ... v,,. If H; is isomorphic
to some cycle C,,, then we will write H; = C,,. We will use equality in a similar way for paths
and complete graphs. If H; and H; are isomorphic, but use a different vertex set or edge set,
we will say that H; and H; are different graphs. If H; and H; are not isomorphic, we will
say that they are distinct graphs. We abbreviate without loss of generality with WLOG.
The set of vertices u € H; such that uv € E for some v € H; will be denoted by N (H;, H;),
read as the neighborhood of Hj in H;. If H; is the subgraph of G induced by the vertex set

{v1,v9,..., 0y}, then we will write N(vivs... vy, H;) instead of N(G[{vy,vs,...,vm}], H;).
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Figure 1.2: C is the 6-cycle on the left, and L is the 6-cycle on the right.

Thus N (v, H;) as defined here coincides with the definition of N (v, H;) from Section 1.1. We
define

e(H;, H) = > |N(v, H).

veH;
Notice that, in general, e(H;, H;) # |N(H;, H;)|. Instead, e(H;, H;) is the number of edges
wv such that v € H; and v € H;, and we will say that e(H;, H;) is the number of edges
between H; and H;. We again use e(v1vs ... vy, H;) in place of e(G[{vy,va, ..., v, }], H;).
Thus

e(vivg ... vy, Hy) = Z e(vg, H;),
k=1

where e(vg, H;) = |N(vg, H;)| is the degree of vy in H;. Finally, we denote the subgraph of
G induced by the vertex set Ule V(H;) by Hy + Hy+ ... H. If H; is induced by the vertex
set {v1,v,..., v}, then as before we write vivy ... v, instead of G[{vy,ve,...,v,}]. For
example, H;+vjvs ... vy, is the subgraph of G induced by V (H;)U{vy, v, ..., v, }. Similarly,
we define H; — v1vy . .. vy, to be the subgraph induced by V(H;) — {vi,va, ..., Un}.

In Figure 1.2, N(C, L) = {uy, us, ug, us, ug}. The vertex wuy is not in N(C, L) because it
is not adjacent to any vertex in C. Also, N(vq, L) = {uy,us}, N(vivs, L) = N(vyvzvs, L) =
{uy,ug,us,us}, and N(vivvs, L) = N(C,L). The number of edges between C and L is

e(C,L) = e(vy, L) +e(ve, L) +e(vs, L) +e(vy, L) +e(vs, L) +e(v, L) =2+24+2+240+0 =



Figure 1.3: Clockwise from top left: C 4 uo, C'+ L — vgv1, uiuousg + v4vsv6v1, and C' + ug — vs.

8. The number e(vov4vg, usugug) of edges between vovyvg and ugugug is e(ve, ugugug) +
e(vg, ugugug) + €(vg, ugugug) = 1 + 0+ 0 = 1. The graph in Figure 1.2 is the graph C' + L
induced by the vertices of C' and L. The graphs of C' + uy, C'+ L — vgvy, C' + ug — v3, and
L + vyusv6v; — uqusug, are shown in Figure 1.3. Note that L + vsusv6v; — uqusug can be

written (slightly) more succinctly as ujusus + v405060;1.



1.3 Background

In 1963, K. Corradi and A. Hajnal [3] proved that if G is a graph of order at least 3k with
minimum degree at least 2k, then G contains k disjoint cycles. In 2012, H. Wang [6] proposed
the following conjecture:

Let d and k be two positive integers with £ > 2. If G is a graph of order at least (2d+ 1)k
and the minimum degree of G is at least (d+ 1)k, then G contains k disjoint cycles of length
at least 2d + 1.

Clearly, the theorem of Corradi and A. Hajnal proves the case d = 1. In 2018 Wang ([7]
and [8]) proved the case d = 2. For the even cycles, Wang [6] proposed the following:

Let d and k be two positive integers with k,d > 2. Let G be a graph of order n > 2dk
with minimum degree at least dk. Then G contains k disjoint cycles of length at least 2d,
unless £ is odd and n = 2dk + r for some 1 < r < 2d — 2.

In 2012 Wang ([5] and [6]) proved this conjecture for the case d = 2. In this paper, we
prove a weaker version (Theorem 1) of the case d = 3.

The above conjectures are related to a conjecture made by M. H. El-Zahar [4] in 1984,
which states that if G is a graph of order n = n; +ny +...n, with n; > 3 and the minimum
degree of G is at least [ny/2] + [n2/2] + ... [nk/2], then G contains k disjoint cycles with
lengths ny,ng, ... ny.

Theorem 2 is similar to the theorems above, and follows a theorem in [9] due to Wang,
which states that if G is a graph of order n > 4k with minimum degree at least n/2, then G
contains k disjoint cycles covering all the vertices of GG such that k£ —1 are 4-cycles. Theorem
2 provides a special type of subgraph known as a 2-factor. In general, a k-factor is a spanning

subgraph that is k-regular.



1.4 Chords and Vertex-Replacement in Cycles

Let G be a graph, and let C' = ajas...a,a; be a subgraph of G. A chord of C is any edge
aa; € E(G), 1 <i,j < n, such that a;a; ¢ E(C). Thus C has a chord if and only if C
is not an induced subgraph of G. A cycle that has a chord is called chorded, while one
that does not is called chordless. See Figure 1.4. We will use 7(C') to denote the number
of chords in C, and 7(a;,C') to denote the number of chords in C' that are incident with a;.
Thus if L is the 6-cycle vyvavzvsvsv6v; in the bottom graph of Figure 1.4, then 7(L) = 2,
T(v1, L) = 7(vs, L) = 7(vy4, L) = 7(vg, L) = 1, and 7(vq, L) = 7(v5, L) = 0. It is easy to see
that

2r(C) = Y 7(a;, C)

a; €C

for any cycle C. In general, given a set {iy,...,ix} C {1,...,n}, we define

k
(@i, ...a;,,C} = ZT((ZZ-J., C).
j=1

The following lemma is a simple observation about chords in cycles. See Figure 1.5.

Lemma 1.4.1 Let C' be a cycle of length n. If C' has a chord, then C' contains two cycles
Cy and Cy such that [(Cy) +1(Cy) = n + 2.

More chords means more options. For example, the 6-cycle on the right in Figure 1.4
has the 5-cycle C" = vyv3v4050602 as a subgraph. If there is a vertex u that is adjacent to v
and vy, for example, then uv vsvgvovsu is a 6-cycle. This would be beneficial if the vertex v,
is better used elsewhere, outside of the cycle vivouzv4v5v6v1. The replacement of one vertex
with another in a cycle (u replacing v; in this case) is something that will be used extensively
throughout this paper.

Consider again the cycle C' = aqas .. .a,a1, and let uw and v be vertices in G — C. If, for

some 1 < i <n, C'+u— a; contains a cycle of length n, then we say that u replaces a; in
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Figure 1.4: Top left: a chordless 6-cycle. Top right: a 6-cycle vivovzvsvsvgV1, With the two chords
v9vg and vivy. Bottom: a graph with two different chorded 6-cycles. The first is vivov3vivsVEVT,
with chords viv4 and vsvg. The second is vivov3vgUsv4v1, With chords vivg and vzvy.

b@

Figure 1.5: Top: an 8-cycle with a chord. Bottom: the two cycles created by the chord (note
that they have two vertices in common).



Figure 1.6: Replacement of vertices in 6-cycles.

C, and write u — (C, a;). In Figure 1.2 we have ug — (C,v3), as can be seen from the graph
C + us — vs in Figure 1.3. Similarly, if C' 4 uv — a;a; contains C,,, then we say that u and v
replace g; and a; in C, and write uv — (C, a;a;). If u replaces every vertex in C, then we
write u — C, and say that u replaces C. Similarly, we write uv — C'if u and v replace each
pair of vertices in C.

Consider the graphs in Figure 1.6. Let C = ujususususugu; and Cy = 0102030405007 -
Since uujugugusuzu is a 6-cycle, we can say that u — (Cy,uy). In fact, it turns out that
u — (Cy,u;) for each u; € C1, and therefore that u — C;. Since e(x1,Cy) = e(xy, Co) = 2,
it is easy to see that neither x; nor xs replace Cy, since clearly x; - (Cs,v;) for i = 3,6,
and xo - (Cy,v;) for i = 3,5. However, z129 — (Cy,v4v5) and z129 — (Cy, v9v3), since
ToU3UU1VeT1 T2 and Tovsv4v1UaT1 T2 are 6-cycles. Because N(x1,Cy — vsvg) = N(xo,Cy —
vsvg) = {v3}, 1 and x5 do not replace vs and vg in Cy, and therefore zx9 — Cs.

The following lemma is a generalization of the observation that ug — (C,v3) in Figure

1.2. The subsequent two lemmas are consequences of the first.

Lemma 1.4.2 Let C = ajay...aza; be a cycle, let 1 < i < n, and let uw ¢ C. If

e(u,a;_1a;41) = 2, then u — (C, a;).

Proof: The cycle ua;_1a;_s...a1a,a,_1...a;41u is a cycle of length 14+ (1 —1)+(n—1i) =n

in C'+u— a,. l:i
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Lemma 1.4.3 Let C = ajay...aya1 be a cycle, and let u ¢ C. If e(u,C) =n, thenu — C.

Proof: Since C' is an n-cycle and e(u,C') = n, we know that e(u, a;—1a;+1) = 2 for each

vertex a; € C'. The lemma is therefore true by Lemma 1.4.2. a

Lemma 1.4.4 Let C = ajas...ana1 be a cycle, and let u ¢ C. Let e(u,C) =n — 1, with

ua; ¢ E. Then u— (C,a;) for all j # i+ 1.

Proof: We have e(u,a;_ja;41) = 2 for all j # i £ 1, so the lemmma is true by Lemma

1.4.2. d

In Lemmas 1.4.2-1.4.4, no assumptions were made about the chords in the given cycle.
Often, we will at least have some knowledge about the number of chords in a 6-cycle. We
can see from Figure 1.6 that having just a few chords in a 6-cycle can greatly affect the
number of vertices that are replaceable by a given vertex. The following lemmas expand on

Lemmas 1.4.2-1.4.4, and will be used extensively in the proof of Theorem 1.

Lemma 1.4.5 Let C' = vyvy...v6v1 be a 6-cycle, and let u ¢ C with e(u,C —v;) = 5. Then
u - C if and only if 7(v;,C) = 0.

Proof: WLOG let j = 6. By Lemma 1.4.4, u — (C,v;) for i = 2,3,4,6. Clearly, if
7(vg, C') = 0 then u - C| since if that is the case then u - (C,vy) and u - (C,vs). Hence
it suffices to prove that if 7(vg,C) > 0 then u — C. Using symmetry, we need only show
that if 7(ve, C') > 0 then u — (C,vy). Well, if vgvy € E then vgvavgvguvsvg is a 6-cycle; if
vgu3 € E then vguzveuvsvsvg is a 6-cycle; and if vgvy € E then vgvivsvouvsvg is a 6-cycle.
This completes the proof. a

If C = vvy...06v; is a 6-cycle and e(u, C) = 4 for some u ¢ C, then there are three
possible distinct graphs C' + u. Indeed, u may be adjacent to four consecutive vertices in C'
(see Figure 1.7); u may be adjacent to exactly three consecutive vertices in C, leaving only

one option for the last neighbor of v in C'; or, if u is not adjacent to three or more consecutive
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Figure 1.7: The three possibilities for C' 4+ u, when e(u,C) = 4.

vertices in C', then v must be adjacent to two disjoint pairs of consecutive vertices in C'. We

consider these three possibilities in the following three lemmas.

Lemma 1.4.6 Let C' = v1vy...v6v1 be a 6-cycle, and letu ¢ C with N(u,C) = {vj, vj11,Vj12, Vjt3}

for some 1 < 7 < 6. The following statements are true.
1. u— (C,vj11) and u — (C, vj42).
2. If u-» (C,v;) then e(vjts, vj+1vj4+2) = 0.
3. If u -+ (C,vj43) then e(vjtq, vj+10j42) = 0.
4. If u—» (C,vj14) then 7(vjy45,C) = 0.

5. Ifu-» (C,vj45) then T(vj1y,C) = 0.

Proof: WLOG let j =1, so N(u,C) = {vy,v9,v3, 04}
1. True by Lemma 1.4.2.
2. Because vyuv3v4v5v6 and vsvauvsvsvg are paths of order six in C'+ u — vy.
3. True by Lemma 1.4.6-2 and symmetry.

4. Because vu304uv1 Vg, U304uV201Vg, and v4v3uvv1vg are paths of order six in C'+u — vs.
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5. True by Lemma 1.4.6-4 and symmetry.
a

Lemma 1.4.7 Let C' = v1vy ... v6v1 be a 6-cycle, and letu ¢ C with N(u,C) = {vj, vj11,Vjt2, Vjta}

for some 1 < 7 < 6. The following statements are true.
1. u— (C,vj11), u = (C,vj43), and u — (C,vj45).
2. If u-» (C,v;) then e(vjts, vj+1vj43) = 0.
3. If u -+ (C,vj42) then e(vjts, vj+10j45) = 0.

4. [fu el (C, Uj+4) then Vj4+3Vj+5 ¢ E and e(vj+1,vj+3vj+5) S 1.

Proof: WLOG let j =1, so N(u,C) = {vy,vq,v3,05}.
1. True by Lemma 1.4.2.
2. Because vyuv3v 0506 and vav3vuvsvg are paths of order six in C'+ u — vy.
3. True by Lemma 1.4.7-2 and symmetry.

4. Suppose u - (C,vs). Then vqvg ¢ E because v,v3uv9v10¢ is a path of order six in

C' + u — vs, and e(ve, v4vg) < 1 for otherwise vgvov v3uV V6 18 a 6-cycle in C' + u — vs.
[

Lemma 1.4.8 Let C' = v1vy ... v6v1 be a 6-cycle, and letu ¢ C with N(u,C) = {vj, vj11,Vj+3, Vjta}

for some 1 < 7 < 6. The following statements are true.
1. u— (C,vj12) and u — (C, vj45).
2. If u—» (C,v;) oru—» (C,v44), then 7(vjs5, C) = 0.

3. If u —» (C,vj41) oru—» (C,v;43), then T7(vj419,C) = 0.
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Figure 1.8: The three possibilities for C' 4+ u, when e(u,C) = 3.
Proof: WLOG let j =1, so N(u,C) = {vy, v2,v4,v5}.
1. True by Lemma 1.4.2.

2. By symmetry, we may assume that u - (C,v;). The existence of the paths vyvzvsuvsvg,

V3UUV4U5Vg, and v4v3v9uvsve implies that 7(vg, C') = 0.
3. True by Lemma 1.4.8-2 and symmetry.

3

Next, we consider the graphs C' + u when e(u,C) = 3. Again, there are three distinct

graphs (see Figure 1.8).

Lemma 1.4.9 Let C' = v;...06v1 be a 6-cycle, and let u ¢ C with N(u,C) = {vj, 041, Vjt2}

for some 1 < 7 < 6. The following statements are true.
1. u— (C,vj41).
2. If u—» (C,v;) then vj1vj45 ¢ E.
3. Ifu-» (C,vj42) then vjvj43 ¢ E.

4. If u—= (C,vj13) then e(vjiq,vj410j42) = 0.

v

c fu =+ (C,vj44) then vjyzvis € E and e(vji1, vj13v545) < 1.
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6. If u—= (C,vj45) then e(vjis, vjvj11) = 0.

Proof: WLOG let j =1, so N(u,C) = {vy, v2, v3}.
1. True by Lemma 1.4.2.
2. Because vauv3vavsvg is a path of order six in C' 4+ u — vy.
3. True by Lemma 1.4.9-2 and symmetry.
4. Because vov3uvvgvs and v3uvevvgvs are paths of order six in C' + u — vy.

5. Suppose u - (C,vs). Then vyvg ¢ E because vqvzuvavivg is a path of order six in

C' 4 u — vs, and e(vy, v4vg) < 1 for otherwise vguavgvzuv V4 is a 6-cycle in C' 4+ u — vs.
6. True by Lemma 1.4.9-4 and symmetry.
O

Lemma 1.4.10 Let C' = v;...v6v1 be a 6-cycle, and let u ¢ C with N(u,C) = {v;, 41,043}

for some 1 < j < 6. The following statements are true.
1. u— (C,vj12).
2. If u—» (C,v;) then vj19v,45 ¢ E.
3. If u-» (C,vj41) then vjyovjiq ¢ E and e(vjt2,vjv,45) < 1.
4. If u—=» (C,vji3) then vjiovj14 ¢ E, and either viiovj45 € E or vjvq ¢ E.
5. If u —» (C,vj44) then T(vjq5,C) = 0.

6. If u—= (C,vj45) then e(vjis, vjvj10) = 0, and either vjvjio ¢ E or v 1044 ¢ E.

Proof: WLOG let j =1, so N(u,C) = {vy, v2, v4}.

1. True by Lemma 1.4.2.
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2. Because vsvouv,vsvg is a path of order six in C'+ u — vy.

3. Suppose u - (C,vy). Then vsvs ¢ E because vzvquvivgus is a path of order six in

C' + u — vy, and e(vs,v1v) < 1 for otherwise vgvsvuV4V5V6 18 a 6-cycle in C' + u — vs.

4. Suppose u - (C,vy). Then vsvs ¢ E because vsvuvivgus is a path of order six in
C' + u — vy, and either vsvg ¢ E or v1vs ¢ E for otherwise v3vgusviuvyvs is a 6-cycle in

C + u — v4.
5. Because v9v304uv1 06, U304uV201Vg, and v4u3v9uv1 Vg are paths of order six in C'+ u — vs.

6. Suppose u - (C,vg). Then e(vs,v1v3) = 0 because viuv9v3V4v5 and VvV UV4V5 are
paths of order six in C'+u—wvg. Either vjvz ¢ E or vavs ¢ E for otherwise vqv3040500u1

is a 6-cycle in C' + u — vg.
J

Lemma 1.4.11 Let C' = v;...v6v1 be a 6-cycle, and let u ¢ C with N(u,C) = {vj, 042,044}
for some 1 < j < 6. Then u — (C,v;) for eachi € {j+1,j+3,j+5}, and if u » (C,v;)

for some i € {j,j + 2,5 + 4}, then e(vy 11, vy45) + €(vyi1, vy45) + Vs, vy45) < 1

Proof: WLOG let j =1, so N(u,C) = {vy,vs3,v5}. The first statement is true by Lemma
1.4.2. Suppose that e(vq, v4) +e(va, vg) +€(vyg, v6) > 2. By symmetry, we may assume WLOG
that e(ve, v4v6) = 2. Then vgvov4v3uUV5VE is & 6-cycle in C' 4 u — vy, VgUaV4V5UV, Vg 1S & 6-cycle
in C'+ u — v3, and vguav vsuvvg is a 6-cycle in C' 4+ u — vs. This shows that © — C, and
thus completes the proof. Q

Finally, we consider the graphs C' + u when e(u,C) = 2 (see Figure 1.9). Note that if

N(u,C) = {v;, vx}, then u -+ (C,v;) since deg u = 1 in C' 4+ u — v;. Similarly, u - (C, vy).

Lemma 1.4.12 Let C = vy...v6v1 be a 0-cycle, and let uw ¢ C' with N(u,C) = {vj,vj41} for

some 1 < j < 6. The following statements are true.

1. If u - (C,vj42) then vj11vj13 ¢ E, and either vji1vj45 ¢ E or vjvjys ¢ E.
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Figure 1.9: The three possibilities for C' + u, when e(u,C) = 2.
2. If u—» (C,vj43) then vjovj44 ¢ E, and either vjuj g ¢ E or vj 400,45 ¢ E.
3. If u -+ (C,vj44) then vj3v,45 ¢ E, and either vji1vj13 ¢ E or vjiovjs ¢ E.

4. If u—» (C,vj45) then vjvjry ¢ E, and either vjvjio ¢ E or vj41044 ¢ E.

Proof: WLOG let j =1, s0 N(u,C) = {vy,va}.

1. Suppose that u - (C,v3). Then vovy ¢ E because vauvivgusvy is a path of order six
in C'+ u — v3, and either vovg ¢ E or vyvy ¢ E for otherwise vavgusv viuvy is a 6-cycle

in C'+ u — vs.

2. Suppose that u - (C,vy). Then vsvs ¢ E because vsvauvivgus is a path of order six
in C' 4+ u — vy, and either v1v5 ¢ E or vsvg ¢ E for otherwise vyvsvguzvauv; is a 6-cycle

in C'+u— vy.
3. True by Lemma 1.4.12-2 and symmetry.
4. True by Lemma 1.4.12-1 and symmetry.

3

Lemma 1.4.13 Let C = vy...v6v1 be a 6-cycle, and let u ¢ C with N(u,C) = {vj,vj1a} for

some 1 < 5 < 6. The following statements are true.
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1. u— (C,vj11).
2. If u—» (C,vj43) then vj V44 ¢ E, and either vjov;4 ¢ E o1 vj 41045 ¢ E.
3. If u-» (C,v14) then e(vjt1,vj43) + €(Vjt1, vjts) + e(vjy3, v45) < 1.

4. If u—=» (C,vjis) then vi1vj14 ¢ E, and either vjvjiq ¢ E or vi1v43 ¢ E.

Proof: WLOG let j =1, so N(u,C) = {v1,vs3}.
1. True by Lemma 1.4.2.

2. Suppose that u - (C,vy). Then vovs ¢ E because vavguv,vgvs is a path of order six
in C'+ u — vy, and either vsvs ¢ E or vvg ¢ E for otherwise vzvsvgvaviuvs is a 6-cycle

in C'+u— vy.

3. First suppose that e(vg, v4v6) = 2. Then vyvvgviuv3Vy 1S a 6-cycle, so u — (C,vs).
Now suppose that e(vy, vovs) = 2 or e(vg, vav4) = 2, and WLOG let e(vy, vovg) = 2.

Then vyvgvgv1uV3V, is a 6-cycle, so u — (C, vs).
4. True by Lemma 1.4.13-2 and symmetry.
4

Lemma 1.4.14 Let C = vy...v6v1 be a 6-cycle, and let uw ¢ C' with N(u,C) = {v;,vj43} for

some 1 < j < 6. The following statements are true.

1. If u » (C,vj41) then viiovj1g ¢ E, e(vj1o,vv,45) < 1, and either vjov;45 ¢ E or

vvjta & E.

2. If u—» (C,vj42) then vi V45 ¢ E, e(Vj41,0j43v,44) < 1, and either vj1v44 € E or

Vi35 & B

3. If u—» (C,vj44) then vj 1045 ¢ E, €(Vjy5,0j420543) < 1, and either vj1v43 ¢ E or

Vjravj5 & B
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4. If u - (C,v45) then vjovjy & E, e(vjia,vjvj41) < 1, and either vjvj0 ¢ E or

Vjt1Vjra & E

Proof: WLOG let j = 1, so N(u,C) = {v1,vs}. We will prove the first statement; the
others follow by symmetry. To that end, suppose that u - (C,v,). Then vzvs ¢ E because
V3V4uv VU5 s a path of order six in C'+u—1wv,, and e(vs, v1vg) < 1 for otherwise vgvgvsv UV V3
is a 6-cycle in C'+ u — vy. Finally, either vsvg ¢ E or vyvs ¢ E for otherwise vsvgvsvuvsv3
is a 6-cycle in C' 4+ u — v,. Qa

To bypass the repeated calculation of indices, Lemmas 1.4.6-1.4.14 will be listed for each
j€{1,2,...,6} in Appendix A.

Lemma 1.4.15 Let C be a 6-cycle and let x,y ¢ C with e(zy,C) > 8. If e(x,C) > 5, then

there exists z € C' such that x — (C, z) and yz € E.

Proof: Let C' = ajasy...aga;. If e(x,C) = 6 then the lemma clearly holds since z — C' and
e(y,C) > 2. If e(z,C) =5, then x — (C, a;) for four a; € C, so the lemma again holds since

e(y,C) >3>2=6—4. a

Lemma 1.4.16 Let C be a 6-cycle and let x,y ¢ C with e(xy,C) > 8 and e(z,C) > e(y,C).
Suppose that there does not exist z € C' such that x — (C,2) and yz € E. Then e(z,C) =
e(y,C) = 4, and there is a labeling of C such that either N(x,C) = {ay,as,as,a4} and
N(y,C) = {ay,as,a6,a1} or N(z,C) = N(y,C) = {a1, as, a4, as}.

Proof: Let C = ajasy...a6a;. By Lemma 1.4.15, e(z,C) = e(y,C) = 4. Since e(y,C) = 4,
x — (C, a;) for at most two a; € C. Then WLOG we have either N(x,C) = {ay, as,as,a4}
or N(z,C) = {ay,as,a4,as}. In the first case, z — (C,a;) for i = 2,3, so the lemma holds.

In the second case x — (C, a;) for i = 3,6, so again the lemma holds. O

Lemma 1.4.17 Let C be a 6-cycle and let x,y ¢ C with e(xy,C) > 9. Then there is

u,v € C such that x — (C,u) with yu € E and y — (C,v) with zv € E.
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a: a:
Figure 1.10: Lemma 1.4.18: If we relabel the graph on the right, we see that the ’useless’ edge
xay is replaced by the chord asay, yielding a cycle with more chords.
Proof: WLOG let e(x,C) > e(y,C). If e(x,C) = 6, then e(y,C) > 3, so x — C and
y — (C,v) for some v € C. The lemma holds in this case since e(y,C) > 1 and 2v € E. If
e(x,C) =5, then e(y,C) > 4, so x — (C, a;) for four a; € C' and y — (C, a;) for at least
two a; € C. The lemma again holds since e(y,C') > 3 and e(z,C) > 5. a
Often, if u — (C, a;) then the resulting 6-cycle C'+u — a; does not have the same number
of chords as C. Notation: If u — (C,a;) and 7(C+u—a;) > 7(C)+n, we write u — (C, a;).

We define uv = (C, a;a;) similarly.

Lemma 1.4.18 Let C be a 6-cycle and let x,y ¢ C with e(zy,C) > 8 and e(x,C) > e(y,C).
If there is no z € C such that x — (C,z) and yz € E, then there is 2/ € C such that

x#(C’,z’).

Proof: By Lemma 1.4.16, either N(z,C) = {ay,as,a3,a4} and N(y,C) = {ay4, as, ag, a1}
or N(z,C) = N(y,C) = {a1,as,a4,as5}. In the first case, y - (C,q;) for i = 1,2,3,4, so
T(azas,C) = 0. Hence x N (C,as). In the second case, y - (C,a;) for i = 1,2,4,5, so

7(agag, C') = 0. Hence z EN (C,a3). a

Lemma 1.4.19 Let C = ajas ... agay be a 6-cycle, and let u,v & C with e(uv,C) > 7. Then
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for some x € {u,v} and some a; € C, either v — (C,a;) and ya, € E for v #y € {u,v}, or

x5 (C,a;).

Proof: Suppose that there is no a; € C such that z — (C,q;) and ya; for x,y € {u,v}.
Then u - C and v » C, so e(u,C) < 5 and e(v,C) < 5. WLOG let e(u,C) > e(v,C).
Suppose that e(u,C) = 5, with uag ¢ E. By Lemma 1.4.5, either v — C or 7(ag,C) = 0.
Since e(v, C') = 2, this implies that 7(ag, C') = 0. Then u 3 (C,ag), as desired. Now suppose
that e(u, C') = 4.

Case 1: N(u,C) ={ay,a9,as,a4}. Since u — (C,aq;) for i = 2,3, we have N(v,C) C

{ag,as5,ag,a1}. If 7(ag,C) = 0 or 7(az,C) = 0, then u EN (C,ay) or u EN (C,a3) and
we are done, so suppose 7(az,C') > 1 and 7(a3,C) > 1. Since e(v,C) > 3, we know by
Lemma 1.4.6 that e(as,asas) = e(as,asag) = 0. Hence asay € E and aza; € E. Since
v -+ (C,a3) and v » (C,az), we have e(v,aqas) < 1 and e(v,aga;) < 1. But e(v,C) > 3, a
contradiction.

Case 2: N(u,C) = {ay,a9,as3,a5}. Since u — (C,q;) for i = 2,4,6, we have N(v,C) =

{ai1,as,as}. But then v — (C,as) and uay € E, a contradiction.

Case 3: N(u,C) = {ay,a9,a4,a5}. Similar to above, we have N(v,C) C {ay,as,aq4,as}.

Since u - C, by Lemma 1.4.8 we know that either 7(ag,C) = 0 or 7(as,C') = 0. WLOG let

7(ag,C) = 0. Then u 2 (C,ag), as desired. a
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Chapter 2

Foundational Lemmas

2.1  Getting Cycles from Paths

In this section, we introduce some simple lemmas that will be used throughout the paper.
These lemmas provide sufficient conditions - mainly in the form of a specific number of edges
between two paths - for a graph to contain some type of large cycle as a subgraph, as well

as information in the case that those sufficient conditions are not quite met.

Lemma 2.1.1 Let P = vyvyuzvy be a path of order four, and let u,v ¢ P. Suppose that
P+uv 2 Cs. Then

1. Ife(u, P) =4 then e(v, P) < 1.
2. If e(u,vivy) = 2 then e(v,v;v;11) < 1 for each 1 <i < 3.
3. If e(u, vivovy) = 3 then either e(v, P) < 1 or N(v,P) = {va,v4}. If e(u,v1v304) = 3
then either e(v, P) <1 or N(v, P) = {vy,vs}.
Proof:

1. Since e(u, P) = 4, P + u has the following paths of order five: vyuvovsvy, v1v9uV4V3,
V1UV4V3V2, Va1 UV3Vy, VoV U403, and vsvavuvy. Therefore e(v, v;u;) < 1 for each 4, j €

{1,2,3,4}, so e(v, P) < 1.

2. This is true because C = uvivvzvsu is a 5-cycle, and if a vertex v is adjacent to

consecutive vertices of a 5-cycle, then C' + v has a 6-cycle.

3. Since e(u, v1vav3) = 3, P+wu has the following paths of order five: vjuvvzvy, v1V2uV4V3,
V1UV4V3V2, VoV UV4Vs, and vzvev uvy. Therefore e(v, vv;) < 1 for each

(1,7) € {(1,4),(1,3),(1,2),(2,3),(3,4)}, soif e(v, P) > 2 then e(v, P) = e(v, vav4) = 2.
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Figure 2.1: Top: If the arrows are extended into edges incident with the endvertices, then a cycle
of length 5+ 6 = 11 is formed. Bottom left: A ’twisted’ 11-cycle. Bottom right: The same cycle,
but "untwisted’ by rotating the v; — vs path by 180 degrees.

3

The following lemma is a formal expression of the idea that if you take two paths and

join them together by their endvertices (Figure 2.1), then you get a cycle.

Lemma 2.1.2 Let P = vjvg...v, and Q = wjuy...u,. If e(uyug, viv,) > 3, then P+
Q O Cpiy. Further, if e(uiug, v1v,) = 2 and P + Q does not have a (p + q)-cycle, then

e(ur,v1vp) = 2, e(ug, v10y) = 2, e(uug, v1) = 2, or e(urug, vy) = 2.

Lemma 2.1.3 Let P = v1vy...v, be a path of order p > 6. Let v ¢ P with e(v, P) > 4.
Suppose that N (v, P) is not four consecutive vertices of P. Then either P + v has a large

cycle of length at most p, or e(v, P) =4, p==6, and N (v, P) = {v1,v3, 04,06}

Proof: Suppose that P+v does not have a large cycle of length at most p. Let ¢ be minimum
such that vv; € E. Then 1 < ¢ < p — 4. First suppose ¢ = 1. If vv; € E for some j with
5 < j <p—1, then vvjve...v;v is a cycle of length 6 < 57 +1 < p, a contradiction. Therefore
N(v, P) C {vy, va,v3,v4,v,}, and since N (v, P) is not four consecutive vertices of P, we know
that vv, € E. Since there is no large cycle of length at most p and e(v, P) > 4, it must be

the case that p = 6 and vve ¢ E. That is, it must be the case that N (v, P) = {vy, vs, v4, v6}-
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Figure 2.2: The graphs from Lemma 2.1.3 that do not contain large cycles of length at length at
most p.
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Figure 2.3: The graphs from Lemma 2.1.4 that do not contain large cycles. Five or six of the
dashed lines may be present. The graph on the left is a 'worst-case’ scenario, and will therefore
figure prominently in this paper.

Now suppose ¢ > 2. Since e(v, P) > 4 and v is not adjacent to four consecutive vertices of
P, we have vv; € E for some j with 1 +4 < j < p. But then vv,v,41...v;v is a cycle of length
6 <j—1i+ 2 < p,acontradiction.

3

Lemma 2.1.4 Let P = vjvy...v, be a path of order p. Let uyus € E with uy,us ¢ P and
e(ujug, P) > 5. Then either (1) P + ujus has a large cycle or (2) N(uy, P) = {b} and
N(ua, P) ={a,b,c,d} for a path abed or (3) N(uyuz, P) = {a,b,c} for a path abc.

Proof: Suppose that neither (1) nor (3) holds. Clearly, since (1) does not hold we have

e(u;, P) > 1 and e(ug, P) > 1. Let ¢ be minimum such that e(ujus,v;) > 0, and j be
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Figure 2.4: The resulting graph of Lemma 2.1.5. The only large cycle uses every vertex.

maximum such that e(ujuq,v;) > 0. WLOG let ugv; € E. Then ugvy, ¢ E for k > i+ 4, for
otherwise usv;0;11V;420;13 . .. Vpuz is a large cycle. Similarly, uyv, ¢ E for k > i+ 3. Since
(3) does not hold, j > ¢+ 3, so ugv; € E and j = i+ 3. By Lemma 2.1.2, e(uq,v;v;) = 0,

and by Lemma 2.1.1-2, e(uy, v;110;12) < 1. Thus (2) holds. Q

Lemma 2.1.5 Let P = vivy...v, be a path of order p > 5. Let ujuy € E with uy,us ¢ P
and e(uyus, P) > 5. Suppose that neither (2) nor (3) from Lemma 2.1.4 hold. If P+ ujus

has no large cycle of length at most p+ 1, then p =5, and (P + ujus is isomorphic to the
graph with) N(uy, P) = {vy,vs3,v4} and N(ug, P) = {vs,vs}.

Proof: By Lemma 2.1.4, P+u us has a large cycle, and by assumption that large cycle has
length p+2. Suppose that e(ujug, v1) = 0 or e(ujuz, v,) = 0, and WLOG let e(ujug, v1) = 0.
Then e(ujus, P — v1) > 5, so by Lemma 2.1.4 P + ujuy — v; has a large cycle. But then
P+ ujus has a large cycle of length at most p+ 1, a contradiction. Therefore e(ujuy, v1) > 1
and e(ujug,v,) > 1. We also know that e(u1,v1v,) > 1 and e(uq, v1v,) > 1, for otherwise
e(ug,v1v,) = 2 or e(uy,v1v,) = 2, which would yield a cycle of order p + 1. So WLOG
let wjv; € E and uov, € E. Since wjv; € E and P + ujup does not have a large cycle
of length at most p 4+ 1, we know that upv; ¢ E for 4 < j < p—1 and wv; ¢ E for
j > 5. Similarly, since usv, € E we have wyv; ¢ E for 2 < j < p—3 and uyv; ¢ E for
J < p—4. Then, because p > 5, N(uy, P) C {vy,v2,v3,v4} N {v1, vp_2,v,—1} and N(uq, P) C
{Vp, Vp—1, Up—2,Vp_3} N {v2,v3,v,}. Since e(ujuqg, P) > 5, this implies that p = 5. Therefore
N(uy, P) C {v1,vs,v4} and N(ug, P) C {vg,v3,v5}. Then e(uy,vsvy) + e(uz, vavs) > 3, so

either ujvy € E or usve € K. WLOG let uyvy € E. Since P + ujus does not have a 6-cycle
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and vov U V4VsUs 18 a path of order 6, we know that usvy ¢ E, which completes the proof.

3

Lemma 2.1.6 Let P and Q be disjoint paths with |P|+ |Q| > 7. Suppose that e(P,Q) > 6
and that P+Q does not contain a large cycle of order at most |P|+|Q|—1. Then e(P,Q) = 6,

and there is a labeling of P and @ such that one of the following is true (see Figure 2.6):
1. There are paths vy C P and abc C Q such that N(z,Q) = N(y,Q) = {a,b,c}.

2. There are paths xyz C P and abc C Q such that N(z,Q) = {a,b}, N(y,Q) = {a,b,c},
and N(z,Q) = {b}.

3. There are paths xyz C P and abed C Q) such that N(x,Q) = {b}, N(y,Q) = {a,b,c,d},
and N(z,Q) = {b} or {c}.

Proof: Let P = x129...2,, and Q = y192...y,. WLOG let m < n. By Lemma 2.1.3,

m > 2. If m =2 we get (1), via Lemma 2.1.4. Hence we may assume m > 3 and n > 4.

Case 1: m+n =17. We have m = 3 and n = 4. First suppose that e(ziz3,y1y4) > 3, and

WLOG let 1y, € E and z3y, € E. Then, since P + ) does not contain a 6-cycle, z1ys ¢ F,
x3ys ¢ E, and e(x9,11y4) = 0. Further, if x1yy € E then z3y, ¢ E and if x1y3 € F then
x3y1 ¢ E. Hence e(x123,Q) < 4, so e(x2,y2ys3) = e(x2,Q) > 6 —4 = 2. Then 21y, ¢ E and
x3y1 ¢ E, so x1ys € E and z3y; € E. But then x1y1y2x3y4ys11 is a 6-cycle, a contradiction.

Therefore e(z123,y194) < 2. Suppose that e(xix3,11y4) = 2. From the preceding para-
graph, we see that WLOG either e(z1,y1y4) = 2 or e(y1,x1x3) = 2. Then 27y, € E, and
either z1y, € Eor z3y; € E. lf 1y, € E, then e(xs, y1y4) = e(x3,y2y3) = 0 and e(x2, yoy3) <
1. But then e(P,Q) < 5, a contradiction. Thus x3y; € F, so {x1ys, x2ys, x3ys} N E = 0. If
z3y2 € E and x9ys € E, then xoysysr3y10179 is a Cg, a contradiction. Hence e(z129, y1y2) >
6 —2=4and z3y; € F, so xay3 ¢ E. Then e(x12923,y1y2) = 6, which yields (1).

Therefore e(z173,y1y4) < 1. Suppose that e(xixs3,1194) = 1, and WLOG let 21y, € E.
Then zoys ¢ E and z3y3 ¢ F, so e(ys, P) = 0 and e(x3,Q) < 1. If 23y, ¢ E then (1) holds,
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so suppose z3ys € E. Then e(xixs, y1y2y3) > 5. If e(x129,y3) = 2 then 1y ysx3xoysz is
a 6-cycle, a contradiction. Hence e(xixq,y1y2) = 4. If 21y5 € E then xoyi21y3y20322 s a
6-cycle, so zoy3 € E. This yields (2).

Hence e(z123,y194) = 0. Then e(xix3, y2y3) + e(xe, Q) > 6. If e(z2,y194) = 0 then (1)
holds, so suppose e(x2,y194) > 1. WLOG let 2oy, € E. If e(x2,Q) = 4 then (3) holds, so
suppose e(x, Q) < 3. If x3y3 € E then e(x1,y2y3) < 1, and if z1y3 € E then e(z3, y2ys3) < 1.
Thus, since e(x1x3,y2y3) > 3, we have e(x1x3,y2) = 2, e(22,Q) = 3, and WLOG zyy3 € E.

Since e(1,y2y3) = 2 and z2y; € E, we have e(xo, y1y2y3) = 3. This yields (2).

Case 2: m+n =28. First say m = 3 and n = 5. By Lemma 2.1.4 and Case 1, we may

assume that e(x1,Q) > 1, e(z3,Q) > 1, e(y1, P) > 1, and e(ys, P) > 1. Let d = [t — s| be
maximum such that y,z, € E and ysz, € E (see Figure 2.5). If d = 0 then y1y2ysysysxsy1
is a 6-cycle, and if d = 1 then y1y2y3y4ys52:25y1 is a 7-cycle. Since P + () does not have a
large cycle of length at most 7, this implies that d = 2, and WLOG that s = 1 and ¢t = 3.
Then e(z1,y2y3ys) = e(@2, y1y2yays) = e(xs,y1ysys) = 0, s0 e(P,Q) < 2+14+2 =15, a
contradiction.

So m =n = 4. As before, we may assume e(z;, Q) > 1 and e(y;, P) > 1 for i = 1,4. Let
d = |t — s| be maximum such that y;z, € E and yszy € E. Since P+ @ has neither a 6-cycle
nor 7-cycle, it is clear that d # 1 and d # 2. Suppose that d = 3 and WLOG let s = 1
and t = 4. Then e(z1,y2y3) = e(xa, y1y2ys) = e(x3, y1y3ys) = e(xyq,y2y3) = 0, so x1yy € E
and z3y, € E. But then ziyysysx3x0my is a 6-cycle, a contradiction. Therefore d = 0,
and WLOG s = 1 or s = 2. Suppose s = 1. Then by the maximality of d, y;x4 ¢ F and
ysxy ¢ E. Since e(xy, Q) > 1, either x4ys € F or x4y3 € E. If x4y € E then x4ysy; 21000324
is a 6-cycle, and if x4y3 € E then x4y3ysri2x00324 is a 6-cycle. This is a contradiction, so
s = 2. Again, either x4y, € F or x4y3 € E. But x40302y4y3y2 and x4x322y1y2y3 are paths of

order six, a contradiction.

Case 3: m+n > 9. For contradiction, let £ = m + n be minimal such that the lemma
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Figure 2.5: The cases d =0,d =1, and d = 2.

fails Suppose e(z;, Q) = 0 or e(y;, P) = 0 for some ¢ = 1,m, or some j = 1,n. WLOG
say e(z1,Q) = 0. Since P + @ has no cycle of length 6 < [ < k — 1, it is also true that
P + @ — x; has no cycle of length I. Therefore, since e(P — z1,Q) > 6 and k is minimal,
one of (1)-(3) holds. Hence one of (1)-(3) also holds in P + @, a contradiction. Thus
e(x;,Q)) > 1 for i = 1,m, and e(y;, P) > 1 for j = 1,n. Let d = |t — s| be maximum such
that y1zs € F and y,x; € E. Suppose that d = m — 1, and WLOG let s = 1 and t = m.
Then L = z129 ... Yy - .. 121 s a k-cycle. Since e(P, Q) > 6, L has a chord. By Lemma
1.4.1, L contains two cycles Ly and Ly such that {(Ly) + {(Lg) = k + 2 > 11. This implies
that L has a large cycle of length at most £ + 2 — 3 = k£ — 1, a contradiction. Therefore
d <m — 2. Since k > 9, we know that n > 5. Then C = y1ys...ypT:Ty+1...Tsy1 is a cycle of
length 6 <n+1<I[(C)<n+m—1=k—1, a contradiction. This completes the proof.

a

Lemma 2.1.7 If P and Q are paths of order 8 and 5 with e(P,Q) > 7, then P+ Q 2 Cs.

Proof: Let P = zixo13 and QQ = y1y2y3ysys. For contradiction, suppose that there is no
6-cycle. By Lemma 2.1.6, it must be the case that e(x1,Q) > 1, e(z3,Q) > 1, e(y1, P) > 1,
and e(ys, P) > 1, for otherwise there are at least seven edges between two paths P' and @’

with |P/| + |Q'| = 7. Since P + @ does not have a 6-cycle, we know that e(xq,y1y5) < 1.



28

Figure 2.6: In each graph, the top path is a subpath of a path P and the bottom path is a subpath
of a path @. If P and @ satisfy the conditions of Lemma 2.1.6, then P + () must contain one of
these three graphs as a subgraph. In the bottom graph, one of the two dashed lines is present.

Therefore, because e(y,1y5, P) > 2, we have e(yiys, z123) > 1. Thus by symmetry, WLOG
we can let x1y; € E. Then, since P 4+ @ does not have a 6-cycle, we know that x,y; ¢ F,
xoyy ¢ E, and z3y3 ¢ E. Since e(ys, P) > 1, we know that either ysxo € E or ysz3 € E.
First suppose that ysz3 € E. Then similar to above, we know that x3y; ¢ E, xoys ¢ E,
and x1ys ¢ E. Therefore e(x1,y2y4) + e(x2, y1ysys) + e(xs, yoys) > 7 — 2 = 5. Further,
since P + ) does not have a 6-cycle, we know by Lemma 2.1.2 that e(zizs, yoys) < 2.
Hence e(xs,y1y3ys) = 3, S0 Toysysysy2y122 = Cg, a contradiction. Thus ysxz ¢ E, so
Ysz2 € E. Then zoy1 ¢ E and e(z123,y2) = 0, 80 €(21, Ysya) + €(2, y2y3) + €(3, y19a) = 5.
Further, by Lemma 2.1.2 it is not the case that z;y3 € F and x3y; € E, so we have

e(ys, r123) = e(T2,y2y3) = 2. But then z1y1y222y3y421 = Cg, a contradiction. Q

Lemma 2.1.8 Let P = xi1x903 and QQ = Y1y ...y, be disjoint paths, with n > 5. If

e(r1x3,Q) > n, 1y € E, and x3y, € E, then P+ Q 2 Cs.

Proof: For contradiction, let k£ be minimal such that the lemma is not true. Let P = z1x213

and Q) = y1y2...yr be disjoint paths with =1y, € E, z3y, € F, and e(zy23,Q) > k, and
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assume P+Q 2 Cg. If k = 5 then e(x123,y3) = 0, 21y5 ¢ E, x3y1 ¢ E, and e(z123, yo2ya) < 2.

But then e(zix3,Q) < 4, a contradiction. Hence k > 6.

Case 1: x1y2 € E. By the minimality of k, z3y, € F, for otherwise e(xix3,92...yx) > k — 1

and so P+ @ 2 Cs. Therefore x1y3 ¢ F, and since e(z1, y1y2) = 2 we also have e(x1, ysys) =
0. Further, since z3y; € E we have x3ys ¢ E, and since e(x1, y1y2) = 2 we have e(x3, y3ys) =

0. Hence e(x123, Y1y2ysysysys) = e(1,v1y2ya) + €(x3,y1y2ys). Because e(xs, yoys) < 1

i

and because if x1y, € E then e(xs, y2y6) = 0, this implies that e(xix3, y1y2y3y4ysys) <
Therefore, since e(xix3, Q) > k, we have k > 8 and if &k = 8 then e(xix3,yrys) = 4.
Suppose k = 8. Since e(x1,y7ys) = 2 we know that x1yy ¢ F and z3ys ¢ E. Therefore
e(r123,y1y2) = 4. But then z1y1y223ysy7x1 = Cp, a contradiction. Hence k > 9.

Because e(xri23,91...y6) < 4, we have e(zi23,y7...yx) > k — 4. Then x1y; € E for
some 7 < j < k, so let 5 > 7 be minimal such that z;y; € E. Suppose j = 7. Then
by the minimality of k& and because e(zyz3,y7...yx) > k —4 > k — 6, we know that
k —6 < 4, for otherwise P + () 2 (4. This implies that & = 10, because otherwise
T1Y7YsYorsrax1 = Cg. Then x1y; € E and wz3y10 € E, so x3y9 ¢ E and x1ys ¢ E.
Therefore, since e(xixs, yrysyoyro) > 10 — 4 = 6, we see that x1ygyi0z3ysyrz1 = Cp, a
contradiction. Thus j > 8. By the minimality of j, e(z1,y7...y;—1) = 0. Therefore
e(x1z3,yj...yx) > (k—4) —(j—7) = k—j+3. Hence j < k — 1, and by the mini-
mality of k£ we must have (k — j+ 1) < 4, because y; ...y is a path of order k — j + 1 with
r1y; € EFand x3y, € B, Thus bk —12> 75>k — 3.

If £ =9 then e(xyx3,y7ysyo) > 5, so by the minimality of j we have e(xix3,ysyy) = 4
and z3y; € E. But then zixox3y7ysy9x1 = Cg, a contradiction. If & = 10 then x3y,0 € F
so 11ys ¢ E, which means that e(zyx3, yoy10) > 6 — e(x1x3,y7ys) = 6 — e(x3, yrys) > 4.
But then x1y9 € E and z3y; € E, a contradiction. Therefore £ > 11. Since j > k — 3,
by the minimality of j we know that e(x1,y7...yx—4) = 0. Thus e(z123,Yp—3...yx) =
e(r1x3,y7 ... yk) — e(x123,y7 ... yk—g) > (kK —4) — (kK — 10) = 6. It is easy to see that this

implies P + Q) O Cg, a contradiction.
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Case 2: x1y2 ¢ E. Since P+ Q 2 Cs, we know that z3y,_4 ¢ E and z3y; ¢ E. Therefore

e(x1,Q) > k — (k—2), so let j > 3 be minimal such that z1y; € E. Suppose j < k — 4.
Then y; ...y, is a path of order at least five, so by the minimality of & we must have
e(r1zs,y;...yx) < k—j. Then e(z123,y1...y;-1) > j, so by the minimality of j we have
e(xs,y1...yj—1) > j—1. Since x3ys ¢ E, this implies that j = 3. But then z1ysy2y1 232221 =
Cs, a contradiction. Therefore j > k—3, so e(x1,ys ... yg—a) = 0. Since P+Q 2 Cg, we have
e(r123, Yk—3Yrp—1) < 2, e(x123, Yk—2yx) < 2, and e(x3, ysyr—4) = 0. Thus e(x3, 41 ... Yp—5) >

k—1—4=Fk—5and k < 7. It is easy to see that P+ () O Cg, so the proof is complete. 0

Lemma 2.1.9 Let P = x1x5...x, be a path of order n > 6. Let u,v ¢ P with wv ¢ E and
e(uv, P) > n+ 1. Suppose that e(u,z1x,) = 2, and that if ur; € E then v,y ¢ E. Then

P+ uv D Cs.

Proof: Suppose not. Let k£ be minimal such that the lemma fails. It is easy to see that
k > 7. Let ¢ > 2 be minimal such that ux; € E.

Suppose that i < k —4. Since uzy € F and P +uv 2 Cg, we know that ¢ < k — 5. Then
x; ... T is a path of order k—i+1 > 6 and e(u, x;x;) = 2, so by the minimality of k£ we have
e(uv,z;...x) < k—i+1. Thus e(uv,zy...2;_1) > (k+1) — (k—i+ 1) =4, and by the
minimality of 4 this implies that e(v,x;...2;-1) > ¢ — 1. But then ux; € E and vz, € E,
a contradiction.

Hence i > k — 3. Suppose that e(uv,xg_3...x,) > 5. Since uzxy € E, vry_1 ¢ E, so
e(u, Tp_3Tp_oTkp—1) + €(v, Tp_3Tp_owr) > 4. Also, e(u,xp_oxp_1) + e(v, Tp_325_2) < 2, SO
ury_3 € E and vry, € E. Then vy 4 ¢ E, and uzr,_4 ¢ E by the minimality of i. This
argument shows that e(uv,xg_4...x,) < 5, which implies that e(uv,x;...xx_5) > k — 4.
Hence, by the minimality of i we know that e(v,z; ... z4—5) = k — 5. Since P +uv 2 Cq, we

see that k£ < 9. It is easy to check that P + uv O Cg, a contradiction. QO



31

2.2 Getting Smaller Cycles from Larger Ones

In this section, we show that if C' and L are disjoint cycles with lengths p and ¢, where
qg>p>6with g > 7, and if e(C, L) > %, then (i) if p > 7, then either C' + L contains
a 6-cycle or C'+ L contains two disjoint large cycles C' and L' with I[(C") + (L) < p+ ¢,
and (ii) if p = 6, then C' 4 L contains disjoint large cycles C’ and L' such that {(C") = 6
and [(C") + I(L') < p+ g. This result is proved by Lemmas 2.2.5-2.2.7. Lemmas 2.2.2-2.2.4
will serve the proof of Lemma 2.2.5. We begin with a simple result concerning the number

of edges between a vertex and a large cycle.

Lemma 2.2.1 If L = vjvy... 001 is a cycle of order p > 7 and v ¢ L with e(v,L) > 3,
then either L + v has a large cycle C with I(C) < p, or e(v, L) = 3 with v adjacent to three

consecutive vertices of L.

Proof: Suppose L + v does not have a large cycle with length less than p. WLOG let
vy € E. If vuy € E then vugvs...vp010 s a cycle of length p — 1. If vv; € E for some j with
5 < j < p—2, then vvyv,...v;v is a cycle of length 6 < j+ 1 < p — 1. Hence vv; ¢ E for
je{4,5,....,p—2},s0 N(v,P) C {v1,v9,v3,0p_1,0,}. If vv5 € E, then vuvgvs...v,_; is a path
of order p — 1, so vu,_; ¢ E. Similarly, if vvs € E then vv, ¢ E. Further, e(v,vsv,_1) < 1,
for otherwise vv,_1v,v109v30 = Cg. Therefore, since e(v, P) > 3, it is easy to see that v is

adjacent to three consecutive vertices of L. o

Lemma 2.2.2 Let L = x125... 2701 be a 7-cycle, and let P = ajasaszay be a 4-path with
P and L disjoint and e(ay, L) > e(ayq, L). Let u ¢ L+ P with e(u,L) = 7, and suppose
that L + P + u does not contain 2Cs. (1) If e(ay, L) > 5, then either e(as, L) = 0 or
e(ar, L) =5, e(aq, L) = 1, and the neighbor of ay in L is adjacent to the nonneighbors of a;
in L. (2) If e(ay, L) = 4, then either e(ay, L) < 1 or (P + L is isomorphic to the graph with)
N(ay, L) ={2,4,6,7} and N(a4, L) = {2,4}.
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Figure 2.7: Lemma 2.2.2: The graph L+ u — z,z,4; (left) has a 6-cycle, so the graph P+ x,x,41
(right) cannot have a 6-cycle.

Figure 2.8: Lemma 2.2.2: If ayx, € F, then e(ay, z,—12,41) = 0.
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Figure 2.9: Lemma 2.2.2: The only scenario in which e(a;, L) = 4 and e(aq, L) = 2. Left: ay4
cannot be adjacent to any of the white vertices. Right: a1 cannot be adjacent to any of the white
vertices.

Proof: Since e(u,L) =7, L +u — z,x,11 2 Cg for each x, € L. Hence for each x, € L,
P + z,z,41 does not have a 6-cycle. First suppose e(a;, L) > 6. Then every vertex in L
has a neighbor in N(ay, L), so e(ay, L) = 0, for otherwise x,11a1a0a3042,2,41 is a 6-cycle
for x, € N(a4,L). Now suppose e(ay, L) = 5 with z;,2; ¢ N(ai,L). WLOG there are
three possibilities for the set {i,7}: {1,2}, {1,3}, and {1,4}. If every vertex in L has a
neighbor in N(aq, L), then as above we get N (a4, L) = 0. Thus if e(ay, L) > 1 we must have
{i,7} = {1, 3}, with x5 the only nonneighbor of N(a;,L). Hence e(ai, L) =5, e(aq, L) = 1,
and the neighbor of a4 is adjacent to the nonneighbors of a;. Finally, suppose e(ai, L) = 4.
There are four possibilities for the nonneighbors z;, z;, x; of a1: {i,7,k} = {1,2,3}, {1,2,4},
{1,2,5}, or {1,3,5}. For the first three cases there is at most one nonneighbor of N(ay, L):
Ty in the first and 23 in the second, with none in the third. Thus if e(as, L) > 2, then

N(ai, L) ={2,4,6,7} and N(aq, L) = {2,4}. o

Lemma 2.2.3 Let L = x1x5... 2721 be a T-cycle, and let P = ajasaszay be a 4-path with P
and L disjoint and e(ay, L) > e(ayq, L). Let u ¢ L + P with e(u, L) = 6, and suppose that
L + P + u does not contain 2Cq. If e(ay, L) > 6, then either e(as, L) < 1, or e(aq, L) = 2,

N(ay, L) = N(u, L), and the nonneighbor of a1 and u is adjacent to both neighbors of ay.

Proof: WLOG say e(u, L — x7) = 6. Then L+ u — z,2,,1 2 Cg for r = 2,3,4,6,7, so
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Figure 2.10: Lemma 2.2.3: The only 6-cycles using the path P are ajasasasxgrsa; and
ajasa3a4x1T2a1, and neither rsxg nor r1xo are in F.

for each such r, P + x,x,,; does not have a 6-cycle. Let F' = {xows, X314, 425, TeX7, T721}
be the set of edges z,x,41 such that L +u — 2,2,41 2 Cs. Then for each z;z; € F, if
a1z; € E then ayx; ¢ E and if ayz; € E then aqx; ¢ E. Suppose e(ay, L) > 2. Then clearly
e(ay, L) = 6, for otherwise we have ayz; ¢ E for each z; € L. Let ayjx), ¢ E. It is easy to
check that if & = 4,5,6, then e(ay, L) < 1, so by symmetry we must have a;x; ¢ E with

N(ag, L) = {x1, x4} Q

Lemma 2.2.4 Let L be a 7-cycle and let P = ajas . .. as be a 5-path with P and L disjoint.

Let u ¢ L+ P with e(u,L) > 6. If L+ P + u does not contain 2Cs then e(aias, L) < 7.

Proof: Since e(u,L) > 6, L + u — x, 2 Cg for each z,. € L, so P + x, does not have a

6-cycle. Hence e(z,,aja;5) < 1 for each x, € L, which means e(ajas, L) < 7. Q

Lemma 2.2.5 Let L be a cycle of length 7 and let C' be a cycle of length 6. If e(C, L) > 25,

then C + L contains two disjoint 6-cycles.

Proof: Suppose that the lemma is not true. Let L = z1...2721 and C = a;...aga;.
WLOG let e(ay, L) > e(a;, L) for each a; € C. Since e(C,L) > 25, e(a;, L) > 5. Let
ie{l,2,...,6}andr € {1,2,...,7}. If L+a;—z,x,41 contains a 6-cycle then C'—a;+x,x, 11

does not have a 6-cycle. Therefore, by Lemma 2.1.6 we know that

e(r,xq1,C —a;) <6 (2.1)
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Figure 2.11: Lemma 2.2.5, Case 1.1
for each ¢ and r such that L + a; — x,x,,1 contains a 6-cycle.
We use cases based on the number of edges from a; to L to complete the proof of this

lemma. In each case, we will rely on (2.1). We will use Lemma 2.1.6 to give us information

about the edges between x,z,1 and C' — a;.

Case 1: e(ay, L) = 7. Since L + ay — x,x,41 2 Cg for each 1 < r < 7, we have e(x,z,,1,C —

a;) < 6 for each r by (2.1). If e(x,z,41,C — a1) < 5 for each r, then e¢(C,L) < 7 +

ot

)

(2) = 2 < 25, a contradiction. Thus WLOG say e(z122,C — a;) = 6. By Lemma 2.1.6,
N(z129,C — a1) = {a,, ary1, ary2} for some 2 < r < 4. By symmetry, we need only consider
the cases r =2 and r = 3.

Case 1.1: N(zy29,C — ay) = {ag,as,as}. Since zyas € E, we know that xsas ¢ E, for

otherwise C' — a; + xoxws has the 6-cycle zoasazasasxsrs. Similarly, z3a¢ ¢ E because zoa3 €
E. By symmetry, e(z7,asa) = 0 since e(x1,aza3) = 2. Suppose that e(xs,asazay) =
e(x7,azasay) = 0. Then e(z3,C) = e(z7,C) = 1, e(x129,C) = 8, and e(z4x5,C) < 8, so
e(xg, C') > 25 — 18 = 7, a contradiction. Thus either e(z3, asazas) > 0 or e(x7, asazay) > 0.
WLOG let e(x3,asasas) > 0. If z3a9 € E or x3a4 € E then z1x9x3 + agaszay contains a
6-cycle by Lemma 2.1.2; since e(x1,azsay) = 2. If z3a3 € F, then z12923 + asagay contains
the 6-cycle z3agasxiasrsxs. Since e(xs, asazays) > 0, this implies that zixox3 + azazay 2 Cg,
and hence that asaga; + 4520627 does not have a 6-cycle.

Let P = asaga; and QQ = xyx5w677. Since e(ai, Q) = 4, we know that e(asaq, Q) < 2
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I

Figure 2.12: Lemma 2.2.5, Case 2: The graphs L + a1 and L + a1 — x3x4.

by Lemma 2.1.6. Further, since e(a;,Q)) = 4 we actually know that e(asaq, Q) < 1, for
otherwise e(P,Q) = 6 and P + @ contains none of the graphs in Figure 2.6 as a subgraph.
Since e(asag, x122) = 0 and e(asag, v3) = 0, this means that e(asazaq, L) > 25—-1-7 = 17. If
e(ag, L) > 6 ore(as, L) > 6, then e(ay, L) < 1 by Lemma 2.2.2 or Lemma 2.2.3, since ayasaga;
is a 4-path. But then e(agaszay, L) < 1+ 14 = 15, a contradiction. Hence e(asas, L) < 10,
so e(ay, L) = 7. Then ajasasai;xyxrsay is a 6-cycle, so e(asas, L — x3ry) < 6 by Lemma
2.1.5. Since e(agas, L) = 10, e(agas, xsry) = 4. But then asazrsrszrsrias is a 6-cycle and
a4a506a1 52604 1S a 6-cycle, a contradiction.

Case 1.2: N(xy29,C — ay) = {as,aq,a5}. Since C' — a; + xox3 does not have a 6-cycle

and C' — a; + z7x; does not have a 6-cycle, e(xsxy,azag) = 0. Suppose e(xs,azasas) >
0. Then xjx9x3as5a4a3 2 Cpg, S0 T4T5TeT7a6a1a2 does not have a Cg. Since e(ay, L) = 7,
e(agag, T4r5x6x7) < 2 by Lemma 2.1.6. Then e(aqag, L) < 2, so e(azaqas, L) > 25—2—7 = 16.
If e(as, L) > 6 or e(as, L) > 6, then e(as, L) < 1 by Lemma 2.2.2 or Lemma 2.2.3, since
ajasazay and agasaga, are 4-paths. Then e(azagas, L) < 1+ 14 = 15, a contradiction.
Therefore e(agas, L) < 10, so e(ay, L) > 6. But then since asagajasas is a 5-path, we have
e(asas, L) < 7 by Lemma 2.2.4. This is of course a contradiction, since e(agasas, L) > 16.
Hence e(x3, C') = 1, and by symmetry e(z7, C') = 1. But then e(zg,C) > 25—-1-1-8-8 =17,

a contradiction.
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Case 2: e(ay, L) = 6. WLOG let ayz7 ¢ E. Then L+ a; — z,x.11 2 Cg for r = 2,3,4,6,7,

so e(x,xr41,C —ay) <6 for r=2,3,4,6,7 by (2.1).

Claim: e(xoxs, C — ay) <5 and e(xyx5,C —ay) < 5.

Proof: Suppose not. By symmetry, we may assume that e(zoz3,C — a;) = 6. As in Case 1,
we have two cases to consider.

Case A: N(zoz3,C — a1) = {as, az,as}. Since C' — ay + x3z4 does not have a Cg, we have

e(xy,asa6) = 0. Suppose e(x4,azazay) > 0. Then asazasrsxsry O Cg, SO a5a601T5T6T72
does not have a 6-cycle. Since e(ay, z5x6x1) = 3, this implies that e(asag, x5x62771) < 2.
Then e(asag, L) < 2, so e(agazay, L) > 25 —2 — 6 = 17. Since e(a;, L) < 6 for each a;, we
have e(agasz, L) > 11. Since ajasaga; is a 4-path and e(ay, L) = 6, by Lemma 2.2.3 we know
that e(aq, L) < 2. But then e(agas, L) > 15, a contradiction. Hence e(xy, asazay) = 0, so
e(xy,C) = e(xy4,a1) = 1.

Suppose that e(x,asazas) > 0. Then asagaizsrsrexr; does not have a 6-cycle, so
since e(ay, z4x576) = 3 we have e(asag, x5x627) < 2 and e(asag, xex7) < 1. Then since
e(zy,asa6) = 0, we have e(asag, L) < 2+ 2 = 4. Then e(asazay, L) > 25 — 4 — 6 = 15.
By Lemma 2.2.3 we know that e(as, L) < 5 and e(as, L) < 5, as above, for otherwise
e(agazay, L) < 6+ 2+ 6 = 14 < 15. Suppose e(asag, v125) = 3. Then asagrsrerrry 2 Cp
and ajxoxsasazasa; is a 6-cycle, a contradiction. So e(asag, v1x57677) < 2+ 1 = 3, and
hence e(agasay, L) > 25 —3 — 6 = 16. Then e(ayq, L) > 16 — 10 = 6, and e(asag, L) = 3 with
e(asag, v175) = 2 and e(asag, ver7) = 1. Since asaga;rsxs52627 does not have a Cq, agrg € E.
Since e(aq, L) = 6 and e(x4,C) = 1, we also know that ayz; € E. But then ayasazrsxsryay
and ajasagrerrriay are 6-cycles, a contradiction. Therefore e(xy, asazays) = 0, so e(x1,C) <
3.

So e(z1,C) > 3 and e(xy4,C) = 1. Since e(z2x3,C —ay) < 6 and e(zgzr7, C —ay) < 6, and
a1x7 ¢ E, we have e(z5,C) >25—-3—1—-8—7 = 6. But then C +x5—ay and L — 2425+ a1

contain 6-cycles, a contradiction.
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Case B: N(zox3,C — ay) = {as, a4,as}. Since C' — ay + x324 does not have a Cg, we have

e(xy4, azag) = 0. Suppose that e(xy, agagas) > 0. Then azasasroxsry O Cg, SO aa1AT5TeT72
does not have a 6-cycle. Since e(ay, z1x526) = 3, this implies that e(asag, x5x67771) < 2.
Then e(asag, L) < 2, so e(azagas, L) > 25 —2 — 6 = 17. Then e(azas, L) > 17— 6 = 11,
so since ajasazay and agasaga; are 4-paths we have e(ay, L) < 2 by Lemma 2.2.3. But then
e(asag, L) > 17 — 2 = 15, a contradiction. Hence e(x4,C) = 1. Since L + a1 — x4x5 has a
6-cycle, C'+ x5 — ay does not have a 6-cycle, so e(xs,C) < 5. Since e(xax3,C —a;) < 6 and
e(xgrr, C' — ay) < 6, we have e(L — x1,C) <145+ 8+ 7 = 21. Hence e(x1,C) > 4.
Because e(x1,agagas) > 0, agaiasxsrsrery does not have a Cy. Since ayzy € F, this
implies that e(z7, asag) = 0. Since L+a;—x4x5 and L+ay —xgx7 have 6-cycles, e(zs, asag) < 1
and e(zg, asag) < 1. Since ajasagairsrsay and agasasa;xyrsay are 6-cycles, asasxersry Ty
and asagrer7r1T2 don’t have 6-cycles. Because azrs € E and asxy € FE, this implies that
e(xg,aza6) = 0. Then e(asag, L) < 1+ 2 = 3, so e(asasas, L) > 25 —3 —6 = 16. Then
by Lemma 2.2.3 e(as, L) < 5 and e(as, L) < 5, for otherwise e(azasas, L) < 6 +2+6 =
14 < 16. Hence e(ay, L) = 6, e(asag, x1) = 2, and e(agag, v5) = 1. Since agzy ¢ E, we know
that ayx7; € E. Then x7xia4a5a6a; and x7xia4a3a2a7 have 6-cycles, so asazroxsryrs and
agasror3x4x5 do not have 6-cycles. But since e(xq, agas) = 2, this implies that e(zs, asag) =

0, a contradiction.
QED

By the claim, we have e(xox3,C —ay) <5 and e(xyx5,C —ay) < 5. Then e(xgrrzy, C —
a)>19—-5-5=0.

Suppose e(xgr7, C' — ay) = 6. Then e(z1,C — ay) > 3. If N(zex7,C — ay) = {ag, a3, a4},
then e(x,asa6) = 0 since C' — a; + z7x; does not have a 6-cycle. Then xja4 € E, so
rexrrriasasay 2 Cg, which means asagairorsrsrs does not have a 6-cycle. Since
e(ay, xaxsryrs) = 4, by Lemma 2.1.6 we know that e(asag, zoxszszrs) < 1. Then e(asag, L) <
1, so e(asazay, L) > 25 —1—6 = 18. Then e(as, L) = 6, so e(agas, L) < 7 by Lemma 2.2.4,

a contradiction. Then N(x¢z7, C' — a1) = {as,a4,as5}, so e(xy,asag) = 0. Then zia5 € E
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since e(x1,C' —ay) = 3, so xgxrriazasas 2 Cg. Then xoxsrirsasaias does not have a 6-cycle
and e(ay, xoxsrazs) = 4, so e(asaq, xaxsryrs) < 2 by Lemma 2.1.6. Thus e(agag, L) < 2, so
e(asagas, L) > 25—2—6 = 17. Then e(ag, L) = 6 or e(as, L) = 6, a contradiction by Lemma
2.2.3 since aqasaga; and ajazasay are 4-paths and e(agq, L) > 5.

Therefore e(zgr7, C —ay) < 5, and by symmetry e(z7z1,C' —ay) < 5. Since e(xgrrx1, C —
ap) > 9, this implies that e(x7,C'—ay) < 1, e(z,C'—ay) > 4, and e(x1,C' —ay) > 4. Further,
because L+ay —x7x1 2 Cg and L+a;—x6x7 2 Cg we know that e(z, C—ay) = e(z1,C—ay) =
4 and e(x7,C —ay) = 1, and that e(xq, asag) = e(xg, asag) = 1. Then e(z1x6, azasas) = 6, so
e(x7,azag) = 0 because otherwise x7xyasa4a3a2x7 is a 6-cycle or xrxgazasasagry is a 6-cycle,
a contradiction since L + a1 — z72; 2 Cg and L + a1 — z¢z7 2 Cg. Since r1T7x60304a5%1 1S
a 6-cycle, agajasxaxsryrs does not have a 6-cycle. Because e(aq, rowszsxs) = 4, this implies
that e(agag, rorsrszrs) < 2 by Lemma 2.1.6.

Because e(asaq, r176) = 2 and e(asag,x7) = 0, we have e(asag, L) < 4, and hence
e(asasas, L) > 25—10 = 15. By Lemma 2.2.3, e(as, L) < 5 and e(as, L) < 5, so e(aq, L) > 5.
Since e(zy1x6, azas) = 4, vr1 — (C,a4) and ¢ — (C,a4). Then L + a4y — 1 and L + a4 — x4
do not have 6-cycles, so e(ay, xer2) < 1, e(aq, r125) < 1, and e(aq, z3z7) < 1. But then

e(ay, L) < 4, a contradiction.

Case 3: e(ay, L) = 5. By symmetry, there are three cases for N(ay, L), which we consider

presently.

Case 3.1: e(ay, z¢r7) = 0. In this case L+ay — x,2,41 2 Cg for r = 2, 3,6, so e(zyz3,C —

ar) <6, e(xsry, C —ay) <6, and e(xgry,C —ay) <6 by (2.1).

Claim: e(xoxs, C' —ay) <5 and e(xzxy,C —ay) < 5.

Proof: Suppose not. By symmetry, we may assume that e(xsx3, C' —a;) = 6. As in Case
1, we have two cases to consider.

Case A: N(zq9z3,C — a1) = {az, a3, as}. We have e(xy, asag) = 0 because L+ a; —x324 2
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Cs. Suppose e(xy, asazay) > 0. Then asagairsrerrr; does not have a 6-cycle, so because
e(ay, x5x1) = 2 we know that e(as, x5xez721) < 2 and e(ag, rsrer7r1) < 1. Thus e(asag, L) <
1+ 2 = 3. Then e(asazay, L) > 25 — 5 — 3 = 17, a contradiction as e(a;, L) < 5 for each
a;. Hence e(xy,C) = 1. Then e(z125,C) > 25 — e(x23,C) — e(x4,C) — e(xgx7,C) >
25 —8—1—6=10, so e(zy,C) > 4. Since e(x1, azazay) > 0, asaga;r4x5x6T7 does not have
a 6-cycle. Then, because e(ay, z4x5) = 2, we have e(as, r5z627) < 1 and e(ag, x5x677) < 2.
Hence e(asag, L) < 1+2+2 =5. If e(asaq, L) = 5 then e(asaq, x1) = 2, e(ag, x526) = 2, and
asrs € E. Then asagrixrr6r505 and ajasasasrsrsay are 6-cycles, a contradiction. Hence
e(asag, L) < 4, so e(asagay, L) > 25 —5 — 4 = 16, a contradiction since e(a;, L) < 5 for each
a;.

Case B: N(zox3,C — ay1) = {as, as, as}. In this case e(z4, azag) = 0. Suppose

e(xy4,asasas) > 0. Then agajasrsrexrrzry does not have a 6-cycle, so e(asaq, x5xe2771) < 2
because e(ay,z1x5) = 2. Then e(asas, L) < 2, so e(azasas, L) > 25 —5 —2 = 18, a
contradiction. Hence e(z4,C) = 1, s0 e(21,C) > 25—8—6—1—6 = 4. Thus e(z1, azasas) > 0.
Then z4x5x677060109 does not have a 6-cycle, so e(x7, asag) = 0. If {506, x6a6, x6a2} C E,
then z4xsaszsasaiy is a 6-cycle, a contradiction. Thus e(asaq, x5x6) < 3, so e(agag, L) <
3+2 = 5. Since e(ajazaqas, L) < 20, e(azag, L) = 5, so e(aqag, v526) = 3 and e(asaq, x1) = 2,
with x5as € E.

Then zyz2a5a4a3a271 is a Cg and agar3x42576 1S a 6-path, so agrg ¢ E, which means
zsag € F and wgas € E. Suppose that e(z7,asay) = 0. Then, since e(x7,a1a2a6) = 0, we
have e(x7,C') < 1. Since e(zg,arag) = 0, this implies that e(zy25,C) >25—-4—-1—-1-8 =
11. Then e(zyz5,asas) > 3, so asagrsrerrr; 2 Cg. But xoxsasazasaizs is a 6-cycle, a
contradiction. Thus e(x7,azay) > 1, S0 a3a4T3T2T1T7a3 OF A4a3T3T2T1T7a4 1S a 6-cycle,
which means asaga;asrsrs does not have a 6-cycle. Since e(aq, x5x6) = 2, this implies that
e(as, x5xg) = 0. Therefore e(azaqas, L) < 14, since z4a5 ¢ E. Then e(C, L) < 14+5+5 = 24,

a contradiction.

QED
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By the claim, we have e(zx3,C — a;) < 5 and e(x3zy,C — a;) < 5. Suppose that
e(xexr,C — ay) = 6. First say N(zg,x7,C — a1) = {ag,a3,a4}. If e(x1,aza3aq) > 0, then
rer7riasazay 2 Cg. Then asagaxaxsryrs does not have a Cy, so because e(ay, rox3xyws) = 4
we have e(asag, xoxsrsrs) < 1 by Lemma 2.1.6. Then e(asag, L) < 3, so e(agasay, L) >
25 — 3 — 5 = 17, a contradiction. Thus e(z1,C) < 3, and by symmetry e(z5, C') < 3. Then
e(ry,C) >25—-6—-T7—6=206,s0 x4y — C. But L — x4+ a; 2 Cg, a contradiction. Hence
N(zg,27,C — ay) = {as,aq,a5}. If e(x1,a3aqa5) > 0 then agajasrorsrsxrs does not have
a 6-cycle. Since e(ay, xoxsryzrs) = 4, this implies that e(agag, L) < 2+ 2 = 4 by Lemma
2.1.6. But then e(agaqas, L) > 25 — 4 — 5 = 16, a contradiction. Then e(z;,C) < 3, and by
symmetry we have e(xix5,C') < 6. But then again we have e(z4,C) >25—-6—-7—6 =06, a
contradiction. Therefore e(zgx7,C' — ay) < 5.

Since L + a1 — z3x4 2O Cg, e(xy,a2a6) < 1. Suppose that e(z4,C) = 5, and WLOG
say e(xy,C — ag) = 5. Then because C' — a; + x3x4 does not have a 6-cycle, we have
e(xs, azasag) = 0 and e(x3, azay) < 1. Suppose that e(zy, azas) > 0. Then since e(xy4, azas) =
2, xowsreazagas O Cq. Because e(ay, x1x5) = 2 and agajasrsrexrrr; does not have a 6-cycle,
e(asag, T5rer7r1) < 2. Since x9 — (C,a;) we have e(xs,asa6) < 1. Then e(asag, L) <
2+ 1+4+1=4,so e(agaqas, L) > 25 —5 — 4 = 16, a contradiction. Thus e(zs, azas) = 0.

Suppose that e(xg,asaq) = 2. Then xoxsryasazay O Cg since e(xy,azay) = 2, so
r5rer7r1a506a1 does not have a 6-cycle. Since e(ay, x1x5) = 2, this implies that e(as, xex7) =
0, e(ag, zez7) < 1, e(as, x5x1) < 2, and e(ag, v521) = 0. Hence e(asag, L) < 3+ 3 = 6, since
zqas ¢ E and e(xs,asag) = 0. Suppose e(as, x5x1) = 2. Since zsrerrriasasa; 2 Cs,
e(ag, xex7) = 0 for otherwise xja1x5x6a6a571 is a 6-cycle or xsasrizrrasa;rs is a 6-cycle.
Hence e(asag, x5xr721) < 2, 80 e(asag, L) < 24 3 = 5. Since e(xq, asay) = 2, x9 — (C, a3),
so L + ag — x5 does not have a 6-cycle. Then by Lemma 2.1.3, e(as, L — z3) < 4. Because
e(xs, asas) = 0, this implies that e(as, L) < 4, so e(agaq, L) > 25 -4 —5—5 =11, a contra-
diction. Then e(as, x175) < 1, so e(asaq, L) < 5, again a contradiction. Thus e(xq, asay) < 1.

Hence e(xq, asazagas) < 1, so e(z2,C) < 3. Suppose that e(zix5,C) > 11. Then
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T5rer7rias06 2 Cg and xoaiasasryxrs3rs is a 6-cycle, a contradiction. Then because
e(xsxy, C) < 7and e(xgxr,C) < 5, we have e(x9,C) > 25—10—7—5 = 3. Thus za6 € F, so
TolgAs5a4a3T4T3To 18 a 6-cycle. Then xsxgrrriaias does not have a 6-cycle, so e(xyxs, as) =
0 because e(ay,x1x5) = 2. Since e(zyx5,C) > 25 — 7 — 3 — 5 = 10, this implies that
e(r175, asag) = 4. But then xsrgrrriasa6 2 Cg and ayasazasrzry 2 Cg, a contradiction.
Therefore e(xy, C') < 4, and by symmetry e(z2, C) < 4. Because e(zaz3,C) < 7, we have
e(xoxsry, C) < 11, so e(xy25,C) > 25— 11 —5=0.
Either e(xix5, azaz) > 3 or e(xix5, asag) > 3. By symmetry, we may assume
e(x1x5, asag) > 3. Then xsxgrrriasas 2 Cp, SO ajasa3a422x374 does not have a 6-cycle. Since
e(ay, rowsry) = 3, this implies that e(zoxy, azas) = 0 and z3a4 ¢ E. Because e(z,, azag) < 1
for r = 2,3,4, we have e(xy,C) < 3, e(x2,C) < 3, and e(x3,C) < 4. Then e(zi25,C) >
25 — 10 — 5 = 10. Since L 4+ a3 — 2013 O Cg and L 4+ a1 — x3x4 O Cg, xoT302a3a0405,
ToT3A3040506, T3T40oa304a5, and Tzxiazasasas do not have 6-cycles. Thus if e(x3, azas) = 2,
then e(xomwy, asag) = 0, so e(xaxy, C) < 4. Then e(zyx324,C) < 8, 80 e(x125,C) = 12 and
e(raxy, a1a5) = 4. But then zsrgrrriasas O Cg and xexsriasaga; 2 Cg, a contradiction.
Hence e(z3,asa5) < 1, so e(z3,C) < 3, which means e(zqxy,C) > 25— 12 -3 —5 = 5.
Since e(xoxy, asaszasag) < 2, e(xowy,ajas) > 5 —2 = 3. Then xexzrsasasa; 2 Cg, so
e(r1x5,a2a3) < 2. But then e(zix5,C) < 10, so e¢(L,C) < 10+3+3+3+5 =24, a
contradiction.

Case 3.2: e(ay, x5z7) = 0. In this case L+ay —x,2,41 2 Cg for r = 2,4,7, so e(zyz3,C —

ar) <6, e(xyzs,C —ay) <6, and e(x7xy,C —ay) < 6 by (2.1).

Claim: e(x4z5,C — a1) <5 and e(x7x1,C —ay) < 5.

Proof: Suppose not. By symmetry, we may assume that e(x x5, C' —a;) = 6. As in Case
1, we have two cases to consider.

Case A: N(z4z5,C — a1) = {az, az,as}. Suppose e(x3, azazas) > 0. Then asaga;xerrr19

does not have a 6-cycle, so because e(ay, v122x6) = 3 we have e(as, xex721) = 0, e(ag, Taxg) =
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0, and e(ag, x7x1) < 1. Then e(asap, L) < 2+ 2 =4, so e(ajasazay) > 25 —4 = 21, a contra-
diction. Hence e(x3, asazas) = 0. Suppose e(xg, asazas) > 0. Then asaga;x7xix273 does not
have a C§, so because e(ay, r12223) = 3 we have e(as, v7x1203) = 0 and agzy ¢ E. Further, if
e(ag, x3x6) = 2, then agrsrorirrx6a6 and ajasaszasrsriay are 6-cycles, a contradiction. Then
e(asag, L) < 2+ 3, so since e(asag, L) > 5, we have e(as, xox6) = 2 and e(ag, x122) = 2.
But then agxia;zszxsasag is a 6-cycle, a contradiction. Hence e(xg,asazas) = 0. Be-
cause ajasazasrsraa; is a 6-cycle, we have e(as, z3z6) < 1 and e(ag,x3x6) < 1. Then
e(xswe, C) <14+ 1+4+2=4,s0e(z2,C) >25—-4—7—7=7, a contradiction.

Case B: N(zyx5,C — ay) = {as, a4, as}. Suppose that e(xs, azagas) > 0. Then

aga1a9T¢T7T1To does not have a 6-cycle, so because e(ay, roxg) = 2 we have e(asag, Toxs) = 0
and e(agag, x1207) < 2. Then e(agap, L) < 2+ 2 = 4, a contradiction. So e(x3, azasas) =
0. Suppose e(zg, azasas) > 0. Then agajasrrrix973 does not have a 6-cycle, so because
e(ay, r1wows) = 3 we have e(asag, z7) = 0. Then by Lemma 2.1.6 we have e(asag, x1x273) <
3, and thus e(asag,x6) > 5 — 3 = 2. If e(x3,a2ag) > 0 then either asxszorirr2609 OF
agT3ToT1T7Teag 1S a 6-cycle, a contradiction since x aiagasa4a3x4 and ryiaqasa3a4a51, are 6-
cycles. Then e(asag, x3) = 0, so e(asag, T122) > 5 — 2 = 3. This implies that e(azag, ) = 2
and e(asag, x1202) = 3. This is a contradiction, since L+a;—z2x3 2 Cg and L+a; —z127 2 Cs.
Thus e(xg, azagas) = 0. Since x4a1a6a5a4a374 and T4a1a9a3a4a574 are 6-cycles, e(r3xg, az) <

1 and e(z3ze, ag) < 1, so e(z3xg, C') < 4. Hence e(z2,C) > 25—-4—7—7 = 7, a contradiction.
QED

By the claim, e(z4z5,C — a1) < 5 and e(x7x,C — a1) < 5. Then e(ryr3zs, C) >
25—-6—6=13.

Suppose that e(xg, C) = 6. If ayasxyxszar; 2O Cg, then azasasagrsaery does not have a
6-cycle (see Figure 2.13), so e(xsx7, azag) = 0, e(zs,asa5) < 1, and e(x7,aqa;) < 1. Since
e(xsx7,a1) = 0, we have e(x5,C) < 2 and e(z7,C) < 2. If z5a2 € E then ajasxrsxsrsraa; is
a 6-cycle so agasasagreryr, does not have a 6-cycle. But then e(x1,C') < 2, so e(z27,C) <

2+ 2 = 4, which means e(L,C) < 4+ 846+ 6 = 24, a contradiction. Hence zsas ¢ F,
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as 4a, as dg

Figure 2.13: Lemma 2.2.5, Case 3.2.

and by symmetry z7as ¢ E, so e(xsx7,C) < 2. Then e(z124,C) >25-2—-8—-6 =09, so
WLOG let e(zy,C) > 5. Since x7 - (C,aq), e(x1,asa6) = 1, which means a3 € E. Then
T1a309a1T3T221 1S a 6-cycle, so r4x5x6a4a5a6 does not have a 6-cycle. Since e(xg, C') = 6,
this implies that e(z4, asas) = 0, so that e(z4,C') < 4. Hence e(xg,C) = 6, e(xy,C) = 5,
e(xs,C) = e(x7,C) = 1, e(x4,C) = 4, and e(xqxs, C) = 8. Since x4a5 € F, 50405067604
is a 6-path, so aszs ¢ E. Then asx; € E since e(x5,C) = 1. Since e(z1,C) = 5 we
have zia5 € F, so x1xox314T50521 and xgagazasaiagre are 6-cycles, a contradiction. Thus
ai1asx4r3x2x1 does not have a Cg. By symmetry, the same is true for ajagrsxrzreor,. Then
e(agag, r124) = 0 and e(agag, vox3) <141 = 2.

Suppose that ajasxsrsrsrs O Cg. Then asasasagrer7ry does not have a 6-cycle, so
e(x7,azag) = 0, e(x7,a4a5) < 1, and e(xq, azasasag) = 0. Since z1as ¢ F and z7a; ¢ F, this
implies that e(x;27,C) < 1+2 = 3. But then e(L,C) < 3+ 8+ 6+ 6 = 23, a contradiction.
Thus ajasxs5147322 does not have a 6-cycle. By symmetry, the same is true for a;agrsrs20322,
a1 G971 2223, and ajagr7r1x2x3. Since e(ap, roxs3) = 2, this means that e(agaq, x5x7) = 0.
But then e(asaq, L) < 2+ 2 = 4, so e(ajaszaqas, L) > 25 — 4 = 21, a contradiction.

Thus e(zg,C) < 5. so e(xqrs, C) = 8, e(x127,C) = e(r425,C) = 6, and e(xg, C) = 5.
Since e(zax3,C — a1) = 6, we have two cases to consider for N(zyx3,C' — aq), which will
complete Case 3.2.

Case 3.2.1: N(xoxs, C — a1) = {ag, as, as}. Suppose that e(z124, azazay) > 0, and WLOG
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let e(xy1,asazay) > 0. Then xizowszasazay 2O Cg, S0 xyxsrerrasaea; does not have a Cg.
Since e(ay, x4w6) = 2, we have e(as, v476) = 0 and agxr ¢ E. 1If e(as, x5x7) = 2, then
asT7rea1T4x5a5 is a 6-cycle, a contradiction. Thus e(as, z527) < 1. Suppose aszs € E. Then
agasTsTea1ry and agasTsrea1Te are 6-paths, so e(ag, x426) = 0. Then e(asag, vaxsrew7) <
1+1 =2 so e(asap, L) < 4. But then e(asazay, L) > 25 — 9 = 16, a contradiction.
Thus aszs ¢ E. Suppose asry; € E. Then agasxrrerszy is a 6-path, so agry ¢ F, which
means e(asag, L) < 5. Then e(asag, L) = 5, so we have asz; € E, e(ag, r576) = 2, and
e(asag, 1) = 2. But then, because a;x3 € E and azzy € E, xrxix0030405 2 Cg and
aga1x3T45x6 2 Cg, a contradiction.

Hence e(as, L) < 1, so e(ag, L) = 4 with e(ag, r1x47506) = 4, and e(as, L) = 1 with
asr; € E. But then agasxrixrx6x5 O Cg and zoxsazazasa; O (g, a contradiction. So
e(x1xy, asazay) = 0. Since xaxzajasazas 2 Cp, T4Ts5x6x7110506 does not have a Cg, so
e(r124,a5) < 1 and e(z124a6) < 1. Thus e(z124,C) < 14+142 =4, s0 e(z527,C) > 12—4 =
8. Since e(zsx7,a1) = 0, e(xs,a2a6) < 1, and e(x7,aza6) < 1, we have e(zsz7, azasas) >
8 — 2 =06. Since asxy € F and a1x4 € F, asxox3r4750309 and airgrrasazaga, are 6-cycles,
a contradiction.

Case 3.2.2: N(xoxs, C — ay) = {as, a4, as}. Suppose that e(z124, azasas) > 0, and WLOG

say e(x1,azagas) > 0. Then zyrsr677060102 does not have a 6-cycle and e(ay, rywg) = 2,
so e(agag,r7) = 0. Further, since ajxs ¢ FE, e(asaiag, v4x506) < 5 by Lemma 2.1.6, so
e(agag, v4x526) < 3. Then e(agaq, L) < 5, so e(agaq, L) = 5 with e(azag, 1) = 2. But then
C — a; + x; O (g, a contradiction since L + a; — zyx7 O Cg. Hence e(xix4, azasas) = 0,
and since e(zr1x4,a2a6) < 1+ 1 = 2, we have e(zs27,C) > 12 —2 — 2 = 8. Then,
since L +a; —x, O Cg for r = 1,4,5,7, e(x,,asa6) = 1 for each r = 1,4,5,7. Hence
e(rsx7,azasas) = 8 — 2 = 6. Since xgxzajasazay O Cg and wyrs5r62771 IS a S-path,
we know that e(ag,x124) < 1. By symmetry, e(ag, z124) < 1, so WLOG we can say
riay € E and z4a¢ € E. Since e(xg,C') = 5, we can say WLOG that zgay € FE, and

since e(xsxy,azagas) = 6, we know that z7ay € E. Thus x7riw930304 and z4r52600071a6
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have 6-cycles, a contradiction.

Case 3.3: e(ay, rq4w7) = 0. In this case L+a;—z,2,41 2 Cgforr = 3,4,6,7, so e(z,z,411,C—

a;) <6 for r=3,4,6,7 by (2.1).

Claim 1: e(z4x5,C —ay) < 5 and e(zgz7, C — ay) < 5.

Proof: Suppose not. By symmetry, we may assume that e(xyxs, C' —a;) = 6. As in Case
1, we have two cases to consider.

Case A: N(z4z5,C — ay) = {as, az,as}. Suppose that e(xs, asazas) > 0. Then

asaga1T6x7r1 2o does not have a 6-cycle, so e(as, xex7ry) = €(ag, vox6) = 0, and e(ag, x127) <
1. Then e(asag, L) < 2+ 2 = 4, a contradiction. Hence e(x3, asazas) = 0. Suppose that
e(zg, asazay) > 0. Then asagayrrr17973 does not have a 6-cycle, so e(as, x7r1xr3) = 0 and
agr; ¢ E. Since ajasazasrsrs O Cg, e(ag, x3rs) < 1. Then e(asag, L) < 2+ 3 =5, so
e(as, xaxg) = 2 and e(ag, r122) = 2. But then asagaiziz223 O Cg, a contradiction. Hence
e(zg, asazay) = 0. Since ayasagasrsrs 2 Cq, 80 e(r376, asag) < 2. Then e(zzzq,C) < 2+2 =
4,50 e(x9,C) >25—4—T7—7="7, a contradiction.

Case B: N(zyx5,C — ay) = {as, a4, as}. Suppose that e(zs, azasas) > 0. Then

aga1a9T¢T7T1T does not have a 6-cycle, so e(asag, v216) = 0 and e(azag, x127) < 2. Then
e(asag, L) < 242 = 4, a contradiction. Hence e(z3, azasas) = 0. Suppose that e(xg, azasas) >
0. Then agajaszrz17973 does not have a 6-cycle, so e(azag, x7) = 0 and by Lemma 2.1.6,
e(asag, r17273) < 3. Thus e(azaq, x6) > 5 — 3 = 2. But then x4 — (C,a41), a contradiction
since L + a; — xgz7 2 Cg. Hence e(xg, agasas) = 0. Since e(xs, ajazas) = 3, x5 — (C,as)
and x5 — (C,ag). Then e(as, xer3) < 1 and e(ag, v6r3) < 1, so e(r326,C) < 2+2 =4, a

contradiction.
QED

Claim 2: e(z3xy,C —ay) < 5 and e(z721,C — ay) < 5.

Proof: Suppose not. By symmetry, we may assume that e(xszy,C' — a;) = 6. First

say N(xszy,C — a1) = {as,as,as}. Suppose that e(xs, asazas) > 0. Then asaga;xsrersry
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o
a, as a, QAs Qg

Figure 2.14: Lemma 2.2.5, Case 3.3.

does not have a 6-cycle, so e(ag, x5x1) = e(as, xer7r1) = 0, and e(ag, zgr7) < 1. Then
e(asag, L) < 242 = 4, a contradiction. Hence e(xs, asazay) = 0, and similarly e(x5, asazays) =
0. Since ajasagaszszy 2 Cp, e(r519,a5a6) < 2, s0 e(xsre,C) < 4. But then e(xy,C) >
25 —4 —7—6 = 8, a contradiction. Therefore N(x3zy,C — a1) = {as, as, as}. Suppose that

e(x9, asasas) > 0. Then agajaszrsxrerrry does not have a 6-cycle, so e(agaq, x125) = 0 and

e(agag, xgx7) < 2. Then e(asag, L) < 2+ 2 = 4, a contradiction. Hence e(z9, agasas) = 0,

IN

and similarly e(zs,azagas) = 0. Since 3 — (C,as) and x3 — (C,ag), e(xsra, azag) < 2.

Then e(zyz5,C) < 4, a contradiction.
QED
By Claims 1 and 2, we have e(z,z,41,C) < 6 for each r = 3,4,6,7. Since L+a; —z721 2

Cs and L + ay — x3x4 2 Cg, we have e(xq, asa6) < 1 and e(x3, azag) < 1.

Claim 3: e(z1,C) <4 and e(x3,C) < 4.

Proof: Suppose not. By symmetry, we may assume that e(x;,C') = 5, and since
e(z1,asa6) <1, WLOG let e(z1, C—ag) = 5. Since C'—ay+a7x1 2 Cs, (27, azazag) = 0 (see
Figure 2.14). Suppose that e(xg,asas) > 0. Then zz7x6a304a5 2 Cg, SO aga1a2T2T3T4T5
does not have a 6-cycle. Then e(agag, rorszsrs) < 2. Further, e(asag, x176) < 2 since
x1 = (C,a1) and zg - (C,ay). Since e(x7, asag) = 0, this implies that e(asag, L) < 4, a con-

tradiction. Hence e(xg, agas) = 0. Suppose that e(zg, azay) = 2. Then xyz726000304 2O Ch\
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S0 asagayrer3r4xs does not have a C. Then e(asaq, xaxrsrizrs) < 2, and since e(z7, asag) = 0
and z1a6 ¢ F, we have e(asag, L) < 2+ 3 = 5. Then e(as, L) > 25 — 20 = 5, and since
xeasz ¢ E, e(asz, L — xg) = 5. By Lemma 2.1.3, L + a3 — x¢ 2 Cg. But since e(wg, asay) = 2,
xg — (C, as), a contradiction. Therefore e(xg, asas) < 1, so e(xg, C) < 3.

Then e(xox3,C) > 25 —3 —6 —6 = 10. Since zyay € E, zsrerrriasairs = Cg,
so e(xaxws, azasazag) < 6. Hence e(xqws,C') = 10, which also means e(xg,C) = 3 and
e(xyxs,C) = e(x7x1,C) = 6. Since zgag € E and e(ay, xows) = 2, we know e(aq, zox5) = 0,
for otherwise xiz7rgasasas 2 Cg and ajaswersryrs O Cg.  Since e(xsxs, C') = 10 and

xoas ¢ E, e(x3,C) = 5 and e(xe,C — ag) = 5. Then, because z3 - (C,ay), z3a3 € E.

But then ajasazrsrirsa; = Cg and xox 27260605709 = Cg, a contradiction.
QED

So e(x1,C) < 4 and e(x3,C) < 4. Since e(zyzoz3,C) > 25 — 12 = 13, we have
e(r1z3,C) > 7. WLOG let e(z1,C') = 4. Suppose that e(zy, C') = 6. If C+xi1x9—0;0;41 2 Cp
for each ¢ = 1,3,5, then L — x129 + a;a;11 does not have a 6-cycle for each such i, so
e(x3xg,a2) = 0 and e(xzwg, azagasas) < 2+ 2 = 4. But then e(xzxg,C) < 6, a contra-
diction. Hence C' + x129 — a;a;11 does not have a 6-cycle for some ¢+ = 1,3, or 5. Since
e(xy,C') =6 and x1a; € E, we know C + z125 — asag 2 Cg. Thus either e(xq, asas) = 0 and
e(xy,ar1a6) < 1, or e(xy,azag) = 0 and e(x,aqas5) < 1. But e(x1,C) = 4, a contradiction.
Therefore e(x2, C) < 5.

We know that e(xe,C) = 5, e(x1,C) = e(x3,C) = 4, e(x4,C) < 2, e(x7,C) < 2,
e(zs,C) > 4, and e(xg,C) > 4. Recall that L + a1 — z,2,41 2 Cg for r = 3,4,6,7, so
e(x;,azag) < 1fori=1,3,4,5,6,7. Since e(xs, asag) > 1, WLOG we can let x9a5 € E. Then
Tox3x4T5a109T9 = Cg and Tox 11726010209 = Cp, SO TgT7x1a304a5 does not have a 6-cycle and
r3xsrsazasas does not have a 6-cycle. Hence e(zgxy, azas) < 2 and e(zsws, azas) < 2. Since
e(x;, azag) < 1 and e(x;,C) > 4 fori = 1,3,5,6, we have e(x 232516, a4) > 16—4—4—4 = 4.
Since xgr7r1040506 does not have a 6-cycle and x3xsr5a4a5a¢ does not have a 6-cycle, this im-

plies that e(z1x3x516, a6) = 0. Then e(x1x31526, ) > 16—4—4—4 = 4, 50 Tex701020304T6 =
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Ce and z3zgrsasazasxs = Cs. Then asasaizszars 2 Cs and asasaizersry 2 Cg, S0
e(r1x3x516, a5) = 0 since e(r1x3x526,a1) = 4. Hence e(xix30526,a3) = 16 — 12 = 4, so
r1ror3aiasas = Cg. But then e(asag, r427) < 2, so e(asag, L) = e(asag, rox427) < 4, a

contradiction. O

Lemma 2.2.6 Let L be a cycle of length 8. If C' is a cycle of length 6 < p < 8 and e(C,L) >

29, then C' + L has two disjoint large cycles C' and L' such that [(C") + (L) <p+8 — 1.

Proof: Suppose that the lemma is not true. Let L = zy..232; and let C' = a;...a,0,.
WLOG let e(ay, L) > e(a;, L) for each a; € C. Suppose e(a;, L) > 7, and WLOG let
e(ay, L — xg) = 7. Then ayx3...x7a1, a126x7...x2a1, and ayxy...x5a; are 6-cycles. Hence by
Lemma 2.1.6, e¢(C, L) < e(zgr122,C) + e(x32475,C) + e(xga728,C) < (64 3) x 3 = 27,
a contradiction. Then e(a;, L) < 6 for each a; € C. Suppose e(a;, L) = 6. WLOG let
e(ay, z1x5) = 2 and e(ay, x,2,44) = 2 for some r = 2,3, or 4. Then ayz12223247501 = Cg and
a1 712327267501 = Cg, so by Lemma 2.1.6 e(xgxras, C' — a1) < 6 and e(xsx374,C — a1) < 6.
Then e(xi25,C) > 29—6—6—4 = 13, so WLOG let e(x1,C) > 7. Then C'+x1 —a; contains
a large cycle of length at most p—1 by Lemma 2.1.3, a contradiction since a1z,...x,4a; = Cg
for 2 <r < 4. Thus e(a;, L) <5 for each a; € C. Similarly, if p = 8 then e(z;,C) < 5 for
each x; € L.

Suppose e(ai, L) = 5, and WLOG let e(ay, z1x5) = 2. Then ajxixs...x501 and ay215...2501
are 6-cycles, so by Lemma 2.1.6 e(zgz72s,C — a1) < 6 and e(xox3ry, C — a1) < 6. Then
e(r1x5,C) > 29 — 12 — 3 = 14, so p > 7 and WLOG e(z1,C) > 7. By the end of the last
paragraph, this means p = 7. Hence e(x1,C) = e(x5,C) = 7, so x1as...a¢z is a 6-cycle and
thus e(ajaz, L — z1) < 6 by Lemma 2.1.6. Since e(ay, L) = 5, we have e(ar, L) < 3. Now
since e(zq1,C) = 7, we have by Lemma 2.1.6 that e(a,a,11, L — z1) < 6 for each r. Using
this fact with » = 1,3,5, we get e(ay, L) > 29 — 24 = 5. But this is a contradiction, so
e(a;, L) < 4 for each a; € C. Similarly, if p = 8 then e(z;, C') < 4 for each x; € L.

By the preceding paragraph, we see that p = 8, for otherwise e(a;, L) > 5 for some

a; € C, since e(C, L) > 29. Let r be such that e(z,z,41,C) > e(z;x;41,C) for each i. Then
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e(x,x,41,C) > 8 since I(L) = 8 and e(C, L) > 29, so WLOG let e(z1,C) = e(z2,C) = 4.
If z; is adjacent to opposite vertices in C', then similar to above we get a contradiction, so
WLOG we can say N(z1,C) = {a1,as,a3,a4}. If x9a; € E for some i € {4,5,6,7,} then
T1T9a;a;—10;—2a;_371 is a 6-cycle and so by Lemma 2.1.6, e(a;410;120;130;14, L — x129) < 6.
Since ¢ € {4,5,6,7} and N(z1,C) = {a1, as,as,as} and e(xe, C') = 4 with z9a; € E, we have
e(@i11a;420;130;44, L) < 6+ 3+ 3 = 12. Thus e(a;_sa;_sa;_1a;, L) > 17, a contradiction
as e(aj, L) < 4 for each j. Thus N(z2,C) = {a1, as,as, as}, so r1x2a1a2a3a471 is a 6-cycle.
Then e(asagaras, L) < 6 +1 =7 by Lemma 2.1.6, so e(ajasasay, L) > 22, a contradiction.

3

Lemma 2.2.7 Let g > p > 6 with ¢ > 9. Let C and L be disjoint cycles with [(C) = p and
(L) = q. If e(C,L) > ™ then C + L contains two disjoint large cycles C' and L' such

that I(C") + (L") < p+ q, with I[(C") =6 if p = 6.
Proof: Let C = ajas...a,a; and L = x125...7421. Suppose that the lemma is not true.

Case 1: p = 6. We first claim that e(a;, L) < 7 for each a; € C. Suppose not, and WLOG let

e(ay, L) > 8. Then for each 1 <r < ¢, e(ay, L — z, 2,1 12,12) > 5, 80 L+ a; — 2,112,425 has
a large cycle by Lemma 2.1.3. Since e(C — ay, L) > % —q = %, (T 1Tpg2,C —ay) > 7
for some 1 < r < ¢. But this contradicts Lemma 2.1.7, since L + a; — x,x,12,12 has a large
cycle. Hence e(a;, L) <7 for each a; € C.

WLOG let e(xix9,C) > e(xpxpyr, C) for each xy, € L. Then e(zy29,C) > 7. WLOG let
e(x1,C) > e(xq,C). If e(x1,C) =6, thenzy — Csoe(C, L) < 64+4x6 =30 < 32 by Lemma
2.1.3, a contradiction. Hence e(x;,C) < 5 and e(xy,C) > 2. Suppose e(x1,C) = 5, and
WLOG let e(xy,C —ag) = 5. Then 2y — (C,a;) fori = 2,3,4,6, so e(a;, L—x1) < 4 for each
such i by Lemma 2.1.3. Hence - < ¢(C,L) < 16 + 3 + e(ajas, L), so 7"%37 < e(ayas, L)
and thus e(ajas, L) > 13. If agxe € E then xoasaiasazrizy and xoagasagaszxixe are 6-cycles,
so e(agas, L) < 10 and e(ajas, L) < 10 by Lemma 2.1.6. But then e(asag, L) > 13, so

e(ag, L) > 8, a contradiction. Hence agzy ¢ E, so e(ag, r122) = 0. Suppose a;x2 € E. Then
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Toaiagazasxixe is a C, so e(asag, L) < 6+ 2 = 8, and thus e(a;,L) > 32—-8—-15=9, a
contradiction. Hence ajxe ¢ E. Similarly, azs ¢ E for otherwise xoasazasaszizy is a Cy
and again e(a;, L) > 9. By symmetry, we also have asxs ¢ F and ayze ¢ E. But then
e(x9,C') < 1, a contradiction. Therefore e(z1,C) =4 and 3 < e(x,,C) < 4.

Case 1.1: N(z1,C) = {ay,a9,a3,a4}. We know that z; — (C,a;) for ¢ = 2,3, so by

Lemma 2.1.3 e(ajaqasag, L) > %

— 10. Suppose z9a; € E. Then xsajasasasxixs is a
6-cycle so e(asas, L) < 6 4+ 2 = 8 by Lemma 2.1.6. Then e(ajas, L) > £ — 18 > 14, so
e(ay, L) = e(aq, L) = 7, e(asag, L) = 8, and e(ag, L) = e(as, L) = 5. Since e(asaq, L) = 8,
e(x9, asag) = 2. Then xywoasasaiasx; and zyx2a¢a5a4a3x, are 6-cycles, so by Lemma 2.1.5
e(asay, L) < 10 and e(ajas, L) < 10. This is clearly a contradiction, so zoa; ¢ E. By
symmetry, xeay ¢ E. Similarly, we know that e(zs, asaz) < 1, for otherwise xoasa; 1040322
is a 6-cycle and hence e(asag, L) < 8, which leads to a contradiction as above. Thus WLOG
let N(x9,C) = {ag,as,a6}. Then z129 — (C,apay), so e(ajag, L) < 6 +2 = 8 by Lemma
2.1.6. Then e(a4as, L) > 32—10—8 = 14. But this is a contradition, since x;xs — (C, ayas).

Case 1.2: N(z1,C) = {ay,a9,a4,a5}. Since p = 6, z1 and x9 have a common neighbor in

C. By symmetry, WLOG we can let x9a; € E. Then xsaiasa3a42122 and zoaiagasasrixo are
6-cycles, so e(asag, L) < 9 and e(agas, L) < 9. Further, since x; — (C,a3) and 1 — (C, ag),
we have e(ag, L) < 4 and e(ag, L) < 4. Then e(ajay, L) > % — 18, so e(ayaq, L) > 14.
Hence e(ay, L) = e(aq, L) = 7, e(as, L) = e(az, L) = 5, and e(as, L) = e(ag, L) = 4. Since
e(agag, L) = 44+ 7 = 11, 129 - (C,azay) by Lemma 2.1.6. Thus e(xq,asas5) = 0 (see
Figure 2.15), so e(xq,azasas) > 2. Similarly, since zoa; € E we have x9a¢ ¢ E. Thus
e(x9,azay) = 2, so r1x9 — (C, aja¢), a contradiction since e(ajaq, L) = 11.

Case 1.3: N(x1,C) = {a1,a9,as,as}. Since ;1 — (C,q;) for each i = 2,4,6, by Lemma

2.1.3 we have e(a;, L—x;) < 4 for each i = 2,4,6. Hence 21 > e(ajazas, L) > 1 —4x 31,
so 21 > e(ajasas, L) > 19 and ¢ = 9. Suppose xqas € E. Then zoasazasasxize = Cg and
Toasaiagasri1xs = Cg, so e(ajag, L) < 6 +3 = 9 and e(agayq, L) < 6 +3 = 9. Then

e(C, L) = e(ag, L) + e(azay, L) + e(ajaq, L) + e(as, L) <54+ 9+ 9+ 7 = 30, a contradiction.
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a, as Q44  a

Figure 2.15: Lemma 2.2.7, Case 1.2.
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Figure 2.16: If ¢ > 8 and a; does not have two neighbors whose distance in L is at least four, then
it is easy to see that e(ay, x5 ... 24-3) = 0, e(a1, x2x4—2) <1, e(ar,z324-1) < 1, and e(ay, z4z4) < 1.

Hence z3as ¢ E, and similarly zoa5 ¢ E. Then e(x9, ajazasag) > 3. WLOG let za4 €
E. Then zsa4asasa117 = Cg and zoagazasa;xize = Cg, S0 e(azas, L) < 6 +4 = 10 and
e(asag, L) < 6+ 3 = 9. Then e(ajay, L) > 32 —19 = 13, so e(a;, L) > 13-4 =9, a

contradiction.

Case 2: p > 7. Iffor each z, € L, L—x,2,12,2+a;y has alarge cycle, then e(z, 2,412,142, C—

a;) < 6 by Lemma 2.1.6. But then e(C,L) < 9() = 3¢, a contradiction. Hence L —
T, T 12,40 + a; does not have a large cycle for some r. Then e(ay, L) < 7 by Lemma 2.1.3,
and similarly e(a;, L) < 7 for each a; € C. If e(x;,C) > 8 then p > 8, so by the same
reasoning as above we know that e(z;, C') < 7 for each z; € L.

Suppose that e(ay, L) > 5. Then, since ¢ > 8, there are vertices z; and z; in N(aq, L) such
that dp(x;, ;) > 4 (see Figure 2.16). Hence a12;xiq1 ... z;12501 and a12,2;_1 . . . Tj412501
are large cycles, s0 e(z411%j42 ... Ti—ox;—1,C—ay) < 6and e(z;41Tiy2 ... Tj_27j_1,C—a;) <6
by Lemma 2.1.6. But then e(x;z;,C) > 32 — 12 — e(ay, L — x;2;) > 20 — 5 = 15, so WLOG

e(z;,C') > 8 > 7, a contradiction. Therefore e(a;, L) < 4 for each a; € C. Since e(C, L) > 32,
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this implies that p > 8, and using the same argument as above we see that e(z;, C') < 4 for
each x; € L.

Since e(C,L) > - we know that e(z;x;1,C) > 8 for some z; € L. WLOG let
e(r1x9,C) > 8. Since e(x;,C) < 4 for each z; € L, we have e(x1,C) = e(x9,C) = 4.
WLOG let x1a; € E. As above, there is no neighbor of x; with distance at least 4 from
aj, so e(ry,a;5...a,-3) = 0. If there is a; € N(xq,C) such that de(a;,a;) > 3, then
ToQiQit] - . . Apa1T1T9 and To@;Gi—q - .. aa1212To are large cycles. Then e(agas...a;—1, L —
r172) < 6 and e(aya,—q...a;41,L — 172) < 6 by Lemma 2.1.6. Hence e(a;a;,L) >
32 — 12 — e(z122,C — a1a;) = 20 — 6 = 14, a contradiction. Therefore there is no such
a; € N(z2,C). This implies that e(xg, asas . ..ay,_2) = 0, so e(xa, a,_1apa1a2a3) = 4. Since
e(xa, apaz) > 1, WLOG let z2a, € E. Then similarly, there is no a; € N(x,C) such that
de(ag, ap) > 3, so e(xy,asas) = 0. Hence e(xy, ajasa,—2a,_1a,) = 4. Since de(az, ap,—2) = 4,
we have e(z1, a1a,-1a,) = 3. But then e(z3, azas) = 0 since do(ag, ap—1) = de(as, ay) = 3, so

e(xe,C) < 3, a contradiction.
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Chapter 3

Lemmas With Very Specific Conditions

Let P = y1y>...ys be a path of order s. We denote the largest integer ¢ such that 1y,y; €
E by r(y1, P), and the largest integer j such that ysys_j+1 € E by r(ys, P) (see Figure
3.1). We define r(P) = max{r(yi, P),r(ys, P)} and s(P) = r(y1, P) + r(ys, P). Clearly
r(yg, P) > 2 for k = 1,s, and if r(yg, P) > 6 then P contains a large cycle. We let
7'(C) == mingec 7(a;, C) (see Figure 3.2).

Lemma 3.0.1 is used to prove Theorem 2; the others are used to prove Theorem 1.

Lemma 3.0.1 Let P = x1x5...2; be a path of order t > 2, and let C = ajas...aga; be
a 6-cycle, with P and C disjoint. Let uw ¢ C U P with e(ux,C) > 8 and e(ux;—,C) > T.
Then P + C + u contains either P,y U Cg, or a path of order t and a 6-cycle L, disjoint,

with T(L) > 7(C). In either case, the path has x1 as an endvertex.

Proof: Suppose that P4+C'+u does not contain P, UCgs. By Lemma 1.4.17, e(uzy, C') = 8,
for otherwise u — (C,a;) and a;z; € E for some a; € C. Hence by Lemma 1.4.18, if
e(u,C) > 4 then there is a; € C such that u EN (Cya;), and we are done. Thus we may
assume that e(u, C') < 3. Suppose that e(u,C) = 2. Then e(x;,C) = 6, so 2; — C. Since
e(ux;—1,C) > 7, this implies that there is a; € C such that z; — (C, a;) and e(ux;_1, a;) = 2.
But then C'+z; —a; has a 6-cycle and x5 . .. 1;_1a;u is a path of order t+1, a contradiction.
Therefore e(u,C) = 3.

WLOG let e(zy, C — ag) = 5. Then, since P+ C' + u does not contain P, UCg, for each
1 <i <5 we have u - (C,a;). Because e(u,C) = 3, this implies that e(u,ajas) = 2 and

ua; € E for some i € {2,4,6}. Suppose that uag € E. Then by Lemma 1.4.9, e(ag, azas) =0

® o o o

Figure 3.1: A path P of order 7 with r(P) =4 and s(P) =4+3=T.
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Figure 3.2: Left: A 6-cycle C with 7(C1) = 3 and 7/(C1) = 1. Right: A 6-cycle Cy with 7(C3) = 6
and 7'(C3) = 0.

u vV

o @ o ®
Xl XZ X3 X4 Xr

Figure 3.3: Lemma 3.0.2: R+ u contains a path of order » + 1 > 6 from z; to u; R 4 v contains
a path of order r 4+ 1 from z1 to v.

and agay ¢ E, so x; N (C,a;) for each i = 2,4,6. Since e(x;_1,C) > 4, 125 ... 74_10; 1S a
path of order ¢ for some i = 2,4, 6, as desired. Now suppose that e(u, asas) = 1, and WLOG
let uay € E. By Lemma 1.4.7 we see that 7(a;,C) < 1 for each i = 3,4,6. So similarly,
we again get a path of order ¢t and a 6-cycle with more chords than C. This completes the

proof. O

Lemma 3.0.2 Let R = xy...x, be a path of order r > 5 and let C' = ajas...aga; be a 6-cycle.
Let u,v ¢ R+ C with e(x,,uv) = 2. If e(uvzy,C) > 11, then C'+ R+ uv has either (1) two
disjoint large cycles, one of which is a 6-cycle, or (2) a 6-cycle C" with 7(C") > 7(C) — 2

and a path of order r 4 2.

Proof: Suppose the lemma is not true. We first make four easy observations (see Figure

3.3):
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(a) If u — (C,a;), then e(vxy,a;) < 1. If v — (C, a;), then e(uzy,a;) < 1.
(b) If u = (C,a;), then e(vxy,a;) =0. If v =2 (C, a;), then e(uz, a;) = 0.
(c¢) If wv =N (C,a;a;41), then e(xy, a;a;,41) = 0.
(d) If xy = (C,a;), then e(uv,a;) < 1.

If e(u,C') = 6 then u 2 (C,a;) for each a; € C, so e(vzy,C) =0 by (b). This is clearly a
contradiction since e(uvxy,C) > 11. Thus e(u,C) < 5, and similarly e(v,C) < 5. Suppose
that e(u, C') = 5, and WLOG let e(u,C' — ag) = 5. Then u N (C,a;) for each i = 2,3,4,6,
so e(vxy, asaszasag) = 0 by (b). But then e(vzy, C') < 4, a contradiction. Hence e(u,C) < 4,
and similarly e(v,C') < 4. WLOG let e(u,C) > e(v,C). Since e(uvz,,C) > 11, we know
that e(u,C') > 3.

Case 1: e(u,C) = 4. By (b) we can see that N(u,C) # {a,as, as,as}, for otherwise

e(vzy, asasag) = 0 and so e(vry, C') < 6. Suppose that N(u,C) = {a1,a2,a3,a4}. Since
e(u,C'—ay) = e(u,C—az) = 3, by (b) we have e(vzy, asaz) = 0. Then e(vzy, agasaga;) > 11—
4 = 7. Suppose that e(v,ajay) = 2. Then uv = (C, asag) because e(uv, ajasasays) = 6, so
e(x1,asag) = 0 by (c). But then e(vzy, C') < 6, a contradiction. Therefore e(xy, asasagar) =
4, e(v,asa6) = 2, and e(v,a1aq) = 1. WLOG let e(v, asaga;) = 3. Then by (a), u - (C,a;)
for each i = 5,6, 1, so 7(asas, C') = 0 by Lemma 1.4.6. Thus v RN (C,ag), so xia6 ¢ E by
(b), a contradiction.

Hence N(u,C) = {ai,as,a4,a5}. Since e(u,C — a3) = e(u,C — ag) = 4, by (b) we
have e(vxy,azag) = 0. Then e(vxy,ajasasas) > 7, so WLOG let e(vzy,ajasay) = 6. By
(a), u » (C,q;) for i = 1,2,4, so by Lemma 1.4.8 7(agag,C') = 0. Then 7(asas, C) < 2.
Since e(v,ajasay) = 3, ajuasazasva; is a 6-cycle, and since e(uv, ajasazas) = 6, we have
w 5 (C,asag). By (c), this implies that zja5 ¢ E. Then vas € E, so similar to above we

have uv —» (C,agay). This contradicts (c) since x1a; € F, so this case is complete.

Case 2: e(u,C) = 3. Since e(v,C) < e(u,C), we have e(z;,C) > 11 — 6 = 5. By (b)
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a; a, as Ay

Figure 3.4: Let Cy be a 6-cycle in the graph at top, and let Cy be a 6-cycle in the graph at bottom.
Since uv ¢ E and asag € E, if e(azag, arazasay) = e(uv, ajagasay)+k then 7(C1) = 7(Ca) + (k+1).
we can see that N(u,C) # {ai,as,as}, for otherwise e(vzy,asasas) = 0. Suppose that
N(u,C) = {ay,a2,a3}. Since e(vry,C) > 8, by (a) we know that u - (C). Then by
Lemma 1.4.9 7(ag, C) < 2, so by (b) we have e(vxy,as) = 0. Then e(z;,C — ay) = 5, and
e(v,C — ay) = 3. By the above argument, we see that v is not adjacent to three consecutive
vertices of C' — ay. Thus WLOG let vag € E. By (d) and Lemma 1.4.5, this implies that
7(ag,C) = 0. Hence 7(a;,C) < 2 for i = 4,5,6. Then by (b), v - (C,a;) for i = 4,5,6,
which means va; € F and e(v,asag) = 1. WLOG let vay € E. Then e(uv, ajasazay) = 6, so
by (c) e(asag, aazaszay) > 6 + 2 = 8 (see Figure 3.4). Therefore 7(asas,C) =8 —2 =6, a
contradiction.

Therefore N(u,C) = {a1,a2,a4}. By (b), e(vxy,a3) = 0, so e(x1,C — az) = 5. Since
e(x1,asa6) = 2 and e(u,C' — as) = e(u,C — ag) = 2, by (b) we know that u - (C,a;) for
i = 5,6. Then by Lemma 1.4.10, 7(asag, C) < 1. Then e(asag, ajasazay) < 3, so by (c) we
know that if C'— asag + uv contains a 6-cycle, then e(uv, ajazaszay) < 1. This clearly implies

that C' — asag + uv does not have a 6-cycle, so e(v,ajas) < 1. Since e(ay,uzr;) = 2, by (a)
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Figure 3.5: Lemma 3.0.3: R — x, + uv contains the paths x1xs ... 2z,_quv and z1x2 ... 2,_1vu of
order r + 1.

we see that e(v,azas) < 1. Since e(v,C — a3) = 3, we have e(v,aja4) = e(v,a2as) = 1 and
vas € E. Let C" be the 6-cycle xja4a3asuai . Since e(zyu, ajasazas) = 6 and 7(asag, C) <
1, we have 7(C") > 7(C) + 2. But zax3. .. z.va5a6 is a path of order r + 2, a contradiction.

3

Lemma 3.0.3 Let C' = ay...agay be a 6-cycle and let R = xqxs...x, be a path of order r > 5.
Let u,v ¢ C' + R with wvzr,_y, = Ks. If e(x1z,uv,C) > 15, then C + R + uv has either (1)
two disjoint large cycles, one of which is a 6-cycle, or (2) a 6-cycle C" with 7(C") > 7(C) —1

and a path of order r 4+ 2.

Proof: Suppose that the lemma is not true. We first make four easy observations (see

Figure 3.5):
(a) If wv -1 (C,a;a;) and a;a; € E, then e(z12,, a;a;) = 0.

(b) If u — (C,a;) then e(z12,,a;) < 1. If v = (C, q;) then e(z12,,a;) < 1. If uv — (C, a;a;)

then e(z12,,a;) <1 and e(x12,,a;) < 1.
(c) If x, LN (C,a;), then e(zquv,a;) = 0.
(d) If u N (C,a;), then e(z,v,a;) < 1. If v -4 (C,a;), then e(x,u,a;) < 1.

Suppose e(z,,C) > 5. WLOG let e(x,,C — ag) = 5. Then e(x,,C — a;) > 4 for each
a; € C, sox, -4 (C,a;) for each i = 2,3,4,6. By (c), this implies that e(z uv, asazasag) = 0.

But then e(zjuv,ajas) > 15— 6 = 9, a contradiction. Hence e(z,, C') < 4.
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Claim 1: e(z,,C) < 3.

Proof: Suppose not. Then e(z,,C) = 4, and we have three cases to consider.

Case A: N(z,,C) ={a1,as,as,as}. Suppose 7(az,C) = 3. Then by Lemma 1.4.6, x, —

C. Since e(z,,C — asag) = 4, we have z, N (C,a;) for i = 5 and ¢ = 6. This implies by
(c) that e(zuv, asag) = 0, so e(xjuv, ajasazay) > 15 — 4 = 11. Hence e(z1x,, ayasazas) > 7
and e(uv, ajasaszay) > 7. WLOG let e(u, ajasasas) = 4. Then u — (C,aq) and u — (C, a3),
a contradiction by (b) since e(x;x,,aza3) > 3. Therefore 7(ay, C') < 2, and by symmetry
7(az,C) < 2. Thus by (c), e(zjuv, azaz) = 0, so we have e(zrjuv, asasagay) > 11. Further,
we have e(agas, agasaga;) < 2(2) + 2(1) = 6. Since e(uv, asasaga;) > 7, this implies that
w (C,asaz). But e(xix,, asaz) = 2 > 0, contradicting (a).

Case B: N(z,,C) = {a1,a9,as,as}. Since e(x,,C—ay) = e(x,,C—ag) = 4, by (c) we have

e(riuv, agag) = 0. Hence e(zuv, ajazagas) > 11. Then e(zyuv, ay) > 2, so since z,, — (C, as)
with e(z,,C — ay) = 3, by (c) we have 7(ag,C) = 3. Then by Lemma 1.4.6, z, — C, so
7(a;,C) = 3 for i = 1,3,5, by (¢). WLOG let e(u, ajasasas) = 4. Then uajagazasasu is a
6-cycle, so e(z12,,a5) < 1 by (b). Then xja5 ¢ E, so since e(zuv, ajasazas) > 11 we have
e(x1,ajasaz) = 3. But then e(z12,,a1) = 2 and uasagasasazu is a 6-cycle, contradicting (b).

Case C: N(z,,C) = {a1,a9,a4,as5}. By (c) we have e(xjuv, agag) = 0, so

e(riuv, ajasagas) > 11. WLOG let e(u, ajasasas) = 4, and by symmetry let e(xy, ajasay) =
3. Then e(z1x,,a1a2a4) = 6, so by (b) we have u » (C,q;) for i = 1,2,4. Hence by
Lemma 1.4.8 we know that 7(ag,C) = 7(ag,C) = 0, and hence that 7(asas, C') < 2. Since
e(u,aray) = 2 and e(v,ajaq) > 1, we have uv — (C, asag). Since e(uv, ajazazay) > 3+2 =5
and e(asag, arazazay) < 2+ 2 = 4, this implies that uv EN (C,asag). But then by (a) we see

that e(x1x,, asag) = 0, a contradiction.
QED

Claim 2: e(xyz,,C) < 8.

Proof: Suppose not. By Claim 1, this implies that e(z;,C) = 6 and e(x,.,C) = 3.
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Case A: N(z,,C) ={a1,as,as}. For each i = 1,2,3 we have e(z12,,a;) = 2, so by (b)

u -+ (C,a;) and v - (C,a;). Further, by (c) we know that 7(aq, C) > 2, since z, — (C, as)
and ziay € E. Suppose that e(as,asas) = 2, so that asazasasagas and asayasagaiay are
5-cycles. Then, since u,v - (C,a;) and u,v - (C,a3), it must be the case that v and v
are not adjacent to consecutive vertices in C. Because e(uv,C) > 15 — 9 = 6, this implies
that e(u, ajasas) = e(v, ayazas) = 3 or e(u, azasag) = e(v, asasag) = 3. But then u — (C, as)
or u — (C,ay), a contradiction. Thus e(ay, asag) < 1, and since 7(az, C') > 2 we can say
by symmetry that e(as, asas) = 2. Then by Lemma 1.4.9 we have z, — (C,q;) for each
i = 3,4,6. Since e(x,,C — ag) = 3 and agay ¢ E, this implies that x, N (C,ag). But
x1a¢ € E, which contradicts (c).

Case B: N(z,,C) = {a1,a2,a4}. For each i = 1,2,4, we have e(z12,,a;) = 2, so by (b)

u -+ (C,a;) and v » (C,a;). By (c), since e(z,,C — a3z) = 3 we have 7(a3,C) = 3. Then
azasagaiasas and azasasagaiaz are 5-cycles. Since u,v - (C,a4) and u,v - (C, az), it must
be the case that u and v are not adjacent to consecutive vertices in C. But then, as in Case
A we see that u — (C,a;) or u — (C,ay), a contradiction.

Case C: N(z,,C) = {a1,as,a5}. In this case, for each i = 1,3,5 we know by (b) that

u - (C,a;) and v - (C,a;). Further, for each i = 2,4,6 we have e(z,,C — a;) = 3 and
z, — (C,a;),so7(a;, C) = 3 by (c¢). Similar to Case B, we see that v and v are not adjacent to
consecutive vertices in C'. Since u - (C, ay), this implies that e(u, ajazas) = e(v, ajazas) = 3.

Since u —» (C, a;) for each i = 1,3, 5, by Lemma 1.4.11 we have 7(aq, C) < 2, a contradiction.
QED

By Claims 1 and 2, we have e(x;z,,C) < 8 and e(z,,C) < 3. Thus e(uv,C) > 15—-8 = 7.
Suppose that e(uv,C) > 11. Then e(uv,C' — a;a;41) > 7 for each 7, so for each a; € C' we
have uv —> (C,a;a;41). But then e(z12,,C) = 0 by (a), which is clearly a contradiction.
Hence e(uv,C) < 10. WLOG let e(u,C) > e(v,C). We complete the proof by considering

the cases e(uv, C') = 10,9, 8,7, separately.
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Figure 3.6: Lemma 3.0.3: If wa; € E and va;y+3 € E, then wv — (C,a;410;+2) and uv —
(C, ai+aaits).
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Case 1: e(uv,C) = 10. Either e(u,C) = 6 or e(u,C) = 5. First suppose that e(u,C) = 6.

If N(v,C) = {a1,as,a3,a4}, then e(uv, asaszasas) = 7 and e(uv, agajazas) = 7. By (a), this
implies that e(z1z,, agajagas) = 0. But then e(zix,,asaz) > 5, a contradiction. Similarly,
we see that N(v,C) # {ai,as,a3,a5} and N(v,C) # {a1,as,a4,a5}. Therefore e(u,C) =
e(v,C) = 5.

WLOG let e(u, C'—ag) = 5. Suppose that vag € E. Then e(v, C'—a;) = 5 for some i # 6.
If i € {2,5} then e(uv, asazasas) = 7, and either e(uv, agajasas) = 7 or e(uv, agasagar) = 7.
Then by (a), e(xiz,,C) < 4, a contradiction. Thus i ¢ {2,5}, and by symmetry i ¢ {1,4}.
Hence i = 3, so e(uv, asazasas) = e(uv, asagaias) = 7, again contradicting (a). Therefore
vag ¢ F, so we have e(uv, C'—ag) = 10. This implies that e(uv, ajasaszay) = e(uv, asazasas) =
8, so by (a) we see that e(xix,, asaga;) = 0. Thus e(zz,, azazay) > 5. WLOG let z,.as € E.
Since e(u, C' — ay) = 4 with e(u, a1a3) = 2, we know that u = (c, az). But e(z,v,as) = 2,

contradicting (d).

Case 2: e(uv,C) =9. Again e(u,C) > 5. Suppose that e(u,C) = 6, so e(v,C) = 3. If

N(v,C) = {ay,a9,a3}, then e(uv, ajasazay) = 7 and e(uv, agajasas) = 7. By (a) this implies
that e(z12,, asagay) = 0, so e(r12,, ajasaz) > 15—9 = 6. But then e(x,v, ajasas) = 6, clearly
contradicting (d) since e(u,C) = 6. If N(v,C) = {ay, a9, a4} then e(uv,ajazazay) = 7, so
e(r12,,asag) = 0 by (a). Then e(z1z,,ajaza3a4) > 15—9 = 6, so e(z,v,a1a0a4) > 3+1 =4,
again contradicting (d).

Therefore N(v,C) = {ai,a3,as5}. Since e(z1z,,C) > 6 and e(x,,C) < 3, we have
e(zy,a1a2) + e(xy,azay) + e(x1,asag) > 3. Thus by symmetry we can say e(xi,asag) >
1. Then, since e(uv,ajasazay) = 6 and C + uv — asag has a 6-cycle, by (a) we have
e(asag, ayasagays) = 8. This implies that uvajasaszasu is a 6-cycle, and that uwv -4 (C, aqag)
because e(uv, ayasazas) = 7. Further, we have asas € F, so by (a) we get e(z12,, asas) = 0.
Then e(zy12,,a1asasas) > 6, so e(x,,ajazas) > 6 —5 = 1. But then e(z,v,a1a3a5) > 4,
contradicting (d) since e(u, C') = 6.

Therefore e(u, C') = 5 and e(v, C') = 4. WLOG let uag ¢ E. Then for each i € {2,3,4,6},
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u— (C,a;), so

e(x,v,a;) < 1 for each i € {2,3,4,6} (3.1)

by (d). Suppose that vag ¢ E. Then e(uv,ajasaszas) > 7 and e(uv, asazagas) > 7, so

e(x1x,,a1a5a6) = 0 by (a). Hence e(z1x,,asazaq) = 6, so e(z,v,asazas) > 3+ 2 = 5,

5

contradicting (3.1). Hence vag € E. We have (;

) cases to consider, four of which are
absorbed by the others due to symmetry.

Case 2.1: N(v,C) = {ag, a5, a4,a3} or N(v,C) = {ag, a1, as,a3} . WLOG let N(v,C) =

{ag, as,aq,a3}. Then e(uv, agasagas) > 7 and e(uv, asazasas) > 7, so e(xyx,, ajazag) = 0 by
(a). Then e(z12,, agasas) = 6, so e(x,v,azas) = 4, contradicting (3.1).

Case 2.2: N(v,C) = {ay, ag,a5,a4} or N(v,C) = {as, ag,a1,a2}. WLOG let N(v,C) =

{a1, ag,as,as}. Then e(uv, ayagasay) > 7, s0 e(r12,, azaz) = 0 by (a). Then e(z12,, ajasasag) >
6, so by (3.1) we have e(x,,a1a5) = 2 and e(z1, ajagasas) = 4. Since e(v, agag) = 2 we know
that v — (C, as). But this contradicts (b), because e(zy2,,as) = 2.

Case 2.3: N(v,C) = {ag, as,a4,a2} or N(v,C) = {ag, as,as,a2}. WLOG let N(v,C) =

{ag, as, a4, as}. Then e(uv, asagazas) > 7, 80 e(r12,, ajag) = 0 by (a). Then e(z12,, asazasas) >
6, so by (3.1) we have e(z,, asas) = 2 and e(xy, asazasas) = 4. But then e(x,u, a3) = 2, con-
tradicting (d) since e(v,C' — a3) = 4 and v — (C, a3).

Case 2.4: N(v,C) = {ag, a4, as,as}. In this case we see that e(z,, asagasas) = 0 by (3.1).

Since e(uv, asasazas) > 7 and e(uv, agazasay) > 7, we also have e(x1x,, ajasag) = 0 by (a).
But then e(ziz,,C) <340 =3 < 6, a contradiction.

Case 2.5: N(v,C) = {ag, as,as,a1}. In this case v =1 (C,ay) and v N (C,ay4). Since

e(u,asas) = 2 this implies that e(x,,asas) = 0 by (d). Then by (3.1) we know that
e(x,, asazasag) = 0. Therefore e(xix,, asas) > 6 — 5 = 1, so since e(uv, ajasazay) = 6
we have 7(as,C') = 7(ag,C) = 3 by (a). Hence by Lemma 1.4.5, u — C, so e(z,,ajas) =0
by (d). Then e(z,,C) =0, so e(z1,C) = 6. Since 7(ag, C') = 3 we have asas € E, and since
7(as, C) = 3 we have e(as, ajaz) = 2. Then ajasazasuva, is a 6-cycle and e(uv, ajasazay) = 7,

S0 v —» (C,asag). But asag € E and e(xq, asag) = 2, contradicting (a).
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Case 2.6: N(v,C) = {ag, as, a3, a2} or N(v,C) = {ag, a1, a3,a4}. WLOG let N(v,C) =

{ag, a5, az,as}. Then e(uv, asagazas) > 7, s0 e(r12,, ajag) = 0 by (a). Then e(z12,, asazasas) >
6, so by (3.1) we see that e(z,, asas) = 2 and e(z1, azazasas) = 4. But then e(z,u,as) = 2

and v — (C, ay) with e(v,C — a4) = 4, contradicting (d).

Case 3: e(uv,C) = 8. Since e(z12,,C) > 7, by (b) we have u - C and v - C, and hence

also that e(u,C') <5 and e(v,C) < 5.

Suppose e(u,C') = 5. WLOG let uwag ¢ E. Then by Lemma 1.4.5, 7(as,C) = 0.
Since e(v,C) = 3, we know that either e(v,ajas) > 1 or e(v,asa;) > 1. By symmetry,
WLOG let e(v,ajaq) > 1. Then C + uv — asag has a 6-cycle and e(uv, ajasazay) > 5.
Since e(asag, ajasazas) < 4+ 1 = 5, this implies that e(xix,,asas) = 0 by (a). Hence
e(x1x,, azsazaq) > 7 — 2 = 5, contradicting (b) because u — (C,a;) for each i = 2,3, 4.
Therefore e(u,C) = e(v,C) = 4, and we have three cases concerning N (u, C).

Case 3.1: N(u,C) = {ay,a9,as,a4}. Because u — (C,as) and u — (C,as), by (b) we

have e(z12,,a2) < 1 and e(x1z,,a3) < 1. Hence e(xix,,aia4as5a¢) > 7 — 2 = 5. Suppose
e(v, ajasasay) > 3. Then e(uv, ajasazays) > 7, so by (a) we have e(x;x,, asag) = 0. But then
e(x1x,,a1aq) > 5, a contradiction. Therefore e(v, ajasagay) < 2, so since e(v, C') = 4 we have
e(v, asag) = 2. Then vagajasazuv and vasagazasuv are 6-cycles, so e(zy2,, asasagar) < 4 by
(b), a contradiction.

Case 3.2: N(u,C) = {ay,a9,as3,a5}. By (b) we have e(z12,,a;) < 1 for each i = 2,4,6,

so e(x1x,, a1aza5) > 7 — 3 = 4. Suppose that e(v, asazasas) > 3. Then e(uv, asazasaz) > 6
and e(x1x,,a1a6) > 7—2x1—2x2=1, so by (a) we have 7(ay,C) = 7(ag, C') = 3. Thus
by Lemma 1.4.7 u — C, a contradiction. Therefore e(v, asasasas) < 2, so e(v,ajag) = 2.
Suppose e(v,asaz) > 1. Then e(uv, agaiasas) > 6 and e(xix,,a4a5) > 7—6 =1, so by (a)
we have 7(ay,C') = 7(as,C) = 3. But then again u — C by Lemma 1.4.7, a contradiction.
Hence e(v, ajagasag) = 4, so v — (C,as), uv — (C,aja6), and uv — (C,azay). But then by
(b), e(z12,, arasas) < 3 < 4, a contradiction.

Case 3.3: N(u,C) = {ay,as,a4,as}. By (b) we have e(x1x,,a3) < 1 and e(x12,,a6) < 1
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Hence e(z1x,,ajazsaq4a5) > 7 —2 = 5. By symmetry, WLOG we can let va; € E. Then
ww — (C,asas) and wv — (C,azas), so by (b) e(x12,,asas) < 2. Hence e(z12,,a1a4) > 3,
so by (b) either C' + uwv — ajag 2 Cs or C + uv — asays 2 Cs. Hence e(v,azas) = 0, so
e(v, ajagasag) = 4 and thus agasuasasvag is a 6-cycle. But e(xix,,a1a4) > 3, contradicting

(b).

Case 4: e(uv,C) = 7. As in Case 3 we have e(u,C) < 5, u - C, and v -» C. Suppose

e(u,C) = 5, and WLOG let uag ¢ E. By Lemma 1.4.5, 7(ag,C') = 0, and by (b) we have
e(z12,, azazasag) < 4. Then e(z12,,a1a5) > 8 —4 =4, so by (b) C + uv — aga; 2 Cs and
C + uv — azag 2 Cs. Since e(u, azasaiay) = 4, this implies that e(v, asazasa;) = 0. Hence
e(v,azag) = 2, so uv — (C, ajaz). But this contradicts (b), since e(x1x,,a;) = 2. Therefore
e(u,C) =4 and e(v,C) = 3.

Case 4.1: N(u,C) = {ay, as,as,as}. By (b) we have e(x12,, asasz) < 2,50 e(z12,, a1a4a5a5)

> 6. Suppose e(v, ajasazay) > 2. Then uv — (C,asag) and e(uv, ajazazay) > 6, so since
e(x1x,,aza6) > 6 —4 = 2, by (a) we have 7(as,C) = 7(as,C) = 3. But then v — C
by Lemma 1.4.6, a contradiction. Hence e(v,ajazaszay) < 1, so e(v,asag) = 2. But then
C + uwv — aga; 2 Cg and C + uv — agas 2 Cg, contradicting (b) since e(zq2,, ajasasag) > 6.

Case 4.2: N(u,C) = {ay, as,as,as}. By (b) we have e(x12,, asasas) < 3, so e(x1x,, ajazas)

> 5. Suppose e(v, agag) > 1. By symmetry, WLOG let vay € E. Then C + uv — asag 2 Cg
and C + uv — agag 2 Cg. But e(z1z,, azas) > 3, contradicting (b). Hence e(v, asags) = 0,
so e(v,azsas) > 3 —2 = 1. Since e(u,azas) = 2, this implies that uvv — (C,aga;) and
ww — (C,azay). Hence e(x1x,,a1a3) < 2 < 3 by (b), a contradiction.

Case 4.3: N(u,C) = {ay, az, aq,as}. By (b) we have e(x1x,, azag) < 2, 80 e(z12,, ajazasas)

> 6. WLOG let va; € E. Then uv — (C, asag) and uv — (C, asas), so by (b) e(x1x,, asag) <
2 and e(x1z,,aza3) < 2. Thus e(z12,,a1a4) = 4, and therefore e(v, azas) = 0 by (b), for
otherwise uv — (C,agay) and uv — (C,azay). Thus e(v,azasas) = 2. If vag € E, then
vagasuaza,v is a 6-cycle, contradicting (b) because e(x12,,a4) = 2. But then e(v, asay) = 2,

SO vagaguasasv is a 6-cycle, again contradicting (b). o
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U;

@
Uy, X,

Figure 3.7: Lemma 3.0.4: uizi22...2T U3, UIT1X2 ... Tprllg, U2TIX2 ... TprU3, aNd UT1T2 . .. Tpliy
are paths of order r 4+ 2 > 5.

Lemma 3.0.4 Let C' = ay...agaq be a 6-cycle and let R = x125...2, be a path of order r > 3.
Let uy, ug, ug, uy ¢ C + R with e(x1,uius) = 2 and e(x,,uzuy) = 2. If e(uguguzuy, C) > 15,
then C'+ R + ujuguguy has either (1) two disjoint large cycles, one of which is a 6-cycle, or

(2) a 6-cycle C" with T7(C") > 7(C) — 2 and a path of order r + 4.

Proof: Suppose that the lemma is not true. We first make some easy observations (see

Figure 3.7):

(a) If uy — (C,a;), then e(a;, usuz) < 1 and e(a;, usuy) < 1.

(b) If ug — (C, a;), then e(a;, ujuz) < 1 and e(a;, uguy) < 1.

(c) If ug — (C,a;), then e(a;, ujuy) < 1 and e(a;, ugug) < 1.

(d) If uy — (C,a;), then e(a;, ujuz) < 1 and e(a;, uguz) < 1.

(e) If x,y € C with zy € E and ujuy N (C,xy), then e(ugus, xy) = 0.
(f) If x,y € C with zy € E and ujug = (C,zy), then e(uguy, xy) = 0.
(g) If z,y € C with zy € E and usus 2 (C,xy), then e(uyuy, xy) = 0.
(h) If z,y € C with zy € E and uguy =N (C,xy), then e(ujus, xy) = 0.

WLOG let e(ujuy, C') > e(ugus, C'), and e(uy,C) > e(uy,C). Then e(ujuy, C) > 8 and

e(uy,C) > 4. Suppose that e(ujuy, C) = 12. Then uy — C and uy — C, so by (a) and
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(d) e(uguy, C) < 6 and e(ujuz, C') < 6, a contradiction. Suppose that e(ujuq, C') = 11, and
WLOG let ugas ¢ E. Since uy — C and e(uq, C — ag) = 5, we have e(uz,C — ag) = 0 by
(a). Since uy — (C,a;) for each i = 2,3,4,6 and e(uy, C') = 6, we have e(us, azazasag) = 0
by (d). Thus e(ugus, C) < 14 2 = 3, a contradiction since e(ujuy,C) = 11. Hence 8 <

e(ujuy, C') < 10, and we consider each possible value of e(ujuy, C') in the following cases.

Case 1: e(ujuy, C') = 10. First suppose e(uy,C') = 6. Then u; — C, so for each a; € C we

have e(ugug, a;) < 1 and e(uqus, a;) < 1 by (a).

If N(ug,C) = {a1,a9,as,as}, then e(ug, ajasazay) = 0. By (d), e(us, azasz) = 0 because
uy — (C,as) and uy — (C,a3). But then e(ugusz, C') = e(ugus, asas) + e(ugus, asasagar) <
0+ 1(4) < 5, a contradiction. If N(ug,C) = {a1,a9,as,as}, then e(us, ajasasas) = 0. By
(d), e(us,asasag) = 0 since uy — (C,a;) for each i = 2,4,6. Since e(ugus, C') > 5, this
implies that e(us,ajaz) = 2. But then ug — (C,a2) and e(ag, ujuy) = 2, contradicting
(c). Then N(ug,C) = {ai,az,a4,a5}, so e(uy,aiazasas) = 0. By (d), e(us,azag) = 0.
Then e(us, ajasagas) > 5 — 2 = 3 so WLOG let e(us, ajasay) = 3. Since e(ujuy,as) = 2,
ug —» (C,as) by (c). Then by Lemma 1.4.10, 7(ag, C')) = 0. Since e(uuq, ajasazas) = 7 and
urausasazastiy is a 6-cycle, this implies that wjuy N (C,asag). Then by (e), e(ugus, asag) =
0, so e(ugug,C) <143 =4 < 5, a contradiction.

Hence e(u1,C) = e(us,C) = 5. WLOG let wiag ¢ E. By (a), e(uqus,a;) < 1 and
e(uguy, a;) < 1 for each i = 2,3,4,6. Suppose e(us,C — ag) = 5. Then by (a) we have
e(ug, azazay) = 0 and by (d) we have e(us,asazay) = 0, so e(ugus,ajasag) > 5. But
e(ujuy, ajasazay) = 8, so we have e(ugus, asag) = 0 by (e), a contradiction. Hence usag € E.
We also see that ugas € E, for otherwise e(usg, asasasas) = 0 and e(us, ajasazas) = 0 by (a)
and (d), and thus e(ugusz,C') < 4. By symmetry, uga; € E. Suppose that usay ¢ E. By
(a) and (d), e(ug,azaszas) = 0 and e(us, ajazas) = 0. Then e(ugus, asag) > 5 —3 = 2, so
by (e) we see that it is not the case that ujuy -2 (C,asag). But e(ujug, ajasazas) = 7, a
contradiction. Therefore usay € E, and by symmetry ugas € F, so e(uy,C —a3) = 5. By (a)

and (d), e(ug, azasas) = 0 and e(us, ajazas) = 0. Then e(ugus, asag) > 5—2—2 = 1. But
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again e(ujuy, ajasazay) = 7, contradicting (e).

Case 2: e(uyuq, L) = 9. Suppose that e(u;, C) = 6. By (a), we have e(uqus, a;) <1 for each

a; € C. Since e(ugus, C') > 15 — 9 = 6, this implies that e(uqus,a;) = 1 for each a; € C.
By (a) and (d) we know that uga; ¢ E if uga; € E, and usza; ¢ F if uy — (C,a;). Since
e(ugus,a;) = 1 for each a; € C, this implies that N(u4, C) # {a1,a9,a3}. If N(uy4,C) =
{a1, as,a4}, then e(us,ayasay) = 0 and e(us,az) = 0 by (a) and (d). Then e(uqus, asag) >
6 —1—3 =2 and e(ujuq, ajasasays) = 7, contradicting (e). Hence N(uy,C) = {a1,a3,as5}.
By (a) and (d), e(ug,aiaszas) = e(us,asagag) = 0, so e(uq, asasag) = e(us,aiazas) = 3.
Thus uy - (C,a;) for i = 1,3,5, so by Lemma 1.4.11 we have 7(ay,C) < 1, 7(ay4,C) < 1,
and 7(ag,C) < 1. Since e(ujuy,ajasazas) = 6 and e(ugus,asag) = 2, by (e) we have
T(asag, C') = 6, a contradiction since 7(ag, C') < 1. Therefore e(uy,C) =5 and e(uq, C) = 4.

Case 2.1: N(uy,C) = {ay,a9,as3,a4}. Since e(uy, ajazazay) > 5— 2 = 3, we have

e(ujuy, ayasazayg) > 7. Thus by (e) we see that e(ugus, asag) = 0, so e(ugus, ajasazay) > 6.
Then uja; € E, for otherwise e(uy, C'—ay) = 5 and hence e(ug, ajagas) = 0 by (a). Similarly,
we have e(uq, agasag) = 3. Then WLOG wujay ¢ E. By (a), e(ug, azaq) = 0, and by (d),
ugaz ¢ E. But then e(ugus, C') < 5, a contradiction.

Case 2.2: N(uy,C) = {a1,a9,as3,a5}. Ifuja; ¢ E, then e(ug, ajazas) = 0 and e(us, asasag)

0 by (a) and (d). Then e(us, asasag) = 3 so ug — (C,a3). But this contradicts (b) since
e(ag,ujuy) = 2. Thus uja; € E, and similarly wjaz € E. If ujay ¢ E, then e(usg, ajas) = 0
and e(us, asag) = 0 by (a) and (d). But then e(usug, azay) > 6 — 4 = 2, contradicting (e)
since e(ujuy, asagaias) = 7. Hence ujay € E, and by symmetry ujag € E. By (a) and (d), it
is easy to see that wyas € E, so e(uy,C' — az) = 5. Then e(us, azas) = 0 and e(ug, asas) = 0.
Since e(ujug,as) = 2, by (b) we know that uy - (C,as). Hence e(ug,agas) < 1. Then
e(ugug, ajaz) > 6 — 1 —2 = 3, so by (a) we know that v - (C). Then 7(ay, C) = 0 by
Lemma 1.4.5, so 7(ajas, C') < 3. Since e(ujuy, azasasas) = 6 and ugasaguiagazuy is a 6-
cycle, this implies that wuquy 9, (C,ajas). But e(ugus, ajas) > e(uqus,aq) > 3 —2 = 1,

contradicting (e).
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Case 2.3: N(uy,C) = {ay,a9,a4,as}. Ifuja; ¢ E, then e(ug, ajagas) = 0 and e(us, agag)

0 by (a) and (d). Then e(ugus,a) > 6 —2 —3 = 1, so by (e) e(ajaq, azasasag) >
e(ujuy, agasasag) + 2 = 8. Hence 7(ajas, C) = 6, so uy — C by Lemma 1.4.8. But then
e(us, agasas) = 0 by (d), so e(ugus, C) < 3+ 1 = 4, a contradiction. Hence wja; € F,
and by symmetry e(uy,ajasaqas) = 4. WLOG let e(u;,C — ag) = 5. Then by (a) and
(d), e(ug,azas) = 0 and e(ug,az) = 0. Then e(ugus,asas) > 1, contradicting (e) since

e(ujuy, ajasazay) = 17.

Case 3: e(ujug, C') = 8. Since e(ugus,C) > 7, by (a) and (d) we know that u; - C and

ug - C. Then e(uy,C') < 5. Suppose e(u;,C) =5, and WLOG let ujag ¢ E. Since uy - C,
7(ag, C') = 0. Suppose that e(uy, ajasazay) > 2. Then e(ujuy, ajasazay) > 6 and C' — azag +
uyug has a 6-cycle, so because 7(ag, C) = 0 we have ujuy SN (C,azag). By (e), this implies
that e(ugus, asag) = 0. Then e(ugug, ajazaszay) > 7, so by (g) e(ujug, asag) = 0, a contradic-
tion since e(uy,C') = 5. Hence e(uy, ajasazas) < 1, and by symmetry e(uy, asazagas) < 1.
Then e(uy4, asagar) = 3, so e(ujuy, asagaiaz) = 6. Since 7(ag, C') = 0, T(azay, C) < 4. There-
fore, since usayasuiasaguy is a 6-cycle and e(ujug, asagaias) = 6, we have uyuy -4 (C,azay).
Hence e(ugug, azas) = 0 by (e), so e(ugus, asagaiaz) > 7. But uy — (C,a;) for both i = 2
and ¢ = 6, contradicting (a). Therefore e(uy, C) = e(uy, C) = 4.

Case 3.1: N(uy,C) = {ay,a9,a3,a4}. Since uy - C, 7(asag,C) < 4 by Lemma 1.4.6.

Since u; — (Ca;) for i = 2 and i = 3, e(ugus, azasz) < 2 by (a). Then e(ugus, asag) >
7—2—4 =1, contradicting (e) since e(ujuy, ajasazay) > 4+2 = 6 and e(asaq, a1a2a3a4) < 6.

Case 3.2: N(uy,C) = {ay,a9,as3,a5}. We break further into several short cases, deter-

mined by N(ug4, C).

Case 3.2.1: e(uy,a1azaza4) = 4. By (a) and (d), e(us,asay) = 0 and e(us, azaz) = 0.

Then e(ugus, asag) > 7 — 4 = 3. But e(ujuq, ajasazay) = 7, which contradicts (e).

Case 3.2.2: e(uy4, asagagas) = 4. By (a) and (d), e(us, asas) = 0 and e(ug,az) = 0. Then

e(ugus, agar) > 7—5 = 2. But e(uyuy, asazasas) = 7, which contradicts (e).

Case 3.2.3: e(uq4, azagasag) = 4. By (a) and (d), e(us, agag) = 0 and e(ug, as) = 0. Then
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e(ugus, ajas) > 7—5 = 2. Since e(ujuy, agagasag) = 6 and ujuy — (C,ajasz), this implies
that 7(ajas, C') = 6 by (e). But then uy — C, a contradiction.

Case 3.2.4: e(ug, ajazasas) = 4. By (a) and (d), e(ugus, az) = 0. Further, e(usus, as) <1

and e(ugus,ag) < 1. Then e(ugus,ajaz) > 7—4 = 3. WLOG let e(us,ajaz) = 2. Then
us — (C, as), contradicting (b) since e(ujuy, az) = 2.

Case 3.2.5: e(uq, azasasas) = 4. By (a) and (d), e(ug, azasag) = 0 and e(us, ajazas) = 0,

a contradiction since e(ugug, C') > 7.

Case 3.2.6: e(u4, agaqasa,) = 4. By (a) and (d), e(ug,a4) = 0 and e(us,az) = 0. Then

e(ugus, asag) > 7— 6 = 1. Since e(ujug, ajasazay) = 6 and ugagazasuiaiuy is a 6-cycle, by
(e) we have T(asag,C') = 6. But then u; — C' by Lemma 1.4.7, a contradiction.

Case 3.2.7: e(ug, asazagasz) = 4. By (a) and (d), e(ug, azasag) = 0 and e(us, ajazas) = 0,

a contradiction.

Case 3.2.8: e(u4, a1asaqas) = 4. By (a) and (d), e(uq, asas) = 0 and e(ug,az) = 0. Then

e(ugus, asag) > 7 —5 = 2, so because e(ujuy, ajasasay) = 6 we have 7(azag, C) = 6 by (e).
But then vy — C by Lemma 1.4.7, a contradiction.

Case 3.2.9: e(u4, azagaga;) = 4. By (a) and (d), e(ug,asa6) = 0 and e(us, azas) = 0.

Then e(ugus, asag) > 7 — 6 = 1, so because e(uju4, ajasasas) = 6 we have 7(asag, C') = 6 by
(e). But then u; — C by Lemma 1.4.7, a contradiction.

Case 3.3: N(uy,C) = {ay,a9,a4,as}. Since u; - C, by Lemma 1.4.8 we have 7(a3,C) =

0 or 7(ag,C) = 0. WLOG let 7(ag,C') = 0. By (a), e(ugus,az) < 1 and e(ugug, ag) < 1.
Suppose that e(uy, ajasagas) > 3. Then, because e(ujuy, ajasazas) > 6 and 7(asag, C) <
3+ 0 =3, we have ujuy 9, (C,asag). Hence e(ugug, asag) = 0 by (e), so e(ugus, ajasay) >
7—1 =06 and e(ugug, az) = 1. Then e(ujus, ajasazay) = 6, so by (f) we have e(uy, asag) = 0,
Then e(uy, ajasazay) = 4, so e(ujuy, asagagas) = 6. But then e(ugus,aga;) = 0 by (e), a
contradiction.

Hence e(uy4,ajasazay) < 2, so e(uy,asag) = 2. Suppose that e(uy,aiaz) > 1. Then

e(ujuy, asagaiaz) > 3+ 3 = 6, so since 7(agaq, C) = e(as, asaq) + e(ayq, ara2) < 4 we have
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Figure 3.8: Lemma 3.0.5: If t =9, then z; and zg have x5 as a common neighbor.

e(ugus, agas) = 0 by (e). Then e(ugus,ajasas) > 7 —1 = 6, so e(usuy, asagaiaz) > 3 +
3 = 6. But then e(uy,asas) = 0 by (h), a contradiction. Hence e(uy, azasasag) = 4, so
e(ugus, agas) < 2 by (d). Then e(ugus, ajaz) > 7—2—2(1) = 3, a contradiction by (e) since

e(uyuy, agasagar) = 6 and 7(agasz, C') < 4. 0

Lemma 3.0.5 Let R = x125...7; be a path of order t > 9, and let C' = ajas...aga; be a
6-cycle. Suppose that e(xq, x3x45) = €(Ty, Tp_2xy 374 4) = 3, e(x;, C) > 3 fori =2 x4 1,74,
and e(x1,C) > 2. Then R+ C has two disjoint large cycles, one of which has length siz.
(The lemma also holds if the condition x1x3 € E or xi1x5 € E is replaced by xoxs € E, or if

xr1xy € E is replaced by xoxy € E. )

Proof: Suppose that the lemma is not true. Note that zix5x42379, T1242372, and z1x325
are paths of order five, four, and three, and that similar paths hold for z;_; and z;. For the
comment in parentheses, note that if xox5 € F, then 1231425149 is a path of order five that
does not use the edge x1x5, and xyx529 is a path of order three that does not include x;x3.
If xox4 € F then x1x51475 is a path of order four that does not use xjz4.

Since there is an x; — x5 path of order five in x1xsx32475, we know that if e(x1x9, a;) = 2

for some a; € C, then xx9x3x475 + a; has a 6-cycle. Similarly, if e(xyx¢_1,a;) = 2 for some
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X X1 Xt Xt.-Z X;l
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d Qa3 a4 as Qg 492 4dz a4

t—3 Xt2 Xt1 Xt-1
a dg

Figure 3.9: Since there are paths of order 2, 3, and 4 from x; to x;—1 that do not include x5,
there is a path, not including x5, of order at least 6 from x;_; to each a; # as.

d, 3

a; € C, then xx; 17 9wy 3744 + a; has a 6-cycle. Suppose that e(xix2,a;) = 2 for some

a; € C, and WLOG let e(x1x9,a1) = 2. Then C — ay + x¢...2; does not have a large cycle, so

we see that x,a9 ¢ E, for otherwise e(z;_1,C) = e(xy_1, asagasag) + e(xi_1,a1a9) < 0+2 =2

(see Figure 3.9). Similarly, we see that e(z:, azasasag) = 0, a contradiction since e(z;, C') > 3.
Therefore

e(r129,a;) < 1 for each a; € C, (3.2)

and by the same reasoning

e(xy_12¢,a;) < 1 for each a; € C. (3.3)

From (3.3) we know that e(zy, C) = e(x;_1,C) = 3, and that N(z;, C) N N(z4_1,C) = 0.

WLOG there are three possibilities for N(z;, C'), which we consider presently.
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Case 1: N(xy,C) = {ay,a9,a3}, N(x;_1,C) = {ay,as,a6}. Suppose that xja; € E. Then

Toay ¢ E| for otherwise xyx4w3100001017 = Cg and azayasagx;_12.03 = Cg. Similarly, xeag ¢
E, so e(xy,azasas) = 3 by (3.2). But then zyz37905060171 = Cg and x,x4 oy 1a4a3027; =
Cs, a contradiction. Therefore x1a; ¢ FE, and by symmetry e(z1,ajazasas) = 0. Thus
e(x1,aza5) = 2, so by (3.2) e(xq,a1a3a4as) = 3. WLOG let e(z3,a1a3a4) = 3. Then

T12403 2010901 = Cg and xyx_1agasaqa3r; = Cg, a contradiction.

Case 2: N(xy,C) = {ay,a9,a4}, N(x;-1,C) = {as,as,a6}. We observe that the following

graphs have 6-cycles: x; 1200030405, Tt 17105060102, LTy 1T 0T 30601, TiLi 1T 9T 30203,
and x;x;_114_9xs_3a4as5. Since R+C' does not have two disjoint cycles, one of which has length
6, we readily see that e(zq,ajasagag) = 0. Then e(x1,asa5) = 2 and e(xq, ajazagas) = 3.
WLOG let e(xy,aa3) = 2. Then xizsroazasaszy = Cg and xyx, ox4 qagaiasz, = Cg, a

contradiction.

Case 3: N(z¢,C) ={a1,a3,a5}, N(xi_1,C) = {ag, a4,a6}. For each z € N(x¢,C), there is

y € N(z;_1,C) such that do(x,y) = 3. Therefore, we readily see that the following graphs
do not have large cycles: xi1xox324250;0,41, for each 1 < i < 6. WLOG let xya; € E. Then
e(xy, ajasag) = 0, 80 e(x, azasas) = 3. But then e(xy, azasasazag) = 0, a contradiction.

3

The following lemma is used in Cases 3.2.1.2 and 3.2.2.2 of Part 2 of the proof of Theorem

Lemma 3.0.6 Let R = x1...x, be a path of order r > 5, and let C' = ayas...aga; be a 6-cycle.
Let u,v ¢ R+ C with wv € E and e(x1x,uv,C) > 15. Suppose that, for each a; € C, if
z, — (C,a;) then e(a;,uv) < 1. Then C' 4+ R + uv contains either (i) Cs U Csq, or (ii) a
path P of order v + 2 and a 6-cycle C', with P and C' disjoint, such that 7(C") > 7(C), or
(111) a path P of order r + 2 and a 6-cycle C', with P and C' disjoint, such that r(P) > 4,
7(C') > 7(C) — 1, and 7'(C") > 7(C), or (i) a path P = a;a;x;...x, of order r + 2 with

a;xy € E, and a 6-cycle C" with 7(C") > 7(C) — 1 and 7'(C") > 7/(C) — 1, such that P and
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C' are disjoint.

Proof: Suppose that the lemma is not true. The following statements follow from the fact

that (i)-(iv) are not true. Since (iv) is not true, (h) holds. The rest follow from (i) and (ii).
(a) If u— (C,a;) then e(a;, x1x,) < 1. If v — (C,a;) then e(a;, x1x,) < 1.

(b) If uv — (C,a;a;) then e(a;, z12,) < 1 and e(a;, z12,) < 1. Further, if ¢;a; € E and

e(a;aj, r12,) = 2, then e(xy, a;a;) = 2 or e(x,, a;a;) = 2.
(c) Ifu 9, (C,a;) then e(a;,vrix,) < 1. If v 9, (C,a;) then e(a;, urz,) < 1.
(d) If wv RN (C,a;a;) and a;a; € E, then e(a;a;, v12,) = 0.
(e) If 2, — (C,a;) then e(a;, uv) <1 (by assumption).

(f) Ifay 9, (C,a;), then e(a;, z,u) < 1and e(a;, x,v) < 1. If z, 9, (C,a;), then e(a;, r1u) <1

and e(a;, zqv) < 1.
(g) If z, RN (C,a;) then e(a;, zyuv) <1 (by (e) and (f)).
(h) If wv N (C,a;a;) with a;a; € E, and 7/(C +uv —a;a;) > 7'(C) —1, then e(z1, a;a;) < 1.

Claim 1: e(u,C) < 4 and e(v,C) < 4.

Proof: WLOG let e(u, C') > e(v,C). By (c), clearly e(u,C) < 5. Suppose e(u,C') = 5, and
WLOG let e(u, C—ag) = 5. If 7(ag, C) = 0, then by (c¢) e(a;, variz,) < 1foreachi = 2,3,4,6,
so e(ajas,vrix,) > 15 — 5 —4 = 6. Hence uv N (C,asag), contradicting (d). Therefore
7(ag,C) > 0, s0 u — C. By (a), e(a;,x12,) < 1 for each a; € C, so e(v,C) > 15— 11 = 4.
Suppose that vag € E. Then e(ag,z12,) = 0 by (c), so e(v,C) =5 and e(z12,,a;) = 1 for
each i # 6. But then for some k # 6, e(v,C' — a;) = 5 and e(ag, uzix,) = 2, contradicting
(c). Hence vag ¢ E. Since e(z12,,a5a6) > 5 —4 = 1 and e(u, ajasazay) = 4, by (d) we see
that e(v,ajasazay) < 3. By symmetry, e(v, asazasas) < 3. This implies that e(v,C) = 4,

e(v,a1a5) = 2, e(v, asazay) = 2, and e(a;, r1z,) = 1 for each a; € C.
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Suppose vas ¢ E. Then e(v, ajasasas) = 4, so by (e) x, - (C,q;) for each i = 1,2,4,5.
If e(x,,asa6) = 2, then by (b) z,a; € FE since uwv — (C,agay) and e(agay, x1x,) = 2.
But then x, — (C,a;) for some i € {1,2,4,5} because 7(ag,C') > 0, a contradiction.
Hence e(z,,asas) < 1, and since uv — (C,asag) and e(xix,,asa6) = 2, by (b) we have
e(z1,asag) = 2. But this contradicts (h), since e(uv, ajasazay) = 7. Therefore vas € E, and
WLOG we can let vay € E. By (e), x, - (C,a;) for each i = 1,2,3,5, so e(z,, asaga;) < 2
by Lemma 1.4.9 since 7(ag, C')) > 0. Since uwv — (C,asag) and uv — (C,agay), by (b) this
implies that e(z,asasa1) = 0 and e(zy,asasa1) = 3. But e(uv, ajasazay) = 7, contradicting
(h).
QED

By Claim 1 we have e(uv,C) < 8, so e(z1z,,C) > 7. By (a), this implies that u - C

and v » C.

Claim 2: e(u,C) < 3 and e(v,C) < 3.

Proof: WLOG let e(u,C) > e(v,C). Suppose that e(u,C') > 4. By Claim 1, e(u,C) = 4.

Case A: N(u,C) = {a,az,a3,a4}. By (a), e(ag, x12,) < 1 and e(as, z12,) < 1. Suppose

that 7(asag, C') < 3. Since e(z12,, asa6) > 7T—1—1—4 =1, we see by (d) that e(v,a1a4) = 0,
for otherwise uv (C, asag). Similarly, e(v, asas) < 1, so e(v,C) < 3. Then e(zy2,,C) > 8,
so e(xr1x,,arazasag) > 8 — 1 — 2 = 5. This implies that vas ¢ E, for otherwise uv —
(C,azay) and uwv — (C,agay), contradicting (b). By symmetry, we also know that vag ¢ F,
so e(v,C) < 1 and e(xyz,,C) > 10. Since e(az, z12,) < 1 and e(ag,x12,) < 1, we have
e(x1x,, asasagar) = 8, and e(aq, x1x,) = e(as, r1z,) = c(v,C) = 1. WLOG let vay € E. By
(e), x. - (C,as), so z,a3 ¢ E. Then x1a3 € E, so 7(aq,C) = 3, for otherwise x; 9, (C,ay)
and e(ay, x,u) = 2, contradicting (f). But then ajasazasvua; = Cg, contradicting (b) since
e(asag, T12,) = 4.

Therefore 7(asag, C) > 4. WLOG let 7(as,C') > 2. Then by Lemma 1.4.6, u — (C, ay)

and u — (C,ag) Further, since 7(ag, C') > 1 we also know that u — (C,as). By (a), this
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imples e(x1x,,a;) < 1foreachi =4,5,6, so e(x1x,,a;) = 1 for each i # 1 and e(z12,,a1) = 2.
Then u - (C,ay), so 7(ag,C) < 1 by Lemma 1.4.6. Since e(u, C'— ag) = 4, this implies that
u (C,ag). By (c), this implies that vag ¢ E, so e(v,C — ag) > 15 — 4 — 7 = 4. But then
uw - (C, asag) because 7(asag, C') = 4, contradicting (d) since e(z1x,., asag) = 2.

Case B: N(u,C) = {ay,as,a3,a5}. By (a), e(r12,,a;) <1 for each i = 2,4,6,

so e(z12,, arazas) > 7—3 = 4. Since u - C, 7(a4, C') < 2 by Lemma 1.4.7. Then u N (C,ay),
so by (c) e(ay, z12,v) < 1. By symmetry, e(ag, z12,v) < 1.

Suppose that e(v,agas) > 0. Then wv — (C,a¢a1) and uv — (C,azayq), so by (b)
e(ar,z1x,) < 1 and e(as, z12,) < 1. Then e(as, z12,) = 2, e(a;, z12,) = 1 for i # 5, and
e(v,C) = 4. Further, since e(a4, x17,.) = e(ag, x1x,) = 1, we know that e(v, ajasazas) = 4.
Then e(uv, asazagas) = 6, so by (d) 7(agar,C) > 5. By symmetry, 7(aszas, C) > 5. Thus
asag € E or e(ag,agas) = 2, so u — (C,as) by Lemma 1.4.7. But this contradicts (a),
because e(as, r1x,) = 2.

Therefore e(v, asas) = 0. Since e(ay, x12,v) < 1 we see that vay ¢ E, for otherwise uv —
(C,asag) and uv — (C,aqaz), contradicting (b) since e(zy1z,,asas) > 7T— e(xix,, azag)—
e(x1x,,a1) — e(x12,,a4) > 7 —2 — 2 — 0 = 3. By symmetry, vag ¢ E, so e(v,C) < 2. This
implies that e(v, a1a3) = 2, e(z12,, a1azas) = 6, and e(z12,,a;) = 1 for each i = 2,4,6. By
(a), u » (C,q;) for any i = 1,3,5, so 7(az,C') < 1 by Lemma 1.4.7. But then z; N (C,as)
and 7, (C,asy), contradicting (f) because e(x1x,,as) = 1 and uay € E.

Case C: N(u,C) = {a1,as,a4,a5}. By (a), e(as,z12,) < 1 and e(ag, z12,) < 1. Suppose

that e(v,ajasasas) = 0. Then e(zyx,, ayasa4as) > 15 — e(uwv,C) =1 -1 > 15 -8 = 7,
so by (a) we see that u — (C,a;) for at most one a; € {ay,as,a4,a5}. By Lemma 1.4.8,
this implies that 7(azag,C') = 0. Since e(v,C') > 15 —4 — 10 = 1 and e(v, ajasaqas) = 0,
WLOG let vaz € E. Then by (c), e(as, x1x,) = 0 because u 2 (C,as), so e(zyz,,C) < 9.
Therefore e(v, C') = 2, so vag € E. By the same reasoning as above we have e(ag, z12,) = 0,
so e(z1z,,C') < 8. But then e(uvziz,,C) <4+ 2+ 8 = 14 < 15, a contradiction.

Therefore e(v,ajasasas) > 1. WLOG let va; € E. Then uwv — (C,aza3) and uwv —
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(C,asag), so by (b) e(ag, x12,) < 1 and e(as, x1x,) < 1. Hence e(x1x,,a1a4) > 7 —4 = 3,
so we see that e(v,asas) = 0 by (b), for otherwise uv — (C,azay) and uv — (C,apay).
Then e(asag, v12,v) > 11 — e(agas, x12,v) — e(ajaq, x1zx,0) > 11 —2 — 6 = 3, so by (c)
7(agag, C') > 0. Then by Lemma 1.4.8, u — (C,a;) or u — (C,ay), so e(x1x,,a1a4) = 3
by (a). This implies that e(zy2,,a;) = 1 for each i = 2,3,5,6, and e(v, ajazasas) = 4.
Since e(xyx,, aja4) = 3, either 7(as, C) = 0 or 7(ag, C') = 0 by (a) and Lemma 1.4.8. Then

w2 (C,a3) or u 2, (C, ag), contradicting (c) because e(ag, x12,v) = e(ag, x12,v) = 2.
QED

By Claim 2 we have e(u, C') < 3 and e(v,C) < 3, so e(z12,,C) > 9. Clearly, e(x,,C) <5
by (g). Suppose that e(zy,C) = 6. . Then by (f), e(z,u,a;) < 1 and e(z,v,a;) < 1
for each a; € C. Since e(x,uv,C) > 9 and 6 > e(uv,C) > 4, this implies that e(x,,C) =
e(u,C) =e(v,C) =3, N(u,C) = N(v,C), N(u, C)NN(z,.,C) = 0, and N(u, C)UN(x,.,C) =
{a1, a9, as, a4, as,a}. We see by (e) that N(z,,C) # {ai, as,a4} and N(z,,C) # {a1,as,as},
so WLOG we can let N(z,,C) = {ai,as,a3}. Then N(u,C) = N(v,C) = {ay,as,as}, so
by (e) and Lemma 1.4.9 we have 7(as,C') = 0. But then u 2 (C,as) and e(z12,v,a;5) = 2,

contradicting (c). Thus e(xy,C') < 5.

Claim 3: e(z,,C) < 4.

Proof: Suppose e(x,,C) = 5, and WLOG let e(x,.,C — ag) = 5. Suppose 7(ag,C) = 0.
Then z, — (C,a;) for each i = 2,3,4,6, so e(a;, ryuv) < 1 for each such ¢ by (g). Hence
e(riuv,aras) = 6 and e(zyuv,a;) = 1 for each i = 2,3,4,6. Since e(z12,,a5) = 2, by (b)
we know that e(uv,as) = 0, for otherwise uv — (C,asag). By symmetry, e(uv,as) = 0.
Then e(z1, ajasa4as) = 4, so because azag ¢ E we have SN (C,a3). By (f), this implies
that e(uv,az) = 0. Therefore e(x1,C — ag) = 5 and e(uv,as) = 1. WLOG let uag € E (see
Figure 3.10). Since u - (C,a;) for i # 6 by (a), we see that asay ¢ E and e(as, ayas) = 0.

Because 7(ag,C) = 0, this implies that 7(asazas, C') < 2. Let C' = zya5a6uva,z; and let
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P’ = xy...x,a5a3a4. Since T(asazay, C') < 2 and 7(ag, C) = 0, we know that 7(C') < 3. Since
e(u,aras) = 2 and vas € E, we know that 7(C’) > 3. But P’ is a path of order r—1+43 = r+2,
a contradiction.

Therefore 7(ag,C) > 0, so x, — C by Lemma 1.4.5. Then e(uv,a;) < 1 for each
a; € C by (e), and because e(z,,C — ag) = 5 we have e(uvxy, ag) < 1 by (g). Suppose that
ziag € E. Then e(uv,ag) = 0, so e(uv,a;) = 1 for each i # 6, and e(z,,C) = 5. WLOG
let ua; € E. Then by (b), vay ¢ E, for otherwise uv — (C,aza3) and e(agas, x1x,) > 3.
Hence uay € E. Since e(u,ajay) = 2 and e(u,C') < 3 by Claim 2, we have e(u, asas) <
1. If e(u,azas) = 1 then e(v,azas) = 1, which implies that wv — (C,azay) and uvv —
(C,agay). But e(agasagar, x1x,) > 10 — 4 = 6 > 4, contradicting (b). Thus e(u, asas) = 0,
so e(v, agas) = 2. Since e(uv,as) = 1, by symmetry we can let uaz € E. Then u — (C, az),
so by (a) z1as ¢ E. But then N (C,ay) and e(ag, x,v) = 2, contradicting (f).

Therefore x1a¢ ¢ E. Since e(z12,,C —ag) > 9 —0 =9, we know that e(zyz,, a;a;11) > 3
for each i € {1,2,3,4}. Then by (b) we see that for each ¢ € {1,2,3,4}, wv - (C,a;a;11).
Thus, for each a; € C, if ua; € E then va;y3 ¢ E. Since e(uv,a;) < 1 for each a; € C, and
because e(u, C') < 3 and e(v, C') < 3, this implies that e(uv,C) < 5. Hence e(z1,C' —ag) =5
and e(uv, C') = 5. WLOG let ua; € E. Since e(z1z,,C — ag) = 10, by (a) and (b) we see
that v - (C,a2) and uv - (C,agas). Therefore uas ¢ E and vay ¢ E. Further, by (a)
we have e(u, azays) < 1, e(u,a4a6) < 1, e(u,asas) < 1, e(v,azas) < 1, and e(v,azaqs) < 1.
Since ua; € E and e(uv,a;) < 1, we have va; ¢ E, so e(v,C) = 2 and e(u,C) = 3. Since
e(u,azasag) < 1 and wag ¢ F, this implies that ua; € E. Hence vas ¢ E, and by (b)
vag ¢ E. Thus e(v,azag) = 2, e(u,aras) = 2, and e(u, azas) = 1. WLOG let uay € E. By
(a), u - (C,az), so by Lemma 1.4.10 we have 7(a3,C') = 0. But then 2, (C,a3) and

e(x,v,a3) = 2, contradicting (f).
QED

Since e(z1,C) < 5, e(z,,C) < 4, e(u,C) < 3, and e(v,C) < 3, each inequality is an

equality. The following three cases will complete the proof.
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a4 XI‘

Figure 3.10: Lemma 3.0.6, Claim 3: When 7(ag,C) = 0, there is a 6-cycle C’ (middle) with
7(C") > 7(C), and a path P’ (bottom) of order r + 2.
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U

Figure 3.11: Lemma 3.0.6, Case 3: The dashed lines represent possible edges.

Case 1: N(u,C) ={ai,as,a3}. By (a), e(r1z,,a9) < 1, so e(z1z,,C — az) > 8. Since

e(r1z,,C) =9 > 8, by (b) we see that e(v, asasag) = 0, for otherwise uv — (C, a;a;41) and
uwv — (C, a;43ai44) for some a; € C. Then e(v,ajasa3) = 3, so by (e) we have x, - (C,a;)
for each i = 1,2,3. Hence e(z,,apas) < 1, e(x,,a1a3) < 1, and e(z,,azay) < 1. We ob-
serve that x.as ¢ E, for otherwise e(z1,C' — ay) = 5, which implies that x; 9, (C,ay) and
e(az, r,u) = 2, contradicting (f).
Thus e(x,, C—ay) = 4,50 WLOG let z,.a; € E. Then z,a3 ¢ E, so we have e(x,., ayasasag) =

4. Since z, » (C,a3), we know that 7(ay, C') = 0 by Lemma 1.4.6. Hence u RN (C,a3), so
by (c) x1as ¢ E, which implies that e(x;,C — ay) = 5. Since z, » (C,az), we know that
7(az,C) = 0 by Lemma 1.4.6. Thus 7(agas,C) = 0, so 7(C) < 3. Let C' = ayz1azuvaga,.
Since (uvzy, ajasaz) = 8, uwv € E, ajay € E, and asaz € E, we have 7(C') > 11 -6 =5 > 3.

But xs...x,.a4a506 = P, 2, a contradiction.

Case 2: N(u,C) = {ay,a9,a4}. Since e(xix,.,C) > 9, by (b) we have e(v, agasa;) = 0, so

e(v, asazag) = 3. Thus e(z12,,a3) < 1 and e(x1x,,a1) < 1 by (a), so e(z1z,, asasasag) > 7.
Hence v — (C,a;) for at most one ¢ € {2,4,5,6}, so 7(a3,C) < 1 by Lemma 1.4.10.
Then u (C,a3), so by (c) e(xyx,,a3) = 0. Similarly, since e(v,asazag) = 3 we have

e(x1x,,a1) = 0. But then e(xyz,., C') < 8, a contradiction.
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Case 3: N(u,C) = {ay,as,a5}. Similar to the previous case, we have e(v,ajazas) = 3. By

(a), e(x1zr,a;) < 1 for each i = 2,4,6, so e(x1x,,a1a3a5) = 6. By symmetry, WLOG let
zray € E and e(z1, aqa6) = 2. Since z, - (C,a;) for each i = 1,3,5 by (e), we know that
e(ay, asag) = e(ag, asay) = 0 by Lemma 1.4.7. Then 7(C) < 6, and 7(C) < 5 if aja3 ¢ E
(see Figure 3.11). Let €' = wvasz,asa u. Since e(uvz,, ajasaz) =7, uv € E, ajay € E, and
asas € E, we have 7(C") > 10—6 = 4, and 7(C") > 5if ayaz € E. Therefore 7(C") > 7(C)—1.
Clearly 7(C") = 1, and 7/(C) < 1 since e(ag, asag) = 0. Hence 7/(C") > 7/(C). Since (iii)
from this lemma is not true, it must be the case that R + C' — z,, — ajasa3 does not have a
path P of order r + 2 such that r(P) > 4. But ayz, € E, 80 ajasaer123 ... T,—1 is such a

path, a contradiction. O

The following Lemma will be used in Cases B.3 and C.2 of Proposition 4.1.7.

Lemma 3.0.7 Let R = x1...x, be a path of order r > 5, and let C' = ayas...aga; be a 6-cycle.
Let u,v ¢ R+ C with e(xx,uv,C) > 15. Suppose that the following are true:

1. If x, — (C,a;) then e(a;, ryuv) < 1.

2. Ifu 9, (C,a;) then e(a;, z12,) = 0. Ifv RN (C,a;) then e(a;, z1z,) = 0.

3. If z, = (C,a;) then e(a;,x1v) = 0.

Then C 4+ R + uv contains either Cg U Csg, or a path of order r + 2 and a 6-cycle C" with
7(C") > 7(C) — 1.

Proof: Suppose that the lemma is not true. We begin with some easy observations, the

last three of which are just part of the lemma’s assumptions.
(a) If u — (C,a;) then e(a;, z12,) < 1. If v — (C, a;) then e(a;, z12,) < 1.
(b) If uv — (C, a;a;) then e(a;, z12,) < 1 and e(a;, v12,) < 1.

(c) Ifu N (C,a;) then e(a;,vrix,) < 1. If v N (C, a;) then e(a;, uriz,) < 1.
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(d) If u RN (C,a;) then e(a;, x1z,) = 0. If v % (c, a;) then e(a;, z1z,) = 0.
(e) If z, — (C,a;) then e(a;, xyuv) < 1.

(f) If z, EN (C,a;) then e(a;, z1v) = 0.

Claim 1: e(u,C) < 3 and e(v,C) < 3.

Proof: We will not use (f) in the proof of this claim, and hence WLOG we let e(u,C) >
e(v,C). Clearly, e(u,C) < 5 and e(v,C) < 5. Suppose that e(u,C) > 4, and first let
e(u,C) = 5. WLOG let e(u,C — ag) = 5. By (¢), u - C, so 7(as,C) = 0 by Lemma
1.4.5. Then 7(a;,C) < 2 for each i = 2,3,4,6, so by (d) e(azasasas, r1z,) = 0. But then
e(r1x,,a1a5) > 15 — 10 = 5, a contradiction. Thus e(u,C) = 4 and (v,C) < 4. Since
e(x1x,,C) >15—-8="T7,u—» C and v - C by (a).

Case A: N(u,C) ={ay,as,a3,a4}. Since u - C, 7(ag,C) < 2 and 7(a3,C) < 2 by

Lemma 1.4.6. Then by (c), e(as, vriz,) < 1 and e(as,vrix,) < 1. Suppose e(ag, azas) > 0 or
e(as, azaz) > 0. WLOG let agas € E. Then by Lemma 1.4.6, u — (C,a1) and u — (C, as).
Since e(u,C — as) = 4, we have further that u LN (C,as5), and so e(as,vriz,) < 1 by (c).
Then e(ajasaq, r12,v) > 15 —4 — 3 = 8, so 7(ay,C) = 3, for otherwise e(ay,vriz,) < 1
by (c). But then u =4 (C,ag) by Lemma 1.4.6 since asa; € E, contradicting (c) because
e(ag, r12,0) > 2.
Therefore e(as, asas) = e(ag, azaz) = 0. Then u RN (C,az) and u RN (C,as), so

e(agas, r12,) = 0 by (d). Hence e(z12,, agasaga;) > 7. Since e(x1x,, asag) > 3, we know that
e(v, ajasasay) < 1 for otherwise uv — (C, asag), contradicting (b). Thus e(z12,, asasasar) =
8 and e(v, asag) = 2, which clearly contradicts (e).

Case B: N(u,C) = {ay,a9,as3,a5}. By (c), e(ag,vr1z,) < 1 and e(ag, vriz,) < 1. Fur-

ther, because u - C we have 7(ay, C') < 2 by Lemma 1.4.7, so we also get e(as, vziz,) < 1.
Thus e(ajazas, vriz,) > 15 —4 — 3 = 8. WLOG let e(aj,vriz,) = 3. Then u - (C,aq)

by (a), so e(ag,azay) = 0 by Lemma 1.4.7. Then 7(ay,C) < 2 and 7(ag,C) < 1, so
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by (d) e(agaq, z12,) = 0. Then e(v,asa6) > 15 — 4 — e(ajazas, vriz,) — e(ag, vrix,) >
15—4—-9—1=1,s0uv — (C, asaq) or uv — (C, agas). Thus e(as, z12,) < 1 by (b). But then
e(v,C) > 15—e(u,C) —e(x1x,,C) = 15 — 4 — e(x12,, aga6) — e(x12,, azas) — e(r12,, ajas) >
15—4—-0—2—4 =25, a contradiction.

Case C: N(u,C) = {a1,as,a4,a5}. By (c), e(az,vriz,) < 1 and e(ag, vriz,) < 1. Since

u - C, WLOG we can let 7(ag, C') = 0 by Lemma 1.4.8. Then e(ag, z12,) = 0 by (d). Sup-
pose that 7(ag, C') > 0. Then by Lemma 1.4.8 u — (C,as) and u — (C, ay), so e(ag, x12,) < 1
and e(ayq, x1z,) < 1 by (a). Hence e(z12,,a1a5) = 4, e(z12,,a;) = 1 for each ¢ = 2, 3,4, and
e(v,C') = 4. Since e(z12,,a3) = 1, we know that e(v,C — az) = 4 because e(ag, vriz,) < 1.
Therefore e(v, asay) > 1. Since e(z12,,a1a5) = 4, we know that v - (C,a1) and v - (C, as)
by (a). Since e(v,agas) > 1, this implies that vag ¢ E. Thus e(v,ajaza4as) = 4, so
uwv — (C, agay ), contradicting (b).

Therefore (a3, C') = 0, so by (d) e(as, z12,) = 0. Then e(z12,, ajasasas) > 7, so WLOG
let e(z12,,a1a2a4) = 6. Thus by (b) we have uv - (C,aga1), uv - (C,asa3), and uv -
(C,asay). Since e(u, ayasasas) = 4, this implies that e(v, asazasas) < 2, e(v, asazagar) < 2,
and e(v, asagaiaz) < 2. Hence e(v,C) < 3, so e(z12,, ayazaqas) = 8 and e(v,C) = 3. WLOG
let va; € E. Since e(z12,,a5) = 2, by (b) we have wv —» (C,asag). Because va; € E
and e(u,ajasay) = 3, this implies that e(v, asaszay) = 0. But then e(v,asa6a1) = 3, so

uwv — (C,asay), contradicting (b).
QED

Claim 2: e(z,,C) < 3.

Proof: Suppose that e(z,,C) > 4. By (e), we know that e(z,,C) < 5. If e(z,,C) = 5,
and WLOG e(z,,C — ag) = 5, then by (e) e(a;,z1uv) < 1 for each i = 2,3,4,6. Then
e(riuv,aras) > 15—5—4 = 6, s0 x, - (C,a;) and x, - (C,as). Hence 7(ag, C) = 0, so by (f)
e(ag, r1v) = 0. Then uag € E and e(a;, zyuv) = 1 for each i = 2,3, 4. Since e(u, asaga;) = 3

and e(u, C') < 3, we have e(a;, z;v) = 1 for each i = 2, 3,4. Thus by (f), 7(a;, C) > 2 for each
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i = 2,3,4. Since 7(ag, C') = 0, this imples that e(as, asas) = e(as,asa1) = e(ay, ajaz) = 2.
Then u — (C,a2) and u — (C,a4) by Lemma 1.4.9, so by (a) e(xy,asas) = 0. But then
e(v,ajasasas) = 4, a contradiction since e(v, C') < 3. Therefore e(z,,C) = 4.

Case A: N(z,,C) ={ay,as,a3,a4}. By (e), e(az,z1uv) < 1 and e(az, zyuv) < 1. Hence

e(riuv, agasagar) > 15—4—2 = 9. Suppose that 7(as,C) > 0. Then z,, — (C, ag) by Lemma
1.4.6, so e(ag, z1uv) < 1 by (e), and hence e(xjuv, asasa,) > 8. Then z, - (C,a;) for each
i = 4,5,1, so by Lemma 1.4.6 7(ag,C') = 0 and e(as, azaz) = 0. Since z, — (C,ag), this
implies that e(ag, z1v) = 0 by (f). Then e(z1,C —ag) = 15— 4 — 6 = 5, so e(azas, uv) = 0,
and hence e(u, asasaga;) = 3 and e(v, asasa;) = 3. But then uwv — (C, asaz), contradicting
(b).

Hence 7(as,C') = 0, and by symmetry 7(ag, C') = 0. Because e(z1,C) > 5, WLOG we
can let xja5 € E. Then by (d), because 7(asag, C) = 0 we have u » (C,as) and v - (C, as).
Therefore e(u, asag) < 1 and e(v, asag) < 1. Since e(xuv, ajasaga;) > 9 from the beginning
of Case A, we get e(uv,ajas) > 9 — e(xy, asasapar) — e(uv,asas) > 9 —4 — 2 = 3. Then
either u — (Clag) or v — (C,a¢), and since 7(ag, C) = 0 this implies that zia6 ¢ E by
(d). Therefore e(z1,C — ag) = 5, e(uv,a1as) = 4, and e(u,asas) = e(v,aqag) = 1. Since
e(x1x,, aza3) = 4, we have uv - (C,asaz) by (b). Thus, because e(uv,ajas) = 4 and
e(u, asag) = e(v, agag) = 1, this implies that e(uv, ag) = 2. Since z1a3 € F and =, — (C, a3),
we know that 7(a3,C) > 1 by (f). Thus, because 7(ag,C) = 0 and 7(as,C) = 0, we must
have 7(az,C) = 1 with aga; € E. But e(u,asasa;) = 3, so u — (C,az) by Lemma 1.4.9,
contradicting (a).

Case B: N(z,,C) = {ay,a9,a3,a5}. By (e), e(a;, xquv) < 1 for each i = 2,4,6, so

e(ajazas, ryuv) > 15 — 4 — 3 = 8. Then again by (e), ., - (C,a;) for each i = 1,3,5,
so 7(ag,C) < 1 and 7(ag,C) < 1 by Lemma 1.4.7. Hence by (f), e(asaq, z1v) = 0, a
contradiction since e(xy,C') > 5.

Case C: N(z,,C) = {a1,a9,a4,a5}. By (e), e(as,zyuv) < 1 and e(ag, xquv) < 1. Then

e(aragaqsas, ruv) > 15— 4 — 2 =9, so e(asay, x1uv) > 3 and e(ayas, zyuv) > 3. Thus by (e)
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we have x, - (C,az) or z, - (C,a4), and x, » (C,a;) or z, - (C,as). By Lemma 1.4.8,
this implies that 7(aszag, C') = 0. But then z, 2 (C,a3) and z, 2, (C, ag), contradicting (f)

since e(z1,C) > 5.
QED

By Claims 1 and 2, we have e(z1,C) = 6 and e(z,,C) = e(u,C) = e(v,C') = 3. Since
e(x1,C) = 6, by (a) we know that if u — (C,a;) then z,a; ¢ E. Thus u — (C,q;) for at
most three a; € C. Also, by (d) we know that there cannot be a; € C such that u 9, (C,a;).
Therefore N(u,C) # {a1, a3, as}, for otherwise by Lemma 1.4.11 we see that either u — C
or 7(a;,C') <1 for some i € {2,4,6}, and hence u 2 (C,a;). If N(u,C) = {a1,as,a4} then
7(az,C) > 2, for otherwise u N (C,a3). Then either azas € E or e(as, aga;) = 2. In the first
case, by Lemma 1.4.10 we have u — (C, a;) for each i € {2,3,4,6}, a contradiction since
4 > 3. In the second case, by Lemma 1.4.10 we have u — (C,a;) for each i € {1,2,3,5},
again a contradiction.

Thus WLOG N(u,C) = {ai,az,as}. Since zjas € F, by (a) and (d) we have z,ay ¢ E
and 7(az,C') > 1. Suppose that asas € E. Then u — (C,a4) and u — (C,ag) by Lemma
1.4.9, so e(z,,asa6) = 0. But then e(z,,ajaszas) = 3, so z, — (C,az), contradicting (e)
because e(zyu,as) = 2. Thus asas ¢ F, so e(az,asag) > 1. WLOG let asay € E. Then
u — (C,a3) by Lemma 1.4.9, so z,a3 ¢ E, and hence e(z,,asasa¢a;) = 3. Then z, is
adjacent to two consecutive vertices of the path ajasaga;as. But then, because asay € F,

we see that x, — (C, as), contradicting (e). This completes that proof. Q
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Chapter 4

Proof of Theorem 1

In this chapter, we prove that if G is a graph of order n > 6k + 1 and §(G) > %k, k> 2,
then GG contains k vertex-disjoint cycles of length at least six. The proof is done by way of
contradiction. Assuming the theorem does not hold, we choose a collection of large cycles
and a path disjoint from these cycles, each subject to certain minimality and maximality
conditions. We then use dozens of cases (the rest of the proof) to investigate the edges
between the path and a 6-cycle to find something that contradicts one of the maximal /mini-
mal conditions, so that no such path can exist and the theorem holds. In Propositions 4.1.4,
4.1.5, and 4.1.7 we use the fact that if the path has limited edges to every large cycle, then
it must have more edges to itself.

It is clear from the proof that any attempt at proving a stronger theorem, or proving a
similar theorem for larger cycles, may not be a good use of time unless a different strategy

was used.

4.1 Part One

Let G be a graph of order n > 6k + 1 and §(G) > %k, k > 2. Suppose that G does not
contain k disjoint large cycles. Let rg be the largest integer such that G contains 7y disjoint
6-cycles. Over all such collections of ry disjoint 6-cycles, let ky be the largest integer such
that G contains kg disjoint large cycles. Then rq < kg < k — 1. A chain of G is a set
{L1,...; Lypy, ..., Ly, } of ko disjoint large cycles that includes ry disjoint 6-cycles, and such
that

ko
Z I[(L;) is minimal among all such sets. (4.1)
i=1

. We choose a chain o = {Ly, ..., Lyy, ..., Ly, } of G such that

the length of a longest path in D is maximal, (4.2)



88
where
ko
D=G-) L.
i=1
Let H=G — D, and let P = x1x5...x; be a longest path in D.

Lemma 4.1.1 Let j =2 or j =4, and suppose there is xq,...,x; € D with e(z;...xj, D) <

% — 1. Then there is L; € o such that e(x;...x;, L;) > 77] +1 and |L;| = 6.

Proof:  Since e(zy...z;, D) < 77] — 1 and e(z;..2;,G) > %k, we have e(zy..z;, H) >
Upk-Y+1= %J(k' —1)+1> Yk + 1. Hence e(zy...xj, L;) > I + 1 for some L; € o, and
thus WLOG e(xq, L;) > 4. By (4.1) we see that L; + D does not contain a cycle of length

less than L;. Hence |L;| = 6 by Lemma 2.2.1. a
Proposition 4.1.2 ¢t > 7.

Proof: We first show that |D| > 7. Suppose that |[D| < 6. Then |H| > 6k +1—6 =
6(k—1)+1 > 6ko+1, s0 |L;| > 7 for some L; € 0. WLOG let |L;| > |L;| for each L; € o, and
let ¢ = |L;|. By Lemma 2.2.1 and (4.1), e(D, L;) < 3|D| < 3(6) < 3(¢—1). By Lemma 2.1.3
and (4.1), e(Li, L;) = Y ,cp, €(v, Li—v) < 4q, for otherwise L; contains a large cycle of length
at most g—1. Then e(L;, H—L;) > Tk(q)—e(L;, D)—e(Li, L;) > Tk(q)—Tq+3 = Z(k—2)+3,
so e(L;, Lj) > % for some L; € o with ¢ # j. By Lemmas 2.2.7 and 2.2.6, and (4.1), we
see that ¢ = 7. Then e(L;, L;) > 25, so by Lemma 2.2.1 and the maximality of r, we see
that |L;| = 6. But this contradicts (4.1) by Lemma 2.2.5, so |D| > 7.

Suppose that t < 6. Let Q = y;...ys be a path of order s in D — P, and let o and P be
such that s is maximal. Clearly @ exists since |D| > 7. To complete the proof, we first show
that s and ¢ cannot both be small, and that ¢ > 3. Then, we consider the cases t = 3,4,5,6
separately.

If D has two vertices z and y with e(xy, D) < 6, then by Lemma 4.1.1 there is L; € o
with |L;| = 6 and e(xy, L;) > 8. Suppose that L; + 2y does not contain Cs U P,. Then there

is no u € L; such that either + — (C,u) and yu € E or y — (C,u) and zu € E. By Lemma
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1.4.16, this implies that there is a labeling L; = ajas...aga; such that either N(z, L;) =
{a1,as,a3,a4} and N(y, L;) = {a4,as,a6,a1}, or N(z,L;) = N(y,L;) = {a1,as,a4,a5}. In
the first case, raqasyaga,x is a 6-cycle and asaz € E, a contradiction. In the second case
aiagasyasxay is a 6-cycle and asag € F, a contradiction. Therefore L; + xy contains Cg U Ps.

Because of this we may, and do, choose ¢ so that D, D — P, and D — (P + @) do not
have two isolated vertices u and v with e(uv, D) < 6. Since |D| > 7, this implies that ¢ > 2,
and that s > 2 if t < 5. Further, if s =1 then t =6 and |D| = 7.

If D has two edges ujuy and vivy with e(ujugvivy, D) < 13, then by Lemma 4.1.1 there
is L; € H with |L;| = 6 and e(ujugvivq, L;) > 15. WLOG let e(ujvy, L;) > 8. If there is
z € L; with u; — (L;, 2) and v1z € E, then L; + ujvjvy O Cg U Ps; and if v — (L, z) with
urz € F, then L; + viujus 2 Cg U P3. If there is no such z, then by Lemma 1.4.16 we have
either N(uy, L;) = {a1, as,a3,a4} and N(vy, L;) = {a4,as,a6,a1} or N(uy, L;) = N(vy, L;) =
{a1, as, a4, as} for alabeling L; = a;...aga;. Then e(uvy, L;) = 8, so e(uqvy, L;) > 7. WLOG
say e(ug, L;) > 4. Then e(uquq, L;) > 4 4+ 4 = 8, so by the same argument as above with usy
replacing u; we have either L; + ujusvive O Cg U Py or e(ug, a1aq) = 2. In the latter case,
e(ujus, ajag) = 4, so that ujusajasagasu; = Cg and veviasag = Py. In any case we see that
L; + ugusvv9 O Cg U Ps.

Thus we may, and do, choose ¢ so that D, D — P, and D — (P + ) have neither two
isolated edges zy and uwv with e(xyuv, D) < 13, nor two isolated vertices a and b with
e(ab, D) < 6. Since |D| > 7, this implies that ¢t > 3, and that s = 3 if t = 3. Combining this

with the above gives us he following information:
o t>3. If t =3 then s = 3.
o If ¢t <5 then s> 2.
o If s=1thent=6and |D|=T.

Case 1: t =3. Since e(riz3y1y3, D) < 2 x 4 = 8, there is L; € H with |L;] = 6 and

e(x1x3y1ys, L;) > 15 by Lemma 4.1.1. WLOG let e(x1y;, L;) > 8. Since t = 3, by Lemma
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1.4.16 we have L; = ajas...agay, and either N(xy, L;) = {ai1,as,a3,a4} and N(y;, L;) =
{ayg,as5,ag,a1} or N(z1,L;) = N(y1, L;) = {a1,a2,a4,a5}. Then e(xsys, L;) > 7, so WLOG
let e(xs, L;) > 4. Then e(yixs, L;) > 8, so since t = 3 we have N(x3,L;) = N(xy,L;)
by Lemma 1.4.16. If e(zy23,a3) = 2 then agasayzizox303 = Cg and azyiyeys = Py, a
contradiction. Then e(x;x3, asay) = 4, S0 asazasrirorsas = Cg and asyiysys = Py, again a

contradiction.

Case 2: t = 4. Sincet < 5, s > 2. By the maximality of ¢, we have e(z 24, D) = e(x124, P) <
6 and e(y1ys, P) = 0. By the maximality of s, we have e(yiys, D — P) = e(y1ys, Q) < 6.
Hence e(z12411ys, D) < 12, so by Lemma 4.1.1 e(z124y1Ys, L;) > 15 for some L; € H with
|L;| = 6. By the maximality of ¢ and Lemma 1.4.17, we know that e(xiy;, L;) < 8 and
e(rqys, L;) < 8. WLOG let e(zyy1, L;) = 8 and e(z4ys, L;) > 7. By Lemma 1.4.15 and
the maximality of t, e(y1, L;) < 4. Let L; = ajas...aga;. Suppose e(y1, L;) = 4. Then
by the maximality of ¢ and Lemma 1.4.16, we have either N(yi, L;) = {a1, as,as,a4} and
N(zq, L;) = {ay, as,a¢,a1} or N(y1, L;) = N(x1, L;) = {a1, as, a4, as}.

First suppose N (y1, L;) = {a1, as, a3, a4} and N(z1, L;) = {a4, as, ag, a1 }. If e(ys, L;) > 4,
then by the maximality of ¢ and Lemma 1.4.16 we have N(ys, L;) = {a1,as,a3,a4}. But
then yy...ysa1asazaqs 2 Cg and asrizox384 = Ps, a contradiction. Hence e(ys, L;) < 3,
so e(xy,L;) > 4. Then e(y1x4,L;) = 8 by Lemma 1.4.17, so by Lemma 1.4.16 we have
N(z4, L;) = {as,a5,a6,a1}. But then xizozsxsazagr; = Cs and ajasaszasyr...ys 2 Psg,
a contradiction. Thus N(yi, L;) = N(x1,L;) = {a1,a0,a4,a5}. I e(ys,L;) > 4, then
by the maximality of ¢ and Lemma 1.4.16 we have N(ys, L;) = {a1,a2,a4,a5}. But then
y1...ysarazazay 2 Cg and asrizorsry = Ps, a contradiction. Hence e(ys, L;) < 3, so
e(ry,L;) > 4. Then e(y124,L;) = 8 by Lemma 1.4.17, so by Lemma 1.4.16 we have
N(z4, L;) = {a1, ag, a4, a5}. But then z1xox3040102 = Cg and azagaszy;...ys 2 Pss, a contra-
diction.

Therefore e(y;, L;) < 3, so e(z1, L;) > 5. Thus by Lemma 1.4.17, e(ys, L;) < 3, and thus
also e(xy, L;) > 4. Suppose e(yy, L;) = 3. Then e(z, L;) = 5, so WLOG let z1a6 ¢ E. By
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the maximality of ¢, y; - (L;,a;) for j =1,...,5. Since y; - (L;,a;) for j =1,3,5, we have
e(y1, asasag) < 1. Then e(y;,arasas) > 2, so because y; - (L;,a;) for j = 2,4, we have
e(yr,aras) = 2. Then xya6 ¢ E since t = 4, so e(xy,azay) > 1 because e(zy, L;) > 4. But
then z1x9x3140304 2 Cg and asayagasy;...ys 2 Psg, a contradiction. So we have e(y;, L;) = 2
and e(z1, L;) = 6, and by Lemma 1.4.17 we have e(ys, L;) < 2 and e(xy, L;) > 5. WLOG let

y1a; € E. Since e(z1x4, L;) > 11 we have e(x1x4, asag) > 3. But then zyz9x3240506 2 Ch

and asasasa1y;...ys 2 P>, a contradiction.

Case 3: t =5. Since t <5, s > 2.

Case 3.1: s <4. By the maximality of ¢, e(xix5, D) = e(z25,P) < 4+ 4 = 8 and

e(11ys, P) < 2. By the maximality of s, e(y1ys, D — P) = e(11ys, @) < 3+ 3 = 6. Further,
if s = 2 then e(y192,Q) = 2 and if s > 3 then e(yiys, P) = 0. Hence e(y1ys, D) < 6, so
e(r1x5y1ys, D) < 14. Then e(zix511ys, H) > 14k — 14 > 14k, so e(x1x511Ys, L) > 14 for
some L; € H. By Lemma 2.2.1 and the minimality of o, |L;| = 6. Let L; = ajas...aga.

Suppose that e(x125, a;) = 2 for some a; € L;, and WLOG let j = 1. Then zyzox3042501 21 =
Cs, SO asazasasagyr...ys 2 Pse. Thus e(y1ys, asazasas) = 0, and e(y1ys,aq) = 0 if s > 3.
Therefore e(yiys, L;) < 4. If e(y1ys, L;)) < 2 then e(zyz5,L;) > 14 — 2 = 12. Then
e(z125,a6) = 2, which means ajasazasasy;...ys 2 Ps. Therefore e(y1ys, ajasaqas) = 0,
so e(y1ys, L;) = 0. But then e(zix5, L;) > 14, a contradiction. Hence e(yyys, L;) > 3,
so e(y1ys,a1aq) > 3 and s = 2. Then yyysaiasazay 2 Cg and yiysagasaga; 2 Cg, so
T1XoXL3T4L50506 ;_b Ps¢ and 1292304750003 ;_5 Psg. Then e(xx5, asagazaz) = 0, a contradic-
tion since e(y1y2, L;) < 4 and e(x125y1y2, L) > 14.

So e(xyzs,a;) < 1 for each a; € L;. Then e(xiz5,L;) < 6, so e(y1ys, L;) > 8. If
e(y1, L;) = 6 then y — L;, so that by the maximality of ¢ we have e(xix5, L;) = 0. But
then e(y1ys, L;) > 14, a contradiction. Thus e(yyys, L;) < 10, so e(xyxs, L;) > 4. Suppose
e(y1, Li) = 5. WLOG let yha6 ¢ E. Then y; — (L;, a;) for j = 2,3,4,6, so since t = 5 we
have e(x1x5, asasagas) = 0. But then e(zyx5,a1a5) = 4, contradicting the first sentence of

this paragraph. Hence e(yy, L;) < 4, so e(y1, L;) = e(ys, L;) = 4, and e(zy25, L;) = 6. Then
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for each a; € L; we have e(aj, z125) = 1, and hence y; - (L;,a;) since t = 5. This is a
contradiction since e(yy, L;) > 4.

Case 3.2: s = 5. By the maximality of ¢, we have e(z125, D) = e(z125, P) < 444 = 8 and

e(y1ys, D) = e(1h1ys, Q) < 8. Thus e(z12511y5, D) < 16. Suppose that for each L; € H, we
have e(x1x5y1ys, L;) < 12. Then e(xi1x5y1y5, H) < 12kg < 12(k—1) = 12k + 2k — 2k — 12 <
14k — 16. Since e(x1x511Y5, G) > 14k, it must be that k = 2, ko = 1, e(x125y195, D) = 16,
and e(x12511Ys5, L1) = 12. Since e(z12511y5, D) = 16, we know that z125 € F and y,y5 € E.

Suppose |Li| =p > 7, and let Ly = ayas...apa; (see Figure 4.1). By the maximality of 7o,
G 2 Cg, so for each a; € Ly we have e(z125,a;) < 1 and e(y1y5,a;) < 1. Also, by Lemma
2.2.1 and (4.1) we have e(x1, L1) = e(xs5, L1) = e(y1, L1) = e(ys, L1) = 3, with x1, x5, y1, Y5
each being adjacent to three consecutive vertices of L;. Suppose that there is j between
1 and p such that e(xyz5, L1 — ajaj11) = 6. Then by Lemmas 2.1.5 and 2.1.4 we have
N(zy,Ly) = N(xs, L), contradicting the fact that e(z,25,a;) < 1 for each a; € Ly. Hence
there are not two consecutive vertices in L; which are each adjacent to neither z; nor xs.
Since 7 and x5 are each adjacent to three consecutive vertices of Ly, this implies that p < 8.
Thus WLOG we have either (if p = 8) N(xy, L1) = {a1,a2,a3} and N(zs5, L1) = {as, ag,ar}
or (if p=7) N(z1,L1) = {a1,as,a3} and N (x5, L1) = {as, as,as}. Either way, we see that
Lqi + x125 O (g, a contradiction.

Therefore p = 6. Suppose that thereis a; € Ly with e(xy25, a;) = 2, and WLOG let j = 1.
Then L1 +Q — a1 2 Ps¢ by (4.2), so e(y1ys5, L1 —a;) = 0. But then e(y1y5, D) > 14—2 = 10,
a contradiction. Hence for all a; € Ly, e(x125,a;) < 1, and similarly e(y,ys,a;) < 1. Since
e(x12591Y5, L1) = 12, this implies that for all a; € Ly, e(a;, z125) = e(aj, y1y5) = 1. Then by
(4.2) we have, for each a; € Ly and each r € {1,5}, that y, - (L1, q;) and =, - (L1, a;).
But this is impossible, since e(u, L1) > 3 for some u € {x1, x5, y1, Y5}

So we know that e(z125y1ys, L;) > 13 for some L; € H. Then |L;| = 6. If e(x125,a;) = 2
for some a; € L;, then e(y1ys, L — a;) = 0 by the maximality of t. Thus e(zyzs5, L;) >

13 — 2 = 11, so WLOG we can say that z; — L;. But then e(y;y5, L;) = 0, which means



Figure 4.1: Proposition 4.1.2, Case 3.2, |L1| > 7.
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that e(zyxs, L;) > 13, a contradiction. Hence e(zqxs5, L;) < 6, and similarly e(y,ys, L;) < 6,

which is again a contradiction since 6 + 6 < 13.

Case 4: t = 6. We first claim that either e(xoxq, D) < 8 or e(z125, D) < 8. By the maximality
of ¢t and because D 2 Cg, we have e(x126, D) < 5. WLOG let e(z1,D) < 2. If s = 1 then
|D| = 7 since D — P does not have two isolated vertices, so the claim holds trivially in
this case. Hence assume that s > 2. Then by the maximality of ¢ we have e(xs, y1y5) = 0.
Suppose that there is u,v € D — P with e(zs,uv) = 2. Then u,v € D — (P + Q). By
the maximality of ¢, e(uv, D — P) = 0 and e(uv, z426) = 0. Since D 2 Cg, e(uv,z1) = 0.
Thus e(uv, D) < 6, and u and v are isolated in D — (P + @), a contradiction. Therefore

e(xs,D — P) <1, s0 e(r125,D) <145+ 2 =8 and the claim holds.

Claim: There are not paths B = b1bsy...bs and C' = ccy of order 5 and 2 in D

with €<b1b26102, D) S 13.

Proof: On the contrary, suppose that there are. By Lemma 4.1.1, there is L; in H with
e(bibscice, L) > 15, and |L;| = 6. Let L; = L = ajas...aga;. Suppose that e(ciea, ajay) > 3.
Then ¢ycoa1a2a3a4 2 Cg and cicaagasaga; 2 Cg, so e(bybs, asagasas) = 0 by the maximality of
t. Then e(bybs, L) < 4, so e(cica, L) > 11. Then e(cyca, azas) > 3, so similar to above we have
e(b1bs, agajagay) = 0. But then e(bybs, L) = 0, a contradiction. Hence e(cicq, a1a4) < 2, and
by symmetry e(cics, asas) < 2 and e(cycz, azag) < 2. Then e(cice, L) < 6, so e(bibs, L) > 9.

WLOG let e(bibs,ar) = 2. Then bibsbsbsbsaiby = Cg, so L — ay + cico 2 Py. Thus
e(cica,aza6) = 0. Suppose that e(bibs,as) = 2. Then bybobsbsbsasb; = Cg, so similar to
above we have e(cjcy, azas) = 0. But then e(cice,ajaq) > 15 — 12 = 3, a contradiction.
Hence e(bibs,as) < 1, so e(bibs, L — ajag) > 9 — 3 = 6. Suppose that e(bibs,as) = 2.
Then e(cico,aza;) = 0, so e(ciee, L) < 4 and e(bibs, L) = 11. But then e(bibs,a3) = 2,
so e(cieg,agas) = 0 and hence e(cice, L) < 2, a contradiction. Therefore e(bibs, az) <

1, and by symmetry e(bibs,ag) < 1. Then e(bibs,azas) > 9 —5 = 4, so by the same
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reasoning as above we have e(cjce,aq) = 0. Hence e(cico, a1azas) = 6, e(bibs, ajazas) = 6,
and e(bybs, as) = e(b1bs, ay) = e(b1bs, ag) = 1. WLOG let e(by, L) > 5 with e(by, L — ag) = 5.

Then b1a4a5a6a1a2b1 = 06 and b263b4b5a30201 = P7, a contradiction.

QED

By the claim we know that s # 2, for otherwise e(y;y2, D) < 4 and thus either
e(r1x5y1y2, D) < 4+ 8 = 12 or e(zax6y1y2, D) < 12 for paths P and @ of order 5 and 2.

Thus we consider the cases 3 < s < 6, and finish the proof with the case s = 1.

Case 4.1: s = 3. By the maximality of ¢, e(y1y3, D — Q) = 0. Thus e(y1y3, D) < 4,
so e(x1x5y1y3, D) < 12. Then by Lemma 4.1.1, e(z125y1y3, D) > 15 for some L; in H, and
|L;| = 6. Let L; = L = ayas...aga;. Suppose that e(yiys, ajaz) > 3. Then yyyoysaiasa3 2 Cg,
so P—xg+asasas 2 P>7. Hence e(x125, asasas) = 0, so e(xyxs, L) < 6 and e(y1ys, L) > 9. If
e(y1ys3, azas) > 3 then similar to above we have e(x;x5, agajas) = 0, so that e(x;x5, L) < 2,
a contradiction. Therefore e(y;ys,azas) < 2, and similarly e(y1y3, asa6) < 2. But then
e(y1ys, ajas) > 9—4 =5, a contradiction. So e(y1ys3, a1az) < 2, and similarly e(y,ys, azay) <
2. Then e(y1ys, L) < 8, so e(z1z5,L) > 7. WLOG let e(r125,a;) = 2. Then L — a; +
Y1yays D Ps7, 80 e(y1ys, azasasag) = 0 and hence e(xy25, L) > 15 — 4 = 11. Then WLOG
e(x1x5, a2) = 2, 0 e(y1y3, azasagay) = 0 and therefore e(y,ys, L) = 0, a contradiction.

Case 4.2: s = 4. By the maximality of t and s, e(y1y4, D) < 343 = 6. Then e(x125y1y4, D)

< 14, so e(xi1x5y1ys, L;) > 14 for some L; € H, and |L;)] = 6 by Lemma 2.2.1. Let
L; = L = ajas...aga;. Suppose that e(yiys, a1as) > 3. Then L — ajag + P — 26 2 Psr,
so e(x1x5, L — ajaz) = 0. If e(xy25,a1) = 2 then L —ay + Q 2 Psr, so e(y1ys, L — a1) = 0.
But then e(zizs, L) < 4 and e(y1y4, L) < 2, a contradiction. Hence e(z125,a1) < 1, and
similarly e(xix5,as) < 1. Then e(zyz5, L) < 2, so e(y1ys, L) = 12. Then e(y,y4, agzas) = 4,
so similar to above we get e(z1x5, L — azay) = 0. But then e(zy25, L) = 0, a contradiction.

Therefore, by symmetry e(yiy4, ajaj41) < 2 for j = 1,3,5, so e(yi1ys, L) < 6. Thus
e(z125, L) > 9, so WLOG let e(z125,a1) = 2. Then L—a;+Q 2 Ps7, so e(y1ys, L—ay) = 0.
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Hence e(y1y4, L) < 2, so e(x1x5, L) = 12. Then e(xix5, as) = 2, so similar to above we have
e(y1ys, L — ag) = 0. But then e(y,y4, L) = 0, a contradiction.

Case 4.3: 5 < s < 6. By the maximality of ¢, e(x1xg, D) < 5. Similarly, if s = 6 then

e(y1ys, D) < 5. We first claim that D has a path B = byby...bg of length 6 and a path
C' = cjca...c5 of length five such that e(b1bgeics, D) < 13. If s = 5, then e(y1y5, D) < 8 by
the maximality of ¢ and s, so e(x126y1y5, D) < 5+ 8 = 13. Since WLOG e(zy125, D) < 8 by
the first paragraph of Case 4, we also have e(xix5y1y6, D) < 8 +5 = 13 if s = 6. Thus the
claim holds, so consider such paths B and C.

Since e(bybgcics, D) < 13, by Lemma 4.1.1 we have e(bibgcics, L;) > 15 for some L; € H
with |L;| = 6. Let L; = L = ajas...aga;. Suppose that e(cics,a;) =2. Then L —ay + B 2
P>z, s0 e(bibg, L — a1) = 0. But then e(bibg, L) < 2, so e(cics, L) > 13, a contradiction.
Hence e(cics,a;) < 1 for each a; € L. Thus e(cics, L) < 6, so e(bibg, L) > 9. WLOG let
e(by, L) > e(bg, L). First suppose that e(b;, L) = 6, so that b — L. Then e(cics5b,a;) < 1
for each a; € L, for otherwise babsbsbsbga;cicacscacs 2 Py and L — a; + by 2 Cg. Then
e(ciesbg, L) < 6, so e(by, L) > 9, a contradiction. Hence e(b;, L) = 5 and e(bg, L) > 4.
Similar to above, we see that e(cicsbg, a;) < 1 for four a; € L, since e(by, L) = 5. Since
e(cics,aj) < 1 for each a; € L, we have e(cicsbg, L) < 1 x4+ 2 x 2 = 8 But then
e(by, L) > 7, a contradiction.

Case 4.4: s = 1. Since s = 1 we have |D| = 7. Since e(z1z6, D) < 5, WLOG we can let

e(z1,D) < 2. Since |D| =7 and D 2 P;, we know that e(y;, D) < 2. Then e(z1y;, D) < 4,
so by Lemma 4.1.1 we have e(xyy1, L;) > 8 for some L; € H, and |L;| = 6. By Lemma
1.4.16, L; + x1y; 2 CgU P,. Hence L; + P+ Q O Cg U P, U P5. Label the paths of length
5and 2 B = by...bs and C = cyco, and reassign D as D = B U C. By the maximality
of t we know that e(cico, B) < 4 with e(cico, b1bs) = 0. Further, if e(cico, B) = 4 then
e(cica,boby) = 4. Suppose that e(bibscice, D) > 14. Then e(bibs, D) = e(bibs, B) = 8
and e(cico, D) = 4+ 2 = 6. But then e(cico, boby) = 4, so bibacicabsbsby is a 6-cycle, a

contradiction. Hence B and C' are paths of length 5 and 2 in D with e(bibscice, D) < 13, a
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contradiction. This completes the proof.

J
We define 7(0) = >, ., 7(Li), and 7'(0) = >, ., 7'(L;). Subject to (4.1) and (4.2),

we choose ¢ and P such that the following conditions hold, in order:

7(0) is maximal. (4.3)
r(P) is maximal. (4.4)
7'(o) is maximal. (4.5)
s(P) is maximal. (4.6)

Proposition 4.1.3 e(zyzox; 124, D—P) =0, e(x129, P) < 8, e(x;_174, P) < 8. Ife(x1xs, P)
8, then N(x1xq, P) = {1, 29, x3, 4, x5}. If e(xy_12, P) = 8, then

N(xtflxty P) = {xtamtfla Tt—2,Tt—3, l’t74}-

Proof: Clearly, e(x12;, D — P) = 0 by (4.2). Suppose e(xsx;—1, D — P) > 0, and WLOG
let uzy € E for some w € D — P. By (4.2), uz; ¢ E and e(u, D — P) = 0. Further,
e(uzy,r3) = 0. Then by the maximality of kg, e(uxy, P) < 34+ 3 = 6 since e(uxy,z;) =0
for i > 6. Thus e(uzxy, H) > Tk — 6 > Tko + 1, so e(uxy,L;) > 8 for some L; € o.
But this contradicts Condition (4.3) by Lemma 1.4.18, so e(xqx;—1, D — P) = 0. By the
maximality of kg, e(x1, P) < 4, e(z2, P) <5, e(x4—1, P) < 5, and e(zy, P) < 4. It is clear
that e(zyx9, P) < 8, for otherwise z123 € E and zox¢ € E, contradicting the maximality of
ro. Suppose that e(x;xq, P) = 8, and that xoxg € E. Then x123 ¢ E, so e(xy, xox4x5) = 3
and e(xq, v123747576) = 5. But then xjxx370067501 = Cg, a contradiction. Therefore the
Proposition holds. O

The remainder of this section will be used to show that there is a 6-cycle L in ¢ such
that e(zyzoz_ 12, L) > 15. We start by showing e(zyzox; 124, L) > 13 for some 6-cycle L

(Prop. 4.1.4), and then increase 13 to 14 (Prop. 4.1.5) and finally, 14 to 15 (Prop. 4.1.7).
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In each step, we take advantage of the fact that if e(z 292124, L) is small for each L € o,

then e(zyz92¢—124, D) (and hence e(zy2924_124, P) by Prop. 4.1.3) must be large.
Proposition 4.1.4 There is L; € o such that e(x1xoxs_q124, L;) > 13.

Proof: Suppose that e(zyzoz_124, L;) < 12 for each L; € 0. Then e(xixox; 124, H) <
12ky < 12(k—1), so e(xyxomy_124, D) > 14k—12k+12. Since e(z1x97_ 124, D) < 16 by Propo-
sition 4.1.3, we have 4 > 2k, so k = 2. Then e(z1z2x4_ 124, D) = 16 and e(z12274 124, L1) =
12. Let Ly = ayas...a,a,. By Proposition 4.1.3 we have e(z;, P) = 4 for each i = 1,2, x;_1, 2.
Then for each such 4, since e(x;,G) > 7, we have e(x;, L;) > 3. Suppose |L;| > 7. By
Lemma 2.2.1 and by (4.1), we have e(x;, L1) = 3 for each i = 1,2, x, 1,2, Further, z; is
adjacent to three consecutive vertices of Ly. Since z1x5 € E we have e(x1x9,a;) < 1 for each
a; € Ly by (4.1). By Lemma 2.1.5 and (4.1) we see that there is no 1 < j < p such that
e(x1x9, L1 —aja;41) = 6. Since x; and z, are each adjacent to three consecutive vertices of Ly,
this implies that p < 8. Thus WLOG we have either (if p = 8) N(zy, L1) = {a1, as, a3} and
N(zg, Ly) = {as,a6,a7} or (if p =7) N(xy,L1) = {a1,as,a3} and N(xg, L1) = {a4,as,as}.
Either way, we see that L; +x1x9 O (g, a contradiction. Therefore |L;| = 6. Since z125 € F
and z,x,_4 € F, we see that t > 9, for otherwise xx5x¢...x:24_4...¢1 is a large cycle. Hence
by Lemma 3.0.5 we see that L; + P contains two disjoint cycles, one of which has length 6,

contradicting the maximality of k. o

Proposition 4.1.5 There is L; € o such that e(z1xoxi 124, L;) > 14.

Proof: Suppose that e(z1z92_ 174, L;) < 13 foreach L; € 0. Then 14k < e(x1xomi_ 174, G) <
13ko+16 < 13k+3 by Proposition 4.1.3, so k < 3. Further, we know that k = 2 for otherwise
0(G) > 11 and hence e(xyxowy 124, P) > 44 —26 = 18, a contradiction. By Proposition 4.1.4,
we have e(ryzowi_124, L1) = 13 and e(x1x9x4_124, P) > 15. WLOG let e(xy_q24, P) > 8. By
Proposition 4.1.3, Lemma 3.0.5, and the maximality of ky we see that e(x; 124, P) = 8 and

e(r1xe, P) = 1.
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Suppose that e(xzg, P) = 5. Then by the maximality of kg, e(x3,z127) = 0 since
e(x9, x4x6) = 2. Suppose there is u € D — P with x3u € E. Then xx;_1..x42023u is
a path of order ¢, so e(u,D — P) = 0 by (4.2) and uz; ¢ E for i > 6 by the maxi-
mality of kg. Further, by (4.2) we see that e(u,x1z9) = 0. Then e(u, D) < 3, so since
e(x1, D) <2, we have e(uxy, L) > 14 — 5 =9, contradicting (4.2) via Lemma 1.4.17. Hence
e(xs,D — P) = 0, so e(z3, D) < 4. Since zox¢ € E and e(z;—12¢, P) = 8, by Proposition
4.1.3 we know that ¢ > 8. Then, we see that ¢t > 10, for otherwise xoxer7...212¢_4...29 iS
a large cycle. Let S = wox3..14_174. Since e(x9, D) = e(xq, P) = 5, e(x9, L1) > 2. Since
e(xy_1,D) = e(xy, D) = 4 and e(x3,D) < 4, e(x;, L) > 3 for each i = 3,2,_1,7;. But
e(zy, x3x475) = 3, contradicting the maximality of kg via Lemma 3.0.5.

Therefore e(xs, P) < 4, and thus e(z1, P) > 3. By Lemma 3.0.5 we see that e(x, z3z475) <
2, so e(x1,P) = 3 and e(xq9, P) = 4. Since e(xy,x3x475) = 2, wowg ¢ E. But then
e(x9, v4x5) = 2 and e(x1, r3w475) = 2, contradicting Lemma 3.0.5. )

By the maximality of ky and by Condition (4.3), we have the following Proposition (see
Figure 4.2 for two examples), which will be used throughout the remainder of the paper
without reference. We note here that we will also make extensive use of Lemmas 1.4.5-1.4.14

without reference.

Proposition 4.1.6 Let L be a 6-cycle, and let u,v € L.

o [fry — (L,u) then e(u,xox;1) < 1 and e(u, xow;) < 1.

If xy — (L,u) then e(u,z124-1) < 1 and e(u,xox, 1) < 1.

If xyxy — (L, uv) then e(u, xox; 1) < 1 and e(v, xox, 1) < 1.

If 1 (L,u), then e(xqxs, u) = 0.

If 7 > (L,u), then e(x1x4_q,u) = 0.

If xq N (L,u), then e(xqzy,u) < 1.
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Xt > Xt-1

Figure 4.2: Top: =1 — (L,u) and e(u,zox¢—1) = 2. Here L + P contains a 6-cycle and a large

cycle. Bottom: z;1 EN (L,u) and e(z1xy,u) = 2. Here L + P contains a path of order ¢ and a
6-cycle L' with 7(L") > 7(L) + 1.
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o ® ® ®
X;1 X Xz X4 Xs Xg

Xl Xz X3 X4 X5 X6

® ®
X1 X Xz X4 Xs Xg

Figure 4.3: In each case, there is a path of order five from z; to xs.
o Ifr, | > (L,u), then e(xyzy,u) < 1.
o Ifxi2y > (L,uwv) with wv € E, then e(x;, uv) = 0.

o If i 11— (L,uv) with wv € E, then e(z1,uv) = 0.

Proposition 4.1.7 There is L; € o such that e(x1xoxs_124, L;) > 15.

Proof: Suppose not. By Proposition 4.1.3, we have e(xixox; 174, P) > 14k — 14ky > 14.

By Proposition 4.1.5, e(x1xoxy_1274, L;) = 14 for some L; € 0. Let L; = L = ajas...aga.

Claim 1(see Figure 4.3): Either (1) z125 € E or (2) xexs € F and 124 € F or (3) 2225 € E

and zyz3 € E. Either (1) 24,4 € For (2) x;_12,5 € Fand 4243 € Eor (3) 41244 € E

and x;x;_o € F.

Proof: For contradiction, suppose not. Then WLOG zyx5 ¢ F, xoxg ¢ E or 124 ¢ E,
and xoxs ¢ E or xixz3 ¢ E. We see that e(zy29, P) < 6, so e(xy_124, P) = 8. By
Proposition 4.1.3, e(zix_1, T2 1240w 374—4) = 8. We make a few easy observations,

which follow from the maximality of kg, from Condition (4.3), and from the fact that
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e(x4xy_1, Ty 100wy 3x,—4) = 8 (and hence that x; ; and x; are interchangeable.) We

note that Proposition 4.1.6 still holds.

(a) If x1 — (L, a;), then e(zoxi_124,a;) < 1.

(b) If xy LN (L, a;), then e(xox; 124, a;) = 0.

(¢) If 29 — (L, a;), then e(x; 124, a;) < 1.

(d) If x129 — (L, a;a4), then e(x;_124,a;) < 1 and e(zi—12¢, a5) < 1.
(e) If zy29 LN (L,a;a;) with a;a; € E, then e(x;_124, a;a;) = 0.

(f) If 2,1 — (L, q;), then e(z124,a;) < 1 and e(zoxy, a;) < 1.

(g) If x4 — (L, aa;5), then e(xomxy, a;) < 1 and e(xaxy, a;) < 1.

We immediately see that x; - L, so e(xy,L) < 5. Suppose that e(xi,L) = 5, and
WLOG let e(z1,L — ag) = 5. Then 7(ag, L) = 0, so by (b) e(xexi_124,a6) = 0. By (a),
e(Toxi_1x¢, agazay) < 3, so e(xow; 11y, a1a5) > 14 — 5 — 3 = 6. But then x29 — (L, agay)

and e(z;_1x¢,a1) = 2, contradicting (d). Therefore e(xy, L) < 4.

Case A: e(z1, L) = 4.

Case A.1: N(x1,L) ={ay,as,a3,a4}. By (a), e(zaxi—124,a;) < 1 for i = 2,3. Thus

e(xoxy 124, agasagar) > 14 — 6 = 8. Suppose that 7(ag, L) > 2. Then 27 — (L,a;) for
i = 1,5, so e(xaxi_174,a1a5) < 2 and hence e(roxy_124, a4a6) > 8 —2 = 6. Then z; -
(L, ag), so 7(as, L) = 0. Since e(z;_124, asag) > 2, this implies that e(x;xq, ajasasay) < 5
by (e). Then e(xq,ajaza3) = 0 since xsay € E. Thus e(ry_q124,a2) = e(zy_174,a3) =
e(xi_124,a1) = e(xomy_1x4,a5) = 1 and e(xow; 114, aga6) = 6. But x4 2, (L, as), contradict-
ing (b). Hence 7(as, L) < 1, and by symmetry 7(ag, L) < 1. Suppose that e(z;_12¢, asag) >
0. Then by (e), z122 - (L,asag), so e(xs,a1aq) = 0. Then e(x; 124, agasasa;) > 8 —
2 = 6. WLOG let e(x;_1x;,a4a5) > 3. Then by (d), x1xe - (L, a4as), so xeas ¢ E.

Hence e(x; 124, agasagar) > 7, so again by (d) zyzy - (L,asa;). Then zoas ¢ E, so
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e(xy_124, agasagar) = 8. Also, since e(xy_124, a1a4) = 4, by (a) e(agas, asag) = 0. But this
is clearly a contradiction, since now ;_jx; 4 (L,asa3) and e(z1,asa3) = 2. Therefore
e(xi_1xy, asag) = 0, 80 €(T2, agasasay) > 8 —4 = 4 and e(x;_1x4, a1a4) = 4, contradicting (d).

Case A.2: N(x1,L) ={a1,as,a3,a5}. By (a) e(zozi_124, asasag) < 3, so

e(xoxi_1x¢, arazas) > 14 — 7 = 7. Suppose 7(asq, L) < 1. Then z; EN (L,ay), so by (b)
e(xoxy_ 124, a4) = 0. Then e(zowy 114, a1a3a5) > 8, so x1 - (L,a;) for i = 1,3,5, by (a).
Thus 7(ag, L) < 1, so similarly we have e(zoz;_124, ag) = 0 and hence e(xox;_12¢, ajazas) =9
and e(xow; 114, a9) = 1. But then x129 — (L, agay) and e(x;_12¢, a1) = 2, contradicting (d).
Therefore (a4, L) > 2, and by symmetry 7(ag, L) > 2. But then 27 — L, a contradiction.

Case A.3: N(x1,L) = {a1,as,a4,a5}. By (a) e(zari—124, azag) < 2, s0

e(Toxy_ 124, ajasagas) > 8. Suppose 7(azag, L) > 0, and WLOG let 7(ag, L) > 0. Then z; —
(L,a;) for i = 1,5, so by (a) this implies that e(zoz;_124, azay) = 6. Then zy29 — (L, azas)
and e(z;_1x, ag) = 2, contradicting (d). Hence 7(agag, L) = 0, so by (b) e(zaoxi—12¢, azags) =
0. Then e(zoxi_124, ajasagas) > 10. If e(xq, ajasagsas) > 3, then 129 — (L, a;a;44) for i =
2,3,5,6, so by (d) e(xi_12¢, ajasasas) < 4, a contradiction. Hence e(z;_124, ajasaqas) = 8,

so since T(ag, L) = 0 we get z; 114 N (L,asag). But z7a5 € E, a contradiction.

Case B: e(zy, L) = 3. Since e(xox;_124, L) > 11, we observe that 1 — (L, a;) for at most

three a; € L.

Case B.1: N(z1,L) = {ay,a9,a3}. By (a), e(xoxy 124, L — ag) > 11. Suppose xsay €

E. Then xyxy — (L,asa3) and z129 — (L, asag), so by (d) e(x;_12¢, azasag) < 3. Then
e(ry, L —as) > 11 — 7 = 4, so e(xq,asag) > 1. But then by a similar argument we see
that e(x;_12¢, a1aq) < 2, so e(zy_1xy, L — ag) < 5, a contradiction. Hence z9a4 ¢ F, and
by symmetry we have e(xy,a4a6) = 0. Then e(z; 12y, L — ay) > 11 — 3 = 8, so by (d)
xoas ¢ FE for otherwise zyzy — (L,aga;) and x1x9 — (L, azay). Then e(xq, ajazas) =
0 and e(x;_124, L — ag) > 9. Then e(x;_12¢, asasasag) > 7, so since e(xy,a1az) > 1 we
have 7(ajag, L) > 5. Then zy — (L,aq), so by (a) 1 - (L,a;) for i = 1,3,4,5, since

e(xi_124,a;) = 2. But e(ag, agag) > 1, so x1 — (L, a;) for i =1 or i = 3, a contradiction.
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Figure 4.4: Proposition 4.1.7, Case B.3: Unfortunately, even with all of the edges between P
and L, we can neither find a way to contradict the maximality of kg, nor any of the Conditions

(4.3)-(4.6).

Case B.2: N(zy,L) = {ay,a9,a4}. By (a), e(xoxy_124, L—a3) > 11. Suppose e(xq, ajay) >

0. Then z1z9 — (L,aza3) and z129 — (L, asag), so by (d) e(xi_1x¢, asasag) < 3. Then
e(re, L —ag) > 11 =7 = 4 and e(z;_17,a1a4) > 11 — 5 —3 = 3. Then x9a5 ¢ E, for
otherwise x1xs — (L, a;a;11) for i = 3,6, contradicting (d). Then e(xq, ajasasas) = 4,
e(xy_124,a1a4) = 4, and e(xy_124,a;) = 1 for ¢ = 2,5,6. By (e) we see that 7(asag, L) > 4,
and since z1 - (L, ag) by (a), we have e(as,ajasz) = 0. Then 7(ag, L) = 3, so x3 — (L, ay)
and 1 — (L,a5). But this clearly contradicts (a), since e(xox;_12¢,a1) = 3. Therefore
e(xy,a1ay) = 0, so e(xy_124, L — a3z) > 11 — 3 = 8. Then e(z;_124, a4a6a1) > 8 —4 = 4, so
zoas ¢ E by (d), for otherwise x129 — (L, a;a;41) for i = 3,6. Thus e(xq, ajasas) = 0 and
e(xy_12¢, L—a3) > 9. Then e(x; 17, asagaiaz) > 7, so since r1ay € E we have 7(agaq, L) > 5.
But this contradicts (a), since e(z;_1x, L — ag) > 9.

Case B.3: N(z1,L) = {a1,as,a5}. By (a), e(zvaxi—124, a1a3a5) > 11 — 3 = 8. By (d), we

see that e(zy, asagag) = 0, for otherwise e(zy 124, a1azas) < 4. Then e(x; 124, asasag) >
11 —9 = 2. WLOG let e(zy_124,a2) = e(x4_124,a4) = 1. If agay € E, then ajasaqgas is a Py,
so since e(x1x9, ajas) > 3, x1xe — (L, azag). Similarly, agasagas is a Py, so xyx9 — (L, ajag).

But then by (d), e(x;_12¢,a3a;) < 2, a contradiction. Then asay ¢ E, and by symmetry
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asag ¢ E and agag ¢ E. Suppose e(x;_124,a6) = 1, and since e(xy_124, asasag) = 3 WLOG
let e(wy, asay) = 2. Then by (b), 7(a;, L) > 1 for i = 2,4,6. Since z; — (L, a3), we know
zi_1a3 ¢ E. Then e(zy, L — ag) = 5 and 7(ag, L) = 1, so vy — L. But e(xz;-1,01) = 2,
a contradiction. Therefore e(x;_12¢,a6) = 0, so e(raxi_124, a1azas) = 9. Then z;q -
(L,a;) and z; - (L,a;) for i = 1,3,5, since e(x1x4, a1azas) = 6 and e(xryx,_1,a1azas) = 6.
Since e(z1,a1a5) = 2 and e(zaxt,a3) = 2, by (g) we have e(z;_1,a2a4) < 1, for otherwise
r1a1097 1040521 = Cg and agxy...xp_sxiaz = Csg. Similarly, e(zy, asay) < 1. WLOG let
Ti_1a9 € F and za4 € F.

With Lemma 3.0.7 in mind, we now show that e(zz;_sasaq, L;) > 15 for some L; €
o —{L}. Since z; — (L, ay) and asx;—y € E, we know that e(as, D — P) = 0 by Condition
(4.2). Since x; 12y — (L,agay) and agayxy...xt_9 = P, we have e(agry_o, D — P) = 0.
Thus e(z124_9asa6, D — P) = 0. Since zyz5 ¢ E, e(x1, P) < 3. Since x2,_3 € F, by the
maximality of ky we have e(x;_o,x;_57,-¢) = 0. Hence e(x;_o, P) < 4. Since z;_1x; —
(L,asar) and agay...x1—9 = P, e(ag, P) < 3 by the maximality of ky. Similarly, e(as, P) <
3+e(ag, xi—1x¢) = 4. Therefore e(xyx,_2asaq, P) < 14. Because e(as, asag) = 0 and aqas ¢ E,
we have e(asag, L) < 34+3 = 6. Since zy_12; — (L, asas) and zy1a3 € E, we have z; sa3 ¢ E,
for otherwise z1xs...2y_sa3x; = Csg. Similarly, e(xy_o, a1a5) = 0. Hence e(z;_2, L) < 3, and
since e(x1, L) = 3 we have e(z1x;_sasa6, L) < 12. Therefore e(xxy_sasag, D + L) < 26, so
e(r1xy_sa9ag, H — L) > 14k — 26 > 14(ko — 1) + 2. Hence e(x12;_sasaq, L;) > 15 for some
L; € 0 — {L} (see Figure 4.5).

Let L; = L' = v1vq...06v1, and let P’ = x;_ox4_3...7921. We now show that the three
numbered assumptions in Lemma 3.0.7 are satisfied. That is, we show that if z; — (L', v;)
then e(v;, zi_s2a2a6) < 1, if ay 9, (L', v;) then e(v;,zi—ox1) = 0, if ag 9, (L', v;) then
e(vj, xr—ox1) = 0, and if x; L (L', v;) then e(v;, x1_2a6) = 0. Since xoxs3...x1a175 = Cs¢, We
see that (see Figure 4.6) if z1 — (L', v;) then e(v;, asas) < 1, for otherwise x; — (L', v;)
and v; — (L,ay). Since x;_12, — (L, azas3), we see that (see Figure 4.7) if 2y — (L', v;)

then e(vj, z,_0as) < 1, for otherwise vjasazzoxs...v4—ov; = Csg. Similarly, since 1z —
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X1 Xz X3 X4 Xt-3 Xe-2 X1 X

Figure 4.5: Proposition 4.1.7, Case B.3.

(L, asag) we know that if 1 — (L', v;), then e(v;, x¢—2a6) < 1. Therefore, if x; — (L, v;)
then e(v;, x;_sasa6) < 1.

Since 7(ag, L) < 1 and e(zy, L — ay) = 4, we have zy LN (L,as). Therefore, since
T1To...Ty_ 3% 170 = P, (recall from the beginning of this proof that
e(xyxy_1, T2y 1T 0wy 37, 4) = 8), we see by Condition (4.3) that if ay 9, (L',v;) then
e(vj, r12,—2) = 0 (see Figure 4.8). Similarly, if ag 2 (L',v;) then e(v;, x1z4—2) = 0. Since
e(ag, azay) = 0, we know that z,_ iz, 9 (L, asag). Thus, because agaszors...xp— o = P, we
observe by Condition (4.3) that if 4 EN (L', v;) then e(v;, x;_sas) = 0.

Thus, by Lemma 3.0.7 we see that L' + P’ 4 asag contains either Cg U C's¢ or a path
of order t — 2+ 2 =t and a 6-cycle C with 7(C') > 7(L') — 1 (see Figure 4.9). Because
e(xy_12¢, asazagas) = 6, we know that 7(agay, L) > 4, for otherwise z;_ 2y LN (L, agay)
and aga;z...x;_o = P,. Thus, because e(ag, asas) = 0, we must have 7(ay, L) = 3. Then
C' = zy_ 110103040571 i a 6-cycle, and e(z; 124, C") — e(xy_1,2,) =4+ 5 —1 = 8. Since
e(ag, asag) = 0 and aqas ¢ E, e(asas, L) < 34+ 3 = 6. Hence 7(C") > 7(L) + 2. But then
L + L' + P contains either 2Cs U Csg, or a path of order ¢ and two 6-cycles C' and C” with
7(C)+7(C") > 7(L') — 1+ 7(L) + 2, contradicting either the maximality of kg or Condition
(4.3).
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X1 Xo X3 Xy Xe-3 X2 X1 Xy

Figure 4.6: The bold edges reveal a large cycle and a 6-cycle. If 21 — (L', v1) then we would have
another 6-cycle, disjoint with the other two large cycles.

X1 Xy X3z X4 Xi-3 X2 Xe-1 X

Figure 4.7: As in Figure 4.6, we see that if 1 — (L', v1) then we have two 6-cycles and a large
cycle, each disjoint.
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Figure 4.8: In this picture, we recognize a path of order ¢t and a 6-cycle with more chords than
L. The remaining vertices are as and those in L' — v;.

Figure 4.9: Applying Lemma 3.0.7 to the graph in the boxed region, and then combining that
graph with the 6-cycle on the left, gives us a contradiction.
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Case C: e(xq1, L) < 2. We have e(xox;_12¢, L) > 12. WLOG let e(zy, L) > e(x;1, L).

Claim C1: e(z, L) < 4.

Proof: Suppose not. If e(zy, L) = 6, then e(xix; 1,0;) < 1 and e(xow;_1,a;) < 1 for
each a; € L. Since e(z1,L) < 2 and e(xyx9zy_1,L) > 8, we have e(z1, L) = e(xg, L) = 2
and e(z;_1,L) = 4, with N(xy,L) = N(x9,L) and N(x;_1, L) disjoint. If N(x;_4,L) =
{a1, as, as, as} then e(z1x2, asag) = 4, so by (f) 7(asae, L) = 0. But then z;_z; 5 (L, asagq),
a massive contradiction. If N(x;_1, L) = {ay, as, as, as}, then e(x,x9, agag) = 4, contradicting
(f). Then N(z¢—1, L) = {a1, a2, a4, a5}, which again contradicts (f). Therefore e(x;, L) = 5.
WLOG let e(zy, L — ag) = 5. Then x; — (L,q;) for i = 2,3,4,6, so e(z124-1,a;) < 1
and e(xaxy_1,a;) < 1 for each such a;. Since e(xoxy_1,L) > 14 —-2—-5=17, 2, - L, so
7(ag, L) = 0. Then x, EN (L, ag), so e(x124-1,a6) = 0.

Suppose zaa¢ € E. If x9a4 € E then x9 — (L, as5), so xy_1a5 ¢ E. Then e(xox;_1,a1) >
7—5 =2 and e(zory_1,a;) = 1 for i # 1. Since z;_1a7 € E, 9 - (L,ay), so zaas ¢ E.
Thus z;_1a2 € E, so xsa3 ¢ E and hence x;_ja3 € E. Hence e(zs,asasa6a;) = 4 and
e(xri—1,a1a2a3) = 3. Since z1a6 ¢ E and e(xy,L) > 14 =5 -7 = 2, e(x1, L — asag) > 1.
Thus 129 — (L, a;a;41) for some i = 1,2, 3,6, contradicting (d) since e(x;_124, a1asas) = 6.
Therefore z5a4 ¢ E, and by symmetry zoas ¢ E.

We have e(xy_1,ajasa4as) > 7 — 2 — e(xs, ajasagas) > 3. Since e(xy_1x¢, ajasazay) > 6
and 7(ag, L) = 0, we know that z1a5 ¢ E. By symmetry, z1a, ¢ E. Suppose e(z2, a1a5) = 2.
Since e(z_1xy, a1a2) > 3, x1x9 - (L, araq) by (d). Since xqa¢ € E, this implies that x;a3 ¢
E. Thus, because e(xy,L) > 14 — 5 — 8 = 1, we know that e(x1,asas) > 1. Then z129 —
(L,asag) or x1xe — (L, agaq), so because e(x;, asaga;) = 3 we have e(x;_1,a1a5) < 1 by (d).
Therefore e(z;_1, asay) = 2, e(xroxy_1,a3) = e(x;_1,a1a5) = 1, and e(zy, L) = 2. WLOG let
101 € E. Then xyx9 - (L, aga1), so x1as ¢ E. Thus e(zy,azay) = 2, 80 x129 — (L, ajas)
and z;_1as € F, a contradiction. Therefore e(xs,ajas) < 1, so e(z;_1,a1aza4a5) = 4. Then

x1xe -+ (L,a1az), so since woag € F and e(zy,L) = 2, we have e(zy,asa4) = 2. Since
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xr1xy + (L,aga1) and z1z9 - (L, asag) by (d), this implies that e(zy,a1a5) = 0. But then
e(xox_1, a1asa4as) < 6, a contradiction.

Therefore zoag ¢ F, so e(xox_1,a1a5) = 4, e(xox;_1,a;) = 1 fori=2,3,4, and e(z1, L) =
2. Since e(x;_1x4,a1) = 2, by (d) we have xyzy - (L,apa;1), and therefore zias ¢ E.
By symmetry, ziay ¢ E. Since e(xox;_174,a0) = e(xoxy_174,a4) = 2, 71 - (L,a2) and

x1 - (L,a4) by (a). Then e(xq,a1a3a5) < 1, a contradiction since e(xy, L) = 2.
QED

By Claim C1 we have e(x;, L) < 4 and e(z;_1, L) < 4, so e(z1x2,L) > 14 — 8 = 6 and
e(re, L) >6—2=4.

Claim C2: e(x, L) = 4.

Proof: Suppose not. If e(zo, L) = 6, then by (c) we have e(z;—12¢,a;) = 1 for each a; € L,
and e(zy, L) = 2. WLOG let 214y € E. By (a), e(x1,a3a5) = 0. Suppose a9 € E. By
(e), T(asaq, L) > 4. But then x; — (L, q;) for some ¢ = 3,4, 5,6, contradicting (a). Hence
r1a2 ¢ E, and by symmetry xjas ¢ E. Therefore e(x,aja4) = 2, so again we must have
T(asag, L) > 4, and again we see that 1 — (L, a;) for some i = 5,6, a contradiction. So
e(xqe, L) = 5.

WLOG let e(xg, L — ag) = 5. By (c), e(zy_124,a;) < 1 for each i = 2,3,4,6. Since
e(ri1xy, L) > 14 —2 -5 =7, x9 - L, we have 7(ag, L) = 0. Then N (L, ag), so
e(r1x4_ 124, a6) < 1. Suppose that e(xy,ajas) > 1. Then x129 — (L, asag), so e(x,_ 124, as) <
1 and hence e(z;_12,a1) = 2. Then zy29 - (L,a¢a1), so e(xy,aza5) = 0. Similarly,
z1a¢ ¢ E since xqa3 € E, which implies that e(z,ajazas) = 2. But then x;x9 4 (L, asag),
contradicting (e) since e(x;_1xy, asag) = 2.

Therefore e(x1,a1a4) = 0, and by symmetry e(xy,asas) = 0. Since e(x;_124, a1a5) >
7—4 =3, z1a6 ¢ E by (d), for otherwise z129 — (L,asa¢) and x;x9 — (L, aqas). Thus

r1a3 € E, and since e(x1, L) = 1 we also have e(z;_1x;,a1a5) = 4 and e(x;_124,0;) = 1 for
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i=2,3,4,6. WLOG let x;_jay € E. If 2;_1a4 € E, then by (f) x,a3 ¢ E since zja3 € E.
But then x;_qa3 € E, so e(z;_1, L) > 5, a contradiction. Therefore x; a4 ¢ E, so x,a4 € E.
Then similarly, z;a6 ¢ E, so x;_1as € E. But then 2, 1 — (L,a1) and e(xoxy,a1) = 2,

contradicting (f).
QED

By Claims C1 and C2 we have e(zy, L) = e(x;_1, L) = e(x;, L) = 4 and e(z1, L) = 2. We
finish Case C, and hence the proof of Claim 1, with the following three subcases.

Case C.1: N(zy, L) = {ay,a9,as3,a4}. Since e(wow;_1,asa3) < 2, e(xaxi_1,a4a5a6a1) >

8 —2 = 6. Then 7(asas, L) < 3 and 7(agasz, L) < 4. Suppose that 7(as, L) > 2. Then
r; — (L,a4) and x; — (L,aq), so e(zax4-1,a1a5) = 4. Then 7(ag,L) = 0, so z; 2
(L,ag). Hence e(xixi-1,a6) = 0. Then e(zi—1,L — ag) = 4, so e(xi_12, a1a0a3a4) > 7
and e(x;_1x¢, asazasas) > 6. Since 7(ag, L) = 0, this implies that e(x1,a1a5) = 0. Thus
e(z1, asazay) = 2, and since e(xq, azaz) > 1, we have e(x;_1, asaz) < 1 since x; — (L, as) and
x; — (L,a3). Therefore e(z;_1,a1a4a5) = 3 and e(x;_1,aza3) = 1. Since z,a3 € E, we see
that z,_1as ¢ F, for otherwise x;_; — (L, ag), which by (f) implies that e(z1, asay) = 2, con-
tradicting the fact that x; — (L, as). Hence e(x;_1, ajazasas) = 4, and since e(xox;_1,a;) < 1
for i = 2,3,4,6, we have e(xq, ajasasag) = 4. But then z, 1 — (L,a2) and e(zax¢, a2) = 2,
contradicting (f).

Therefore 7(as, L) < 1, and by symmetry 7(ag, L) < 1. Since e(x; 12, ayazaszay) > 6, this
implies that e(x1, asag) = 0. Hence e(x1, ajasazay) = 2, so e(xs, ajasazay) < 3, for otherwise
e(xi—1,asa3) = 0 and x 29 EN (L, asag), contradicting (e) since e(x;_1,azas) = 2. Suppose
that 7(as, L) = 7(ag, L) = 1. Then z; — (L,a5) and x; — (L, ag), so e(xox;_1,a1a4) = 4
and e(xox;_1,a;) = 1 for i = 2,3,5,6. By (a), 1 - (L,as) and 27 - (L,as3), so
e(xy,ara3) = 1 and e(xy,a0aq) = 1. Since e(x,ajasazay) < 3 and e(zq, a1aq) = 2, we
know that e(z;_1,asa3) > 1. Then by (d), z122 - (L, asas), so e(x1,a1as) = 0. But then
e(z1,aza3) = 2, a contradiction since e(x;_1,asa3) > 1 and x; — (L, a;) for i = 2,3.

Therefore 7(asag, L) < 1, and hence also 7(asas, L) < 3. Suppose that (asag, L) = 1,
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and WLOG let 7(as, L) = 1. Then e(zox4_1,a6) < 1, so e(zoxy_1, a1a4a5) > 5. Suppose that
e(x1,aras) = 2. Then, since e(xq, ajas) > 1, we have x1x9 — (L, agas). Thus e(x;_1, azas) =
0 by (d), since e(xy, asaz) = 2. Hence e(x;_1, asasasa;) = 4 and e(xq, ajazazay) >4 —1=3.
But then e(zix2, ajasagay) > 5 and x1x9 — (L, asag), contradicting (e) since 7(asag, L) = 1
and e(z;_1, asag) = 2. Thus e(zy,a1a4) < 1, so e(xs, asaz) > 1.

Suppose that xja; € E. Then zoa5 ¢ E, for otherwise e(z;_1,a1azas) = 0 by (d) since
r1xy — (L,a¢a1) and z129 — (L,asay). Hence e(xs,ara4) = 2, e(x;_1,a1a4a5) = 3, and
e(xow_q,a;) = 1 for i = 2,3,6. By (a), we see that x; - (L,a3), so xjay ¢ E. Since
r1a2 € E and 7(agas, L) < 3, we know that x;_ja¢ ¢ E, for otherwise x;_ i, LN (L, azas).
Then e(z;_1, asazasas) = 3, S0 T4_17; N (L,agay) because 7(ag, L) = 0. Hence x1a; ¢ F, so
e(x1,azas) = 2. But then, since xqa6 € E, we know that x1z9 — (L, ajas), contradicting (d)
since e(x¢_124,a1) = 2.

Therefore z1as ¢ E, so z1a3 € E and e(ry,a1a4) = 2. Then zsa6 ¢ E, for otherwise
r1xy — (L,a1a2) and xyz9 — (L, a4as), contradicting (d) since e(z;_1xy, aqazaq) > 4. If
xr1a1 € E then x1 — (L, as), so e(xaxy_1,a9) = 0. Then e(xox;_1,a1a4a5) = 6, x4_1a6 € E,
and zoa3 € E. But then zo — (L,a4) and e(z;_12¢,a4) = 2, contradicting (c). Thus
ria; ¢ E, so e(xy1,azay) = 2. Then, because z,a; € E, we have e(xs, asazagas) < 3, for
otherwise xx- N (L,agay). Hence zoa; € E, so xyxe — (L, asas), which by (d) implies
that e(z;_1,a2a3) = 0. But then e(x; i, aqasa¢a;) = 4, and hence x;_j1; LN (L, asas), a
contradiction since xrias € E.

Therefore 7(asag, L) = 0 and e(asas, asag) = 0. Suppose e(xq, asaz) > 0. Then
e(xi_1,asasa6a1) < 2, for otherwise z; 11, LN (L, asas) since 7(agas, L) < 2. Hence
e(ry_1,aza3) = 2 and e(wy,asasaga;) = 4. Then, since e(zy,aza3) > 0, we know that
r1y — (L,aja3) or xyxy — (L, agay), contradicting (d) since e(x; 124, aza3) = 4. Thus
e(xy,aza3) = 0, so e(xy,a1a4) = 2. Then z12y — (L,asaq), so e(rari-1,a5) < 1 and
e(razry_1,a6) < 1. Hence e(zow;_1,a1a4) = 4. Since e(r122,a1a4) = 2, 7129 2 (L, asag),

so e(zy_1,asa6) = 0 by (e). But then e(z; 12, asa3) = 4, contradicting (d) since x;xs —
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(L, azas).

Case C.2: N(zy, L) = {ay,a9,as3,as}. Since xy — (L, a;) fori = 2,4,6, e(xoxi_1, a1a3a;5) >

5. Suppose that asay € E. Then x; — (L, a3), so e(xax;_1,a1a5) = 4 and e(xox;_1,0a;) = 1
for i = 2,3,4,6. Since z; - (L,aq;) for i = 1,5, e(ag,asay) = 0. Then x; N (L, ag), so
xi1a6 ¢ E. Since e(x;_1x¢,a1a5) = 2 we know that z9 - (L,a;) for i = 1,5 by (c). Since
e(x, asagay) = 3, this implies that e(xq, asay) = 0, and hence e(xq, ajazasag) = 4. But then
e(xi_1,a1a0a4a5) = 4, s0 xy — (L,a2) and e(x;_1x¢,a9) = 2, contradicting (c). Therefore
asay ¢ E, and by symmetry asag ¢ E. Since x; - L, asas ¢ E. Thus x; EN (L,a4) and
Ty LN (L, ag), so e(z124-1,a4ag) = 0. Then e(z;_1,a1a2a3a5) = 4 and e(xs, ajazazasag) = 4.
By (c¢) we know that xzo - (L, as), which implies that e(zy, ajaszas) = 3 and e(xq, agag) = 1.
WLOG let e(zy, ajagagas) = 4. Since e(xy_124, a1a;5) = 4, by (d) we have xyz9 - (L, asag)
and z122 » (L, agay). Thus e(xq, aya4as) = 0, so e(xq,azas) = 2 (see Figure 4.10). There-
fore, because e(z;_1x¢, asagaias) = 6, this implies that 7(azay, L) > 4. Since e(ay, asag) = 0,
we know that a4a; € F and 7(as, L) = 3.

Since x;_1x; — (L,azay) and agasx;..x4—9 = P, by Condition (4.2) we know that
e(asry_o, D — P) = 0. Since z;_jasa4a1a0xx, 1 = Cg and agagry... ;o = P, we know
that e(ag, D — P) = 0. Hence e(z12;_sa4a6, D — P) = 0. Since zy125 ¢ E, e(z1, P) < 3. Since
T3 € B, we have e(xy_o, x4_57,6) = 0, so e(xy_o, P) < 4. Since x; 17y — (L, azaq) and
asazry...x_9 = Py, we know that e(ay, P — x4_12¢) = e(ayq, P) < 3. Similarly, e(ag, P) < 3.
Hence e(zyx;_sa4a6, D) < 13. Since e(as, asas) = 0 and agas ¢ E, we have e(asaq, L) <
6. Therefore e(zz;_sa4a6,L) < 2+ 6+ 6 = 14, so e(ry1xi_sa4a6, D + L) < 27. Then
e(x1x4_sa4ag, L;) > 15 for some L; € 0 — {L}.

Let L; = L' = v1vs...06v1, and let P’ = x4_ox;_3...x921. Suppose that 27 — (L', v;). Then
e(vj,asag) < 1, for otherwise v; — (L, as) and xow3...x4_ 170502 = Csg. Since xp_jz; —
(L,azap) (recall ajay € E) and agasxs...v4—o = Psg, we also know that e(v;, agzi—2) < 1.
Similarly, e(vj, agxi—2) < 1, so e(v;, x¢—2a4as) < 1. Now suppose that ay 9, (L', v;). Since

x4 LN (L,a4) and z129...04_32¢_124_9 = P4, by Condition (4.3) we have e(v;, z124_2) = 0.
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Figure 4.10: A situation similar to that in Case B.3. Lemma 3.0.7 is applicable. Not shown at
top are the edges aqa1, agas, aszag, and aga;.
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Similarly, if ag 9, (L', v;), then e(v;, x124—2) = 0. Finally, suppose that 4 N (L', v;). Since
Ty 1T¢ 9 (L, asay) and agasxs...x—o = Py, we know that e(v;, asz¢—2) = 0. This paragraph
shows that Lemma 3.0.7 is contradicted, because z;_1x; 3, (L, agag).

Case C.3: N(zy, L) = {ay,a9,a4,a5}. Since x; — (L, q;) for i = 3,6, e(razi-1,a;) < 1.

Since xz; - L, either 7(ag, L) = 0 or 7(ag, L) = 0. WLOG let 7(as, L) = 0. Then x; 2

(L,as), so e(x124-1,a3) = 0. We observe that 7(ag, L) > 0, for otherwise e(x;_1, ajasasas) =
4 and hence x;_qx; N (L,a;a;11) for i = 5,6,2,3, a contradiction since e(xy, L) > 0. Since
7(ag, L) > 0, 2, — (L,a1) and z; — (L, as). Then e(zoxy_1,aza4) = 4 and e(zy241,a;) = 1
for i = 1,3,5,6. Since x;_ja3 ¢ E, xoa3 € E. Thus by (d), x1a6 ¢ E, for otherwise z1x9 —
(L,aya2) and e(x;_1x4, a2) = 2. Similarly, since e(zs, asay) = 2 and e(xy_124, agas) = 2, we
have e(x1,asa1) = 0 by (d). Thus e(x1, asas) = 2. Since x;_ja3 ¢ E, e(xy_124, agasagar) =
3+ 3 = 6. But then, because 7(ag, L) = 0, we have z; i, LN (L, asas), a contradiction since

xr1a9 € E. This concludes the proof of Claim 1.
QED

By Claim 1, there is a path z;...25 of order 5 in P and a path z;...x;; of order 5 in
P. Clearly, there is a 5-path z; ...z that does not include x;. Suppose that there is no
5-path z1...x9 in P that does not include x;_;. Then it must be the case that x.xg € F
and z1z4 € E, 2125 ¢ E, and xoxs ¢ E or x123 ¢ E. Also, t = 7. Since P 2 Csg, we see
that e(z7, x3xs) = 0. Then, because e(zyxox,_12¢, P) > 14, this implies that e(zg, x374) = 2
and zoxy € E. But then xyx4x506030001 = Cp, a contradiction. Therefore there is a 5-path
x1...T9 in P that includes neither x;_; nor x;, and similarly there is a 5-path z; ;... x; in P
that includes neither x5 nor xy. Combining this with Proposition 4.1.6, we get the following

(see Figure 4.11 for an example):

(a) If x1 — (L, a;), then e(xox; 124, a;) < 1. If &y — (L, a;), then e(zyz924-1,a;) < 1.

(b) If 29 — (L, a;), then e(x; 124, a;) < 1. If 2,1 — (L, a;), then e(x129,a;) < 1.
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X4 X5
Figure 4.11: If zy2¢_1 — (L, a;a;) and e(x122,a;) = 2, then the maximality of ¢ is contradicted.

(¢) If 2129 — (L, a;a;), then e(zi_q124,0;) < 1 and e(xy_y24,a5) < 1. If 2120 — (L, a;a5),

then e(z129,a;) <1 and e(x;22,a;) < 1.

(d) Ife(xixe,a;) = 2 and e(xy_124, a41) < Land e(zy_124,a;-1) < 1, then e(x;_124, a;_10;41) <
1. Ife(xy_1my,0;) = 2 and e(z129, a;41) < 1 and e(z1x9,a;_1) < 1, then e(z129, a;_10;11) <

1.

To see why part (d) is true, suppose for contradiction that e(z122, a;) = 2, e(xi_12¢, ;1) <
1, e(zi_1x,a-1) < 1, and e(zy_12¢, a;_1a;41) = 2. By (a), zp - (L, a;), so e(xy, a;—1a;11) < 1.
Similarly, by (b) e(zy_1,a;—1a;+1) < 1. Then z; 1a,1 € F and xa;41 € E, or 4_1a;41 € E
and z;a;_1 € E. Either way, L — a; + z;_12; O C7, contradicting the maximality of ky since
x1...x00;x1 = Cg for a H-path x1 ... xo that includes neither z;_; nor z;.

Notice that WLOG we may choose between x; and x;, or between x5 and z; ;. Clearly,
by (a) we have e(zy,L) < 5 and e(x;, L) < 5. Suppose that e(zy,L) = 5, and WLOG
let e(x1,L —ag) = 5. Then x; — (L,a;) for i = 2,3,4,6, so e(xaxy 124, asazagag) < 4.
Hence e(xox;_ 124, a1a5) > 14 — 9 = 5. WLOG let z9ay € E. Then zy29 — (L, asag), so
by (c) e(xi—1x¢,a5) < 1. Then zsa; € E, so similarly e(x;_12¢,a1) < 1, a contradiction.
Therefore e(zqy, L) < 4 and e(x;, L) < 4. WLOG let e(xyxq, L) > e(x;_12, L). Then

7 < e(w119, L) < 10, and we break into cases.

Case 1: e(xyx9, L) = 10. Since e(x9, L) = 6, e(xy_124,a;) < 1 for each a; € L by (b). Since
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e(xy_12y, L) =4, by (a) 1 — (L, a;) for at most two a; € L, which implies that N(xy, L) #

{a'la g, a3, a5}-

Case 1.1: N(xy,L) = {a1,as,a3,a4}. Since e(x2, L) = 6, by (a) we have e(asas, v1—12¢) =

0. Then e(x;_1x¢,a;) = 1 for ¢ = 4,5,6,1, so by (a) 1 - (L,a;) for each such a;. Thus
T(asag, L) = 0, so e(zy, asag) = 0 since 129 S, (L,asag). Let L' = xyx9aiasa3a4x; and P =
T3...x4_1 ¢ Since 7(L') > 7(L) and e(x¢—1, azag) = 2, we know that e(xsziasas, D — P) =0
by Condition (4.3). By the maximality of ky and Lemma 2.1.4, we have e(asag, P') < 5.
Then e(asag, D + L) = e(asag, P) + e(asag, L) < 7+ 4 = 11. Also by the maximality of ko,
e(xs,asag) = 0 and e(z3, P) < 6. Then e(z3, D + L) < 6+ 4 = 10. Since e(zy, D + L) <
4+ 2 = 6, we have e(asagrsry, D+ L) < 11+ 10+ 6 = 27, so e(asagxrsxy, L;) > 15 for some
L; € c0—{L}. But P'is a path of order t —2 > 5 and e(x;_1, asag) = 2, contradicting Lemma
3.0.3 since 7(L') = 7(L) + 6.

Case 1.2: N(xy1,L) = {a1,a2,a4,a5}. We have e(x;_124, azag) = 0, and e(x;_12¢,a;) = 1

for i = 1,2,4,5. Then 7(ag, L) =0, so x; 2 (L, a3), a contradiction since zqa3 € E.

Case 2: e(xy29, L) = 9. Here we have e(zyx¢—1,L) = 5. Suppose that e(zy, L) = 3. Then

e(xe, L) = 6, so by (b) e(x;_124,a;) < 1 for each a; € L. Then z; — (L, a;) for at most
one a; € L by (a), so we know N(z1,L) # {ai,as,as}. If N(z1,L) = {ai,as,as} then
e(xixi—1,a2) = 0 by (a), so e(zx—1,a;) =1 for each i € {1,3,4,5,6}. Then e(z122,a2) = 2
and e(z;_ 11y, a1a3) = 2, contradicting (d). If N(z1,L) = {a1,a2,a4} then e(z122,a1) = 2
and e(x;_1x¢, asag) = 2, again contradicting (d). Therefore e(xy, L) = 4 and e(zy, L) = 5.

Case 2.1: N(xy,L) = {a1,a2,a3,a4}. Suppose that xeas ¢ E. Then e(xi_1xt,aza3) = 0

by (a), and e(z;_1x4,a4a6) < 2 by (b), so e(xy_124,a1a5) > 5 —2 = 3. Thus z9 » L, so
T(ag, L) = 0. Since e(w1x9, asazasas) = 7, this implies that x,a; ¢ E. Hence za5 € E,
a contradiction since e(x1xq,ajazazay) = 8 and 7(ag, L) = 0. Then zoa¢ € E, and by
symmetry e(zs,asag) = 2. Now suppose that zoay ¢ E. By (a), e(x;_12¢,a0a3) = 0, and

by (b), e(xi—12+, a1a4a6) < 3, s0 e(xi_12¢,a5) = 2. Then z9 - L, so 7(as, L) = 0. But

<
then z,a5 € F and x129 2, (L, aqas), a contradiction. Thus x9as € E, and by symmetry
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e(x9,aga1) = 2. Since e(z, asasagar) = 4 and e(xy, L) = 5, WLOG we can let zqa9 € E.
Then e(z;_12¢,a9) = 0 by (a), and e(z;_124,a;) < 1 for each i = 1,3,5,6, by (b).

Suppose that 7(asz,L) > 0. Then x5 — L, so e(xy_174,a;) = 1 for i # 2. But
e(x1x9,az) = 2, contradicting (d). Hence 7(as, L) = 0, and thus also 7(asag, L) < 4. Since
e(r129, asagaiaz) = 6 and e(x1x9, ajasazay) = 7, this implies that e(xy, azasasag) = 0. Hence
e(xy_1,a1aza4asa6) > 5 — 1 = 4. Since e(z1x2, azay) = 4, by (b) we have e(x;_1,a1a3) < 1
and e(x;_1,asas) < 1. Therefore e(z;_1,a1a4a5a¢) = 4, and since e(x;, L — a1) = 0, we have
e(zi_17¢,a1) = 2, a contradiction.

Case 2.2: N(x1,L) = {ay,a9,a4,a5}. 1If 2001 ¢ E, then by (a) e(z;_174,a3a6) = 0,

and by (b) e(z;_17¢,a1a4a5) < 3. Then e(z;_174,a2) = 2, so by (b) 7(az, L) = 0. But
then x,79 LN (L,ajas) and z,a9 € E, a contradiction. Thus zsa; € E, and by sym-
metry e(za, ajasagas) = 4. WLOG let e(zy, L — ag) = 5. Then e(z;_174,a3) = 0 and
e(xy_1x¢, asagag) < 3, so e(xi_1x4,a1a5) > 2. Then zy - (L,ay) or y - (L,as) by
(a), so 1(ag, L) = 0. Since e(z122,a1a0a3a4) = e(x1x9, asazasas) = 7, this implies that
e(x, asagay) = 0. Then e(zy_1,asa6a1) = 3 and e(zy_124,a;) = 1 for i = 2,4. But then
e(xy_124, agas) = 2 and e(r122, as) = 2, contradicting (d).

Case 2.3: N(x1,L) = {ay,a2,as,a5}. By (a), e(xox; 124, asa4as) < 3. Then by (b),

e(zy, asagag) = 2, for otherwise e(xy_q2y, asasag) = 0 and e(zy_174, ara3a5) < 3 < 5. If
xoay ¢ F, then e(x; 17y, a0a6) = 0 and e(xy_q124,a;) < 1 for i = 1,4, so e(x;_124, azas) > 3.
Then by (b), z9 - L, so (a4, L) = 0. Since e(z122,asa1a2a3) = 7, this implies that
e(xt, asa5) = 0. Therefore e(x;_1x4,a3) = 2 and e(x;_1x4,a1) = 1, contradicting either (a) or
(b) since e(z122,az) = 2. Thus x9a4 € E, and by symmetry we have e(zy, L —ay) = 5. Since
e(zy, asa6) = 2 and e(xy, L — ay) = e(x1, L — ag) = 4, we have 7(ay, L) > 2 and 7(ag, L) > 2.

Then x; — (L, a;) for i = 1,3, so e(x;_1x4, ajazagag) = 0, a contradiction.

Case 3: e(xy29, L) = 8. We have e(z;_1x4, L) = 6. Then e(xq, L) # 6, for otherwise

e(xi_124,a;) = 1 for each a; € L by (b), and e(z122,a;) = 2 for some a; € L, contradicting

(d). Therefore 3 < e(zy,L) < 4.
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Case 3.1: e(z1, L) = 3.

Case 3.1.1: N(xy,L) = {ay,as,as}. Suppose that zoas € E. Then e(z;_114,a9) = 0 by

(a), so e(xi_1x, L — ag) > 6. If xeas ¢ E, then e(zi_12¢,a;) = 1 for i = 1,3,5,6 by (b),
and e(x;_1x4,a4) = 2. This contradicts (d), since e(x1xg,a9) = 2. Thus zea3 € F, and
by symmetry xoa; € E. If x9a4 ¢ FE then e(r;_17,a;) < 1 for i = 1,4,6, and hence
e(xy_12y,azas) > 3. Since x9 - L, T(ay, L) = 0, so x1x9 2, (L,aqas). Then e(x;,asas) = 0,
so e(xy_1274,a1) = 1 and e(x;_124,a3) = 2. But e(x129,a9) = 2, contradicting either (a) or
(b). Thus z9as € F, and by symmetry we have e(zs, L — as) = 5. So e(z;_124+,a;) < 1 for
i = 1,3,5, and hence e(x;_12¢,a4a6) > 3. Then 7(as, L) = 0, so z122 2, (L, asag). Thus
e(zy, asag) = 0, so e(xy_1, asasag) = 3, e(r4_174,a1) = e(x4_124,a3) = 1, and zya4 € E. This
again contradicts (d), since e(z1x2, az) = 2.

Therefore e(zq, L—ag) =5, so e(xy_124,a;) < 1fori =2,4,5 6. Since e(z129,a3) = 2, by
(d) this implies that e(x;_12y, asay) < 1. Therefore e(x;_124, a1a3) > 6 —3 = 3, so xy - L.
Hence 7(as, L) = 0, so xo 3, (L,as). Then, since xjay € E we know that xiay ¢ E. Since
e(xi_1xy, agasag) > 6—5 =1, x1 - (L, a;) for some i = 4,5,6. Thus e(as, ajas) + e(ay, ag) <
2, and since e(ay, asag) = 0 we have 7(asag, L) < 3. Hence, because e(x1xs, ajazasay) = 6,
we have e(zy, asag) = 0. By symmetry, z,a4 ¢ E, so e(xy, asasasag) = 0. Since x1xe —
(L,agay) and z129 — (L, asay), e(ri_1,a1a3) < 2. Thus e(z,_1,asa4a5a6) > 6 —2 = 4, so
x,1 — (L, a3), contradicting (b).

Case 3.1.2: N(xy1,L) = {a1,as,a4}. Since e(xa,a1a4) > 1, we see that 129 — (L, azas)

and zyxy — (L,asas). Hence by (¢), e(r;_174,a;) < 1 for each i = 2,3,5,6. Suppose
that xga5 € E. Then xy29 — (L,azasq) and x129 — (L, aga1), so e(xy_124,a;) = 1 for
each a; € L. But this contradicts (d), since e(xs,ajasas) > 0. Therefore e(xy, L — as) =
5, so e(xy_124,a1) < 1 by (b) and e(z;_17,a3) = 0 by (a). Then e(x; 124,a4) = 2 and
e(ri_124,a;) = 1 for i = 1,2, 5,6, contradicting (d) since e(z129,a1) = 2.

Case 3.1.3: N(x1,L) = {a1,as,a5}. By (a), e(vor;_ 114, asagag) < 3, so

e(xoxi_ 124, arazas) > 8. Since e(x;_1xy, arasas) > 5, we see that e(xs, asasag) = 2 by (b).
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WLOG let e(zg,asaq) = 2. Then z9 — (L, a3) and z129 — (L, asag), so by (b) and (c) we
have e(z;_1x, azas) < 2, a contradiction.

Case 3.2: e(x1, L) = 4.

Case 3.2.1: N(x1,L) = {a1,as,as,as}. If e(x9, asag) = 2, then e(x;_124,a;) = 1 for each

a; € L by (c). This contradicts (d), since e(x1x2, a;) = 2 for some a; € L. Hence e(xq, asag) <
1, so e(xq,ajasazay) > 3. Since e(xq,araq) > 1, x129 — (L, aza3), and zy29 — (L, asag),
so e(xy_124,a;) < 1 for each i = 2,3,5,6. Then we see that e(xs, asag) = 0, for otherwise
e(xy_124,a1) < 1and e(x;_12¢,a4) < 1 by (b), contradicting (d) since e(x;x2, a;) = 1 for some
a; € L. Hence e(xq, ajasazay) = 4, so e(x;_114, asaz) = 0 by (a). Since e(zy_124, asag) < 2, we
have e(z;_17;,a1a4) = 4. But then z,_1x; — (L, asas), contradicting (c) since e(x1x9, asas) =
4.

Case 3.2.2: N(x1,L) = {ay,as, a4, a5}. WLOG let e(xg, a1aq) > 0. Then 2129 — (L, asas)

and x1x90 — (L, asag), so e(xi—124,a;) < 1 for each i =2,3,5,6 by (c). Thus e(zq, asas) =0,
for otherwise e(z;_114,a;) = 1 for each a; € L, contradicting (d). Hence e(x2, ajazasag) = 4,
so e(xy—12¢, azag) = 0 by (a), which means that e(x;_12, a1a4) = 4. But then e(z;_124,a;1) =
2 and e(x1x9, asag) = 2, contradicting (d).

Case 3.2.3: N(x1,L) = {a1,as,as,as5}. If e(xq, azas) = 0 then e(xy, ajazasas) = 4, so

e(xi—12¢, aga6) = 0 by (a) and e(xi_12¢, azas) < 2 by (b). But then e(x;_124,a3) = 2, a con-
tradiction by (c) since z129 — (L, agaz). Therefore e(z, azas) > 1, so by (¢) e(x;_124,a;) < 1
for i = 3,4,6,1. Since x; — (L,q;) for i = 2,4,6, by (a) we know that e(x;_124,a;) =
0 for some a; € L, because e(za, L) = 4. Hence by (c), we see that e(zy,asas) = 0
since e(x1,a1a3) = 2, for otherwise e(x;_1x,a2) < 1 and e(xy_124,a5) < 1, which implies
e(ry_17,a;) = 1 for each a; € L. Thus e(xq, ajasasas) = 4, so e(r;_1x¢,a2) = 2 by (a).
Then e(x;_124,a5) = 2 and e(x;_124,a;) = 1 for i = 3,4,6,1, contradicting (d) because

e(xr1x9, az) = 2.

Case 4: e(x122, L) = 7. We have e(x1x9, L) = e(xi_12¢, L) = 7, so WLOG let e(xy, L) >

e(xt, L). By (b), we see that x9 - L and x;—y - L, so e(xa, L) <5 and e(x;_y, L) < 5.
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Case 4.1: e(xy, L) = 2. By the above, we have e(x;, L) = 2 and e(xq, L) = e(x4_1, L) = 5.

WLOG let e(xe, L — ag) = 5. Then e(x;_124,a;) < 1 for each i = 2,3,4,6 by (b), so
e(xi_1xy,a1a5) > 7—4 = 3. Then za6 ¢ E by (c), for otherwise z129 — (L, aqas) and
12y — (L,ajaz). Thus by symmetry, we can let e(xy, azas) > 0. Then x;20 — (L, aga),
so e(zy_1x,a1) < 1 by (c), and therefore e(x;_1x,a5) = 2. Then z1xy - (L, asas), S0
e(xry,a1aq) = 0. Since e(x;_17,a;) = 1 for i # 5 and x9ay € E, by (a) we know that
e(x1,asas) < 1. But then e(xyx9,a9) = 2 and e(z;_174, a1a3) = 2, contradicting (d).

Case 4.2: e(x1,L) = 3.

Case 4.2.1: N(x1,L) = {ay,as,a3}. Suppose that xzeas5 € E. By (c), we see that

e(zy, asasag) < 1, for otherwise e(x;_12y, L) < 6. Then e(xs, ajasas) = 3, so e(x;_1x4,a2) =0
by (a). Thus e(x; 124, ajazasasag) > 7, so since e(xy_124, azagaga;) > 5 we have xqas ¢ E by
(c). So WLOG let xgaq € E. Then z129 — (L, asa3) and x129 — (L, asag), so e(xi_124, a;) <
1 for i = 3,5,6. Hence e(xi_12¢,a1a4) = 4, so e(x;_12¢, a1a3) = 3. But this contradicts (a)
or (b), since e(x1xs, as) = 2.

Case 4.2.2: N(xy,L) = {ay, as,as}. Suppose that e(za,ajay) > 0. Then by (c),

e(xy_12y, asazasag) < 4, so e(x;_1x,a1a4) > 3. Thus again by (c), we see that xqas ¢ E.
Since x;_1x; — (L, azaz), we also know by (c) that zoas ¢ E. Hence e(xq, ajazasas) = 4.
But then xs...x1a0a3x2 = C; for a 5-path xs...z1, a contradiction. Therefore e(x1, ajay) =0,
so e(za, asazasag) = 4. By (a) and (b), we have e(x;_124,a3) = 0 and e(x;_12¢, a1a4) < 2.
Then e(x;_1x¢, asasag) > 5, so ;12 — (L, azay) and ...x1a4a329 = Cy7, a contradiction.

Case 4.2.3: N(xy, L) = {a1,as,a5}. WLOG let z3as € E. Then by (a), e(zi—12¢,a2) = 0,

and by (c), e(z_124, azasagar) < 4, so e(x;_1x¢, a5) > 3, a contradiction.

Case 4.3: e(z1, L) = 4.

Case 4.3.1: N(x1,L) = {ay, as, as,as}. Since e(xy, azaz) = 2 and e(xy_q124, L) = 7, we see

by (c) that e(xq, asag) < 1, for otherwise e(x;_12¢,a;) < 1 for each a; € L. If e(xq, a1a4) > 0,
then by (c) we have e(x;_12y, asazasag) < 1, so e(x;_1x4, a1aq) > 3. Then zy_12; — (L, asag),

so by (c) we know that e(za,asas) = 0. But then e(xs,asag) > 1, contradicting (c) since
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e(xy_124,a1a4) > 3. Hence e(xy,a1a4) = 0, so e(x2,aza3) = 0 and WLOG z3a5 € E. But
then e(z;_114, asaz) = 0 by (a) and e(xy_12¢, asaga;) < 3 by (c), a contradiction.

Case 4.3.2: N(x1,L) = {ay, a2, a4,a5}. WLOG let z9a; € E. Then 129 — (L, asas) and

r173 — (L, asag), so by (c) e(xi—12¢, azazasag) < 4. Hence e(r_134,a1a4) > 3, so by (c)
e(zy, asas) = 0. Then e(zy, azasag) = 2, so WLOG let zoa3 € E. Then z;_1x2y — (L, asas)
and asasxy...x9a3 = C7, a contradiction.

Case 4.3.3: N(x1,L) = {ay,as, as, as}. Suppose that e(xs, asas) > 0. Then by (c),

e(xy_12y, azagagar) < 4, so e(xy_1x4,aza5) > 3. Then x, 12y — (L,a6a1) and z; 12, —
(L, asay), so by (c) e(z2,a1a3) = 0. Since e(x;_124,a2) > 1 and x1 — (L, az), by (a) xeas ¢ E.
Hence e(zs, ajasag) = 3, so e(xy_1x¢, asa6) = 0 by (a). But then e(z;_ 17, asas) > 5, a con-
tradiction. Therefore e(xq,asas) = 0, so e(xq, ajazasas) = 3. We see that e(xq, asag) =
1, for otherwise e(z;_1xy,a4a6) = 0 by (a) and e(x;_12¢,a0a3) < 2 by (c), and hence
e(zy_17¢, aras) > 5, a contradiction. Hence WLOG let e(zy, ayaszay) = 3. Then e(xy_q24, a4) =

0 by (a) and e(x;_1x, asazasag) < 4 by (c), a contradiction. a

4.2 Part Two

By Proposition 4.1.7, let L = ajas...agay € o with e(xjxox,_12, L) > 15. We first show,
using two claims, that e(z1, L) < 4 and e(xy, L) < 4. Then we finish the proof of Theorem

1 by considering the six remaining cases for e(zyzy, L).

Claim: e(z1,L) <5 and e(zy, L) < 5.

Proof: Suppose not. WLOG let e(zy, L) = 6. Then e(a;, x2x;—1) < 1 and e(a;, x2x;) < 1 for
each a; € L, so e(xox;_1, L) < 6 and e(xoxy, L) < 6. Since e(zqwy_q124, L) > 15 — 6 = 9, this
implies that e(xq, L) < 3, and if e(zy, L) = 3 then N(z;—1, L) = N(at, L) with e(zy, L) = 3.
Further, e(x;—1, L) > 3 and e(z, L) > 3.

Suppose that e(xe, L) = 3. If N(x9,L) = {ay,a9,a3} then N(x;_1,L) = N(xy, L) =
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{a4,as,a6}. Then z; — (L,as), so by e(as,z124-1) < 1, a contradiction. If N(xq, L) =
{ai,as,a4} then N(xy_y,L) = N(xy, L) = {as,as,a6}, so x; - (L,a;) for i = 3,5,6. Since
x; » (L,a3), asay ¢ E. But then, since e(zy, L) = 6, we have 7(L + x1 — ap) > 7(L), a
contradiction since xqay € E. Thus N(z2, L) = {a1,a3,a5}, so N(x¢—1,L) = N(zt, L) =
{ag,a4,a¢}. Then x; » (L,a;) for i = 2,4,6. Since z; - (L, as), 7(as, L) < 2. But then
T(L+ 2y —as) > 7(L) and asze € E, a contradiction.

Therefore e(xq, L) < 2, s0 e(zyx-1,L) > 15—6—2 =7. Then e(x;, L) < 5, for otherwise
x; — L and e(xix4_1,a;) = 2 for some a; € L. Suppose e(x;, L) = 5, and WLOG say
xiag ¢ E. Then N(x;_1, L) C {ay,as}. But then e(zozixy 1, L) = e(z4-1, L) + e(xoxy, L) <
24 6 = 8, a contradiction. Thus e(zy, L) < 4.

Suppose e(z;, L) = 4. Then e(xqw; 1,L) > 15— 10 = 5. If N(xy, L) = {aq,as, a3, a4}
then x; — (L,q;) for i = 2,3 and e(xs,ajasazaq) = 0. Then e(zy_1,a2a3) = 0, so
e(xowi_q, L) < 24 e(zaxi-1,a5a6) < 2+ 2 < 5, a contradiction. If N(zy, L) = {a1, as, a3, as}
then e(xq,ajasazas) = 0 and e(x;_1,asasas) = 0. Since e(xsx; 1, L) > 5, this implies
that N(zo, L) = {a4,a¢} and N(zy—1,L) = {a1,as,as}. Since N(x;_1,L) = {a1,a3,as},
x; » (L,a;) for i = 1,3,5. In particular, z, - (L,a3), so e(ay,asa¢) < 1. But then
T7(L + x1 —ay) > 7(L) and a4zs € F, a contradiction. Hence N(xy, L) = {ay, as, a4, a5}, so
e(zy, arasagas) = 0 and e(xy_1,asag) = 0. Since e(x;_1, L) > 3, by symmetry we can say
e(xy_1,a1a2a4) = 3. Then x; - (L, as), so azag ¢ E. Since e(xe, L) > 15—-6—4—4 =1, we
have e(xq, agzag) > 1. Also, since 7(as, L) < 2 and 7(ag, L) < 2, we have z; 4 (L,ag) and
T - (L,a3), a contradiction.

Thus e(zy, L) < 3, and since e(x;, L) > 3 we have e(x;, L) = 3. Then e(z;_q1,L) >
7 — 3 = 4, so we immediately see that N(z;, L) # {a1,as,a5}. If N(ay, L) = {a1,a2,a3}
then e(xy,ajasaz) = 0 and e(z;_1,a2) = 0. If e(x;_1, L) = 5 then e(zy, L) = 0, which is
a contradiction since e(z1xy_124, L) = 6 +5+ 3 = 14 < 15. Hence e(x;_1,L) = 4 and
e(zy, L) = 2. Thus e(x;_1,a1aza4a5a6) = 4 and e(xq, agasag) = 2, so e(Tax4_1, agasag) > 4,

a contradiction. Therefore N(zy, L) = {a1,as, a4}, so e(xs,arasas) = 0 and e(x;_1,a3) = 0.
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Suppose that e(x;_1, L) = 5. Then, since e(xq, L) > 1 we have z5a3 € E, and since e(x;_;.L—
az) = b we have z; » (L,a;) fori =1,2,4,5,6. Hence agas ¢ E, so 7(L+z1—a3) > 7(L) and
azry € B, a contradiction. Thus e(x;_1, L) =4 and e(xs, L) = 2, so e(z;_1, a1aza4a5a6) = 4
and e(xq, agasag) = 2. Then e(xy_1,a1a2a4) = 3 and z9a3 € F with e(x;_1, asa6) = 1. Thus
xy -+ (L,a;) for i = 1,2,4 and x; - (L, q;) for i = 5 or i = 6. Hence e(as, asag) = 0, and
either agay ¢ E or aza; ¢ E. Hence 7(as, L) + 7(ag, L) < 3, and since e(x;—12¢, arazaq) = 6

we have x,_1x4 N (L, asag), a contradiction.
QED

Claim: e(xy, L) <4 and e(z, L) < 4.

Proof: WLOG let e(xy,L) > e(x, L). By the above claim, e(z;, L) < 5. Suppose that
e(x1, L) = 5, and WLOG let e(z1, L — ag) = 5. Then e(a;, zox;) < 1 and e(a;, xox;1) < 1
for each i = 2,3,4,6. Hence if e(xox;_1,a1a5) < 2, then e(zy, L) > 15 —5 — 6 = 4. Notice
also that since e(xox;—1, L) <4+ 4 =38, we have e(x;, L) > 15 -8 -5 = 2.

We first claim that e(x;, L) < 4. Suppose not. Then by symmetry, e(z;, L — a;) =
5 for some i = 3,4,5,6. Suppose w06 ¢ FE, so that e(r;_1,asa3a4) = e(x2,asazas) =
0. Since e(xox; 1,L) > 15— 10 = 5 and e(wor;_1,a¢) < 1, we have e(xsx; 1,a1a5) =
4 and e(zowi—1,a6) = 1. WLOG let xz9a6 € E. Then x; - (L,a;) for i = 1,¢, and
j = 1,5, and hence 7(ag, L) = 0. But then 7(L + x; — ag) > 7(L), a contradiction since
xeag € E. Thus ma6 € E. We see that x,a5 € E, for otherwise e(xq,asazasag) = 0
and e(xy_1,a1aza3as5) = 0, which implies e(zox¢—1,L) < 4. Suppose xia4 ¢ F, so that
e(xs, agazag) = 0 and e(zy_1,ajaza4) = 0. Then e(xq, ajagas) + e(xy_1, azasag) > 5, so either
e(xoxy_1,a5) = 2 or e(xewy, a1) = 2. Hence x1 - (L, a5) or 1 - (L,ay). Then 7(ag, L) =0,
so 7(L + 1 — ag) > 7(L) and agz; € E, a contradiction. Therefore z,a3 ¢ E. In this case,
e(xs, agasag) = 0 and e(x;_1, ajazas) = 0. Since e(wozy_1, L) > 5, we have e(zozy, ajas) > 3.
Thus 7(ag, L) = 0, so 7(L + x1 — ag) > 7(L) and agz; € FE, a contradiction. Therefore

e(xy, L) < 4. Note that e(xy, L) =5, e(zy, L) < 4, and e(xox—1, L) > 6.
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We now claim that e(xox;_1,a1as) < 2. Suppose not. Then z; - (L,ay) or x1 - (L, as),
so 7(ag, L) = 0. Since 3, (L, ag), we have e(ag, zox;) = 0. Suppose that e(zy, L) > 3.
Then e(x;,ajasasay) > 2 and e(wy, asagagas) > 2. Since e(xy, L — ag) = 5, this implies
that zixia1a0a3a4 2O Cg and zyz4a9a3a4a5 2O Cp, a contradiction since e(xox;_1,asa1) >
3. Hence e(zy, L) = 2, and we also see from the above argument that e(z;, asazas) < 1.
Therefore e(xox; 1,L) > 15 —5 — 2 = 8, so we have e(zyxy_1,a;) = 1 for i = 2,3,4,6,
and e(zox4_1,a1a5) = 4. Since e(raxi_1,a5) = 2 and e(xax;_1,a1) = 2, we know that
T1T:G1 Q20304 ;é Cs and x1x100030405 ;/é Cs. Since e(x1, L — ag) = 5 and e(xy, ajas) > 1,
this implies that e(zy;, asagas) = 0. Hence e(zy, a1a5) = 2. Since e(z1, asazagas) = 4 and
xoas € E, e(xq, asazay) = 0 since zya; € E and 7(ag, L) = 0. Then e(z;_1, asazas) = 3, and
x;_1a¢ € E since e(ag, roz;) = 0.

In summary, we have e(zy, L — ag) = 5, e(xoxy, a1a5) = 4, and e(zy_q1,L) = 6. Let C' =
x1a;...a5x1. Then 7(C) = 7(L) + 3. By Condition (4.3), we have e(agzoz:, D — P) = 0, since
x;_1a¢ € E. By the maximality of ko, e(ag, D) < 4. Similarly e(zo, D) <5 and e(x;, D) < 4.
Then e(agroxy, D+ L) < 13+ 6 = 19, so e(agxroxy, H — L) > 231/{ —19 = %(k —2)+42. Then
e(agrazy, L;) > 11 for some L; € 0 — {L}. Let R = z9x3...24_1. Since e(x;_1, x4a6) = 2, by
Lemma 3.0.2 we see that R + L; + ag + x; has either two disjoint large cycles, one of which
is a 6-cycle, or a 6-cycle C” and a path of order ¢, disjoint, such that 7(C') > 7(L;) — 2.
But 7(C) = 7(L) 4+ 3, so L + L; + P has either three disjoint large cycles, two of which are
6-cycles, or a path of order ¢ and 6-cycles C' and C” with 7(C)+7(C") > 7(L)+3+71(L;) —2.
This contradicts either the maximality of ky or Condition (4.3).

Therefore e(xox;_1,aras) < 2. This forces e(xy, L) = 4, (xox4_1,a1a5) = 2, and
e(rory_1,a;) = 1 for i = 2,3,4,6. If e(xy,asazay) = 3, then x; — (L,a3) and since
e(roxy,a3) < 1, e(r1x4-1,a3) = 2, a contradiction. Hence e(x;, asazay) < 2, and simi-
larly e(zy, azagas) < 2 and e(zy, ajasas) < 2. Then either z,a6 € E or e(xy, ajazaqsas) = 4. If
e(zy, ayasagas) = 4, then e(xs, asay) = 0 and hence e(x;_1, asay) = 2. Then e(x1x_1,a9) = 2,

so xy - (L,as). But then 7(as, L) = 0, so x; 2 (L,a3) and zia3 € E, a contradiction.
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Therefore e(x;, ajasasas) < 3 and z,a6 € E.

Suppose that e(zy, asagay) = 2. By symmetry, either e(x;, asas) = 2 or e(xy, azay) = 2.
If e(xy,azaq) = 2, then by symmetry we can let 2,01 € E. Since e(xq,asasas) = 0, we
have e(x;_1,asa4a¢) = 3. Then e(xix;_1,a2a4) = 4, so xy - (L,aq;) for i = 2,4. Then
e(as,aras) = 0, so 7(az, L) < 1. But e(xy, L — a3) = 4 and zja3 € FE, a contradiction.
Therefore e(xy, azas) = 2, which means z,a5 ¢ F so e(x;, ajazasag) = 4. Then e(zs, azay) =
0, so e(r1x4_1,a3ay) = 2. Then x; » (L,a;) for i = 3,4, so 7(ay, L) = 0. This is again a
contradiction, as e(zy, L — ay) = 4 and z1a5 € E.

Therefore e(xy, asazay) = 1 and e(xy, a1a5a6) = 3. By symmetry, either x,ay € E or
ziaz € E. If zia9 € E, then e(xy, asag) = 0 and e(xy_1, asag) = 2. Then e(zixi_1,a2) = 2,
so x; -+ (L,ay), and thus e(as, aga;) = 0. Also, since zya3 € E and e(z;, L — a3) = 4, we
have x; - (L,a3). Thus 7(ay4, L) = 0, so since x; — (L,a4) and e(z1, L — ay) = 4, this
implies that zoa4 ¢ E. Then x;_1a4 € E, so xy -+ (L, ay), which implies that 7(az, L) = 0.
Since x; — (L,a6) and x;_1a¢ € E, 7(ag, L) > e(xy, L —ag) — 2 > 1. Then x; — L, so
since e(zy, a1as) = 2, we have e(xq,a1a5) = 0. Then e(z;_1,a1a5) = 2, so e(r124-1,a1) = 2.
But since e(wy, asag) = 2, vy — (L,a1), a contradiction. Therefore e(zy, ajazasas) = 4.
Since e(xq, agag) = 0 we have e(x;_1,asas) = 2. Since z; — (L, as) and z; — (L, ay) with
e(xy, L —as) = e(xy, L — ay) = 4, we know that 7(as, L) > 2 and 7(a4, L) > 2. But then

x; — (L, a3), a contradiction since e(z1z4_1,a3) = 2.
QED

By the previous claim, e(zyz;, L) < 8. Since e(zyzomi_1x¢, L) > 15, e(z124, L) > 3. We

break the remainder of the proof of Theorem 1 into cases.

Case 1: e(zy2y, L) = 8. We have e(xy, L) = e(xy, L) = 4, e(xsxy1,L) > 7, and WLOG

e(xe, L) > e(xy—1,L). Then e(xy, L) > 4. Suppose e(xq, L) = 6. Since e(x;, L) = 4,
r1 — (L,a;) for at most two a; € L. Thus N(xy,L) # {a1,a9,as3,a5}, so WLOG either

N(zq, L) = {ai,as,as3,a4} or N(xq, L) = {ay, as, a4, as}. In the first case, e(x129, ajasazay) =
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8 and zy —» (L,aq;) for i = 4,5,6,1. But then x;x, S, (L,asaq), a contradiction since
e(zy, asasagar) = 4. In the second case, e(x1xq, ajasasay) = 7 and x1 - (L, ajasaq4as). But
then z124 2, (L, asag) and e(x;, ajasasas) = 4, again a contradiction. Therefore e(x, L) < 5,
and we break into subcases.

Case 1.1: e(zg, L) = 5.

Case 1.1.1: N(x1, L) = {a1, as, as, as}. Suppose that e(xq, asas) = 2. Then e(xx;_1, asas)

=0, so e(xy, asasaga;) = 4 and e(x;_1, agasagar) > 2. Since e(r129, arasazay) > 7, T(asag, L) >
5. But then z; — L, a contradiction since e(zoxt, L) = 9. Thus WLOG let e(zy, L —a3) = 5.
Then z9ay € E, so xas ¢ E. Thus e(x;,asa6) > 0. But like before, either ;1 — L or
T1T2 LN (L, asag), a contradiction.

Case 1.1.2: N(x1, L) = {ay, as, as,as}. Since 1 — (L, a;) for : = 2,4, 6, and since e(x;, L)

= 4, we see that e(xy, asagag) < 2. If e(xq, agas) = 2 then e(x;, ajasazas) = 4, so e(x1x4, as) =
2. Since e(xy, L — ag) = 5, this implies that 7(ag, L) = 3. But then 21 — L, a contradiction.
Therefore e(xy, asag) = 1, so WLOG let e(x9, L —ag) = 5. Then e(zy, ajazasag) = 4, so since
e(r129, asasasas) = 7, we have 7(agay, L) > 5. Then z; — (L,a1), a contradiction since
e(roxy, a1) = 2.

Case 1.1.3: N(x1, L) = {ay, as, a4, as}. Since e(xqxy, L) = 9, we see that 7(azag, L) = 0,

for otherwise e(zax¢,a;) < 1 for four a; € L. Since e(z122, ajasazays) > 6 and 7(ag, L) = 0,
we see that e(zy, asag) = 0. By symmetry, e(x;, asas) = 0, a contradiction.

Case 1.2: e(xy, L) = 4.

Case 1.2.1: N(xy, L) = {a1, as,a3,as}. Suppose 7(ag, L) > 2. Then x_,(L,qa;) for i =

1,2,3,5, so e(xaxy, agag) = 2. Then x1 - (L, ag), so 7(as, L) = 0. Since e(x1x2, ajasazay) >
442 =06, 179 RN (L, asag), a contradiction since z;a6 € E. Thus 7(ag, L) < 1, and by
symmetry 7(as, L) < 1. Then, since e(z122, ajazasas) > 6, we see that e(xy, asag) = 0. Thus
e(xy, ajasagay) = 4, and e(xy, asasagar ) = 4. Since xy - (L, a;) for i = 1,4, e(asaq, azaz) = 0.
Thus 7(asas, L) < 2, so x1x9 2, (L, asas), a contradiction since x,as € F.

Case 1.2.2: N(xy,L) = {ay,as,as,as}. Suppose 7(ay, L) < 1. Then x4 N (L,ay), so
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e(xoxy, aq) = 0. Since e(zoxy, asag) < 2, this implies that e(xqxy, ajagas) = 6. Using similar
reasoning, we see that 7(ag, L) > 2, for otherwise e(z9xy,a6) = 0. But then 2y — (L, ay)
and e(zoxy, a1) = 2, a contradiction. Therefore 7(ay, L) > 2, and by symmetry 7(ag, L) > 2.
But then zy — (L, a;) for i = 1,2,3,4,5, so e(xoxy, L) < 54 2 =7, a contradiction.

Case 1.2.3: N(x1,L) = {a1,as,a4,a5}. Suppose e(xaxy,a1a2) = 4. Then z; - (L, a;)

for i = 1,2, so 7(agag, L) = 0. If z9a3 € E then xixo RN (L, asag), so e(xy,asag) = 0.
Then za3 € E, a contradiction since zy — (L,a3). Thus xea3 ¢ FE, and by symme-
try xoag ¢ E. Then e(xq,ajasasas) = 4, so again xixs N (L,asag). But also xjxo N
(L, azas), so e(xy, asazasag) = 0, a contradiction. Therefore e(zozy, ajas) < 3. By symmetry,
e(raxy, agas) < 3, s0 e(xaxy, a1as) = e(xoxy, agas) = 3 and e(zazy, azag) = 2. WLOG let
e(xews,a1) = 2. Then 1 - (L, ay), so T(ag, L) = 0. But this is a contradiction, since then

T 2, (L, ag) and e(zax¢, ag) = 1. This completes Case 1.

Case 2: e(zy24, L) = 7. WLOG let e(z1, L) = 4 and e(x, L) = 3. Note that e(zoxi—1, L) > 8,

and hence that ;7 - L. We consider the different possibilities of e(zy, L) in the following
subcases.

Case 2.1: e(xy, L) = 6. Note that for each a; € L, if 21 — (L, a;) then e(z;_124+,a;) = 0.

We break further into subcases.

Case 2.1.1: N(x1, L) = {ay,as,as,as}. We have e(x;_124,a0a3) = 0, so e(xy, asag) > 1.

Since x1 - L, T(asaq, L) < 6. But then 29 EN (L, asag), a contradiction.

Case 2.1.2: N(x1,L) = {ay,as,as,as}. We have e(x;_12¢, asasag) = 0, so e(xy, ajazas) =

3. Since xa5 € E and e(x129, ajasazay) = 7, we have 7(asag, L) > 5. But then e(xoxy, a1) =
2 and z; — (L, ay), a contradiction.

Case 2.1.3: N(x1,L) = {ai,as, ayq,as}. Since e(x;_12¢, azag) = 0, WLOG we can let

e(xy, ajasay) = 3. Since e(xoxy,a1) = 2, 11 - (L, a1). Thus 7(ag, L) = 0, so 122 2 (L, agay)
and x;a; € F, a contradiction.

Case 2.2: e(xy, L) = 5. We have e(z;—1, L) > 3.

Case 2.2.1: N(xy, L) = {a1,as,a3,a4}. Since &y - L, we see that 7(asag, L) < 4. Since




129

e(x1x9, ajasazay) > 7, this implies that e(x;, asag) = 0. Then e(xy, ajasagay) = 3, so since
ry — (Lya;) for i = 2,3, and e(z9, L) = 5, WLOG we can let e(xy,ajasaq) = 3 and
e(xe, L —ag) = 5. Then x1 - (L,q;) for i = 1,4, so 7(agas, L) < 2. But ziay € E and
e(x1x9, agasaga;) = 6, a contradiction.

Case 2.2.2: N(xy,L) = {ay,aq, as, as}. Since e(xoxy, asag) = 8—e(xomwy, ag)—e(xomy, a1azas)

>8—1—6 =1, WLOG we can let e(xox;,aq) = 1. Since e(zy, L — ay) = 4, this implies
that 7(a4, L) > 2. Suppose that ajsas € E. Then x; — (L, a3), so e(zazy,a3) < 1. Then
e(xomws, aras) > 8 — 1 — 3 = 4 and e(xqwy, ag) = 1. Since e(z1, L — ag) = 4, this implies that
7(ag, L) > 2. But then 1 — (L, a;), a contradiction since e(xox¢, a1) = 2. Thus asay ¢ F, so
e(ay, agay) = 2. But then zy — (L, a;) for i = 1,3, so e(xoxy, L) < 5+2 =7, a contradiction.

Case 2.2.3: N(x1, L) = {aq, as, a4, as}. Suppose e(xax4, agag) > 1, and WLOG let

e(xoxy,a3) > 1. Then 7(ag, L) > 2, for otherwise x; LN (L,a3). Thus 1 — (L,aq;) for
i = 2,4, so e(zazy,a1a5) > 8 —4 = 4. Then x1 » (L,a;) for i = 1,5, so 7(ag, L) = 0. But
then 2, (L, ag), a contradiction since e(zxy, ag) = 8 — e(xaxy, asazay) —4 > 8—3—4 = 1.
Hence e(zaz4, ajasagas) = 8, so 7(asag, L) = 0 since z1 - (L, a;) for i = 1,2,4,5. But then
T2 - (L, asag) and xa5 € E, a contradiction.

Case 2.3: e(x2, L) = 4. We have e(x;_1, L) > 4.

Case 2.3.1: N(xy1,L) ={a,as,as,as}. Since e(xoxi—1,L) > 8, v1 — (L, a;) for at most

four a; € L. From this, we see that 7(asas, L) < 3, 7(az, L) < 2, and 7(as, L) < 2. Since
T(asae, L) < 3 and e(x1x9,a1a2a3a4) > 6, we know that e(zy,asag) = 0. Suppose that
e(x9,azasz) = 2. Then e(x; 124, aza3) = 0, so e(x;_124, agasagay) > 7. Since xjay € E, this
implies that 7(agas, L) > 5, a contradiction. Suppose that e(zy, azaz) = 1, and WLOG let
xeay € E. Then, because e(xy, asag) = 0, we have e(x;, ajazay) = 3. Since e(xo, asaz) = 1,
e(xs, agasagar) = 3. Thus, since x a3 € E and e(x1, a1a4) = 2, we have 7(agasz, L) > 3. Then
e(agas, asag) > 1, s0 x1 — (L,a;) for i = 1,5 or ¢ = 4,6. Then e(xox;_1,a4a6) > 8 —4 =4
or e(rowy_1,a1a5) = 4. But z12y — (L, asag), so e(raxi_1,a5) < 1 and e(zaxy_1,a6) < 1, a

contradiction.
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Therefore e(xq,asa3) = 0, so e(xq,asasaga;) = 4. Since e(x1xq,asa5a6a1) = 6 and
e(xy, aza3) = 3 — e(wy,a1a4) — e(xy,a5a6) > 3 —2 — 0 = 1, we have 7(asas, L) > 4.
Then 7(as, L) = 7(as, L) = 2, and since e(zax:—1, L) > 8, we can see that we must have
e(agas, asag) = 2 with e(agas, as) = 2 or e(agas, ag) = 2. WLOG let e(agas, as) = 2. Then
x1 — (L, a;) for i = 4,6, so e(x;_1, asag) = 0 since e(xq, agag) = 2. Then e(x;_1, ajasazas) =
4, 50 e(xoxy_1,a5) = 2. Then xyx, - (L, asag), so e(ry, ajasazay) < 1, a contradiction since
e(xy, asag) = 0.

Case 2.3.2: N(x1,L) = {aq,as,as,as}. Since e(xax4_1, L) > 8 and e(xox;_1, azasag) < 3,

we have e(xom;_1,aja3as) > 5. Similarly, e(zoxy, ajazas) > 4. From this, we see that
T(ag, L) <1 or 7(ag, L) < 1, for otherwise e(xox;_1,a1a3) < 2.

Suppose T(ay, L) > 2. Then 7(ag, L) < 1, so since e(z1, L —ag) = 4 we have e(xqxy, ag) =
0. Then e(xoxy, ajasas) > 5. Since 1 - L, asas ¢ E, so agas € E. Then z1 — (L, a3), so
e(xoxt, aras) = 4 and e(xaxy,a;) = 1 for i = 2,3,4. Also, e(xox_1,a1a5) = 4, e(vaw4-1,0;) =
1 for i = 2,3,4, and x;_1a¢ € E. Since e(x12y, asagasas) > 6, x1rsasa3a4a5 contains a
6-cycle C, and since 7(ag, L) < 1, 7(C') > 7(L). Let R = x3...x4_12a1a6. Since x;_1a6 € E,
r(P) > 4 by Condition (4.4).

Suppose z;a4 € E. Then x9a4 ¢ E, so e(xs,aza3) = 2. Since zy_1za4a5a6a11,—1 = Cé,
T12ox3T4T5a2a3 D Cg. Then, since e(x129,a2a3) = 4, we see that e(x1, z425) = 0 (see
Figure 4.12). Since r(P) > 4, this means that e(z;, z;_32,—4) > 1. But C is a 6-cycle, so
Ty 19T 3%—4a6a; does not have a 6-cycle, a contradiction since e(zy_124,a1) = 2 and
xi_1a¢ € E. Therefore xia4 ¢ E, and it is easy to find similar contradictions if z;a3 € F or
xas € E. Since e(xy, L) = 3 and xa6 ¢ E, we conclude that 7(a4, L) < 1. By symmetry,
7(ag, L) < 1.

Then LN (L, a;) for i = 4,6, so we know that e(zox4, agag) = 0. Then e(xs, ajasazas) =
4, and since zyas € E, we have e(x;,ajasas) = 3 and e(zy_1,L — az) > 4. WLOG let
ri_1a6 € E. Let C = x1x000a304a501 and R = x3...x3_1x1a106. Just like in the preceding

paragraph, we have 7(C) > 7(L) and r(P) > 4. Since C is a 6-cycle, we readily see that
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X1 Xz Xz X
Figure 4.12: Case 2.3.2, when 7(a4, L) > 2 and zia4 € E.
e(xy, v4_gxy—y) = 0, because x;_ja¢ € E and e(zy_124,a1) = 2. Then e(xy,z425) > 1. But

T _1agasagazr, = Cg and e(x1xe, ajas) = 4, a contradiction.

Case 2.3.3: N(xy, L) = {a1,as,a4,a5}. Suppose 7(as, L) > 0. Then x; — (L,q;) for

i =2,3,4,6, so e(rory_1,a1a5) > 8 — 4 = 4, and e(xazy, a1a5) > 3. Then 7(ag, L) = 0, so
1 2 (L,ag) and hence e(zyzy,a6) = 0. Then e(xq,ajasazay) > 3 and e(xoxy, ajas) = 4.
But then, since 7(ag, L) = 0, we get z12 L (L,asag) and xa5 € E, a contradiction.
Therefore 7(ag, L) = 0, and by symmetry 7(ag, L) = 0. This implies that e(zaz¢, azag) = 0,
0 e(x9, ajasagas) = 4 and e(ry, ajasaqas) > 3. WLOG let e(zy, ajasay) = 3. Then z,a; € E,
T(agar, L) < 0+ 3 =3, and e(z122, asazagas) = 6, a contradiction.

Case 2.4: e(wq, L) = 3. We have e(z;_1, L) > 5.

Case 2.4.1: N(x1,L) = {aq,as, as,as}. Since e(xax4_1, asaz) < 2, e(rax4_1, agasaeay) > 6.

Because zjay € F, this implies that 7(agas, L) > 4. WLOG let e(agas,as) > 1. Then

r1 — (L,a;) for i = 4,6, so e(xowi_1,a4a6) < 2. Then e(zyz:-1,a105) = 4, so 7(ag, L) =
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0. Also, since e(zox4_1,a5) = 2, we know that x1z; - (L, asag), so e(xy, ajasazay) < 1.
Therefore e(xy, asag) = 2, so since 7(asag, L) < 3 and e(xy, ajasazay) = 4 with z9ay € E,
we have e(zs, asazas) = 0. Then e(z2, ajazag) = 3, so e(xaxy, ag) = 2, a contradiction since
x1 — (L, ag).

Case 2.4.2: N(x1, L) ={ay,as,as,as}. Since e(xox_1, asagsag) < 3, e(xoxy_1, a1azas) > 5.

Similarly, e(xoxy, ajazas) > 3.

Suppose that 7(ay, L) > 2. Then x; — (L, a3), so e(xaz4-1,a3) < 1. Then e(xox;_1,a1a5) =
4, so T(ag, L) < 1. Then z; LN (L,ag), so e(xozs,a6) = 0. Also, e(zazi_1,a;) = 1 for
i = 2,3,4,6, and since zya5 ¢ E we have z,_1a6 € E. Since e(xox;_1,a1a5) = 4, x124 -
(L,a;a;1q1) fori =6,1,4,5. Since e(x1, asazas) = 3, this implies that e(z;, asazasas) < 2, and
since xia6 ¢ E we have e(x;, asazasas) = 2. Further, we see that it must be the case that
e(xy, asas) = 2, for otherwise zyz,a0a3a4a5 2 Cg. Hence e(xy, ajaszas) = 3, so x; — (L, as).
Then, because x1as € F, we know that z;_ja, ¢ E. In summary, we have e(x;_1, L—ay) =5,
e(x, ajasas) = 3, and e(xy, ajazas) = 3.

Since e(zox¢—1,a1) = 2, e(ag, azay) = 0. Then, since 7(ay, L) = 2, we have asay € E.
Suppose that aiaz € E. Then x;_1x1a3a1a6a5x:—1 = Cg, and since asay € E with x1a9 € F,
we must have e(z;_12¢, agajagas) < 6 because 7(agaq, L) < 4. But e(x;_12¢, azajasag) = 7,
a contradiction. Therefore aja3 ¢ F, and similarly asas ¢ E. Hence 7(asas, L) <2+ 1 =3,
so since x1as € E we have e(x; 124, agasaga;) < 5, a contradiction.

Therefore (a4, L) < 1, and by symmetry 7(ag, L) < 1. This gives us e(zox¢, aga) =
0, because x L (L,a;) for i = 4,6. Suppose that z; ja5 € E. Then x9ay ¢ E, so
e(x9,ajazas) = 3. Further, since e(xix;_1,a2) = 2, x4 - (L,az), so e(xy,ajaz) < 1.
Then e(xy, asas) = 2, so zyx; — (L,agar) and zy2; — (L, azay). But e(zy,a1a3) = 2, so
e(xy_1,a1a3) = 0, a contradiction. Therefore (z,_1, L — as) = 5. Since 1 - L, 7(as, L) < 2,
SO Typ_1 N (L,az). Then, since xjay; € E, we have xiay ¢ E. Therefore e(zy, ajazas) = 3.

Let C = x;_171ia1a6a5a4x—1. If asay € E and aza; € E then x;_1xia50601030_1 = Cg

with e(xy_12¢, asagarasz) = 7. But 7(agayq, L) < 2+ 1 = 3 and z1a9 € F, a contradiction.
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Thus asay ¢ E or aga; ¢ E. Similarly, asag ¢ E or aza; ¢ E. Since 7(ag, L) < 2, this implies
that 7(azas, L) < 4, so 7(C) > 7(L). Since z125...x5a0a3 D C>¢ and e(x129, azaz) = 3, we
know that e(xy,z425) = 0. Since e(x; 174, a3a4) = 3 and xyw9a5a6a10207 = Cg, we know
that e(zy, z;_sx,—4) = 0, for otherwise xyx;_1...24_4a3a4 O Csg. Let R = azaori2o..74 9.
Since azzy € E, r(R) > 3 > r(P), contradicting Condition (4.4).

Case 2.4.3: N(xy, L) = {a1, a2, a4,as}. Suppose 7(as, L) > 0. Then 2y — (L,a;) for i =

2,3,4,6, so e(xow;_1, asazasag) < 4. Then e(zyzi_1,a1a5) = 4, and similarly e(xoxy, ajas) >
2. Then 7(ag, L) = 0, so e(xaxt,a6) = 0 since e(xq1, L — ag) = 4. Since e(zazi-1,a105) = 2,
we see that z12y - (L,asa6) and z1x2; - (L,asa;). But it is easy to see that this is a
contradiction, since e(x;, L —ag) = 3. Therefore 7(as3, L) = 0, and by symmetry 7(ag, L) = 0.
This implies that e(zozy, azag) = 0, so WLOG let e(zy, ajasay) = 3. Then we notice that
r1xy — (L, a;a;41) for i = 2,3,5, so e(zazy-1,a;) < 1fori=2 34,56, a contradiction.

Case 2.5: e(xy, L) = 2. We have e(x;_1, L) = 6. Note that if z; — (L, a;), then z1a; ¢ E.

Since e(xq, L) = 4, this implies that z; — (L,q;) for at most two a; € L. We immedi-
ately see that N(xy, L) # {a1,as,as}. Suppose N(zy, L) = {ay,as,a3}. Then zias ¢ E,
so e(x1, L — ag) = 4. Then 7(asag, L) < 4, S0 x; 174 LN (L, asaq), a contradiction since
e(x1,asa¢) > 1. Thus N(xy, L) = {a1,a9,a4}, so e(xy, L — az) = 4. Again, 7(asag, L) < 4,

e(ry_1xy, a1asasay) = 7, and e(wy, asag) > 1, a contradiction.

Case 3: e(xy24, L) = 6. WLOG let e(x1, L) > e(x¢, L). Then 3 < e(xy,L) < 4.

Case 3.1: e(z1,L) = 4.

Case 3.1.1: N(x1,L) = {ay,as,as,as}. Since x1y — (L, a;) fori = 2,3, e(xox4_1, asaz) < 2.

Then e(xox;_1, asasasar) > 7, so 1 - (L, a;) for three i € {4,5,6,1}. Thus 7(asae, L) < 2,
SO T1%3 4 (L,asag). Then e(xy, asag) = 0, so e(xy, ajasazay) = 2. But then zy2, — (L, asag)
and e(xomw;_1,asag) > 3, a contradiction.

Case 3.1.2: N(x1,L) = {ay,as, as, as}. Since e(xoz4_1, asasae) < 3, e(xox;_1, a1azas) = 6.

Then also, e(xoxs_1,a;) = 1 for i = 2,4,6. Since e(xox;_1,a1a3a;5) = 6, we have e(ag, asay) =

e(ay, asag) = 0. Then zq LN (L, a;) for i = 4,6, so e(xaxy, agag) = 0. Therefore e(z;_1, asag) =
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2, 80 Ty 2, (L, az) because 7(ag, L) < 1. Then, because z1as € F, we know that z,as ¢ E.
Hence e(zy, ajazas) = 2, and by symmetry we can assume z,a; € E.

Suppose that xqay € E. Then e(z122,asazagas) = 6 and 7(agar, L) < 1+ 3 = 4, so
T1% 9, (L,agay). Therefore, because agaixiz;—;...x3 = P, and agz,—1 € E, by Condition
(4.4) we know that r(P) > 4. Since x1xs — (L, agay), x4xi 124 27 374 4aga; does not have
a large cycle. Because e(xyx;_1,a6a1) = 3, this implies that e(xy, zy_32,-4) = 0. Hence
r(z, P) < 3, so r(xy, P) > 4. But similarly, z;_12; — (L, asa3) and e(x1xq, asa3) = 4, a
contradiction.

Therefore x9ay ¢ FE, so e(xa, L) = e(x3,a1a3a5) = 3 and e(x;_1,L) = 6. Suppose
that xa3 € E. Then e(z124,a1a3) = 4, so 7(ajas, L) = 6 because e(x;—1,L) = 6. Since
e(xy_124, a1a0a3a4) = 6 and xia5 € E, we have 7(asaq, L) > 4. Because e(ag, azay) = 0,
this implies that 7(as, L) = 3 and agag € E. Let L' = agayriazasr,_1a5. We see that
T7(L") = 7(L), because e(x;_1x¢,asa1a3a4) = 6 and 7(ag, L) = 1. Hence r(P) > 4, since
a50901 ... 049 = Py with aszg € E. Since L' is a 6-cycle and e(z122, asas) = 3, we know
that r(xy, P) < 3. Then r(z;, P) > 4, S0 x4x4_1T_2%;_3T4_4a3a4 contains a large cycle since
e(xy_124,azay) = 3. But 129 — (L, agay), a contradiction.

Hence za3 ¢ E, so e(xy, aras) = 2. Let L' = aqasagaizixi—qay. We see that 7(L') = 7(L),
because e(x;_1x¢, agasasa;) = 6 and 7(ay, L) < 1. Hence r(P) > 4, since azasr1Ts...T4—9 = P,
with azxe € E. Since L' is a 6-cycle and e(z122, agas) = 3, we know that r(z1, P) < 3. Then
r(xy, P) > 4, S0 xymy_1X4_oTy_3%4_4a6a1 contains a large cycle since e(z;_1x4, agay) = 3. But
xr1x9 — (L, agaq), a contradiction.

Case 3.1.3: N(x1,L) = {ay,as, ay,as}. Since e(xax;_1, azag) < 2, we have

e(raxy_1,a1asa4as) > 7, and hence 7(azag, L) = 0. By symmetry, say e(zq,ajazay) = 3.
1
Then z129 — (L, asag), so e(xy, asag) = 0. Then e(zy, ajasazay) = 2, so e(x;_1, a1a0a3a4) <
. 1
3, for otherwise x;_12; — (L, asag) and xja5 € E.

Suppose that e(x;,ajaz) > 1. Then, because e(z, ajasazas) = 2, we have rix; —

(L,asag). Thus e(zozy_1,a5) < 1 and e(zqw;_1,as) < 1, s0 e(x2, ajasa3a4) = 4 and
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e(xy_1,a1asaq) = 3. Since e(xy_124, ajasazay) = 5 and x1a5 € E, we know that 7(asag, L) >
3, which implies that 7(as, L) = 3. Because e(zax¢_1, a1a2a4) = 6, we see that x,a1 ¢ E, for
otherwise e(xt, a1a;) = 2 for some i € {2,3,4}, and hence z; — (L, a;) for some ¢ € {1,2,4}.
Similarly, e(zy, asaz) < 1, so because e(xy,ajaz) > 1 we have e(x;, azay) = 2. Then x2; —
(L,agay), so e(row_1,a6a1) < 2. But then e(xox; 1, L) = e(xaxi_1,a6a1) + e(zo4_1,a5) +
e(xoxy_1,a3) + e(xom;_1,a2a4) <241+ 144 =8, a contradiction.

Therefore e(zy, a1a3) = 0, so e(xy, asay) = 2. Since zyay € E and 7(as, L) = 0, we know
that e(x1x9, asagaias) < 5, for otherwise 129 N (L,agay). Thus e(xs,asag) = 0, so, since
e(xoxi_1,a3) < 1land e(xox;_1,a6) < 1and e(x;_1,a1a0a3a4) < 3, we have e(xq, ajasazay) = 4
and e(z;_1, ajasa4asa6) = 5. Let C' = ajasasai1x4x4_ 104, and let R = azaorTy...24_o. Since
e(xi_1xy, agasagay) = 5 and 7(as, L) = 0, 7(C) > 7(L). Since a1z — (L, aza3) and
e(x1x9, azaz) = 3, we know that r(x;, P) < 3. Since x1x9 — (L, azas) and e(x;_12¢, a4) = 2,
we know that x;x; 4 ¢ FE. Because azry € FE, this implies that z,z,_3 € E, for otherwise
r(R) > r(P), contradicting condition (4.4).

By Condition (4.2) and the path R of order ¢, e(az, D — P) = 0. By Condition (4.4),
r(as, R) < 4, so e(as, r3...x;_2) = 0. Then, because e(as, x1x9m; 12;) = 1 and 7(ag, L) = 0,
we have e(a3, D + L) < 1+ 2 = 3. Since r(z1,P) < 3 and r(zy, P) = 4, we know that
e(r1x, D) = e(xy2, P) <2+3 =5. Then e(z124, D+ L) <5+6 = 11. By Conditions (4.2)
and (4.4), and the path R, e(x;_o, D) = e(xy_o, D—P)+e(xy_o, P—xy_174)+e(x_o0, x4 174) <
0+3+2=5. Thus e(x;_2, D+ L) < 11, so e(azzixpxi—2,D + L) < 3+ 11 + 11 = 25.
Thus e(agzizx4 9, L;) > 15 for some L; € o — {L}. Let L' = x; ja4asasa1a22,_1, and
P’ = xox3...x4_3. Since e(xy_1,L —a3) =5 and 7(a3, L) =0, 7(L') = 7(L) + 3. But P’ is a
path of order t —4 > 3 and e(z, x1a3) = e(x4_3, x4_o1;) = 2, so either the maximality of kg
or Condition (4.3) is contradicted by Lemma 3.0.4.

Case 3.2: e(xy, L) = 3. Since e(x1,L) = e(x, L) = 3, WLOG we can let e(xy, L) >

e(x¢—1, L). Thus e(x9, L) > 5.

Case 3.2.1: e(x2, L) = 6. Since e(x;_yx¢, L) > 6 and e(z2, L) = 6, we immediately see
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that N(z1, L) # {a1,a3,a5} We break further into cases to consider the other possibilities
for N (x4, L).

Case 3.2.1.1: N(z1,L) = {ay,as,a3}. Since 1 — (L,as), e(xi—12¢,a2) = 0. Suppose

that e(x, aqasa6) > 1, and by symmetry let e(z;,asag) > 1. Since e(x122, a1a2a3a4) =
7, this implies that 7(asag, L) > 5. Then x; — (L,a;) for i = 4,6, so e(x;_1,a4a¢) =
0. Then e(z;_1,a1a3as5) = 3, so x1 - (L,a;) for i = 1,3,5. But then 7(ag,L) < 1, a
contradiction. Therefore e(zy, asasag) = 0, so e(xy, ajasaz) = 3. Since e(xyxy, ajazaz) = 6,
we have 7(ajasas, L) = 9, for otherwise xo EN (L, a;) for some i = 1,2,3. But then again
T(asag, L) > 5, a contradiction.

Case 3.2.1.2: N(z1, L) ={ay,as,a4}. Since 1 — (L, as), e(x;_124,a3) = 0. Since

e(xoxy_1,L) > 9, 7(as, L) < 2. Suppose 7(ag, L) = 3. Then x; — (L,q;) for i = 1,5, so
e(xi_12¢,a1as5) = 0. Then e(zy_1, asasa6) = 3, so 7(as, L) < 1. This argument implies that
T(asag, L) < 4, and since e(x1x2, ajazazay) = 7 we have e(x;, asag) = 0. Since z,a3 ¢ E, we
know that e(xy, ajasay) = 3. Then, because e(xaxy, ajazas) = 6, we have e(as, asag) = 0.
Since e(x1xq, agasaga;) = 6 and xiay € E, this implies that aza; € E and 7(as, L) = 3. Then
ry — (L,a5) and &1 — (L, ag), so e(zri—1,aza6) = 0. Hence e(x;_1, ajazsas) = 3 (see Figure
4.13).

Let L' = zyxaia0a3a47,. Since 7(asaq, L) < 4, we know that 7(L') > 7(L) + 1. Since
T(as, L) = 1 and 7(ag, L) = 3, we see that 7/(L') > 7/(L)+1 (see Figure 4.14). We will apply
Lemma 3.0.6 to the path R = x3x4...x; of order ¢t — 2 and the edge asag. We first show that
e(z3ziasag, C') > 15 for a 6-cycle C. By Condition (4.3), R + asag does not contain a P, so
e(xs,asag) = 0. Since 9 — L and e(xy, ajasay) = 3, we know that e(xs, ajasay) = 0 by the
maximality of kg. Since x1x9 — (L, asaz) and xias € F| e(x3, D— P) = 0 by Condition (4.2).
Also, because xo9 — (L, a2) we have zyx3 ¢ E, for otherwise z12314...x:a001 = Cs¢. Clearly
e(xs, r3Tg...x;) = 0, s0 e(x3, D + L) <541 = 6. Since zy — (L,a1) and e(x;_124,a1) = 2,
we know that z,x;_4 ¢ F by the maximality of kg. Thus by Proposition 4.1.3, e(x, D) < 3.

Hence e(xy, D+ L) < 3+ 3 = 6. Since L' is a 6-cycle, P — x1x5 + asag does not have a large
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Figure 4.13: Case 3.2.1.2

Figure 4.14: Case 3.2.1.2: The cycles L and L’. Dashed lines represent possible edges.
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Figure 4.15: Case 3.2.1.2: If 2y — (C,v) and e(v, asag) = 2 then L + C + P contains two 6-cycles
and a large cycle.
cycle. Suppose that e(asag, P — x1x2) > 5. By Lemma 2.1.4, there is 4 < i < ¢t — 1 such that
asr; € E and agx;pq € E. But then zj...x;a5062:41...0; = P, contradicting Condition (4.3)
since 7(L') > 7(L) + 1. Therefore e(asag, P — x122) < 4, and hence e(asag, P) < 6.
Suppose that there is u € D — P with uas € E. Since uasagrs...vi—o = P, and x;_1x; —
(L,asag), we have e(u, D — P) = 0 and ux; ¢ E by Condition (4.2). Further, ux; ¢ E
for ¢ > 4, for otherwise zoxs...7;uasa6x2 = C>¢, contradicting the maximality of ky. Thus
e(u, D) < 2, and since z123 ¢ F, we have e(uxy,D) < 2+ 3 = 5 by Proposition 4.1.3.
Then e(uz1, H) > Tk =5 =7k — 1) +2 > Tk + 2, so e(uxy, L;) > 8 for some L; € o.
Since e(xy, ayasay) = 3, by Condition (4.2) we know that u - (L, a;) for i = 1,2,4. Hence
e(u, L) < 4, and since e(zy, L) = 3, we know that L; # L. By Lemmas 1.4.15 and 1.4.17,
and Condition (4.2), we know that e(u, L;) < 4 and e(uxy, L;) = 8. Further, since x;_1x; —
(L,asaq) and uasagxs...xy—5 = P;, we know by Lemma 1.4.15 that e(xy,L;) < 4. Hence
by Lemma 1.4.18 and Condition (4.2), we see that there is z € L; such that u EN (L;, 2).
But, since u € D — P, this contradicts Condition (4.3). Thus, there is no u € D — P with
uas € E, and similarly there is no w € D — P with uag € E. Therefore e(asag, D) < 6, so

e(asag, D + L) < 14 since 7(asag, L) < 4.
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We have e(z3zia5a6, D+ L) < 646414 = 26, so e(xszasae, H—L) > 14k—26 > 14ky+2.
Then e(z3zia5a6,C') > 15 for some C' € o0 — {L}, and C' is a 6-cycle by Lemma 2.2.1. Since
e(x1x4_1,a3) = 2, by the maximality of ky we know that C' + L — ay + x; does not contain
two disjoint 6-cycles. Suppose that z; — (C,v) for some v € C (see Figure 4.15). Then
L — as + v does not have a 6-cycle, which implies that e(v, asag) < 1 since ajaz € E. With
R = x5...x; and asag, we have now satisfied the conditions of Lemma 3.0.6.

By the maximality of ko, (i) from Lemma 3.0.6 does not hold. Since 7(L’) > 7(L)+1 and
R is a path of order ¢t —2, by Condition (4.3) we see that (ii) from Lemma 3.0.6 does not hold.
Since x93 — (L, a1) and e(z;_1x4,a1) = 2, we know that z,24_4 ¢ E. Since x;_12y — (L, asas)
and e(x1x9,as) = 2, we know that x1x5 ¢ E. Hence r(P) < 4, so because 7'(L') > 7/(L) + 1,
by Condition (4.5) we see that (iii) from Lemma 3.0.6 does not hold.

Hence we know that, for some u,v € C, R + C + asag contains a path P’ = wvrs...x; of
order t with uzs € F, and a 6-cycle C" with 7(C") > 7(C') — 1 and 7/(C") > 7/(C) — 1. Since
o — (L,a2) and e(z1x¢, az) = 2, we know that xix3 ¢ E, for otherwise xyx3zy...000001 =
Cs¢. Similarly, 124 ¢ E since t > 7. Above, we saw that 125 ¢ E, so r(xy, P) = 2.
Since P’ = uvzs...xy, this implies that r(P) = r(zy, P) = r(z¢, P') < r(P’). Thus, because
(L") +7(C") > 7(L) + 7(C) and 7(L') + 7(C") > 7'(L) + 7'(C), by Condition (4.6) we
know that s(P) > s(P’'). But, since uzs € E, we also have s(P) = r(xy, P) + r(z, P) =
2+ r(zy, P) =2+ 1r(xy, P') <3+ r(xy, P') <r(u, P'") + r(z, P') = s(P’), a contradiction.

Case 3.2.2: e(xy, L) = 5. Since e(x;_1x¢, L) > 7, we clearly have N(z1, L) # {a,as,as}.

The following two cases will therefore complete Case 3.

Case 3.2.2.1: N(xq,L) ={ay,as,a3}. Since 1 — (L,as), e(zaxi_1,L — az) > 8 and

e(rozy, L — ay) > 7. Suppose that zoag ¢ E. Then e(x;_124,a0) = 0. If e(xy, asa6) > 1,
then 7(asag, L) > 5 since e(x1r9,a1asa3ay) = 7. Then 2y — (L,a;) for i = 4,6, so
e(ri_1x4,a4) = 0. Hence e(x;_1,ajasasa6) = 4, so x1 - (L,q;) for i = 1,5. But this is
a contradiction, because 7(ag, L) > 2. Therefore e(zy, asag) = 0, so e(xt, ajaszas) = 3. Then

r1 —» (L,a;) for i = 1,3,4, so 7(az, L) = 0. But then z; RN (L,a3) and zias € E, a
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contradiction. Therefore x9a6 € E, and by symmetry xqa4 € E.

Suppose that zoa; ¢ E. Then e(xi_124,a2) = 0. If 2,01 € E| then e(xy24,a1) = 2, so
7(a1, L) = 3. Then x; — (L,aq), so e(zi—12¢,a5) = 0. Hence e(x;_1, arazaqsas) = 4, so
x1 -+ (L,a;) for i = 3,4,5. Hence 7(aqas, L) < 2, 80 122 2 (L, aqas). But e(zy, agas) >
3 —2 =1, a contradiction. Hence x;a; ¢ E, so e(zy, asasasag) = 3. Since e(xy, azas) > 1
and e(z1x2, agajasasz) = 6, we know that 7(agas, L) > 4. It is easy to see that this is
a contradiction, since e(zow;_1,azasasag) > 7. Therefore z5a; € E, and by symmetry
Toas € K.

Suppose that zoas € E. Then e(z;_1x4,a9) = 0. Clearly 7(asag, L) < 4, so e(zy, asag) =0
because e(x1xs, ajasazay) = 7. Hence e(zy, ajaszay) = 3, so x1 - (L,a;) for i = 1,3,4. But
then 7(ag, L) = 0, so x; LN (L, as), a contradiction since xoas € E. Therefore zyas ¢ E, so
e(xq, L —ay) = 5.

Suppose that 7(as, L) > 2. Then x; — (L, a4) and 21 — (L, ag), so e(xi_12¢, asag) = 0.
Thus e(zy_1, a1a2a3a5) = 4, so 7(ag, L) < 1 and 7(ay, L) < 1. This implies that xo 2 (L, as),
so xiay ¢ E. Further, since e(xix_1,a2) = 2, e(zy,a1a3) < 1. But then e(z, L) < 2, a
contradiction. Therefore 7(as, L) < 1. If 7(ag, L) = 3, then x; — (L,a;) and z1 — (L, a;).
Then e(z;_1, asaszasag) = 4, so 7(as, L) = 0. This shows that 7(asags, L) < 3, so x1x9 N
(L,asag). Hence e(xy,asaq), and by symmetry xiay ¢ E. Thus e(zy, ajaza3) = 3. Since
e(xoxy, araz) = 4, 7(ag, L) < 1. But e(zq, L — az) = 5 and e(x1x4, ag) = 2, a contradiction.

Case 3.2.2.2: N(xq,L) = {ay,as,a4}. Since e(xox;_1,a3) < 1, e(xoxi_1,L — a3z) > 8.

Hence azas ¢ E, for otherwise x; — (L,a;) for i = 2,4,6. Similarly, e(as,aga;) < 1, so
7(ag, L) < 1. Suppose that e(xg, L — a;) = 5. Then e(x;_124,a3) = 0 because zqa3 € E.
If 7(a;, L) = 3, then x1 — (L, ag), so e(zy_1x,a6) = 0. Then e(z;_1, ajasaqas) = 4,
and because e(rx; 1,a5) = 2, we know that x1x, - (L,asae). Since e(xq,aiaza4) = 3,
this implies that e(z;,a1a2) < 1 and e(zy,a1aq4) < 1. Therefore 2,01 ¢ E, for other-
wise e(xy,azagazay) = 0. Hence e(xy,asaqas) = 3, so x; — (L,ay) since ajaz € F.

But e(zix;_1,a2) = 2, a contradiction. So 7(ay,L) < 2, which means LN (L,ay).
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Hence za; ¢ E, so e(x;,asaqasag) = 3. 1If a6 € E, then 7(aga;, L) > 4, for otherwise
T1T9 N (L,agay). Then x; — (L,as), so e(x;_1x4,a5) = 0. Then e(z;—1, ajasaqsas) = 4
and e(x;, asaqag) = 3, so r; — (L,a;) and e(z124-1,a1) = 2, a contradiction. Thus
rag ¢ E, so e(xy,asaqa5) = 3. Since zaa; € F, this implies that 7(ag, L) = 0. But
since e(zy_1, asazagas) > 2 and 7(ay, L) < 2, we have xy_q14 L (L,agay), a contradiction.
Therefore z2a, € E.

Suppose that e(zq, L — as) = 5. Since x9a3 € E, e(x;_1x,a3) = 0. Suppose that
7(as, L) < 2. Then zy — (L,as), so may ¢ E and hence e(x,, a1asasa5) = 3. Since
T(ag, L) < 1, 1(azays, L) < 4, so e(xy_124, asagaraz) < 6. Hence e(x;_qx4,a4) > 7—6 = 1.
We also know that e(x;_1x;,a1) > 1, for otherwise e(z;_1x4, asasag) = 6, which implies that
x; — (L, as5) and e(xox;_1,a5) = 2. Then e(xy_124,a4) > 1 and e(z;_124,a1) > 1, and because
e(xy,a1aq) > 1 and e(z;_1,a1a4) > 1, we know that z;_12; — (L, aza3). But 7(asas, L) <
2+ 1 =3, 80 x4_11¢ N (L, asas) because e(xy_11y, agasaga;) > 6, a contradiction because
xr1az € E. So 7(ay, L) = 3, which means that 21 — (L, as). Since zqa5 € E, e(xy_124,a5) = 0.
Then e(x;_1, ajasa4a6) = 4 and e(xy, ayasaqag) = 3. Because e(zqxy—1,a6) = 2, we have
riay ¢ E, for otherwise zyz; — (L,asag). Then e(x:, asasas) = 3, so x; — (L,ay) and
e(xoxi_1,a1) = 2, a contradiction. Therefore x9ay € E.

Suppose that e(za, L — a3) = 5. If e(z, asa3) = 0, then e(x;, ajasasag) = 3, so because
e(x1x9, ajasazay) = 6 we must have 7(azag, L) > 4. Since e(xoxy, ar1a5) > 3, 7(ag, L) < 2,
for otherwise x; — (L, a;) for ¢ = 1,5. But then 7(as, L) > 2, so 21 — (L, a;) for i = 5,6,
a contradiction because e(xoxy, asag) > 3. So e(xy, azaz) > 0. Since e(x29, asasagar) = 6,
this implies that 7(agag, L) > 4. Since agas ¢ E and 7(a3, L) < 1, we have 7(aq, L) = 3 and
e(as,agay) = 1. Then x1 — (L, as), so e(x;_1x4,a5) = 0.

Suppose azag € E. Then x1 — (L,ay), so e(x;_124,a1) = 0. Hence e(zy_1, asazasag) =
4 and e(xy, agagasas) = 3. Since e(xoxi_1,a6) = 2, we know that e(zy, aza3) < 1 and
e(zy, azay) < 1, for otherwise zyz; — (L, asag). Hence za3 ¢ E, so e(xy, asagas) = 3. Since

1 » (L,aq), T(as, L) < 1. Then, since x,a6 € F and e(x1x9, ajaza3a4) = 6, we must have
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T(ag, L) = 3. Let L' = x1x9a5a4a0a12. Since e(xq29, asagazar) = 7 and 7(azag) = 4, we see
7(L') > 7(L). But azag € E and ;a6 € E, a contradiction.

Therefore asag ¢ E, so asa; € E. Then 7 — (L,ag), so e(xy_124,a6) = 0. Thus
e(xi_1,a1a0a3a4) = 4 and e(xy,ajasagay) = 3. Since e(xor;_1,a2) = 2, we must have
e(zy, ara3) = 1, for otherwise xy — (L, a). Thus e(zy, asay) = 2. Let L' = x1x904a5a6a171
and R = x3...x,_124a0a3. Since T(agag, L) < 3+1 =4, 7(L") > 7(L). Thus, because x,_ja3 €
E, we have r(P) > 4 by Condition (4.4). Since e(x;_1x¢,aza3) > 3 and x1x9 — (L, asas),
we know that r(x;, P) < 3. Since z;_12; — (L, asa3) and e(x1x9,a2) = 2, we know that
r1xs ¢ E. Hence x1x4 € E. Since 7(L') = 7(L) by Condition (4.3), we have 7(ay, L) = 3.
Then zix4x370050001 = Cg, SO Ty 17401030406 2 Cs. Because e(xr;_11y,a1a3) > 3, this
implies that ayaq ¢ E, for otherwise ajagasas = Py. Then 7(azay, L) < 14+ 2 = 3, so
T1T9 N (L, azaq). But e(x;,azay) > 1, a contradiction. Therefore zoa3 € E.

Since xqa3 € F, e(xi_1x¢,a3) = 0. Suppose that e(xs, L — ays) = 5. If 7(ay, L) = 3, then
x1 — (L, as), so e(x;_124,a5) = 0. Thus e(z;_1, a1aza4a6) = 4 and e(zy, ajasagags) = 3. Since
e(xoxi_1,a6) = 2, x12y » (L, asag), which implies that e(x;, a1a2) < 1 and e(x¢, ajaq) < 1.
Hence z:a1 ¢ E, so e(wy,azasa6) = 3. But then z; — (L,a;) and e(xor;_1,a1) = 2, a
contradiction. So 7(ay4, L) < 2, which implies that x, EN (L,ay). Hence za4 ¢ E, so
e(zy, ayasasag) = 3. Then 7(asag, L) > 4, for otherwise xixo N (L,asag). It is easy
to see that this is a contradiction, because e(xox; 1,asa6a1) > 5 and agas ¢ FE. There-
fore xoaq € E. Since e(xox;_1,a1a0a4a5a¢) > 8, we observe that 7(asag, L) < 4. Since
e(r129, a1azazaq) = 7, this implies that e(xy, asag) = 0. Hence e(x;,aja0a4) = 3, so
vy — (L,asag). Thus e(zoxi_1,a5) < 1 and e(zozy_1,a6) < 1, s0 e(x;_1,a1a2a4) = 3
and e(zozy_1,a5) = e(rawy_1,a6) = 1.

Let L' = zyx9a1a2a3a4. Since x1 - (L, a;) for i = 1,2,4, we have e(as, asag) = 0. Then
T(asae, L) < 4, so 7(L') > 7(L) + 1 because e(z1x2, ajasazay) = 7. Since xqa3 € E, we have
aias € E, for otherwise z; — (L, as). Suppose that 7/(L") < 7'(L). Since 7(as, L) < 1, this

implies that 7/(L') < 1. Then, because e(x1, L') = 4 and e(xy, L') = 5, it must be the case



143

that 7(a;, L') <1 for some i = 1,2, 3,4. Since e(as, zoa1) = 2, i # 3. Similarly, ¢ # 1. Since
e(ag, x1x9) = 2,1 # 2. Hence 7(ay, L") < 1. Since aqxo € F, this implies that e(a4, ajaz) = 0.
But then x5 — (L, as) and e(z124, as) = 2, a contradiction. Thus 7/(L') > 7/(L') + 1.

If e(zo, L — ag) = 5 then e(z122, asazasas) = 6, so 7(agai, L) > 4 because z,a; € E. This
shows that if e(zy, L — ag) = 5, then xo — L. Similarly, if e(zs, L — a5) = 5 then z9 — L.
Therefore, we can use the same argument as in Paragraph 2 from Case 3.2.1.2 to see that
e(xs, D+ L) <6, e(xy, D+ L) <6, and e(asaq, P) < 6. From Paragraph 3 of Case 3.2.1.2,
we see that if xeag € FE, then e(as, D — P) = 0. Further, if zoa6 € F then z; ja5 € E,
SO Z3%4...T4_1a5a6 = P,_1, which by Condition (4.3) implies that e(ag, D — P) = 0 since
T1T9 N (L,asag). Thus if x9a¢ € F, then e(asag, D — P) = 0. Similarly, if z5a5 € E, then
e(asag, D — P) = 0. Therefore e(azag, D + L) < 14. This case is completed using the same

argument as in the last two paragraphs of Case 3.2.1.2.

Case 4: e(zy24, L) = 5. WLOG let e(z1, L) > e(axy, L). Since e(zaoxi—1, L) > 10, 2y — (L, a;)

for at most two a; € L.

Case 4.1: e(z1, L) = 4. We immediately see that N(xy, L) # {a1,a2,as,a5}. If N(zy, L) =

{ai1, as,a4,as}, then e(zoxy_1,asag) < 2, so e(xaw; 1, ajasa4a5) = 8. Then x1 - (L, a;) for
i=1,2,4,5, so 7(agag, L) = 0. But then x;xs N (L,a;a;41) for i = 1,2,4,5, a contradiction
since e(zy, L) > 0. Therefore N(z1, L) = {a1, a9, a3, a4}, so e(xox;_1,asas5a6a;) = 8. Then
T(asag, L) = 0 and 7(agas, L) < 2, S0 x122 N (L,asag) and 129 2 (L, asaz). This implies
that e(x, asasasag) = 0, so e(xy,a1a4) = 1. But then z;_11y N (L,asa3) and zja9 € E, a
contradiction.

Case 4.2: e(xy, L) = 3. We have e(x;, L) = 2, and N(z1, L) # {a1, a3, as}.

Case 4.2.1: N(xy1,L) ={a1,as,as}. Since e(xoxi—1,L —as) > 10 — 1 = 9, we see that

T(ag, L) < 1, 7(as, L) < 1, 7(agas, L) < 2, and 7(asaes, L) < 2. Since 7(ag, L) < 1,
either x, 2, (L,as) or x;_q 2, (L,as), and hence z;a5 ¢ E. Suppose that z,a;5 € FE.
Then, since 7(asas, L) < 2 and e(x1x2,agaiasas) > 5, we observe that zoa6 ¢ E. Then

e(xoxy_1,a1a3a4a5) = 8 and x;_1as € E. Since e(zoxy_1,a4) = 2, x; -+ (L,ay), which
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implies that xa3 ¢ E. Since e(zyxy_1,a1a3a4a5) = 8, 7(ag, L) = 0. Thus, because
e(ry_1, azasasag) = 4 and xa5 € E, we have e(xy, asag) = 0 for otherwise xyx;_q N (L,aras).
Hence e(zy, a1as) = 2, S0 x4 1 2, (L, asas), a contradiction.

Therefore z,;a5 ¢ E. Because e(xoxy_1,a5a6) > 3, x12¢ - (L, asag). Since e(xq, a1a2) = 2,
this implies that e(z;, a1a4) < 1. Similarly, e(zy, asag) < 1. Suppose e(xy, agag) > 1, and
WLOG say zia6 € E. Then e(xy, ajas) = 1. Since 7(asag, L) < 2 and e(z122, ajasagay) > 5,
we have x9ay AnE. Then e(z;_1, L — ag) = 5, so because e(x;, ajasa6) = 2 and 7(ag, L) < 1,
we know that 7(ag, L) = 3, for otherwise z;x;_1 N (L, asaz). Since e(roxy_1,a5) = 2, T124 =
(L,aqas) and x1z; - (L, asas). But either z,agas3xia2012, = Cg or xiagaiziagasx; = Cg, a
contradiction.

Therefore e(xy, agag) = 0, so e(xy, ajaz) = 2. Then z;, — (L, as), and since xjay € E, we
know that z;_1as ¢ E. Because e(xox;_1, L —ay) > 9, T(ajas, L) < 5. WLOG let 7(ay, L) <
2. Then e(zy, L) < 5, for otherwise EN (L,a;) and e(xix,a1) = 2, a contradiction.
Therefore e(z;_1, L — as) = 5, so because e(xx;_1,asasa6a;) = 5, we have 7(asagz, L) > 3.
Similarly, 7(ajag, L) > 3. Since 7(ajag, L) < 5, this implies that 7(aq, L) = 1. We know that
asas ¢ E since e(xax; 1, aga6) > 3, so WLOG let asay € E. Then x7 — (L, a3), so xea3 ¢ E.
Then e(zox;_1,a4a6) = 4, so e(as,araz) = 0. Therefore e(ay,azay) = e(ag,ara6) = 2, so
zrazriasasa;xy = Cg and e(zax4_1,a5) = 2, a contradiction.

Case 4.2.2: N(x1,L) = {ay, as,ay}. We have e(xox;_1, L —ag) > 9, and thus observe that

e(ag,asag) = 0. Then 7(az, L) < 1, 7(as, L) < 2, and 7(ag, L) < 2. We further observe
from Lemma 1.4.10 that 7(asag, L) < 3 and 7(agas, L) < 3. Suppose that e(zy, azag) >
1. Then 7(asags, L) = 3 and e(xy,a1a2a4) < 2, for otherwise xqxy EN (L,asag). Then
T(ag, L) > 3—2=1,s0 21 — (L,as). But e(xaxy_1,a5) > 9 — 7 = 2, a contradiction.
Therefore e(zy, asag) = 0, so e(zy, ajasazay) = 2. Since e(xyx_1,asa¢) > 3, x1x, - (L, asag).
Therefore, since e(x1,ajaza4) = 2 and e(xy, ajasagay) = 2, we see that e(zy, asay) = 2.

Since T(asas, L) < 3 and xay € E, we see that e(xsy,asasasa;) < 3, for otherwise

T1T9 LN (L, asaz). Therefore e(x;_1, L — az) = 5. Suppose that e(x;_1, L) = 6. Then, since
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e(x1xy, asaq) = 4, we know that 7(agay, L) = 6. Then 7(az, L) = 0, so ajaz ¢ E, and
T(ag, L) = 2, 50 v1 = (L,a5). Then z9a5 ¢ F, so e(xox;_1,a6) > 9 — 7 = 2. Thus asa; ¢ E,
so 7(ajag, L) < 1+ 2= 3. But x1a; and e(z;z;_1, asazasas) = 6, a contradiction.

Hence e(x;_1,L) = 5, so x;_1a3 ¢ E. Further, e(zs,asaz) = 2 and e(xq, agasaga;) = 3.
Since e(z1, L—a3) = 3 and x9a3 € E, we have 7(ag, L) > 1. Since e(as, asag) = 0, this implies
that aza; € E. Since e(x; 114, agasagar) = 5 and z1a9 € E, we have 7(agaz, L) = 3. Then
7(ag, L) = 2, and since e(xox;_1,a5a6) > 3 and ajaz € E, we see that e(ay, asag) = 1 and
asay € E. Suppose asag € E. Then z1 — (L, as), so zaa5 ¢ E and hence e(zy, L — as) = 5.
Then 21 - (L, ag), so e(as,ajaz) = 0. Since asas ¢ F, this implies that 7(as, L) = 0. But
e(r129, agaasaz) = 6, SO T1xo LN (L,a4as), a contradiction because z;a4 € E. Therefore
asag ¢ E, so e(ag,agas) = 2. Since asas € E and aja3 € E, x1 — (L,ag). Then e(zy, L —
ag) = 5, so ¥y -+ (L,as). Then 7(ag, L) = 0, so T(asae, L) < 2. Since e(x1xq, ayazaszay) =7,
this implies that 125 - (L, asag).

Let L' = xix9a1a9a3a421. Since T(asag, L) < 2, we know that e(asag, L) < 6. Since
o — (L,as) and a9 € E, we have x3a2 ¢ E, for otherwise x3...x1a003 = Csg. Similarly,
xsay ¢ E. Since L' is a 6-cycle and z3...7;_1a5a6 = P,_1, we see that xzag ¢ E. Similarly,
xzgas ¢ E. Then e(xs, L) < 2, and since e(xy, L) = 2, we have e(xsriasas, L) < 2 +
2+ 6 = 10. Since 7(L') > 7(L) + 3 and x3...x:_1a506 = P;_1, by Condition (4.3) we
know that e(ag, D — P) = 0, and similarly that e(as, D — P) = 0. Since x3...x;_j1as5a¢4
does not contain a large cycle, by Lemma 2.1.4 we have e(asag, P — x129) < 6. Then,
since e(x1xq, asag) = 1, we get e(asag, D) = e(asag, P) < 7. Similarly, e(z3, D — P) = 0
and e(x3, P — x122) < 4, so e(x3, D) < 6. By the maximality of kg and Condition (4.2),
e(zy, D) = e(xy, P) < 4, so e(xzxiasag, D) < 6+ 4+ 7 =17. Then e(xsxiasag, D + L) < 27,
so e(xgwasag, H — L) > 14k — 27 = 14(k — 2) + 1 > 14(ko — 1) + 1, so e(x3zsa5a6, L;) > 15
for some L; € 0. By Condition (4.1) and Lemma 2.2.1, |L;| = 6. By the maximality of ko,
L;+xs...x:+asaq ;é CsUCsg, since L' is a 6-cycle. Therefore, because x3...z; is a path of order

t—2 > 5 and asagr;_1 = K3, by Lemma 3.0.3 it must be the case that L; + x3...7; + asag
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contains a 6-cycle C' with 7(C) > 7(L;) — 1 and a path of order t —2 + 2 = t. But

7(C)+71(L') > 71(L;) =14+ 7(L)+ 3 > 7(L;) + 7(L) + 2, contradicting Condition (4.3).

Case 5: e(xy2y, L) = 4. Since e(zoxt—1, L) > 11, WLOG let e(x9, L) = 6 and e(z;—1, L—ag) =

5. This implies that zy - (L,q;) for i = 1,2,3,4,5, and z; - (L,a;) for i = 1,2,3,4,5.
Therefore, for i = 1 and i = ¢, e(x;, asasag) < 1, e(x;,a1a3) < 1, and e(xy, azas) < 1. Thus
e(x;, L) <3, and if e(x;, L) = 3 then e(x;, a1a5) = 2 and e(x;, asaqsaq) = 1.

Case 5.1: e(x1, L) = 3. From above, we have e(xq,asa4a6) = 1 and e(z1,a1a5) = 2.

By symmetry, either zias € E or xia6 € E. If xja3 € E, then since zia; - (L))
for i = 1,2,3,4,5, 7(a3, L) = 0, (a4, L) < 1, 7(ag, L) < 1, and 7(ay, L) < 2. Thus
T(asay, L) < 1 and 7(agar, L) < 3, so e(xy, azazaga;) = 0 because e(xixe, asagaias) = 7
and e(x1x9, asagasas) = 6. Also, since e(xr1x2, agasaga;) = 6 and 7(agasz, L) < 3, we see that
zias ¢ E. Therefore z,a5 € E, so because e(x1x2, ajasazay) = 6 we must have 7(asag, L) > 4.
But 7(ag, L) < 1, and since agas ¢ E, 7(as, L) < 2, a contradiction. Therefore xiay ¢ FE,
so z1a¢ € E. We observe that 7(as, L) < 2, 7(ag,L) < 2, 7(a1,L) < 1, 7(az, L) < 2,
T(az, L) < 1, and 7(ay,L) = 0. Since e(xix9,asa6a1a2) = 7 and e(x1x9, azasasas) =
6, T1T9 RN (L,a;a;41) for i = 3,1, so e(x;,arazasay) = 0. Then e(zy,asas) = 1, so
e(x1xy,asa6) > 3. But since e(xq, L) = 6, we know that x, EN (L,a;) for i = 5,6, a
contradiction.

Case 5.2: e(xy, L) = 2. First suppose that z1a3 € E. Then e(xy, ajas) = 0, so (z1, asasag) =

1. Suppose that xja6 € E. Since xy - (L, a;) for i # 6, we see that 7(a;, L) < 1 for j =
1,2,4,5. Since e(x19, a;a;11a;420;13) = 6 for i = 3,6, this implies that e(x;, ajasasas) = 0.
Hence e(xy,aszag) = 2. We know that zzay ¢ E, for otherwise zyza3a4a5a601 = Cg and
T3...Ti—1090103 = Csg. By symmetry, e(zs, ajasa4a;) = 0. Also, e(xs3,azag) = 0 because
o — (L,a3), x9 — (L, ag), and e(xy, agag) = 2. Therefore e(xsra4as, L) < 0+24+3+3 =8.
Since g — (L, a3) and z3...x.a3x1 = Py, we know that e(z3, D) = e(x3, P) < 6 by Condition
(4.2) and the maximality of kg. Because x1x9 — (L, a4as), by Lemma 2.1.5 we see that

) 2 .
e(agas, P —x119) < 6. Also, since 129 = (L, agas) and x3...2y1 = P,_3 with e(x;_1, agas) =
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2, we have e(aqas, D — P) = 0 by Condition (4.3). Therefore e(asas, D) < 6 + 2 = 8.
Clearly e(z;, D) < 4 by the maximality of ky and by Condition (4.2), so e(zzziasas, D) <
6 + 4 + 8 = 18. Combining this with the above, we get e(x3zria4as, D + L) < 18 + 8 = 26,
so that e(xsxiasas, H — L) > 14k — 26 > 14(ko — 1) + 2. Hence e(x3za4as, L;) > 15 for
some L; € 0 — {L}. Let L' = zyx9a6a1a0a3z,. Since 1(agas, L) < 2, 7(L') > 7(L) + 2.
Also, e(zy_1,a4a5) = 2 and z3...z; is a path of order ¢t — 2 > 5. Hence by Lemma 3.0.3 we
contradict either the maximality of ky or Condition (4.3).

Therefore x1a6 ¢ E. Since e(x1,asa4a6) = 1, WLOG we can say xjay € E. Since
x1 » (L,aq;) for i # 6, e(ag,azay) = 0 and agas ¢ E. Thus 7(asas, L) < 3, so x1x9 EN
(L,asag) and hence e(zy, asag) = 0. Since e(z1,asa3) = 2 and o N (L,a;) for i = 2,3,
we know that e(xy, azaz) = 0. Hence e(x;,a1a4) = 2, so since z; - (L, a;) for i # 6, we
have e(as,aiag) < 1 and e(ag,aqas) < 1. Since aszas ¢ F and azag ¢ E from above, this
implies that 7(agas, L) < 1+ 1 = 2. Then z;_q2y EN (L,asa3), a contradiction because
e(x1,aza3) > 0. Hence xja3 ¢ E, and since e(z1,aaza5) > 1 we can say WLOG that
ria1 € E.

Case 5.2.1: xja; € E. Since 1 - (L, a;) for i # 6, azag ¢ E and e(az, a4) + e(ag, ag) +

e(ayq,a6) < 1. Also, e(ay,a3) + e(as,ag) < 1 and e(as,as) + e(az, ag) < 1. Suppose that
e(zy, asazay) > 1, and WLOG say e(xy,azaq) > 1. Then, since e(x1xe, asagaias) = 6, we
have 7(asay, L) > 4. This implies that e(as,asa;) = 2 and a4a; € E. Since ajaz € F,
asas ¢ E, so e(ay,aras) = 2.

Suppose a4 € E. Let L' = xyx9a6asa3a;x; and P’ = x3...1,_1x4a4a9. Since T(agay, L) <
4, 7(L") > 7(L). Therefore, by Condition (4.4) we have r(P) > 4, for otherwise r(P’) > r(P)
since asry_1 € E. Since zyxy_1aiaza3a4x; = Cg, we see that e(xy, xy4x5) = 0, because
r1a522x374T5 and x1asagror3x4 are 6-paths. Hence e(xy, vy 324 4) > 1. But 2120000106051 =
Cs, and x1a47;_ 124 0x¢_3x4_4 and xiaga3xs_1 14973 are 6-paths, a contradiction. Therefore
xiay ¢ F, so xa3 € E.

Let L' = xizoa4asasaix1, and P’ = 3.0, 1x10309. Since T(agas, L) < 2+ 2 = 4, we
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see that 7(L') > 7(L). Because xixsasa1a6as5x1 and x;_1xia3a4a1a92 1 are 6-cycles, and
TpA3Tp 14— oTy—3T¢—4 and T1a5T22324x5 are 6-paths, we see that 2,y ¢ F and x125 ¢ E.
Thus, since x;_1a9 € E, we know that r(P") > r(P). Since asay € E, e(ag, azay) = 0, which
means 7(ag, L) = 0 because azag ¢ F. But then 7(L') =1 > 0 = 7/(L), contradicting
Condition (4.5). Hence e(x¢, asasay) = 0.

Since e(wy, azasar) = 2, e(xy,a1a5) = 2, e(r;—1,L — ag) = 5, and e(z2, L) = 6, by
symmetry we can let z,aq € E. If 2,06 € E then ajas ¢ E, for otherwise x; — (L, a2). But
then e(z12,a1) = 2 and zo = (L, a1), a contradiction. Thus a6 & E, so e(zy, ajas) = 2.
Since e(z12,a1as5) = 4 and e(xy, L) = 6, we have 7(ajas, L) = 6. Since e(as, a1a5) = 2,
e(ag, azay) = 0, and thus 7(ag, L) = 0. Then z;_jx; 9, (L,asa¢) and agasriTs...Ty_o =
P, with agzs € E, so r(P) > 4 by Condition (4.4). Because z;—1x: — (L,asa6), and
T1a5T2x324T5 and ryasagra3x4 are 6-paths, we know that e(zy, z425) = 0 by the maximality
of ro. Since zya1xi_ 179wy 3744 is a 6-path and xo — (L,a1), we know that zyxy_4 ¢ F.
Therefore x,x,_3 € E.

Let L' = x;_ja1a2a3a4a57,—1. Since 7(ag, L) = 0 and e(x;—1, L — ag) = 5, we see that
(L") = 7(L) + 3. Since 1 — (L,a¢) and agxs...x; = P;, we have e(ag, D) = e(ag, P) =
e(ag, P — x1) < 4 by Condition (4.2) and the maximality of ky. Since z;_12; — (L, asag),
by Condition (4.2) and the maximality of ky we have e(x;_o, D) = e(x4—9, P) < 6. Since
vy ¢ E and e(xy, z425) = 0, we have e(xi2, D) = e(xy2y, P) < 24 3 = 5. Therefore,
because T(ag, L) = 0 and e(x124, L) = 4, we get e(agr1xiox, D+ L) <6+4+ 1245 =27.
Hence e(agzy24 014, L;) > 15 for some L; € o — {L}. Since L' is a 6-cycle, L;+ P —x; 1 +ag
does not have both a 6-cycle and a large cycle, by the maximality of ky. Therefore, since
Toxs...Ty_3 is a path of order t — 4 > 3, e(xq, x10¢) = 2, and e(x;_3, 1, 27;) = 2, wWe see by
Lemma 3.0.4 that L; + P — x;_1 + ag has a 6-cycle C' with 7(C') > 7(L;) — 2 and a path of
order t — 4 + 4 = t. But this contradicts Condition (4.3), because 7(L") = 7(L) + 3.

Case 5.2.2: xja5 ¢ E. Since e(zy, L) = 2, e(x1,asaqa6) = 1. Suppose that ziay € E.

Since z1 —» (L,a;) for i # 6, e(as,a2a6) = 0, azas ¢ E, and e(ay,as) + e(az,as) <
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1. Then 7(asaq, L) < 3, 7(agas, L) < 3, and 7(az, L) < 2. Since e(z129,a1a2a3a4) =
e(x1x9, asagaiaz) = 6 and e(xq, L — ay) = 5, this implies that e(xy, asagazasas) = 0, a con-
tradiction because e(x;, L) = 2. Therefore z1ao ¢ E, and similarly it is easy to see that
r1a6 ¢ E. Hence x1a4 € E, and e(z1,a1a4) = 2.

Since ¥y - (L,a;) for i # 6, we have 7(asaz, L) < 2 and 7(asas, L) < 3. Since
e(r1x9, ajasazay) = e(r122,asasaga;) = 6, this implies that e(x;, asazasag) = 0. Then
e(xy, a1aq) = 2, so e(xyxy,a1a4) = 4. Then 7(ayay4, L) = 6, for otherwise x, N (L, a;) for
i =1ori=4. Since 1 - (L, ay) and a1a3 € E, we have e(as, azag) = 0. Since z1 - (L, a3)
and aqas € F, we have e(ag, asag) = 0. Hence 7(asaq, L) = 2, 0 x;_114 2 (L, asag) because
e(ry_1xy, L — asag) = 6. Let L' = x;_ 30100030471, Since 7(L') > 7(L) and xy_s...75 is
a P,_3 and e(x2, asag) = 2, by Condition (4.3) we must have e(azag, D — P) = 0. By the
maximality of kg and Lemma 2.1.4, e(asag, P — z4_12;) < 6. Thus, since e(asag, x1) = 0
and e(asag, L) = 4 + 7(asas, L) < 6, we have e(asas, D + L) < 8 +6 = 14. Since
7(L') > 7(L) and x4_s....x0a5a6 = P,_1, by Condition (4.3) e(z;_o, D—P) =0. lf 2, oz, € E
and z1x3 € F, then xix31905060107 = Cg and x,x; o1 _1a0a3a4x; = Cg, a contradiction.
Thus e(z1249,D) = e(x1x; 9, P) < 4+ 6 —1 = 9 by the maximality of ky. Because
12y — (L,asag) and x;_12; — (L, asas3), and because t — 3 > 4 and e(zy, L) = 6, we
see that e(x;_o, asagasasz) = 0 by the maximality of ky. Hence e(zyz; 9, L) <242 =4, so
e(r1xy_9, D+L) < 944 = 13. Therefore e(z124_sa5a6, D+ L) < 27, so e(x12;_sas5a6, L;) > 15
for some L; € 0 — {L}. But 7(L’) > 7(L) + 2, x122...x4_2 is a path of order ¢ —2 > 5, and
e(xq,asag) = 2, contradicting either the maximality of kg or Condition (4.3) via Lemma
3.0.3.

Case 5.3: e(ry, L) = 1. Here e(xy, L) = 3, so because e(zy, asagas) < 1, e(zy,a1a3) < 1,

and e(x;,azas) < 1, we know that e(x;,aja5) = 2 and e(xy, azasag) = 1. By symmetry,
either x;a9 € E or xia6 € E. First suppose that x,ao € E. Since z; - (L, a;) for i # 6,
7(as, L) = 0 and e(ay4, azag) = 0. Then 7(asaq, L) < 1 and 7(asag, L) < 2+1 = 3, so because

e(xy_12y, asagaraz) = e(ry 11y, a1aza3ay) = 6 we know that e(xy, agasasag) = 0. Because
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ajaz ¢ E, we have o 4 (L,ay). Thus z1aq ¢ E, for otherwise e(zy24,a;) = 2. Therefore
zria9 € E, so e(xrixe,asasagas) = 5. Since xpa; € FE, this implies that 7(agai, L) > 3.
Because e(as, ayag) = 0 and agas ¢ E, we know that e(ay, asas) = 2 and agag € E. But then
xy — (L, a3), a contradiction.

Therefore zas ¢ F, so xa6 € E and hence e(wy, asagay) = 3. Since z; - (L, a;) for
i # 6, we observe that 7(asas, L) = 0 and asay ¢ E. Then 7(azay, L) < 0+ 1 = 1,
T(asag, L) <2+ 0 =2, and 7(agar, L) < 0+ 2 = 2. Thus, since e(x;_11;, asagaias) = 6 and
e(Ty_12y, ajagazay) = e(Ty_12y, asazagas) = 5, we know that e(zy, azasasaga;) = 0. But then,

since 7(agaz, L) <140 =1, we have z;_q2; EN (L,asa3) and xjay € E, a contradiction.

Case 6: e(zy24, L) = 3. For each a; € L, we have x; - (L,q;) and z; - (L,a;), be-

cause e(rox¢_1,a;) = 2. Thus e(xy, L) < 2 and e(zy, L) < 2, so WLOG let e(zy,L) = 2
and e(z;, L) = 1. Further, WLOG let zya; € E. Then e(zy,asa5) = 0. Suppose that
e(x1,azas) = 1, and WLOG let zyas € E. Then asay ¢ FE, asas ¢ FE, asas ¢ FE,
and ajas ¢ E. This implies that xjzo 4 (L,azaq), so e(zy,azay) = 0. By symmetry,
e(xt, azag) = 0, so WLOG let x1a; € E. But then e(z124,a1) = 2 and 9 EN (L,ay), a contra-
diction. Therefore e(xy, asas) = 0, so e(x1,a1a4) = 2. Then asag ¢ F and aza; ¢ E. Further,
e(ay, as) + e(ag,as) < 1. Then 7(agas, L) < 3, s0 x1x9 N (L, asa3). Hence e(xy,azaz) = 0,
and by symmetry e(zy, asag) = 0.

Therefore e(x;, ajaq) = 1, so WLOG let zya; € E. Since e(x1x4,a1) = 2 and e(xq, L) = 6,
we see that 7(ay, L) = 3. Since ajaz € F, asas ¢ E and azag ¢ E, and because asag ¢ F
and agas ¢ E, we have 7(asag, L) < 1+ 1 = 2. Therefore xjxs 2, (L,asaq). Let L' =
T1Taaiasazasxy. Since xyxy — (L,asag), P — x1x9 + asag does not have a large cycle.
Thus, because e(z;_1,asa6) = 2, we have e(x3,asas) = 0. By symmetry, e(xs,asaz) = 0.
Since 9 — (L,a1) and xa; € E, we also have x3a; ¢ E. Hence e(z3, L) < 1. Since
xe — (L,a1) and xiay7y...x3 = P,, we have e(x3, D) = e(x3, P) < 6 by Condition (4.2).

Since 7(asaq, L) < 2, e(asag, L) < 2+ 4 = 6. Also, since z129 — (L, asag), by Lemma 2.1.4
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we have e(asag, P—x122) < 6. Since 7(L’) > 7(L), and x3z4...74—1 is a path of order t—3 with
e(xi—1,asag) = 2, we see that e(asag, D — P) = 0 by Condition (4.3). Then e(asag, D+ L) <
8+6 = 14. Since e(xy, D) < 4 and e(x;, L) = 1, we have e(z3za5a6, D+ L) < 7T4+5+14 = 26.
Then e(xszasa6, L;) > 15 for some L; € o — {L}. Since x3...x; is a path of order t —2 > 5
and e(z;_1, asag) = 2, the conditions of Lemma 3.0.3 are satisfied. But this contradicts either

the maximality of ko or Condition (4.3), since 7(L') > 7(L) + 2.
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Chapter 5

Proof of Theorem 2

In this chapter, we prove that if G is a graph of order n > 6k + 6 and 6(G) > %, then G
contains k disjoint cycles covering all the vertices of G such that k — 1 are 6-cycles. The
general strategy of the proof is somewhat similar to that of Theorem 1, except we will be
working with a hamiltonian cycle rather than a path. Also, since we want to cover all the
vertices of G we will be much more interested in |G|, using the following cases: n = 6k + 6,

n =6k + 7, and n > 6k + 8. Lemma 5.1.4 will aid the case n > 6k + 8.

5.1 Lemmas

A graph G of order n is hamiltonian if there is a cycle vyvs . .. v,v; using all the vertices of
G. Such a cycle is called a hamiltonian cycle. A hamiltonian path is a path y19- ...y,

using all the vertices of G.

Lemma 5.1.1 (Ore’s Theorem) Let G be a graph of order n > 3. If e(uv,G) > n for

each pair of nonadjacent vertices u,v € G, then G is hamiltonian.

Proof: Suppose G is not hamiltonian. Among all graphs G’ of order n containing G that are
not hamiltonian, let H be maximal with respect to size. Then clearly, e(uv, H) > e(uv,G) >
n for each pair of nonadjacent vertices u,v € H. Since H is maximal, there is a hamiltonian
path x1zy ...z, in H, and z12,, ¢ E. Then e(xy, 2324 ... Tp 1)+ e(Ty, ToX3 ... Ty o) > N—2,
so e(xy,x;) + e(x,, x;—1) = 2 for some 3 < i <n—1. But then xy2s... 2, 12,201 ... 727 iS

a hamiltonian cycle in H, a contradiction. m

Lemma 5.1.2 Let P = z125... 2, and Q = y1y> ... ym be disjoint paths, n > 3. Suppose
that P + @ does not have a hamiltonian path starting at x1. Then e(z,yi, P) < n, and if

e(xyy1, P) = n then x1y1 € E and e(x,,x;1) + e(yr,z;) = 1 for each i € {2,3,...,n — 1}.
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Proof: Clearly x,y; ¢ E. Also, for eachi € {2,3,...,n—1}, e(x,, z;-1) +e(yr, x;) < 1, for
otherwise x1 ... Z; 1TpTp_1...T;Y1Y2 ... Ym is @ hamiltonian path. The conclusion is therefore

immediate. QO

Lemma 5.1.3 Let P = x125...x, and QQ = y1ys . ..ym be disjoint paths, n > 4. Suppose
that P + @ does not have a hamiltonian path starting at x1, and that e(yy, z;x:1) < 1 for
each i € {1,2,...,n — 1}. If e(x,y1, P) = n and e(yy, P) > 2, then P has a hamiltonian

path 12y ...z, such that y12,_1 € E.

Proof: Let j be maximal such that y;2; € E. By Lemma 5.1.2, we know that z1y, € E,
so y1x2 ¢ E by assumption. Therefore 3 < j < n — 2. Also by assumption we know that
nzj—1 ¢ E, so that x,z; o € E by Lemma 5.1.2. Then x12y...2;_o%pTyp_1...T;T;_1 IS &

hamiltonian path in P, and y,2; € E. O

Lemma 5.1.4 Let G be a graph of order n > 11, and suppose that e(zy,G) > n for each
pair of nonadjacent vertices x and y. Then for each u € G, G has a 6-cycle C such that

G — C has a hamiltonian path starting at u.

Proof: Suppose that the lemma is not true. Let o € G be such that there does not exist

a 6-cycle C such that G — C has a hamiltonian path starting at z.

Case 1: G — z(y does not have a 6-cycle. First suppose that G — zy is hamiltonian, and let

13 ... T, 121 be a hamiltonian cycle in G—xy. Let P = x4x5...x, 1, a path of order n—4 >
7. By Lemma 2.1.8, e(x1x3, P) < n—>5. Hence x1x3 € E, for otherwise x; and z3 are nonadja-
cent vertices with e(z;23, G) = e(z123, xor12973)+e(z123, P) < 4+(n—5) = n—1. This argu-
ment implies that z;z;,0 € E foreachi € {1,2,...,n—1}, mod n—1. Therefore n > 13, since
T1XoT3T5X7x9xy 1S a 6-cycle if n = 11 and x 2924262321071 is a 6-cycle if n = 12. Similarly, it
can be seen that for each x; € G — x¢, we have e(z;, 14, Tirs, ..., Tit10) = 0. For example,
if zoxg € E then wowgrrrsryrsrs is a 6-cycle. Therefore, because xyxs ¢ F,| this implies that

6(1’1‘7;5, G_{‘r()?xl) X2,X3,T4,Ts5,L9, L10, Ill}) Z n_8 But |G—{$0,[E17 .. 7x57x97x107x11}| -
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n —9, so 1 and x5 have a common neighbor outside of G — {xg, z1,...,x5}. Clearly then,
G — x¢ has a 6-cycle, a contradiction.

Thus G—x is not hamiltonian. Since G is hamiltonian, however, G—x( has a hamiltonian
path 125 ... 2, 1. Then 12,1 ¢ E, so e(z12,-1,G) > n. WLOG let e(z1,G) > e(z,-1,G).
Since n > 11, e(x1,G — xy) > 5. Also, since G — xy does not have a 6-cycle, we know that
126 ¢ E. Therefore, x12; € E for some ¢ > 7. Let j be maximal such that z;2; € E, and
let P = x9z3...2;. Then e(zy, zox;) = 2, and since G — x is not hamiltonian, we know that
if z12; € E then x,_1x; 1 ¢ E. By Lemma 2.1.9, we see that e(xyz,_1, P) < j — 1. Then
Jj < n—3, because if j = n—2 then e(z1x,_1,G) = e(x12,_1, P)+e(r12,-1,%0) < (n—3)42 =
n — 1. Hence e(z1,241...2,-2) = 0 by the maximality of j, so e(@p_1,Zj41...Tp_2) >

n—e(r1Tp_1,%0) —e(r12,-1,P) >n—-2—(j—1)=n—j—1>n—j— 2, a contradiction.

Case 2: G — xg has a 6-cycle. Let C be a 6-cycle in G — xg, and choose C such that the

length ¢ of a longest path in G — C' starting at z( is maximal. Under that condition, further
choose C such that 7(C') is maximal. Let P = xox;...2; and C' = ajas...aga;. Since P is
not a hamiltonian path in G — C by assumption, we havet+1 <n—6. Let D =G —-C - P,
and let |[D| = r. Then t = n —7 —r. By Lemma 1.4.17 we know that e(uz;, C') < 8 for
each u € D, for otherwise u — (C,q;) and z;a; € E for some a; € C, contradicting the
maximality of ¢. Furthermore, by Lemma 1.4.18 and the maximality of 7(C) we see that if
e(uzxy, C') = 8 then e(u,C) < 3.

Suppose that t = 0. Then e(zq, D) = 0 by the maximality of ¢. Therefore, for each u € D,
e(uzxy, C) = e(uxgy, G) — e(uxg, D) = n—e(u, D) > n—(r—1) = 8. Since e(uzxg, C') < 8 from
above, this implies that e(uxg,C) = 8 and e(u, D) = r — 1. Hence D = K, and because
n > 11 and |P| = 1, we have r > 4. Thus, for each 2 < s < 4 and for each x,y € D, there
is an  — y path of order s in D. Also, between any two vertices a; and a; in C there is
an a; — a; path of order between 2 and 4. Therefore, for x,y € D, if za; € F and ya; €
and i # j, then C 4+ D — a;, contains a 6-cycle for some k ¢ {i,j}. For any such a, we

see that zpar ¢ E by the maximality of ¢. Since e(zou, C) = 8 for each u € D, this implies
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that e(xg, C') < 5. Because e(u,C') < 3 for each u € D by the preceding paragraph, we have
e(xo,C) = 5 and e(u,C) = 3. WLOG let e(xg,C — ag) = 5. Then u - (C,a;) for each
i=1,2,3,4,5, so e(u,ajas) = 2. Since this applies to each u € D, we see that D + asaga,
contains a 6-cycle, contradicting the maximality of ¢.

Now suppose that ¢ = 1. If uzg € E for some u € D, then e(u,G — C) = 1 by the
maximality of ¢. Clearly e(xy,G — C) =1 as well, so e(ux;,C') > n—2 > 9, a contradiction.
Hence e(xg, D) = 0, so e(uzg, C) = e(uzg, G) —e(uxeg,G—C)>n—(r—1)—1=n—r=_8.
But also e(uzi,C) > 8, which contradicts either the maximality of ¢ or the maximality of
7(C) by Lemma 3.0.1.

Now suppose that t = 2. If ux; € E for some u € D, then by Lemma 1.4.19 we have
e(uxy, C') < 6. Also, e(u, zox2) = e(uxs, D) = 0 by the maximality of ¢. But then e(uzy, G) <
6 + 2 < n, a contradiction. Therefore e(xy, D) =0, so e(uzx;,C) >n—3 —(r—1) =7 for
each u € D. Similarly, e(uxs, C') > 7 for each u € D. Hence by Lemma 3.0.1, for each u € D
we have e(uxqg,C') = 7, which implies that e(uzs, P) > n—(r—1)—7=n—r—6 = 3.
Thus, since e(u, z1x2) = 0 we know that uxy € E and e(u, D) =r — 1. Then D = K,, and
by the maximality of ¢t we see that r = 2. Let u,v € D. There are two paths xquv and
xor12o of order three starting at xy with {u,v} and {x;, x5} disjoint. Since e(v, P) = 1 and
e(x2, D) = 0, we have e(vzy, C') > 11 —4 = 7. But this contradicts either the maximality of
t or the maximality of 7(C') by Lemma 1.4.19.

Therefore t > 3. Let u € D. By Lemma 5.1.2, we see that e(uz;, P) < t+ 1. Then
e(ur;,C)>n—(t+1)—(r—1)=n—t—r =7, and from before we know that e(ux;, C) <
8. Suppose that e(uz;, C') = 8. By Lemma 3.0.1, e(uz;—1,C) < 6. By Lemma 1.4.19,
e(ry—1,D) =0. Thus e(uxy_1, P) >n—6—(r—1) =n—r—5=1t+2. Then e(ux;_1, P—x;) >
t+1, so by Lemma 5.1.2, P—x;+u has a hamiltonian path starting at x5. But this contradicts
Lemma 1.4.19, since e(ux;, C') = 8.

So e(uxy, C) = 7 and e(uxy, P) = t+1. By Lemma 5.1.2 we have uzg € E and e(zy, x;—1)+

e(u,z;) = 1foreach i € {1,2,...,t—1}. Suppose that e(u, P) > 2. Then, by the maximality
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of t and by Lemma 5.1.3, we see that P has a hamiltonian path xyz; ... z; such that uz, | € E.
Thus uz; ¢ FE, so e(uz;,G) > n. By Lemma 5.1.2, e(uz;, P) < t + 1, so e(uz;, C) >
n—(t+1)— (r—1)=7. But this contradicts Lemma 1.4.19, because uz;_; € E.

Hence e(u, P) < 1, and because uxy € F we have e(u, P — xy) = 0. Then e(zy, z;_1) +
e(u,x;) = 1 for each i € {1,2,...,t — 1} implies that x,z; € F for each i € {0,1,...,t — 2}.
Then for each i € {0,1,...,t—2}, xg...x;xx 1 ... 2441 is a path of order t41 starting at xq.
Replacing z; with z;41 in the preceding two paragraphs, we see that for each ¢ € {1,2,... ¢},
that e(uz;, C) = 7 and e(x;, P) = t. Since [xg,x1,..., 2] = K¢y1, as in the case t = 0 we see
that either u — (C, a;) for some a; € C, or G contains a path P’ of order > ¢ + 2 starting at

xo and a 6-cycle C’ such that P’ and C’ are disjoint. This completes the proof. Q

Lemma 5.1.5 Let G be a graph, and let C' = y1ys ... ygy1 be a O6-cycle. Suppose that G and
C are disjoint, and that G + C is not hamiltonian. If there is a hamiltonian path in G from

z; to xj, then e(x;x;,C) < 6. Further,
o Ife(x;,C) =6 then e(z;,C) = 0.
o Ife(x;,C) =05 then e(z;,C) =0.
o If e(x;,C) = 4 then e(x;,C) < 1, and if e(z;,C) = 1 then WLOG N(z;,C) =
{y1,92,u8, 45} and zjys € E.
o If e(x;,C) = 3 then e(x;,C) < 3, and if e(z;,C) = 3 then WLOG N(z;,C) =

N(zj,C) = {y1,3,Ys}-

Proof: For each y;, € C, there is a hamiltonian path in C' from gy, to yg+1. Thus if z;y, € E

then e(x;, yx—1yx+1) = 0. The conclusion is an easy exercise. O
The next lemma is similar, so a proof is omitted.
Lemma 5.1.6 Let G be a graph, and let L = y1ys . ..y7y1 be a 7-cycle. Suppose that G and

L are disjoint, and that G + L is not hamiltonian. If there is a hamiltonian path in G from

z; to xj, then e(x;x;, L) < 7. Further,



157
o Ife(x;,L)>6 then e(z;,L) =0.
o Ife(x;,L) =75 then e(z;, L) < 1.

o Ife(x;, L) =4 then e(z;, L) < 2.

The following two lemmas are immediate consequences of Lemmas 5.1.5 and 5.1.6.

Lemma 5.1.7 Let Cy = x129... 2621 and Cy = Y12 ... ygy1 be disjoint 6-cycles, and sup-
pose that e(Cy,Cy) > 18. Then Cy + Cy is hamiltonian unless e(Cy,Cy) = 18. In that
case, WLOG either N(u,Cs) = {y1,ys,ys} for each uw € Cy, or e(u,C2) = 6 for each

u € {z1, 23,25}

Lemma 5.1.8 Let C| = x125 ... 2621 be a 6-cycle and L be a 7-cycle, with C' and L disjoint.
If e(C,L) > 22, then C' + L is hamiltonian. If e(C,L) > 19 and C + L is not hamiltonian,
then WLOG e(u, L) = 0 for each u € {2, x4, 76}.

Lemma 5.1.9 Let C be a 6-cycle. If 7(C) > 7, then for each pair of vertices x,y € C, there

is a hamiltonian path from x to y.

Proof: Let C' = z129...2¢7x1. Suppose there is no hamiltonian path in C' from x; to z;.
Then ¢ € {3,4,5}, so by symmetry we may assume that i = 3 or i = 4. If i = 3, then
e(zy, x6xy) = 0. Since 7(C) > 7, this implies that xxox5T6r423 is a hamiltonian path, a
contradiction. Hence i = 4. Then xoxs ¢ E and 2316 ¢ E, 80 112226252314 is a hamiltonian

path, a contradiction. 0

Lemma 5.1.10 Let C be a 7-cycle. If 7(C) > 11, then for each pair of vertices x,y € C,

there is a hamiltonian path from x to y.

Proof: Let C = xyxo...2721. Suppose there is no hamiltonian path in C' from z; to
x;. Then i € {3,4,5,6}, so by symmetry we may assume that i = 3 or ¢ = 4. If i = 3,

then e(xq, x724) = 0 and e(xq,x516) < 1. Since 7(C) > 11, this implies that z4a; € E
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and e(x9, v526) = 1. WLOG let xoxs € E. Then xsryz7x62529, is a hamiltonian path, a
contradiction. Hence i = 4. Then z3x; ¢ F, xoxs ¢ E, and if xex; € E then e(xs, x516) =
0. Since 7(C) > 11, this implies that zoz7; ¢ E. Then xszs € E and zox6 € E, so

T4T5T3T2X¢x7x1 1S @ hamiltonian path, a contradiction. 0

The following results are due to Wang ([9],[10]).

Lemma 5.1.11 Let G be a graph of order 6(k + 1) with minimum degree at least 3(k + 1).

Then G contains k 6-cycles and a path of order 6, all of which are disjoint. [10]

Lemma 5.1.12 Suppose that G has a hamiltonian path and that e(zy,G) > n+ s for any
two endvertices of a hamiltonian path of G, where s is nonnegative. Then for any two distinct

vertices u,v € G, e(uv,G) > n+s. [9)

Lemma 5.1.13 Suppose that e(xy, G) > n for every two nonadjacent vertices x and y of
G. Then for any two distinct vertices u and v, G has a hamiltonian path from u to v
unless either {u,v} is a vertex-cut of G or G has an independent set X with |X| > n/2 and

{u,v} CG - X. [9]

5.2  Main Proof

Let G be a graph of order n > 6(k + 1) with minimum degree n/2. Suppose that G does
not contain k disjoint cycles covering all the vertices of G' such that k — 1 are 6-cycles. By
Lemma 5.1.1, G is hamiltonian, so k > 2. Let s = n — 6k. By Lemma 5.1.11, G D kCg U P;.
Since n > 6k 4+ 6, s > 6. Let (Q1,Q2, ..., be the k disjoint cycles, let H = Zle Q;, and
let D = G — H. Then D has a hamiltonian path. Since (); + D is not hamiltonian, we
see by Lemma 5.1.5 that for each i € {1,2,... k} and for any two endvertices u and v of a
hamiltonian path of D we have

e(uv, Q;) < 6. (5.1)
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Hence e(uv, D)

vV
—
|3
—
+
—
|3
—
|
D
\?}7‘
0
o

s+1 ifsisodd
e(uv, D) > (5.2)

s if s is even.

Therefore, by Lemma 5.1.12 we know that (5.2) holds for each pair of distinct vertices

u,v € D. Since s > 6, D is hamiltonian. Choose ()1, Qs, ..., Qr and P, such that

k

ZT(QZ') is maximal. (5.3)

i=1

Lemma 5.2.1 Let s > 8. Then D contains a 6-cycle C' and a hamiltonian path x1xo ... x4 ¢

in D — C such that e(z125_¢, H) > 1.

Proof:  Since G is hamiltonian, e(u, H) > 1 for some u € D. Thus if s > 11, the
lemma is true by Lemma 5.1.4. Therefore, suppose that s < 10. Since D is hamiltonian,
we see by (5.2) and Lemma 2.1.8 that D contains a 6-cycle C. Choose a 6-cycle C' such
that the length of a longest path P in D — C' is maximal, and from among all such pairs
C' and P choose one such that 7(C) is maximal. We note that since s < 10 and k > 2,
e(uv,H) > 6k +s—2(s —1) = 6k — s+ 1 > 1 for each u,v € D, so we have only left to
prove that P is a hamiltonian path in D — C.

If s = 8 then |P| = 2 by Lemma 1.4.18 and the maximality of 7(C). If s = 9 then
e(uv, D) > 10 for each u,v € D, so P is hamiltonian by Lemma 1.4.17. Thus we are left
with s = 10. It is clear by Lemma 1.4.17 that |P| > 2, and then by Lemma 1.4.18 that

|P| > 3. Finally, |P| = 4 by Lemma 3.0.1. )

We use three cases to complete the proof of Theorem 2.

Case 1: s > 8.
By Lemma 5.2.1, choose a 6-cycle @' and vertex u from D such that e(u, H) > 1 and u

is an endvertex of a hamiltonian path in D — Q’. WLOG let e(u,Q;) > 1, and denote ¢
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by Q. If possible, further choose Q" such that

D — @' does not have a vertex-cut of D with order 2. (5.4)

Let D' = D — Q' + Q. Since D — () has a hamiltonian path starting at u, and because
e(u,@) > 1, D' must have a hamiltonian path. Also, for each i € {1,2,...,k} we know that
D" + @Q; is not hamiltonian. Thus, as above we see that (5.2) holds for each pair of distinct

vertices u,v € D’. Hence D’ is hamiltonian.

Claim: There are independent edges z1y; and oy, with y1, 1y, € Q, between Q and D' — Q

such that () has a hamiltonian path from y; to ys.

Proof: Suppose not. Since D’ — @ has at least eight vertices and D’ is hamiltonian, there are
independent edges between D' — @) and (). Let L be a hamiltonian cycle in D’. Then there
must be an even number of edges from L between () and D' — (), and because there are no
such edges z1y; and zoys, there must be at least four edges from L between ) and D' — Q).

Let Q = ajay...agaq, and let P = biby...bs, t > 2, be a hamiltonian path in D' — Q.
Then for at least four a; € @, there is an edge of L that is incident with a;. WLOG let
a; and ao be two such vertices. Since there is a hamiltonian path in ) from a; to as,
we have e(ajas, P) = 2, and WLOG e(ajaq,b1) = 2 with ajbjay € L. Since there is a
hamiltonian path in @ from a; to ag, there can be no edge from L between () and P that
is incident with ag. Similarly, there is no such edge incident with az. Then e(ay4, P) > 1
and e(as, P) > 1, so e(aqas, P) = e(aqas,b;) = 2 for some b; € P — by, with asb;as C L.
Since e(ajag, by) = e(agas, b;) = 2, we have e(azag, P) = 0, and hence that t = 2 since D' is
hamiltonian.

Since (5.2) holds for D', we have e(D’, D’) > 8(4) = 32. Then, because e(Q, P) = 4 and
e(P, P) = 2, this implies that e(Q, Q) > 32 — 2(4) — 2 = 22. Hence 7(Q) > 5. But then

for some j € {1,2} and some [ € {4,5}, there is a hamiltonian path in @ from a; to a;, a
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contradiction.
QED

By the claim, there is no hamiltonian path in D from x; to x4, for otherwise D+ Q) would
be hamiltonian. Let X = {z,22}. By Lemma 5.1.13, either X is a vertex-cut of D or D
has an independent set Y such that |Y| > J and X € D - Y.

First suppose that X is a vertex-cut of D. If there is a component U of D — X with
at most % vertices, then |U| = 1, for otherwise there is uj,us € U with e(ujug, D) =
e(urug, X) +e(urus, U) <442 (25°) = s —1, contradicting (5.2). In this case, let U = {u'}.
By (5.2), e(u'z,D) > s for each x € D — 4/, so e(v,x122) = 2 and e(x, D) > s — 2. This
implies that D—u' = K,_,. If there is no such component U, then D—X = K,_9),2UK (5_2) /2,
and e(x1xq,x) = 2 for each x € D — X.

Either way we see that D — X has two components, U; and U, such that x; and x5 are
adjacent to each vertex in D — X. Further, both U; and U, are complete graphs. WLOG
let |Uy] > |Us|. Since x1,z9 € D', neither x; nor xy are in Q. Thus @ € D — X, so
|Uy| > 6. Therefore, let u; € Uy, and let Q" be a 6-cycle in Uy —u; + 27 with z; € Q”. Then,
since x; and x, are adjacent to each vertex in D — X, there is a vertex uy € U, such that
there is a hamiltonian path in D — Q" from wu; to us. Since e(ujug, D) = s, we know that
e(ujug, H) > 6k, and hence that e(ujug, Q;) > 1 for some @; € H. Because U; and U, are
complete graphs and z; € Q”, and because x5 is adjacent to every vertex in D — X, we see
that D — Q" does not have a vertex-cut of D with order 2. But this contradicts (5.4), since
X C D — (@ is a vertex-cut of D.

Therefore, D has an independent set Y such that |[Y| > J and X € D —Y. Since YV’
is independent, by (5.2) we see that |D — Y| = |Y| = 3, and that D contains a complete
bipartite subgraph with (D — Y,Y) as its bipartition. Let y € Y. Since e(y,D) = 3,
e(y, H) > 3k, so e(y,Q;) > 3 for some @Q; € H. We may assume that Q; = @, as the only
condition on () was that e(Q,D) > 1. Let Q = 2z122...26%1, where y; = z; and yo = 2.

Since D contains K32 and X € D — Y, there is a hamiltonian path in D from y to
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and from y to z,. From before, we know that there is a hamiltonian path in @) from z; to z.
Since e(y, Q) > 3, there is z,, € @ such that yz,, € Fandm € {j,k,j—1,j+1,k—1,k+1},
a set of order at least four. Hence, WLOG there is a hamiltonian path in @ from z,, to y;.
But z1y; € E and there is a hamiltonian path in D from y to x;, which means that D + @
is hamiltonian, a contradiction.

Case 2: s = 6. In this case, n = 6(k + 1) and G contains k + 1 disjoint 6-cycles. Label the
6-cycles Q1,Qs, ..., Qri1-

Suppose that for each pair of 6-cycles ); and @; in G, we have e(Q);,Q;) = 18. Let
Q1 = m2y...76. By Lemma 5.1.7, WLOG we may assume that e(u,Qs) = 6 for each
u € {x1, 23, x5}. Since e(xox476, Q1 + Q2) < 15+ 0 = 15, we know that e(zoz4x6, G — Q1 —
Q2) > 9k +9 —15=9(k — 1) + 3. Hence e(zoz4x6,Q;) > 10 for some Q; € G — Q1 — Q.
WLOG let e(zoz4z6,Q3) > 10. By Lemma 5.1.7, this implies that e(zyz4x6,Q3) = 18.
Let Q2 = y1ya...ysy1 and Q3 = 2129...2621. Again by Lemma 5.1.7, we may assume
WLOG that e(u, Q3) = 6 for each u € {y1,ys,ys}. But then z1y1y0m122222; is a 6-cycle and
23242526Y3Y4Ys Y6 T3T4T5T623 1S a 12-cycle, so G contains (k — 1)Cg U Co, a contradiction.

Therefore e(Q;, Q;) # 18 for some pair of 6-cycles @); and (); in G. By Lemma 5.1.7,
this implies that e(Q;, Q;) < 17. WLOG let e(Q1,Q2) < 17. Since e(Q4,Q;) < 18 for each
i # 1, we have e(Q1,Q1) > 18(k+ 1) — 18(k — 1) — 17 =19. Thus 7(Q1) > 4, and similarly
T(Q2) > 4.

We now claim that for each 6-cycle @; such that e(Q1,Q;) = 18, e(u,Q;) = 3 for each
u € Q1. Suppose not. By Lemma 5.1.7, we may assume that e(u,@Q);) = 6 for each u €
{z1, 23, 25}. Then for each pair of vertices x;, x), € {x1, 3,25}, there is no hamiltonian path
in ¢y from z; to x; by Lemma 5.1.5. Then zox4 ¢ E, xo26 ¢ E, and x426 ¢ E. Also, since
e(xazyws, Qi) = 0, for each pair of vertices x;, vy, € {22, x4, x4} we have e(z;z4, G—Q1—Q;) >
6(k+1)—10=6(k—1)+ 2, so e(z;x), Qm) > 7 for some @, € G — Q1 — Q;. By Lemma
5.1.5, there is no hamiltonian path in @; from z; to z;. Hence z123 ¢ E, 125 ¢ E, and

xsrs ¢ E. But then 7(Q1) < 3, a contradiction. Thus the claim is true, and holds for Q5 as
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well since 7(Q2) > 4.

Suppose that for each i € {3,4,...,k+1}, e(Q1, Qi) = e(Q2, Q;) = 18. By the claim in the
previous paragraph, we have e(u, Q;) = 3 for each u € Q1+ Q2 and each i € {3,4,... k+1}.
Then for each u € Q1 + Qa, e(u, Q1 + Q2) > 3k +3 —3(k — 1) = 6. But then Q; + Q3 is
hamiltonian, a contradiction. Therefore, WLOG e(Qs, Q;) < 17 forsomei € {3,4,... k+1}.
Then e(Qa, Q1 + Q2) > 18(k + 1) — 18(k — 2) — 17 = 37. Similarly, e(Q1, Q1 + Q1) > 36.
WLOG let

e(y1, Q1) > e(yj, Q1) for each y; € Q- (5.5)

We break the remainder of the proof into cases. Note that since 7(Q2) < 9, we have
e(Q1,Q2) >37—-30="1.

Case 2.1: e(y1,®Q1) > 5. By Lemma 5.1.5, e(y2ys, @1) = 0. Then there is no hamiltonian

path in Q2 from s to yg, for otherwise e(yoy6, G) < 6(k—1)+10 < 6(k+1) by Lemma 5.1.5,
a contradiction. This implies that e(yy,y3y5) = 0. Also, since e(ysysys, Q1) > 7—6 = 1,
by Lemma 5.1.5 we see that for some i € {3,4,5} there is no hamiltonian path in @5
from y; to y;. Combining this with the fact that e(y,ysys) = 0 we get 7(Q2) < 5, so
e(Q2,Q1) > 37 — 22 = 15. Hence e(ysysys,@1) > 9, so by Lemma 5.1.5 we have that
e(ys, Q1) > 1 and e(ys, Q1) > 1, and therefore also that there is neither a hamiltonian path
in @ from y; to y3, nor a hamiltonian path from y; to ys. Thus e(ys, y4y6) = 0 and yay6 ¢ E,
so T(Qa) = 4 with y3ys € E. Since ysys € E, there is a hamiltonian path in @, from y,
t0 Y4, S0 €(y2ys, G — Q1 — @Q2) < 6(k — 1). Then e(yoys, Q1 + Q2) > 12. Since 7(Q2) = 4,
e(Q1,Q2) > 37 — 20 = 17 and therefore e(ysysys, Q1) > 11. Thus e(yy, Q1) < 1 by Lemma
5.1.5. Since e(yq, (1) = 0, this implies that e(yoys, Q2) > 12 — 1 = 11. This is clearly
impossible, which completes the case.

Case 2.2: e(y1,@Q1) = 4. Suppose that e(yays, @1) = 0. Then e(yays, G — Q1 — Q2) >

6k +6 — 10 = 6(k — 1) + 2, so by Lemma 5.1.5 there is no hamiltonian path in @, from

Y2 to yg. Thus e(y1,ysys) = 0, so 7(Q2) < 7 and e(Q1,Q2) > 11. Then e(ysysys, Q1) > 7,

so e(ys,@1) > 1 and e(y5,@1) > 1 by Lemma 5.1.5. If there is no hamiltonian path
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to y3 and no hamiltonian path from y; to ys, then e(ys,ysys) = 0 and y4y6 ¢ E. Then
7(Q2) = 4, so e(ysyays, Q1) > 37 — 20 — 4 = 13, contradicting Lemma 5.1.5. Otherwise,
by Lemma 5.1.5 we see that N(y;,Q1) = {x1, 2, 23,25}, and that for some i € {3,5},
e(y;, Q1) = 1 with y;25 € E. WLOG let e(ys, Q1) = 1 with yzx5 € E. Then e(yqys, Q1) = 6.
It is easy to see from Lemma 5.1.5 that e(ys, Q1) < 3, so e(ys,@1) > 3 and thus there
is no hamiltonian path from y; to y5. Then e(yg, y2ys) = 0, so 7(Q2) < 5 and therefore
e(yays, Q1) > 37 — 22 — 4 — 1 = 10, again contradicting Lemma 5.1.5.

Therefore e(yays, Q1) > 0. WLOG let e(ys, @1) > 0. By Lemma 5.1.5 we see that
e(yr, r1raz3xs) = 4, and e(yq, Q1) = 1 with yozs € E. Then for each i € {1,2,3}, there
is no hamiltonian path in @; from x5 to z;. This implies that 7(xg, Q1) = T(v4,@Q1) =
0, so 7(Q1) = 4. Hence e(Q1,Q2) > 36 — 20 = 16. Since e(y1y2y6, Q1) < 6, we have
e(ysyays, @1) > 10. This implies that e(ys, Q1) = 0 by Lemma 5.1.5. Then e(ysys, Q1) > 10,
and since yox5 € E we see that e(ys, Q1) = 6 and e(ys, r1297375) = 4. But then e(ys, Q1) = 0,
soe(Q1,Q2) <6+4+4+1=15< 16, a contradiction.

Case 2.3: e(y1,@Q1) = 3. Note that since e(Q1,Q2) > 7, we have e(Q,Qs) > 12 by

Lemma 5.1.9, for otherwise 7(Q1) > 7 and 7(Q2) > 7.

Suppose that e(yays, Q1) < 2. If there is a hamiltonian path in @y from y, to yg, then
e(yays, Q1 + Q2) > 12, so 7(y2, Q2) = 7(ys, Q2) = 3. Then for each i € {2,3,4,5,6}, there
is a hamiltonian path in Qs from y; to y;. Since e(Q1,Q2) > 12, we have e(ysysys, Q1) >
12 — 5 =7. Then WLOG e(y;, x12325) = 3 and e(Q2 — y1, vox426) = 0. Therefore, because
e(r1z3w5, Q2) = 0 we see that for each x;, x; € {1, x3, 25}, e(x;x;, Q1 + Q2) < 10. Then by
Lemma 5.1.5 there is no hamiltonian path in @1 from z; to z;, so xox6 ¢ E, xoxy ¢ E, and
xyxg ¢ E. Also, because e(y1, z12375) = 3 and e(y3ysys, x1x3x5) > 7, we similarly see that
rz3 ¢ E, x125 ¢ E, and z3z5 ¢ E. But then 7(Q1) < 3, a contradiction. Thus there is no
hamiltonian path in @)y from y, to yg, so e(y1, ysys) = 0. Since e(y;, Q1) < 3 for each y; € Qa,
and e(yays, @1) < 2, we have e(Q2, Q1) < 14. Then 7(Q2) > 6, so for each y; € Q5 there is a

y1 — y; hamiltonian path. As in the last paragraph we see that 7(Q1) < 3, a contradiction.
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Therefore e(yays, Q1) > 3, which implies that WLOG e(y;, x12325) = 3 and e(yays, Tor426) =

0. Since e(yays, T12375) > 3, for each z;,x; € {x1, 23,25} there is no hamiltonian path in
(1 from z; to z;. Then zoxy ¢ E, oz ¢ E, and x406 ¢ E. Hence either z123 € E,
1125 € E, or x3x5 € E, so WLOG there is a hamiltonian path in (); from x5 to 4. Then
e(razy, @1 + Q2) > 12, and because 7(x;, Q1) < 3 for each i € {2,4,6}, this implies that
e(xoxy,Qa) > 6. But then e(zozy, ysysys) > 6, so clearly Q1 + (2 is hamiltonian, a contra-
diction.

Case 2.4: e(y1,@Q1) = 2. As noted in the previous case e(Q1,Q2) > 12, so e(y;, Q1) = 2

for each y; € Q5. Further e(Qq, Q2) > 37— 12 = 25, 80 7(Q2) > 7. If e(y1, x122) = 2 then by
Lemma 5.1.9 e(Q2—1y1, xex12223) = 0, 80 e(Q2—1y1, x4x5) = 10. Then Q1+ Q) is hamiltonian,
a contradiction. If e(y;, z124) = 2, then similarly we have e(Qs — y1,x124) = 10. But then
e(xaxs, Q1 + Q2) < 10, so e(zax3, Q;) > 7 for some @Q); € G — Q1, contradicting Lemma 5.1.5.
Then WLOG e(y;, z123) = 2, and so e(Q2 — y1, x1x325) = 10 by Lemma 5.1.9. Clearly, there
is no hamiltonian path in @; from z; to x3, so e(xq,x4x6) = 0. Since 7(Q1) > 6, either
1123 € B, 11705 € E, or 305 € E. Therefore, WLOG there is a hamiltonian path in ); from

x9 to x4. This clearly contradicts Lemma 5.1.5, since e(xoxy, Q1) = 0.

Case 3: s =7. By (5.2), e(uv, D) > 8 for each u,v € D. Hence for each x € D, D — x is

hamiltonian. Let L = aqas . ..ara; be a hamiltonian cycle in D. WLOG let

7(ay, L) < 7(a;, L) for each a; € L. (5.6)

Suppose that 7(L) > 11. Let L’ be a hamiltonian cycle in D —ay. Then 7(L’) > 7. Since
e(ay, L) < 6, we have e(a;, H) > 3k +4—6 > 1, so e(ay,Q;) > 1 for some @Q; € H. WLOG
let e(a, Q1) > 1. Then Q1 + a; has a hamiltonian path, and hence is hamiltonian by (5.2).
This implies that 7(Q1) > 7 by (5.3). Hence we see from Lemmas 5.1.9 and 5.1.10 that there
are no independent edges between (); and D. Because @)1 + a; is hamiltonian, e(ai, Q1) > 2,

so e(a;, Q1) = 0 for each ¢ # 1. Then e(D, Q) < 6, and by Lemma 5.1.8 e(D, @Q;) < 21 for
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each i # 1. Thus e(D, D) > 21k 4+ 28 — 21(k — 1) — 6 = 43 > 42, a contradiction. Therefore
7(L) < 10.

Suppose that there is Q; € H such that e(D, @Q;) > 19, and WLOG let e(D, Q) > 19. Let
Q1 = 7122 ... z¢x1. By Lemma 5.1.8, WLOG we have e(u, D) = 0 for each u € {9, x4, x4}
Then clearly, for each pair of vertices x;,x; € {x1,x3, x5} there is no hamiltonian path in
(1 from x; to z;. Hence xoxy ¢ E, xow6 ¢ E, and wqx¢ ¢ E. Then e(wory,Q;) > 7
for some ); € H — ();. Thus, if there is a hamiltonian path in ) from x5 to x4, then
@1 + Q; has a hamiltonian cycle C such that at least two of x1, x3, x5 are consecutive on C.
Since e(D, z1x3x5) > 19, there is u € D such that e(u, x;x325) = 3. Then Q1 + Q; + u is
hamiltonian, a contradiction because D — wu is hamiltonian.

Hence there is no hamiltonian path in (); from x5 to x4, and similarly no such x5 —x¢ path
nor x4y — xg path. Then zy23 ¢ E, 125 ¢ E, and z3x5 ¢ E, so 7(Q1) < 3. Since 7(L) < 10
we know that 7(ay, L) < 2 by (5.6). Let L’ be a hamiltonian cycle in D — a;. Then
7(L') > 7(L) — 3 since 7(ay, L) < 2. Because e(D, x1x3w5) > 19, e(a1,@Q1) > 1, so Q1 + a1
is hamiltonian is hamiltonian by (5.1). Thus by (5.3) we see that 7(L') < 3, so 7(L) < 6
and hence e(D, D) < 26. Then by Lemma 5.1.8 we have e¢(D,G) < 26 + 21k < 7(4 + 3k), a
contradiction.

So e(D,Q;) < 18 for each Q; € H, and since 7(L) < 10 we have e(D,G) < 18k + 34.
Therefore, because e(D,G) > 21k + 28 we have k = 2, e(D,Q;1) = e(D,Q2) = 18, and
e(D,D) = 34.

Suppose that 1 + Q)2 is hamiltonian, and WLOG let ) = z125 ... 26YsYys5 - .. Y121 be a
hamiltonian cycle in Q)1 + (2. For each u € D, we know that )1 + Q2 + v is not hamiltonian
because D — w is hamiltonian. Then for each u € D, e(u,@Qy) < 3 and e(u,Q2) < 3.
Since 7(L) < 10, we know that 7(ai,L) < 2 by (5.6), so (a1,Q1) = e(a,@2) = 3 and
7(a1, L) = 2. WLOG let e(ay, z12325y2y4ys) = 6. Then for each = € {x3, x5, y2.y4, Y6},
there is no hamiltonian path in @; + @) from z; to . Hence e(yi, zox4z6y3ys) = 0, so

e(yy, D) > 10 — 6 = 4. Since e(ay, Y2y1ys) = 3 and Q2 + D is not hamiltonian, we know that
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e(azar, y1ysys) = 0. Because y1a; ¢ E and (yi, D) > 4, this implies that e(y1, asasasag) =
4. Therefore e(yays, azar) = 0, so e(asar, Q2) = e(asar,ys) < 2. By symmetry in the
hamiltonian cycle @, we see that e(asar, Q1) = e(asar,x5) < 2. But then e(asay, D) >
20 — 4 = 16, a contradiction.

Therefore )1 + (2 is not hamiltonian, so by Lemma 5.1.7 e(Q1,Q2) < 18. Then
e(Q1, Q1) > 60 —2(18) = 24, and similarly e(Q2, Q2) > 24. Then 7(Q1) > 6 and 7(Q2) > 6.
Relabel L as L = vyvy...v7v1, and suppose e(v;, Q1) = 6 for some v; € L. WLOG let
e(v1, Q1) = 6.

Since L + () is not hamiltonian, we have e(vqv7, Q1) = 0. Hence e(vzvgvsvg, Q1) > 12, so
e(vsvy, Q1) = e(vsvg, Q1) = 6 by Lemma 5.1.5. Suppose that there is no hamiltonian path
in L from vy to vs. Then e(ve,vqv7) = 0 and e(vq, v5v6) < 1, so since 7(L) = 10 we have
7(v7, L) > 2. Hence there is a hamiltonian path in L from v; to vg, so e(vg, Q1) = 0. Then
e(vs, 1) = 6, so there is no hamiltonian path in L from v; to vs. Hence vyv; ¢ E and
vovg ¢ E, so since e(ve, vqv7) = 0 and 7(L) = 10 we know that vevs € E and vyvs € E. But
then v1v7vgv4V5v9v3 is a hamiltonian path from v; to vs, a contradiction.

Thus there is a hamiltonian path in L from v; to vs, so e(vs, Q1) = 0. Then e(vy, Q1) = 6,
so there is no hamiltonian path from v; to vy. Hence vovs ¢ E| vsv; ¢ E, and either vov; ¢ E
or v3vs ¢ E. Then vyvg € E or vgv; € E, so there is a hamiltonian path from v; to vs. Thus
e(vs,@1) = 0 and e(vg,@1) = 6. Then there is no hamiltonian path from v; to vg, so
e(vr7,v9v5) = 0. Since vovs ¢ E and vgvy ¢ E, and because 7(L) = 10, this implies that
v3vs € E and vvg € E. But then v vsvzvavgvrvy is a hamiltonian path from v to vy, a
contradiction.

Then there is no v; € L with e(v;,Q1) = 6. Since e(L, Q) = 18, there is v;,v;41 €
L such that e(v;vi41,Q1) > 6. WLOG let e(vjve,@Qq) = 6. By Lemma 5.1.5, we have
e(vy,@1) = e(vy, Q1) = 3, and WLOG e(vyvy, z12325) = 6. Since there is no hamiltonian
path from x; to x3 and no hamiltonian path from z; to z5, we know that e(zy, z426) = 0 and

zyve ¢ E. Then e(z1, z3x5) = 2 and z3x5 € E since 7((Q)1) > 6. Then there is a hamiltonian
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path in Q; from x5 to x4, so e(xax4,(Q2) < 6 by Lemma 5.1.5. Since e(xs, z426) = 0 and
ryxe ¢ E, we also know that e(zyz4, Q1) < 6. Hence e(xoxy, D) > 20 — 12 = 8, and because
e(v1vy, Toxyx6) = 0 we have e(zaxy, v304050607) > 8. Thus e(xory, v3v7) > 1, a contradiction

because e(v1vq, x12375) = 6 and (1 + Q2 is not hamiltonian.
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Appendix A: Lemmas 1.4.6-1.4.14

Appendix A.1: Lemma 1.4.6
1. N(u,C) = {vy,v9,v3,04}.
a) u— (C,vq9) and u — (C,v3).
¢) If u - (C, vs) then e(vs, vavs) — 0.

e) If u—-» (C,vg) then 7(vs,C) = 0.

o

N(u,C) = {vq, v3, 04, v5}.
a) u— (C,vs) and u — (C,vy).
c) If u-» (C,vs) then e(vg, v3v4) = 0.

e) If u —» (C,v;) then 7(vg,C) = 0.

@

N(u,C) = {vs, vy, v5, 06}
a) u— (C,vy) and u — (C,v3).
c) If u—-» (C,vg) then e(vy, v4v5) = 0.

e) If u—=» (C,vq) then 7(vy,C) = 0.

a

N(“a C) = {U47 Vs, Ug, Ul}-
a) u— (C,vs) and u — (C, vg).
¢) If u—» (C,v;) then e(vq, vsv) = 0.

e) If u - (C,v3) then 7(vqe, C') = 0.

ot

N(u,C) = {vs, vg, v1, vz}
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b) If u - (C,v;) then e(vg, vov3) = 0.

d) If u = (C,vs) then 7(vg, C') = 0.

b) If u - (C,vs) then e(vy,v3v4) = 0.

d) If u—=» (C,vg) then 7(vy,C) = 0.

b) If u - (C,v3) then e(vqy, v4vs) = 0.

d) If u - (C,vy) then 7(vqe,C) = 0.

b) If u = (C,vy) then e(vs, vsvg) = 0.

d) If u - (C,vs) then 7(vs,C) = 0.
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a) u— (C,vs) and u — (C,vy). b) If u - (C,v5) then e(vy, vgv1) = 0.
c) If u = (C,vq) then e(vs, vgvy) = 0. d) If u = (C,v3) then 7(vy,C) = 0.
e) If u » (C,vy) then 7(v3,C) = 0.

6. N(u,C) = {vs,v1,v2,v3}.
a) u— (C,vy) and u — (C,vq). b) If u = (C,vg) then e(vs,viv9) = 0.
c) If u —» (C,v3) then e(vy, v1v2) = 0. d) If u - (C,vy) then 7(vs5, C) = 0.

e) If u - (C,v5) then 7(vy4,C) = 0.

Appendix A.2: Lemma 1.4.7
1. N(u,C) = {vy,vq,v3,05}.
a) u— (C,v9), u — (C,vy), and u — (C, vg).
b) If u - (C,v;) then e(vg, vovy) = 0.
c) If u-» (C,v3) then e(vy, vovg) = 0.
d) If u - (C,vs5) then vyvg ¢ E and e(vy, v4vg) < 1.
2. N(u,C) = {vq, v3,v4, 06}
a) u— (C,v3), u— (C,vs), and u — (C,v7).
b) If u - (C,vq) then e(vy, vzv;) = 0.
c) If u —» (C,vy) then e(vs,vzvy) = 0.

d) If u = (C,vg) then vsv; ¢ E and e(vs, vsv1) < 1

3. N(U, C) - {U37U47U57U1}‘
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a) u— (C,vy), u— (C,v5), and u — (C,vq).

b) If u - (C,v3) then e(vq, v4vg) = 0.

c) If u = (C,v;) then e(vg, v4vy) = 0.

d) If u = (C,vy) then vguy ¢ E and e(vy, vgvs) < 1.
4. N(u,C) = {vy,vs,vq, 2}

a) u— (C,vs), u — (C,vq), and u — (C,v3).

b) If u - (C,vy) then e(vs,vsv1) = 0.

c) If u = (C,vg) then e(vy, vsv3) = 0.

d) If u - (C,v) then vivy ¢ E and e(vs, viv3) < 1.
5. N(u,C) = {vs,vg, v1,v3}.

a) u— (C,vg), u— (C,vq), and u — (C,vy).

b) If u - (C,vs) then e(vy, vgv2) = 0.

¢) If u —» (C,v;) then e(vqy, vgvy) = 0.

d) If u - (C,v3) then vovy ¢ E and e(vg, vovg) < 1.
6. N(u,C) = {vg,v1,V2,04}.

a) u— (Cyvy), u— (C,v3), and u — (C,vs).

b) If u = (C,vg) then e(vs,viv3) = 0.

c) If u—» (C,vy) then e(vs, v1v5) = 0.

d) If u = (C,vy) then vzvs ¢ E and e(vy,v3v5) < 1
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Appendix A.3: Lemma 1.4.8
In this Lemma, the cases j = 1,2, 3, are the same as j = 4,5, 6, respectively.
1. N(u,C) = {vy,vq,v4,05}.
a) u— (C,vs) and u — (C, vg).
b) If u - (C,vy) or u = (C,vs), then 7(vg,C) = 0.
c) If u—=» (C,vy) or u—= (C,vy), then 7(v3,C) = 0.
2. N(u,C) = {vy,v3,vs5, 06}
a) u— (C,vy) and u — (C,vy).
b) If u - (C,vy) or u = (C,vg), then 7(vy,C) = 0.
¢) If u—» (C,v3) or u = (C,vs), then 7(vy,C) = 0.
3. N(u,C) = {vs,v4,vg,v1}.
a) u— (C,vs) and u — (C,vy).
b) If u - (C,v3) or u -+ (C,vy), then 7(ve,C) = 0.

c) If u-» (C,vy) or u—=» (C,vg), then 7(vs, C') = 0.

Appendix A.4: Lemma 1.4.9
1. N(u,C) = {vy,v2,v3}.
a) u— (C,vg). b) If u - (C,v;) then vovg ¢ E.
c) If u—» (C,v3) then vouy ¢ E. d) If u - (C,v4) then e(vs, vov3) = 0.
e) If u-» (C,vs) then vyvg ¢ E and e(vq, v4v6) < 1.

f) If u—» (C,vg) then e(vs,viv9) = 0.
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2. N(u,C) = {va, v3,04}.
a) u— (C,v3). b) If u - (C,vs) then vzv; ¢ E.
c) If u—» (C,vy) then vzvs ¢ E. d) If u = (C,v;) then e(vg, v3v4) = 0.
e) If u—» (C,vg) then vsv; ¢ E and e(vs, vsv1) < 1.
f) If u = (C,vy) then e(vg, vov3) = 0.
3. N(u,C) = {vs,vg,v5}.
a) u— (C,vy). b) If u - (C,v3) then vyvy ¢ E.
c) If u-» (C,vs) then vyvg ¢ E. d) If u = (C,vg) then e(vy, v4v5) = 0.
e) If u —» (C,vy) then vgvy ¢ E and e(vy, vgve) < 1.
f) If u -+ (C,vq) then e(vy,vzvy) = 0.
4. N(u,C) = {vy, vs,v6}.
a) u— (C,vs). b) If u = (C,vy) then vsvs ¢ E.
c) If u—=» (C,vg) then vsvy ¢ E. d) If u - (C,vy) then e(vq, v5v6) = 0.
e) If u—» (C,vq) then vyv3 ¢ E and e(vs, v1v3) < 1.
f) If u - (C,v3) then e(vqy, v4vs) = 0.
5. N(u,C) = {vs, v, v1}.
a) u — (C,vg). b) If u - (C,vs) then vguy ¢ E.
c) If u-» (C,v;) then vgvy ¢ E. d) If u = (C,vq) then e(vs, vgvy) = 0.
e) If u = (C,v3) then vovy ¢ F and e(vg, vovy) < 1.

f) If u -+ (C,vy) then e(vs, vsv6) = 0.

6. N(u,C) = {ve,v1,v2}.



a) u— (C,vy). b) If u = (C,vg) then vyvs ¢ E.
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¢) If u = (C,vg) then vivz ¢ E. d) If u - (C,v3) then e(vy, v1v9) = 0.

e) If u » (C,vy) then vzus ¢ F and e(vy,v3v;) < 1.

f) If u—» (C,vs) then e(vy,vgvy) = 0.

Appendix A.5: Lemma 1.4.10

1. N(u,C) = {v1,ve,v4}.

a) u— (C,v3). b) If u - (C,vy) then vzvg ¢ E.
¢) If u = (C,v) then vzvs ¢ E and e(vs, vivg) < 1.

d) If u = (C,vy) then vzvs ¢ E, and either vsvg ¢ E or vyvs ¢ E.

e) If u » (C,v5) then 7(vg,C) = 0.

f) If u - (C,vg) then e(vs,viv3) = 0, and either viv3 ¢ E or vavs ¢ E.

2. N(u,C) = {vy,v3,v5}.

a) u— (C,vy). b) If u - (C,vy) then vyvy ¢ E.
c) If u-» (C,v3) then vyvg ¢ E and e(vy, vav1) < 1.

d) If u - (C,v;) then vyvg ¢ F, and either vqv; ¢ E or vyvg ¢ E.

e) If u - (C,vg) then 7(v1,C) = 0.

f) If u-» (C,vy) then e(vg, vovy) = 0, and either vovy ¢ E or vsvg ¢ E.

3. N(u,C) = {vs, vy, v6}.
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a) u— (C,vs). b) If u - (C,v3) then vsvy ¢ E.
¢) If u—» (C,vy) then vsv; ¢ E and e(vs, v3v,) < 1.

d) If u - (C,vg) then vsv; ¢ E, and either vsvy ¢ E or vsvy ¢ E.

e) If u—» (C,v;) then 7(vqe, C') = 0.

f) If u -+ (C,vq) then e(vy,v3v5) = 0, and either vsvs ¢ E or vyv, ¢ E.
4. N(u,C) = {v4,vs,v1}.

a) u— (C,vg). b) If u - (C,vy) then vgvs ¢ E.
¢) If u-» (C,vs) then vgvy ¢ E and e(vs, v4v3) < 1.

d) If u - (C,vy) then vguy ¢ E, and either vgvs ¢ E or vyvy ¢ E.

e) If u - (C,vg) then 7(vs3,C) = 0.

f) If u -+ (C,v3) then e(ve, v4vg) = 0, and either vyvg ¢ E or vsvy ¢ E.
5. N(u,C) = {vs, vs, Va2 }.

a) u— (C,vy). b) If u - (C,v;) then vivy ¢ E.
¢) If u-» (C,vg) then vyv3 ¢ E and e(vy,v5v4) < 1.

d) If u - (C,vy) then vivz ¢ E, and either vivy ¢ E or vsvs ¢ E.

e) If u - (C,v3) then 7(vy,C) = 0.

f) If u—» (C,vy) then e(vs,v5v1) = 0, and either vsv; ¢ E or vgvs ¢ E.
6. N(u,C) = {vg,v1,v3}.

a) u— (C,vg). b) If u - (C,vg) then vovs ¢ E.
¢) If u-» (C,vy) then vyvy ¢ E and e(vq, vgvs) < 1.

d) If u - (C,v3) then vovy ¢ E, and either vovs ¢ E or vgvy ¢ E.

e) If u - (C,vy) then 7(vs5,C) = 0.

f) If u = (C,vs) then e(vy, v6v2) = 0, and either vgvy ¢ E or vvy ¢ E.
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In this Lemma, the cases j = 3,5, are the same as j = 1, and the cases j = 4,6, are the

same as j = 2.

1. N(u,C) = {vy,v3,v5}.

a) u— (C,v;) for each i € {2,4,6}.

b) If u = (C,v;) for some i € {1,3,5}, then e(vq, v4) + e(v2, v6) + €(vy,v6) < 1

2. N(u,C) = {va, v4,v6}.

a) u— (C,v;) for each ¢ € {1, 3,5}.

b) If u = (C,v;) for some i € {2,4,6}, then e(vy, vs) + e(vy,v5) + e(vs,v5) < 1

Appendix A.7: Lemma 1.4.12
N(u,C) = {v1,v2}.
a) If u—» (C,v3) then vovy ¢ E,
b) If u = (C,vy) then vsvs ¢ E,
¢) If u —» (C,v;) then vyvg ¢ E,
d) If u = (C,vg) then vyvs5 ¢ E,
N(u,C) = {vq,v3}.
a) If u—» (C,vy) then vsvs ¢ E,
b) If u - (C,v5) then vyvg ¢ E,
¢) If u-» (C,vg) then vsvy ¢ E,

d) If u - (C,v;) then vovg ¢ E,

and either vovg ¢ F or vivy ¢ E.
and either vivs ¢ F or vzvg ¢ E.
and either vovy ¢ E or vzvg ¢ E.

and either vjv3 ¢ F or vyus ¢ E.

and either vgv; ¢ E or vous ¢ E.
and either vovg ¢ F or vqvy ¢ E.
and either vgvs ¢ F or vyv; ¢ E.

and either vovy ¢ F or vsvg ¢ E.



N(u,C) = {vs, v4}.

a) If u— (C,vs) then vyvg ¢ E,
b) If u —» (C,vg) then vsv; ¢ E,
¢) If u—=» (C,v;) then vgvy ¢ E,

d) If u —» (C,vy) then vzvy ¢ E,

4. N(u,C) = {vyg,v5}.

a) If u—» (C,vg) then vsv; ¢ E,
b) If u - (C,v;) then vgvy ¢ E,
c) If u—» (C,vy) then vivs ¢ E,

d) If u = (C,v3) then vyvy ¢ E,

N(u,C) = {vs, vs}.

a) If u—» (C,vy) then vgvy ¢ E,
b) If u - (C,vs) then vivs ¢ E,
¢) If u-» (C,v3) then vyvy ¢ E,
d) If u » (C,vy) then vsvs ¢ E,
N(u,C) = {vg, v1}.

a) If u—» (C,vq) then vjvg ¢ E,
b) If u - (C,v3) then vyvy ¢ E,
c) If u—» (C,vy) then vzus ¢ E,

d) If u = (C,vs) then vgvy ¢ E,

and either vyvy ¢ F or vzvg ¢ E.
and either vgv; ¢ E or vsvy ¢ E.
and either vyvg ¢ F or vsvy ¢ E.

and either vgvs ¢ E or vyvy ¢ E.

and either vsvs ¢ F or vqv, ¢ E.
and either vyvy ¢ F or vgus ¢ E.
and either vsv; ¢ F or vgus ¢ E.

and either vyvg ¢ F or vsvy ¢ E.

and either vgvy ¢ F or vsvy ¢ E.
and either vsvs ¢ F or vjvy ¢ E.
and either vgvy ¢ F or vivy ¢ E.

and either vsv; ¢ F or vgus ¢ E.

and either vjvs ¢ F or vgus ¢ E.
and either vgvy ¢ F or vyus ¢ E.
and either vjvs ¢ F or vyus ¢ E.

and either vgvy ¢ F or vivy ¢ E.

178



179

Appendix A.8: Lemma 1.4.13
N(u,C) = {v1,vs3}.

a) u — (C,vq).

b) If u - (C,vy) then vous ¢ E, and either vzvs ¢ E or vyvg ¢ E.

¢) If u— (C,vs) then e(ve,vy) + e(vq, vg) + €(v4,v6) < 1.

d) If u = (C,vg) then vyvs ¢ E, and either vjvs ¢ E or vovy ¢ E.
2. N(u,C) = {vg,v4}.

a) u— (C,v3).

b) If u - (C,v5) then vzvg ¢ F, and either vyvg ¢ F or vsvy ¢ E.

¢) If u—» (C,vs) then e(vs,vs) + e(vs, v1) + e(vs,v1) < 1.

d) If u = (C,v;) then vsvg ¢ E, and either vovg ¢ E or vzvs ¢ E.
3. N(u,C) = {vs,vs}.

a) u— (C,vy).

b) If u - (C,vg) then vyvy; ¢ E, and either vsv; ¢ E or vqvy ¢ E.

¢) If u— (C,vy) then e(vy, vg) + e(vy, va) + e(vs, v2) < 1.

d) If u = (C,vq) then vyv; ¢ E, and either vgvy ¢ E or vqvg ¢ E.
4. N(u,C) = {vg,v6}.

a) u— (C,v;).

b) If u - (C,v;) then vsvy ¢ E, and either vgvy ¢ F or vsvs ¢ E.

¢) If u—» (C,vq) then e(vs,v1) + e(vs,v3) + e(vy,v3) < 1

d) If u = (C,v3) then vsvy ¢ E, and either vjve ¢ E or vsv; ¢ E.



180

N(u,C) = {vs, v }.

a) u— (C,vg).

b) If u - (C,v) then vgus ¢ F, and either vivs ¢ F or vgvy ¢ E.

¢) If u—» (C,v3) then e(vg, ve) + e(ve, v4) + €(va,v4) < 1.

d) If u - (C,vy) then vgus ¢ E, and either vsvs ¢ E or vgvy ¢ E.
N(u,C) = {vg, v2}.

a) u— (C,vy).

b) If u = (C,v3) then vyv4 ¢ E, and either vovy ¢ E or vivs ¢ E.

¢) If u » (C,vy) then e(vy, v3) + e(vy,vs) + e(vs, v5) < 1.

d) If u - (C,vs) then vivy ¢ E, and either vgvy ¢ E or vivz ¢ E.

Appendix A.9: Lemma 1.4.14

In this lemma, the cases j = 1,2, 3, are the same as j = 4,5, 6, respectively.

N(u,C) = {v1,v4}.

a) If u—» (C,vq) then vyvs ¢ E, e(vs, v106) < 1, and either vsvg ¢ E or viv; ¢ E.

b) If u = (C,v3) then vyvg ¢ E, e(ve,v4v5) < 1, and either vyvs ¢ E or vyvg ¢ E.

¢) If u = (C,v;5) then voug ¢ E, e(vg, v3v4) < 1, and either vovy ¢ F or vzvg ¢ E.

d) If u - (C,vg) then vsus ¢ E, e(vs, v1v2) < 1, and either vjvs ¢ E or vyvs ¢ E.
2. N(u,C) = {vy,vs}.

a) If u— (C,vs) then vgvg ¢ E, e(vy, v9v1) < 1, and either vqv; ¢ E or vavg ¢ E.

b) If u - (C,vy) then vzv; ¢ E, e(vs, vsv6) < 1, and either vsvg ¢ F or vsv; ¢ E.

c) If u—» (C,vg) then vzvy ¢ E, e(v1,v4v5) < 1, and either vsv; ¢ E or vqvy ¢ E.

d) If u—=» (C,v;) then vyvg ¢ E, e(vg, vov3) < 1, and either vovy ¢ E or vgvg ¢ E.
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N(u,C) = {vs, vg}.
a) If u— (C,vy) then vsv; ¢ E, e(vs, v309) < 1, and either vsvy ¢ E or vsvy ¢ E.
b) If u - (C,vs) then vyvy ¢ E, e(vy, vgv1) < 1, and either vgv; ¢ E or vgvy ¢ E.
c) If u—=» (C,vy) then vyvy ¢ E, e(ve,v5v6) < 1, and either vyvs ¢ E or vsve ¢ E.

d) If u - (C,vy) then vsv; ¢ E, e(vy,v3v4) < 1, and either vsvs ¢ E or vyvy ¢ E.

Appendix B: List of Symbols

uv € E: The vertices u and v are adjacent 1

uv ¢ E: The vertices u and v are not adjacent 1

N(v,G): The neighborhood of v in G...1

deg,v: The degree of vin G...1

0(G): Minimum degree in G...1

A(G): Maximum degree in G...1

K,,: Complete graph of order n...2

P,: Path of order n...2

C,: Cycle of order n...2

v, — v, path: A path of order n with v; and v,, as endvertices. . .2
V1Vs ... U, A path of order n, or the subgraph induced by {vy,...,v,}...2 and 4
v10s . .. v,V A cycle of order n...2

dg(v1,v2): The distance in G between v; and v,. . . 2

K, s: The complete bipartite graph on r + s vertices. .. 2

G'1 U G5: The union of G; and Gs. . .2

G: The complement of G...3

G = C,: G is an n-cycle...3

G = P,: G is a path of order n...3
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G = K,,: G is a complete graph of order n...3

WLOG: Without loss of generality. .. 3

N(G1,G3): The set of all vertices in Gy that are adjacent to some vertex in Gj...3
N(v1vg ... v,, G): The set of all vertices in G that are adjacent to some v;, 1 <i<n...3
u € G: Vertex u is in V(G)...3

u ¢ G: Vertex u is not in V(G)...3

[(C): Length of the cycle C...3

e(G1,Gs): The sum of degrees in Go of vertices from Gj. .. 4

e(v,G): The degree of vin G...4

e(vy ... v, G): The sum of degrees in G of vertices in {vy,...,v,}...4

G + Go: The graph induced by the vertices in V(G1) UV (Gs)...4

G + v: The graph induced by the vertices in V(G) U {v}...4

G1 — Ga: The graph induced by the vertices in V(Gy) — V(Gg). .. 4

7(C): The number of chords in C'...6

7(v,C): The number of chords in C' that are incident with v...6

u — (C,v): The graph C' + u — v contains a 6-cycle...8

u — C": For each v € C, C'+ u — v contains a 6-cycle. . .8

wv — (C,zy): C + uwv — xy contains a 6-cycle. .. 8

uv — C: For each z,y € C', C + uv — xy contains a 6-cycle. . .8

u 2 (C,v): C +u— v contains a 6-cycle C' with 7(C") > 7(C) +n...19

r(y1, P): The largest integer j such that y;y; € E, where P = y1y> ...y, is a path of order
n...54

7(Yn, P): The largest integer j such that y,ys_j11 € E, where P = yyy2...y, is a path of
order n...54

r(P): The maximum of r(y;, P) and 7(y,, P), where P = y; ...y,...54

s(P): The sum of r(y1, P) and r(y,, P), where P =y ... y,...54

7/(C): The minimum among all vertices v € C of 7(v,C)...54



