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Abstract

In this dissertation, we discuss cycles of length at least six. We prove that (Theorem 1) if G

is a graph of order n ≥ 6k+ 1 and the minimum degree of G is at least
7k

2
, then G contains

k disjoint cycles of length at least six, and (Theorem 2) if G is a graph of order n ≥ 6k + 6

and the minimum degree of G is at least
n

2
, then G contains k disjoint cycles covering all

the vertices of G such that k − 1 are 6-cycles.
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Chapter 1

Preliminaries

1.1 Fundamental Graph Theory Definitions

We borrow notation and terminology from [2]. A graph G = (V,E) is a finite nonempty

set V (or V (G)) of elements called vertices, together with a set E (or E(G)) of 2-element

subsets of V , called edges. Let G = (V,E) be a graph. If u and v are vertices in V , we use

uv to denote the edge {u, v}. If uv ∈ E, then we say that u and v are adjacent. Given a

vertex v ∈ V , the set N(v,G) = {u ∈ V (G) : uv ∈ E} is called the neighborhood of v in

G, and the vertices in N(v,G) are called the neighbors of v. We define the degree of v in

G to be the order of N(v,G), and denote it by degGv. If the graph G is understood, we write

just N(v) and deg v to denote the neighborhood and degree of v, respectively. The minimum

degree among all vertices of G is denoted by δ(G), and the maximum degree among all

vertices of G is denoted by ∆(G). The vertices u and v are said to be incident with the

edge uv. The orders of V and E are called the order and size of G, respectively.

Let G′ be the graph in Figure 1.1. Then G′ has six vertices, nine edges, vertex set V (G′) =

{v1, v2, v3, v4, v5, v6}, and edge set E(G′) = {v1v2, v1v3, v1v6, v2v3, v2v5, v3v4, v4v5, v4v6, v5v6}.

The neighborhood N(v1, G
′) of v1 in G′ is {v2, v3, v6}. The degree of every vertex is three,

so δ(G′) = ∆(G′) = 3. The vertex v4 is incident with the edges v4v3, v4v5, and v4v6. The

order and size of G′ are 6 and 9, respectively.

v1

v4v3

v2
v6

v5

Figure 1.1: The complement of a 6-cycle.
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A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If E(H) = {uv ∈

E(G) : u, v ∈ V (H)}, then H is called a vertex-induced subgraph (or just induced

subgraph) of G, and we say that H is induced by V (H). In general, we use G[X] to

denote the subgraph of G induced by the vertex set X. A graph in which every pair of

vertices is adjacent is called a complete graph. The complete graph of order n is denoted

by Kn. A graph with vertex set {v1, v2, . . . , vn} and edge set {vivi+1 : 1 ≤ i ≤ n − 1} is

called a path, and is denoted by Pn. The vertices v1 and vn are called endvertices of the

path, and instead of saying that the path has endvertices v1 and vn, we say that it is a v1−vn

path. If the edge vnv1 is added to the edge set, we call it a cycle (specifically, an n-cycle),

denoted by Cn. Another way of representing a cycle Cn is by writing v1v2 . . . vnv1, where

two vertices in the sequence are consecutive if and only if they are adjacent in the graph.

Similarly, we can write Pn = v1v2 . . . vn. The length of a path (or cycle) is the number of

edges in the path (or cycle), and we denote the length of the cycle C by l(C). Clearly, the

length of Pn is n− 1 and the length of Cn is n. The distance between two vertices v1 and

v2 in H is the length of a shortest path in H from v1 to v2, and is denoted by dH(v1, v2) (or

just d(v1, v2)).

The 6-cycle v1v2v5v6v4v3v1 is a subgraph of G′ (Figure 1.1), but is not an induced sub-

graph of G′, because (for example) of the edge v1v6, which is not included in the cycle. On

the other hand, the 4-cycles v2v5v4v3v2, v1v2v5v6v1, and v1v6v4v3v1, are all induced subgraphs

of G′. The path v1v2v5v6 is a subgraph of G′, but not an induced subgraph because of the

edge v1v6. The path v1v2v5v4 is, however, an induced subgraph. The largest complete graph

contained in G′ is K3, which is represented in G′ by the subgraphs induced by {v1, v2, v3}

and {v4, v5, v6}. The distance between v2 and v6 is two, since v2v6 /∈ E but v2v5v6 is a path

of length two from v2 to v6.

A graph is bipartite if it has no cycles with odd length. The complete bipartite graph

Kr,s has vertex set V = V1∪V2, with |V1| = r and |V2| = s, and edge set E = {uv |u ∈ V1, v ∈

V2}. Clearly complete bipartite graphs are bipartite, since any cycle must alternate between
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V1 and V2. Two graphs are said to be isomorphic if they can be labeled in such a way that

they have the same vertex set and edge set. A graph in which every vertex has degree k is

called k-regular. Clearly, Cn is 2-regular and Kn is n − 1-regular. The complement of

G, written G, is the graph with vertex set V (G) and edge set (V (G)× V (G))−E(G). The

union of G1 and G2, denoted by G1 ∪G2, is the graph with vertex set V (G1) ∪ V (G2) and

edge set E(G1)∪E(G2). The union of more than two graphs is defined similarly. The union

of k copies of G is denoted by kG. The graphs G1, G2,. . . ,Gi, are disjoint if they have no

vertex in common. Thus the graph kG contains k disjoint copies of G.

The complement G′ of G′ (Figure 1.1) is the 6-cycle v1v4v2v6v3v5v1, and we write G′ = C6

(or equivalently, G′ = C6). G
′ is a 3-regular graph, which can be seen either by looking at

each of the degrees, or noting that G′ = C6, and that C6 is (5− 3 = 2)-regular.

1.2 Notation and Terminology

A large cycle is a cycle of length at least six. Let G be a graph. If H is a subgraph of G,

we say that G contains H, and write H ⊆ G. Let H1, H2, . . . , Hk ⊆ G. If v is a vertex

in V (Hi), we will write v ∈ Hi instead of the more cumbersome v ∈ V (Hi). We will write

v /∈ Hi if v is not a vertex in V (Hi). The vertices in a cycle of length n will be indexed

modulo n. If C = v1v2 . . . vnv1 is a cycle, and vi and vj are consecutive in the sequence

v1v2 . . . vn, then we shall say that vi and vj are consecutive in C. We will use the same

terminology for a set of more than two consecutive vertices in v1v2 . . . vm. If Hi is isomorphic

to some cycle Cn, then we will write Hi = Cn. We will use equality in a similar way for paths

and complete graphs. If Hi and Hj are isomorphic, but use a different vertex set or edge set,

we will say that Hi and Hj are different graphs. If Hi and Hj are not isomorphic, we will

say that they are distinct graphs. We abbreviate without loss of generality with WLOG.

The set of vertices u ∈ Hi such that uv ∈ E for some v ∈ Hj will be denoted byN(Hj, Hi),

read as the neighborhood of Hj in Hi. If Hj is the subgraph of G induced by the vertex set

{v1, v2, . . . , vm}, then we will write N(v1v2 . . . vm, Hi) instead of N(G[{v1, v2, . . . , vm}], Hi).
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u1

LC

v1
v2

v3
v4

v5

v6 u2

u3u4

u5

u6

Figure 1.2: C is the 6-cycle on the left, and L is the 6-cycle on the right.

Thus N(v,Hi) as defined here coincides with the definition of N(v,Hi) from Section 1.1. We

define

e(Hj, Hi) :=
∑
v∈Hj

|N(v,Hi)|.

Notice that, in general, e(Hj, Hi) 6= |N(Hj, Hi)|. Instead, e(Hj, Hi) is the number of edges

uv such that u ∈ Hi and v ∈ Hj, and we will say that e(Hj, Hi) is the number of edges

between Hj and Hi. We again use e(v1v2 . . . vm, Hi) in place of e(G[{v1, v2, . . . , vm}], Hi).

Thus

e(v1v2 . . . vm, Hi) =
m∑
k=1

e(vk, Hi),

where e(vk, Hi) = |N(vk, Hi)| is the degree of vk in Hi. Finally, we denote the subgraph of

G induced by the vertex set
⋃k
i=1 V (Hi) by H1 +H2 + . . . Hk. If Hi is induced by the vertex

set {v1, v2, . . . , vm}, then as before we write v1v2 . . . vm instead of G[{v1, v2, . . . , vm}]. For

example, H1+v1v2 . . . vm is the subgraph of G induced by V (H1)∪{v1, v2, . . . , vm}. Similarly,

we define Hi − v1v2 . . . vm to be the subgraph induced by V (Hi)− {v1, v2, . . . , vm}.

In Figure 1.2, N(C,L) = {u1, u2, u3, u5, u6}. The vertex u4 is not in N(C,L) because it

is not adjacent to any vertex in C. Also, N(v1, L) = {u1, u2}, N(v1v3, L) = N(v1v3v5, L) =

{u1, u2, u5, u6}, and N(v1v2v3, L) = N(C,L). The number of edges between C and L is

e(C,L) = e(v1, L) + e(v2, L) + e(v3, L) + e(v4, L) + e(v5, L) + e(v6, L) = 2 + 2 + 2 + 2 + 0 + 0 =
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v1
v2

v3
v4

v5

v6
u2

u1

v2

v3

v4
v5

u2

u3u4

u5

u6

v1
v2

v4

v5

v6

u3
u1

v1v4 v5 v6

u2 u3

Figure 1.3: Clockwise from top left: C + u2, C + L− v6v1, u1u2u3 + v4v5v6v1, and C + u3 − v3.

8. The number e(v2v4v6, u2u4u6) of edges between v2v4v6 and u2u4u6 is e(v2, u2u4u6) +

e(v4, u2u4u6) + e(v6, u2u4u6) = 1 + 0 + 0 = 1. The graph in Figure 1.2 is the graph C + L

induced by the vertices of C and L. The graphs of C + u2, C + L− v6v1, C + u3 − v3, and

L + v4v5v6v1 − u4u5u6, are shown in Figure 1.3. Note that L + v4v5v6v1 − u4u5u6 can be

written (slightly) more succinctly as u1u2u3 + v4v5v6v1.
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1.3 Background

In 1963, K. Corrádi and A. Hajnal [3] proved that if G is a graph of order at least 3k with

minimum degree at least 2k, then G contains k disjoint cycles. In 2012, H. Wang [6] proposed

the following conjecture:

Let d and k be two positive integers with k ≥ 2. If G is a graph of order at least (2d+1)k

and the minimum degree of G is at least (d+ 1)k, then G contains k disjoint cycles of length

at least 2d+ 1.

Clearly, the theorem of Corrádi and A. Hajnal proves the case d = 1. In 2018 Wang ([7]

and [8]) proved the case d = 2. For the even cycles, Wang [6] proposed the following:

Let d and k be two positive integers with k, d ≥ 2. Let G be a graph of order n ≥ 2dk

with minimum degree at least dk. Then G contains k disjoint cycles of length at least 2d,

unless k is odd and n = 2dk + r for some 1 ≤ r ≤ 2d− 2.

In 2012 Wang ([5] and [6]) proved this conjecture for the case d = 2. In this paper, we

prove a weaker version (Theorem 1) of the case d = 3.

The above conjectures are related to a conjecture made by M. H. El-Zahar [4] in 1984,

which states that if G is a graph of order n = n1 +n2 + . . . nk with ni ≥ 3 and the minimum

degree of G is at least dn1/2e + dn2/2e + . . . dnk/2e, then G contains k disjoint cycles with

lengths n1, n2, . . . nk.

Theorem 2 is similar to the theorems above, and follows a theorem in [9] due to Wang,

which states that if G is a graph of order n ≥ 4k with minimum degree at least n/2, then G

contains k disjoint cycles covering all the vertices of G such that k−1 are 4-cycles. Theorem

2 provides a special type of subgraph known as a 2-factor. In general, a k-factor is a spanning

subgraph that is k-regular.
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1.4 Chords and Vertex-Replacement in Cycles

Let G be a graph, and let C = a1a2 . . . ana1 be a subgraph of G. A chord of C is any edge

aiaj ∈ E(G), 1 ≤ i, j ≤ n, such that aiaj /∈ E(C). Thus C has a chord if and only if C

is not an induced subgraph of G. A cycle that has a chord is called chorded, while one

that does not is called chordless. See Figure 1.4. We will use τ(C) to denote the number

of chords in C, and τ(ai, C) to denote the number of chords in C that are incident with ai.

Thus if L is the 6-cycle v1v2v3v4v5v6v1 in the bottom graph of Figure 1.4, then τ(L) = 2,

τ(v1, L) = τ(v3, L) = τ(v4, L) = τ(v6, L) = 1, and τ(v2, L) = τ(v5, L) = 0. It is easy to see

that

2τ(C) =
∑
ai∈C

τ(ai, C)

for any cycle C. In general, given a set {i1, . . . , ik} ⊆ {1, . . . , n}, we define

τ(ai1 . . . aik , C} :=
k∑
j=1

τ(aij , C).

The following lemma is a simple observation about chords in cycles. See Figure 1.5.

Lemma 1.4.1 Let C be a cycle of length n. If C has a chord, then C contains two cycles

C1 and C2 such that l(C1) + l(C2) = n+ 2.

More chords means more options. For example, the 6-cycle on the right in Figure 1.4

has the 5-cycle C ′ = v2v3v4v5v6v2 as a subgraph. If there is a vertex u that is adjacent to v3

and v4, for example, then uv4v5v6v2v3u is a 6-cycle. This would be beneficial if the vertex v1

is better used elsewhere, outside of the cycle v1v2v3v4v5v6v1. The replacement of one vertex

with another in a cycle (u replacing v1 in this case) is something that will be used extensively

throughout this paper.

Consider again the cycle C = a1a2 . . . ana1, and let u and v be vertices in G− C. If, for

some 1 ≤ i ≤ n, C + u− ai contains a cycle of length n, then we say that u replaces ai in
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v1
v2

v5

v6

v3

v4

v1
v2

v3

v4
v5

v6

Figure 1.4: Top left: a chordless 6-cycle. Top right: a 6-cycle v1v2v3v4v5v6v1, with the two chords
v2v6 and v1v4. Bottom: a graph with two different chorded 6-cycles. The first is v1v2v3v4v5v6v1,
with chords v1v4 and v3v6. The second is v1v2v3v6v5v4v1, with chords v1v6 and v3v4.

Figure 1.5: Top: an 8-cycle with a chord. Bottom: the two cycles created by the chord (note
that they have two vertices in common).
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v1
v2

v3

v4
v5

v6

u
u1

u2

u3

u4
u5

u6

x1

x2

Figure 1.6: Replacement of vertices in 6-cycles.

C, and write u→ (C, ai). In Figure 1.2 we have u3 → (C, v3), as can be seen from the graph

C + u3 − v3 in Figure 1.3. Similarly, if C + uv − aiaj contains Cn, then we say that u and v

replace ai and aj in C, and write uv → (C, aiaj). If u replaces every vertex in C, then we

write u→ C, and say that u replaces C. Similarly, we write uv → C if u and v replace each

pair of vertices in C.

Consider the graphs in Figure 1.6. Let C1 = u1u2u3u4u5u6u1 and C2 = v1v2v3v4v5v6v1.

Since uu1u6u2u5u3u is a 6-cycle, we can say that u → (C1, u4). In fact, it turns out that

u → (C1, ui) for each ui ∈ C1, and therefore that u → C1. Since e(x1, C2) = e(x2, C2) = 2,

it is easy to see that neither x1 nor x2 replace C2, since clearly x1 9 (C2, vi) for i = 3, 6,

and x2 9 (C2, vi) for i = 3, 5. However, x1x2 → (C2, v4v5) and x1x2 → (C2, v2v3), since

x2v3v2v1v6x1x2 and x2v5v4v1v6x1x2 are 6-cycles. Because N(x1, C2 − v5v6) = N(x2, C2 −

v5v6) = {v3}, x1 and x2 do not replace v5 and v6 in C2, and therefore x1x2 9 C2.

The following lemma is a generalization of the observation that u3 → (C, v3) in Figure

1.2. The subsequent two lemmas are consequences of the first.

Lemma 1.4.2 Let C = a1a2 . . . ana1 be a cycle, let 1 ≤ i ≤ n, and let u /∈ C. If

e(u, ai−1ai+1) = 2, then u→ (C, ai).

Proof: The cycle uai−1ai−2 . . . a1anan−1 . . . ai+1u is a cycle of length 1+(i−1)+(n− i) = n

in C + u− ai.
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Lemma 1.4.3 Let C = a1a2 . . . ana1 be a cycle, and let u /∈ C. If e(u,C) = n, then u→ C.

Proof: Since C is an n-cycle and e(u,C) = n, we know that e(u, ai−1ai+1) = 2 for each

vertex ai ∈ C. The lemma is therefore true by Lemma 1.4.2.

Lemma 1.4.4 Let C = a1a2 . . . ana1 be a cycle, and let u /∈ C. Let e(u,C) = n − 1, with

uai /∈ E. Then u→ (C, aj) for all j 6= i± 1.

Proof: We have e(u, aj−1aj+1) = 2 for all j 6= i ± 1, so the lemmma is true by Lemma

1.4.2.

In Lemmas 1.4.2-1.4.4, no assumptions were made about the chords in the given cycle.

Often, we will at least have some knowledge about the number of chords in a 6-cycle. We

can see from Figure 1.6 that having just a few chords in a 6-cycle can greatly affect the

number of vertices that are replaceable by a given vertex. The following lemmas expand on

Lemmas 1.4.2-1.4.4, and will be used extensively in the proof of Theorem 1.

Lemma 1.4.5 Let C = v1v2 . . . v6v1 be a 6-cycle, and let u /∈ C with e(u,C− vj) = 5. Then

u9 C if and only if τ(vj, C) = 0.

Proof: WLOG let j = 6. By Lemma 1.4.4, u → (C, vi) for i = 2, 3, 4, 6. Clearly, if

τ(v6, C) = 0 then u 9 C, since if that is the case then u 9 (C, v1) and u 9 (C, v5). Hence

it suffices to prove that if τ(v6, C) > 0 then u → C. Using symmetry, we need only show

that if τ(v6, C) > 0 then u → (C, v1). Well, if v6v2 ∈ E then v6v2v3v4uv5v6 is a 6-cycle; if

v6v3 ∈ E then v6v3v2uv4v5v6 is a 6-cycle; and if v6v4 ∈ E then v6v4v3v2uv5v6 is a 6-cycle.

This completes the proof.

If C = v1v2 . . . v6v1 is a 6-cycle and e(u,C) = 4 for some u /∈ C, then there are three

possible distinct graphs C + u. Indeed, u may be adjacent to four consecutive vertices in C

(see Figure 1.7); u may be adjacent to exactly three consecutive vertices in C, leaving only

one option for the last neighbor of u in C; or, if u is not adjacent to three or more consecutive
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u u u

Figure 1.7: The three possibilities for C + u, when e(u,C) = 4.

vertices in C, then u must be adjacent to two disjoint pairs of consecutive vertices in C. We

consider these three possibilities in the following three lemmas.

Lemma 1.4.6 Let C = v1v2 . . . v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+1, vj+2, vj+3}

for some 1 ≤ j ≤ 6. The following statements are true.

1. u→ (C, vj+1) and u→ (C, vj+2).

2. If u9 (C, vj) then e(vj+5, vj+1vj+2) = 0.

3. If u9 (C, vj+3) then e(vj+4, vj+1vj+2) = 0.

4. If u9 (C, vj+4) then τ(vj+5, C) = 0.

5. If u9 (C, vj+5) then τ(vj+4, C) = 0.

Proof: WLOG let j = 1, so N(u,C) = {v1, v2, v3, v4}

1. True by Lemma 1.4.2.

2. Because v2uv3v4v5v6 and v3v2uv4v5v6 are paths of order six in C + u− v1.

3. True by Lemma 1.4.6-2 and symmetry.

4. Because v2v3v4uv1v6, v3v4uv2v1v6, and v4v3uv2v1v6 are paths of order six in C+u− v5.
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5. True by Lemma 1.4.6-4 and symmetry.

Lemma 1.4.7 Let C = v1v2 . . . v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+1, vj+2, vj+4}

for some 1 ≤ j ≤ 6. The following statements are true.

1. u→ (C, vj+1), u→ (C, vj+3), and u→ (C, vj+5).

2. If u9 (C, vj) then e(vj+5, vj+1vj+3) = 0.

3. If u9 (C, vj+2) then e(vj+3, vj+1vj+5) = 0.

4. If u9 (C, vj+4) then vj+3vj+5 /∈ E and e(vj+1, vj+3vj+5) ≤ 1.

Proof: WLOG let j = 1, so N(u,C) = {v1, v2, v3, v5}.

1. True by Lemma 1.4.2.

2. Because v2uv3v4v5v6 and v4v3v2uv5v6 are paths of order six in C + u− v1.

3. True by Lemma 1.4.7-2 and symmetry.

4. Suppose u 9 (C, v5). Then v4v6 /∈ E because v4v3uv2v1v6 is a path of order six in

C + u− v5, and e(v2, v4v6) ≤ 1 for otherwise v6v2v4v3uv1v6 is a 6-cycle in C + u− v5.

Lemma 1.4.8 Let C = v1v2 . . . v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+1, vj+3, vj+4}

for some 1 ≤ j ≤ 6. The following statements are true.

1. u→ (C, vj+2) and u→ (C, vj+5).

2. If u9 (C, vj) or u9 (C, vj+4), then τ(vj+5, C) = 0.

3. If u9 (C, vj+1) or u9 (C, vj+3), then τ(vj+2, C) = 0.
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u u u

Figure 1.8: The three possibilities for C + u, when e(u,C) = 3.

Proof: WLOG let j = 1, so N(u,C) = {v1, v2, v4, v5}.

1. True by Lemma 1.4.2.

2. By symmetry, we may assume that u9 (C, v1). The existence of the paths v2v3v4uv5v6,

v3v2uv4v5v6, and v4v3v2uv5v6 implies that τ(v6, C) = 0.

3. True by Lemma 1.4.8-2 and symmetry.

Next, we consider the graphs C + u when e(u,C) = 3. Again, there are three distinct

graphs (see Figure 1.8).

Lemma 1.4.9 Let C = v1...v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+1, vj+2}

for some 1 ≤ j ≤ 6. The following statements are true.

1. u→ (C, vj+1).

2. If u9 (C, vj) then vj+1vj+5 /∈ E.

3. If u9 (C, vj+2) then vj+1vj+3 /∈ E.

4. If u9 (C, vj+3) then e(vj+4, vj+1vj+2) = 0.

5. If u9 (C, vj+4) then vj+3vj+5 /∈ E and e(vj+1, vj+3vj+5) ≤ 1.
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6. If u9 (C, vj+5) then e(vj+4, vjvj+1) = 0.

Proof: WLOG let j = 1, so N(u,C) = {v1, v2, v3}.

1. True by Lemma 1.4.2.

2. Because v2uv3v4v5v6 is a path of order six in C + u− v1.

3. True by Lemma 1.4.9-2 and symmetry.

4. Because v2v3uv1v6v5 and v3uv2v1v6v5 are paths of order six in C + u− v1.

5. Suppose u 9 (C, v5). Then v4v6 /∈ E because v4v3uv2v1v6 is a path of order six in

C + u− v5, and e(v2, v4v6) ≤ 1 for otherwise v6v2v4v3uv1v6 is a 6-cycle in C + u− v5.

6. True by Lemma 1.4.9-4 and symmetry.

Lemma 1.4.10 Let C = v1...v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+1, vj+3}

for some 1 ≤ j ≤ 6. The following statements are true.

1. u→ (C, vj+2).

2. If u9 (C, vj) then vj+2vj+5 /∈ E.

3. If u9 (C, vj+1) then vj+2vj+4 /∈ E and e(vj+2, vjvj+5) ≤ 1.

4. If u9 (C, vj+3) then vj+2vj+4 /∈ E, and either vj+2vj+5 /∈ E or vjvj+4 /∈ E.

5. If u9 (C, vj+4) then τ(vj+5, C) = 0.

6. If u9 (C, vj+5) then e(vj+4, vjvj+2) = 0, and either vjvj+2 /∈ E or vj+1vj+4 /∈ E.

Proof: WLOG let j = 1, so N(u,C) = {v1, v2, v4}.

1. True by Lemma 1.4.2.



15

2. Because v3v2uv4v5v6 is a path of order six in C + u− v1.

3. Suppose u 9 (C, v2). Then v3v5 /∈ E because v3v4uv1v6v5 is a path of order six in

C + u− v2, and e(v3, v1v6) ≤ 1 for otherwise v6v3v1uv4v5v6 is a 6-cycle in C + u− v2.

4. Suppose u 9 (C, v4). Then v3v5 /∈ E because v3v2uv1v6v5 is a path of order six in

C + u− v4, and either v3v6 /∈ E or v1v5 /∈ E for otherwise v3v6v5v1uv2v3 is a 6-cycle in

C + u− v4.

5. Because v2v3v4uv1v6, v3v4uv2v1v6, and v4v3v2uv1v6 are paths of order six in C+u− v5.

6. Suppose u 9 (C, v6). Then e(v5, v1v3) = 0 because v1uv2v3v4v5 and v3v2v1uv4v5 are

paths of order six in C+u−v6. Either v1v3 /∈ E or v2v5 /∈ E for otherwise v1v3v4v5v2uv1

is a 6-cycle in C + u− v6.

Lemma 1.4.11 Let C = v1...v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+2, vj+4}

for some 1 ≤ j ≤ 6. Then u → (C, vi) for each i ∈ {j + 1, j + 3, j + 5}, and if u 9 (C, vi)

for some i ∈ {j, j + 2, j + 4}, then e(vj+1, vj+3) + e(vj+1, vj+5) + e(vj+3, vj+5) ≤ 1.

Proof: WLOG let j = 1, so N(u,C) = {v1, v3, v5}. The first statement is true by Lemma

1.4.2. Suppose that e(v2, v4)+e(v2, v6)+e(v4, v6) ≥ 2. By symmetry, we may assume WLOG

that e(v2, v4v6) = 2. Then v6v2v4v3uv5v6 is a 6-cycle in C +u− v1, v6v2v4v5uv1v6 is a 6-cycle

in C + u − v3, and v6v2v4v3uv1v6 is a 6-cycle in C + u − v5. This shows that u → C, and

thus completes the proof.

Finally, we consider the graphs C + u when e(u,C) = 2 (see Figure 1.9). Note that if

N(u,C) = {vi, vk}, then u9 (C, vi) since deg u = 1 in C + u− vi. Similarly, u9 (C, vk).

Lemma 1.4.12 Let C = v1...v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+1} for

some 1 ≤ j ≤ 6. The following statements are true.

1. If u9 (C, vj+2) then vj+1vj+3 /∈ E, and either vj+1vj+5 /∈ E or vjvj+3 /∈ E.
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u u u

Figure 1.9: The three possibilities for C + u, when e(u,C) = 2.

2. If u9 (C, vj+3) then vj+2vj+4 /∈ E, and either vjvj+4 /∈ E or vj+2vj+5 /∈ E.

3. If u9 (C, vj+4) then vj+3vj+5 /∈ E, and either vj+1vj+3 /∈ E or vj+2vj+5 /∈ E.

4. If u9 (C, vj+5) then vjvj+4 /∈ E, and either vjvj+2 /∈ E or vj+1vj+4 /∈ E.

Proof: WLOG let j = 1, so N(u,C) = {v1, v2}.

1. Suppose that u 9 (C, v3). Then v2v4 /∈ E because v2uv1v6v5v4 is a path of order six

in C + u− v3, and either v2v6 /∈ E or v1v4 /∈ E for otherwise v2v6v5v4v1uv2 is a 6-cycle

in C + u− v3.

2. Suppose that u 9 (C, v4). Then v3v5 /∈ E because v3v2uv1v6v5 is a path of order six

in C + u− v4, and either v1v5 /∈ E or v3v6 /∈ E for otherwise v1v5v6v3v2uv1 is a 6-cycle

in C + u− v4.

3. True by Lemma 1.4.12-2 and symmetry.

4. True by Lemma 1.4.12-1 and symmetry.

Lemma 1.4.13 Let C = v1...v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+2} for

some 1 ≤ j ≤ 6. The following statements are true.
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1. u→ (C, vj+1).

2. If u9 (C, vj+3) then vj+1vj+4 /∈ E, and either vj+2vj+4 /∈ E or vj+1vj+5 /∈ E.

3. If u9 (C, vj+4) then e(vj+1, vj+3) + e(vj+1, vj+5) + e(vj+3, vj+5) ≤ 1.

4. If u9 (C, vj+5) then vj+1vj+4 /∈ E, and either vjvj+4 /∈ E or vj+1vj+3 /∈ E.

Proof: WLOG let j = 1, so N(u,C) = {v1, v3}.

1. True by Lemma 1.4.2.

2. Suppose that u 9 (C, v4). Then v2v5 /∈ E because v2v3uv1v6v5 is a path of order six

in C + u− v4, and either v3v5 /∈ E or v2v6 /∈ E for otherwise v3v5v6v2v1uv3 is a 6-cycle

in C + u− v4.

3. First suppose that e(v2, v4v6) = 2. Then v4v2v6v1uv3v4 is a 6-cycle, so u → (C, v5).

Now suppose that e(v4, v2v6) = 2 or e(v6, v2v4) = 2, and WLOG let e(v4, v2v6) = 2.

Then v2v4v6v1uv3v2 is a 6-cycle, so u→ (C, v5).

4. True by Lemma 1.4.13-2 and symmetry.

Lemma 1.4.14 Let C = v1...v6v1 be a 6-cycle, and let u /∈ C with N(u,C) = {vj, vj+3} for

some 1 ≤ j ≤ 6. The following statements are true.

1. If u 9 (C, vj+1) then vj+2vj+4 /∈ E, e(vj+2, vjvj+5) ≤ 1, and either vj+2vj+5 /∈ E or

vjvj+4 /∈ E.

2. If u 9 (C, vj+2) then vj+1vj+5 /∈ E, e(vj+1, vj+3vj+4) ≤ 1, and either vj+1vj+4 /∈ E or

vj+3vj+5 /∈ E.

3. If u 9 (C, vj+4) then vj+1vj+5 /∈ E, e(vj+5, vj+2vj+3) ≤ 1, and either vj+1vj+3 /∈ E or

vj+2vj+5 /∈ E.
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4. If u 9 (C, vj+5) then vj+2vj+4 /∈ E, e(vj+4, vjvj+1) ≤ 1, and either vjvj+2 /∈ E or

vj+1vj+4 /∈ E

Proof: WLOG let j = 1, so N(u,C) = {v1, v4}. We will prove the first statement; the

others follow by symmetry. To that end, suppose that u 9 (C, v2). Then v3v5 /∈ E because

v3v4uv1v6v5 is a path of order six in C+u−v2, and e(v3, v1v6) ≤ 1 for otherwise v3v6v5v4uv1v3

is a 6-cycle in C + u− v2. Finally, either v3v6 /∈ E or v1v5 /∈ E for otherwise v3v6v5v1uv4v3

is a 6-cycle in C + u− v2.

To bypass the repeated calculation of indices, Lemmas 1.4.6-1.4.14 will be listed for each

j ∈ {1, 2, . . . , 6} in Appendix A.

Lemma 1.4.15 Let C be a 6-cycle and let x, y /∈ C with e(xy, C) ≥ 8. If e(x,C) ≥ 5, then

there exists z ∈ C such that x→ (C, z) and yz ∈ E.

Proof: Let C = a1a2...a6a1. If e(x,C) = 6 then the lemma clearly holds since x→ C and

e(y, C) ≥ 2. If e(x,C) = 5, then x→ (C, ai) for four ai ∈ C, so the lemma again holds since

e(y, C) ≥ 3 > 2 = 6− 4.

Lemma 1.4.16 Let C be a 6-cycle and let x, y /∈ C with e(xy, C) ≥ 8 and e(x,C) ≥ e(y, C).

Suppose that there does not exist z ∈ C such that x → (C, z) and yz ∈ E. Then e(x,C) =

e(y, C) = 4, and there is a labeling of C such that either N(x,C) = {a1, a2, a3, a4} and

N(y, C) = {a4, a5, a6, a1} or N(x,C) = N(y, C) = {a1, a2, a4, a5}.

Proof: Let C = a1a2...a6a1. By Lemma 1.4.15, e(x,C) = e(y, C) = 4. Since e(y, C) = 4,

x → (C, ai) for at most two ai ∈ C. Then WLOG we have either N(x,C) = {a1, a2, a3, a4}

or N(x,C) = {a1, a2, a4, a5}. In the first case, x → (C, ai) for i = 2, 3, so the lemma holds.

In the second case x→ (C, ai) for i = 3, 6, so again the lemma holds.

Lemma 1.4.17 Let C be a 6-cycle and let x, y /∈ C with e(xy, C) ≥ 9. Then there is

u, v ∈ C such that x→ (C, u) with yu ∈ E and y → (C, v) with xv ∈ E.
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Figure 1.10: Lemma 1.4.18: If we relabel the graph on the right, we see that the ’useless’ edge
xa4 is replaced by the chord a2a4, yielding a cycle with more chords.

Proof: WLOG let e(x,C) ≥ e(y, C). If e(x,C) = 6, then e(y, C) ≥ 3, so x → C and

y → (C, v) for some v ∈ C. The lemma holds in this case since e(y, C) ≥ 1 and xv ∈ E. If

e(x,C) = 5, then e(y, C) ≥ 4, so x → (C, aj) for four aj ∈ C and y → (C, aj) for at least

two aj ∈ C. The lemma again holds since e(y, C) ≥ 3 and e(x,C) ≥ 5.

Often, if u→ (C, ai) then the resulting 6-cycle C+u−ai does not have the same number

of chords as C. Notation: If u→ (C, ai) and τ(C+u−ai) ≥ τ(C)+n, we write u
n−→ (C, ai).

We define uv
n−→ (C, aiaj) similarly.

Lemma 1.4.18 Let C be a 6-cycle and let x, y /∈ C with e(xy, C) ≥ 8 and e(x,C) ≥ e(y, C).

If there is no z ∈ C such that x → (C, z) and yz ∈ E, then there is z′ ∈ C such that

x
1−→ (C, z′).

Proof: By Lemma 1.4.16, either N(x,C) = {a1, a2, a3, a4} and N(y, C) = {a4, a5, a6, a1}

or N(x,C) = N(y, C) = {a1, a2, a4, a5}. In the first case, y 9 (C, ai) for i = 1, 2, 3, 4, so

τ(a2a3, C) = 0. Hence x
1−→ (C, a2). In the second case, y 9 (C, ai) for i = 1, 2, 4, 5, so

τ(a3a6, C) = 0. Hence x
1−→ (C, a3).

Lemma 1.4.19 Let C = a1a2 . . . a6a1 be a 6-cycle, and let u, v /∈ C with e(uv, C) ≥ 7. Then
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for some x ∈ {u, v} and some ai ∈ C, either x→ (C, ai) and yai ∈ E for x 6= y ∈ {u, v}, or

x
1−→ (C, ai).

Proof: Suppose that there is no ai ∈ C such that x → (C, ai) and yai for x, y ∈ {u, v}.

Then u 9 C and v 9 C, so e(u,C) ≤ 5 and e(v, C) ≤ 5. WLOG let e(u,C) ≥ e(v, C).

Suppose that e(u,C) = 5, with ua6 /∈ E. By Lemma 1.4.5, either u → C or τ(a6, C) = 0.

Since e(v, C) = 2, this implies that τ(a6, C) = 0. Then u
3−→ (C, a6), as desired. Now suppose

that e(u,C) = 4.

Case 1: N(u,C) = {a1, a2, a3, a4}. Since u → (C, ai) for i = 2, 3, we have N(v, C) ⊆

{a4, a5, a6, a1}. If τ(a2, C) = 0 or τ(a3, C) = 0, then u
1−→ (C, a2) or u

1−→ (C, a3) and

we are done, so suppose τ(a2, C) ≥ 1 and τ(a3, C) ≥ 1. Since e(v, C) ≥ 3, we know by

Lemma 1.4.6 that e(a2, a5a6) = e(a3, a5a6) = 0. Hence a2a4 ∈ E and a3a1 ∈ E. Since

v 9 (C, a3) and v 9 (C, a2), we have e(v, a4a5) ≤ 1 and e(v, a6a1) ≤ 1. But e(v, C) ≥ 3, a

contradiction.

Case 2: N(u,C) = {a1, a2, a3, a5}. Since u → (C, ai) for i = 2, 4, 6, we have N(v, C) =

{a1, a3, a5}. But then v → (C, a2) and ua2 ∈ E, a contradiction.

Case 3: N(u,C) = {a1, a2, a4, a5}. Similar to above, we have N(v, C) ⊆ {a1, a2, a4, a5}.

Since u9 C, by Lemma 1.4.8 we know that either τ(a6, C) = 0 or τ(a3, C) = 0. WLOG let

τ(a6, C) = 0. Then u
2−→ (C, a6), as desired.
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Chapter 2

Foundational Lemmas

2.1 Getting Cycles from Paths

In this section, we introduce some simple lemmas that will be used throughout the paper.

These lemmas provide sufficient conditions - mainly in the form of a specific number of edges

between two paths - for a graph to contain some type of large cycle as a subgraph, as well

as information in the case that those sufficient conditions are not quite met.

Lemma 2.1.1 Let P = v1v2v3v4 be a path of order four, and let u, v /∈ P . Suppose that

P + uv + C6. Then

1. If e(u, P ) = 4 then e(v, P ) ≤ 1.

2. If e(u, v1v4) = 2 then e(v, vivi+1) ≤ 1 for each 1 ≤ i ≤ 3.

3. If e(u, v1v2v4) = 3 then either e(v, P ) ≤ 1 or N(v, P ) = {v2, v4}. If e(u, v1v3v4) = 3

then either e(v, P ) ≤ 1 or N(v, P ) = {v1, v3}.

Proof:

1. Since e(u, P ) = 4, P + u has the following paths of order five: v1uv2v3v4, v1v2uv4v3,

v1uv4v3v2, v2v1uv3v4, v2v1uv4v3, and v3v2v1uv4. Therefore e(v, vivj) ≤ 1 for each i, j ∈

{1, 2, 3, 4}, so e(v, P ) ≤ 1.

2. This is true because C = uv1v2v3v4u is a 5-cycle, and if a vertex v is adjacent to

consecutive vertices of a 5-cycle, then C + v has a 6-cycle.

3. Since e(u, v1v2v3) = 3, P+u has the following paths of order five: v1uv2v3v4, v1v2uv4v3,

v1uv4v3v2, v2v1uv4v3, and v3v2v1uv4. Therefore e(v, vivj) ≤ 1 for each

(i, j) ∈ {(1, 4), (1, 3), (1, 2), (2, 3), (3, 4)}, so if e(v, P ) ≥ 2 then e(v, P ) = e(v, v2v4) = 2.
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v1 v5 v1v5

Figure 2.1: Top: If the arrows are extended into edges incident with the endvertices, then a cycle
of length 5 + 6 = 11 is formed. Bottom left: A ’twisted’ 11-cycle. Bottom right: The same cycle,
but ’untwisted’ by rotating the v1 − v5 path by 180 degrees.

The following lemma is a formal expression of the idea that if you take two paths and

join them together by their endvertices (Figure 2.1), then you get a cycle.

Lemma 2.1.2 Let P = v1v2 . . . vp and Q = u1u2 . . . uq. If e(u1uq, v1vp) ≥ 3, then P +

Q ⊇ Cp+q. Further, if e(u1uq, v1vp) = 2 and P + Q does not have a (p + q)-cycle, then

e(u1, v1vp) = 2, e(uq, v1vp) = 2, e(u1uq, v1) = 2, or e(u1uq, vp) = 2.

Lemma 2.1.3 Let P = v1v2 . . . vp be a path of order p ≥ 6. Let v /∈ P with e(v, P ) ≥ 4.

Suppose that N(v, P ) is not four consecutive vertices of P . Then either P + v has a large

cycle of length at most p, or e(v, P ) = 4, p = 6, and N(v, P ) = {v1, v3, v4, v6}.

Proof: Suppose that P+v does not have a large cycle of length at most p. Let i be minimum

such that vvi ∈ E. Then 1 ≤ i ≤ p − 4. First suppose i = 1. If vvj ∈ E for some j with

5 ≤ j ≤ p− 1, then vv1v2...vjv is a cycle of length 6 ≤ j + 1 ≤ p, a contradiction. Therefore

N(v, P ) ⊆ {v1, v2, v3, v4, vp}, and since N(v, P ) is not four consecutive vertices of P , we know

that vvp ∈ E. Since there is no large cycle of length at most p and e(v, P ) ≥ 4, it must be

the case that p = 6 and vv2 /∈ E. That is, it must be the case that N(v, P ) = {v1, v3, v4, v6}.



23

Figure 2.2: The graphs from Lemma 2.1.3 that do not contain large cycles of length at length at
most p.

Figure 2.3: The graphs from Lemma 2.1.4 that do not contain large cycles. Five or six of the
dashed lines may be present. The graph on the left is a ’worst-case’ scenario, and will therefore
figure prominently in this paper.

Now suppose i ≥ 2. Since e(v, P ) ≥ 4 and v is not adjacent to four consecutive vertices of

P , we have vvj ∈ E for some j with i+ 4 ≤ j ≤ p. But then vvivi+1...vjv is a cycle of length

6 ≤ j − i+ 2 ≤ p, a contradiction.

Lemma 2.1.4 Let P = v1v2 . . . vp be a path of order p. Let u1u2 ∈ E with u1, u2 /∈ P and

e(u1u2, P ) ≥ 5. Then either (1) P + u1u2 has a large cycle or (2) N(u1, P ) = {b} and

N(u2, P ) = {a, b, c, d} for a path abcd or (3) N(u1u2, P ) = {a, b, c} for a path abc.

Proof: Suppose that neither (1) nor (3) holds. Clearly, since (1) does not hold we have

e(u1, P ) ≥ 1 and e(u2, P ) ≥ 1. Let i be minimum such that e(u1u2, vi) > 0, and j be
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Figure 2.4: The resulting graph of Lemma 2.1.5. The only large cycle uses every vertex.

maximum such that e(u1u2, vj) > 0. WLOG let u2vi ∈ E. Then u2vk /∈ E for k ≥ i+ 4, for

otherwise u2vivi+1vi+2vi+3 . . . vku2 is a large cycle. Similarly, u1vk /∈ E for k ≥ i + 3. Since

(3) does not hold, j ≥ i + 3, so u2vj ∈ E and j = i + 3. By Lemma 2.1.2, e(u1, vivj) = 0,

and by Lemma 2.1.1-2, e(u1, vi+1vi+2) ≤ 1. Thus (2) holds.

Lemma 2.1.5 Let P = v1v2 . . . vp be a path of order p ≥ 5. Let u1u2 ∈ E with u1, u2 /∈ P

and e(u1u2, P ) ≥ 5. Suppose that neither (2) nor (3) from Lemma 2.1.4 hold. If P + u1u2

has no large cycle of length at most p + 1, then p = 5, and (P + u1u2 is isomorphic to the

graph with) N(u1, P ) = {v1, v3, v4} and N(u2, P ) = {v3, v5}.

Proof: By Lemma 2.1.4, P +u1u2 has a large cycle, and by assumption that large cycle has

length p+2. Suppose that e(u1u2, v1) = 0 or e(u1u2, vp) = 0, and WLOG let e(u1u2, v1) = 0.

Then e(u1u2, P − v1) ≥ 5, so by Lemma 2.1.4 P + u1u2 − v1 has a large cycle. But then

P +u1u2 has a large cycle of length at most p+ 1, a contradiction. Therefore e(u1u2, v1) ≥ 1

and e(u1u2, vp) ≥ 1. We also know that e(u1, v1vp) ≥ 1 and e(u2, v1vp) ≥ 1, for otherwise

e(u2, v1vp) = 2 or e(u1, v1vp) = 2, which would yield a cycle of order p + 1. So WLOG

let u1v1 ∈ E and u2vp ∈ E. Since u1v1 ∈ E and P + u1u2 does not have a large cycle

of length at most p + 1, we know that u2vj /∈ E for 4 ≤ j ≤ p − 1 and u1vj /∈ E for

j ≥ 5. Similarly, since u2vp ∈ E we have u1vj /∈ E for 2 ≤ j ≤ p − 3 and u2vj /∈ E for

j ≤ p− 4. Then, because p ≥ 5, N(u1, P ) ⊆ {v1, v2, v3, v4}∩ {v1, vp−2, vp−1} and N(u2, P ) ⊆

{vp, vp−1, vp−2, vp−3} ∩ {v2, v3, vp}. Since e(u1u2, P ) ≥ 5, this implies that p = 5. Therefore

N(u1, P ) ⊆ {v1, v3, v4} and N(u2, P ) ⊆ {v2, v3, v5}. Then e(u1, v3v4) + e(u2, v2v3) ≥ 3, so

either u1v4 ∈ E or u2v2 ∈ E. WLOG let u1v4 ∈ E. Since P + u1u2 does not have a 6-cycle
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and v2v1u1v4v5u2 is a path of order 6, we know that u2v2 /∈ E, which completes the proof.

Lemma 2.1.6 Let P and Q be disjoint paths with |P |+ |Q| ≥ 7. Suppose that e(P,Q) ≥ 6

and that P+Q does not contain a large cycle of order at most |P |+|Q|−1. Then e(P,Q) = 6,

and there is a labeling of P and Q such that one of the following is true (see Figure 2.6):

1. There are paths xy ⊆ P and abc ⊆ Q such that N(x,Q) = N(y,Q) = {a, b, c}.

2. There are paths xyz ⊆ P and abc ⊆ Q such that N(x,Q) = {a, b}, N(y,Q) = {a, b, c},

and N(z,Q) = {b}.

3. There are paths xyz ⊆ P and abcd ⊆ Q such that N(x,Q) = {b}, N(y,Q) = {a, b, c, d},

and N(z,Q) = {b} or {c}.

Proof: Let P = x1x2 . . . xm and Q = y1y2 . . . yn. WLOG let m ≤ n. By Lemma 2.1.3,

m ≥ 2. If m = 2 we get (1), via Lemma 2.1.4. Hence we may assume m ≥ 3 and n ≥ 4.

Case 1: m+ n = 7. We have m = 3 and n = 4. First suppose that e(x1x3, y1y4) ≥ 3, and

WLOG let x1y1 ∈ E and x3y4 ∈ E. Then, since P +Q does not contain a 6-cycle, x1y2 /∈ E,

x3y3 /∈ E, and e(x2, y1y4) = 0. Further, if x1y4 ∈ E then x3y2 /∈ E and if x1y3 ∈ E then

x3y1 /∈ E. Hence e(x1x3, Q) ≤ 4, so e(x2, y2y3) = e(x2, Q) ≥ 6− 4 = 2. Then x1y4 /∈ E and

x3y1 /∈ E, so x1y3 ∈ E and x3y2 ∈ E. But then x1y1y2x3y4y3x1 is a 6-cycle, a contradiction.

Therefore e(x1x3, y1y4) ≤ 2. Suppose that e(x1x3, y1y4) = 2. From the preceding para-

graph, we see that WLOG either e(x1, y1y4) = 2 or e(y1, x1x3) = 2. Then x1y1 ∈ E, and

either x1y4 ∈ E or x3y1 ∈ E. If x1y4 ∈ E, then e(x2, y1y4) = e(x3, y2y3) = 0 and e(x2, y2y3) ≤

1. But then e(P,Q) ≤ 5, a contradiction. Thus x3y1 ∈ E, so {x1y3, x2y4, x3y3} ∩ E = ∅. If

x3y2 ∈ E and x2y3 ∈ E, then x2y3y2x3y1x1x2 is a C6, a contradiction. Hence e(x1x2, y1y2) ≥

6− 2 = 4 and x3y1 ∈ E, so x2y3 /∈ E. Then e(x1x2x3, y1y2) = 6, which yields (1).

Therefore e(x1x3, y1y4) ≤ 1. Suppose that e(x1x3, y1y4) = 1, and WLOG let x1y1 ∈ E.

Then x2y4 /∈ E and x3y3 /∈ E, so e(y4, P ) = 0 and e(x3, Q) ≤ 1. If x3y2 /∈ E then (1) holds,
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so suppose x3y2 ∈ E. Then e(x1x2, y1y2y3) ≥ 5. If e(x1x2, y3) = 2 then x1y1y2x3x2y3x1 is

a 6-cycle, a contradiction. Hence e(x1x2, y1y2) = 4. If x1y3 ∈ E then x2y1x1y3y2x3x2 is a

6-cycle, so x2y3 ∈ E. This yields (2).

Hence e(x1x3, y1y4) = 0. Then e(x1x3, y2y3) + e(x2, Q) ≥ 6. If e(x2, y1y4) = 0 then (1)

holds, so suppose e(x2, y1y4) ≥ 1. WLOG let x2y1 ∈ E. If e(x2, Q) = 4 then (3) holds, so

suppose e(x2, Q) ≤ 3. If x3y3 ∈ E then e(x1, y2y3) ≤ 1, and if x1y3 ∈ E then e(x3, y2y3) ≤ 1.

Thus, since e(x1x3, y2y3) ≥ 3, we have e(x1x3, y2) = 2, e(x2, Q) = 3, and WLOG x1y3 ∈ E.

Since e(x1, y2y3) = 2 and x2y1 ∈ E, we have e(x2, y1y2y3) = 3. This yields (2).

Case 2: m+ n = 8. First say m = 3 and n = 5. By Lemma 2.1.4 and Case 1, we may

assume that e(x1, Q) ≥ 1, e(x3, Q) ≥ 1, e(y1, P ) ≥ 1, and e(y5, P ) ≥ 1. Let d = |t − s| be

maximum such that y1xs ∈ E and y5xt ∈ E (see Figure 2.5). If d = 0 then y1y2y3y4y5xsy1

is a 6-cycle, and if d = 1 then y1y2y3y4y5xtxsy1 is a 7-cycle. Since P + Q does not have a

large cycle of length at most 7, this implies that d = 2, and WLOG that s = 1 and t = 3.

Then e(x1, y2y3y5) = e(x2, y1y2y4y5) = e(x3, y1y3y4) = 0, so e(P,Q) ≤ 2 + 1 + 2 = 5, a

contradiction.

So m = n = 4. As before, we may assume e(xi, Q) ≥ 1 and e(yi, P ) ≥ 1 for i = 1, 4. Let

d = |t− s| be maximum such that y1xs ∈ E and y4xt ∈ E. Since P +Q has neither a 6-cycle

nor 7-cycle, it is clear that d 6= 1 and d 6= 2. Suppose that d = 3 and WLOG let s = 1

and t = 4. Then e(x1, y2y3) = e(x2, y1y2y4) = e(x3, y1y3y4) = e(x4, y2y3) = 0, so x1y4 ∈ E

and x3y2 ∈ E. But then x1y4y3y2x3x2x1 is a 6-cycle, a contradiction. Therefore d = 0,

and WLOG s = 1 or s = 2. Suppose s = 1. Then by the maximality of d, y1x4 /∈ E and

y4x4 /∈ E. Since e(x4, Q) ≥ 1, either x4y2 ∈ E or x4y3 ∈ E. If x4y2 ∈ E then x4y2y1x1x2x3x4

is a 6-cycle, and if x4y3 ∈ E then x4y3y4x1x2x3x4 is a 6-cycle. This is a contradiction, so

s = 2. Again, either x4y2 ∈ E or x4y3 ∈ E. But x4x3x2y4y3y2 and x4x3x2y1y2y3 are paths of

order six, a contradiction.

Case 3: m+ n ≥ 9. For contradiction, let k = m + n be minimal such that the lemma
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Figure 2.5: The cases d = 0, d = 1, and d = 2.

fails Suppose e(xi, Q) = 0 or e(yj, P ) = 0 for some i = 1,m, or some j = 1, n. WLOG

say e(x1, Q) = 0. Since P + Q has no cycle of length 6 ≤ l ≤ k − 1, it is also true that

P + Q − x1 has no cycle of length l. Therefore, since e(P − x1, Q) ≥ 6 and k is minimal,

one of (1)-(3) holds. Hence one of (1)-(3) also holds in P + Q, a contradiction. Thus

e(xi, Q) ≥ 1 for i = 1,m, and e(yj, P ) ≥ 1 for j = 1, n. Let d = |t − s| be maximum such

that y1xs ∈ E and ynxt ∈ E. Suppose that d = m − 1, and WLOG let s = 1 and t = m.

Then L = x1x2 . . . xmyn . . . y1x1 is a k-cycle. Since e(P,Q) ≥ 6, L has a chord. By Lemma

1.4.1, L contains two cycles L1 and L2 such that l(L1) + l(L2) = k + 2 ≥ 11. This implies

that L has a large cycle of length at most k + 2 − 3 = k − 1, a contradiction. Therefore

d ≤ m − 2. Since k ≥ 9, we know that n ≥ 5. Then C = y1y2...ynxtxt±1...xsy1 is a cycle of

length 6 ≤ n+ 1 ≤ l(C) ≤ n+m− 1 = k− 1, a contradiction. This completes the proof.

Lemma 2.1.7 If P and Q are paths of order 3 and 5 with e(P,Q) ≥ 7, then P +Q ⊇ C6.

Proof: Let P = x1x2x3 and Q = y1y2y3y4y5. For contradiction, suppose that there is no

6-cycle. By Lemma 2.1.6, it must be the case that e(x1, Q) ≥ 1, e(x3, Q) ≥ 1, e(y1, P ) ≥ 1,

and e(y5, P ) ≥ 1, for otherwise there are at least seven edges between two paths P ′ and Q′

with |P ′| + |Q′| = 7. Since P + Q does not have a 6-cycle, we know that e(x2, y1y5) ≤ 1.
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Figure 2.6: In each graph, the top path is a subpath of a path P and the bottom path is a subpath
of a path Q. If P and Q satisfy the conditions of Lemma 2.1.6, then P + Q must contain one of
these three graphs as a subgraph. In the bottom graph, one of the two dashed lines is present.

Therefore, because e(y1y5, P ) ≥ 2, we have e(y1y5, x1x3) ≥ 1. Thus by symmetry, WLOG

we can let x1y1 ∈ E. Then, since P + Q does not have a 6-cycle, we know that x1y5 /∈ E,

x2y4 /∈ E, and x3y3 /∈ E. Since e(y5, P ) ≥ 1, we know that either y5x2 ∈ E or y5x3 ∈ E.

First suppose that y5x3 ∈ E. Then similar to above, we know that x3y1 /∈ E, x2y2 /∈ E,

and x1y3 /∈ E. Therefore e(x1, y2y4) + e(x2, y1y3y5) + e(x3, y2y4) ≥ 7 − 2 = 5. Further,

since P + Q does not have a 6-cycle, we know by Lemma 2.1.2 that e(x1x3, y2y4) ≤ 2.

Hence e(x2, y1y3y5) = 3, so x2y5y4y3y2y1x2 = C6, a contradiction. Thus y5x3 /∈ E, so

y5x2 ∈ E. Then x2y1 /∈ E and e(x1x3, y2) = 0, so e(x1, y3y4) + e(x2, y2y3) + e(x3, y1y4) ≥ 5.

Further, by Lemma 2.1.2 it is not the case that x1y3 ∈ E and x3y1 ∈ E, so we have

e(y4, x1x3) = e(x2, y2y3) = 2. But then x1y1y2x2y3y4x1 = C6, a contradiction.

Lemma 2.1.8 Let P = x1x2x3 and Q = y1y2 . . . yn be disjoint paths, with n ≥ 5. If

e(x1x3, Q) ≥ n, x1y1 ∈ E, and x3yn ∈ E, then P +Q ⊇ C6.

Proof: For contradiction, let k be minimal such that the lemma is not true. Let P = x1x2x3

and Q = y1y2 . . . yk be disjoint paths with x1y1 ∈ E, x3yk ∈ E, and e(x1x3, Q) ≥ k, and
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assume P+Q + C6. If k = 5 then e(x1x3, y3) = 0, x1y5 /∈ E, x3y1 /∈ E, and e(x1x3, y2y4) ≤ 2.

But then e(x1x3, Q) ≤ 4, a contradiction. Hence k ≥ 6.

Case 1: x1y2 ∈ E. By the minimality of k, x3y1 ∈ E, for otherwise e(x1x3, y2 . . . yk) ≥ k − 1

and so P +Q ⊇ C6. Therefore x1y3 /∈ E, and since e(x1, y1y2) = 2 we also have e(x1, y5y6) =

0. Further, since x3y1 ∈ E we have x3y5 /∈ E, and since e(x1, y1y2) = 2 we have e(x3, y3y4) =

0. Hence e(x1x3, y1y2y3y4y5y6) = e(x1, y1y2y4) + e(x3, y1y2y6). Because e(x3, y2y6) ≤ 1,

and because if x1y4 ∈ E then e(x3, y2y6) = 0, this implies that e(x1x3, y1y2y3y4y5y6) ≤ 4.

Therefore, since e(x1x3, Q) ≥ k, we have k ≥ 8, and if k = 8 then e(x1x3, y7y8) = 4.

Suppose k = 8. Since e(x1, y7y8) = 2 we know that x1y4 /∈ E and x3y6 /∈ E. Therefore

e(x1x3, y1y2) = 4. But then x1y1y2x3y8y7x1 = C6, a contradiction. Hence k ≥ 9.

Because e(x1x3, y1 . . . y6) ≤ 4, we have e(x1x3, y7 . . . yk) ≥ k − 4. Then x1yj ∈ E for

some 7 ≤ j ≤ k, so let j ≥ 7 be minimal such that x1yj ∈ E. Suppose j = 7. Then

by the minimality of k and because e(x1x3, y7 . . . yk) ≥ k − 4 > k − 6, we know that

k − 6 ≤ 4, for otherwise P + Q ⊇ C6. This implies that k = 10, because otherwise

x1y7y8y9x3x2x1 = C6. Then x1y7 ∈ E and x3y10 ∈ E, so x3y9 /∈ E and x1y8 /∈ E.

Therefore, since e(x1x3, y7y8y9y10) ≥ 10 − 4 = 6, we see that x1y9y10x3y8y7x1 = C6, a

contradiction. Thus j ≥ 8. By the minimality of j, e(x1, y7 . . . yj−1) = 0. Therefore

e(x1x3, yj . . . yk) ≥ (k − 4) − (j − 7) = k − j + 3. Hence j ≤ k − 1, and by the mini-

mality of k we must have (k − j + 1) ≤ 4, because yj . . . yk is a path of order k − j + 1 with

x1yj ∈ E and x3yk ∈ E. Thus k − 1 ≥ j ≥ k − 3.

If k = 9 then e(x1x3, y7y8y9) ≥ 5, so by the minimality of j we have e(x1x3, y8y9) = 4

and x3y7 ∈ E. But then x1x2x3y7y8y9x1 = C6, a contradiction. If k = 10 then x3y10 ∈ E

so x1y8 /∈ E, which means that e(x1x3, y9y10) ≥ 6 − e(x1x3, y7y8) = 6 − e(x3, y7y8) ≥ 4.

But then x1y9 ∈ E and x3y7 ∈ E, a contradiction. Therefore k ≥ 11. Since j ≥ k − 3,

by the minimality of j we know that e(x1, y7 . . . yk−4) = 0. Thus e(x1x3, yk−3 . . . yk) =

e(x1x3, y7 . . . yk) − e(x1x3, y7 . . . yk−4) ≥ (k − 4) − (k − 10) = 6. It is easy to see that this

implies P +Q ⊇ C6, a contradiction.
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Case 2: x1y2 /∈ E. Since P + Q + C6, we know that x3yk−4 /∈ E and x3y3 /∈ E. Therefore

e(x1, Q) ≥ k − (k − 2), so let j ≥ 3 be minimal such that x1yj ∈ E. Suppose j ≤ k − 4.

Then yj . . . yk is a path of order at least five, so by the minimality of k we must have

e(x1x3, yj . . . yk) ≤ k − j. Then e(x1x3, y1 . . . yj−1) ≥ j, so by the minimality of j we have

e(x3, y1 . . . yj−1) ≥ j−1. Since x3y3 /∈ E, this implies that j = 3. But then x1y3y2y1x3x2x1 =

C6, a contradiction. Therefore j ≥ k−3, so e(x1, y2 . . . yk−4) = 0. Since P +Q + C6, we have

e(x1x3, yk−3yk−1) ≤ 2, e(x1x3, yk−2yk) ≤ 2, and e(x3, y3yk−4) = 0. Thus e(x3, y1 . . . yk−5) ≥

k− 1− 4 = k− 5 and k ≤ 7. It is easy to see that P +Q ⊇ C6, so the proof is complete.

Lemma 2.1.9 Let P = x1x2 . . . xn be a path of order n ≥ 6. Let u, v /∈ P with uv /∈ E and

e(uv, P ) ≥ n + 1. Suppose that e(u, x1xn) = 2, and that if uxi ∈ E then vxi−1 /∈ E. Then

P + uv ⊇ C6.

Proof: Suppose not. Let k be minimal such that the lemma fails. It is easy to see that

k ≥ 7. Let i ≥ 2 be minimal such that uxi ∈ E.

Suppose that i ≤ k− 4. Since uxk ∈ E and P + uv + C6, we know that i ≤ k− 5. Then

xi . . . xk is a path of order k− i+1 ≥ 6 and e(u, xixk) = 2, so by the minimality of k we have

e(uv, xi . . . xk) ≤ k − i + 1. Thus e(uv, x1 . . . xi−1) ≥ (k + 1) − (k − i + 1) = i, and by the

minimality of i this implies that e(v, x1 . . . xi−1) ≥ i− 1. But then uxi ∈ E and vxi−1 ∈ E,

a contradiction.

Hence i ≥ k − 3. Suppose that e(uv, xk−3 . . . xk) ≥ 5. Since uxk ∈ E, vxk−1 /∈ E, so

e(u, xk−3xk−2xk−1) + e(v, xk−3xk−2xk) ≥ 4. Also, e(u, xk−2xk−1) + e(v, xk−3xk−2) ≤ 2, so

uxk−3 ∈ E and vxk ∈ E. Then vxk−4 /∈ E, and uxk−4 /∈ E by the minimality of i. This

argument shows that e(uv, xk−4 . . . xk) ≤ 5, which implies that e(uv, x1 . . . xk−5) ≥ k − 4.

Hence, by the minimality of i we know that e(v, x1 . . . xk=5) = k− 5. Since P + uv + C6, we

see that k ≤ 9. It is easy to check that P + uv ⊇ C6, a contradiction.
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2.2 Getting Smaller Cycles from Larger Ones

In this section, we show that if C and L are disjoint cycles with lengths p and q, where

q ≥ p ≥ 6 with q ≥ 7, and if e(C,L) ≥ 7q+1
2

, then (i) if p ≥ 7, then either C + L contains

a 6-cycle or C + L contains two disjoint large cycles C ′ and L′ with l(C ′) + l(L′) < p + q,

and (ii) if p = 6, then C + L contains disjoint large cycles C ′ and L′ such that l(C ′) = 6

and l(C ′) + l(L′) < p+ q. This result is proved by Lemmas 2.2.5-2.2.7. Lemmas 2.2.2-2.2.4

will serve the proof of Lemma 2.2.5. We begin with a simple result concerning the number

of edges between a vertex and a large cycle.

Lemma 2.2.1 If L = v1v2 . . . vpv1 is a cycle of order p ≥ 7 and v /∈ L with e(v, L) ≥ 3,

then either L + v has a large cycle C with l(C) < p, or e(v, L) = 3 with v adjacent to three

consecutive vertices of L.

Proof: Suppose L + v does not have a large cycle with length less than p. WLOG let

vv1 ∈ E. If vv4 ∈ E then vv4v5...vpv1v is a cycle of length p− 1. If vvj ∈ E for some j with

5 ≤ j ≤ p − 2, then vv1v2...vjv is a cycle of length 6 ≤ j + 1 ≤ p − 1. Hence vvj /∈ E for

j ∈ {4, 5, . . . , p−2}, so N(v, P ) ⊆ {v1, v2, v3, vp−1, vp}. If vv2 ∈ E, then vv2v3...vp−1 is a path

of order p− 1, so vvp−1 /∈ E. Similarly, if vv3 ∈ E then vvp /∈ E. Further, e(v, v3vp−1) ≤ 1,

for otherwise vvp−1vpv1v2v3v = C6. Therefore, since e(v, P ) ≥ 3, it is easy to see that v is

adjacent to three consecutive vertices of L.

Lemma 2.2.2 Let L = x1x2 . . . x7x1 be a 7-cycle, and let P = a1a2a3a4 be a 4-path with

P and L disjoint and e(a1, L) ≥ e(a4, L). Let u /∈ L + P with e(u, L) = 7, and suppose

that L + P + u does not contain 2C6. (1) If e(a1, L) ≥ 5, then either e(a4, L) = 0 or

e(a1, L) = 5, e(a4, L) = 1, and the neighbor of a4 in L is adjacent to the nonneighbors of a1

in L. (2) If e(a1, L) = 4, then either e(a4, L) ≤ 1 or (P +L is isomorphic to the graph with)

N(a1, L) = {2, 4, 6, 7} and N(a4, L) = {2, 4}.
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u xr xr+1

P
Figure 2.7: Lemma 2.2.2: The graph L+u−xrxr+1 (left) has a 6-cycle, so the graph P +xrxr+1

(right) cannot have a 6-cycle.

xr xr+1

a1 a4

xrxr-1

a1 a4
Figure 2.8: Lemma 2.2.2: If a4xr ∈ E, then e(a1, xr−1xr+1) = 0.
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a4a1

Figure 2.9: Lemma 2.2.2: The only scenario in which e(a1, L) = 4 and e(a4, L) = 2. Left: a4
cannot be adjacent to any of the white vertices. Right: a1 cannot be adjacent to any of the white
vertices.

Proof: Since e(u, L) = 7, L + u − xrxr+1 ⊇ C6 for each xr ∈ L. Hence for each xr ∈ L,

P + xrxr+1 does not have a 6-cycle. First suppose e(a1, L) ≥ 6. Then every vertex in L

has a neighbor in N(a1, L), so e(a4, L) = 0, for otherwise xr±1a1a2a3a4xrxr±1 is a 6-cycle

for xr ∈ N(a4, L). Now suppose e(a1, L) = 5 with xi, xj /∈ N(a1, L). WLOG there are

three possibilities for the set {i, j}: {1, 2}, {1, 3}, and {1, 4}. If every vertex in L has a

neighbor in N(a1, L), then as above we get N(a4, L) = 0. Thus if e(a4, L) ≥ 1 we must have

{i, j} = {1, 3}, with x2 the only nonneighbor of N(a1, L). Hence e(a1, L) = 5, e(a4, L) = 1,

and the neighbor of a4 is adjacent to the nonneighbors of a1. Finally, suppose e(a1, L) = 4.

There are four possibilities for the nonneighbors xi, xj, xk of a1: {i, j, k} = {1, 2, 3}, {1, 2, 4},

{1, 2, 5}, or {1, 3, 5}. For the first three cases there is at most one nonneighbor of N(a1, L):

x2 in the first and x3 in the second, with none in the third. Thus if e(a4, L) ≥ 2, then

N(a1, L) = {2, 4, 6, 7} and N(a4, L) = {2, 4}.

Lemma 2.2.3 Let L = x1x2 . . . x7x1 be a 7-cycle, and let P = a1a2a3a4 be a 4-path with P

and L disjoint and e(a1, L) ≥ e(a4, L). Let u /∈ L + P with e(u, L) = 6, and suppose that

L + P + u does not contain 2C6. If e(a1, L) ≥ 6, then either e(a4, L) ≤ 1, or e(a4, L) = 2,

N(a1, L) = N(u, L), and the nonneighbor of a1 and u is adjacent to both neighbors of a4.

Proof: WLOG say e(u, L − x7) = 6. Then L + u − xrxr+1 ⊇ C6 for r = 2, 3, 4, 6, 7, so
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a1 a4

x7x1
Figure 2.10: Lemma 2.2.3: The only 6-cycles using the path P are a1a2a3a4x6x5a1 and
a1a2a3a4x1x2a1, and neither x5x6 nor x1x2 are in F .

for each such r, P + xrxr+1 does not have a 6-cycle. Let F = {x2x3, x3x4, x4x5, x6x7, x7x1}

be the set of edges xrxr+1 such that L + u − xrxr+1 ⊇ C6. Then for each xixj ∈ F , if

a1xi ∈ E then a4xj /∈ E and if a1xj ∈ E then a4xi /∈ E. Suppose e(a4, L) ≥ 2. Then clearly

e(a1, L) = 6, for otherwise we have a4xj /∈ E for each xj ∈ L. Let a1xk /∈ E. It is easy to

check that if k = 4, 5, 6, then e(a4, L) ≤ 1, so by symmetry we must have a1x7 /∈ E with

N(a4, L) = {x1, x6}.

Lemma 2.2.4 Let L be a 7-cycle and let P = a1a2 . . . a5 be a 5-path with P and L disjoint.

Let u /∈ L+ P with e(u, L) ≥ 6. If L+ P + u does not contain 2C6 then e(a1a5, L) ≤ 7.

Proof: Since e(u, L) ≥ 6, L + u − xr ⊇ C6 for each xr ∈ L, so P + xr does not have a

6-cycle. Hence e(xr, a1a5) ≤ 1 for each xr ∈ L, which means e(a1a5, L) ≤ 7.

Lemma 2.2.5 Let L be a cycle of length 7 and let C be a cycle of length 6. If e(C,L) ≥ 25,

then C + L contains two disjoint 6-cycles.

Proof: Suppose that the lemma is not true. Let L = x1 . . . x7x1 and C = a1 . . . a6a1.

WLOG let e(a1, L) ≥ e(ai, L) for each ai ∈ C. Since e(C,L) ≥ 25, e(a1, L) ≥ 5. Let

i ∈ {1, 2, . . . , 6} and r ∈ {1, 2, . . . , 7}. If L+ai−xrxr+1 contains a 6-cycle then C−ai+xrxr+1

does not have a 6-cycle. Therefore, by Lemma 2.1.6 we know that

e(xrxr+1, C − ai) ≤ 6 (2.1)
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a4

x7 x1 x2 x3

a3a2 a5 a6
Figure 2.11: Lemma 2.2.5, Case 1.1

for each i and r such that L+ ai − xrxr+1 contains a 6-cycle.

We use cases based on the number of edges from a1 to L to complete the proof of this

lemma. In each case, we will rely on (2.1). We will use Lemma 2.1.6 to give us information

about the edges between xrxr+1 and C − ai.

Case 1: e(a1, L) = 7. Since L+ a1 − xrxr+1 ⊇ C6 for each 1 ≤ r ≤ 7, we have e(xrxr+1, C −

a1) ≤ 6 for each r by (2.1). If e(xrxr+1, C − a1) ≤ 5 for each r, then e(C,L) ≤ 7 +

5(7
2
) = 49

2
< 25, a contradiction. Thus WLOG say e(x1x2, C − a1) = 6. By Lemma 2.1.6,

N(x1x2, C − a1) = {ar, ar+1, ar+2} for some 2 ≤ r ≤ 4. By symmetry, we need only consider

the cases r = 2 and r = 3.

Case 1.1: N(x1x2, C − a1) = {a2, a3, a4}. Since x2a2 ∈ E, we know that x3a5 /∈ E, for

otherwise C − a1 + x2x3 has the 6-cycle x2a2a3a4a5x3x2. Similarly, x3a6 /∈ E because x2a3 ∈

E. By symmetry, e(x7, a5a6) = 0 since e(x1, a2a3) = 2. Suppose that e(x3, a2a3a4) =

e(x7, a2a3a4) = 0. Then e(x3, C) = e(x7, C) = 1, e(x1x2, C) = 8, and e(x4x5, C) ≤ 8, so

e(x6, C) ≥ 25− 18 = 7, a contradiction. Thus either e(x3, a2a3a4) > 0 or e(x7, a2a3a4) > 0.

WLOG let e(x3, a2a3a4) > 0. If x3a2 ∈ E or x3a4 ∈ E then x1x2x3 + a2a3a4 contains a

6-cycle by Lemma 2.1.2, since e(x1, a2a4) = 2. If x3a3 ∈ E, then x1x2x3 + a2a3a4 contains

the 6-cycle x3a3a2x1a4x2x3. Since e(x3, a2a3a4) > 0, this implies that x1x2x3 + a2a3a4 ⊇ C6,

and hence that a5a6a1 + x4x5x6x7 does not have a 6-cycle.

Let P = a5a6a1 and Q = x4x5x6x7. Since e(a1, Q) = 4, we know that e(a5a6, Q) ≤ 2
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a1
x7

a1
x7

Figure 2.12: Lemma 2.2.5, Case 2: The graphs L+ a1 and L+ a1 − x3x4.

by Lemma 2.1.6. Further, since e(a1, Q) = 4 we actually know that e(a5a6, Q) ≤ 1, for

otherwise e(P,Q) = 6 and P + Q contains none of the graphs in Figure 2.6 as a subgraph.

Since e(a5a6, x1x2) = 0 and e(a5a6, x3) = 0, this means that e(a2a3a4, L) ≥ 25−1−7 = 17. If

e(a2, L) ≥ 6 or e(a3, L) ≥ 6, then e(a4, L) ≤ 1 by Lemma 2.2.2 or Lemma 2.2.3, since a4a5a6a1

is a 4-path. But then e(a2a3a4, L) ≤ 1 + 14 = 15, a contradiction. Hence e(a2a3, L) ≤ 10,

so e(a4, L) = 7. Then a4a5a6a1x4x3a4 is a 6-cycle, so e(a2a3, L − x3x4) ≤ 6 by Lemma

2.1.5. Since e(a2a3, L) = 10, e(a2a3, x3x4) = 4. But then a2a3x4x3x2x1a2 is a 6-cycle and

a4a5a6a1x5x6a4 is a 6-cycle, a contradiction.

Case 1.2: N(x1x2, C − a1) = {a3, a4, a5}. Since C − a1 + x2x3 does not have a 6-cycle

and C − a1 + x7x1 does not have a 6-cycle, e(x3x7, a2a6) = 0. Suppose e(x3, a3a4a5) >

0. Then x1x2x3a5a4a3 ⊇ C6, so x4x5x6x7a6a1a2 does not have a C6. Since e(a1, L) = 7,

e(a2a6, x4x5x6x7) ≤ 2 by Lemma 2.1.6. Then e(a2a6, L) ≤ 2, so e(a3a4a5, L) ≥ 25−2−7 = 16.

If e(a5, L) ≥ 6 or e(a3, L) ≥ 6, then e(a4, L) ≤ 1 by Lemma 2.2.2 or Lemma 2.2.3, since

a1a2a3a4 and a4a5a6a1 are 4-paths. Then e(a3a4a5, L) ≤ 1 + 14 = 15, a contradiction.

Therefore e(a3a5, L) ≤ 10, so e(a4, L) ≥ 6. But then since a5a6a1a2a3 is a 5-path, we have

e(a5a3, L) ≤ 7 by Lemma 2.2.4. This is of course a contradiction, since e(a3a4a5, L) ≥ 16.

Hence e(x3, C) = 1, and by symmetry e(x7, C) = 1. But then e(x6, C) ≥ 25−1−1−8−8 = 7,

a contradiction.
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Case 2: e(a1, L) = 6. WLOG let a1x7 /∈ E. Then L + a1 − xrxr+1 ⊇ C6 for r = 2, 3, 4, 6, 7,

so e(xrxr+1, C − a1) ≤ 6 for r = 2, 3, 4, 6, 7 by (2.1).

Claim: e(x2x3, C − a1) ≤ 5 and e(x4x5, C − a1) ≤ 5.

Proof: Suppose not. By symmetry, we may assume that e(x2x3, C − a1) = 6. As in Case 1,

we have two cases to consider.

Case A: N(x2x3, C − a1) = {a2, a3, a4}. Since C− a1 +x3x4 does not have a C6, we have

e(x4, a5a6) = 0. Suppose e(x4, a2a3a4) > 0. Then a2a3a4x2x3x4 ⊇ C6, so a5a6a1x5x6x7x1

does not have a 6-cycle. Since e(a1, x5x6x1) = 3, this implies that e(a5a6, x5x6x7x1) ≤ 2.

Then e(a5a6, L) ≤ 2, so e(a2a3a4, L) ≥ 25 − 2 − 6 = 17. Since e(ai, L) ≤ 6 for each ai, we

have e(a2a3, L) ≥ 11. Since a4a5a6a1 is a 4-path and e(a1, L) = 6, by Lemma 2.2.3 we know

that e(a4, L) ≤ 2. But then e(a2a3, L) ≥ 15, a contradiction. Hence e(x4, a2a3a4) = 0, so

e(x4, C) = e(x4, a1) = 1.

Suppose that e(x1, a2a3a4) > 0. Then a5a6a1x4x5x6x7 does not have a 6-cycle, so

since e(a1, x4x5x6) = 3 we have e(a5a6, x5x6x7) ≤ 2 and e(a5a6, x6x7) ≤ 1. Then since

e(x4, a5a6) = 0, we have e(a5a6, L) ≤ 2 + 2 = 4. Then e(a2a3a4, L) ≥ 25 − 4 − 6 = 15.

By Lemma 2.2.3 we know that e(a2, L) ≤ 5 and e(a3, L) ≤ 5, as above, for otherwise

e(a2a3a4, L) ≤ 6 + 2 + 6 = 14 < 15. Suppose e(a5a6, x1x5) = 3. Then a5a6x5x6x7x1 ⊇ C6

and a1x2x3a4a3a2a1 is a 6-cycle, a contradiction. So e(a5a6, x1x5x6x7) ≤ 2 + 1 = 3, and

hence e(a2a3a4, L) ≥ 25− 3− 6 = 16. Then e(a4, L) ≥ 16− 10 = 6, and e(a5a6, L) = 3 with

e(a5a6, x1x5) = 2 and e(a5a6, x6x7) = 1. Since a5a6a1x4x5x6x7 does not have a C6, a6x6 ∈ E.

Since e(a4, L) = 6 and e(x4, C) = 1, we also know that a4x1 ∈ E. But then a1a2a3x2x3x4a1

and a4a5a6x6x7x1a4 are 6-cycles, a contradiction. Therefore e(x1, a2a3a4) = 0, so e(x1, C) ≤

3.

So e(x1, C) ≥ 3 and e(x4, C) = 1. Since e(x2x3, C−a1) ≤ 6 and e(x6x7, C−a1) ≤ 6, and

a1x7 /∈ E, we have e(x5, C) ≥ 25− 3− 1− 8− 7 = 6. But then C+x5−a1 and L−x4x5 +a1

contain 6-cycles, a contradiction.
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Case B: N(x2x3, C − a1) = {a3, a4, a5}. Since C − a1 +x3x4 does not have a C6, we have

e(x4, a2a6) = 0. Suppose that e(x4, a3a4a5) > 0. Then a3a4a5x2x3x4 ⊇ C6, so a6a1a2x5x6x7x1

does not have a 6-cycle. Since e(a1, x1x5x6) = 3, this implies that e(a2a6, x5x6x7x1) ≤ 2.

Then e(a2a6, L) ≤ 2, so e(a3a4a5, L) ≥ 25 − 2 − 6 = 17. Then e(a3a5, L) ≥ 17 − 6 = 11,

so since a1a2a3a4 and a4a5a6a1 are 4-paths we have e(a4, L) ≤ 2 by Lemma 2.2.3. But then

e(a2a3, L) ≥ 17 − 2 = 15, a contradiction. Hence e(x4, C) = 1. Since L + a1 − x4x5 has a

6-cycle, C + x5 − a1 does not have a 6-cycle, so e(x5, C) ≤ 5. Since e(x2x3, C − a1) ≤ 6 and

e(x6x7, C − a1) ≤ 6, we have e(L− x1, C) ≤ 1 + 5 + 8 + 7 = 21. Hence e(x1, C) ≥ 4.

Because e(x1, a3a4a5) > 0, a6a1a2x4x5x6x7 does not have a C6. Since a1x4 ∈ E, this

implies that e(x7, a2a6) = 0. Since L+a1−x4x5 and L+a1−x6x7 have 6-cycles, e(x5, a2a6) ≤ 1

and e(x6, a2a6) ≤ 1. Since a4a5a6a1x4x3a4 and a4a3a2a1x4x3a4 are 6-cycles, a2a3x6x7x1x2

and a5a6x6x7x1x2 don’t have 6-cycles. Because a3x2 ∈ E and a5x2 ∈ E, this implies that

e(x6, a2a6) = 0. Then e(a2a6, L) ≤ 1 + 2 = 3, so e(a3a4a5, L) ≥ 25 − 3 − 6 = 16. Then

by Lemma 2.2.3 e(a3, L) ≤ 5 and e(a5, L) ≤ 5, for otherwise e(a3a4a5, L) ≤ 6 + 2 + 6 =

14 < 16. Hence e(a4, L) = 6, e(a2a6, x1) = 2, and e(a2a6, x5) = 1. Since a4x4 /∈ E, we know

that a4x7 ∈ E. Then x7x1a4a5a6a1 and x7x1a4a3a2a1 have 6-cycles, so a2a3x2x3x4x5 and

a6a5x2x3x4x5 do not have 6-cycles. But since e(x2, a3a5) = 2, this implies that e(x5, a2a6) =

0, a contradiction.

QED

By the claim, we have e(x2x3, C − a1) ≤ 5 and e(x4x5, C − a1) ≤ 5. Then e(x6x7x1, C −

a1) ≥ 19− 5− 5 = 9.

Suppose e(x6x7, C − a1) = 6. Then e(x1, C − a1) ≥ 3. If N(x6x7, C − a1) = {a2, a3, a4},

then e(x1, a5a6) = 0 since C − a1 + x7x1 does not have a 6-cycle. Then x1a4 ∈ E, so

x6x7x1a2a3a4 ⊇ C6, which means a5a6a1x2x3x4x5 does not have a 6-cycle. Since

e(a1, x2x3x4x5) = 4, by Lemma 2.1.6 we know that e(a5a6, x2x3x4x5) ≤ 1. Then e(a5a6, L) ≤

1, so e(a2a3a4, L) ≥ 25− 1− 6 = 18. Then e(a3, L) = 6, so e(a4a2, L) ≤ 7 by Lemma 2.2.4,

a contradiction. Then N(x6x7, C − a1) = {a3, a4, a5}, so e(x1, a2a6) = 0. Then x1a5 ∈ E
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since e(x1, C−a1) = 3, so x6x7x1a3a4a5 ⊇ C6. Then x2x3x4x5a6a1a2 does not have a 6-cycle

and e(a1, x2x3x4x5) = 4, so e(a2a6, x2x3x4x5) ≤ 2 by Lemma 2.1.6. Thus e(a2a6, L) ≤ 2, so

e(a3a4a5, L) ≥ 25−2−6 = 17. Then e(a3, L) = 6 or e(a5, L) = 6, a contradiction by Lemma

2.2.3 since a4a5a6a1 and a4a3a2a1 are 4-paths and e(a4, L) ≥ 5.

Therefore e(x6x7, C−a1) ≤ 5, and by symmetry e(x7x1, C−a1) ≤ 5. Since e(x6x7x1, C−

a1) ≥ 9, this implies that e(x7, C−a1) ≤ 1, e(x6, C−a1) ≥ 4, and e(x1, C−a1) ≥ 4. Further,

because L+a1−x7x1 ⊇ C6 and L+a1−x6x7 ⊇ C6 we know that e(x6, C−a1) = e(x1, C−a1) =

4 and e(x7, C − a1) = 1, and that e(x1, a2a6) = e(x6, a2a6) = 1. Then e(x1x6, a3a4a5) = 6, so

e(x7, a2a6) = 0 because otherwise x7x1a5a4a3a2x7 is a 6-cycle or x7x6a3a4a5a6x7 is a 6-cycle,

a contradiction since L + a1 − x7x1 ⊇ C6 and L + a1 − x6x7 ⊇ C6. Since x1x7x6a3a4a5x1 is

a 6-cycle, a6a1a2x2x3x4x5 does not have a 6-cycle. Because e(a1, x2x3x4x5) = 4, this implies

that e(a2a6, x2x3x4x5) ≤ 2 by Lemma 2.1.6.

Because e(a2a6, x1x6) = 2 and e(a2a6, x7) = 0, we have e(a2a6, L) ≤ 4, and hence

e(a3a4a5, L) ≥ 25−10 = 15. By Lemma 2.2.3, e(a3, L) ≤ 5 and e(a5, L) ≤ 5, so e(a4, L) ≥ 5.

Since e(x1x6, a3a5) = 4, x1 → (C, a4) and x6 → (C, a4). Then L + a4 − x1 and L + a4 − x6

do not have 6-cycles, so e(a4, x6x2) ≤ 1, e(a4, x1x5) ≤ 1, and e(a4, x3x7) ≤ 1. But then

e(a4, L) ≤ 4, a contradiction.

Case 3: e(a1, L) = 5. By symmetry, there are three cases for N(a1, L), which we consider

presently.

Case 3.1: e(a1, x6x7) = 0. In this case L+a1−xrxr+1 ⊇ C6 for r = 2, 3, 6, so e(x2x3, C−

a1) ≤ 6, e(x3x4, C − a1) ≤ 6, and e(x6x7, C − a1) ≤ 6 by (2.1).

Claim: e(x2x3, C − a1) ≤ 5 and e(x3x4, C − a1) ≤ 5.

Proof: Suppose not. By symmetry, we may assume that e(x2x3, C − a1) = 6. As in Case

1, we have two cases to consider.

Case A: N(x2x3, C − a1) = {a2, a3, a4}. We have e(x4, a5a6) = 0 because L+a1−x3x4 ⊇
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C6. Suppose e(x4, a2a3a4) > 0. Then a5a6a1x5x6x7x1 does not have a 6-cycle, so because

e(a1, x5x1) = 2 we know that e(a5, x5x6x7x1) ≤ 2 and e(a6, x5x6x7x1) ≤ 1. Thus e(a5a6, L) ≤

1 + 2 = 3. Then e(a2a3a4, L) ≥ 25 − 5 − 3 = 17, a contradiction as e(ai, L) ≤ 5 for each

ai. Hence e(x4, C) = 1. Then e(x1x5, C) ≥ 25 − e(x2x3, C) − e(x4, C) − e(x6x7, C) ≥

25− 8− 1− 6 = 10, so e(x1, C) ≥ 4. Since e(x1, a2a3a4) > 0, a5a6a1x4x5x6x7 does not have

a 6-cycle. Then, because e(a1, x4x5) = 2, we have e(a5, x5x6x7) ≤ 1 and e(a6, x5x6x7) ≤ 2.

Hence e(a5a6, L) ≤ 1 + 2 + 2 = 5. If e(a5a6, L) = 5 then e(a5a6, x1) = 2, e(a6, x5x6) = 2, and

a5x5 ∈ E. Then a5a6x1x7x6x5a5 and a1a2a3a4x3x2a1 are 6-cycles, a contradiction. Hence

e(a5a6, L) ≤ 4, so e(a2a3a4, L) ≥ 25− 5− 4 = 16, a contradiction since e(ai, L) ≤ 5 for each

ai.

Case B: N(x2x3, C − a1) = {a3, a4, a5}. In this case e(x4, a2a6) = 0. Suppose

e(x4, a3a4a5) > 0. Then a6a1a2x5x6x7x1 does not have a 6-cycle, so e(a2a6, x5x6x7x1) ≤ 2

because e(a1, x1x5) = 2. Then e(a2a6, L) ≤ 2, so e(a3a4a5, L) ≥ 25 − 5 − 2 = 18, a

contradiction. Hence e(x4, C) = 1, so e(x1, C) ≥ 25−8−6−1−6 = 4. Thus e(x1, a3a4a5) > 0.

Then x4x5x6x7a6a1a2 does not have a 6-cycle, so e(x7, a2a6) = 0. If {x5a6, x6a6, x6a2} ⊆ E,

then x4x5a6x6a2a1x4 is a 6-cycle, a contradiction. Thus e(a2a6, x5x6) ≤ 3, so e(a2a6, L) ≤

3+2 = 5. Since e(a1a3a4a5, L) ≤ 20, e(a2a6, L) = 5, so e(a2a6, x5x6) = 3 and e(a2a6, x1) = 2,

with x5a2 ∈ E.

Then x1x2a5a4a3a2x1 is a C6 and a6a1x3x4x5x6 is a 6-path, so a6x6 /∈ E, which means

x5a6 ∈ E and x6a2 ∈ E. Suppose that e(x7, a3a4) = 0. Then, since e(x7, a1a2a6) = 0, we

have e(x7, C) ≤ 1. Since e(x6, a1a6) = 0, this implies that e(x1x5, C) ≥ 25− 4− 1− 1− 8 =

11. Then e(x1x5, a5a6) ≥ 3, so a5a6x5x6x7x1 ⊇ C6. But x2x3a4a3a2a1x2 is a 6-cycle, a

contradiction. Thus e(x7, a3a4) ≥ 1, so a3a4x3x2x1x7a3 or a4a3x3x2x1x7a4 is a 6-cycle,

which means a5a6a1a2x5x6 does not have a 6-cycle. Since e(a2, x5x6) = 2, this implies that

e(a5, x5x6) = 0. Therefore e(a3a4a5, L) ≤ 14, since x4a5 /∈ E. Then e(C,L) ≤ 14+5+5 = 24,

a contradiction.

QED
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By the claim, we have e(x2x3, C − a1) ≤ 5 and e(x3x4, C − a1) ≤ 5. Suppose that

e(x6x7, C − a1) = 6. First say N(x6, x7, C − a1) = {a2, a3, a4}. If e(x1, a2a3a4) > 0, then

x6x7x1a2a3a4 ⊇ C6. Then a5a6a1x2x3x4x5 does not have a C6, so because e(a1, x2x3x4x5) = 4

we have e(a5a6, x2x3x4x5) ≤ 1 by Lemma 2.1.6. Then e(a5a6, L) ≤ 3, so e(a2a3a4, L) ≥

25 − 3 − 5 = 17, a contradiction. Thus e(x1, C) ≤ 3, and by symmetry e(x5, C) ≤ 3. Then

e(x4, C) ≥ 25 − 6 − 7 − 6 = 6, so x4 → C. But L − x4 + a1 ⊇ C6, a contradiction. Hence

N(x6, x7, C − a1) = {a3, a4, a5}. If e(x1, a3a4a5) > 0 then a6a1a2x2x3x4x5 does not have

a 6-cycle. Since e(a1, x2x3x4x5) = 4, this implies that e(a2a6, L) ≤ 2 + 2 = 4 by Lemma

2.1.6. But then e(a3a4a5, L) ≥ 25− 4− 5 = 16, a contradiction. Then e(x1, C) ≤ 3, and by

symmetry we have e(x1x5, C) ≤ 6. But then again we have e(x4, C) ≥ 25− 6− 7− 6 = 6, a

contradiction. Therefore e(x6x7, C − a1) ≤ 5.

Since L + a1 − x3x4 ⊇ C6, e(x4, a2a6) ≤ 1. Suppose that e(x4, C) = 5, and WLOG

say e(x4, C − a6) = 5. Then because C − a1 + x3x4 does not have a 6-cycle, we have

e(x3, a2a5a6) = 0 and e(x3, a3a4) ≤ 1. Suppose that e(x2, a3a5) > 0. Then since e(x4, a3a5) =

2, x2x3x4a3a4a5 ⊇ C6. Because e(a1, x1x5) = 2 and a6a1a2x5x6x7x1 does not have a 6-cycle,

e(a2a6, x5x6x7x1) ≤ 2. Since x2 9 (C, a1) we have e(x2, a2a6) ≤ 1. Then e(a2a6, L) ≤

2 + 1 + 1 = 4, so e(a3a4a5, L) ≥ 25− 5− 4 = 16, a contradiction. Thus e(x2, a3a5) = 0.

Suppose that e(x2, a2a4) = 2. Then x2x3x4a2a3a4 ⊇ C6 since e(x4, a2a4) = 2, so

x5x6x7x1a5a6a1 does not have a 6-cycle. Since e(a1, x1x5) = 2, this implies that e(a5, x6x7) =

0, e(a6, x6x7) ≤ 1, e(a5, x5x1) ≤ 2, and e(a6, x5x1) = 0. Hence e(a5a6, L) ≤ 3 + 3 = 6, since

x4a6 /∈ E and e(x3, a5a6) = 0. Suppose e(a5, x5x1) = 2. Since x5x6x7x1a5a6a1 + C6,

e(a6, x6x7) = 0 for otherwise x1a1x5x6a6a5x1 is a 6-cycle or x5a5x1x7a6a1x5 is a 6-cycle.

Hence e(a5a6, x5x6x7x1) ≤ 2, so e(a5a6, L) ≤ 2 + 3 = 5. Since e(x2, a2a4) = 2, x2 → (C, a3),

so L + a3 − x2 does not have a 6-cycle. Then by Lemma 2.1.3, e(a3, L − x2) ≤ 4. Because

e(x2, a3a5) = 0, this implies that e(a3, L) ≤ 4, so e(a2a4, L) ≥ 25− 4− 5− 5 = 11, a contra-

diction. Then e(a5, x1x5) ≤ 1, so e(a5a6, L) ≤ 5, again a contradiction. Thus e(x2, a2a4) ≤ 1.

Hence e(x2, a2a3a4a5) ≤ 1, so e(x2, C) ≤ 3. Suppose that e(x1x5, C) ≥ 11. Then
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x5x6x7x1a5a6 ⊇ C6 and x2a1a2a3x4x3x2 is a 6-cycle, a contradiction. Then because

e(x3x4, C) ≤ 7 and e(x6x7, C) ≤ 5, we have e(x2, C) ≥ 25−10−7−5 = 3. Thus x2a6 ∈ E, so

x2a6a5a4a3x4x3x2 is a 6-cycle. Then x5x6x7x1a1a2 does not have a 6-cycle, so e(x1x5, a2) =

0 because e(a1, x1x5) = 2. Since e(x1x5, C) ≥ 25 − 7 − 3 − 5 = 10, this implies that

e(x1x5, a5a6) = 4. But then x5x6x7x1a5a6 ⊇ C6 and a1a2a3a4x3x4 ⊇ C6, a contradiction.

Therefore e(x4, C) ≤ 4, and by symmetry e(x2, C) ≤ 4. Because e(x2x3, C) ≤ 7, we have

e(x2x3x4, C) ≤ 11, so e(x1x5, C) ≥ 25− 11− 5 = 9.

Either e(x1x5, a2a3) ≥ 3 or e(x1x5, a5a6) ≥ 3. By symmetry, we may assume

e(x1x5, a5a6) ≥ 3. Then x5x6x7x1a5a6 ⊇ C6, so a1a2a3a4x2x3x4 does not have a 6-cycle. Since

e(a1, x2x3x4) = 3, this implies that e(x2x4, a3a4) = 0 and x3a4 /∈ E. Because e(xr, a2a6) ≤ 1

for r = 2, 3, 4, we have e(x4, C) ≤ 3, e(x2, C) ≤ 3, and e(x3, C) ≤ 4. Then e(x1x5, C) ≥

25 − 10 − 5 = 10. Since L + a1 − x2x3 ⊇ C6 and L + a1 − x3x4 ⊇ C6, x2x3a2a3a4a5,

x2x3a3a4a5a6, x3x4a2a3a4a5, and x3x4a3a4a5a6 do not have 6-cycles. Thus if e(x3, a3a5) = 2,

then e(x2x4, a2a6) = 0, so e(x2x4, C) ≤ 4. Then e(x2x3x4, C) ≤ 8, so e(x1x5, C) = 12 and

e(x2x4, a1a5) = 4. But then x5x6x7x1a2a3 ⊇ C6 and x2x3x4a5a6a1 ⊇ C6, a contradiction.

Hence e(x3, a3a5) ≤ 1, so e(x3, C) ≤ 3, which means e(x2x4, C) ≥ 25 − 12 − 3 − 5 = 5.

Since e(x2x4, a2a3a4a6) ≤ 2, e(x2x4, a1a5) ≥ 5 − 2 = 3. Then x2x3x4a5a6a1 ⊇ C6, so

e(x1x5, a2a3) ≤ 2. But then e(x1x5, C) ≤ 10, so e(L,C) ≤ 10 + 3 + 3 + 3 + 5 = 24, a

contradiction.

Case 3.2: e(a1, x5x7) = 0. In this case L+a1−xrxr+1 ⊇ C6 for r = 2, 4, 7, so e(x2x3, C−

a1) ≤ 6, e(x4x5, C − a1) ≤ 6, and e(x7x1, C − a1) ≤ 6 by (2.1).

Claim: e(x4x5, C − a1) ≤ 5 and e(x7x1, C − a1) ≤ 5.

Proof: Suppose not. By symmetry, we may assume that e(x4x5, C − a1) = 6. As in Case

1, we have two cases to consider.

Case A: N(x4x5, C − a1) = {a2, a3, a4}. Suppose e(x3, a2a3a4) > 0. Then a5a6a1x6x7x1x2

does not have a 6-cycle, so because e(a1, x1x2x6) = 3 we have e(a5, x6x7x1) = 0, e(a6, x2x6) =
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0, and e(a6, x7x1) ≤ 1. Then e(a5a6, L) ≤ 2 + 2 = 4, so e(a1a2a3a4) ≥ 25− 4 = 21, a contra-

diction. Hence e(x3, a2a3a4) = 0. Suppose e(x6, a2a3a4) > 0. Then a5a6a1x7x1x2x3 does not

have a C6, so because e(a1, x1x2x3) = 3 we have e(a5, x7x1x3) = 0 and a6x7 /∈ E. Further, if

e(a6, x3x6) = 2, then a6x3x2x1x7x6a6 and a1a2a3a4x5x4a1 are 6-cycles, a contradiction. Then

e(a5a6, L) ≤ 2 + 3, so since e(a5a6, L) ≥ 5, we have e(a5, x2x6) = 2 and e(a6, x1x2) = 2.

But then a6x1a1x3x2a5a6 is a 6-cycle, a contradiction. Hence e(x6, a2a3a4) = 0. Be-

cause a1a2a3a4x5x4a1 is a 6-cycle, we have e(a5, x3x6) ≤ 1 and e(a6, x3x6) ≤ 1. Then

e(x3x6, C) ≤ 1 + 1 + 2 = 4, so e(x2, C) ≥ 25− 4− 7− 7 = 7, a contradiction.

Case B: N(x4x5, C − a1) = {a3, a4, a5}. Suppose that e(x3, a3a4a5) > 0. Then

a6a1a2x6x7x1x2 does not have a 6-cycle, so because e(a1, x2x6) = 2 we have e(a2a6, x2x6) = 0

and e(a2a6, x1x7) ≤ 2. Then e(a2a6, L) ≤ 2 + 2 = 4, a contradiction. So e(x3, a3a4a5) =

0. Suppose e(x6, a3a4a5) > 0. Then a6a1a2x7x1x2x3 does not have a 6-cycle, so because

e(a1, x1x2x3) = 3 we have e(a2a6, x7) = 0. Then by Lemma 2.1.6 we have e(a2a6, x1x2x3) ≤

3, and thus e(a2a6, x6) ≥ 5 − 3 = 2. If e(x3, a2a6) > 0 then either a2x3x2x1x7x6a2 or

a6x3x2x1x7x6a6 is a 6-cycle, a contradiction since x4a1a6a5a4a3x4 and x4a1a2a3a4a5x4 are 6-

cycles. Then e(a2a6, x3) = 0, so e(a2a6, x1x2) ≥ 5− 2 = 3. This implies that e(a2a6, x6) = 2

and e(a2a6, x1x2) = 3. This is a contradiction, since L+a1−x2x3 ⊇ C6 and L+a1−x1x7 ⊇ C6.

Thus e(x6, a3a4a5) = 0. Since x4a1a6a5a4a3x4 and x4a1a2a3a4a5x4 are 6-cycles, e(x3x6, a2) ≤

1 and e(x3x6, a6) ≤ 1, so e(x3x6, C) ≤ 4. Hence e(x2, C) ≥ 25−4−7−7 = 7, a contradiction.

QED

By the claim, e(x4x5, C − a1) ≤ 5 and e(x7x1, C − a1) ≤ 5. Then e(x2x3x6, C) ≥

25− 6− 6 = 13.

Suppose that e(x6, C) = 6. If a1a2x4x3x2x1 ⊇ C6, then a3a4a5a6x5x6x7 does not have a

6-cycle (see Figure 2.13), so e(x5x7, a3a6) = 0, e(x5, a4a5) ≤ 1, and e(x7, a4a5) ≤ 1. Since

e(x5x7, a1) = 0, we have e(x5, C) ≤ 2 and e(x7, C) ≤ 2. If x5a2 ∈ E then a1a2x5x4x3x2a1 is

a 6-cycle so a3a4a5a6x6x7x1 does not have a 6-cycle. But then e(x1, C) ≤ 2, so e(x1x7, C) ≤

2 + 2 = 4, which means e(L,C) ≤ 4 + 8 + 6 + 6 = 24, a contradiction. Hence x5a2 /∈ E,
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a4

x7x5 x6

a3 a5 a6
Figure 2.13: Lemma 2.2.5, Case 3.2.

and by symmetry x7a2 /∈ E, so e(x5x7, C) ≤ 2. Then e(x1x4, C) ≥ 25 − 2 − 8 − 6 = 9, so

WLOG let e(x1, C) ≥ 5. Since x1 9 (C, a1), e(x1, a2a6) = 1, which means x1a3 ∈ E. Then

x1a3a2a1x3x2x1 is a 6-cycle, so x4x5x6a4a5a6 does not have a 6-cycle. Since e(x6, C) = 6,

this implies that e(x4, a4a6) = 0, so that e(x4, C) ≤ 4. Hence e(x6, C) = 6, e(x1, C) = 5,

e(x5, C) = e(x7, C) = 1, e(x4, C) = 4, and e(x2x3, C) = 8. Since x4a5 ∈ E, x5x4a5a6x6a4

is a 6-path, so a4x5 /∈ E. Then a5x5 ∈ E since e(x5, C) = 1. Since e(x1, C) = 5 we

have x1a5 ∈ E, so x1x2x3x4x5a5x1 and x6a4a3a2a1a6x6 are 6-cycles, a contradiction. Thus

a1a2x4x3x2x1 does not have a C6. By symmetry, the same is true for a1a6x4x3x2x1. Then

e(a2a6, x1x4) = 0 and e(a2a6, x2x3) ≤ 1 + 1 = 2.

Suppose that a1a2x5x4x3x2 ⊇ C6. Then a3a4a5a6x6x7x1 does not have a 6-cycle, so

e(x7, a3a6) = 0, e(x7, a4a5) ≤ 1, and e(x1, a3a4a5a6) = 0. Since x1a2 /∈ E and x7a1 /∈ E, this

implies that e(x1x7, C) ≤ 1 + 2 = 3. But then e(L,C) ≤ 3 + 8 + 6 + 6 = 23, a contradiction.

Thus a1a2x5x4x3x2 does not have a 6-cycle. By symmetry, the same is true for a1a6x5x4x3x2,

a1a2x7x1x2x3, and a1a6x7x1x2x3. Since e(a1, x2x3) = 2, this means that e(a2a6, x5x7) = 0.

But then e(a2a6, L) ≤ 2 + 2 = 4, so e(a1a3a4a5, L) ≥ 25− 4 = 21, a contradiction.

Thus e(x6, C) ≤ 5. so e(x2x3, C) = 8, e(x1x7, C) = e(x4x5, C) = 6, and e(x6, C) = 5.

Since e(x2x3, C − a1) = 6, we have two cases to consider for N(x2x3, C − a1), which will

complete Case 3.2.

Case 3.2.1: N(x2x3, C − a1) = {a2, a3, a4}. Suppose that e(x1x4, a2a3a4) > 0, and WLOG
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let e(x1, a2a3a4) > 0. Then x1x2x3a2a3a4 ⊇ C6, so x4x5x6x7a5a6a1 does not have a C6.

Since e(a1, x4x6) = 2, we have e(a5, x4x6) = 0 and a6x7 /∈ E. If e(a5, x5x7) = 2, then

a5x7x6a1x4x5a5 is a 6-cycle, a contradiction. Thus e(a5, x5x7) ≤ 1. Suppose a5x5 ∈ E. Then

a6a5x5x6a1x4 and a6a5x5x4a1x6 are 6-paths, so e(a6, x4x6) = 0. Then e(a5a6, x4x5x6x7) ≤

1 + 1 = 2, so e(a5a6, L) ≤ 4. But then e(a2a3a4, L) ≥ 25 − 9 = 16, a contradiction.

Thus a5x5 /∈ E. Suppose a5x7 ∈ E. Then a6a5x7x6x5x4 is a 6-path, so a6x4 /∈ E, which

means e(a5a6, L) ≤ 5. Then e(a5a6, L) = 5, so we have a5x7 ∈ E, e(a6, x5x6) = 2, and

e(a5a6, x1) = 2. But then, because a1x3 ∈ E and a3x2 ∈ E, x7x1x2a3a4a5 ⊇ C6 and

a6a1x3x4x5x6 ⊇ C6, a contradiction.

Hence e(a5, L) ≤ 1, so e(a6, L) = 4 with e(a6, x1x4x5x6) = 4, and e(a5, L) = 1 with

a5x1 ∈ E. But then a6a5x1x7x6x5 ⊇ C6 and x2x3a4a3a2a1 ⊇ C6, a contradiction. So

e(x1x4, a2a3a4) = 0. Since x2x3a1a2a3a4 ⊇ C6, x4x5x6x7x1a5a6 does not have a C6, so

e(x1x4, a5) ≤ 1 and e(x1x4a6) ≤ 1. Thus e(x1x4, C) ≤ 1+1+2 = 4, so e(x5x7, C) ≥ 12−4 =

8. Since e(x5x7, a1) = 0, e(x5, a2a6) ≤ 1, and e(x7, a2a6) ≤ 1, we have e(x5x7, a3a4a5) ≥

8 − 2 = 6. Since a2x2 ∈ E and a1x6 ∈ E, a2x2x3x4x5a3a2 and a1x6x7a4a5a6a1 are 6-cycles,

a contradiction.

Case 3.2.2: N(x2x3, C − a1) = {a3, a4, a5}. Suppose that e(x1x4, a3a4a5) > 0, and WLOG

say e(x1, a3a4a5) > 0. Then x4x5x6x7a6a1a2 does not have a 6-cycle and e(a1, x4x6) = 2,

so e(a2a6, x7) = 0. Further, since a1x5 /∈ E, e(a2a1a6, x4x5x6) ≤ 5 by Lemma 2.1.6, so

e(a2a6, x4x5x6) ≤ 3. Then e(a2a6, L) ≤ 5, so e(a2a6, L) = 5 with e(a2a6, x1) = 2. But then

C − a1 + x1 ⊇ C6, a contradiction since L + a1 − x1x7 ⊇ C6. Hence e(x1x4, a3a4a5) = 0,

and since e(x1x4, a2a6) ≤ 1 + 1 = 2, we have e(x5x7, C) ≥ 12 − 2 − 2 = 8. Then,

since L + a1 − xr ⊇ C6 for r = 1, 4, 5, 7, e(xr, a2a6) = 1 for each r = 1, 4, 5, 7. Hence

e(x5x7, a3a4a5) = 8 − 2 = 6. Since x2x3a1a2a3a4 ⊇ C6 and x4x5x6x7x1 is a 5-path,

we know that e(a2, x1x4) ≤ 1. By symmetry, e(a6, x1x4) ≤ 1, so WLOG we can say

x1a2 ∈ E and x4a6 ∈ E. Since e(x6, C) = 5, we can say WLOG that x6a2 ∈ E, and

since e(x5x7, a3a4a5) = 6, we know that x7a4 ∈ E. Thus x7x1x2x3a3a4 and x4x5x6a2a1a6
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have 6-cycles, a contradiction.

Case 3.3: e(a1, x4x7) = 0. In this case L+a1−xrxr+1 ⊇ C6 for r = 3, 4, 6, 7, so e(xrxr+1, C−

a1) ≤ 6 for r = 3, 4, 6, 7 by (2.1).

Claim 1: e(x4x5, C − a1) ≤ 5 and e(x6x7, C − a1) ≤ 5.

Proof: Suppose not. By symmetry, we may assume that e(x4x5, C − a1) = 6. As in Case

1, we have two cases to consider.

Case A: N(x4x5, C − a1) = {a2, a3, a4}. Suppose that e(x3, a2a3a4) > 0. Then

a5a6a1x6x7x1x2 does not have a 6-cycle, so e(a5, x6x7x1) = e(a6, x2x6) = 0, and e(a6, x1x7) ≤

1. Then e(a5a6, L) ≤ 2 + 2 = 4, a contradiction. Hence e(x3, a2a3a4) = 0. Suppose that

e(x6, a2a3a4) > 0. Then a5a6a1x7x1x2x3 does not have a 6-cycle, so e(a5, x7x1x3) = 0 and

a6x7 /∈ E. Since a1a2a3a4x4x5 ⊇ C6, e(a6, x3x6) ≤ 1. Then e(a5a6, L) ≤ 2 + 3 = 5, so

e(a5, x2x6) = 2 and e(a6, x1x2) = 2. But then a5a6a1x1x2x3 ⊇ C6, a contradiction. Hence

e(x6, a2a3a4) = 0. Since a1a2a3a4x4x5 ⊇ C6, so e(x3x6, a5a6) ≤ 2. Then e(x3x6, C) ≤ 2+2 =

4, so e(x2, C) ≥ 25− 4− 7− 7 = 7, a contradiction.

Case B: N(x4x5, C − a1) = {a3, a4, a5}. Suppose that e(x3, a3a4a5) > 0. Then

a6a1a2x6x7x1x2 does not have a 6-cycle, so e(a2a6, x2x6) = 0 and e(a2a6, x1x7) ≤ 2. Then

e(a5a6, L) ≤ 2+2 = 4, a contradiction. Hence e(x3, a3a4a5) = 0. Suppose that e(x6, a3a4a5) >

0. Then a6a1a2x7x1x2x3 does not have a 6-cycle, so e(a2a6, x7) = 0 and by Lemma 2.1.6,

e(a2a6, x1x2x3) ≤ 3. Thus e(a2a6, x6) ≥ 5 − 3 = 2. But then x6 → (C, a1), a contradiction

since L + a1 − x6x7 ⊇ C6. Hence e(x6, a3a4a5) = 0. Since e(x5, a1a3a5) = 3, x5 → (C, a2)

and x5 → (C, a6). Then e(a2, x6x3) ≤ 1 and e(a6, x6x3) ≤ 1, so e(x3x6, C) ≤ 2 + 2 = 4, a

contradiction.

QED

Claim 2: e(x3x4, C − a1) ≤ 5 and e(x7x1, C − a1) ≤ 5.

Proof: Suppose not. By symmetry, we may assume that e(x3x4, C − a1) = 6. First

say N(x3x4, C − a1) = {a2, a3, a4}. Suppose that e(x2, a2a3a4) > 0. Then a5a6a1x5x6x7x1
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x7 x1

a6a5a4a2 a3
Figure 2.14: Lemma 2.2.5, Case 3.3.

does not have a 6-cycle, so e(a6, x5x1) = e(a5, x6x7x1) = 0, and e(a6, x6x7) ≤ 1. Then

e(a5a6, L) ≤ 2+2 = 4, a contradiction. Hence e(x2, a2a3a4) = 0, and similarly e(x5, a2a3a4) =

0. Since a1a2a3a4x3x4 ⊇ C6, e(x5x2, a5a6) ≤ 2, so e(x5x2, C) ≤ 4. But then e(x1, C) ≥

25− 4− 7− 6 = 8, a contradiction. Therefore N(x3x4, C − a1) = {a3, a4, a5}. Suppose that

e(x2, a3a4a5) > 0. Then a6a1a2x5x6x7x1 does not have a 6-cycle, so e(a2a6, x1x5) = 0 and

e(a2a6, x6x7) ≤ 2. Then e(a5a6, L) ≤ 2 + 2 = 4, a contradiction. Hence e(x2, a3a4a5) = 0,

and similarly e(x5, a3a4a5) = 0. Since x3 → (C, a2) and x3 → (C, a6), e(x5x2, a2a6) ≤ 2.

Then e(x2x5, C) ≤ 4, a contradiction.

QED

By Claims 1 and 2, we have e(xrxr+1, C) ≤ 6 for each r = 3, 4, 6, 7. Since L+a1−x7x1 ⊇

C6 and L+ a1 − x3x4 ⊇ C6, we have e(x1, a2a6) ≤ 1 and e(x3, a2a6) ≤ 1.

Claim 3: e(x1, C) ≤ 4 and e(x3, C) ≤ 4.

Proof: Suppose not. By symmetry, we may assume that e(x1, C) = 5, and since

e(x1, a2a6) ≤ 1, WLOG let e(x1, C−a6) = 5. Since C−a1+x7x1 + C6, e(x7, a2a5a6) = 0 (see

Figure 2.14). Suppose that e(x6, a3a5) > 0. Then x1x7x6a3a4a5 ⊇ C6, so a6a1a2x2x3x4x5

does not have a 6-cycle. Then e(a2a6, x2x3x4x5) ≤ 2. Further, e(a2a6, x1x6) ≤ 2 since

x1 9 (C, a1) and x6 9 (C, a1). Since e(x7, a2a6) = 0, this implies that e(a2a6, L) ≤ 4, a con-

tradiction. Hence e(x6, a3a5) = 0. Suppose that e(x6, a2a4) = 2. Then x1x7x6a2a3a4 ⊇ C6,
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so a5a6a1x2x3x4x5 does not have a C6. Then e(a5a6, x2x3x4x5) ≤ 2, and since e(x7, a5a6) = 0

and x1a6 /∈ E, we have e(a5a6, L) ≤ 2 + 3 = 5. Then e(a3, L) ≥ 25 − 20 = 5, and since

x6a3 /∈ E, e(a3, L− x6) = 5. By Lemma 2.1.3, L+ a3 − x6 ⊇ C6. But since e(x6, a2a4) = 2,

x6 → (C, a3), a contradiction. Therefore e(x6, a2a4) ≤ 1, so e(x6, C) ≤ 3.

Then e(x2x3, C) ≥ 25 − 3 − 6 − 6 = 10. Since x1a2 ∈ E, x5x6x7x1a2a1x5 = C6,

so e(x2x3, a3a4a5a6) ≤ 6. Hence e(x2x3, C) = 10, which also means e(x6, C) = 3 and

e(x4x5, C) = e(x7x1, C) = 6. Since x6a6 ∈ E and e(a1, x2x5) = 2, we know e(a2, x2x5) = 0,

for otherwise x1x7x6a4a5a6 ⊇ C6 and a1a2x2x3x4x5 ⊇ C6. Since e(x2x3, C) = 10 and

x2a2 /∈ E, e(x3, C) = 5 and e(x2, C − a2) = 5. Then, because x3 9 (C, a1), x3a3 ∈ E.

But then a1a2a3x3x4x5a1 = C6 and x2x1x7x6a6a5x2 = C6, a contradiction.

QED

So e(x1, C) ≤ 4 and e(x3, C) ≤ 4. Since e(x1x2x3, C) ≥ 25 − 12 = 13, we have

e(x1x3, C) ≥ 7. WLOG let e(x1, C) = 4. Suppose that e(x2, C) = 6. If C+x1x2−aiai+1 ⊇ C6

for each i = 1, 3, 5, then L − x1x2 + aiai+1 does not have a 6-cycle for each such i, so

e(x3x6, a2) = 0 and e(x3x6, a3a4a5a6) ≤ 2 + 2 = 4. But then e(x3x6, C) ≤ 6, a contra-

diction. Hence C + x1x2 − aiai+1 does not have a 6-cycle for some i = 1, 3, or 5. Since

e(x2, C) = 6 and x1a1 ∈ E, we know C + x1x2 − a5a6 ⊇ C6. Thus either e(x1, a2a5) = 0 and

e(x1, a1a6) ≤ 1, or e(x1, a3a6) = 0 and e(x1, a4a5) ≤ 1. But e(x1, C) = 4, a contradiction.

Therefore e(x2, C) ≤ 5.

We know that e(x2, C) = 5, e(x1, C) = e(x3, C) = 4, e(x4, C) ≤ 2, e(x7, C) ≤ 2,

e(x5, C) ≥ 4, and e(x6, C) ≥ 4. Recall that L + a1 − xrxr+1 ⊇ C6 for r = 3, 4, 6, 7, so

e(xi, a2a6) ≤ 1 for i = 1, 3, 4, 5, 6, 7. Since e(x2, a2a6) ≥ 1, WLOG we can let x2a2 ∈ E. Then

x2x3x4x5a1a2x2 = C6 and x2x1x7x6a1a2x2 = C6, so x6x7x1a3a4a5 does not have a 6-cycle and

x3x4x5a3a4a5 does not have a 6-cycle. Hence e(x6x1, a3a5) ≤ 2 and e(x3x5, a3a5) ≤ 2. Since

e(xi, a2a6) ≤ 1 and e(xi, C) ≥ 4 for i = 1, 3, 5, 6, we have e(x1x3x5x6, a4) ≥ 16−4−4−4 = 4.

Since x6x7x1a4a5a6 does not have a 6-cycle and x3x4x5a4a5a6 does not have a 6-cycle, this im-

plies that e(x1x3x5x6, a6) = 0. Then e(x1x3x5x6, a2) ≥ 16−4−4−4 = 4, so x6x7x1a2a3a4x6 =
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C6 and x3x4x5a2a3a4x3 = C6. Then a5a6a1x3x4x5 + C6 and a5a6a1x6x7x1 + C6, so

e(x1x3x5x6, a5) = 0 since e(x1x3x5x6, a1) = 4. Hence e(x1x3x5x6, a3) = 16 − 12 = 4, so

x1x2x3a1a2a3 = C6. But then e(a5a6, x4x7) ≤ 2, so e(a5a6, L) = e(a5a6, x2x4x7) ≤ 4, a

contradiction.

Lemma 2.2.6 Let L be a cycle of length 8. If C is a cycle of length 6 ≤ p ≤ 8 and e(C,L) ≥

29, then C + L has two disjoint large cycles C ′ and L′ such that l(C ′) + l(L′) ≤ p+ 8− 1.

Proof: Suppose that the lemma is not true. Let L = x1...x8x1 and let C = a1...apa1.

WLOG let e(a1, L) ≥ e(ai, L) for each ai ∈ C. Suppose e(a1, L) ≥ 7, and WLOG let

e(a1, L − x8) = 7. Then a1x3...x7a1, a1x6x7...x2a1, and a1x1...x5a1 are 6-cycles. Hence by

Lemma 2.1.6, e(C,L) ≤ e(x8x1x2, C) + e(x3x4x5, C) + e(x6x7x8, C) ≤ (6 + 3) × 3 = 27,

a contradiction. Then e(ai, L) ≤ 6 for each ai ∈ C. Suppose e(a1, L) = 6. WLOG let

e(a1, x1x5) = 2 and e(a1, xrxr+4) = 2 for some r = 2, 3, or 4. Then a1x1x2x3x4x5a1 = C6 and

a1x1x8x7x6x5a1 = C6, so by Lemma 2.1.6 e(x6x7x8, C − a1) ≤ 6 and e(x2x3x4, C − a1) ≤ 6.

Then e(x1x5, C) ≥ 29−6−6−4 = 13, so WLOG let e(x1, C) ≥ 7. Then C+x1−a1 contains

a large cycle of length at most p−1 by Lemma 2.1.3, a contradiction since a1xr...xr+4a1 = C6

for 2 ≤ r ≤ 4. Thus e(ai, L) ≤ 5 for each ai ∈ C. Similarly, if p = 8 then e(xi, C) ≤ 5 for

each xi ∈ L.

Suppose e(a1, L) = 5, and WLOG let e(a1, x1x5) = 2. Then a1x1x2...x5a1 and a1x1x8...x5a1

are 6-cycles, so by Lemma 2.1.6 e(x6x7x8, C − a1) ≤ 6 and e(x2x3x4, C − a1) ≤ 6. Then

e(x1x5, C) ≥ 29 − 12 − 3 = 14, so p ≥ 7 and WLOG e(x1, C) ≥ 7. By the end of the last

paragraph, this means p = 7. Hence e(x1, C) = e(x5, C) = 7, so x1a2...a6x1 is a 6-cycle and

thus e(a1a7, L − x1) ≤ 6 by Lemma 2.1.6. Since e(a1, L) = 5, we have e(a7, L) ≤ 3. Now

since e(x1, C) = 7, we have by Lemma 2.1.6 that e(arar+1, L − x1) ≤ 6 for each r. Using

this fact with r = 1, 3, 5, we get e(a7, L) ≥ 29 − 24 = 5. But this is a contradiction, so

e(ai, L) ≤ 4 for each ai ∈ C. Similarly, if p = 8 then e(xi, C) ≤ 4 for each xi ∈ L.

By the preceding paragraph, we see that p = 8, for otherwise e(ai, L) ≥ 5 for some

ai ∈ C, since e(C,L) ≥ 29. Let r be such that e(xrxr+1, C) ≥ e(xixi+1, C) for each i. Then
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e(xrxr+1, C) ≥ 8 since l(L) = 8 and e(C,L) ≥ 29, so WLOG let e(x1, C) = e(x2, C) = 4.

If x1 is adjacent to opposite vertices in C, then similar to above we get a contradiction, so

WLOG we can say N(x1, C) = {a1, a2, a3, a4}. If x2ai ∈ E for some i ∈ {4, 5, 6, 7, } then

x1x2aiai−1ai−2ai−3x1 is a 6-cycle and so by Lemma 2.1.6, e(ai+1ai+2ai+3ai+4, L− x1x2) ≤ 6.

Since i ∈ {4, 5, 6, 7} and N(x1, C) = {a1, a2, a3, a4} and e(x2, C) = 4 with x2ai ∈ E, we have

e(ai+1ai+2ai+3ai+4, L) ≤ 6 + 3 + 3 = 12. Thus e(ai−3ai−2ai−1ai, L) ≥ 17, a contradiction

as e(aj, L) ≤ 4 for each j. Thus N(x2, C) = {a1, a2, a3, a8}, so x1x2a1a2a3a4x1 is a 6-cycle.

Then e(a5a6a7a8, L) ≤ 6 + 1 = 7 by Lemma 2.1.6, so e(a1a2a3a4, L) ≥ 22, a contradiction.

Lemma 2.2.7 Let q ≥ p ≥ 6 with q ≥ 9. Let C and L be disjoint cycles with l(C) = p and

l(L) = q. If e(C,L) ≥ 7q+1
2

, then C + L contains two disjoint large cycles C ′ and L′ such

that l(C ′) + l(L′) < p+ q, with l(C ′) = 6 if p = 6.

Proof: Let C = a1a2...apa1 and L = x1x2...xqx1. Suppose that the lemma is not true.

Case 1: p = 6. We first claim that e(ai, L) ≤ 7 for each ai ∈ C. Suppose not, and WLOG let

e(a1, L) ≥ 8. Then for each 1 ≤ r ≤ q, e(a1, L−xrxr+1xr+2) ≥ 5, so L+ a1−xrxr+1xr+2 has

a large cycle by Lemma 2.1.3. Since e(C − a1, L) ≥ 7q
2
− q = 5q

2
, e(xrxr+1xr+2, C − a1) ≥ 7

for some 1 ≤ r ≤ q. But this contradicts Lemma 2.1.7, since L+ a1−xrxr+1xr+2 has a large

cycle. Hence e(ai, L) ≤ 7 for each ai ∈ C.

WLOG let e(x1x2, C) ≥ e(xkxk+1, C) for each xk ∈ L. Then e(x1x2, C) ≥ 7. WLOG let

e(x1, C) ≥ e(x2, C). If e(x1, C) = 6, then x1 → C so e(C,L) ≤ 6+4×6 = 30 < 32 by Lemma

2.1.3, a contradiction. Hence e(x1, C) ≤ 5 and e(x2, C) ≥ 2. Suppose e(x1, C) = 5, and

WLOG let e(x1, C−a6) = 5. Then x1 → (C, ai) for i = 2, 3, 4, 6, so e(ai, L−x1) ≤ 4 for each

such i by Lemma 2.1.3. Hence 7q+1
2
≤ e(C,L) ≤ 16 + 3 + e(a1a5, L), so 7q−37

2
≤ e(a1a5, L)

and thus e(a1a5, L) ≥ 13. If a6x2 ∈ E then x2a6a1a2a3x1x2 and x2a6a5a4a3x1x2 are 6-cycles,

so e(a4a5, L) ≤ 10 and e(a1a2, L) ≤ 10 by Lemma 2.1.6. But then e(a3a6, L) ≥ 13, so

e(a3, L) ≥ 8, a contradiction. Hence a6x2 /∈ E, so e(a6, x1x2) = 0. Suppose a1x2 ∈ E. Then
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x2a1a2a3a4x1x2 is a C6, so e(a5a6, L) ≤ 6 + 2 = 8, and thus e(a1, L) ≥ 32 − 8 − 15 = 9, a

contradiction. Hence a1x2 /∈ E. Similarly, a2x2 /∈ E for otherwise x2a2a3a4a5x1x2 is a C6

and again e(a1, L) ≥ 9. By symmetry, we also have a5x2 /∈ E and a4x2 /∈ E. But then

e(x2, C) ≤ 1, a contradiction. Therefore e(x1, C) = 4 and 3 ≤ e(x2, C) ≤ 4.

Case 1.1: N(x1, C) = {a1, a2, a3, a4}. We know that x1 → (C, ai) for i = 2, 3, so by

Lemma 2.1.3 e(a1a4a5a6, L) ≥ 7q+1
2
− 10. Suppose x2a1 ∈ E. Then x2a1a2a3a4x1x2 is a

6-cycle so e(a5a6, L) ≤ 6 + 2 = 8 by Lemma 2.1.6. Then e(a1a4, L) ≥ 7q+1
2
− 18 ≥ 14, so

e(a1, L) = e(a4, L) = 7, e(a5a6, L) = 8, and e(a2, L) = e(a3, L) = 5. Since e(a5a6, L) = 8,

e(x2, a5a6) = 2. Then x1x2a5a6a1a2x1 and x1x2a6a5a4a3x1 are 6-cycles, so by Lemma 2.1.5

e(a3a4, L) ≤ 10 and e(a1a2, L) ≤ 10. This is clearly a contradiction, so x2a1 /∈ E. By

symmetry, x2a4 /∈ E. Similarly, we know that e(x2, a2a3) ≤ 1, for otherwise x2a2a1x1a4a3x2

is a 6-cycle and hence e(a5a6, L) ≤ 8, which leads to a contradiction as above. Thus WLOG

let N(x2, C) = {a2, a5, a6}. Then x1x2 → (C, a6a1), so e(a1a6, L) ≤ 6 + 2 = 8 by Lemma

2.1.6. Then e(a4a5, L) ≥ 32−10−8 = 14. But this is a contradition, since x1x2 → (C, a4a5).

Case 1.2: N(x1, C) = {a1, a2, a4, a5}. Since p = 6, x1 and x2 have a common neighbor in

C. By symmetry, WLOG we can let x2a1 ∈ E. Then x2a1a2a3a4x1x2 and x2a1a6a5a4x1x2 are

6-cycles, so e(a5a6, L) ≤ 9 and e(a2a3, L) ≤ 9. Further, since x1 → (C, a3) and x1 → (C, a6),

we have e(a3, L) ≤ 4 and e(a6, L) ≤ 4. Then e(a1a4, L) ≥ 7q+1
2
− 18, so e(a1a4, L) ≥ 14.

Hence e(a1, L) = e(a4, L) = 7, e(a5, L) = e(a2, L) = 5, and e(a3, L) = e(a6, L) = 4. Since

e(a3a4, L) = 4 + 7 = 11, x1x2 9 (C, a3a4) by Lemma 2.1.6. Thus e(x2, a2a5) = 0 (see

Figure 2.15), so e(x2, a3a4a6) ≥ 2. Similarly, since x2a1 ∈ E we have x2a6 /∈ E. Thus

e(x2, a3a4) = 2, so x1x2 → (C, a1a6), a contradiction since e(a1a6, L) = 11.

Case 1.3: N(x1, C) = {a1, a2, a3, a5}. Since x1 → (C, ai) for each i = 2, 4, 6, by Lemma

2.1.3 we have e(ai, L−x1) ≤ 4 for each i = 2, 4, 6. Hence 21 ≥ e(a1a3a5, L) ≥ 7q+1
2
−4×3−1,

so 21 ≥ e(a1a3a5, L) ≥ 19 and q = 9. Suppose x2a2 ∈ E. Then x2a2a3a4a5x1x2 = C6 and

x2a2a1a6a5x1x2 = C6, so e(a1a6, L) ≤ 6 + 3 = 9 and e(a3a4, L) ≤ 6 + 3 = 9. Then

e(C,L) = e(a2, L) + e(a3a4, L) + e(a1a6, L) + e(a5, L) ≤ 5 + 9 + 9 + 7 = 30, a contradiction.
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x2 x1

a6 a5a2 a1
x2 x1

a4 a5a2 a3
Figure 2.15: Lemma 2.2.7, Case 1.2.
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a1

xq

x3

x2

xq-1

xq-2 x4
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Figure 2.16: If q ≥ 8 and a1 does not have two neighbors whose distance in L is at least four, then
it is easy to see that e(a1, x5 . . . xq−3) = 0, e(a1, x2xq−2) ≤ 1, e(a1, x3xq−1) ≤ 1, and e(a1, x4xq) ≤ 1.

Hence x2a2 /∈ E, and similarly x2a5 /∈ E. Then e(x2, a1a3a4a6) ≥ 3. WLOG let x2a4 ∈

E. Then x2a4a5a6a1x1 = C6 and x2a4a3a2a1x1x2 = C6, so e(a2a3, L) ≤ 6 + 4 = 10 and

e(a5a6, L) ≤ 6 + 3 = 9. Then e(a1a4, L) ≥ 32 − 19 = 13, so e(a1, L) ≥ 13 − 4 = 9, a

contradiction.

Case 2: p ≥ 7. If for each xr ∈ L, L−xrxr+1xr+2+a1 has a large cycle, then e(xrxr+1xr+2, C−

a1) ≤ 6 by Lemma 2.1.6. But then e(C,L) ≤ 9( q
3
) = 3q, a contradiction. Hence L −

xrxr+1xr+2 + a1 does not have a large cycle for some r. Then e(a1, L) ≤ 7 by Lemma 2.1.3,

and similarly e(ai, L) ≤ 7 for each ai ∈ C. If e(xi, C) ≥ 8 then p ≥ 8, so by the same

reasoning as above we know that e(xi, C) ≤ 7 for each xi ∈ L.

Suppose that e(a1, L) ≥ 5. Then, since q ≥ 8, there are vertices xi and xj in N(a1, L) such

that dL(xi, xj) ≥ 4 (see Figure 2.16). Hence a1xixi+1 . . . xj−1xja1 and a1xixi−1 . . . xj+1xja1

are large cycles, so e(xj+1xj+2 . . . xi−2xi−1, C−a1) ≤ 6 and e(xi+1xi+2 . . . xj−2xj−1, C−a1) ≤ 6

by Lemma 2.1.6. But then e(xixj, C) ≥ 32− 12− e(a1, L− xixj) ≥ 20− 5 = 15, so WLOG

e(xi, C) ≥ 8 > 7, a contradiction. Therefore e(ai, L) ≤ 4 for each ai ∈ C. Since e(C,L) ≥ 32,
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this implies that p ≥ 8, and using the same argument as above we see that e(xi, C) ≤ 4 for

each xi ∈ L.

Since e(C,L) ≥ 7q+1
2

, we know that e(xixi+1, C) ≥ 8 for some xi ∈ L. WLOG let

e(x1x2, C) ≥ 8. Since e(xi, C) ≤ 4 for each xi ∈ L, we have e(x1, C) = e(x2, C) = 4.

WLOG let x1a1 ∈ E. As above, there is no neighbor of x1 with distance at least 4 from

a1, so e(x1, a5 . . . ap−3) = 0. If there is ai ∈ N(x2, C) such that dC(ai, a1) ≥ 3, then

x2aiai+1 . . . apa1x1x2 and x2aiai−1 . . . a2a1x1x2 are large cycles. Then e(a2a3 . . . ai−1, L −

x1x2) ≤ 6 and e(apap−1 . . . ai+1, L − x1x2) ≤ 6 by Lemma 2.1.6. Hence e(aia1, L) ≥

32 − 12 − e(x1x2, C − a1ai) = 20 − 6 = 14, a contradiction. Therefore there is no such

ai ∈ N(x2, C). This implies that e(x2, a4a5 . . . ap−2) = 0, so e(x2, ap−1apa1a2a3) = 4. Since

e(x2, apa2) ≥ 1, WLOG let x2ap ∈ E. Then similarly, there is no ai ∈ N(x1, C) such that

dC(ai, ap) ≥ 3, so e(x1, a3a4) = 0. Hence e(x1, a1a2ap−2ap−1ap) = 4. Since dC(a2, ap−2) = 4,

we have e(x1, a1ap−1ap) = 3. But then e(x2, a2a3) = 0 since dC(a2, ap−1) = dC(a3, ap) = 3, so

e(x2, C) ≤ 3, a contradiction.
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Chapter 3

Lemmas With Very Specific Conditions

Let P = y1y2...ys be a path of order s. We denote the largest integer i such that y1yi ∈

E by r(y1, P ), and the largest integer j such that ysys−j+1 ∈ E by r(ys, P ) (see Figure

3.1). We define r(P ) := max{r(y1, P ), r(ys, P )} and s(P ) := r(y1, P ) + r(ys, P ). Clearly

r(yk, P ) ≥ 2 for k = 1, s, and if r(yk, P ) ≥ 6 then P contains a large cycle. We let

τ ′(C) := minai∈C τ(ai, C) (see Figure 3.2).

Lemma 3.0.1 is used to prove Theorem 2; the others are used to prove Theorem 1.

Lemma 3.0.1 Let P = x1x2 . . . xt be a path of order t ≥ 2, and let C = a1a2 . . . a6a1 be

a 6-cycle, with P and C disjoint. Let u /∈ C ∪ P with e(uxt, C) ≥ 8 and e(uxt−1, C) ≥ 7.

Then P + C + u contains either Pt+1 ∪ C6, or a path of order t and a 6-cycle L, disjoint,

with τ(L) > τ(C). In either case, the path has x1 as an endvertex.

Proof: Suppose that P+C+u does not contain Pt+1∪C6. By Lemma 1.4.17, e(uxt, C) = 8,

for otherwise u → (C, ai) and aixt ∈ E for some ai ∈ C. Hence by Lemma 1.4.18, if

e(u,C) ≥ 4 then there is ai ∈ C such that u
1−→ (C, ai), and we are done. Thus we may

assume that e(u,C) ≤ 3. Suppose that e(u,C) = 2. Then e(xt, C) = 6, so xt → C. Since

e(uxt−1, C) ≥ 7, this implies that there is ai ∈ C such that xt → (C, ai) and e(uxt−1, ai) = 2.

But then C+xt−ai has a 6-cycle and x1x2 . . . xt−1aiu is a path of order t+1, a contradiction.

Therefore e(u,C) = 3.

WLOG let e(xt, C − a6) = 5. Then, since P +C + u does not contain Pt+1 ∪C6, for each

1 ≤ i ≤ 5 we have u 9 (C, ai). Because e(u,C) = 3, this implies that e(u, a1a5) = 2 and

uai ∈ E for some i ∈ {2, 4, 6}. Suppose that ua6 ∈ E. Then by Lemma 1.4.9, e(a6, a2a4) = 0

Figure 3.1: A path P of order 7 with r(P ) = 4 and s(P ) = 4 + 3 = 7.
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Figure 3.2: Left: A 6-cycle C1 with τ(C1) = 3 and τ ′(C1) = 1. Right: A 6-cycle C2 with τ(C2) = 6
and τ ′(C2) = 0.

x3x2 x4x1 xr

vu

Figure 3.3: Lemma 3.0.2: R+ u contains a path of order r + 1 ≥ 6 from x1 to u; R+ v contains
a path of order r + 1 from x1 to v.

and a2a4 /∈ E, so xt
1−→ (C, ai) for each i = 2, 4, 6. Since e(xt−1, C) ≥ 4, x1x2 . . . xt−1ai is a

path of order t for some i = 2, 4, 6, as desired. Now suppose that e(u, a2a4) = 1, and WLOG

let ua2 ∈ E. By Lemma 1.4.7 we see that τ(ai, C) ≤ 1 for each i = 3, 4, 6. So similarly,

we again get a path of order t and a 6-cycle with more chords than C. This completes the

proof.

Lemma 3.0.2 Let R = x1...xr be a path of order r ≥ 5 and let C = a1a2...a6a1 be a 6-cycle.

Let u, v /∈ R+C with e(xr, uv) = 2. If e(uvx1, C) ≥ 11, then C +R+ uv has either (1) two

disjoint large cycles, one of which is a 6-cycle, or (2) a 6-cycle C ′ with τ(C ′) ≥ τ(C) − 2

and a path of order r + 2.

Proof: Suppose the lemma is not true. We first make four easy observations (see Figure

3.3):
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(a) If u→ (C, ai), then e(vx1, ai) ≤ 1. If v → (C, ai), then e(ux1, ai) ≤ 1.

(b) If u
−2−→ (C, ai), then e(vx1, ai) = 0. If v

−2−→ (C, ai), then e(ux1, ai) = 0.

(c) If uv
−2−→ (C, aiai+1), then e(x1, aiai+1) = 0.

(d) If x1
−2−→ (C, ai), then e(uv, ai) ≤ 1.

If e(u,C) = 6 then u
0−→ (C, ai) for each ai ∈ C, so e(vx1, C) = 0 by (b). This is clearly a

contradiction since e(uvx1, C) ≥ 11. Thus e(u,C) ≤ 5, and similarly e(v, C) ≤ 5. Suppose

that e(u,C) = 5, and WLOG let e(u,C − a6) = 5. Then u
−1−→ (C, ai) for each i = 2, 3, 4, 6,

so e(vx1, a2a3a4a6) = 0 by (b). But then e(vx1, C) ≤ 4, a contradiction. Hence e(u,C) ≤ 4,

and similarly e(v, C) ≤ 4. WLOG let e(u,C) ≥ e(v, C). Since e(uvx1, C) ≥ 11, we know

that e(u,C) ≥ 3.

Case 1: e(u,C) = 4. By (b) we can see that N(u,C) 6= {a1, a2, a3, a5}, for otherwise

e(vx1, a2a4a6) = 0 and so e(vx1, C) ≤ 6. Suppose that N(u,C) = {a1, a2, a3, a4}. Since

e(u,C−a2) = e(u,C−a3) = 3, by (b) we have e(vx1, a2a3) = 0. Then e(vx1, a4a5a6a1) ≥ 11−

4 = 7. Suppose that e(v, a1a4) = 2. Then uv
−2−→ (C, a5a6) because e(uv, a1a2a3a4) = 6, so

e(x1, a5a6) = 0 by (c). But then e(vx1, C) ≤ 6, a contradiction. Therefore e(x1, a4a5a6a1) =

4, e(v, a5a6) = 2, and e(v, a1a4) = 1. WLOG let e(v, a5a6a1) = 3. Then by (a), u 9 (C, ai)

for each i = 5, 6, 1, so τ(a5a6, C) = 0 by Lemma 1.4.6. Thus v
0−→ (C, a6), so x1a6 /∈ E by

(b), a contradiction.

Hence N(u,C) = {a1, a2, a4, a5}. Since e(u,C − a3) = e(u,C − a6) = 4, by (b) we

have e(vx1, a3a6) = 0. Then e(vx1, a1a2a4a5) ≥ 7, so WLOG let e(vx1, a1a2a4) = 6. By

(a), u 9 (C, ai) for i = 1, 2, 4, so by Lemma 1.4.8 τ(a3a6, C) = 0. Then τ(a5a6, C) ≤ 2.

Since e(v, a1a2a4) = 3, a1ua2a3a4va1 is a 6-cycle, and since e(uv, a1a2a3a4) = 6, we have

uv
1−→ (C, a5a6). By (c), this implies that x1a5 /∈ E. Then va5 ∈ E, so similar to above we

have uv
1−→ (C, a6a1). This contradicts (c) since x1a1 ∈ E, so this case is complete.

Case 2: e(u,C) = 3. Since e(v, C) ≤ e(u,C), we have e(x1, C) ≥ 11 − 6 = 5. By (b)
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a6

a1

 

a4

a5

a2 a3

u v
a1

 

a4a2 a3

Figure 3.4: Let C1 be a 6-cycle in the graph at top, and let C2 be a 6-cycle in the graph at bottom.
Since uv /∈ E and a5a6 ∈ E, if e(a5a6, a1a2a3a4) = e(uv, a1a2a3a4)+k then τ(C1) = τ(C2)+(k+1).

we can see that N(u,C) 6= {a1, a3, a5}, for otherwise e(vx1, a2a4a6) = 0. Suppose that

N(u,C) = {a1, a2, a3}. Since e(vx1, C) ≥ 8, by (a) we know that u 9 (C). Then by

Lemma 1.4.9 τ(a2, C) ≤ 2, so by (b) we have e(vx1, a2) = 0. Then e(x1, C − a2) = 5, and

e(v, C − a2) = 3. By the above argument, we see that v is not adjacent to three consecutive

vertices of C − a2. Thus WLOG let va3 ∈ E. By (d) and Lemma 1.4.5, this implies that

τ(a2, C) = 0. Hence τ(ai, C) ≤ 2 for i = 4, 5, 6. Then by (b), v 9 (C, ai) for i = 4, 5, 6,

which means va1 ∈ E and e(v, a4a6) = 1. WLOG let va4 ∈ E. Then e(uv, a1a2a3a4) = 6, so

by (c) e(a5a6, a1a2a3a4) ≥ 6 + 2 = 8 (see Figure 3.4). Therefore τ(a5a6, C) = 8 − 2 = 6, a

contradiction.

Therefore N(u,C) = {a1, a2, a4}. By (b), e(vx1, a3) = 0, so e(x1, C − a3) = 5. Since

e(x1, a5a6) = 2 and e(u,C − a5) = e(u,C − a6) = 2, by (b) we know that u 9 (C, ai) for

i = 5, 6. Then by Lemma 1.4.10, τ(a5a6, C) ≤ 1. Then e(a5a6, a1a2a3a4) ≤ 3, so by (c) we

know that if C − a5a6 + uv contains a 6-cycle, then e(uv, a1a2a3a4) ≤ 1. This clearly implies

that C − a5a6 + uv does not have a 6-cycle, so e(v, a1a4) ≤ 1. Since e(a1, ux1) = 2, by (a)
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x3x2x1 xr

vu

xr-1
Figure 3.5: Lemma 3.0.3: R− xr + uv contains the paths x1x2 . . . xr−1uv and x1x2 . . . xr−1vu of
order r + 1.

we see that e(v, a2a6) ≤ 1. Since e(v, C − a3) = 3, we have e(v, a1a4) = e(v, a2a6) = 1 and

va5 ∈ E. Let C ′ be the 6-cycle x1a4a3a2ua1x1. Since e(x1u, a1a2a3a4) = 6 and τ(a5a6, C) ≤

1, we have τ(C ′) ≥ τ(C) + 2. But x2x3 . . . xrva5a6 is a path of order r + 2, a contradiction.

Lemma 3.0.3 Let C = a1...a6a1 be a 6-cycle and let R = x1x2...xr be a path of order r ≥ 5.

Let u, v /∈ C + R with uvxr−1 = K3. If e(x1xruv, C) ≥ 15, then C + R + uv has either (1)

two disjoint large cycles, one of which is a 6-cycle, or (2) a 6-cycle C ′ with τ(C ′) ≥ τ(C)−1

and a path of order r + 2.

Proof: Suppose that the lemma is not true. We first make four easy observations (see

Figure 3.5):

(a) If uv
−1−→ (C, aiaj) and aiaj ∈ E, then e(x1xr, aiaj) = 0.

(b) If u→ (C, ai) then e(x1xr, ai) ≤ 1. If v → (C, ai) then e(x1xr, ai) ≤ 1. If uv → (C, aiaj)

then e(x1xr, ai) ≤ 1 and e(x1xr, aj) ≤ 1.

(c) If xr
−1−→ (C, ai), then e(x1uv, ai) = 0.

(d) If u
−1−→ (C, ai), then e(xrv, ai) ≤ 1. If v

−1−→ (C, ai), then e(xru, ai) ≤ 1.

Suppose e(xr, C) ≥ 5. WLOG let e(xr, C − a6) = 5. Then e(xr, C − ai) ≥ 4 for each

ai ∈ C, so xr
−1−→ (C, ai) for each i = 2, 3, 4, 6. By (c), this implies that e(x1uv, a2a3a4a6) = 0.

But then e(x1uv, a1a5) ≥ 15− 6 = 9, a contradiction. Hence e(xr, C) ≤ 4.
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Claim 1: e(xr, C) ≤ 3.

Proof: Suppose not. Then e(xr, C) = 4, and we have three cases to consider.

Case A: N(xr, C) = {a1, a2, a3, a4}. Suppose τ(a2, C) = 3. Then by Lemma 1.4.6, xr →

C. Since e(xr, C − a5a6) = 4, we have xr
−1−→ (C, ai) for i = 5 and i = 6. This implies by

(c) that e(x1uv, a5a6) = 0, so e(x1uv, a1a2a3a4) ≥ 15− 4 = 11. Hence e(x1xr, a1a2a3a4) ≥ 7

and e(uv, a1a2a3a4) ≥ 7. WLOG let e(u, a1a2a3a4) = 4. Then u→ (C, a2) and u→ (C, a3),

a contradiction by (b) since e(x1xr, a2a3) ≥ 3. Therefore τ(a2, C) ≤ 2, and by symmetry

τ(a3, C) ≤ 2. Thus by (c), e(x1uv, a2a3) = 0, so we have e(x1uv, a4a5a6a1) ≥ 11. Further,

we have e(a2a3, a4a5a6a1) ≤ 2(2) + 2(1) = 6. Since e(uv, a4a5a6a1) ≥ 7, this implies that

uv
1−→ (C, a2a3). But e(x1xr, a2a3) = 2 > 0, contradicting (a).

Case B: N(xr, C) = {a1, a2, a3, a5}. Since e(xr, C−a4) = e(xr, C−a6) = 4, by (c) we have

e(x1uv, a4a6) = 0. Hence e(x1uv, a1a2a3a5) ≥ 11. Then e(x1uv, a2) ≥ 2, so since xr → (C, a2)

with e(xr, C − a2) = 3, by (c) we have τ(a2, C) = 3. Then by Lemma 1.4.6, xr → C, so

τ(ai, C) = 3 for i = 1, 3, 5, by (c). WLOG let e(u, a1a2a3a5) = 4. Then ua1a6a3a4a2u is a

6-cycle, so e(x1xr, a5) ≤ 1 by (b). Then x1a5 /∈ E, so since e(x1uv, a1a2a3a5) ≥ 11 we have

e(x1, a1a2a3) = 3. But then e(x1xr, a1) = 2 and ua2a6a5a4a3u is a 6-cycle, contradicting (b).

Case C: N(xr, C) = {a1, a2, a4, a5}. By (c) we have e(x1uv, a3a6) = 0, so

e(x1uv, a1a2a4a5) ≥ 11. WLOG let e(u, a1a2a4a5) = 4, and by symmetry let e(x1, a1a2a4) =

3. Then e(x1xr, a1a2a4) = 6, so by (b) we have u 9 (C, ai) for i = 1, 2, 4. Hence by

Lemma 1.4.8 we know that τ(a3, C) = τ(a6, C) = 0, and hence that τ(a5a6, C) ≤ 2. Since

e(u, a1a4) = 2 and e(v, a1a4) ≥ 1, we have uv → (C, a5a6). Since e(uv, a1a2a3a4) ≥ 3 + 2 = 5

and e(a5a6, a1a2a3a4) ≤ 2 + 2 = 4, this implies that uv
1−→ (C, a5a6). But then by (a) we see

that e(x1xr, a5a6) = 0, a contradiction.

QED

Claim 2: e(x1xr, C) ≤ 8.

Proof: Suppose not. By Claim 1, this implies that e(x1, C) = 6 and e(xr, C) = 3.
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Case A: N(xr, C) = {a1, a2, a3}. For each i = 1, 2, 3 we have e(x1xr, ai) = 2, so by (b)

u 9 (C, ai) and v 9 (C, ai). Further, by (c) we know that τ(a2, C) ≥ 2, since xr → (C, a2)

and x1a2 ∈ E. Suppose that e(a2, a4a6) = 2, so that a2a3a4a5a6a2 and a2a4a5a6a1a2 are

5-cycles. Then, since u, v 9 (C, a1) and u, v 9 (C, a3), it must be the case that u and v

are not adjacent to consecutive vertices in C. Because e(uv, C) ≥ 15 − 9 = 6, this implies

that e(u, a1a3a5) = e(v, a1a3a5) = 3 or e(u, a2a4a6) = e(v, a2a4a6) = 3. But then u→ (C, a2)

or u → (C, a1), a contradiction. Thus e(a2, a4a6) ≤ 1, and since τ(a2, C) ≥ 2 we can say

by symmetry that e(a2, a4a5) = 2. Then by Lemma 1.4.9 we have xr → (C, ai) for each

i = 3, 4, 6. Since e(xr, C − a6) = 3 and a6a2 /∈ E, this implies that xr
−1−→ (C, a6). But

x1a6 ∈ E, which contradicts (c).

Case B: N(xr, C) = {a1, a2, a4}. For each i = 1, 2, 4, we have e(x1xr, ai) = 2, so by (b)

u 9 (C, ai) and v 9 (C, ai). By (c), since e(xr, C − a3) = 3 we have τ(a3, C) = 3. Then

a3a5a6a1a2a3 and a3a4a5a6a1a3 are 5-cycles. Since u, v 9 (C, a4) and u, v 9 (C, a2), it must

be the case that u and v are not adjacent to consecutive vertices in C. But then, as in Case

A we see that u→ (C, a1) or u→ (C, a2), a contradiction.

Case C: N(xr, C) = {a1, a3, a5}. In this case, for each i = 1, 3, 5 we know by (b) that

u 9 (C, ai) and v 9 (C, ai). Further, for each i = 2, 4, 6 we have e(xr, C − ai) = 3 and

xr → (C, ai), so τ(ai, C) = 3 by (c). Similar to Case B, we see that u and v are not adjacent to

consecutive vertices in C. Since u9 (C, a1), this implies that e(u, a1a3a5) = e(v, a1a3a5) = 3.

Since u9 (C, ai) for each i = 1, 3, 5, by Lemma 1.4.11 we have τ(a2, C) ≤ 2, a contradiction.

QED

By Claims 1 and 2, we have e(x1xr, C) ≤ 8 and e(xr, C) ≤ 3. Thus e(uv, C) ≥ 15−8 = 7.

Suppose that e(uv, C) ≥ 11. Then e(uv, C − aiai+1) ≥ 7 for each i, so for each ai ∈ C we

have uv
−1−→ (C, aiai+1). But then e(x1xr, C) = 0 by (a), which is clearly a contradiction.

Hence e(uv, C) ≤ 10. WLOG let e(u,C) ≥ e(v, C). We complete the proof by considering

the cases e(uv, C) = 10, 9, 8, 7, separately.
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Figure 3.6: Lemma 3.0.3: If uai ∈ E and vai+3 ∈ E, then uv → (C, ai+1ai+2) and uv →
(C, ai+4ai+5).
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Case 1: e(uv, C) = 10. Either e(u,C) = 6 or e(u,C) = 5. First suppose that e(u,C) = 6.

If N(v, C) = {a1, a2, a3, a4}, then e(uv, a2a3a4a5) = 7 and e(uv, a6a1a2a3) = 7. By (a), this

implies that e(x1xr, a6a1a4a5) = 0. But then e(x1xr, a2a3) ≥ 5, a contradiction. Similarly,

we see that N(v, C) 6= {a1, a2, a3, a5} and N(v, C) 6= {a1, a2, a4, a5}. Therefore e(u,C) =

e(v, C) = 5.

WLOG let e(u,C−a6) = 5. Suppose that va6 ∈ E. Then e(v, C−ai) = 5 for some i 6= 6.

If i ∈ {2, 5} then e(uv, a2a3a4a5) = 7, and either e(uv, a6a1a2a3) = 7 or e(uv, a4a5a6a1) = 7.

Then by (a), e(x1xr, C) ≤ 4, a contradiction. Thus i /∈ {2, 5}, and by symmetry i /∈ {1, 4}.

Hence i = 3, so e(uv, a2a3a4a5) = e(uv, a5a6a1a2) = 7, again contradicting (a). Therefore

va6 /∈ E, so we have e(uv, C−a6) = 10. This implies that e(uv, a1a2a3a4) = e(uv, a2a3a4a5) =

8, so by (a) we see that e(x1xr, a5a6a1) = 0. Thus e(x1xr, a2a3a4) ≥ 5. WLOG let xra2 ∈ E.

Since e(u,C − a2) = 4 with e(u, a1a3) = 2, we know that u
−1−→ (C, a2). But e(xrv, a2) = 2,

contradicting (d).

Case 2: e(uv, C) = 9. Again e(u,C) ≥ 5. Suppose that e(u,C) = 6, so e(v, C) = 3. If

N(v, C) = {a1, a2, a3}, then e(uv, a1a2a3a4) = 7 and e(uv, a6a1a2a3) = 7. By (a) this implies

that e(x1xr, a5a6a4) = 0, so e(x1xr, a1a2a3) ≥ 15−9 = 6. But then e(xrv, a1a2a3) = 6, clearly

contradicting (d) since e(u,C) = 6. If N(v, C) = {a1, a2, a4} then e(uv, a1a2a3a4) = 7, so

e(x1xr, a5a6) = 0 by (a). Then e(x1xr, a1a2a3a4) ≥ 15− 9 = 6, so e(xrv, a1a2a4) ≥ 3 + 1 = 4,

again contradicting (d).

Therefore N(v, C) = {a1, a3, a5}. Since e(x1xr, C) ≥ 6 and e(xr, C) ≤ 3, we have

e(x1, a1a2) + e(x1, a3a4) + e(x1, a5a6) ≥ 3. Thus by symmetry we can say e(x1, a5a6) ≥

1. Then, since e(uv, a1a2a3a4) = 6 and C + uv − a5a6 has a 6-cycle, by (a) we have

e(a5a6, a1a2a3a4) = 8. This implies that uva1a2a3a5u is a 6-cycle, and that uv
−1−→ (C, a4a6)

because e(uv, a1a2a3a5) = 7. Further, we have a4a6 ∈ E, so by (a) we get e(x1xr, a4a6) = 0.

Then e(x1xr, a1a2a3a5) ≥ 6, so e(xr, a1a3a5) ≥ 6 − 5 = 1. But then e(xrv, a1a3a5) ≥ 4,

contradicting (d) since e(u,C) = 6.

Therefore e(u,C) = 5 and e(v, C) = 4. WLOG let ua6 /∈ E. Then for each i ∈ {2, 3, 4, 6},
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u
−1−→ (C, ai), so

e(xrv, ai) ≤ 1 for each i ∈ {2, 3, 4, 6} (3.1)

by (d). Suppose that va6 /∈ E. Then e(uv, a1a2a3a4) ≥ 7 and e(uv, a2a3a4a5) ≥ 7, so

e(x1xr, a1a5a6) = 0 by (a). Hence e(x1xr, a2a3a4) = 6, so e(xrv, a2a3a4) ≥ 3 + 2 = 5,

contradicting (3.1). Hence va6 ∈ E. We have
(
5
3

)
cases to consider, four of which are

absorbed by the others due to symmetry.

Case 2.1: N(v, C) = {a6, a5, a4, a3} or N(v, C) = {a6, a1, a2, a3} . WLOG let N(v, C) =

{a6, a5, a4, a3}. Then e(uv, a6a5a4a3) ≥ 7 and e(uv, a2a3a4a5) ≥ 7, so e(x1xr, a1a2a6) = 0 by

(a). Then e(x1xr, a3a4a5) = 6, so e(xrv, a3a4) = 4, contradicting (3.1).

Case 2.2: N(v, C) = {a1, a6, a5, a4} or N(v, C) = {a5, a6, a1, a2}. WLOG let N(v, C) =

{a1, a6, a5, a4}. Then e(uv, a1a6a5a4) ≥ 7, so e(x1xr, a2a3) = 0 by (a). Then e(x1xr, a1a4a5a6) ≥

6, so by (3.1) we have e(xr, a1a5) = 2 and e(x1, a1a4a5a6) = 4. Since e(v, a4a6) = 2 we know

that v → (C, a5). But this contradicts (b), because e(x1xr, a5) = 2.

Case 2.3: N(v, C) = {a6, a5, a4, a2} or N(v, C) = {a6, a5, a4, a2}. WLOG let N(v, C) =

{a6, a5, a4, a2}. Then e(uv, a5a4a3a2) ≥ 7, so e(x1xr, a1a6) = 0 by (a). Then e(x1xr, a2a3a4a5) ≥

6, so by (3.1) we have e(xr, a3a5) = 2 and e(x1, a2a3a4a5) = 4. But then e(xru, a3) = 2, con-

tradicting (d) since e(v, C − a3) = 4 and v → (C, a3).

Case 2.4: N(v, C) = {a6, a4, a3, a2}. In this case we see that e(xr, a2a3a4a6) = 0 by (3.1).

Since e(uv, a5a4a3a2) ≥ 7 and e(uv, a4a3a2a1) ≥ 7, we also have e(x1xr, a1a5a6) = 0 by (a).

But then e(x1xr, C) ≤ 3 + 0 = 3 < 6, a contradiction.

Case 2.5: N(v, C) = {a6, a5, a3, a1}. In this case v
−1−→ (C, a2) and v

−1−→ (C, a4). Since

e(u, a2a4) = 2 this implies that e(xr, a2a4) = 0 by (d). Then by (3.1) we know that

e(xr, a2a3a4a6) = 0. Therefore e(x1xr, a5a6) ≥ 6 − 5 = 1, so since e(uv, a1a2a3a4) = 6

we have τ(a5, C) = τ(a6, C) = 3 by (a). Hence by Lemma 1.4.5, u → C, so e(xr, a1a5) = 0

by (d). Then e(xr, C) = 0, so e(x1, C) = 6. Since τ(a6, C) = 3 we have a2a6 ∈ E, and since

τ(a5, C) = 3 we have e(a5, a1a3) = 2. Then a1a5a3a4uva1 is a 6-cycle and e(uv, a1a5a3a4) = 7,

so uv
−1−→ (C, a2a6). But a2a6 ∈ E and e(x1, a2a6) = 2, contradicting (a).
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Case 2.6: N(v, C) = {a6, a5, a3, a2} or N(v, C) = {a6, a1, a3, a4}. WLOG let N(v, C) =

{a6, a5, a3, a2}. Then e(uv, a5a4a3a2) ≥ 7, so e(x1xr, a1a6) = 0 by (a). Then e(x1xr, a2a3a4a5) ≥

6, so by (3.1) we see that e(xr, a4a5) = 2 and e(x1, a2a3a4a5) = 4. But then e(xru, a4) = 2

and v → (C, a4) with e(v, C − a4) = 4, contradicting (d).

Case 3: e(uv, C) = 8. Since e(x1xr, C) ≥ 7, by (b) we have u 9 C and v 9 C, and hence

also that e(u,C) ≤ 5 and e(v, C) ≤ 5.

Suppose e(u,C) = 5. WLOG let ua6 /∈ E. Then by Lemma 1.4.5, τ(a6, C) = 0.

Since e(v, C) = 3, we know that either e(v, a1a4) ≥ 1 or e(v, a2a5) ≥ 1. By symmetry,

WLOG let e(v, a1a4) ≥ 1. Then C + uv − a5a6 has a 6-cycle and e(uv, a1a2a3a4) ≥ 5.

Since e(a5a6, a1a2a3a4) ≤ 4 + 1 = 5, this implies that e(x1xr, a5a6) = 0 by (a). Hence

e(x1xr, a2a3a4) ≥ 7 − 2 = 5, contradicting (b) because u → (C, ai) for each i = 2, 3, 4.

Therefore e(u,C) = e(v, C) = 4, and we have three cases concerning N(u,C).

Case 3.1: N(u,C) = {a1, a2, a3, a4}. Because u → (C, a2) and u → (C, a3), by (b) we

have e(x1xr, a2) ≤ 1 and e(x1xr, a3) ≤ 1. Hence e(x1xr, a1a4a5a6) ≥ 7 − 2 = 5. Suppose

e(v, a1a2a3a4) ≥ 3. Then e(uv, a1a2a3a4) ≥ 7, so by (a) we have e(x1xr, a5a6) = 0. But then

e(x1xr, a1a4) ≥ 5, a contradiction. Therefore e(v, a1a2a3a4) ≤ 2, so since e(v, C) = 4 we have

e(v, a5a6) = 2. Then va6a1a2a3uv and va5a4a3a2uv are 6-cycles, so e(x1xr, a4a5a6a1) ≤ 4 by

(b), a contradiction.

Case 3.2: N(u,C) = {a1, a2, a3, a5}. By (b) we have e(x1xr, ai) ≤ 1 for each i = 2, 4, 6,

so e(x1xr, a1a3a5) ≥ 7 − 3 = 4. Suppose that e(v, a2a3a4a5) ≥ 3. Then e(uv, a2a3a4a5) ≥ 6

and e(x1xr, a1a6) ≥ 7− 2× 1− 2× 2 = 1, so by (a) we have τ(a1, C) = τ(a6, C) = 3. Thus

by Lemma 1.4.7 u → C, a contradiction. Therefore e(v, a2a3a4a5) ≤ 2, so e(v, a1a6) = 2.

Suppose e(v, a2a3) ≥ 1. Then e(uv, a6a1a2a3) ≥ 6 and e(x1xr, a4a5) ≥ 7 − 6 = 1, so by (a)

we have τ(a4, C) = τ(a5, C) = 3. But then again u → C by Lemma 1.4.7, a contradiction.

Hence e(v, a1a4a5a6) = 4, so v → (C, a5), uv → (C, a1a6), and uv → (C, a3a4). But then by

(b), e(x1xr, a1a3a5) ≤ 3 < 4, a contradiction.

Case 3.3: N(u,C) = {a1, a2, a4, a5}. By (b) we have e(x1xr, a3) ≤ 1 and e(x1xr, a6) ≤ 1.
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Hence e(x1xr, a1a2a4a5) ≥ 7 − 2 = 5. By symmetry, WLOG we can let va1 ∈ E. Then

uv → (C, a5a5) and uv → (C, a2a3), so by (b) e(x1xr, a2a5) ≤ 2. Hence e(x1xr, a1a4) ≥ 3,

so by (b) either C + uv − a1a6 + C6 or C + uv − a3a4 + C6. Hence e(v, a2a5) = 0, so

e(v, a1a3a4a6) = 4 and thus a6a5ua2a3va6 is a 6-cycle. But e(x1xr, a1a4) ≥ 3, contradicting

(b).

Case 4: e(uv, C) = 7. As in Case 3 we have e(u,C) ≤ 5, u 9 C, and v 9 C. Suppose

e(u,C) = 5, and WLOG let ua6 /∈ E. By Lemma 1.4.5, τ(a6, C) = 0, and by (b) we have

e(x1xr, a2a3a4a6) ≤ 4. Then e(x1xr, a1a5) ≥ 8 − 4 = 4, so by (b) C + uv − a6a1 + C6 and

C + uv − a5a6 + C6. Since e(u, a2a5a1a4) = 4, this implies that e(v, a5a2a4a1) = 0. Hence

e(v, a3a6) = 2, so uv → (C, a1a2). But this contradicts (b), since e(x1xr, a1) = 2. Therefore

e(u,C) = 4 and e(v, C) = 3.

Case 4.1: N(u,C) = {a1, a2, a3, a4}. By (b) we have e(x1xr, a2a3) ≤ 2, so e(x1xr, a1a4a5a6)

≥ 6. Suppose e(v, a1a2a3a4) ≥ 2. Then uv → (C, a5a6) and e(uv, a1a2a3a4) ≥ 6, so since

e(x1xr, a5a6) ≥ 6 − 4 = 2, by (a) we have τ(a5, C) = τ(a6, C) = 3. But then u → C

by Lemma 1.4.6, a contradiction. Hence e(v, a1a2a3a4) ≤ 1, so e(v, a5a6) = 2. But then

C + uv − a6a1 ⊇ C6 and C + uv − a4a5 ⊇ C6, contradicting (b) since e(x1xr, a1a4a5a6) ≥ 6.

Case 4.2: N(u,C) = {a1, a2, a3, a5}. By (b) we have e(x1xr, a2a4a6) ≤ 3, so e(x1xr, a1a3a5)

≥ 5. Suppose e(v, a4a6) ≥ 1. By symmetry, WLOG let va4 ∈ E. Then C + uv − a5a6 ⊇ C6

and C + uv − a2a3 ⊇ C6. But e(x1xr, a3a5) ≥ 3, contradicting (b). Hence e(v, a4a6) = 0,

so e(v, a2a5) ≥ 3 − 2 = 1. Since e(u, a2a5) = 2, this implies that uv → (C, a6a1) and

uv → (C, a3a4). Hence e(x1xr, a1a3) ≤ 2 < 3 by (b), a contradiction.

Case 4.3: N(u,C) = {a1, a2, a4, a5}. By (b) we have e(x1xr, a3a6) ≤ 2, so e(x1xr, a1a2a4a5)

≥ 6. WLOG let va1 ∈ E. Then uv → (C, a5a6) and uv → (C, a2a3), so by (b) e(x1xr, a5a6) ≤

2 and e(x1xr, a2a3) ≤ 2. Thus e(x1xr, a1a4) = 4, and therefore e(v, a2a5) = 0 by (b), for

otherwise uv → (C, a6a1) and uv → (C, a3a4). Thus e(v, a3a4a6) = 2. If va6 ∈ E, then

va6a5ua2a1v is a 6-cycle, contradicting (b) because e(x1xr, a4) = 2. But then e(v, a3a4) = 2,

so va3a2ua5a4v is a 6-cycle, again contradicting (b).
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x2x1 xr
u2

u1 u3

u4
Figure 3.7: Lemma 3.0.4: u1x1x2 . . . xru3, u1x1x2 . . . xru4, u2x1x2 . . . xru3, and u2x1x2 . . . xru4
are paths of order r + 2 ≥ 5.

Lemma 3.0.4 Let C = a1...a6a1 be a 6-cycle and let R = x1x2...xr be a path of order r ≥ 3.

Let u1, u2, u3, u4 /∈ C + R with e(x1, u1u2) = 2 and e(xr, u3u4) = 2. If e(u1u2u3u4, C) ≥ 15,

then C +R+ u1u2u3u4 has either (1) two disjoint large cycles, one of which is a 6-cycle, or

(2) a 6-cycle C ′ with τ(C ′) ≥ τ(C)− 2 and a path of order r + 4.

Proof: Suppose that the lemma is not true. We first make some easy observations (see

Figure 3.7):

(a) If u1 → (C, ai), then e(ai, u2u3) ≤ 1 and e(ai, u2u4) ≤ 1.

(b) If u2 → (C, ai), then e(ai, u1u3) ≤ 1 and e(ai, u1u4) ≤ 1.

(c) If u3 → (C, ai), then e(ai, u1u4) ≤ 1 and e(ai, u2u4) ≤ 1.

(d) If u4 → (C, ai), then e(ai, u1u3) ≤ 1 and e(ai, u2u3) ≤ 1.

(e) If x, y ∈ C with xy ∈ E and u1u4
−2−→ (C, xy), then e(u2u3, xy) = 0.

(f) If x, y ∈ C with xy ∈ E and u1u3
−2−→ (C, xy), then e(u2u4, xy) = 0.

(g) If x, y ∈ C with xy ∈ E and u2u3
−2−→ (C, xy), then e(u1u4, xy) = 0.

(h) If x, y ∈ C with xy ∈ E and u2u4
−2−→ (C, xy), then e(u1u3, xy) = 0.

WLOG let e(u1u4, C) ≥ e(u2u3, C), and e(u1, C) ≥ e(u4, C). Then e(u1u4, C) ≥ 8 and

e(u1, C) ≥ 4. Suppose that e(u1u4, C) = 12. Then u1 → C and u4 → C, so by (a) and
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(d) e(u2u4, C) ≤ 6 and e(u1u3, C) ≤ 6, a contradiction. Suppose that e(u1u4, C) = 11, and

WLOG let u4a6 /∈ E. Since u1 → C and e(u4, C − a6) = 5, we have e(u2, C − a6) = 0 by

(a). Since u4 → (C, ai) for each i = 2, 3, 4, 6 and e(u1, C) = 6, we have e(u3, a2a3a4a6) = 0

by (d). Thus e(u2u3, C) ≤ 1 + 2 = 3, a contradiction since e(u1u4, C) = 11. Hence 8 ≤

e(u1u4, C) ≤ 10, and we consider each possible value of e(u1u4, C) in the following cases.

Case 1: e(u1u4, C) = 10. First suppose e(u1, C) = 6. Then u1 → C, so for each ai ∈ C we

have e(u2u4, ai) ≤ 1 and e(u2u3, ai) ≤ 1 by (a).

If N(u4, C) = {a1, a2, a3, a4}, then e(u2, a1a2a3a4) = 0. By (d), e(u3, a2a3) = 0 because

u4 → (C, a2) and u4 → (C, a3). But then e(u2u3, C) = e(u2u3, a2a3) + e(u2u3, a4a5a6a1) ≤

0 + 1(4) < 5, a contradiction. If N(u4, C) = {a1, a2, a3, a5}, then e(u2, a1a2a3a5) = 0. By

(d), e(u3, a2a4a6) = 0 since u4 → (C, ai) for each i = 2, 4, 6. Since e(u2u3, C) ≥ 5, this

implies that e(u3, a1a3) = 2. But then u3 → (C, a2) and e(a2, u1u4) = 2, contradicting

(c). Then N(u4, C) = {a1, a2, a4, a5}, so e(u2, a1a2a4a5) = 0. By (d), e(u3, a3a6) = 0.

Then e(u3, a1a2a4a5) ≥ 5 − 2 = 3 so WLOG let e(u3, a1a2a4) = 3. Since e(u1u4, a5) = 2,

u3 9 (C, a5) by (c). Then by Lemma 1.4.10, τ(a6, C) = 0. Since e(u1u4, a1a2a3a4) = 7 and

u1a1u4a4a3a2u1 is a 6-cycle, this implies that u1u4
1−→ (C, a5a6). Then by (e), e(u2u3, a5a6) =

0, so e(u2u3, C) ≤ 1 + 3 = 4 < 5, a contradiction.

Hence e(u1, C) = e(u4, C) = 5. WLOG let u1a6 /∈ E. By (a), e(u2u3, ai) ≤ 1 and

e(u2u4, ai) ≤ 1 for each i = 2, 3, 4, 6. Suppose e(u4, C − a6) = 5. Then by (a) we have

e(u2, a2a3a4) = 0 and by (d) we have e(u3, a2a3a4) = 0, so e(u2u3, a1a5a6) ≥ 5. But

e(u1u4, a1a2a3a4) = 8, so we have e(u2u3, a5a6) = 0 by (e), a contradiction. Hence u4a6 ∈ E.

We also see that u4a5 ∈ E, for otherwise e(u2, a2a3a4a6) = 0 and e(u3, a1a2a3a5) = 0 by (a)

and (d), and thus e(u2u3, C) ≤ 4. By symmetry, u4a1 ∈ E. Suppose that u4a4 /∈ E. By

(a) and (d), e(u2, a2a3a6) = 0 and e(u3, a1a2a4) = 0. Then e(u2u3, a5a6) ≥ 5 − 3 = 2, so

by (e) we see that it is not the case that u1u4
−2−→ (C, a5a6). But e(u1u4, a1a2a3a4) = 7, a

contradiction. Therefore u4a4 ∈ E, and by symmetry u4a2 ∈ E, so e(u4, C−a3) = 5. By (a)

and (d), e(u2, a2a4a6) = 0 and e(u3, a1a3a5) = 0. Then e(u2u3, a5a6) ≥ 5 − 2 − 2 = 1. But
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again e(u1u4, a1a2a3a4) = 7, contradicting (e).

Case 2: e(u1u4, L) = 9. Suppose that e(u1, C) = 6. By (a), we have e(u2u3, ai) ≤ 1 for each

ai ∈ C. Since e(u2u3, C) ≥ 15 − 9 = 6, this implies that e(u2u3, ai) = 1 for each ai ∈ C.

By (a) and (d) we know that u2ai /∈ E if u4ai ∈ E, and u3ai /∈ E if u4 → (C, ai). Since

e(u2u3, ai) = 1 for each ai ∈ C, this implies that N(u4, C) 6= {a1, a2, a3}. If N(u4, C) =

{a1, a2, a4}, then e(u2, a1a2a4) = 0 and e(u3, a3) = 0 by (a) and (d). Then e(u2u3, a5a6) ≥

6 − 1 − 3 = 2 and e(u1u4, a1a2a3a4) = 7, contradicting (e). Hence N(u4, C) = {a1, a3, a5}.

By (a) and (d), e(u2, a1a3a5) = e(u3, a2a4a6) = 0, so e(u2, a2a4a6) = e(u3, a1a3a5) = 3.

Thus u4 9 (C, ai) for i = 1, 3, 5, so by Lemma 1.4.11 we have τ(a2, C) ≤ 1, τ(a4, C) ≤ 1,

and τ(a6, C) ≤ 1. Since e(u1u4, a1a2a3a4) = 6 and e(u2u3, a5a6) = 2, by (e) we have

τ(a5a6, C) = 6, a contradiction since τ(a6, C) ≤ 1. Therefore e(u1, C) = 5 and e(u4, C) = 4.

Case 2.1: N(u4, C) = {a1, a2, a3, a4}. Since e(u1, a1a2a3a4) ≥ 5− 2 = 3, we have

e(u1u4, a1a2a3a4) ≥ 7. Thus by (e) we see that e(u2u3, a5a6) = 0, so e(u2u3, a1a2a3a4) ≥ 6.

Then u1a1 ∈ E, for otherwise e(u1, C−a1) = 5 and hence e(u2, a1a3a4) = 0 by (a). Similarly,

we have e(u1, a4a5a6) = 3. Then WLOG u1a2 /∈ E. By (a), e(u2, a2a4) = 0, and by (d),

u3a3 /∈ E. But then e(u2u3, C) ≤ 5, a contradiction.

Case 2.2: N(u4, C) = {a1, a2, a3, a5}. If u1a1 /∈ E, then e(u2, a1a3a5) = 0 and e(u3, a2a4a6) =

0 by (a) and (d). Then e(u2, a2a4a6) = 3 so u2 → (C, a3). But this contradicts (b) since

e(a3, u1u4) = 2. Thus u1a1 ∈ E, and similarly u1a3 ∈ E. If u1a4 /∈ E, then e(u2, a1a2) = 0

and e(u3, a2a6) = 0 by (a) and (d). But then e(u2u3, a3a4) ≥ 6 − 4 = 2, contradicting (e)

since e(u1u4, a5a6a1a2) = 7. Hence u1a4 ∈ E, and by symmetry u4a6 ∈ E. By (a) and (d), it

is easy to see that u1a5 ∈ E, so e(u1, C − a2) = 5. Then e(u2, a2a5) = 0 and e(u3, a4a6) = 0.

Since e(u1u4, a5) = 2, by (b) we know that u2 9 (C, a5). Hence e(u2, a4a6) ≤ 1. Then

e(u2u3, a1a3) ≥ 6 − 1 − 2 = 3, so by (a) we know that u 9 (C). Then τ(a2, C) = 0 by

Lemma 1.4.5, so τ(a1a2, C) ≤ 3. Since e(u1u4, a3a4a5a6) = 6 and u4a5a6u1a4a3u4 is a 6-

cycle, this implies that u1u4
0−→ (C, a1a2). But e(u2u3, a1a2) ≥ e(u2u3, a1) ≥ 3 − 2 = 1,

contradicting (e).
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Case 2.3: N(u4, C) = {a1, a2, a4, a5}. If u1a1 /∈ E, then e(u2, a1a4a5) = 0 and e(u3, a3a6) =

0 by (a) and (d). Then e(u2u3, a2) ≥ 6 − 2 − 3 = 1, so by (e) e(a1a2, a3a4a5a6) ≥

e(u1u4, a3a4a5a6) + 2 = 8. Hence τ(a1a2, C) = 6, so u4 → C by Lemma 1.4.8. But then

e(u3, a2a4a5) = 0 by (d), so e(u2u3, C) ≤ 3 + 1 = 4, a contradiction. Hence u1a1 ∈ E,

and by symmetry e(u1, a1a2a4a5) = 4. WLOG let e(u1, C − a6) = 5. Then by (a) and

(d), e(u2, a2a4) = 0 and e(u3, a3) = 0. Then e(u2u3, a5a6) ≥ 1, contradicting (e) since

e(u1u4, a1a2a3a4) = 7.

Case 3: e(u1u4, C) = 8. Since e(u2u3, C) ≥ 7, by (a) and (d) we know that u1 9 C and

u4 9 C. Then e(u1, C) ≤ 5. Suppose e(u1, C) = 5, and WLOG let u1a6 /∈ E. Since u1 9 C,

τ(a6, C) = 0. Suppose that e(u4, a1a2a3a4) ≥ 2. Then e(u1u4, a1a2a3a4) ≥ 6 and C − a5a6 +

u1u4 has a 6-cycle, so because τ(a6, C) = 0 we have u1u4
0−→ (C, a5a6). By (e), this implies

that e(u2u3, a5a6) = 0. Then e(u2u3, a1a2a3a4) ≥ 7, so by (g) e(u1u4, a5a6) = 0, a contradic-

tion since e(u1, C) = 5. Hence e(u4, a1a2a3a4) ≤ 1, and by symmetry e(u4, a2a3a4a5) ≤ 1.

Then e(u4, a5a6a1) = 3, so e(u1u4, a5a6a1a2) = 6. Since τ(a6, C) = 0, τ(a3a4, C) ≤ 4. There-

fore, since u4a1a2u1a5a6u4 is a 6-cycle and e(u1u4, a5a6a1a2) = 6, we have u1u4
−1−→ (C, a3a4).

Hence e(u2u3, a3a4) = 0 by (e), so e(u2u3, a5a6a1a2) ≥ 7. But u1 → (C, ai) for both i = 2

and i = 6, contradicting (a). Therefore e(u1, C) = e(u4, C) = 4.

Case 3.1: N(u1, C) = {a1, a2, a3, a4}. Since u1 9 C, τ(a5a6, C) ≤ 4 by Lemma 1.4.6.

Since u1 → (C, ai) for i = 2 and i = 3, e(u2u3, a2a3) ≤ 2 by (a). Then e(u2u3, a5a6) ≥

7−2−4 = 1, contradicting (e) since e(u1u4, a1a2a3a4) ≥ 4+2 = 6 and e(a5a6, a1a2a3a4) ≤ 6.

Case 3.2: N(u1, C) = {a1, a2, a3, a5}. We break further into several short cases, deter-

mined by N(u4, C).

Case 3.2.1: e(u4, a1a2a3a4) = 4. By (a) and (d), e(u2, a2a4) = 0 and e(u3, a2a3) = 0.

Then e(u2u3, a5a6) ≥ 7− 4 = 3. But e(u1u4, a1a2a3a4) = 7, which contradicts (e).

Case 3.2.2: e(u4, a2a3a4a5) = 4. By (a) and (d), e(u2, a2a4) = 0 and e(u3, a3) = 0. Then

e(u2u3, a6a1) ≥ 7− 5 = 2. But e(u1u4, a2a3a4a5) = 7, which contradicts (e).

Case 3.2.3: e(u4, a3a4a5a6) = 4. By (a) and (d), e(u2, a4a6) = 0 and e(u3, a5) = 0. Then
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e(u2u3, a1a2) ≥ 7 − 5 = 2. Since e(u1u4, a3a4a5a6) = 6 and u1u4 → (C, a1a2), this implies

that τ(a1a2, C) = 6 by (e). But then u4 → C, a contradiction.

Case 3.2.4: e(u4, a1a2a3a5) = 4. By (a) and (d), e(u2u3, a2) = 0. Further, e(u2u3, a4) ≤ 1

and e(u2u3, a6) ≤ 1. Then e(u2u3, a1a3) ≥ 7 − 4 = 3. WLOG let e(u2, a1a3) = 2. Then

u2 → (C, a2), contradicting (b) since e(u1u4, a2) = 2.

Case 3.2.5: e(u4, a2a3a4a6) = 4. By (a) and (d), e(u2, a2a4a6) = 0 and e(u3, a1a3a5) = 0,

a contradiction since e(u2u3, C) ≥ 7.

Case 3.2.6: e(u4, a3a4a5a1) = 4. By (a) and (d), e(u2, a4) = 0 and e(u3, a2) = 0. Then

e(u2u3, a5a6) ≥ 7 − 6 = 1. Since e(u1u4, a1a2a3a4) = 6 and u4a4a3a2u1a1u4 is a 6-cycle, by

(e) we have τ(a5a6, C) = 6. But then u1 → C by Lemma 1.4.7, a contradiction.

Case 3.2.7: e(u4, a4a5a6a2) = 4. By (a) and (d), e(u2, a2a4a6) = 0 and e(u3, a1a3a5) = 0,

a contradiction.

Case 3.2.8: e(u4, a1a2a4a5) = 4. By (a) and (d), e(u2, a2a4) = 0 and e(u3, a3) = 0. Then

e(u2u3, a5a6) ≥ 7 − 5 = 2, so because e(u1u4, a1a2a3a4) = 6 we have τ(a5a6, C) = 6 by (e).

But then u1 → C by Lemma 1.4.7, a contradiction.

Case 3.2.9: e(u4, a3a4a6a1) = 4. By (a) and (d), e(u2, a4a6) = 0 and e(u3, a2a5) = 0.

Then e(u2u3, a5a6) ≥ 7− 6 = 1, so because e(u1u4, a1a2a3a4) = 6 we have τ(a5a6, C) = 6 by

(e). But then u1 → C by Lemma 1.4.7, a contradiction.

Case 3.3: N(u1, C) = {a1, a2, a4, a5}. Since u1 9 C, by Lemma 1.4.8 we have τ(a3, C) =

0 or τ(a6, C) = 0. WLOG let τ(a6, C) = 0. By (a), e(u2u3, a3) ≤ 1 and e(u2u3, a6) ≤ 1.

Suppose that e(u4, a1a2a3a4) ≥ 3. Then, because e(u1u4, a1a2a3a4) ≥ 6 and τ(a5a6, C) ≤

3 + 0 = 3, we have u1u4
0−→ (C, a5a6). Hence e(u2u3, a5a6) = 0 by (e), so e(u2u3, a1a2a4) ≥

7− 1 = 6 and e(u2u3, a3) = 1. Then e(u1u3, a1a2a3a4) = 6, so by (f) we have e(u4, a5a6) = 0,

Then e(u4, a1a2a3a4) = 4, so e(u1u4, a2a3a4a5) = 6. But then e(u2u3, a6a1) = 0 by (e), a

contradiction.

Hence e(u4, a1a2a3a4) ≤ 2, so e(u4, a5a6) = 2. Suppose that e(u4, a1a2) ≥ 1. Then

e(u1u4, a5a6a1a2) ≥ 3 + 3 = 6, so since τ(a3a4, C) = e(a3, a5a1) + e(a4, a1a2) ≤ 4 we have



72

xt-1x1 x5 xt-2x2 x4x3

x1 x2 x3 x4 x5 x6 x7 x8 x9

xt-3xt-4 xt
Figure 3.8: Lemma 3.0.5: If t = 9, then x1 and x9 have x5 as a common neighbor.

e(u2u3, a3a4) = 0 by (e). Then e(u2u3, a1a2a5) ≥ 7 − 1 = 6, so e(u2u4, a5a6a1a2) ≥ 3 +

3 = 6. But then e(u1, a3a4) = 0 by (h), a contradiction. Hence e(u4, a3a4a5a6) = 4, so

e(u2u3, a4a5) ≤ 2 by (d). Then e(u2u3, a1a2) ≥ 7− 2− 2(1) = 3, a contradiction by (e) since

e(u1u4, a4a5a6a1) = 6 and τ(a2a3, C) ≤ 4.

Lemma 3.0.5 Let R = x1x2...xt be a path of order t ≥ 9, and let C = a1a2...a6a1 be a

6-cycle. Suppose that e(x1, x3x4x5) = e(xt, xt−2xt−3xt−4) = 3, e(xi, C) ≥ 3 for i = 2, xt−1, xt,

and e(x1, C) ≥ 2. Then R + C has two disjoint large cycles, one of which has length six.

(The lemma also holds if the condition x1x3 ∈ E or x1x5 ∈ E is replaced by x2x5 ∈ E, or if

x1x4 ∈ E is replaced by x2x4 ∈ E. )

Proof: Suppose that the lemma is not true. Note that x1x5x4x3x2, x1x4x3x2, and x1x3x2

are paths of order five, four, and three, and that similar paths hold for xt−1 and xt. For the

comment in parentheses, note that if x2x5 ∈ E, then x1x3x4x5x2 is a path of order five that

does not use the edge x1x5, and x1x5x2 is a path of order three that does not include x1x3.

If x2x4 ∈ E then x1x5x4x2 is a path of order four that does not use x1x4.

Since there is an x1−x2 path of order five in x1x2x3x4x5, we know that if e(x1x2, ai) = 2

for some ai ∈ C, then x1x2x3x4x5 + ai has a 6-cycle. Similarly, if e(xtxt−1, ai) = 2 for some
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a4

 

xt xt-1xt-2xt-3

a2 a3 a4 a5

a6

xt xt-2 xt-1

a2 a3

xt xt-1

a2 a3

xt xt-1

a4 a5a2 a3

Figure 3.9: Since there are paths of order 2, 3, and 4 from xt to xt−1 that do not include x5,
there is a path, not including x5, of order at least 6 from xt−1 to each ai 6= a2.

ai ∈ C, then xtxt−1xt−2xt−3xt−4 + ai has a 6-cycle. Suppose that e(x1x2, ai) = 2 for some

ai ∈ C, and WLOG let e(x1x2, a1) = 2. Then C− a1 +x6...xt does not have a large cycle, so

we see that xta2 /∈ E, for otherwise e(xt−1, C) = e(xt−1, a3a4a5a6) + e(xt−1, a1a2) ≤ 0 + 2 = 2

(see Figure 3.9). Similarly, we see that e(xt, a3a4a5a6) = 0, a contradiction since e(xt, C) ≥ 3.

Therefore

e(x1x2, ai) ≤ 1 for each ai ∈ C, (3.2)

and by the same reasoning

e(xt−1xt, ai) ≤ 1 for each ai ∈ C. (3.3)

From (3.3) we know that e(xt, C) = e(xt−1, C) = 3, and that N(xt, C) ∩N(xt−1, C) = ∅.

WLOG there are three possibilities for N(xt, C), which we consider presently.
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Case 1: N(xt, C) = {a1, a2, a3}, N(xt−1, C) = {a4, a5, a6}. Suppose that x1a1 ∈ E. Then

x2a2 /∈ E, for otherwise x1x4x3x2a2a1x1 = C6 and a3a4a5a6xt−1xta3 = C6. Similarly, x2a6 /∈

E, so e(x2, a3a4a5) = 3 by (3.2). But then x1x3x2a5a6a1x1 = C6 and xtxt−2xt−1a4a3a2xt =

C6, a contradiction. Therefore x1a1 /∈ E, and by symmetry e(x1, a1a3a4a6) = 0. Thus

e(x1, a2a5) = 2, so by (3.2) e(x2, a1a3a4a6) = 3. WLOG let e(x2, a1a3a4) = 3. Then

x1x4x3x2a1a2x1 = C6 and xtxt−1a6a5a4a3xt = C6, a contradiction.

Case 2: N(xt, C) = {a1, a2, a4}, N(xt−1, C) = {a3, a5, a6}. We observe that the following

graphs have 6-cycles: xt−1xta2a3a4a5, xt−1xta5a6a1a2, xtxt−1xt−2xt−3a6a1, xtxt−1xt−2xt−3a2a3,

and xtxt−1xt−2xt−3a4a5. SinceR+C does not have two disjoint cycles, one of which has length

6, we readily see that e(x1, a1a3a4a6) = 0. Then e(x1, a2a5) = 2 and e(x2, a1a3a4a6) = 3.

WLOG let e(x2, a1a3) = 2. Then x1x3x2a3a4a5x1 = C6 and xtxt−2xt−1a6a1a2xt = C6, a

contradiction.

Case 3: N(xt, C) = {a1, a3, a5}, N(xt−1, C) = {a2, a4, a6}. For each x ∈ N(xt, C), there is

y ∈ N(xt−1, C) such that dC(x, y) = 3. Therefore, we readily see that the following graphs

do not have large cycles: x1x2x3x4x5aiai+1, for each 1 ≤ i ≤ 6. WLOG let x1a1 ∈ E. Then

e(x2, a1a2a6) = 0, so e(x2, a3a4a5) = 3. But then e(x1, a3a4a5a2a6) = 0, a contradiction.

The following lemma is used in Cases 3.2.1.2 and 3.2.2.2 of Part 2 of the proof of Theorem

1.

Lemma 3.0.6 Let R = x1...xr be a path of order r ≥ 5, and let C = a1a2...a6a1 be a 6-cycle.

Let u, v /∈ R + C with uv ∈ E and e(x1xruv, C) ≥ 15. Suppose that, for each ai ∈ C, if

xr → (C, ai) then e(ai, uv) ≤ 1. Then C + R + uv contains either (i) C6 ∪ C≥6, or (ii) a

path P of order r + 2 and a 6-cycle C ′, with P and C ′ disjoint, such that τ(C ′) ≥ τ(C), or

(iii) a path P of order r + 2 and a 6-cycle C ′, with P and C ′ disjoint, such that r(P ) ≥ 4,

τ(C ′) ≥ τ(C) − 1, and τ ′(C ′) ≥ τ ′(C), or (iv) a path P = aiajx1...xr of order r + 2 with

aix1 ∈ E, and a 6-cycle C ′ with τ(C ′) ≥ τ(C)− 1 and τ ′(C ′) ≥ τ ′(C)− 1, such that P and



75

C ′ are disjoint.

Proof: Suppose that the lemma is not true. The following statements follow from the fact

that (i)-(iv) are not true. Since (iv) is not true, (h) holds. The rest follow from (i) and (ii).

(a) If u→ (C, ai) then e(ai, x1xr) ≤ 1. If v → (C, ai) then e(ai, x1xr) ≤ 1.

(b) If uv → (C, aiaj) then e(ai, x1xr) ≤ 1 and e(aj, x1xr) ≤ 1. Further, if aiaj ∈ E and

e(aiaj, x1xr) = 2, then e(x1, aiaj) = 2 or e(xr, aiaj) = 2.

(c) If u
0−→ (C, ai) then e(ai, vx1xr) ≤ 1. If v

0−→ (C, ai) then e(ai, ux1xr) ≤ 1.

(d) If uv
0−→ (C, aiaj) and aiaj ∈ E, then e(aiaj, x1xr) = 0.

(e) If xr → (C, ai) then e(ai, uv) ≤ 1 (by assumption).

(f) If x1
0−→ (C, ai), then e(ai, xru) ≤ 1 and e(ai, xrv) ≤ 1. If xr

0−→ (C, ai), then e(ai, x1u) ≤ 1

and e(ai, x1v) ≤ 1.

(g) If xr
0−→ (C, ai) then e(ai, x1uv) ≤ 1 (by (e) and (f)).

(h) If uv
−1−→ (C, aiaj) with aiaj ∈ E, and τ ′(C+uv−aiaj) ≥ τ ′(C)−1, then e(x1, aiaj) ≤ 1.

Claim 1: e(u,C) ≤ 4 and e(v, C) ≤ 4.

Proof: WLOG let e(u,C) ≥ e(v, C). By (c), clearly e(u,C) ≤ 5. Suppose e(u,C) = 5, and

WLOG let e(u,C−a6) = 5. If τ(a6, C) = 0, then by (c) e(ai, vx1xr) ≤ 1 for each i = 2, 3, 4, 6,

so e(a1a5, vx1xr) ≥ 15 − 5 − 4 = 6. Hence uv
0−→ (C, a5a6), contradicting (d). Therefore

τ(a6, C) > 0, so u → C. By (a), e(ai, x1xr) ≤ 1 for each ai ∈ C, so e(v, C) ≥ 15 − 11 = 4.

Suppose that va6 ∈ E. Then e(a6, x1xr) = 0 by (c), so e(v, C) = 5 and e(x1xr, ai) = 1 for

each i 6= 6. But then for some k 6= 6, e(v, C − ak) = 5 and e(ak, ux1xr) = 2, contradicting

(c). Hence va6 /∈ E. Since e(x1xr, a5a6) ≥ 5 − 4 = 1 and e(u, a1a2a3a4) = 4, by (d) we see

that e(v, a1a2a3a4) ≤ 3. By symmetry, e(v, a2a3a4a5) ≤ 3. This implies that e(v, C) = 4,

e(v, a1a5) = 2, e(v, a2a3a4) = 2, and e(ai, x1xr) = 1 for each ai ∈ C.
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Suppose va3 /∈ E. Then e(v, a1a2a4a5) = 4, so by (e) xr 9 (C, ai) for each i = 1, 2, 4, 5.

If e(xr, a5a6) = 2, then by (b) xra1 ∈ E since uv → (C, a6a1) and e(a6a1, x1xr) = 2.

But then xr → (C, ai) for some i ∈ {1, 2, 4, 5} because τ(a6, C) > 0, a contradiction.

Hence e(xr, a5a6) ≤ 1, and since uv → (C, a5a6) and e(x1xr, a5a6) = 2, by (b) we have

e(x1, a5a6) = 2. But this contradicts (h), since e(uv, a1a2a3a4) = 7. Therefore va3 ∈ E, and

WLOG we can let va2 ∈ E. By (e), xr 9 (C, ai) for each i = 1, 2, 3, 5, so e(xr, a5a6a1) ≤ 2

by Lemma 1.4.9 since τ(a6, C) > 0. Since uv → (C, a5a6) and uv → (C, a6a1), by (b) this

implies that e(xra5a6a1) = 0 and e(x1, a5a6a1) = 3. But e(uv, a1a2a3a4) = 7, contradicting

(h).

QED

By Claim 1 we have e(uv, C) ≤ 8, so e(x1xr, C) ≥ 7. By (a), this implies that u 9 C

and v 9 C.

Claim 2: e(u,C) ≤ 3 and e(v, C) ≤ 3.

Proof: WLOG let e(u,C) ≥ e(v, C). Suppose that e(u,C) ≥ 4. By Claim 1, e(u,C) = 4.

Case A: N(u,C) = {a1, a2, a3, a4}. By (a), e(a2, x1xr) ≤ 1 and e(a3, x1xr) ≤ 1. Suppose

that τ(a5a6, C) ≤ 3. Since e(x1xr, a5a6) ≥ 7−1−1−4 = 1, we see by (d) that e(v, a1a4) = 0,

for otherwise uv
0−→ (C, a5a6). Similarly, e(v, a2a3) ≤ 1, so e(v, C) ≤ 3. Then e(x1xr, C) ≥ 8,

so e(x1xr, a1a3a4a6) ≥ 8 − 1 − 2 = 5. This implies that va5 /∈ E, for otherwise uv →

(C, a3a4) and uv → (C, a6a1), contradicting (b). By symmetry, we also know that va6 /∈ E,

so e(v, C) ≤ 1 and e(x1xr, C) ≥ 10. Since e(a2, x1xr) ≤ 1 and e(a3, x1xr) ≤ 1, we have

e(x1xr, a4a5a6a1) = 8, and e(a2, x1xr) = e(a3, x1xr) = c(v, C) = 1. WLOG let va2 ∈ E. By

(e), xr 9 (C, a2), so xra3 /∈ E. Then x1a3 ∈ E, so τ(a4, C) = 3, for otherwise x1
0−→ (C, a4)

and e(a4, xru) = 2, contradicting (f). But then a1a4a3a2vua1 = C6, contradicting (b) since

e(a5a6, x1xr) = 4.

Therefore τ(a5a6, C) ≥ 4. WLOG let τ(a5, C) ≥ 2. Then by Lemma 1.4.6, u → (C, a4)

and u → (C, a6) Further, since τ(a6, C) ≥ 1 we also know that u → (C, a5). By (a), this



77

imples e(x1xr, ai) ≤ 1 for each i = 4, 5, 6, so e(x1xr, ai) = 1 for each i 6= 1 and e(x1xr, a1) = 2.

Then u9 (C, a1), so τ(a6, C) ≤ 1 by Lemma 1.4.6. Since e(u,C − a6) = 4, this implies that

u
1−→ (C, a6). By (c), this implies that va6 /∈ E, so e(v, C − a6) ≥ 15 − 4 − 7 = 4. But then

uv
1−→ (C, a5a6) because τ(a5a6, C) = 4, contradicting (d) since e(x1xr, a5a6) = 2.

Case B: N(u,C) = {a1, a2, a3, a5}. By (a), e(x1xr, ai) ≤ 1 for each i = 2, 4, 6,

so e(x1xr, a1a3a5) ≥ 7−3 = 4. Since u9 C, τ(a4, C) ≤ 2 by Lemma 1.4.7. Then u
0−→ (C, a4),

so by (c) e(a4, x1xrv) ≤ 1. By symmetry, e(a6, x1xrv) ≤ 1.

Suppose that e(v, a2a5) > 0. Then uv → (C, a6a1) and uv → (C, a3a4), so by (b)

e(a1, x1xr) ≤ 1 and e(a3, x1xr) ≤ 1. Then e(a5, x1xr) = 2, e(ai, x1xr) = 1 for i 6= 5, and

e(v, C) = 4. Further, since e(a4, x1xr) = e(a6, x1xr) = 1, we know that e(v, a1a2a3a5) = 4.

Then e(uv, a2a3a4a5) = 6, so by (d) τ(a6a1, C) ≥ 5. By symmetry, τ(a3a4, C) ≥ 5. Thus

a4a6 ∈ E or e(a2, a4a6) = 2, so u → (C, a5) by Lemma 1.4.7. But this contradicts (a),

because e(a5, x1xr) = 2.

Therefore e(v, a2a5) = 0. Since e(a4, x1xrv) ≤ 1 we see that va4 /∈ E, for otherwise uv →

(C, a5a6) and uv → (C, a2a3), contradicting (b) since e(x1xr, a3a5) ≥ 7− e(x1xr, a2a6)−

e(x1xr, a1) − e(x1xr, a4) ≥ 7 − 2 − 2 − 0 = 3. By symmetry, va6 /∈ E, so e(v, C) ≤ 2. This

implies that e(v, a1a3) = 2, e(x1xr, a1a3a5) = 6, and e(x1xr, ai) = 1 for each i = 2, 4, 6. By

(a), u 9 (C, ai) for any i = 1, 3, 5, so τ(a2, C) ≤ 1 by Lemma 1.4.7. But then x1
0−→ (C, a2)

and xr
0−→ (C, a2), contradicting (f) because e(x1xr, a2) = 1 and ua2 ∈ E.

Case C: N(u,C) = {a1, a2, a4, a5}. By (a), e(a3, x1xr) ≤ 1 and e(a6, x1xr) ≤ 1. Suppose

that e(v, a1a2a4a5) = 0. Then e(x1xr, a1a2a4a5) ≥ 15 − e(uv, C) − 1 − 1 ≥ 15 − 8 = 7,

so by (a) we see that u → (C, ai) for at most one ai ∈ {a1, a2, a4, a5}. By Lemma 1.4.8,

this implies that τ(a3a6, C) = 0. Since e(v, C) ≥ 15 − 4 − 10 = 1 and e(v, a1a2a4a5) = 0,

WLOG let va3 ∈ E. Then by (c), e(a3, x1xr) = 0 because u
2−→ (C, a3), so e(x1xr, C) ≤ 9.

Therefore e(v, C) = 2, so va6 ∈ E. By the same reasoning as above we have e(a6, x1xr) = 0,

so e(x1xr, C) ≤ 8. But then e(uvx1xr, C) ≤ 4 + 2 + 8 = 14 < 15, a contradiction.

Therefore e(v, a1a2a4a5) ≥ 1. WLOG let va1 ∈ E. Then uv → (C, a2a3) and uv →
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(C, a5a6), so by (b) e(a2, x1xr) ≤ 1 and e(a5, x1xr) ≤ 1. Hence e(x1xr, a1a4) ≥ 7 − 4 = 3,

so we see that e(v, a2a5) = 0 by (b), for otherwise uv → (C, a3a4) and uv → (C, a6a1).

Then e(a3a6, x1xrv) ≥ 11 − e(a2a5, x1xrv) − e(a1a4, x1xrv) ≥ 11 − 2 − 6 = 3, so by (c)

τ(a3a6, C) > 0. Then by Lemma 1.4.8, u → (C, a1) or u → (C, a4), so e(x1xr, a1a4) = 3

by (a). This implies that e(x1xr, ai) = 1 for each i = 2, 3, 5, 6, and e(v, a1a3a4a6) = 4.

Since e(x1xr, a1a4) = 3, either τ(a3, C) = 0 or τ(a6, C) = 0 by (a) and Lemma 1.4.8. Then

u
2−→ (C, a3) or u

2−→ (C, a6), contradicting (c) because e(a3, x1xrv) = e(a6, x1xrv) = 2.

QED

By Claim 2 we have e(u,C) ≤ 3 and e(v, C) ≤ 3, so e(x1xr, C) ≥ 9. Clearly, e(xr, C) ≤ 5

by (g). Suppose that e(x1, C) = 6. . Then by (f), e(xru, ai) ≤ 1 and e(xrv, ai) ≤ 1

for each ai ∈ C. Since e(xruv, C) ≥ 9 and 6 ≥ e(uv, C) ≥ 4, this implies that e(xr, C) =

e(u,C) = e(v, C) = 3, N(u,C) = N(v, C), N(u,C)∩N(xr, C) = ∅, andN(u,C)∪N(xr, C) =

{a1, a2, a3, a4, a5, a6}. We see by (e) that N(xr, C) 6= {a1, a2, a4} and N(xr, C) 6= {a1, a3, a5},

so WLOG we can let N(xr, C) = {a1, a2, a3}. Then N(u,C) = N(v, C) = {a4, a5, a6}, so

by (e) and Lemma 1.4.9 we have τ(a5, C) = 0. But then u
0−→ (C, a5) and e(x1xrv, a5) = 2,

contradicting (c). Thus e(x1, C) ≤ 5.

Claim 3: e(xr, C) ≤ 4.

Proof: Suppose e(xr, C) = 5, and WLOG let e(xr, C − a6) = 5. Suppose τ(a6, C) = 0.

Then xr
0−→ (C, ai) for each i = 2, 3, 4, 6, so e(ai, x1uv) ≤ 1 for each such i by (g). Hence

e(x1uv, a1a5) = 6 and e(x1uv, ai) = 1 for each i = 2, 3, 4, 6. Since e(x1xr, a5) = 2, by (b)

we know that e(uv, a4) = 0, for otherwise uv → (C, a5a6). By symmetry, e(uv, a2) = 0.

Then e(x1, a1a2a4a5) = 4, so because a3a6 /∈ E we have x1
0−→ (C, a3). By (f), this implies

that e(uv, a3) = 0. Therefore e(x1, C − a6) = 5 and e(uv, a6) = 1. WLOG let ua6 ∈ E (see

Figure 3.10). Since u 9 (C, ai) for i 6= 6 by (a), we see that a2a4 /∈ E and e(a3, a1a5) = 0.

Because τ(a6, C) = 0, this implies that τ(a2a3a4, C) ≤ 2. Let C ′ = x1a5a6uva1x1 and let
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P ′ = x2...xra2a3a4. Since τ(a2a3a4, C) ≤ 2 and τ(a6, C) = 0, we know that τ(C) ≤ 3. Since

e(u, a1a5) = 2 and va5 ∈ E, we know that τ(C ′) ≥ 3. But P ′ is a path of order r−1+3 = r+2,

a contradiction.

Therefore τ(a6, C) > 0, so xr → C by Lemma 1.4.5. Then e(uv, ai) ≤ 1 for each

ai ∈ C by (e), and because e(xr, C − a6) = 5 we have e(uvx1, a6) ≤ 1 by (g). Suppose that

x1a6 ∈ E. Then e(uv, a6) = 0, so e(uv, ai) = 1 for each i 6= 6, and e(x1, C) = 5. WLOG

let ua1 ∈ E. Then by (b), va4 /∈ E, for otherwise uv → (C, a2a3) and e(a2a3, x1xr) ≥ 3.

Hence ua4 ∈ E. Since e(u, a1a4) = 2 and e(u,C) ≤ 3 by Claim 2, we have e(u, a2a5) ≤

1. If e(u, a2a5) = 1 then e(v, a2a5) = 1, which implies that uv → (C, a3a4) and uv →

(C, a6a1). But e(a3a4a6a1, x1xr) ≥ 10 − 4 = 6 > 4, contradicting (b). Thus e(u, a2a5) = 0,

so e(v, a2a5) = 2. Since e(uv, a3) = 1, by symmetry we can let ua3 ∈ E. Then u → (C, a2),

so by (a) x1a2 /∈ E. But then x1
0−→ (C, a2) and e(a2, xrv) = 2, contradicting (f).

Therefore x1a6 /∈ E. Since e(x1xr, C − a6) ≥ 9− 0 = 9, we know that e(x1xr, aiai+1) ≥ 3

for each i ∈ {1, 2, 3, 4}. Then by (b) we see that for each i ∈ {1, 2, 3, 4}, uv 9 (C, aiai+1).

Thus, for each ai ∈ C, if uai ∈ E then vai+3 /∈ E. Since e(uv, ai) ≤ 1 for each ai ∈ C, and

because e(u,C) ≤ 3 and e(v, C) ≤ 3, this implies that e(uv, C) ≤ 5. Hence e(x1, C − a6) = 5

and e(uv, C) = 5. WLOG let ua1 ∈ E. Since e(x1xr, C − a6) = 10, by (a) and (b) we see

that u 9 (C, a2) and uv 9 (C, a2a3). Therefore ua3 /∈ E and va4 /∈ E. Further, by (a)

we have e(u, a2a4) ≤ 1, e(u, a4a6) ≤ 1, e(u, a2a6) ≤ 1, e(v, a3a5) ≤ 1, and e(v, a2a6) ≤ 1.

Since ua1 ∈ E and e(uv, a1) ≤ 1, we have va1 /∈ E, so e(v, C) = 2 and e(u,C) = 3. Since

e(u, a2a4a6) ≤ 1 and ua3 /∈ E, this implies that ua5 ∈ E. Hence va5 /∈ E, and by (b)

va2 /∈ E. Thus e(v, a3a6) = 2, e(u, a1a5) = 2, and e(u, a2a4) = 1. WLOG let ua4 ∈ E. By

(a), u 9 (C, a2), so by Lemma 1.4.10 we have τ(a3, C) = 0. But then x1
2−→ (C, a3) and

e(xrv, a3) = 2, contradicting (f).

QED

Since e(x1, C) ≤ 5, e(xr, C) ≤ 4, e(u,C) ≤ 3, and e(v, C) ≤ 3, each inequality is an

equality. The following three cases will complete the proof.
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Figure 3.10: Lemma 3.0.6, Claim 3: When τ(a6, C) = 0, there is a 6-cycle C ′ (middle) with
τ(C ′) ≥ τ(C), and a path P ′ (bottom) of order r + 2.
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Figure 3.11: Lemma 3.0.6, Case 3: The dashed lines represent possible edges.

Case 1: N(u,C) = {a1, a2, a3}. By (a), e(x1xr, a2) ≤ 1, so e(x1xr, C − a2) ≥ 8. Since

e(x1xr, C) = 9 > 8, by (b) we see that e(v, a4a5a6) = 0, for otherwise uv → (C, aiai+1) and

uv → (C, ai+3ai+4) for some ai ∈ C. Then e(v, a1a2a3) = 3, so by (e) we have xr 9 (C, ai)

for each i = 1, 2, 3. Hence e(xr, a6a2) ≤ 1, e(xr, a1a3) ≤ 1, and e(xr, a2a4) ≤ 1. We ob-

serve that xra2 /∈ E, for otherwise e(x1, C − a2) = 5, which implies that x1
0−→ (C, a2) and

e(a2, xru) = 2, contradicting (f).

Thus e(xr, C−a2) = 4, so WLOG let xra1 ∈ E. Then xra3 /∈ E, so we have e(xr, a1a4a5a6) =

4. Since xr 9 (C, a3), we know that τ(a2, C) = 0 by Lemma 1.4.6. Hence u
0−→ (C, a2), so

by (c) x1a2 /∈ E, which implies that e(x1, C − a2) = 5. Since xr 9 (C, a2), we know that

τ(a3, C) = 0 by Lemma 1.4.6. Thus τ(a2a3, C) = 0, so τ(C) ≤ 3. Let C ′ = a1x1a3uva2a1.

Since (uvx1, a1a2a3) = 8, uv ∈ E, a1a2 ∈ E, and a2a3 ∈ E, we have τ(C ′) ≥ 11− 6 = 5 > 3.

But x2...xra4a5a6 = Pr+2, a contradiction.

Case 2: N(u,C) = {a1, a2, a4}. Since e(x1xr, C) ≥ 9, by (b) we have e(v, a4a5a1) = 0, so

e(v, a2a3a6) = 3. Thus e(x1xr, a3) ≤ 1 and e(x1xr, a1) ≤ 1 by (a), so e(x1xr, a2a4a5a6) ≥ 7.

Hence u → (C, ai) for at most one i ∈ {2, 4, 5, 6}, so τ(a3, C) ≤ 1 by Lemma 1.4.10.

Then u
0−→ (C, a3), so by (c) e(x1xr, a3) = 0. Similarly, since e(v, a2a3a6) = 3 we have

e(x1xr, a1) = 0. But then e(x1xr, C) ≤ 8, a contradiction.
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Case 3: N(u,C) = {a1, a3, a5}. Similar to the previous case, we have e(v, a1a3a5) = 3. By

(a), e(x1xr, ai) ≤ 1 for each i = 2, 4, 6, so e(x1xr, a1a3a5) = 6. By symmetry, WLOG let

xra2 ∈ E and e(x1, a4a6) = 2. Since xr 9 (C, ai) for each i = 1, 3, 5 by (e), we know that

e(a4, a2a6) = e(a6, a2a4) = 0 by Lemma 1.4.7. Then τ(C) ≤ 6, and τ(C) ≤ 5 if a1a3 /∈ E

(see Figure 3.11). Let C ′ = uva3xra2a1u. Since e(uvxr, a1a2a3) = 7, uv ∈ E, a1a2 ∈ E, and

a2a3 ∈ E, we have τ(C ′) ≥ 10−6 = 4, and τ(C ′) ≥ 5 if a1a3 ∈ E. Therefore τ(C ′) ≥ τ(C)−1.

Clearly τ ′(C ′) = 1, and τ ′(C) ≤ 1 since e(a2, a4a6) = 0. Hence τ ′(C ′) ≥ τ ′(C). Since (iii)

from this lemma is not true, it must be the case that R + C − xr − a1a2a3 does not have a

path P of order r + 2 such that r(P ) ≥ 4. But a4x1 ∈ E, so a4a5a6x1x2 . . . xr−1 is such a

path, a contradiction.

The following Lemma will be used in Cases B.3 and C.2 of Proposition 4.1.7.

Lemma 3.0.7 Let R = x1...xr be a path of order r ≥ 5, and let C = a1a2...a6a1 be a 6-cycle.

Let u, v /∈ R + C with e(x1xruv, C) ≥ 15. Suppose that the following are true:

1. If xr → (C, ai) then e(ai, x1uv) ≤ 1.

2. If u
0−→ (C, ai) then e(ai, x1xr) = 0. If v

0−→ (C, ai) then e(ai, x1xr) = 0.

3. If xr
1−→ (C, ai) then e(ai, x1v) = 0.

Then C + R + uv contains either C6 ∪ C≥6, or a path of order r + 2 and a 6-cycle C ′ with

τ(C ′) ≥ τ(C)− 1.

Proof: Suppose that the lemma is not true. We begin with some easy observations, the

last three of which are just part of the lemma’s assumptions.

(a) If u→ (C, ai) then e(ai, x1xr) ≤ 1. If v → (C, ai) then e(ai, x1xr) ≤ 1.

(b) If uv → (C, aiaj) then e(ai, x1xr) ≤ 1 and e(aj, x1xr) ≤ 1.

(c) If u
−1−→ (C, ai) then e(ai, vx1xr) ≤ 1. If v

−1−→ (C, ai) then e(ai, ux1xr) ≤ 1.
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(d) If u
0−→ (C, ai) then e(ai, x1xr) = 0. If v

0−→ (C, ai) then e(ai, x1xr) = 0.

(e) If xr → (C, ai) then e(ai, x1uv) ≤ 1.

(f) If xr
1−→ (C, ai) then e(ai, x1v) = 0.

Claim 1: e(u,C) ≤ 3 and e(v, C) ≤ 3.

Proof: We will not use (f) in the proof of this claim, and hence WLOG we let e(u,C) ≥

e(v, C). Clearly, e(u,C) ≤ 5 and e(v, C) ≤ 5. Suppose that e(u,C) ≥ 4, and first let

e(u,C) = 5. WLOG let e(u,C − a6) = 5. By (c), u 9 C, so τ(a6, C) = 0 by Lemma

1.4.5. Then τ(ai, C) ≤ 2 for each i = 2, 3, 4, 6, so by (d) e(a2a3a4a6, x1xr) = 0. But then

e(x1xr, a1a5) ≥ 15 − 10 = 5, a contradiction. Thus e(u,C) = 4 and (v, C) ≤ 4. Since

e(x1xr, C) ≥ 15− 8 = 7, u9 C and v 9 C by (a).

Case A: N(u,C) = {a1, a2, a3, a4}. Since u 9 C, τ(a2, C) ≤ 2 and τ(a3, C) ≤ 2 by

Lemma 1.4.6. Then by (c), e(a2, vx1xr) ≤ 1 and e(a3, vx1xr) ≤ 1. Suppose e(a6, a2a3) > 0 or

e(a5, a2a3) > 0. WLOG let a6a2 ∈ E. Then by Lemma 1.4.6, u → (C, a1) and u → (C, a5).

Since e(u,C − a5) = 4, we have further that u
−1−→ (C, a5), and so e(a5, vx1xr) ≤ 1 by (c).

Then e(a1a4a6, x1xrv) ≥ 15 − 4 − 3 = 8, so τ(a1, C) = 3, for otherwise e(a1, vx1xr) ≤ 1

by (c). But then u
−1−→ (C, a6) by Lemma 1.4.6 since a5a1 ∈ E, contradicting (c) because

e(a6, x1xrv) ≥ 2.

Therefore e(a5, a2a3) = e(a6, a2a3) = 0. Then u
0−→ (C, a2) and u

0−→ (C, a3), so

e(a2a3, x1xr) = 0 by (d). Hence e(x1xr, a4a5a6a1) ≥ 7. Since e(x1xr, a5a6) ≥ 3, we know that

e(v, a1a2a3a4) ≤ 1 for otherwise uv → (C, a5a6), contradicting (b). Thus e(x1xr, a4a5a6a1) =

8 and e(v, a5a6) = 2, which clearly contradicts (e).

Case B: N(u,C) = {a1, a2, a3, a5}. By (c), e(a4, vx1xr) ≤ 1 and e(a6, vx1xr) ≤ 1. Fur-

ther, because u9 C we have τ(a2, C) ≤ 2 by Lemma 1.4.7, so we also get e(a2, vx1xr) ≤ 1.

Thus e(a1a3a5, vx1xr) ≥ 15 − 4 − 3 = 8. WLOG let e(a1, vx1xr) = 3. Then u 9 (C, a1)

by (a), so e(a6, a2a4) = 0 by Lemma 1.4.7. Then τ(a4, C) ≤ 2 and τ(a6, C) ≤ 1, so
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by (d) e(a4a6, x1xr) = 0. Then e(v, a4a6) ≥ 15 − 4 − e(a1a3a5, vx1xr) − e(a2, vx1xr) ≥

15−4−9−1 = 1, so uv → (C, a5a6) or uv → (C, a4a5). Thus e(a5, x1xr) ≤ 1 by (b). But then

e(v, C) ≥ 15− e(u,C)− e(x1xr, C) = 15− 4− e(x1xr, a4a6)− e(x1xr, a2a5)− e(x1xr, a1a3) ≥

15− 4− 0− 2− 4 = 5, a contradiction.

Case C: N(u,C) = {a1, a2, a4, a5}. By (c), e(a3, vx1xr) ≤ 1 and e(a6, vx1xr) ≤ 1. Since

u9 C, WLOG we can let τ(a6, C) = 0 by Lemma 1.4.8. Then e(a6, x1xr) = 0 by (d). Sup-

pose that τ(a3, C) > 0. Then by Lemma 1.4.8 u→ (C, a2) and u→ (C, a4), so e(a2, x1xr) ≤ 1

and e(a4, x1xr) ≤ 1 by (a). Hence e(x1xr, a1a5) = 4, e(x1xr, ai) = 1 for each i = 2, 3, 4, and

e(v, C) = 4. Since e(x1xr, a3) = 1, we know that e(v, C − a3) = 4 because e(a3, vx1xr) ≤ 1.

Therefore e(v, a2a4) ≥ 1. Since e(x1xr, a1a5) = 4, we know that v 9 (C, a1) and v 9 (C, a5)

by (a). Since e(v, a2a4) ≥ 1, this implies that va6 /∈ E. Thus e(v, a1a2a4a5) = 4, so

uv → (C, a6a1), contradicting (b).

Therefore τ(a3, C) = 0, so by (d) e(a3, x1xr) = 0. Then e(x1xr, a1a2a4a5) ≥ 7, so WLOG

let e(x1xr, a1a2a4) = 6. Thus by (b) we have uv 9 (C, a6a1), uv 9 (C, a2a3), and uv 9

(C, a3a4). Since e(u, a1a2a4a5) = 4, this implies that e(v, a2a3a4a5) ≤ 2, e(v, a4a5a6a1) ≤ 2,

and e(v, a5a6a1a2) ≤ 2. Hence e(v, C) ≤ 3, so e(x1xr, a1a2a4a5) = 8 and e(v, C) = 3. WLOG

let va1 ∈ E. Since e(x1xr, a5) = 2, by (b) we have uv 9 (C, a5a6). Because va1 ∈ E

and e(u, a1a2a4) = 3, this implies that e(v, a2a3a4) = 0. But then e(v, a5a6a1) = 3, so

uv → (C, a3a4), contradicting (b).

QED

Claim 2: e(xr, C) ≤ 3.

Proof: Suppose that e(xr, C) ≥ 4. By (e), we know that e(xr, C) ≤ 5. If e(xr, C) = 5,

and WLOG e(xr, C − a6) = 5, then by (e) e(ai, x1uv) ≤ 1 for each i = 2, 3, 4, 6. Then

e(x1uv, a1a5) ≥ 15−5−4 = 6, so xr 9 (C, a1) and xr 9 (C, a5). Hence τ(a6, C) = 0, so by (f)

e(a6, x1v) = 0. Then ua6 ∈ E and e(ai, x1uv) = 1 for each i = 2, 3, 4. Since e(u, a5a6a1) = 3

and e(u,C) ≤ 3, we have e(ai, x1v) = 1 for each i = 2, 3, 4. Thus by (f), τ(ai, C) ≥ 2 for each



85

i = 2, 3, 4. Since τ(a6, C) = 0, this imples that e(a2, a4a5) = e(a3, a5a1) = e(a4, a1a2) = 2.

Then u → (C, a2) and u → (C, a4) by Lemma 1.4.9, so by (a) e(x1, a2a4) = 0. But then

e(v, a1a2a4a5) = 4, a contradiction since e(v, C) ≤ 3. Therefore e(xr, C) = 4.

Case A: N(xr, C) = {a1, a2, a3, a4}. By (e), e(a2, x1uv) ≤ 1 and e(a3, x1uv) ≤ 1. Hence

e(x1uv, a4a5a6a1) ≥ 15−4−2 = 9. Suppose that τ(a5, C) > 0. Then xr → (C, a6) by Lemma

1.4.6, so e(a6, x1uv) ≤ 1 by (e), and hence e(x1uv, a4a5a1) ≥ 8. Then xr 9 (C, ai) for each

i = 4, 5, 1, so by Lemma 1.4.6 τ(a6, C) = 0 and e(a5, a2a3) = 0. Since xr → (C, a6), this

implies that e(a6, x1v) = 0 by (f). Then e(x1, C − a6) = 15− 4− 6 = 5, so e(a2a3, uv) = 0,

and hence e(u, a4a5a6a1) = 3 and e(v, a4a5a1) = 3. But then uv → (C, a2a3), contradicting

(b).

Hence τ(a5, C) = 0, and by symmetry τ(a6, C) = 0. Because e(x1, C) ≥ 5, WLOG we

can let x1a5 ∈ E. Then by (d), because τ(a5a6, C) = 0 we have u9 (C, a5) and v 9 (C, a5).

Therefore e(u, a4a6) ≤ 1 and e(v, a4a6) ≤ 1. Since e(x1uv, a4a5a6a1) ≥ 9 from the beginning

of Case A, we get e(uv, a1a5) ≥ 9 − e(x1, a4a5a6a1) − e(uv, a4a6) ≥ 9 − 4 − 2 = 3. Then

either u → (C, a6) or v → (C, a6), and since τ(a6, C) = 0 this implies that x1a6 /∈ E by

(d). Therefore e(x1, C − a6) = 5, e(uv, a1a5) = 4, and e(u, a4a6) = e(v, a4a6) = 1. Since

e(x1xr, a2a3) = 4, we have uv 9 (C, a2a3) by (b). Thus, because e(uv, a1a5) = 4 and

e(u, a4a6) = e(v, a4a6) = 1, this implies that e(uv, a6) = 2. Since x1a3 ∈ E and xr → (C, a3),

we know that τ(a3, C) ≥ 1 by (f). Thus, because τ(a6, C) = 0 and τ(a5, C) = 0, we must

have τ(a3, C) = 1 with a3a1 ∈ E. But e(u, a5a6a1) = 3, so u → (C, a2) by Lemma 1.4.9,

contradicting (a).

Case B: N(xr, C) = {a1, a2, a3, a5}. By (e), e(ai, x1uv) ≤ 1 for each i = 2, 4, 6, so

e(a1a3a5, x1uv) ≥ 15 − 4 − 3 = 8. Then again by (e), xr 9 (C, ai) for each i = 1, 3, 5,

so τ(a4, C) ≤ 1 and τ(a6, C) ≤ 1 by Lemma 1.4.7. Hence by (f), e(a4a6, x1v) = 0, a

contradiction since e(x1, C) ≥ 5.

Case C: N(xr, C) = {a1, a2, a4, a5}. By (e), e(a3, x1uv) ≤ 1 and e(a6, x1uv) ≤ 1. Then

e(a1a2a4a5, x1uv) ≥ 15− 4− 2 = 9, so e(a2a4, x1uv) ≥ 3 and e(a1a5, x1uv) ≥ 3. Thus by (e)
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we have xr 9 (C, a2) or xr 9 (C, a4), and xr 9 (C, a1) or xr 9 (C, a5). By Lemma 1.4.8,

this implies that τ(a3a6, C) = 0. But then xr
2−→ (C, a3) and xr

2−→ (C, a6), contradicting (f)

since e(x1, C) ≥ 5.

QED

By Claims 1 and 2, we have e(x1, C) = 6 and e(xr, C) = e(u,C) = e(v, C) = 3. Since

e(x1, C) = 6, by (a) we know that if u → (C, ai) then xrai /∈ E. Thus u → (C, ai) for at

most three ai ∈ C. Also, by (d) we know that there cannot be ai ∈ C such that u
0−→ (C, ai).

Therefore N(u,C) 6= {a1, a3, a5}, for otherwise by Lemma 1.4.11 we see that either u → C

or τ(ai, C) ≤ 1 for some i ∈ {2, 4, 6}, and hence u
0−→ (C, ai). If N(u,C) = {a1, a2, a4} then

τ(a3, C) ≥ 2, for otherwise u
0−→ (C, a3). Then either a3a5 ∈ E or e(a3, a6a1) = 2. In the first

case, by Lemma 1.4.10 we have u → (C, ai) for each i ∈ {2, 3, 4, 6}, a contradiction since

4 > 3. In the second case, by Lemma 1.4.10 we have u → (C, ai) for each i ∈ {1, 2, 3, 5},

again a contradiction.

Thus WLOG N(u,C) = {a1, a2, a3}. Since x1a2 ∈ E, by (a) and (d) we have xra2 /∈ E

and τ(a2, C) ≥ 1. Suppose that a2a5 ∈ E. Then u → (C, a4) and u → (C, a6) by Lemma

1.4.9, so e(xr, a4a6) = 0. But then e(xr, a1a3a5) = 3, so xr → (C, a2), contradicting (e)

because e(x1u, a2) = 2. Thus a2a5 /∈ E, so e(a2, a4a6) ≥ 1. WLOG let a2a4 ∈ E. Then

u → (C, a3) by Lemma 1.4.9, so xra3 /∈ E, and hence e(xr, a4a5a6a1) = 3. Then xr is

adjacent to two consecutive vertices of the path a4a5a6a1a2. But then, because a2a4 ∈ E,

we see that xr → (C, a3), contradicting (e). This completes that proof.
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Chapter 4

Proof of Theorem 1

In this chapter, we prove that if G is a graph of order n ≥ 6k + 1 and δ(G) ≥ 7
2
k, k ≥ 2,

then G contains k vertex-disjoint cycles of length at least six. The proof is done by way of

contradiction. Assuming the theorem does not hold, we choose a collection of large cycles

and a path disjoint from these cycles, each subject to certain minimality and maximality

conditions. We then use dozens of cases (the rest of the proof) to investigate the edges

between the path and a 6-cycle to find something that contradicts one of the maximal/mini-

mal conditions, so that no such path can exist and the theorem holds. In Propositions 4.1.4,

4.1.5, and 4.1.7 we use the fact that if the path has limited edges to every large cycle, then

it must have more edges to itself.

It is clear from the proof that any attempt at proving a stronger theorem, or proving a

similar theorem for larger cycles, may not be a good use of time unless a different strategy

was used.

4.1 Part One

Let G be a graph of order n ≥ 6k + 1 and δ(G) ≥ 7
2
k, k ≥ 2. Suppose that G does not

contain k disjoint large cycles. Let r0 be the largest integer such that G contains r0 disjoint

6-cycles. Over all such collections of r0 disjoint 6-cycles, let k0 be the largest integer such

that G contains k0 disjoint large cycles. Then r0 ≤ k0 ≤ k − 1. A chain of G is a set

{L1, ..., Lr0 , ..., Lk0} of k0 disjoint large cycles that includes r0 disjoint 6-cycles, and such

that
k0∑
i=1

l(Li) is minimal among all such sets. (4.1)

. We choose a chain σ = {L1, ..., Lr0 , ..., Lk0} of G such that

the length of a longest path in D is maximal, (4.2)
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where

D = G−
k0∑
i=1

Li.

Let H = G−D, and let P = x1x2...xt be a longest path in D.

Lemma 4.1.1 Let j = 2 or j = 4, and suppose there is x1, ..., xj ∈ D with e(x1...xj, D) ≤
7j
2
− 1. Then there is Li ∈ σ such that e(x1...xj, Li) ≥ 7j

2
+ 1 and |Li| = 6.

Proof: Since e(x1...xj, D) ≤ 7j
2
− 1 and e(x1...xj, G) ≥ 7j

2
k, we have e(x1...xj, H) ≥

7j
2
k − 7j

2
+ 1 = 7j

2
(k − 1) + 1 ≥ 7j

2
k0 + 1. Hence e(x1...xj, Li) ≥ 7j

2
+ 1 for some Li ∈ σ, and

thus WLOG e(x1, Li) ≥ 4. By (4.1) we see that Li + D does not contain a cycle of length

less than Li. Hence |Li| = 6 by Lemma 2.2.1.

Proposition 4.1.2 t ≥ 7.

Proof: We first show that |D| ≥ 7. Suppose that |D| ≤ 6. Then |H| ≥ 6k + 1 − 6 =

6(k−1)+1 ≥ 6k0+1, so |Li| ≥ 7 for some Li ∈ σ. WLOG let |Li| ≥ |Lj| for each Lj ∈ σ, and

let q = |Li|. By Lemma 2.2.1 and (4.1), e(D,Li) ≤ 3|D| ≤ 3(6) ≤ 3(q− 1). By Lemma 2.1.3

and (4.1), e(Li, Li) =
∑

v∈Li
e(v, Li−v) ≤ 4q, for otherwise Li contains a large cycle of length

at most q−1. Then e(Li, H−Li) ≥ 7
2
k(q)−e(Li, D)−e(Li, Li) ≥ 7

2
k(q)−7q+3 = 7q

2
(k−2)+3,

so e(Li, Lj) ≥ 7q+1
2

for some Lj ∈ σ with i 6= j. By Lemmas 2.2.7 and 2.2.6, and (4.1), we

see that q = 7. Then e(Li, Lj) ≥ 25, so by Lemma 2.2.1 and the maximality of r0 we see

that |Lj| = 6. But this contradicts (4.1) by Lemma 2.2.5, so |D| ≥ 7.

Suppose that t ≤ 6. Let Q = y1...ys be a path of order s in D − P , and let σ and P be

such that s is maximal. Clearly Q exists since |D| ≥ 7. To complete the proof, we first show

that s and t cannot both be small, and that t ≥ 3. Then, we consider the cases t = 3, 4, 5, 6

separately.

If D has two vertices x and y with e(xy,D) ≤ 6, then by Lemma 4.1.1 there is Li ∈ σ

with |Li| = 6 and e(xy, Li) ≥ 8. Suppose that Li + xy does not contain C6 ∪P2. Then there

is no u ∈ Li such that either x→ (C, u) and yu ∈ E or y → (C, u) and xu ∈ E. By Lemma
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1.4.16, this implies that there is a labeling Li = a1a2 . . . a6a1 such that either N(x, Li) =

{a1, a2, a3, a4} and N(y, Li) = {a4, a5, a6, a1}, or N(x, Li) = N(y, Li) = {a1, a2, a4, a5}. In

the first case, xa4a5ya6a1x is a 6-cycle and a2a3 ∈ E, a contradiction. In the second case

a1a6a5ya4xa1 is a 6-cycle and a2a3 ∈ E, a contradiction. Therefore Li +xy contains C6∪P2.

Because of this we may, and do, choose σ so that D, D − P , and D − (P + Q) do not

have two isolated vertices u and v with e(uv,D) ≤ 6. Since |D| ≥ 7, this implies that t ≥ 2,

and that s ≥ 2 if t ≤ 5. Further, if s = 1 then t = 6 and |D| = 7.

If D has two edges u1u2 and v1v2 with e(u1u2v1v2, D) ≤ 13, then by Lemma 4.1.1 there

is Li ∈ H with |Li| = 6 and e(u1u2v1v2, Li) ≥ 15. WLOG let e(u1v1, Li) ≥ 8. If there is

z ∈ Li with u1 → (Li, z) and v1z ∈ E, then Li + u1v1v2 ⊇ C6 ∪ P3; and if v1 → (Li, z) with

u1z ∈ E, then Li + v1u1u2 ⊇ C6 ∪ P3. If there is no such z, then by Lemma 1.4.16 we have

either N(u1, Li) = {a1, a2, a3, a4} and N(v1, Li) = {a4, a5, a6, a1} or N(u1, Li) = N(v1, Li) =

{a1, a2, a4, a5} for a labeling Li = a1...a6a1. Then e(u1v1, Li) = 8, so e(u2v2, Li) ≥ 7. WLOG

say e(u2, Li) ≥ 4. Then e(u2v1, Li) ≥ 4 + 4 = 8, so by the same argument as above with u2

replacing u1 we have either Li + u1u2v1v2 ⊇ C6 ∪ P3 or e(u2, a1a4) = 2. In the latter case,

e(u1u2, a1a4) = 4, so that u1u2a1a2a3a4u1 = C6 and v2v1a5a6 = P4. In any case we see that

Li + u1u2v1v2 ⊇ C6 ∪ P3.

Thus we may, and do, choose σ so that D, D − P , and D − (P + Q) have neither two

isolated edges xy and uv with e(xyuv,D) ≤ 13, nor two isolated vertices a and b with

e(ab,D) ≤ 6. Since |D| ≥ 7, this implies that t ≥ 3, and that s = 3 if t = 3. Combining this

with the above gives us he following information:

• t ≥ 3. If t = 3 then s = 3.

• If t ≤ 5 then s ≥ 2.

• If s = 1 then t = 6 and |D| = 7.

Case 1: t = 3. Since e(x1x3y1y3, D) ≤ 2 × 4 = 8, there is Li ∈ H with |Li| = 6 and

e(x1x3y1y3, Li) ≥ 15 by Lemma 4.1.1. WLOG let e(x1y1, Li) ≥ 8. Since t = 3, by Lemma
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1.4.16 we have Li = a1a2...a6a1, and either N(x1, Li) = {a1, a2, a3, a4} and N(y1, Li) =

{a4, a5, a6, a1} or N(x1, Li) = N(y1, Li) = {a1, a2, a4, a5}. Then e(x3y3, Li) ≥ 7, so WLOG

let e(x3, Li) ≥ 4. Then e(y1x3, Li) ≥ 8, so since t = 3 we have N(x3, Li) = N(x1, Li)

by Lemma 1.4.16. If e(x1x3, a3) = 2 then a3a2a1x1x2x3a3 = C6 and a5y1y2y3 = P4, a

contradiction. Then e(x1x3, a2a4) = 4, so a2a3a4x1x2x3a2 = C6 and a5y1y2y3 = P4, again a

contradiction.

Case 2: t = 4. Since t ≤ 5, s ≥ 2. By the maximality of t, we have e(x1x4, D) = e(x1x4, P ) ≤

6 and e(y1ys, P ) = 0. By the maximality of s, we have e(y1ys, D − P ) = e(y1ys, Q) ≤ 6.

Hence e(x1x4y1ys, D) ≤ 12, so by Lemma 4.1.1 e(x1x4y1ys, Li) ≥ 15 for some Li ∈ H with

|Li| = 6. By the maximality of t and Lemma 1.4.17, we know that e(x1y1, Li) ≤ 8 and

e(x4ys, Li) ≤ 8. WLOG let e(x1y1, Li) = 8 and e(x4ys, Li) ≥ 7. By Lemma 1.4.15 and

the maximality of t, e(y1, Li) ≤ 4. Let Li = a1a2...a6a1. Suppose e(y1, Li) = 4. Then

by the maximality of t and Lemma 1.4.16, we have either N(y1, Li) = {a1, a2, a3, a4} and

N(x1, Li) = {a4, a5, a6, a1} or N(y1, Li) = N(x1, Li) = {a1, a2, a4, a5}.

First suppose N(y1, Li) = {a1, a2, a3, a4} and N(x1, Li) = {a4, a5, a6, a1}. If e(ys, Li) ≥ 4,

then by the maximality of t and Lemma 1.4.16 we have N(ys, Li) = {a1, a2, a3, a4}. But

then y1...ysa1a2a3a4 ⊇ C6 and a5x1x2x3x4 = P5, a contradiction. Hence e(ys, Li) ≤ 3,

so e(x4, Li) ≥ 4. Then e(y1x4, Li) = 8 by Lemma 1.4.17, so by Lemma 1.4.16 we have

N(x4, Li) = {a4, a5, a6, a1}. But then x1x2x3x4a5a6x1 = C6 and a1a2a3a4y1...ys ⊇ P≥6,

a contradiction. Thus N(y1, Li) = N(x1, Li) = {a1, a2, a4, a5}. If e(ys, Li) ≥ 4, then

by the maximality of t and Lemma 1.4.16 we have N(ys, Li) = {a1, a2, a4, a5}. But then

y1...ysa1a2a3a4 ⊇ C6 and a5x1x2x3x4 = P5, a contradiction. Hence e(ys, Li) ≤ 3, so

e(x4, Li) ≥ 4. Then e(y1x4, Li) = 8 by Lemma 1.4.17, so by Lemma 1.4.16 we have

N(x4, Li) = {a1, a2, a4, a5}. But then x1x2x3x4a1a2 = C6 and a3a4a5y1...ys ⊇ P≥5, a contra-

diction.

Therefore e(y1, Li) ≤ 3, so e(x1, Li) ≥ 5. Thus by Lemma 1.4.17, e(ys, Li) ≤ 3, and thus

also e(x4, Li) ≥ 4. Suppose e(y1, Li) = 3. Then e(x1, Li) = 5, so WLOG let x1a6 /∈ E. By
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the maximality of t, y1 9 (Li, aj) for j = 1, ..., 5. Since y1 9 (Li, aj) for j = 1, 3, 5, we have

e(y1, a2a4a6) ≤ 1. Then e(y1, a1a3a5) ≥ 2, so because y1 9 (Li, aj) for j = 2, 4, we have

e(y1, a1a5) = 2. Then x4a6 /∈ E since t = 4, so e(x4, a3a4) ≥ 1 because e(x4, Li) ≥ 4. But

then x1x2x3x4a3a4 ⊇ C6 and a2a1a6a5y1...ys ⊇ P≥6, a contradiction. So we have e(y1, Li) = 2

and e(x1, Li) = 6, and by Lemma 1.4.17 we have e(ys, Li) ≤ 2 and e(x4, Li) ≥ 5. WLOG let

y1a1 ∈ E. Since e(x1x4, Li) ≥ 11 we have e(x1x4, a5a6) ≥ 3. But then x1x2x3x4a5a6 ⊇ C6

and a4a3a2a1y1...ys ⊇ P≥6, a contradiction.

Case 3: t = 5. Since t ≤ 5, s ≥ 2.

Case 3.1: s ≤ 4. By the maximality of t, e(x1x5, D) = e(x1x5, P ) ≤ 4 + 4 = 8 and

e(y1ys, P ) ≤ 2. By the maximality of s, e(y1ys, D − P ) = e(y1ys, Q) ≤ 3 + 3 = 6. Further,

if s = 2 then e(y1y2, Q) = 2 and if s ≥ 3 then e(y1ys, P ) = 0. Hence e(y1ys, D) ≤ 6, so

e(x1x5y1ys, D) ≤ 14. Then e(x1x5y1ys, H) ≥ 14k − 14 ≥ 14k0, so e(x1x5y1ys, Li) ≥ 14 for

some Li ∈ H. By Lemma 2.2.1 and the minimality of σ, |Li| = 6. Let Li = a1a2...a6a1.

Suppose that e(x1x5, aj) = 2 for some aj ∈ Li, and WLOG let j = 1. Then x1x2x3x4x5a1x1 =

C6, so a2a3a4a5a6y1...ys + P≥6. Thus e(y1ys, a2a3a5a6) = 0, and e(y1ys, a4) = 0 if s ≥ 3.

Therefore e(y1ys, Li) ≤ 4. If e(y1ys, Li) ≤ 2 then e(x1x5, Li) ≥ 14 − 2 = 12. Then

e(x1x5, a6) = 2, which means a1a2a3a4a5y1...ys + P≥6. Therefore e(y1ys, a1a2a4a5) = 0,

so e(y1ys, Li) = 0. But then e(x1x5, Li) ≥ 14, a contradiction. Hence e(y1ys, Li) ≥ 3,

so e(y1ys, a1a4) ≥ 3 and s = 2. Then y1y2a1a2a3a4 ⊇ C6 and y1y2a4a5a6a1 ⊇ C6, so

x1x2x3x4x5a5a6 + P≥6 and x1x2x3x4x5a2a3 + P≥6. Then e(x1x5, a5a6a2a3) = 0, a contradic-

tion since e(y1y2, Li) ≤ 4 and e(x1x5y1y2, Li) ≥ 14.

So e(x1x5, aj) ≤ 1 for each aj ∈ Li. Then e(x1x5, Li) ≤ 6, so e(y1ys, Li) ≥ 8. If

e(y1, Li) = 6 then y → Li, so that by the maximality of t we have e(x1x5, Li) = 0. But

then e(y1ys, Li) ≥ 14, a contradiction. Thus e(y1ys, Li) ≤ 10, so e(x1x5, Li) ≥ 4. Suppose

e(y1, Li) = 5. WLOG let y1a6 /∈ E. Then y1 → (Li, aj) for j = 2, 3, 4, 6, so since t = 5 we

have e(x1x5, a2a3a4a6) = 0. But then e(x1x5, a1a5) = 4, contradicting the first sentence of

this paragraph. Hence e(y1, Li) ≤ 4, so e(y1, Li) = e(ys, Li) = 4, and e(x1x5, Li) = 6. Then
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for each aj ∈ Li we have e(aj, x1x5) = 1, and hence y1 9 (Li, aj) since t = 5. This is a

contradiction since e(y1, Li) ≥ 4.

Case 3.2: s = 5. By the maximality of t, we have e(x1x5, D) = e(x1x5, P ) ≤ 4+4 = 8 and

e(y1y5, D) = e(y1y5, Q) ≤ 8. Thus e(x1x5y1y5, D) ≤ 16. Suppose that for each Li ∈ H, we

have e(x1x5y1y5, Li) ≤ 12. Then e(x1x5y1y5, H) ≤ 12k0 ≤ 12(k− 1) = 12k+ 2k− 2k− 12 ≤

14k − 16. Since e(x1x5y1y5, G) ≥ 14k, it must be that k = 2, k0 = 1, e(x1x5y1y5, D) = 16,

and e(x1x5y1y5, L1) = 12. Since e(x1x5y1y5, D) = 16, we know that x1x5 ∈ E and y1y5 ∈ E.

Suppose |L1| = p ≥ 7, and let L1 = a1a2...apa1 (see Figure 4.1). By the maximality of r0,

G + C6, so for each aj ∈ L1 we have e(x1x5, aj) ≤ 1 and e(y1y5, aj) ≤ 1. Also, by Lemma

2.2.1 and (4.1) we have e(x1, L1) = e(x5, L1) = e(y1, L1) = e(y5, L1) = 3, with x1, x5, y1, y5

each being adjacent to three consecutive vertices of L1. Suppose that there is j between

1 and p such that e(x1x5, L1 − ajaj+1) = 6. Then by Lemmas 2.1.5 and 2.1.4 we have

N(x1, L1) = N(x5, L1), contradicting the fact that e(x1x5, aj) ≤ 1 for each aj ∈ L1. Hence

there are not two consecutive vertices in L1 which are each adjacent to neither x1 nor x5.

Since x1 and x5 are each adjacent to three consecutive vertices of L1, this implies that p ≤ 8.

Thus WLOG we have either (if p = 8) N(x1, L1) = {a1, a2, a3} and N(x5, L1) = {a5, a6, a7}

or (if p = 7) N(x1, L1) = {a1, a2, a3} and N(x5, L1) = {a4, a5, a6}. Either way, we see that

L1 + x1x5 ⊇ C6, a contradiction.

Therefore p = 6. Suppose that there is aj ∈ L1 with e(x1x5, aj) = 2, and WLOG let j = 1.

Then L1 +Q−a1 + P≥6 by (4.2), so e(y1y5, L1−a1) = 0. But then e(y1y5, D) ≥ 14−2 = 10,

a contradiction. Hence for all aj ∈ L1, e(x1x5, aj) ≤ 1, and similarly e(y1y5, aj) ≤ 1. Since

e(x1x5y1y5, L1) = 12, this implies that for all aj ∈ L1, e(aj, x1x5) = e(aj, y1y5) = 1. Then by

(4.2) we have, for each aj ∈ L1 and each r ∈ {1, 5}, that yr 9 (L1, aj) and xr 9 (L1, aj).

But this is impossible, since e(u, L1) ≥ 3 for some u ∈ {x1, x5, y1, y5}.

So we know that e(x1x5y1y5, Li) ≥ 13 for some Li ∈ H. Then |Li| = 6. If e(x1x5, aj) = 2

for some aj ∈ Li, then e(y1y5, Li − aj) = 0 by the maximality of t. Thus e(x1x5, Li) ≥

13 − 2 = 11, so WLOG we can say that x1 → Li. But then e(y1y5, Li) = 0, which means
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Figure 4.1: Proposition 4.1.2, Case 3.2, |L1| ≥ 7.
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that e(x1x5, Li) ≥ 13, a contradiction. Hence e(x1x5, Li) ≤ 6, and similarly e(y1y5, Li) ≤ 6,

which is again a contradiction since 6 + 6 < 13.

Case 4: t = 6. We first claim that either e(x2x6, D) ≤ 8 or e(x1x5, D) ≤ 8. By the maximality

of t and because D + C6, we have e(x1x6, D) ≤ 5. WLOG let e(x1, D) ≤ 2. If s = 1 then

|D| = 7 since D − P does not have two isolated vertices, so the claim holds trivially in

this case. Hence assume that s ≥ 2. Then by the maximality of t we have e(x5, y1ys) = 0.

Suppose that there is u, v ∈ D − P with e(x5, uv) = 2. Then u, v ∈ D − (P + Q). By

the maximality of t, e(uv,D − P ) = 0 and e(uv, x4x6) = 0. Since D + C6, e(uv, x1) = 0.

Thus e(uv,D) ≤ 6, and u and v are isolated in D − (P + Q), a contradiction. Therefore

e(x5, D − P ) ≤ 1, so e(x1x5, D) ≤ 1 + 5 + 2 = 8 and the claim holds.

Claim: There are not paths B = b1b2 . . . b5 and C = c1c2 of order 5 and 2 in D

with e(b1b2c1c2, D) ≤ 13.

Proof: On the contrary, suppose that there are. By Lemma 4.1.1, there is Li in H with

e(b1b5c1c2, Li) ≥ 15, and |Li| = 6. Let Li = L = a1a2...a6a1. Suppose that e(c1c2, a1a4) ≥ 3.

Then c1c2a1a2a3a4 ⊇ C6 and c1c2a4a5a6a1 ⊇ C6, so e(b1b5, a5a6a2a3) = 0 by the maximality of

t. Then e(b1b5, L) ≤ 4, so e(c1c2, L) ≥ 11. Then e(c1c2, a2a5) ≥ 3, so similar to above we have

e(b1b5, a6a1a3a4) = 0. But then e(b1b5, L) = 0, a contradiction. Hence e(c1c2, a1a4) ≤ 2, and

by symmetry e(c1c2, a2a5) ≤ 2 and e(c1c2, a3a6) ≤ 2. Then e(c1c2, L) ≤ 6, so e(b1b5, L) ≥ 9.

WLOG let e(b1b5, a1) = 2. Then b1b2b3b4b5a1b1 = C6, so L − a1 + c1c2 + P7. Thus

e(c1c2, a2a6) = 0. Suppose that e(b1b5, a4) = 2. Then b1b2b3b4b5a4b1 = C6, so similar to

above we have e(c1c2, a3a5) = 0. But then e(c1c2, a1a4) ≥ 15 − 12 = 3, a contradiction.

Hence e(b1b5, a4) ≤ 1, so e(b1b5, L − a1a4) ≥ 9 − 3 = 6. Suppose that e(b1b5, a2) = 2.

Then e(c1c2, a3a1) = 0, so e(c1c2, L) ≤ 4 and e(b1b5, L) = 11. But then e(b1b5, a3) = 2,

so e(c1c2, a4a2) = 0 and hence e(c1c2, L) ≤ 2, a contradiction. Therefore e(b1b5, a2) ≤

1, and by symmetry e(b1b5, a6) ≤ 1. Then e(b1b5, a3a5) ≥ 9 − 5 = 4, so by the same
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reasoning as above we have e(c1c2, a4) = 0. Hence e(c1c2, a1a3a5) = 6, e(b1b5, a1a3a5) = 6,

and e(b1b5, a2) = e(b1b5, a4) = e(b1b5, a6) = 1. WLOG let e(b1, L) ≥ 5 with e(b1, L− a6) = 5.

Then b1a4a5a6a1a2b1 = C6 and b2b3b4b5a3c2c1 = P7, a contradiction.

QED

By the claim we know that s 6= 2, for otherwise e(y1y2, D) ≤ 4 and thus either

e(x1x5y1y2, D) ≤ 4 + 8 = 12 or e(x2x6y1y2, D) ≤ 12 for paths P and Q of order 5 and 2.

Thus we consider the cases 3 ≤ s ≤ 6, and finish the proof with the case s = 1.

Case 4.1: s = 3. By the maximality of t, e(y1y3, D − Q) = 0. Thus e(y1y3, D) ≤ 4,

so e(x1x5y1y3, D) ≤ 12. Then by Lemma 4.1.1, e(x1x5y1y3, D) ≥ 15 for some Li in H, and

|Li| = 6. Let Li = L = a1a2...a6a1. Suppose that e(y1y3, a1a3) ≥ 3. Then y1y2y3a1a2a3 ⊇ C6,

so P −x6+a4a5a6 + P≥7. Hence e(x1x5, a4a5a6) = 0, so e(x1x5, L) ≤ 6 and e(y1y3, L) ≥ 9. If

e(y1y3, a3a5) ≥ 3 then similar to above we have e(x1x5, a6a1a2) = 0, so that e(x1x5, L) ≤ 2,

a contradiction. Therefore e(y1y3, a3a5) ≤ 2, and similarly e(y1y3, a4a6) ≤ 2. But then

e(y1y3, a1a2) ≥ 9− 4 = 5, a contradiction. So e(y1y3, a1a3) ≤ 2, and similarly e(y1y3, a2a4) ≤

2. Then e(y1y3, L) ≤ 8, so e(x1x5, L) ≥ 7. WLOG let e(x1x5, a1) = 2. Then L − a1 +

y1y2y3 + P≥7, so e(y1y3, a2a3a5a6) = 0 and hence e(x1x5, L) ≥ 15 − 4 = 11. Then WLOG

e(x1x5, a2) = 2, so e(y1y3, a3a4a6a1) = 0 and therefore e(y1y3, L) = 0, a contradiction.

Case 4.2: s = 4. By the maximality of t and s, e(y1y4, D) ≤ 3+3 = 6. Then e(x1x5y1y4, D)

≤ 14, so e(x1x5y1y4, Li) ≥ 14 for some Li ∈ H, and |Li| = 6 by Lemma 2.2.1. Let

Li = L = a1a2...a6a1. Suppose that e(y1y4, a1a2) ≥ 3. Then L − a1a2 + P − x6 + P≥7,

so e(x1x5, L − a1a2) = 0. If e(x1x5, a1) = 2 then L − a1 + Q + P≥7, so e(y1y4, L − a1) = 0.

But then e(x1x5, L) ≤ 4 and e(y1y4, L) ≤ 2, a contradiction. Hence e(x1x5, a1) ≤ 1, and

similarly e(x1x5, a2) ≤ 1. Then e(x1x5, L) ≤ 2, so e(y1y4, L) = 12. Then e(y1y4, a3a4) = 4,

so similar to above we get e(x1x5, L− a3a4) = 0. But then e(x1x5, L) = 0, a contradiction.

Therefore, by symmetry e(y1y4, ajaj+1) ≤ 2 for j = 1, 3, 5, so e(y1y4, L) ≤ 6. Thus

e(x1x5, L) ≥ 9, so WLOG let e(x1x5, a1) = 2. Then L−a1 +Q + P≥7, so e(y1y4, L−a1) = 0.
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Hence e(y1y4, L) ≤ 2, so e(x1x5, L) = 12. Then e(x1x5, a2) = 2, so similar to above we have

e(y1y4, L− a2) = 0. But then e(y1y4, L) = 0, a contradiction.

Case 4.3: 5 ≤ s ≤ 6. By the maximality of t, e(x1x6, D) ≤ 5. Similarly, if s = 6 then

e(y1y6, D) ≤ 5. We first claim that D has a path B = b1b2...b6 of length 6 and a path

C = c1c2...c5 of length five such that e(b1b6c1c5, D) ≤ 13. If s = 5, then e(y1y5, D) ≤ 8 by

the maximality of t and s, so e(x1x6y1y5, D) ≤ 5 + 8 = 13. Since WLOG e(x1x5, D) ≤ 8 by

the first paragraph of Case 4, we also have e(x1x5y1y6, D) ≤ 8 + 5 = 13 if s = 6. Thus the

claim holds, so consider such paths B and C.

Since e(b1b6c1c5, D) ≤ 13, by Lemma 4.1.1 we have e(b1b6c1c5, Li) ≥ 15 for some Li ∈ H

with |Li| = 6. Let Li = L = a1a2...a6a1. Suppose that e(c1c5, a1) = 2. Then L − a1 + B +

P≥7, so e(b1b6, L − a1) = 0. But then e(b1b6, L) ≤ 2, so e(c1c5, L) ≥ 13, a contradiction.

Hence e(c1c5, aj) ≤ 1 for each aj ∈ L. Thus e(c1c5, L) ≤ 6, so e(b1b6, L) ≥ 9. WLOG let

e(b1, L) ≥ e(b6, L). First suppose that e(b1, L) = 6, so that b1 → L. Then e(c1c5b6, aj) ≤ 1

for each aj ∈ L, for otherwise b2b3b4b5b6ajc1c2c3c4c5 ⊇ P11 and L − aj + b1 ⊇ C6. Then

e(c1c5b6, L) ≤ 6, so e(b1, L) ≥ 9, a contradiction. Hence e(b1, L) = 5 and e(b6, L) ≥ 4.

Similar to above, we see that e(c1c5b6, aj) ≤ 1 for four aj ∈ L, since e(b1, L) = 5. Since

e(c1c5, aj) ≤ 1 for each aj ∈ L, we have e(c1c5b6, L) ≤ 1 × 4 + 2 × 2 = 8. But then

e(b1, L) ≥ 7, a contradiction.

Case 4.4: s = 1. Since s = 1 we have |D| = 7. Since e(x1x6, D) ≤ 5, WLOG we can let

e(x1, D) ≤ 2. Since |D| = 7 and D + P7, we know that e(y1, D) ≤ 2. Then e(x1y1, D) ≤ 4,

so by Lemma 4.1.1 we have e(x1y1, Li) ≥ 8 for some Li ∈ H, and |Li| = 6. By Lemma

1.4.16, Li + x1y1 ⊇ C6 ∪ P2. Hence Li + P + Q ⊇ C6 ∪ P2 ∪ P5. Label the paths of length

5 and 2 B = b1...b5 and C = c1c2, and reassign D as D = B ∪ C. By the maximality

of t we know that e(c1c2, B) ≤ 4 with e(c1c2, b1b5) = 0. Further, if e(c1c2, B) = 4 then

e(c1c2, b2b4) = 4. Suppose that e(b1b5c1c2, D) ≥ 14. Then e(b1b5, D) = e(b1b5, B) = 8

and e(c1c2, D) = 4 + 2 = 6. But then e(c1c2, b2b4) = 4, so b1b2c1c2b4b5b1 is a 6-cycle, a

contradiction. Hence B and C are paths of length 5 and 2 in D with e(b1b5c1c2, D) ≤ 13, a
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contradiction. This completes the proof.

We define τ(σ) :=
∑

Li∈σ τ(Li), and τ ′(σ) :=
∑

Li∈σ τ
′(Li). Subject to (4.1) and (4.2),

we choose σ and P such that the following conditions hold, in order:

τ(σ) is maximal. (4.3)

r(P ) is maximal. (4.4)

τ ′(σ) is maximal. (4.5)

s(P ) is maximal. (4.6)

Proposition 4.1.3 e(x1x2xt−1xt, D−P ) = 0, e(x1x2, P ) ≤ 8, e(xt−1xt, P ) ≤ 8. If e(x1x2, P ) =

8, then N(x1x2, P ) = {x1, x2, x3, x4, x5}. If e(xt−1xt, P ) = 8, then

N(xt−1xt, P ) = {xt, xt−1, xt−2, xt−3, xt−4}.

Proof: Clearly, e(x1xt, D − P ) = 0 by (4.2). Suppose e(x2xt−1, D − P ) > 0, and WLOG

let ux2 ∈ E for some u ∈ D − P . By (4.2), ux1 /∈ E and e(u,D − P ) = 0. Further,

e(ux1, x3) = 0. Then by the maximality of k0, e(ux1, P ) ≤ 3 + 3 = 6 since e(ux1, xi) = 0

for i ≥ 6. Thus e(ux1, H) ≥ 7k − 6 ≥ 7k0 + 1, so e(ux1, Li) ≥ 8 for some Li ∈ σ.

But this contradicts Condition (4.3) by Lemma 1.4.18, so e(x2xt−1, D − P ) = 0. By the

maximality of k0, e(x1, P ) ≤ 4, e(x2, P ) ≤ 5, e(xt−1, P ) ≤ 5, and e(xt, P ) ≤ 4. It is clear

that e(x1x2, P ) ≤ 8, for otherwise x1x3 ∈ E and x2x6 ∈ E, contradicting the maximality of

r0. Suppose that e(x1x2, P ) = 8, and that x2x6 ∈ E. Then x1x3 /∈ E, so e(x1, x2x4x5) = 3

and e(x2, x1x3x4x5x6) = 5. But then x1x4x3x2x6x5x1 = C6, a contradiction. Therefore the

Proposition holds.

The remainder of this section will be used to show that there is a 6-cycle L in σ such

that e(x1x2xt−1xt, L) ≥ 15. We start by showing e(x1x2xt−1xt, L) ≥ 13 for some 6-cycle L

(Prop. 4.1.4), and then increase 13 to 14 (Prop. 4.1.5) and finally, 14 to 15 (Prop. 4.1.7).
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In each step, we take advantage of the fact that if e(x1x2xt−1xt, L) is small for each L ∈ σ,

then e(x1x2xt−1xt, D) (and hence e(x1x2xt−1xt, P ) by Prop. 4.1.3) must be large.

Proposition 4.1.4 There is Li ∈ σ such that e(x1x2xt−1xt, Li) ≥ 13.

Proof: Suppose that e(x1x2xt−1xt, Li) ≤ 12 for each Li ∈ σ. Then e(x1x2xt−1xt, H) ≤

12k0 ≤ 12(k−1), so e(x1x2xt−1xt, D) ≥ 14k−12k+12. Since e(x1x2xt−1xt, D) ≤ 16 by Propo-

sition 4.1.3, we have 4 ≥ 2k, so k = 2. Then e(x1x2xt−1xt, D) = 16 and e(x1x2xt−1xt, L1) =

12. Let L1 = a1a2...apa1. By Proposition 4.1.3 we have e(xi, P ) = 4 for each i = 1, 2, xt−1, xt.

Then for each such i, since e(xi, G) ≥ 7, we have e(xi, L1) ≥ 3. Suppose |L1| ≥ 7. By

Lemma 2.2.1 and by (4.1), we have e(xi, L1) = 3 for each i = 1, 2, xt−1, xt. Further, xi is

adjacent to three consecutive vertices of L1. Since x1x5 ∈ E we have e(x1x2, ai) ≤ 1 for each

ai ∈ L1 by (4.1). By Lemma 2.1.5 and (4.1) we see that there is no 1 ≤ j ≤ p such that

e(x1x2, L1−ajaj+1) = 6. Since x1 and x2 are each adjacent to three consecutive vertices of L1,

this implies that p ≤ 8. Thus WLOG we have either (if p = 8) N(x1, L1) = {a1, a2, a3} and

N(x2, L1) = {a5, a6, a7} or (if p = 7) N(x1, L1) = {a1, a2, a3} and N(x2, L1) = {a4, a5, a6}.

Either way, we see that L1 +x1x2 ⊇ C6, a contradiction. Therefore |L1| = 6. Since x1x5 ∈ E

and xtxt−4 ∈ E, we see that t ≥ 9, for otherwise x1x5x6...xtxt−4...x1 is a large cycle. Hence

by Lemma 3.0.5 we see that L1 + P contains two disjoint cycles, one of which has length 6,

contradicting the maximality of k0.

Proposition 4.1.5 There is Li ∈ σ such that e(x1x2xt−1xt, Li) ≥ 14.

Proof: Suppose that e(x1x2xt−1xt, Li) ≤ 13 for each Li ∈ σ. Then 14k ≤ e(x1x2xt−1xt, G) ≤

13k0+16 ≤ 13k+3 by Proposition 4.1.3, so k ≤ 3. Further, we know that k = 2 for otherwise

δ(G) ≥ 11 and hence e(x1x2xt−1xt, P ) ≥ 44−26 = 18, a contradiction. By Proposition 4.1.4,

we have e(x1x2xt−1xt, L1) = 13 and e(x1x2xt−1xt, P ) ≥ 15. WLOG let e(xt−1xt, P ) ≥ 8. By

Proposition 4.1.3, Lemma 3.0.5, and the maximality of k0 we see that e(xt−1xt, P ) = 8 and

e(x1x2, P ) = 7.
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Suppose that e(x2, P ) = 5. Then by the maximality of k0, e(x3, x1x7) = 0 since

e(x2, x4x6) = 2. Suppose there is u ∈ D − P with x3u ∈ E. Then xtxt−1...x4x2x3u is

a path of order t, so e(u,D − P ) = 0 by (4.2) and uxi /∈ E for i ≥ 6 by the maxi-

mality of k0. Further, by (4.2) we see that e(u, x1x2) = 0. Then e(u,D) ≤ 3, so since

e(x1, D) ≤ 2, we have e(ux1, L1) ≥ 14− 5 = 9, contradicting (4.2) via Lemma 1.4.17. Hence

e(x3, D − P ) = 0, so e(x3, D) ≤ 4. Since x2x6 ∈ E and e(xt−1xt, P ) = 8, by Proposition

4.1.3 we know that t ≥ 8. Then, we see that t ≥ 10, for otherwise x2x6x7...xtxt−4...x2 is

a large cycle. Let S = x2x3...xt−1xt. Since e(x2, D) = e(x2, P ) = 5, e(x2, L1) ≥ 2. Since

e(xt−1, D) = e(xt, D) = 4 and e(x3, D) ≤ 4, e(xi, L1) ≥ 3 for each i = 3, xt−1, xt. But

e(x2, x3x4x5) = 3, contradicting the maximality of k0 via Lemma 3.0.5.

Therefore e(x2, P ) ≤ 4, and thus e(x1, P ) ≥ 3. By Lemma 3.0.5 we see that e(x1, x3x4x5) ≤

2, so e(x1, P ) = 3 and e(x2, P ) = 4. Since e(x1, x3x4x5) = 2, x2x6 /∈ E. But then

e(x2, x4x5) = 2 and e(x1, x3x4x5) = 2, contradicting Lemma 3.0.5.

By the maximality of k0 and by Condition (4.3), we have the following Proposition (see

Figure 4.2 for two examples), which will be used throughout the remainder of the paper

without reference. We note here that we will also make extensive use of Lemmas 1.4.5-1.4.14

without reference.

Proposition 4.1.6 Let L be a 6-cycle, and let u, v ∈ L.

• If x1 → (L, u) then e(u, x2xt−1) ≤ 1 and e(u, x2xt) ≤ 1.

• If xt → (L, u) then e(u, x1xt−1) ≤ 1 and e(u, x2xt−1) ≤ 1.

• If x1xt → (L, uv) then e(u, x2xt−1) ≤ 1 and e(v, x2xt−1) ≤ 1.

• If x1
1−→ (L, u), then e(x2xt, u) = 0.

• If xt
1−→ (L, u), then e(x1xt−1, u) = 0.

• If x2
1−→ (L, u), then e(x1xt, u) ≤ 1.
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x1

x2 x3 xt-2 xt-1

u

xt-1
x2x1 xt-2 xt

u

Figure 4.2: Top: x1 → (L, u) and e(u, x2xt−1) = 2. Here L + P contains a 6-cycle and a large

cycle. Bottom: xt−1
1−→ (L, u) and e(x1xt, u) = 2. Here L + P contains a path of order t and a

6-cycle L′ with τ(L′) ≥ τ(L) + 1.
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x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6
Figure 4.3: In each case, there is a path of order five from x1 to x2.

• If xt−1
1−→ (L, u), then e(x1xt, u) ≤ 1.

• If x1x2
1−→ (L, uv) with uv ∈ E, then e(xt, uv) = 0.

• If xt−1xt
1−→ (L, uv) with uv ∈ E, then e(x1, uv) = 0.

Proposition 4.1.7 There is Li ∈ σ such that e(x1x2xt−1xt, Li) ≥ 15.

Proof: Suppose not. By Proposition 4.1.3, we have e(x1x2xt−1xt, P ) ≥ 14k − 14k0 ≥ 14.

By Proposition 4.1.5, e(x1x2xt−1xt, Li) = 14 for some Li ∈ σ. Let Li = L = a1a2...a6a1.

Claim 1(see Figure 4.3): Either (1) x1x5 ∈ E or (2) x2x6 ∈ E and x1x4 ∈ E or (3) x2x5 ∈ E

and x1x3 ∈ E. Either (1) xtxt−4 ∈ E or (2) xt−1xt−5 ∈ E and xtxt−3 ∈ E or (3) xt−1xt−4 ∈ E

and xtxt−2 ∈ E.

Proof: For contradiction, suppose not. Then WLOG x1x5 /∈ E, x2x6 /∈ E or x1x4 /∈ E,

and x2x5 /∈ E or x1x3 /∈ E. We see that e(x1x2, P ) ≤ 6, so e(xt−1xt, P ) = 8. By

Proposition 4.1.3, e(xtxt−1, xtxt−1xt−2xt−3xt−4) = 8. We make a few easy observations,

which follow from the maximality of k0, from Condition (4.3), and from the fact that
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e(xtxt−1, xtxt−1xt−2xt−3xt−4) = 8 (and hence that xt−1 and xt are interchangeable.) We

note that Proposition 4.1.6 still holds.

(a) If x1 → (L, ai), then e(x2xt−1xt, ai) ≤ 1.

(b) If x1
1−→ (L, ai), then e(x2xt−1xt, ai) = 0.

(c) If x2 → (L, ai), then e(xt−1xt, ai) ≤ 1.

(d) If x1x2 → (L, aiaj), then e(xt−1xt, ai) ≤ 1 and e(xt−1xt, aj) ≤ 1.

(e) If x1x2
1−→ (L, aiaj) with aiaj ∈ E, then e(xt−1xt, aiaj) = 0.

(f) If xt−1 → (L, ai), then e(x1xt, ai) ≤ 1 and e(x2xt, ai) ≤ 1.

(g) If x1xt−1 → (L, aiaj), then e(x2xt, ai) ≤ 1 and e(x2xt, aj) ≤ 1.

We immediately see that x1 9 L, so e(x1, L) ≤ 5. Suppose that e(x1, L) = 5, and

WLOG let e(x1, L − a6) = 5. Then τ(a6, L) = 0, so by (b) e(x2xt−1xt, a6) = 0. By (a),

e(x2xt−1xt, a2a3a4) ≤ 3, so e(x2xt−1xt, a1a5) ≥ 14 − 5 − 3 = 6. But then x1x2 → (L, a6a1)

and e(xt−1xt, a1) = 2, contradicting (d). Therefore e(x1, L) ≤ 4.

Case A: e(x1, L) = 4.

Case A.1: N(x1, L) = {a1, a2, a3, a4}. By (a), e(x2xt−1xt, ai) ≤ 1 for i = 2, 3. Thus

e(x2xt−1xt, a4a5a6a1) ≥ 14 − 6 = 8. Suppose that τ(a6, L) ≥ 2. Then x1 → (L, ai) for

i = 1, 5, so e(x2xt−1xt, a1a5) ≤ 2 and hence e(x2xt−1xt, a4a6) ≥ 8 − 2 = 6. Then x1 9

(L, a6), so τ(a5, L) = 0. Since e(xt−1xt, a5a6) ≥ 2, this implies that e(x1x2, a1a2a3a4) ≤ 5

by (e). Then e(x2, a1a2a3) = 0 since x2a4 ∈ E. Thus e(xt−1xt, a2) = e(xt−1xt, a3) =

e(xt−1xt, a1) = e(x2xt−1xt, a5) = 1 and e(x2xt−1xt, a4a6) = 6. But x1
2−→ (L, a5), contradict-

ing (b). Hence τ(a5, L) ≤ 1, and by symmetry τ(a6, L) ≤ 1. Suppose that e(xt−1xt, a5a6) >

0. Then by (e), x1x2 9 (L, a5a6), so e(x2, a1a4) = 0. Then e(xt−1xt, a4a5a6a1) ≥ 8 −

2 = 6. WLOG let e(xt−1xt, a4a5) ≥ 3. Then by (d), x1x2 9 (L, a4a5), so x2a6 /∈ E.

Hence e(xt−1xt, a4a5a6a1) ≥ 7, so again by (d) x1x2 9 (L, a6a1). Then x2a5 /∈ E, so
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e(xt−1xt, a4a5a6a1) = 8. Also, since e(xt−1xt, a1a4) = 4, by (a) e(a2a3, a5a6) = 0. But this

is clearly a contradiction, since now xt−1xt
4−→ (L, a2a3) and e(x1, a2a3) = 2. Therefore

e(xt−1xt, a5a6) = 0, so e(x2, a4a5a6a1) ≥ 8−4 = 4 and e(xt−1xt, a1a4) = 4, contradicting (d).

Case A.2: N(x1, L) = {a1, a2, a3, a5}. By (a) e(x2xt−1xt, a2a4a6) ≤ 3, so

e(x2xt−1xt, a1a3a5) ≥ 14 − 7 = 7. Suppose τ(a4, L) ≤ 1. Then x1
1−→ (L, a4), so by (b)

e(x2xt−1xt, a4) = 0. Then e(x2xt−1xt, a1a3a5) ≥ 8, so x1 9 (L, ai) for i = 1, 3, 5, by (a).

Thus τ(a6, L) ≤ 1, so similarly we have e(x2xt−1xt, a6) = 0 and hence e(x2xt−1xt, a1a3a5) = 9

and e(x2xt−1xt, a2) = 1. But then x1x2 → (L, a6a1) and e(xt−1xt, a1) = 2, contradicting (d).

Therefore τ(a4, L) ≥ 2, and by symmetry τ(a6, L) ≥ 2. But then x1 → L, a contradiction.

Case A.3: N(x1, L) = {a1, a2, a4, a5}. By (a) e(x2xt−1xt, a3a6) ≤ 2, so

e(x2xt−1xt, a1a2a4a5) ≥ 8. Suppose τ(a3a6, L) > 0, and WLOG let τ(a6, L) > 0. Then x1 →

(L, ai) for i = 1, 5, so by (a) this implies that e(x2xt−1xt, a2a4) = 6. Then x1x2 → (L, a2a3)

and e(xt−1xt, a2) = 2, contradicting (d). Hence τ(a3a6, L) = 0, so by (b) e(x2xt−1xt, a3a6) =

0. Then e(x2xt−1xt, a1a2a4a5) ≥ 10. If e(x2, a1a2a4a5) ≥ 3, then x1x2 → (L, aiai+1) for i =

2, 3, 5, 6, so by (d) e(xt−1xt, a1a2a4a5) ≤ 4, a contradiction. Hence e(xt−1xt, a1a2a4a5) = 8,

so since τ(a6, L) = 0 we get xt−1xt
1−→ (L, a5a6). But x1a5 ∈ E, a contradiction.

Case B: e(x1, L) = 3. Since e(x2xt−1xt, L) ≥ 11, we observe that x1 → (L, ai) for at most

three ai ∈ L.

Case B.1: N(x1, L) = {a1, a2, a3}. By (a), e(x2xt−1xt, L − a2) ≥ 11. Suppose x2a4 ∈

E. Then x1x2 → (L, a2a3) and x1x2 → (L, a5a6), so by (d) e(xt−1xt, a3a5a6) ≤ 3. Then

e(x2, L − a2) ≥ 11 − 7 = 4, so e(x2, a5a6) ≥ 1. But then by a similar argument we see

that e(xt−1xt, a1a4) ≤ 2, so e(xt−1xt, L − a2) ≤ 5, a contradiction. Hence x2a4 /∈ E, and

by symmetry we have e(x2, a4a6) = 0. Then e(xt−1xt, L − a2) ≥ 11 − 3 = 8, so by (d)

x2a5 /∈ E for otherwise x1x2 → (L, a6a1) and x1x2 → (L, a3a4). Then e(x2, a4a5a6) =

0 and e(xt−1xt, L − a2) ≥ 9. Then e(xt−1xt, a3a4a5a6) ≥ 7, so since e(x1, a1a2) ≥ 1 we

have τ(a1a2, L) ≥ 5. Then x1 → (L, a6), so by (a) x1 9 (L, ai) for i = 1, 3, 4, 5, since

e(xt−1xt, ai) = 2. But e(a2, a4a6) ≥ 1, so x1 → (L, ai) for i = 1 or i = 3, a contradiction.
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xt-1 xtx1 x2

a1 a2 a3 a4 a5 a6
Figure 4.4: Proposition 4.1.7, Case B.3: Unfortunately, even with all of the edges between P
and L, we can neither find a way to contradict the maximality of k0, nor any of the Conditions
(4.3)-(4.6).

Case B.2: N(x1, L) = {a1, a2, a4}. By (a), e(x2xt−1xt, L−a3) ≥ 11. Suppose e(x2, a1a4) >

0. Then x1x2 → (L, a2a3) and x1x2 → (L, a5a6), so by (d) e(xt−1xt, a2a5a6) ≤ 3. Then

e(x2, L − a3) ≥ 11 − 7 = 4 and e(xt−1xt, a1a4) ≥ 11 − 5 − 3 = 3. Then x2a5 /∈ E, for

otherwise x1x2 → (L, aiai+1) for i = 3, 6, contradicting (d). Then e(x2, a1a2a4a6) = 4,

e(xt−1xt, a1a4) = 4, and e(xt−1xt, ai) = 1 for i = 2, 5, 6. By (e) we see that τ(a5a6, L) ≥ 4,

and since x1 9 (L, a6) by (a), we have e(a5, a1a3) = 0. Then τ(a6, L) = 3, so x1 → (L, a1)

and x1 → (L, a5). But this clearly contradicts (a), since e(x2xt−1xt, a1) = 3. Therefore

e(x2, a1a4) = 0, so e(xt−1xt, L − a3) ≥ 11 − 3 = 8. Then e(xt−1xt, a4a6a1) ≥ 8 − 4 = 4, so

x2a5 /∈ E by (d), for otherwise x1x2 → (L, aiai+1) for i = 3, 6. Thus e(x2, a1a4a5) = 0 and

e(xt−1xt, L−a3) ≥ 9. Then e(xt−1xt, a5a6a1a2) ≥ 7, so since x1a4 ∈ E we have τ(a3a4, L) ≥ 5.

But this contradicts (a), since e(xt−1xt, L− a3) ≥ 9.

Case B.3: N(x1, L) = {a1, a3, a5}. By (a), e(x2xt−1xt, a1a3a5) ≥ 11 − 3 = 8. By (d), we

see that e(x2, a2a4a6) = 0, for otherwise e(xt−1xt, a1a3a5) ≤ 4. Then e(xt−1xt, a2a4a6) ≥

11− 9 = 2. WLOG let e(xt−1xt, a2) = e(xt−1xt, a4) = 1. If a2a4 ∈ E, then a1a2a4a5 is a P4,

so since e(x1x2, a1a5) ≥ 3, x1x2 → (L, a3a6). Similarly, a3a2a4a5 is a P4, so x1x2 → (L, a1a6).

But then by (d), e(xt−1xt, a3a1) ≤ 2, a contradiction. Then a2a4 /∈ E, and by symmetry
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a2a6 /∈ E and a4a6 /∈ E. Suppose e(xt−1xt, a6) = 1, and since e(xt−1xt, a2a4a6) = 3 WLOG

let e(xt, a2a4) = 2. Then by (b), τ(ai, L) ≥ 1 for i = 2, 4, 6. Since xt → (L, a3), we know

xt−1a3 /∈ E. Then e(xt, L − a6) = 5 and τ(a6, L) = 1, so xt → L. But e(x1xt−1, a1) = 2,

a contradiction. Therefore e(xt−1xt, a6) = 0, so e(x2xt−1xt, a1a3a5) = 9. Then xt−1 9

(L, ai) and xt 9 (L, ai) for i = 1, 3, 5, since e(x1xt, a1a3a5) = 6 and e(x1xt−1, a1a3a5) = 6.

Since e(x1, a1a5) = 2 and e(x2xt, a3) = 2, by (g) we have e(xt−1, a2a4) ≤ 1, for otherwise

x1a1a2xt−1a4a5x1 = C6 and a3x2...xt−2xta3 = C≥6. Similarly, e(xt, a2a4) ≤ 1. WLOG let

xt−1a2 ∈ E and xta4 ∈ E.

With Lemma 3.0.7 in mind, we now show that e(x1xt−2a2a6, Li) ≥ 15 for some Li ∈

σ − {L}. Since xt → (L, a2) and a2xt−1 ∈ E, we know that e(a2, D − P ) = 0 by Condition

(4.2). Since xt−1xt → (L, a6a1) and a6a1x1...xt−2 = Pt, we have e(a6xt−2, D − P ) = 0.

Thus e(x1xt−2a2a6, D − P ) = 0. Since x1x5 /∈ E, e(x1, P ) ≤ 3. Since xtxt−3 ∈ E, by the

maximality of k0 we have e(xt−2, xt−5xt−6) = 0. Hence e(xt−2, P ) ≤ 4. Since xt−1xt →

(L, a6a1) and a6a1...xt−2 = Pt, e(a6, P ) ≤ 3 by the maximality of k0. Similarly, e(a2, P ) ≤

3+e(a2, xt−1xt) = 4. Therefore e(x1xt−2a2a6, P ) ≤ 14. Because e(a2, a4a6) = 0 and a4a6 /∈ E,

we have e(a2a6, L) ≤ 3 + 3 = 6. Since xt−1xt → (L, a2a3) and x1a3 ∈ E, we have xt−2a3 /∈ E,

for otherwise x1x2...xt−2a3x1 = C≥6. Similarly, e(xt−2, a1a5) = 0. Hence e(xt−2, L) ≤ 3, and

since e(x1, L) = 3 we have e(x1xt−2a2a6, L) ≤ 12. Therefore e(x1xt−2a2a6, D + L) ≤ 26, so

e(x1xt−2a2a6, H − L) ≥ 14k − 26 ≥ 14(k0 − 1) + 2. Hence e(x1xt−2a2a6, Li) ≥ 15 for some

Li ∈ σ − {L} (see Figure 4.5).

Let Li = L′ = v1v2...v6v1, and let P ′ = xt−2xt−3...x2x1. We now show that the three

numbered assumptions in Lemma 3.0.7 are satisfied. That is, we show that if x1 → (L′, vj)

then e(vj, xt−2a2a6) ≤ 1, if a2
0−→ (L′, vj) then e(vj, xt−2x1) = 0, if a6

0−→ (L′, vj) then

e(vj, xt−2x1) = 0, and if x1
1−→ (L′, vj) then e(vj, xt−2a6) = 0. Since x2x3...xta1x2 = C≥6, we

see that (see Figure 4.6) if x1 → (L′, vj) then e(vj, a2a6) ≤ 1, for otherwise x1 → (L′, vj)

and vj → (L, a1). Since xt−1xt → (L, a2a3), we see that (see Figure 4.7) if x1 → (L′, vj)

then e(vj, xt−2a2) ≤ 1, for otherwise vja2a3x2x3...xt−2vj = C≥6. Similarly, since xt−1xt →
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a6
a5

a1

a4

a2
a3

v2
v1

v3

v4
v5

v6

xt-1x1 xt-2x2 x4x3 xt-3 xt
Figure 4.5: Proposition 4.1.7, Case B.3.

(L, a5a6) we know that if x1 → (L′, vj), then e(vj, xt−2a6) ≤ 1. Therefore, if x1 → (L′, vj)

then e(vj, xt−2a2a6) ≤ 1.

Since τ(a2, L) ≤ 1 and e(xt, L − a2) = 4, we have xt
1−→ (L, a2). Therefore, since

x1x2...xt−3xt−1xt−2 = Pt−1 (recall from the beginning of this proof that

e(xtxt−1, xtxt−1xt−2xt−3xt−4) = 8), we see by Condition (4.3) that if a2
0−→ (L′, vj) then

e(vj, x1xt−2) = 0 (see Figure 4.8). Similarly, if a6
0−→ (L′, vj) then e(vj, x1xt−2) = 0. Since

e(a6, a2a4) = 0, we know that xt−1xt
0−→ (L, a5a6). Thus, because a6a5x2x3...xt−2 = Pt−1, we

observe by Condition (4.3) that if x1
1−→ (L′, vj) then e(vj, xt−2a6) = 0.

Thus, by Lemma 3.0.7 we see that L′ + P ′ + a2a6 contains either C6 ∪ C≥6 or a path

of order t − 2 + 2 = t and a 6-cycle C with τ(C) ≥ τ(L′) − 1 (see Figure 4.9). Because

e(xt−1xt, a2a3a4a5) = 6, we know that τ(a6a1, L) ≥ 4, for otherwise xt−1xt
1−→ (L, a6a1)

and a6a1x1...xt−2 = Pt. Thus, because e(a6, a2a4) = 0, we must have τ(a1, L) = 3. Then

C ′ = xt−1xta1a3a4a5xt−1 is a 6-cycle, and e(xt−1xt, C
′) − e(xt−1, xt) = 4 + 5 − 1 = 8. Since

e(a2, a4a6) = 0 and a4a6 /∈ E, e(a2a6, L) ≤ 3 + 3 = 6. Hence τ(C ′) ≥ τ(L) + 2. But then

L + L′ + P contains either 2C6 ∪ C≥6, or a path of order t and two 6-cycles C and C ′ with

τ(C) + τ(C ′) ≥ τ(L′)− 1 + τ(L) + 2, contradicting either the maximality of k0 or Condition

(4.3).
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a6
a5

a1

a4

a2
a3

v2v1

v3
v4

v5

v6

xt-1x1 xt-2x2 x4x3 xt-3 xt
Figure 4.6: The bold edges reveal a large cycle and a 6-cycle. If x1 → (L′, v1) then we would have
another 6-cycle, disjoint with the other two large cycles.

a6
a5

a1

a4

a2
a3

v2
v1

v3

v4
v5

v6

xt-1x1 xt-2x2 x4x3 xt-3 xt
Figure 4.7: As in Figure 4.6, we see that if x1 → (L′, v1) then we have two 6-cycles and a large
cycle, each disjoint.
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a6
a5

a1

a4

a2
a3

v2
v1

v3

v4
v5

v6

xt-1x1 xt-2x2 x4x3 xt-3 xt
Figure 4.8: In this picture, we recognize a path of order t and a 6-cycle with more chords than
L. The remaining vertices are a2 and those in L′ − v1.

a5 a1

a4 a3

xt-1 xt

x1 xt-2x2 x4x3 xt-3

a6a2

v2v1

v3

v4v5

v6
L'

P'
Figure 4.9: Applying Lemma 3.0.7 to the graph in the boxed region, and then combining that
graph with the 6-cycle on the left, gives us a contradiction.
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Case C: e(x1, L) ≤ 2. We have e(x2xt−1xt, L) ≥ 12. WLOG let e(xt, L) ≥ e(xt−1, L).

Claim C1: e(xt, L) ≤ 4.

Proof: Suppose not. If e(xt, L) = 6, then e(x1xt−1, ai) ≤ 1 and e(x2xt−1, ai) ≤ 1 for

each ai ∈ L. Since e(x1, L) ≤ 2 and e(x1x2xt−1, L) ≥ 8, we have e(x1, L) = e(x2, L) = 2

and e(xt−1, L) = 4, with N(x1, L) = N(x2, L) and N(xt−1, L) disjoint. If N(xt−1, L) =

{a1, a2, a3, a4} then e(x1x2, a5a6) = 4, so by (f) τ(a5a6, L) = 0. But then xt−1xt
6−→ (L, a5a6),

a massive contradiction. IfN(xt−1, L) = {a1, a2, a3, a5}, then e(x1x2, a4a6) = 4, contradicting

(f). Then N(xt−1, L) = {a1, a2, a4, a5}, which again contradicts (f). Therefore e(xt, L) = 5.

WLOG let e(xt, L − a6) = 5. Then xt → (L, ai) for i = 2, 3, 4, 6, so e(x1xt−1, ai) ≤ 1

and e(x2xt−1, ai) ≤ 1 for each such ai. Since e(x2xt−1, L) ≥ 14 − 2 − 5 = 7, xt 9 L, so

τ(a6, L) = 0. Then xt
3−→ (L, a6), so e(x1xt−1, a6) = 0.

Suppose x2a6 ∈ E. If x2a4 ∈ E then x2 → (L, a5), so xt−1a5 /∈ E. Then e(x2xt−1, a1) ≥

7 − 5 = 2 and e(x2xt−1, ai) = 1 for i 6= 1. Since xt−1a1 ∈ E, x2 9 (L, a1), so x2a2 /∈ E.

Thus xt−1a2 ∈ E, so x2a3 /∈ E and hence xt−1a3 ∈ E. Hence e(x2, a4a5a6a1) = 4 and

e(xt−1, a1a2a3) = 3. Since x1a6 /∈ E and e(x1, L) ≥ 14 − 5 − 7 = 2, e(x1, L − a5a6) ≥ 1.

Thus x1x2 → (L, aiai+1) for some i = 1, 2, 3, 6, contradicting (d) since e(xt−1xt, a1a2a3) = 6.

Therefore x2a4 /∈ E, and by symmetry x2a2 /∈ E.

We have e(xt−1, a1a2a4a5) ≥ 7 − 2 − e(x2, a1a2a4a5) ≥ 3. Since e(xt−1xt, a1a2a3a4) ≥ 6

and τ(a6, L) = 0, we know that x1a5 /∈ E. By symmetry, x1a1 /∈ E. Suppose e(x2, a1a5) = 2.

Since e(xt−1xt, a1a2) ≥ 3, x1x2 9 (L, a1a2) by (d). Since x2a6 ∈ E, this implies that x1a3 /∈

E. Thus, because e(x1, L) ≥ 14 − 5 − 8 = 1, we know that e(x1, a2a4) ≥ 1. Then x1x2 →

(L, a5a6) or x1x2 → (L, a6a1), so because e(xt, a5a6a1) = 3 we have e(xt−1, a1a5) ≤ 1 by (d).

Therefore e(xt−1, a2a4) = 2, e(x2xt−1, a3) = e(xt−1, a1a5) = 1, and e(x1, L) = 2. WLOG let

xt−1a1 ∈ E. Then x1x2 9 (L, a6a1), so x1a2 /∈ E. Thus e(x1, a3a4) = 2, so x1x2 → (L, a1a2)

and xt−1a2 ∈ E, a contradiction. Therefore e(x2, a1a5) ≤ 1, so e(xt−1, a1a2a4a5) = 4. Then

x1x2 9 (L, a1a2), so since x2a6 ∈ E and e(x1, L) = 2, we have e(x1, a2a4) = 2. Since
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x1x2 9 (L, a6a1) and x1x2 9 (L, a5a6) by (d), this implies that e(x2, a1a5) = 0. But then

e(x2xt−1, a1a2a4a5) ≤ 6, a contradiction.

Therefore x2a6 /∈ E, so e(x2xt−1, a1a5) = 4, e(x2xt−1, ai) = 1 for i = 2, 3, 4, and e(x1, L) =

2. Since e(xt−1xt, a1) = 2, by (d) we have x1x2 9 (L, a6a1), and therefore x1a2 /∈ E.

By symmetry, x1a4 /∈ E. Since e(x2xt−1xt, a2) = e(x2xt−1xt, a4) = 2, x1 9 (L, a2) and

x1 9 (L, a4) by (a). Then e(x1, a1a3a5) ≤ 1, a contradiction since e(x1, L) = 2.

QED

By Claim C1 we have e(xt, L) ≤ 4 and e(xt−1, L) ≤ 4, so e(x1x2, L) ≥ 14 − 8 = 6 and

e(x2, L) ≥ 6− 2 = 4.

Claim C2: e(x2, L) = 4.

Proof: Suppose not. If e(x2, L) = 6, then by (c) we have e(xt−1xt, ai) = 1 for each ai ∈ L,

and e(x1, L) = 2. WLOG let x1a1 ∈ E. By (a), e(x1, a3a5) = 0. Suppose x1a2 ∈ E. By

(e), τ(a5a6, L) ≥ 4. But then x1 → (L, ai) for some i = 3, 4, 5, 6, contradicting (a). Hence

x1a2 /∈ E, and by symmetry x1a6 /∈ E. Therefore e(x1, a1a4) = 2, so again we must have

τ(a5a6, L) ≥ 4, and again we see that x1 → (L, ai) for some i = 5, 6, a contradiction. So

e(x2, L) = 5.

WLOG let e(x2, L − a6) = 5. By (c), e(xt−1xt, ai) ≤ 1 for each i = 2, 3, 4, 6. Since

e(xt−1xt, L) ≥ 14 − 2 − 5 = 7, x2 9 L, we have τ(a6, L) = 0. Then x2
3−→ (L, a6), so

e(x1xt−1xt, a6) ≤ 1. Suppose that e(x1, a1a4) ≥ 1. Then x1x2 → (L, a5a6), so e(xt−1xt, a5) ≤

1 and hence e(xt−1xt, a1) = 2. Then x1x2 9 (L, a6a1), so e(x1, a2a5) = 0. Similarly,

x1a6 /∈ E since x2a3 ∈ E, which implies that e(x1, a1a3a4) = 2. But then x1x2
1−→ (L, a5a6),

contradicting (e) since e(xt−1xt, a5a6) = 2.

Therefore e(x1, a1a4) = 0, and by symmetry e(x1, a2a5) = 0. Since e(xt−1xt, a1a5) ≥

7 − 4 = 3, x1a6 /∈ E by (d), for otherwise x1x2 → (L, a5a6) and x1x2 → (L, a4a5). Thus

x1a3 ∈ E, and since e(x1, L) = 1 we also have e(xt−1xt, a1a5) = 4 and e(xt−1xt, ai) = 1 for
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i = 2, 3, 4, 6. WLOG let xt−1a2 ∈ E. If xt−1a4 ∈ E, then by (f) xta3 /∈ E since x1a3 ∈ E.

But then xt−1a3 ∈ E, so e(xt−1, L) ≥ 5, a contradiction. Therefore xt−1a4 /∈ E, so xta4 ∈ E.

Then similarly, xta6 /∈ E, so xt−1a6 ∈ E. But then xt−1 → (L, a1) and e(x2xt, a1) = 2,

contradicting (f).

QED

By Claims C1 and C2 we have e(x2, L) = e(xt−1, L) = e(xt, L) = 4 and e(x1, L) = 2. We

finish Case C, and hence the proof of Claim 1, with the following three subcases.

Case C.1: N(xt, L) = {a1, a2, a3, a4}. Since e(x2xt−1, a2a3) ≤ 2, e(x2xt−1, a4a5a6a1) ≥

8 − 2 = 6. Then τ(a5a6, L) ≤ 3 and τ(a2a3, L) ≤ 4. Suppose that τ(a5, L) ≥ 2. Then

xt → (L, a4) and xt → (L, a6), so e(x2xt−1, a1a5) = 4. Then τ(a6, L) = 0, so xt
2−→

(L, a6). Hence e(x1xt−1, a6) = 0. Then e(xt−1, L − a6) = 4, so e(xt−1xt, a1a2a3a4) ≥ 7

and e(xt−1xt, a2a3a4a5) ≥ 6. Since τ(a6, L) = 0, this implies that e(x1, a1a5) = 0. Thus

e(x1, a2a3a4) = 2, and since e(x1, a2a3) ≥ 1, we have e(xt−1, a2a3) ≤ 1 since xt → (L, a2) and

xt → (L, a3). Therefore e(xt−1, a1a4a5) = 3 and e(xt−1, a2a3) = 1. Since xta3 ∈ E, we see

that xt−1a2 /∈ E, for otherwise xt−1 → (L, a3), which by (f) implies that e(x1, a2a4) = 2, con-

tradicting the fact that xt → (L, a2). Hence e(xt−1, a1a3a4a5) = 4, and since e(x2xt−1, ai) ≤ 1

for i = 2, 3, 4, 6, we have e(x2, a1a2a5a6) = 4. But then xt−1 → (L, a2) and e(x2xt, a2) = 2,

contradicting (f).

Therefore τ(a5, L) ≤ 1, and by symmetry τ(a6, L) ≤ 1. Since e(xt−1xt, a1a2a3a4) ≥ 6, this

implies that e(x1, a5a6) = 0. Hence e(x1, a1a2a3a4) = 2, so e(x2, a1a2a3a4) ≤ 3, for otherwise

e(xt−1, a2a3) = 0 and x1x2
1−→ (L, a5a6), contradicting (e) since e(xt−1, a5a6) = 2. Suppose

that τ(a5, L) = τ(a6, L) = 1. Then xt → (L, a5) and xt → (L, a6), so e(x2xt−1, a1a4) = 4

and e(x2xt−1, ai) = 1 for i = 2, 3, 5, 6. By (a), x1 9 (L, a2) and x1 9 (L, a3), so

e(x1, a1a3) = 1 and e(x1, a2a4) = 1. Since e(x2, a1a2a3a4) ≤ 3 and e(x2, a1a4) = 2, we

know that e(xt−1, a2a3) ≥ 1. Then by (d), x1x2 9 (L, a2a3), so e(x1, a1a4) = 0. But then

e(x1, a2a3) = 2, a contradiction since e(xt−1, a2a3) ≥ 1 and xt → (L, ai) for i = 2, 3.

Therefore τ(a5a6, L) ≤ 1, and hence also τ(a2a3, L) ≤ 3. Suppose that τ(a5a6, L) = 1,
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and WLOG let τ(a5, L) = 1. Then e(x2xt−1, a6) ≤ 1, so e(x2xt−1, a1a4a5) ≥ 5. Suppose that

e(x1, a1a4) = 2. Then, since e(x2, a1a4) ≥ 1, we have x1x2 → (L, a2a3). Thus e(xt−1, a2a3) =

0 by (d), since e(xt, a2a3) = 2. Hence e(xt−1, a4a5a6a1) = 4 and e(x2, a1a2a3a4) ≥ 4− 1 = 3.

But then e(x1x2, a1a2a3a4) ≥ 5 and x1x2 → (L, a5a6), contradicting (e) since τ(a5a6, L) = 1

and e(xt−1, a5a6) = 2. Thus e(x1, a1a4) ≤ 1, so e(x2, a2a3) ≥ 1.

Suppose that x1a2 ∈ E. Then x2a5 /∈ E, for otherwise e(xt−1, a1a3a4) = 0 by (d) since

x1x2 → (L, a6a1) and x1x2 → (L, a3a4). Hence e(x2, a1a4) = 2, e(xt−1, a1a4a5) = 3, and

e(x2xt−1, ai) = 1 for i = 2, 3, 6. By (a), we see that x1 9 (L, a3), so x1a4 /∈ E. Since

x1a2 ∈ E and τ(a2a3, L) ≤ 3, we know that xt−1a6 /∈ E, for otherwise xt−1xt
1−→ (L, a2a3).

Then e(xt−1, a2a3a4a5) = 3, so xt−1xt
1−→ (L, a6a1) because τ(a6, L) = 0. Hence x1a1 /∈ E, so

e(x1, a2a3) = 2. But then, since x2a6 ∈ E, we know that x1x2 → (L, a1a2), contradicting (d)

since e(xt−1xt, a1) = 2.

Therefore x1a2 /∈ E, so x1a3 ∈ E and e(x1, a1a4) = 2. Then x2a6 /∈ E, for otherwise

x1x2 → (L, a1a2) and x1x2 → (L, a4a5), contradicting (d) since e(xt−1xt, a1a2a4) ≥ 4. If

x1a1 ∈ E then x1 → (L, a2), so e(x2xt−1, a2) = 0. Then e(x2xt−1, a1a4a5) = 6, xt−1a6 ∈ E,

and x2a3 ∈ E. But then x2 → (L, a4) and e(xt−1xt, a4) = 2, contradicting (c). Thus

x1a1 /∈ E, so e(x1, a3a4) = 2. Then, because xta1 ∈ E, we have e(x2, a2a3a4a5) ≤ 3, for

otherwise x1x2
1−→ (L, a6a1). Hence x2a1 ∈ E, so x1x2 → (L, a2a3), which by (d) implies

that e(xt−1, a2a3) = 0. But then e(xt−1, a4a5a6a1) = 4, and hence xt−1xt
1−→ (L, a2a3), a

contradiction since x1a3 ∈ E.

Therefore τ(a5a6, L) = 0 and e(a2a3, a5a6) = 0. Suppose e(x1, a2a3) > 0. Then

e(xt−1, a4a5a6a1) ≤ 2, for otherwise xt−1xt
1−→ (L, a2a3) since τ(a2a3, L) ≤ 2. Hence

e(xt−1, a2a3) = 2 and e(x2, a4a5a6a1) = 4. Then, since e(x1, a2a3) > 0, we know that

x1x2 → (L, a1a2) or x1x2 → (L, a3a4), contradicting (d) since e(xt−1xt, a2a3) = 4. Thus

e(x1, a2a3) = 0, so e(x1, a1a4) = 2. Then x1xt → (L, a5a6), so e(x2xt−1, a5) ≤ 1 and

e(x2xt−1, a6) ≤ 1. Hence e(x2xt−1, a1a4) = 4. Since e(x1x2, a1a4) = 2, x1x2
2−→ (L, a5a6),

so e(xt−1, a5a6) = 0 by (e). But then e(xt−1xt, a2a3) = 4, contradicting (d) since x1x2 →
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(L, a2a3).

Case C.2: N(xt, L) = {a1, a2, a3, a5}. Since xt → (L, ai) for i = 2, 4, 6, e(x2xt−1, a1a3a5) ≥

5. Suppose that a2a4 ∈ E. Then xt → (L, a3), so e(x2xt−1, a1a5) = 4 and e(x2xt−1, ai) = 1

for i = 2, 3, 4, 6. Since xt 9 (L, ai) for i = 1, 5, e(a6, a2a4) = 0. Then xt
1−→ (L, a6), so

xt−1a6 /∈ E. Since e(xt−1xt, a1a5) = 2 we know that x2 9 (L, ai) for i = 1, 5 by (c). Since

e(x2, a5a6a1) = 3, this implies that e(x2, a2a4) = 0, and hence e(x2, a1a3a5a6) = 4. But then

e(xt−1, a1a2a4a5) = 4, so x2 → (L, a2) and e(xt−1xt, a2) = 2, contradicting (c). Therefore

a2a4 /∈ E, and by symmetry a2a6 /∈ E. Since xt 9 L, a4a6 /∈ E. Thus xt
1−→ (L, a4) and

xt
1−→ (L, a6), so e(x1xt−1, a4a6) = 0. Then e(xt−1, a1a2a3a5) = 4 and e(x2, a1a3a4a5a6) = 4.

By (c) we know that x2 9 (L, a5), which implies that e(x2, a1a3a5) = 3 and e(x2, a4a6) = 1.

WLOG let e(x2, a1a3a4a5) = 4. Since e(xt−1xt, a1a5) = 4, by (d) we have x1x2 9 (L, a5a6)

and x1x2 9 (L, a6a1). Thus e(x1, a1a4a2) = 0, so e(x1, a3a5) = 2 (see Figure 4.10). There-

fore, because e(xt−1xt, a5a6a1a2) = 6, this implies that τ(a3a4, L) ≥ 4. Since e(a4, a2a6) = 0,

we know that a4a1 ∈ E and τ(a3, L) = 3.

Since xt−1xt → (L, a3a4) and a4a3x1...xt−2 = Pt, by Condition (4.2) we know that

e(a4xt−2, D − P ) = 0. Since xt−1a5a4a1a2xtxt−1 = C6 and a6a3x1...xt−2 = Pt, we know

that e(a6, D−P ) = 0. Hence e(x1xt−2a4a6, D−P ) = 0. Since x1x5 /∈ E, e(x1, P ) ≤ 3. Since

xtxt−3 ∈ E, we have e(xt−2, xt−5xt−6) = 0, so e(xt−2, P ) ≤ 4. Since xt−1xt → (L, a3a4) and

a4a3x1...xt−2 = Pt, we know that e(a4, P − xt−1xt) = e(a4, P ) ≤ 3. Similarly, e(a6, P ) ≤ 3.

Hence e(x1xt−2a4a6, D) ≤ 13. Since e(a2, a4a6) = 0 and a4a6 /∈ E, we have e(a4a6, L) ≤

6. Therefore e(x1xt−2a4a6, L) ≤ 2 + 6 + 6 = 14, so e(x1xt−2a4a6, D + L) ≤ 27. Then

e(x1xt−2a4a6, Li) ≥ 15 for some Li ∈ σ − {L}.

Let Li = L′ = v1v2...v6v1, and let P ′ = xt−2xt−3...x2x1. Suppose that x1 → (L′, vj). Then

e(vj, a4a6) ≤ 1, for otherwise vj → (L, a5) and x2x3...xt−1xta5x2 = C≥6. Since xt−1xt →

(L, a3a6) (recall a1a4 ∈ E) and a6a3x2...xt−2 = P≥6, we also know that e(vj, a6xt−2) ≤ 1.

Similarly, e(vj, a4xt−2) ≤ 1, so e(vj, xt−2a4a6) ≤ 1. Now suppose that a4
0−→ (L′, vj). Since

xt
1−→ (L, a4) and x1x2...xt−3xt−1xt−2 = Pt−1, by Condition (4.3) we have e(vj, x1xt−2) = 0.
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Figure 4.10: A situation similar to that in Case B.3. Lemma 3.0.7 is applicable. Not shown at
top are the edges a4a1, a3a5, a3a6, and a3a1.
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Similarly, if a6
0−→ (L′, vj), then e(vj, x1xt−2) = 0. Finally, suppose that x1

1−→ (L′, vj). Since

xt−1xt
0−→ (L, a3a4) and a4a3x2...xt−2 = Pt−1, we know that e(vj, a4xt−2) = 0. This paragraph

shows that Lemma 3.0.7 is contradicted, because xt−1xt
3−→ (L, a4a6).

Case C.3: N(xt, L) = {a1, a2, a4, a5}. Since xt → (L, ai) for i = 3, 6, e(x2xt−1, ai) ≤ 1.

Since xt 9 L, either τ(a3, L) = 0 or τ(a6, L) = 0. WLOG let τ(a3, L) = 0. Then xt
2−→

(L, a3), so e(x1xt−1, a3) = 0. We observe that τ(a6, L) > 0, for otherwise e(xt−1, a1a2a4a5) =

4 and hence xt−1xt
1−→ (L, aiai+1) for i = 5, 6, 2, 3, a contradiction since e(x1, L) > 0. Since

τ(a6, L) > 0, xt → (L, a1) and xt → (L, a5). Then e(x2xt−1, a2a4) = 4 and e(x2xt−1, ai) = 1

for i = 1, 3, 5, 6. Since xt−1a3 /∈ E, x2a3 ∈ E. Thus by (d), x1a6 /∈ E, for otherwise x1x2 →

(L, a1a2) and e(xt−1xt, a2) = 2. Similarly, since e(x2, a2a4) = 2 and e(xt−1xt, a4a2) = 2, we

have e(x1, a5a1) = 0 by (d). Thus e(x1, a2a4) = 2. Since xt−1a3 /∈ E, e(xt−1xt, a4a5a6a1) =

3 + 3 = 6. But then, because τ(a3, L) = 0, we have xt−1xt
1−→ (L, a2a3), a contradiction since

x1a2 ∈ E. This concludes the proof of Claim 1.

QED

By Claim 1, there is a path x1 . . . x2 of order 5 in P and a path xt . . . xt−1 of order 5 in

P . Clearly, there is a 5-path x1 . . . x2 that does not include xt. Suppose that there is no

5-path x1 . . . x2 in P that does not include xt−1. Then it must be the case that x2x6 ∈ E

and x1x4 ∈ E, x1x5 /∈ E, and x2x5 /∈ E or x1x3 /∈ E. Also, t = 7. Since P + C≥6, we see

that e(x7, x3x5) = 0. Then, because e(x1x2xt−1xt, P ) ≥ 14, this implies that e(x6, x3x4) = 2

and x2x4 ∈ E. But then x1x4x5x6x3x2x1 = C6, a contradiction. Therefore there is a 5-path

x1 . . . x2 in P that includes neither xt−1 nor xt, and similarly there is a 5-path xt−1 . . . xt in P

that includes neither x2 nor x1. Combining this with Proposition 4.1.6, we get the following

(see Figure 4.11 for an example):

(a) If x1 → (L, ai), then e(x2xt−1xt, ai) ≤ 1. If xt → (L, ai), then e(x1x2xt−1, ai) ≤ 1.

(b) If x2 → (L, ai), then e(xt−1xt, ai) ≤ 1. If xt−1 → (L, ai), then e(x1x2, ai) ≤ 1.
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Figure 4.11: If xtxt−1 → (L, aiaj) and e(x1x2, ai) = 2, then the maximality of r0 is contradicted.

(c) If x1x2 → (L, aiaj), then e(xt−1xt, ai) ≤ 1 and e(xt−1xt, aj) ≤ 1. If xt−1xt → (L, aiaj),

then e(x1x2, ai) ≤ 1 and e(x1x2, aj) ≤ 1.

(d) If e(x1x2, ai) = 2 and e(xt−1xt, ai+1) ≤ 1 and e(xt−1xt, ai−1) ≤ 1, then e(xt−1xt, ai−1ai+1) ≤

1. If e(xt−1xt, ai) = 2 and e(x1x2, ai+1) ≤ 1 and e(x1x2, ai−1) ≤ 1, then e(x1x2, ai−1ai+1) ≤

1.

To see why part (d) is true, suppose for contradiction that e(x1x2, ai) = 2, e(xt−1xt, ai+1) ≤

1, e(xt−1xt, ai−1) ≤ 1, and e(xt−1xt, ai−1ai+1) = 2. By (a), xt 9 (L, ai), so e(xt, ai−1ai+1) ≤ 1.

Similarly, by (b) e(xt−1, ai−1ai+1) ≤ 1. Then xt−1ai−1 ∈ E and xtai+1 ∈ E, or xt−1ai+1 ∈ E

and xtai−1 ∈ E. Either way, L− ai + xt−1xt ⊇ C7, contradicting the maximality of k0 since

x1 . . . x2aix1 = C6 for a 5-path x1 . . . x2 that includes neither xt−1 nor xt.

Notice that WLOG we may choose between x1 and xt, or between x2 and xt−1. Clearly,

by (a) we have e(x1, L) ≤ 5 and e(xt, L) ≤ 5. Suppose that e(x1, L) = 5, and WLOG

let e(x1, L − a6) = 5. Then x1 → (L, ai) for i = 2, 3, 4, 6, so e(x2xt−1xt, a2a3a4a6) ≤ 4.

Hence e(x2xt−1xt, a1a5) ≥ 14 − 9 = 5. WLOG let x2a1 ∈ E. Then x1x2 → (L, a5a6), so

by (c) e(xt−1xt, a5) ≤ 1. Then x2a5 ∈ E, so similarly e(xt−1xt, a1) ≤ 1, a contradiction.

Therefore e(x1, L) ≤ 4 and e(xt, L) ≤ 4. WLOG let e(x1x2, L) ≥ e(xt−1xt, L). Then

7 ≤ e(x1x2, L) ≤ 10, and we break into cases.

Case 1: e(x1x2, L) = 10. Since e(x2, L) = 6, e(xt−1xt, ai) ≤ 1 for each ai ∈ L by (b). Since
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e(xt−1xt, L) = 4, by (a) x1 → (L, ai) for at most two ai ∈ L, which implies that N(x1, L) 6=

{a1, a2, a3, a5}.

Case 1.1: N(x1, L) = {a1, a2, a3, a4}. Since e(x2, L) = 6, by (a) we have e(a2a3, xt−1xt) =

0. Then e(xt−1xt, ai) = 1 for i = 4, 5, 6, 1, so by (a) x1 9 (L, ai) for each such ai. Thus

τ(a5a6, L) = 0, so e(xt, a5a6) = 0 since x1x2
6−→ (L, a5a6). Let L′ = x1x2a1a2a3a4x1 and P ′ =

x3...xt−1xt. Since τ(L′) > τ(L) and e(xt−1, a5a6) = 2, we know that e(x3xta5a6, D − P ) = 0

by Condition (4.3). By the maximality of k0 and Lemma 2.1.4, we have e(a5a6, P
′) ≤ 5.

Then e(a5a6, D + L) = e(a5a6, P ) + e(a5a6, L) ≤ 7 + 4 = 11. Also by the maximality of k0,

e(x3, a5a6) = 0 and e(x3, P ) ≤ 6. Then e(x3, D + L) ≤ 6 + 4 = 10. Since e(xt, D + L) ≤

4 + 2 = 6, we have e(a5a6x3xt, D + L) ≤ 11 + 10 + 6 = 27, so e(a5a6x3xt, Li) ≥ 15 for some

Li ∈ σ−{L}. But P ′ is a path of order t−2 ≥ 5 and e(xt−1, a5a6) = 2, contradicting Lemma

3.0.3 since τ(L′) = τ(L) + 6.

Case 1.2: N(x1, L) = {a1, a2, a4, a5}. We have e(xt−1xt, a3a6) = 0, and e(xt−1xt, ai) = 1

for i = 1, 2, 4, 5. Then τ(a3, L) = 0, so x1
2−→ (L, a3), a contradiction since x2a3 ∈ E.

Case 2: e(x1x2, L) = 9. Here we have e(xtxt−1, L) = 5. Suppose that e(x1, L) = 3. Then

e(x2, L) = 6, so by (b) e(xt−1xt, ai) ≤ 1 for each ai ∈ L. Then x1 → (L, ai) for at most

one ai ∈ L by (a), so we know N(x1, L) 6= {a1, a3, a5}. If N(x1, L) = {a1, a2, a3} then

e(xtxt−1, a2) = 0 by (a), so e(xtxt−1, ai) = 1 for each i ∈ {1, 3, 4, 5, 6}. Then e(x1x2, a2) = 2

and e(xt−1xt, a1a3) = 2, contradicting (d). If N(x1, L) = {a1, a2, a4} then e(x1x2, a1) = 2

and e(xt−1xt, a2a6) = 2, again contradicting (d). Therefore e(x1, L) = 4 and e(x2, L) = 5.

Case 2.1: N(x1, L) = {a1, a2, a3, a4}. Suppose that x2a6 /∈ E. Then e(xt−1xt, a2a3) = 0

by (a), and e(xt−1xt, a4a6) ≤ 2 by (b), so e(xt−1xt, a1a5) ≥ 5 − 2 = 3. Thus x2 9 L, so

τ(a6, L) = 0. Since e(x1x2, a2a3a4a5) = 7, this implies that xta1 /∈ E. Hence xta5 ∈ E,

a contradiction since e(x1x2, a1a2a3a4) = 8 and τ(a6, L) = 0. Then x2a6 ∈ E, and by

symmetry e(x2, a5a6) = 2. Now suppose that x2a4 /∈ E. By (a), e(xt−1xt, a2a3) = 0, and

by (b), e(xt−1xt, a1a4a6) ≤ 3, so e(xt−1xt, a5) = 2. Then x2 9 L, so τ(a4, L) = 0. But

then xta5 ∈ E and x1x2
2−→ (L, a4a5), a contradiction. Thus x2a4 ∈ E, and by symmetry
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e(x2, a4a1) = 2. Since e(x2, a4a5a6a1) = 4 and e(x2, L) = 5, WLOG we can let x2a2 ∈ E.

Then e(xt−1xt, a2) = 0 by (a), and e(xt−1xt, ai) ≤ 1 for each i = 1, 3, 5, 6, by (b).

Suppose that τ(a3, L) > 0. Then x2 → L, so e(xt−1xt, ai) = 1 for i 6= 2. But

e(x1x2, a2) = 2, contradicting (d). Hence τ(a3, L) = 0, and thus also τ(a5a6, L) ≤ 4. Since

e(x1x2, a5a6a1a2) = 6 and e(x1x2, a1a2a3a4) = 7, this implies that e(xt, a3a4a5a6) = 0. Hence

e(xt−1, a1a3a4a5a6) ≥ 5 − 1 = 4. Since e(x1x2, a2a4) = 4, by (b) we have e(xt−1, a1a3) ≤ 1

and e(xt−1, a3a5) ≤ 1. Therefore e(xt−1, a1a4a5a6) = 4, and since e(xt, L− a1) = 0, we have

e(xt−1xt, a1) = 2, a contradiction.

Case 2.2: N(x1, L) = {a1, a2, a4, a5}. If x2a1 /∈ E, then by (a) e(xt−1xt, a3a6) = 0,

and by (b) e(xt−1xt, a1a4a5) ≤ 3. Then e(xt−1xt, a2) = 2, so by (b) τ(a2, L) = 0. But

then x1x2
1−→ (L, a1a2) and xta2 ∈ E, a contradiction. Thus x2a1 ∈ E, and by sym-

metry e(x2, a1a2a4a5) = 4. WLOG let e(x2, L − a6) = 5. Then e(xt−1xt, a3) = 0 and

e(xt−1xt, a2a4a6) ≤ 3, so e(xt−1xt, a1a5) ≥ 2. Then x1 9 (L, a1) or x1 9 (L, a5) by

(a), so τ(a6, L) = 0. Since e(x1x2, a1a2a3a4) = e(x1x2, a2a3a4a5) = 7, this implies that

e(xt, a5a6a1) = 0. Then e(xt−1, a5a6a1) = 3 and e(xt−1xt, ai) = 1 for i = 2, 4. But then

e(xt−1xt, a4a6) = 2 and e(x1x2, a5) = 2, contradicting (d).

Case 2.3: N(x1, L) = {a1, a2, a3, a5}. By (a), e(x2xt−1xt, a2a4a6) ≤ 3. Then by (b),

e(x2, a2a4a6) = 2, for otherwise e(xt−1xt, a2a4a6) = 0 and e(xt−1xt, a1a3a5) ≤ 3 < 5. If

x2a4 /∈ E, then e(xt−1xt, a2a6) = 0 and e(xt−1xt, ai) ≤ 1 for i = 1, 4, so e(xt−1xt, a3a5) ≥ 3.

Then by (b), x2 9 L, so τ(a4, L) = 0. Since e(x1x2, a6a1a2a3) = 7, this implies that

e(xt, a4a5) = 0. Therefore e(xt−1xt, a3) = 2 and e(xt−1xt, a1) = 1, contradicting either (a) or

(b) since e(x1x2, a2) = 2. Thus x2a4 ∈ E, and by symmetry we have e(x2, L−a2) = 5. Since

e(x2, a4a6) = 2 and e(x1, L− a4) = e(x1, L− a6) = 4, we have τ(a4, L) ≥ 2 and τ(a6, L) ≥ 2.

Then x1 → (L, ai) for i = 1, 3, so e(xt−1xt, a1a3a4a6) = 0, a contradiction.

Case 3: e(x1x2, L) = 8. We have e(xt−1xt, L) = 6. Then e(x2, L) 6= 6, for otherwise

e(xt−1xt, ai) = 1 for each ai ∈ L by (b), and e(x1x2, aj) = 2 for some aj ∈ L, contradicting

(d). Therefore 3 ≤ e(x1, L) ≤ 4.
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Case 3.1: e(x1, L) = 3.

Case 3.1.1: N(x1, L) = {a1, a2, a3}. Suppose that x2a2 ∈ E. Then e(xt−1xt, a2) = 0 by

(a), so e(xt−1xt, L − a2) ≥ 6. If x2a3 /∈ E, then e(xt−1xt, ai) = 1 for i = 1, 3, 5, 6 by (b),

and e(xt−1xt, a4) = 2. This contradicts (d), since e(x1x2, a2) = 2. Thus x2a3 ∈ E, and

by symmetry x2a1 ∈ E. If x2a4 /∈ E then e(xt−1xt, ai) ≤ 1 for i = 1, 4, 6, and hence

e(xt−1xt, a3a5) ≥ 3. Since x2 9 L, τ(a4, L) = 0, so x1x2
2−→ (L, a4a5). Then e(xt, a4a5) = 0,

so e(xt−1xt, a1) = 1 and e(xt−1xt, a3) = 2. But e(x1x2, a2) = 2, contradicting either (a) or

(b). Thus x2a4 ∈ E, and by symmetry we have e(x2, L − a5) = 5. So e(xt−1xt, ai) ≤ 1 for

i = 1, 3, 5, and hence e(xt−1xt, a4a6) ≥ 3. Then τ(a5, L) = 0, so x1x2
2−→ (L, a5a6). Thus

e(xt, a5a6) = 0, so e(xt−1, a4a5a6) = 3, e(xt−1xt, a1) = e(xt−1xt, a3) = 1, and xta4 ∈ E. This

again contradicts (d), since e(x1x2, a2) = 2.

Therefore e(x2, L−a2) = 5, so e(xt−1xt, ai) ≤ 1 for i = 2, 4, 5, 6. Since e(x1x2, a3) = 2, by

(d) this implies that e(xt−1xt, a2a4) ≤ 1. Therefore e(xt−1xt, a1a3) ≥ 6 − 3 = 3, so x2 9 L.

Hence τ(a2, L) = 0, so x2
3−→ (L, a2). Then, since x1a2 ∈ E we know that xta2 /∈ E. Since

e(xt−1xt, a4a5a6) ≥ 6−5 = 1, x1 9 (L, ai) for some i = 4, 5, 6. Thus e(a5, a1a3) + e(a4, a6) ≤

2, and since e(a2, a5a6) = 0 we have τ(a5a6, L) ≤ 3. Hence, because e(x1x2, a1a2a3a4) = 6,

we have e(xt, a5a6) = 0. By symmetry, xta4 /∈ E, so e(xt, a2a4a5a6) = 0. Since x1x2 →

(L, a6a1) and x1x2 → (L, a3a4), e(xt−1, a1a3) ≤ 2. Thus e(xt−1, a2a4a5a6) ≥ 6 − 2 = 4, so

xt−1 → (L, a3), contradicting (b).

Case 3.1.2: N(x1, L) = {a1, a2, a4}. Since e(x2, a1a4) ≥ 1, we see that x1x2 → (L, a2a3)

and x1x2 → (L, a5a6). Hence by (c), e(xt−1xt, ai) ≤ 1 for each i = 2, 3, 5, 6. Suppose

that x2a5 ∈ E. Then x1x2 → (L, a3a4) and x1x2 → (L, a6a1), so e(xt−1xt, ai) = 1 for

each ai ∈ L. But this contradicts (d), since e(x2, a1a2a4) > 0. Therefore e(x2, L − a5) =

5, so e(xt−1xt, a1) ≤ 1 by (b) and e(xt−1xt, a3) = 0 by (a). Then e(xt−1xt, a4) = 2 and

e(xt−1xt, ai) = 1 for i = 1, 2, 5, 6, contradicting (d) since e(x1x2, a1) = 2.

Case 3.1.3: N(x1, L) = {a1, a3, a5}. By (a), e(x2xt−1xt, a2a4a6) ≤ 3, so

e(x2xt−1xt, a1a3a5) ≥ 8. Since e(xt−1xt, a1a3a5) ≥ 5, we see that e(x2, a2a4a6) = 2 by (b).
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WLOG let e(x2, a2a4) = 2. Then x2 → (L, a3) and x1x2 → (L, a5a6), so by (b) and (c) we

have e(xt−1xt, a3a5) ≤ 2, a contradiction.

Case 3.2: e(x1, L) = 4.

Case 3.2.1: N(x1, L) = {a1, a2, a3, a4}. If e(x2, a5a6) = 2, then e(xt−1xt, ai) = 1 for each

ai ∈ L by (c). This contradicts (d), since e(x1x2, ai) = 2 for some ai ∈ L. Hence e(x2, a5a6) ≤

1, so e(x2, a1a2a3a4) ≥ 3. Since e(x2, a1a4) ≥ 1, x1x2 → (L, a2a3), and x1x2 → (L, a5a6),

so e(xt−1xt, ai) ≤ 1 for each i = 2, 3, 5, 6. Then we see that e(x2, a5a6) = 0, for otherwise

e(xt−1xt, a1) ≤ 1 and e(xt−1xt, a4) ≤ 1 by (b), contradicting (d) since e(x1x2, ai) = 1 for some

ai ∈ L. Hence e(x2, a1a2a3a4) = 4, so e(xt−1xt, a2a3) = 0 by (a). Since e(xt−1xt, a5a6) ≤ 2, we

have e(xt−1xt, a1a4) = 4. But then xt−1xt → (L, a2a3), contradicting (c) since e(x1x2, a2a3) =

4.

Case 3.2.2: N(x1, L) = {a1, a2, a4, a5}.WLOG let e(x2, a1a4) > 0. Then x1x2 → (L, a2a3)

and x1x2 → (L, a5a6), so e(xt−1xt, ai) ≤ 1 for each i = 2, 3, 5, 6 by (c). Thus e(x2, a2a5) = 0,

for otherwise e(xt−1xt, ai) = 1 for each ai ∈ L, contradicting (d). Hence e(x2, a1a3a4a6) = 4,

so e(xt−1xt, a3a6) = 0 by (a), which means that e(xt−1xt, a1a4) = 4. But then e(xt−1xt, a1) =

2 and e(x1x2, a2a6) = 2, contradicting (d).

Case 3.2.3: N(x1, L) = {a1, a2, a3, a5}. If e(x2, a2a5) = 0 then e(x2, a1a3a4a6) = 4, so

e(xt−1xt, a4a6) = 0 by (a) and e(xt−1xt, a2a5) ≤ 2 by (b). But then e(xt−1xt, a3) = 2, a con-

tradiction by (c) since x1x2 → (L, a2a3). Therefore e(x2, a2a5) ≥ 1, so by (c) e(xt−1xt, ai) ≤ 1

for i = 3, 4, 6, 1. Since x1 → (L, ai) for i = 2, 4, 6, by (a) we know that e(xt−1xt, ai) =

0 for some ai ∈ L, because e(x2, L) = 4. Hence by (c), we see that e(x2, a4a6) = 0

since e(x1, a1a3) = 2, for otherwise e(xt−1xt, a2) ≤ 1 and e(xt−1xt, a5) ≤ 1, which implies

e(xt−1xt, ai) = 1 for each ai ∈ L. Thus e(x2, a1a2a3a5) = 4, so e(xt−1xt, a2) = 2 by (a).

Then e(xt−1xt, a5) = 2 and e(xt−1xt, ai) = 1 for i = 3, 4, 6, 1, contradicting (d) because

e(x1x2, a2) = 2.

Case 4: e(x1x2, L) = 7. We have e(x1x2, L) = e(xt−1xt, L) = 7, so WLOG let e(x1, L) ≥

e(xt, L). By (b), we see that x2 9 L and xt−1 9 L, so e(x2, L) ≤ 5 and e(xt−1, L) ≤ 5.
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Case 4.1: e(x1, L) = 2. By the above, we have e(xt, L) = 2 and e(x2, L) = e(xt−1, L) = 5.

WLOG let e(x2, L − a6) = 5. Then e(xt−1xt, ai) ≤ 1 for each i = 2, 3, 4, 6 by (b), so

e(xt−1xt, a1a5) ≥ 7 − 4 = 3. Then x1a6 /∈ E by (c), for otherwise x1x2 → (L, a4a5) and

x1x2 → (L, a1a2). Thus by symmetry, we can let e(x1, a2a5) > 0. Then x1x2 → (L, a6a1),

so e(xt−1xt, a1) ≤ 1 by (c), and therefore e(xt−1xt, a5) = 2. Then x1x2 9 (L, a5a6), so

e(x1, a1a4) = 0. Since e(xt−1xt, ai) = 1 for i 6= 5 and x2a4 ∈ E, by (a) we know that

e(x1, a3a5) ≤ 1. But then e(x1x2, a2) = 2 and e(xt−1xt, a1a3) = 2, contradicting (d).

Case 4.2: e(x1, L) = 3.

Case 4.2.1: N(x1, L) = {a1, a2, a3}. Suppose that x2a5 ∈ E. By (c), we see that

e(x2, a4a5a6) ≤ 1, for otherwise e(xt−1xt, L) ≤ 6. Then e(x2, a1a2a3) = 3, so e(xt−1xt, a2) = 0

by (a). Thus e(xt−1xt, a1a3a4a5a6) ≥ 7, so since e(xt−1xt, a3a4a6a1) ≥ 5 we have x2a5 /∈ E by

(c). So WLOG let x2a4 ∈ E. Then x1x2 → (L, a2a3) and x1x2 → (L, a5a6), so e(xt−1xt, ai) ≤

1 for i = 3, 5, 6. Hence e(xt−1xt, a1a4) = 4, so e(xt−1xt, a1a3) = 3. But this contradicts (a)

or (b), since e(x1x2, a2) = 2.

Case 4.2.2: N(x1, L) = {a1, a2, a4}. Suppose that e(x2, a1a4) > 0. Then by (c),

e(xt−1xt, a2a3a5a6) ≤ 4, so e(xt−1xt, a1a4) ≥ 3. Thus again by (c), we see that x2a5 /∈ E.

Since xt−1xt → (L, a2a3), we also know by (c) that x2a2 /∈ E. Hence e(x2, a1a3a4a6) = 4.

But then x2...x1a2a3x2 = C7 for a 5-path x2...x1, a contradiction. Therefore e(x1, a1a4) = 0,

so e(x2, a2a3a5a6) = 4. By (a) and (b), we have e(xt−1xt, a3) = 0 and e(xt−1xt, a1a4) ≤ 2.

Then e(xt−1xt, a2a5a6) ≥ 5, so xt−1xt → (L, a3a4) and x2...x1a4a3x2 = C7, a contradiction.

Case 4.2.3: N(x1, L) = {a1, a3, a5}. WLOG let x2a2 ∈ E. Then by (a), e(xt−1xt, a2) = 0,

and by (c), e(xt−1xt, a3a4a6a1) ≤ 4, so e(xt−1xt, a5) ≥ 3, a contradiction.

Case 4.3: e(x1, L) = 4.

Case 4.3.1: N(x1, L) = {a1, a2, a3, a4}. Since e(x1, a2a3) = 2 and e(xt−1xt, L) = 7, we see

by (c) that e(x2, a5a6) ≤ 1, for otherwise e(xt−1xt, ai) ≤ 1 for each ai ∈ L. If e(x2, a1a4) > 0,

then by (c) we have e(xt−1xt, a2a3a5a6) ≤ 1, so e(xt−1xt, a1a4) ≥ 3. Then xt−1xt → (L, a2a3),

so by (c) we know that e(x2, a2a3) = 0. But then e(x2, a5a6) ≥ 1, contradicting (c) since
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e(xt−1xt, a1a4) ≥ 3. Hence e(x2, a1a4) = 0, so e(x2, a2a3) = 0 and WLOG x2a5 ∈ E. But

then e(xt−1xt, a2a3) = 0 by (a) and e(xt−1xt, a4a6a1) ≤ 3 by (c), a contradiction.

Case 4.3.2: N(x1, L) = {a1, a2, a4, a5}. WLOG let x2a1 ∈ E. Then x1x2 → (L, a2a3) and

x1x2 → (L, a5a6), so by (c) e(xt−1xt, a2a3a5a6) ≤ 4. Hence e(xt−1xt, a1a4) ≥ 3, so by (c)

e(x2, a2a5) = 0. Then e(x2, a3a4a6) = 2, so WLOG let x2a3 ∈ E. Then xt−1xt → (L, a2a3)

and a3a2x1...x2a3 = C7, a contradiction.

Case 4.3.3: N(x1, L) = {a1, a2, a3, a5}. Suppose that e(x2, a2a5) > 0. Then by (c),

e(xt−1xt, a3a4a6a1) ≤ 4, so e(xt−1xt, a2a5) ≥ 3. Then xt−1xt → (L, a6a1) and xt−1xt →

(L, a3a4), so by (c) e(x2, a1a3) = 0. Since e(xt−1xt, a2) ≥ 1 and x1 → (L, a2), by (a) x2a2 /∈ E.

Hence e(x2, a4a5a6) = 3, so e(xt−1xt, a4a6) = 0 by (a). But then e(xt−1xt, a2a5) ≥ 5, a con-

tradiction. Therefore e(x2, a2a5) = 0, so e(x2, a1a3a4a6) = 3. We see that e(x2, a4a6) =

1, for otherwise e(xt−1xt, a4a6) = 0 by (a) and e(xt−1xt, a2a3) ≤ 2 by (c), and hence

e(xt−1xt, a1a5) ≥ 5, a contradiction. Hence WLOG let e(x2, a1a3a4) = 3. Then e(xt−1xt, a4) =

0 by (a) and e(xt−1xt, a2a3a5a6) ≤ 4 by (c), a contradiction.

4.2 Part Two

By Proposition 4.1.7, let L = a1a2...a6a1 ∈ σ with e(x1x2xt−1xt, L) ≥ 15. We first show,

using two claims, that e(x1, L) ≤ 4 and e(xt, L) ≤ 4. Then we finish the proof of Theorem

1 by considering the six remaining cases for e(x1xt, L).

Claim: e(x1, L) ≤ 5 and e(xt, L) ≤ 5.

Proof: Suppose not. WLOG let e(x1, L) = 6. Then e(ai, x2xt−1) ≤ 1 and e(ai, x2xt) ≤ 1 for

each ai ∈ L, so e(x2xt−1, L) ≤ 6 and e(x2xt, L) ≤ 6. Since e(x2xt−1xt, L) ≥ 15− 6 = 9, this

implies that e(x2, L) ≤ 3, and if e(x2, L) = 3 then N(xt−1, L) = N(xt, L) with e(xt, L) = 3.

Further, e(xt−1, L) ≥ 3 and e(xt, L) ≥ 3.

Suppose that e(x2, L) = 3. If N(x2, L) = {a1, a2, a3} then N(xt−1, L) = N(xt, L) =
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{a4, a5, a6}. Then xt → (L, a5), so by e(a5, x1xt−1) ≤ 1, a contradiction. If N(x2, L) =

{a1, a2, a4} then N(xt−1, L) = N(xt, L) = {a3, a5, a6}, so xt 9 (L, ai) for i = 3, 5, 6. Since

xt 9 (L, a3), a2a4 /∈ E. But then, since e(x1, L) = 6, we have τ(L + x1 − a2) > τ(L), a

contradiction since x2a2 ∈ E. Thus N(x2, L) = {a1, a3, a5}, so N(xt−1, L) = N(xt, L) =

{a2, a4, a6}. Then xt 9 (L, ai) for i = 2, 4, 6. Since xt 9 (L, a2), τ(a5, L) ≤ 2. But then

τ(L+ x1 − a5) > τ(L) and a5x2 ∈ E, a contradiction.

Therefore e(x2, L) ≤ 2, so e(xtxt−1, L) ≥ 15− 6− 2 = 7. Then e(xt, L) ≤ 5, for otherwise

xt → L and e(x1xt−1, ai) = 2 for some ai ∈ L. Suppose e(xt, L) = 5, and WLOG say

xta6 /∈ E. Then N(xt−1, L) ⊆ {a1, a5}. But then e(x2xtxt−1, L) = e(xt−1, L) + e(x2xt, L) ≤

2 + 6 = 8, a contradiction. Thus e(xt, L) ≤ 4.

Suppose e(xt, L) = 4. Then e(x2xt−1, L) ≥ 15 − 10 = 5. If N(xt, L) = {a1, a2, a3, a4}

then xt → (L, ai) for i = 2, 3 and e(x2, a1a2a3a4) = 0. Then e(xt−1, a2a3) = 0, so

e(x2xt−1, L) ≤ 2 + e(x2xt−1, a5a6) ≤ 2 + 2 < 5, a contradiction. If N(xt, L) = {a1, a2, a3, a5}

then e(x2, a1a2a3a5) = 0 and e(xt−1, a2a4a6) = 0. Since e(x2xt−1, L) ≥ 5, this implies

that N(x2, L) = {a4, a6} and N(xt−1, L) = {a1, a3, a5}. Since N(xt−1, L) = {a1, a3, a5},

xt 9 (L, ai) for i = 1, 3, 5. In particular, xt 9 (L, a3), so e(a4, a2a6) ≤ 1. But then

τ(L + x1 − a4) > τ(L) and a4x2 ∈ E, a contradiction. Hence N(xt, L) = {a1, a2, a4, a5}, so

e(x2, a1a2a4a5) = 0 and e(xt−1, a3a6) = 0. Since e(xt−1, L) ≥ 3, by symmetry we can say

e(xt−1, a1a2a4) = 3. Then xt 9 (L, a2), so a3a6 /∈ E. Since e(x2, L) ≥ 15− 6− 4− 4 = 1, we

have e(x2, a3a6) ≥ 1. Also, since τ(a3, L) ≤ 2 and τ(a6, L) ≤ 2, we have x1
1−→ (L, a6) and

x1
1−→ (L, a3), a contradiction.

Thus e(xt, L) ≤ 3, and since e(xt, L) ≥ 3 we have e(xt, L) = 3. Then e(xt−1, L) ≥

7 − 3 = 4, so we immediately see that N(xt, L) 6= {a1, a3, a5}. If N(xt, L) = {a1, a2, a3}

then e(x2, a1a2a3) = 0 and e(xt−1, a2) = 0. If e(xt−1, L) = 5 then e(x2, L) = 0, which is

a contradiction since e(x1xt−1xt, L) = 6 + 5 + 3 = 14 < 15. Hence e(xt−1, L) = 4 and

e(x2, L) = 2. Thus e(xt−1, a1a3a4a5a6) = 4 and e(x2, a4a5a6) = 2, so e(x2xt−1, a4a5a6) ≥ 4,

a contradiction. Therefore N(xt, L) = {a1, a2, a4}, so e(x2, a1a2a4) = 0 and e(xt−1, a3) = 0.



124

Suppose that e(xt−1, L) = 5. Then, since e(x2, L) ≥ 1 we have x2a3 ∈ E, and since e(xt−1.L−

a3) = 5 we have xt 9 (L, ai) for i = 1, 2, 4, 5, 6. Hence a3a5 /∈ E, so τ(L+x1−a3) > τ(L) and

a3x2 ∈ E, a contradiction. Thus e(xt−1, L) = 4 and e(x2, L) = 2, so e(xt−1, a1a2a4a5a6) = 4

and e(x2, a3a5a6) = 2. Then e(xt−1, a1a2a4) = 3 and x2a3 ∈ E with e(xt−1, a5a6) = 1. Thus

xt 9 (L, ai) for i = 1, 2, 4 and xt 9 (L, ai) for i = 5 or i = 6. Hence e(a3, a5a6) = 0, and

either a6a4 /∈ E or a5a1 /∈ E. Hence τ(a5, L) + τ(a6, L) ≤ 3, and since e(xt−1xt, a1a2a4) = 6

we have xt−1xt
1−→ (L, a5a6), a contradiction.

QED

Claim: e(x1, L) ≤ 4 and e(xt, L) ≤ 4.

Proof: WLOG let e(x1, L) ≥ e(xt, L). By the above claim, e(x1, L) ≤ 5. Suppose that

e(x1, L) = 5, and WLOG let e(x1, L − a6) = 5. Then e(ai, x2xt) ≤ 1 and e(ai, x2xt−1) ≤ 1

for each i = 2, 3, 4, 6. Hence if e(x2xt−1, a1a5) ≤ 2, then e(xt, L) ≥ 15 − 5 − 6 = 4. Notice

also that since e(x2xt−1, L) ≤ 4 + 4 = 8, we have e(xt, L) ≥ 15− 8− 5 = 2.

We first claim that e(xt, L) ≤ 4. Suppose not. Then by symmetry, e(xt, L − ai) =

5 for some i = 3, 4, 5, 6. Suppose xta6 /∈ E, so that e(xt−1, a2a3a4) = e(x2, a2a3a4) =

0. Since e(x2xt−1, L) ≥ 15 − 10 = 5 and e(x2xt−1, a6) ≤ 1, we have e(x2xt−1, a1a5) =

4 and e(x2xt−1, a6) = 1. WLOG let x2a6 ∈ E. Then xi 9 (L, aj) for i = 1, t, and

j = 1, 5, and hence τ(a6, L) = 0. But then τ(L + x1 − a6) > τ(L), a contradiction since

x2a6 ∈ E. Thus xta6 ∈ E. We see that xta5 ∈ E, for otherwise e(x2, a2a3a4a6) = 0

and e(xt−1, a1a2a3a5) = 0, which implies e(x2xt−1, L) ≤ 4. Suppose xta4 /∈ E, so that

e(x2, a2a3a6) = 0 and e(xt−1, a1a2a4) = 0. Then e(x2, a1a4a5) + e(xt−1, a3a5a6) ≥ 5, so either

e(x2xt−1, a5) = 2 or e(x2xt, a1) = 2. Hence x1 9 (L, a5) or x1 9 (L, a1). Then τ(a6, L) = 0,

so τ(L + x1 − a6) > τ(L) and a6xt ∈ E, a contradiction. Therefore xta3 /∈ E. In this case,

e(x2, a2a4a6) = 0 and e(xt−1, a1a3a5) = 0. Since e(x2xt−1, L) ≥ 5, we have e(x2xt, a1a5) ≥ 3.

Thus τ(a6, L) = 0, so τ(L + x1 − a6) > τ(L) and a6xt ∈ E, a contradiction. Therefore

e(xt, L) ≤ 4. Note that e(x1, L) = 5, e(xt, L) ≤ 4, and e(x2xt−1, L) ≥ 6.
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We now claim that e(x2xt−1, a1a5) ≤ 2. Suppose not. Then x1 9 (L, a1) or x1 9 (L, a5),

so τ(a6, L) = 0. Since x1
3−→ (L, a6), we have e(a6, x2xt) = 0. Suppose that e(xt, L) ≥ 3.

Then e(xt, a1a2a3a4) ≥ 2 and e(xt, a2a3a4a5) ≥ 2. Since e(x1, L − a6) = 5, this implies

that x1xta1a2a3a4 ⊇ C6 and x1xta2a3a4a5 ⊇ C6, a contradiction since e(x2xt−1, a5a1) ≥

3. Hence e(xt, L) = 2, and we also see from the above argument that e(xt, a2a3a4) ≤ 1.

Therefore e(x2xt−1, L) ≥ 15 − 5 − 2 = 8, so we have e(x2xt−1, ai) = 1 for i = 2, 3, 4, 6,

and e(x2xt−1, a1a5) = 4. Since e(x2xt−1, a5) = 2 and e(x2xt−1, a1) = 2, we know that

x1xta1a2a3a4 + C6 and x1xta2a3a4a5 + C6. Since e(x1, L − a6) = 5 and e(xt, a1a5) ≥ 1,

this implies that e(xt, a2a3a4) = 0. Hence e(xt, a1a5) = 2. Since e(x1, a2a3a4a5) = 4 and

x2a5 ∈ E, e(x2, a2a3a4) = 0 since xta1 ∈ E and τ(a6, L) = 0. Then e(xt−1, a2a3a4) = 3, and

xt−1a6 ∈ E since e(a6, x2xt) = 0.

In summary, we have e(x1, L − a6) = 5, e(x2xt, a1a5) = 4, and e(xt−1, L) = 6. Let C =

x1a1...a5x1. Then τ(C) = τ(L) + 3. By Condition (4.3), we have e(a6x2xt, D−P ) = 0, since

xt−1a6 ∈ E. By the maximality of k0, e(a6, D) ≤ 4. Similarly e(x2, D) ≤ 5 and e(xt, D) ≤ 4.

Then e(a6x2xt, D+L) ≤ 13 + 6 = 19, so e(a6x2xt, H −L) ≥ 21
2
k− 19 = 21

2
(k− 2) + 2. Then

e(a6x2xt, Li) ≥ 11 for some Li ∈ σ − {L}. Let R = x2x3 . . . xt−1. Since e(xt−1, xta6) = 2, by

Lemma 3.0.2 we see that R + Li + a6 + xt has either two disjoint large cycles, one of which

is a 6-cycle, or a 6-cycle C ′ and a path of order t, disjoint, such that τ(C ′) ≥ τ(Li) − 2.

But τ(C) = τ(L) + 3, so L + Li + P has either three disjoint large cycles, two of which are

6-cycles, or a path of order t and 6-cycles C and C ′ with τ(C)+τ(C ′) ≥ τ(L)+3+τ(Li)−2.

This contradicts either the maximality of k0 or Condition (4.3).

Therefore e(x2xt−1, a1a5) ≤ 2. This forces e(xt, L) = 4, (x2xt−1, a1a5) = 2, and

e(x2xt−1, ai) = 1 for i = 2, 3, 4, 6. If e(xt, a2a3a4) = 3, then xt → (L, a3) and since

e(x2xt, a3) ≤ 1, e(x1xt−1, a3) = 2, a contradiction. Hence e(xt, a2a3a4) ≤ 2, and simi-

larly e(xt, a3a4a5) ≤ 2 and e(xt, a1a2a3) ≤ 2. Then either xta6 ∈ E or e(xt, a1a2a4a5) = 4. If

e(xt, a1a2a4a5) = 4, then e(x2, a2a4) = 0 and hence e(xt−1, a2a4) = 2. Then e(x1xt−1, a2) = 2,

so xt 9 (L, a2). But then τ(a3, L) = 0, so xt
2−→ (L, a3) and x1a3 ∈ E, a contradiction.
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Therefore e(xt, a1a2a4a5) ≤ 3 and xta6 ∈ E.

Suppose that e(xt, a2a3a4) = 2. By symmetry, either e(xt, a2a4) = 2 or e(xt, a3a4) = 2.

If e(xt, a2a4) = 2, then by symmetry we can let xta1 ∈ E. Since e(x2, a2a4a6) = 0, we

have e(xt−1, a2a4a6) = 3. Then e(x1xt−1, a2a4) = 4, so xt 9 (L, ai) for i = 2, 4. Then

e(a3, a1a5) = 0, so τ(a3, L) ≤ 1. But e(xt, L − a3) = 4 and x1a3 ∈ E, a contradiction.

Therefore e(xt, a3a4) = 2, which means xta5 /∈ E so e(xt, a1a3a4a6) = 4. Then e(x2, a3a4) =

0, so e(x1xt−1, a3a4) = 2. Then xt 9 (L, ai) for i = 3, 4, so τ(a2, L) = 0. This is again a

contradiction, as e(xt, L− a2) = 4 and x1a2 ∈ E.

Therefore e(xt, a2a3a4) = 1 and e(xt, a1a5a6) = 3. By symmetry, either xta2 ∈ E or

xta3 ∈ E. If xta2 ∈ E, then e(x2, a2a6) = 0 and e(xt−1, a2a6) = 2. Then e(x1xt−1, a2) = 2,

so xt 9 (L, a2), and thus e(a3, a6a1) = 0. Also, since x1a3 ∈ E and e(xt, L − a3) = 4, we

have xt 9 (L, a3). Thus τ(a4, L) = 0, so since x1 → (L, a4) and e(x1, L − a4) = 4, this

implies that x2a4 /∈ E. Then xt−1a4 ∈ E, so xt 9 (L, a4), which implies that τ(a3, L) = 0.

Since xt → (L, a6) and xt−1a6 ∈ E, τ(a6, L) ≥ e(xt, L − a6) − 2 ≥ 1. Then x1 → L, so

since e(xt, a1a5) = 2, we have e(x2, a1a5) = 0. Then e(xt−1, a1a5) = 2, so e(x1xt−1, a1) = 2.

But since e(xt, a2a6) = 2, xt → (L, a1), a contradiction. Therefore e(xt, a1a3a5a6) = 4.

Since e(x2, a3a6) = 0 we have e(xt−1, a3a6) = 2. Since xt → (L, a2) and xt → (L, a4) with

e(xt, L − a2) = e(xt, L − a4) = 4, we know that τ(a2, L) ≥ 2 and τ(a4, L) ≥ 2. But then

xt → (L, a3), a contradiction since e(x1xt−1, a3) = 2.

QED

By the previous claim, e(x1xt, L) ≤ 8. Since e(x1x2xt−1xt, L) ≥ 15, e(x1xt, L) ≥ 3. We

break the remainder of the proof of Theorem 1 into cases.

Case 1: e(x1xt, L) = 8. We have e(x1, L) = e(xt, L) = 4, e(x2xt−1, L) ≥ 7, and WLOG

e(x2, L) ≥ e(xt−1, L). Then e(x2, L) ≥ 4. Suppose e(x2, L) = 6. Since e(xt, L) = 4,

x1 → (L, ai) for at most two ai ∈ L. Thus N(x1, L) 6= {a1, a2, a3, a5}, so WLOG either

N(x1, L) = {a1, a2, a3, a4} or N(x1, L) = {a1, a2, a4, a5}. In the first case, e(x1x2, a1a2a3a4) =
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8 and x1 9 (L, ai) for i = 4, 5, 6, 1. But then x1x2
6−→ (L, a5a6), a contradiction since

e(xt, a4a5a6a1) = 4. In the second case, e(x1x2, a1a2a3a4) = 7 and x1 9 (L, a1a2a4a5). But

then x1x2
2−→ (L, a5a6) and e(xt, a1a2a4a5) = 4, again a contradiction. Therefore e(x2, L) ≤ 5,

and we break into subcases.

Case 1.1: e(x2, L) = 5.

Case 1.1.1: N(x1, L) = {a1, a2, a3, a4}. Suppose that e(x2, a2a3) = 2. Then e(xtxt−1, a2a3)

= 0, so e(xt, a4a5a6a1) = 4 and e(xt−1, a4a5a6a1) ≥ 2. Since e(x1x2, a1a2a3a4) ≥ 7, τ(a5a6, L) ≥

5. But then x1 → L, a contradiction since e(x2xt, L) = 9. Thus WLOG let e(x2, L−a3) = 5.

Then x2a2 ∈ E, so xta2 /∈ E. Thus e(xt, a5a6) > 0. But like before, either x1 → L or

x1x2
1−→ (L, a5a6), a contradiction.

Case 1.1.2: N(x1, L) = {a1, a2, a3, a5}. Since x1 → (L, ai) for i = 2, 4, 6, and since e(xt, L)

= 4, we see that e(x2, a2a4a6) ≤ 2. If e(x2, a4a6) = 2 then e(xt, a1a2a3a5) = 4, so e(x1xt, a2) =

2. Since e(x2, L− a2) = 5, this implies that τ(a2, L) = 3. But then x1 → L, a contradiction.

Therefore e(x2, a4a6) = 1, so WLOG let e(x2, L−a6) = 5. Then e(xt, a1a3a5a6) = 4, so since

e(x1x2, a2a3a4a5) = 7, we have τ(a6a1, L) ≥ 5. Then x1 → (L, a1), a contradiction since

e(x2xt, a1) = 2.

Case 1.1.3: N(x1, L) = {a1, a2, a4, a5}. Since e(x2xt, L) = 9, we see that τ(a3a6, L) = 0,

for otherwise e(x2xt, ai) ≤ 1 for four ai ∈ L. Since e(x1x2, a1a2a3a4) ≥ 6 and τ(a6, L) = 0,

we see that e(xt, a5a6) = 0. By symmetry, e(xt, a2a3) = 0, a contradiction.

Case 1.2: e(x2, L) = 4.

Case 1.2.1: N(x1, L) = {a1, a2, a3, a4}. Suppose τ(a6, L) ≥ 2. Then x→(L, ai) for i =

1, 2, 3, 5, so e(x2xt, a4a6) = 2. Then x1 9 (L, a6), so τ(a5, L) = 0. Since e(x1x2, a1a2a3a4) ≥

4 + 2 = 6, x1x2
1−→ (L, a5a6), a contradiction since xta6 ∈ E. Thus τ(a6, L) ≤ 1, and by

symmetry τ(a5, L) ≤ 1. Then, since e(x1x2, a1a2a3a4) ≥ 6, we see that e(xt, a5a6) = 0. Thus

e(xt, a1a2a3a4) = 4, and e(x2, a4a5a6a1) = 4. Since x1 9 (L, ai) for i = 1, 4, e(a5a6, a2a3) = 0.

Thus τ(a2a3, L) ≤ 2, so x1x2
2−→ (L, a2a3), a contradiction since xta2 ∈ E.

Case 1.2.2: N(x1, L) = {a1, a2, a3, a5}. Suppose τ(a4, L) ≤ 1. Then x1
1−→ (L, a4), so
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e(x2xt, a4) = 0. Since e(x2xt, a2a6) ≤ 2, this implies that e(x2xt, a1a3a5) = 6. Using similar

reasoning, we see that τ(a6, L) ≥ 2, for otherwise e(x2xt, a6) = 0. But then x1 → (L, a1)

and e(x2xt, a1) = 2, a contradiction. Therefore τ(a4, L) ≥ 2, and by symmetry τ(a6, L) ≥ 2.

But then x1 → (L, ai) for i = 1, 2, 3, 4, 5, so e(x2xt, L) ≤ 5 + 2 = 7, a contradiction.

Case 1.2.3: N(x1, L) = {a1, a2, a4, a5}. Suppose e(x2xt, a1a2) = 4. Then x1 9 (L, ai)

for i = 1, 2, so τ(a3a6, L) = 0. If x2a3 ∈ E then x1x2
1−→ (L, a5a6), so e(xt, a5a6) = 0.

Then xta3 ∈ E, a contradiction since x1 → (L, a3). Thus x2a3 /∈ E, and by symme-

try x2a6 /∈ E. Then e(x2, a1a2a4a5) = 4, so again x1x2
1−→ (L, a5a6). But also x1x2

1−→

(L, a2a3), so e(xt, a2a3a5a6) = 0, a contradiction. Therefore e(x2xt, a1a2) ≤ 3. By symmetry,

e(x2xt, a4a5) ≤ 3, so e(x2xt, a1a2) = e(x2xt, a4a5) = 3 and e(x2xt, a3a6) = 2. WLOG let

e(x2xt, a1) = 2. Then x1 9 (L, a1), so τ(a6, L) = 0. But this is a contradiction, since then

x1
2−→ (L, a6) and e(x2xt, a6) = 1. This completes Case 1.

Case 2: e(x1xt, L) = 7. WLOG let e(x1, L) = 4 and e(xt, L) = 3. Note that e(x2xt−1, L) ≥ 8,

and hence that x1 9 L. We consider the different possibilities of e(x2, L) in the following

subcases.

Case 2.1: e(x2, L) = 6. Note that for each ai ∈ L, if x1 → (L, ai) then e(xt−1xt, ai) = 0.

We break further into subcases.

Case 2.1.1: N(x1, L) = {a1, a2, a3, a4}. We have e(xt−1xt, a2a3) = 0, so e(xt, a5a6) ≥ 1.

Since x1 9 L, τ(a5a6, L) < 6. But then x1x2
1−→ (L, a5a6), a contradiction.

Case 2.1.2: N(x1, L) = {a1, a2, a3, a5}. We have e(xt−1xt, a2a4a6) = 0, so e(xt, a1a3a5) =

3. Since xta5 ∈ E and e(x1x2, a1a2a3a4) = 7, we have τ(a5a6, L) ≥ 5. But then e(x2xt, a1) =

2 and x1 → (L, a1), a contradiction.

Case 2.1.3: N(x1, L) = {a1, a2, a4, a5}. Since e(xt−1xt, a3a6) = 0, WLOG we can let

e(xt, a1a2a4) = 3. Since e(x2xt, a1) = 2, x1 9 (L, a1). Thus τ(a6, L) = 0, so x1x2
2−→ (L, a6a1)

and xta1 ∈ E, a contradiction.

Case 2.2: e(x2, L) = 5. We have e(xt−1, L) ≥ 3.

Case 2.2.1: N(x1, L) = {a1, a2, a3, a4}. Since x1 9 L, we see that τ(a5a6, L) ≤ 4. Since



129

e(x1x2, a1a2a3a4) ≥ 7, this implies that e(xt, a5a6) = 0. Then e(xt, a1a2a3a4) = 3, so since

x1 → (L, ai) for i = 2, 3, and e(x2, L) = 5, WLOG we can let e(xt, a1a2a4) = 3 and

e(x2, L − a2) = 5. Then x1 9 (L, ai) for i = 1, 4, so τ(a2a3, L) ≤ 2. But xta2 ∈ E and

e(x1x2, a4a5a6a1) = 6, a contradiction.

Case 2.2.2: N(x1, L) = {a1, a2, a3, a5}. Since e(x2xt, a4a6) = 8−e(x2xt, a2)−e(x2xt, a1a3a5)

≥ 8 − 1 − 6 = 1, WLOG we can let e(x2xt, a4) = 1. Since e(x1, L − a4) = 4, this implies

that τ(a4, L) ≥ 2. Suppose that a4a2 ∈ E. Then x1 → (L, a3), so e(x2xt, a3) ≤ 1. Then

e(x2xt, a1a5) ≥ 8− 1− 3 = 4 and e(x2xt, a6) = 1. Since e(x1, L− a6) = 4, this implies that

τ(a6, L) ≥ 2. But then x1 → (L, a1), a contradiction since e(x2xt, a1) = 2. Thus a2a4 /∈ E, so

e(a4, a6a1) = 2. But then x1 → (L, ai) for i = 1, 3, so e(x2xt, L) ≤ 5+2 = 7, a contradiction.

Case 2.2.3: N(x1, L) = {a1, a2, a4, a5}. Suppose e(x2xt, a3a6) ≥ 1, and WLOG let

e(x2xt, a3) ≥ 1. Then τ(a3, L) ≥ 2, for otherwise x1
1−→ (L, a3). Thus x1 → (L, ai) for

i = 2, 4, so e(x2xt, a1a5) ≥ 8 − 4 = 4. Then x1 9 (L, ai) for i = 1, 5, so τ(a6, L) = 0. But

then x1
2−→ (L, a6), a contradiction since e(x2xt, a6) = 8− e(x2xt, a2a3a4)− 4 ≥ 8− 3− 4 = 1.

Hence e(x2xt, a1a2a4a5) = 8, so τ(a3a6, L) = 0 since x1 9 (L, ai) for i = 1, 2, 4, 5. But then

x1x2
1−→ (L, a5a6) and xta5 ∈ E, a contradiction.

Case 2.3: e(x2, L) = 4. We have e(xt−1, L) ≥ 4.

Case 2.3.1: N(x1, L) = {a1, a2, a3, a4}. Since e(x2xt−1, L) ≥ 8, x1 → (L, ai) for at most

four ai ∈ L. From this, we see that τ(a5a6, L) ≤ 3, τ(a2, L) ≤ 2, and τ(a3, L) ≤ 2. Since

τ(a5a6, L) ≤ 3 and e(x1x2, a1a2a3a4) ≥ 6, we know that e(xt, a5a6) = 0. Suppose that

e(x2, a2a3) = 2. Then e(xt−1xt, a2a3) = 0, so e(xt−1xt, a4a5a6a1) ≥ 7. Since x1a2 ∈ E, this

implies that τ(a2a3, L) ≥ 5, a contradiction. Suppose that e(x2, a2a3) = 1, and WLOG let

x2a2 ∈ E. Then, because e(xt, a5a6) = 0, we have e(xt, a1a3a4) = 3. Since e(x2, a2a3) = 1,

e(x2, a4a5a6a1) = 3. Thus, since xta3 ∈ E and e(x1, a1a4) = 2, we have τ(a2a3, L) ≥ 3. Then

e(a2a3, a5a6) ≥ 1, so x1 → (L, ai) for i = 1, 5 or i = 4, 6. Then e(x2xt−1, a4a6) ≥ 8 − 4 = 4

or e(x2xt−1, a1a5) = 4. But x1xt → (L, a5a6), so e(x2xt−1, a5) ≤ 1 and e(x2xt−1, a6) ≤ 1, a

contradiction.
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Therefore e(x2, a2a3) = 0, so e(x2, a4a5a6a1) = 4. Since e(x1x2, a4a5a6a1) = 6 and

e(xt, a2a3) = 3 − e(xt, a1a4) − e(xt, a5a6) ≥ 3 − 2 − 0 = 1, we have τ(a2a3, L) ≥ 4.

Then τ(a2, L) = τ(a3, L) = 2, and since e(x2xt−1, L) ≥ 8, we can see that we must have

e(a2a3, a5a6) = 2 with e(a2a3, a5) = 2 or e(a2a3, a6) = 2. WLOG let e(a2a3, a5) = 2. Then

x1 → (L, ai) for i = 4, 6, so e(xt−1, a4a6) = 0 since e(x2, a4a6) = 2. Then e(xt−1, a1a2a3a5) =

4, so e(x2xt−1, a5) = 2. Then x1xt 9 (L, a5a6), so e(xt, a1a2a3a4) ≤ 1, a contradiction since

e(xt, a5a6) = 0.

Case 2.3.2: N(x1, L) = {a1, a2, a3, a5}. Since e(x2xt−1, L) ≥ 8 and e(x2xt−1, a2a4a6) ≤ 3,

we have e(x2xt−1, a1a3a5) ≥ 5. Similarly, e(x2xt, a1a3a5) ≥ 4. From this, we see that

τ(a4, L) ≤ 1 or τ(a6, L) ≤ 1, for otherwise e(x2xt−1, a1a3) ≤ 2.

Suppose τ(a4, L) ≥ 2. Then τ(a6, L) ≤ 1, so since e(x1, L−a6) = 4 we have e(x2xt, a6) =

0. Then e(x2xt, a1a3a5) ≥ 5. Since x1 9 L, a4a6 /∈ E, so a4a2 ∈ E. Then x1 → (L, a3), so

e(x2xt, a1a5) = 4 and e(x2xt, ai) = 1 for i = 2, 3, 4. Also, e(x2xt−1, a1a5) = 4, e(x2xt−1, ai) =

1 for i = 2, 3, 4, and xt−1a6 ∈ E. Since e(x1x2, a2a3a4a5) ≥ 6, x1x2a2a3a4a5 contains a

6-cycle C, and since τ(a6, L) ≤ 1, τ(C) ≥ τ(L). Let R = x3...xt−1xta1a6. Since xt−1a6 ∈ E,

r(P ) ≥ 4 by Condition (4.4).

Suppose xta4 ∈ E. Then x2a4 /∈ E, so e(x2, a2a3) = 2. Since xt−1xta4a5a6a1xt−1 = C6,

x1x2x3x4x5a2a3 + C6. Then, since e(x1x2, a2a3) = 4, we see that e(x1, x4x5) = 0 (see

Figure 4.12). Since r(P ) ≥ 4, this means that e(xt, xt−3xt−4) ≥ 1. But C is a 6-cycle, so

xtxt−1xt−2xt−3xt−4a6a1 does not have a 6-cycle, a contradiction since e(xt−1xt, a1) = 2 and

xt−1a6 ∈ E. Therefore xta4 /∈ E, and it is easy to find similar contradictions if xta3 ∈ E or

xta2 ∈ E. Since e(xt, L) = 3 and xta6 /∈ E, we conclude that τ(a4, L) ≤ 1. By symmetry,

τ(a6, L) ≤ 1.

Then x1
1−→ (L, ai) for i = 4, 6, so we know that e(x2xt, a4a6) = 0. Then e(x2, a1a2a3a5) =

4, and since x2a2 ∈ E, we have e(xt, a1a3a5) = 3 and e(xt−1, L − a2) ≥ 4. WLOG let

xt−1a6 ∈ E. Let C = x1x2a2a3a4a5x1 and R = x3...xt−1xta1a6. Just like in the preceding

paragraph, we have τ(C) ≥ τ(L) and r(P ) ≥ 4. Since C is a 6-cycle, we readily see that
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x1 x2x4 x3x5

x4 x3 x2x1
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Figure 4.12: Case 2.3.2, when τ(a4, L) ≥ 2 and xta4 ∈ E.

e(xt, xt−3xt−4) = 0, because xt−1a6 ∈ E and e(xt−1xt, a1) = 2. Then e(x1, x4x5) ≥ 1. But

xtxt−1a6a5a4a3xt = C6 and e(x1x2, a1a2) = 4, a contradiction.

Case 2.3.3: N(x1, L) = {a1, a2, a4, a5}. Suppose τ(a3, L) > 0. Then x1 → (L, ai) for

i = 2, 3, 4, 6, so e(x2xt−1, a1a5) ≥ 8 − 4 = 4, and e(x2xt, a1a5) ≥ 3. Then τ(a6, L) = 0, so

x1
2−→ (L, a6) and hence e(x2xt, a6) = 0. Then e(x2, a1a2a3a4) ≥ 3 and e(x2xt, a1a5) = 4.

But then, since τ(a6, L) = 0, we get x1x2
1−→ (L, a5a6) and xta5 ∈ E, a contradiction.

Therefore τ(a3, L) = 0, and by symmetry τ(a6, L) = 0. This implies that e(x2xt, a3a6) = 0,

so e(x2, a1a2a4a5) = 4 and e(xt, a1a2a4a5) ≥ 3. WLOG let e(xt, a1a2a4) = 3. Then xta1 ∈ E,

τ(a6a1, L) ≤ 0 + 3 = 3, and e(x1x2, a2a3a4a5) = 6, a contradiction.

Case 2.4: e(x2, L) = 3. We have e(xt−1, L) ≥ 5.

Case 2.4.1: N(x1, L) = {a1, a2, a3, a4}. Since e(x2xt−1, a2a3) ≤ 2, e(x2xt−1, a4a5a6a1) ≥ 6.

Because x1a2 ∈ E, this implies that τ(a2a3, L) ≥ 4. WLOG let e(a2a3, a5) ≥ 1. Then

x1 → (L, ai) for i = 4, 6, so e(x2xt−1, a4a6) ≤ 2. Then e(x2xt−1, a1a5) = 4, so τ(a6, L) =
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0. Also, since e(x2xt−1, a5) = 2, we know that x1xt 9 (L, a5a6), so e(xt, a1a2a3a4) ≤ 1.

Therefore e(xt, a5a6) = 2, so since τ(a5a6, L) ≤ 3 and e(x1, a1a2a3a4) = 4 with x2a1 ∈ E,

we have e(x2, a2a3a4) = 0. Then e(x2, a1a5a6) = 3, so e(x2xt, a6) = 2, a contradiction since

x1 → (L, a6).

Case 2.4.2: N(x1, L) = {a1, a2, a3, a5}. Since e(x2xt−1, a2a4a6) ≤ 3, e(x2xt−1, a1a3a5) ≥ 5.

Similarly, e(x2xt, a1a3a5) ≥ 3.

Suppose that τ(a4, L) ≥ 2. Then x1 → (L, a3), so e(x2xt−1, a3) ≤ 1. Then e(x2xt−1, a1a5) =

4, so τ(a6, L) ≤ 1. Then x1
1−→ (L, a6), so e(x2xt, a6) = 0. Also, e(x2xt−1, ai) = 1 for

i = 2, 3, 4, 6, and since x2a6 /∈ E we have xt−1a6 ∈ E. Since e(x2xt−1, a1a5) = 4, x1xt 9

(L, aiai+1) for i = 6, 1, 4, 5. Since e(x1, a2a3a5) = 3, this implies that e(xt, a2a3a4a5) ≤ 2, and

since xta6 /∈ E we have e(xt, a2a3a4a5) = 2. Further, we see that it must be the case that

e(xt, a3a5) = 2, for otherwise x1xta2a3a4a5 ⊇ C6. Hence e(xt, a1a3a5) = 3, so xt → (L, a2).

Then, because x1a2 ∈ E, we know that xt−1a2 /∈ E. In summary, we have e(xt−1, L−a2) = 5,

e(x2, a1a2a5) = 3, and e(xt, a1a3a5) = 3.

Since e(x2xt−1, a1) = 2, e(a6, a2a4) = 0. Then, since τ(a4, L) = 2, we have a2a4 ∈ E.

Suppose that a1a3 ∈ E. Then xt−1xta3a1a6a5xt−1 = C6, and since a2a4 ∈ E with x1a2 ∈ E,

we must have e(xt−1xt, a3a1a6a5) ≤ 6 because τ(a2a4, L) ≤ 4. But e(xt−1xt, a3a1a5a6) = 7,

a contradiction. Therefore a1a3 /∈ E, and similarly a5a3 /∈ E. Hence τ(a2a3, L) ≤ 2 + 1 = 3,

so since x1a2 ∈ E we have e(xt−1xt, a4a5a6a1) ≤ 5, a contradiction.

Therefore τ(a4, L) ≤ 1, and by symmetry τ(a6, L) ≤ 1. This gives us e(x2xt, a4a6) =

0, because x1
1−→ (L, ai) for i = 4, 6. Suppose that xt−1a2 ∈ E. Then x2a2 /∈ E, so

e(x2, a1a3a5) = 3. Further, since e(x1xt−1, a2) = 2, xt 9 (L, a2), so e(xt, a1a3) ≤ 1.

Then e(xt, a2a5) = 2, so x1xt → (L, a6a1) and x1xt → (L, a3a4). But e(x2, a1a3) = 2, so

e(xt−1, a1a3) = 0, a contradiction. Therefore (xt−1, L− a2) = 5. Since x1 9 L, τ(a2, L) ≤ 2,

so xt−1
1−→ (L, a2). Then, since x1a2 ∈ E, we have xta2 /∈ E. Therefore e(xt, a1a3a5) = 3.

Let C = xt−1xta1a6a5a4xt−1. If a2a4 ∈ E and a3a1 ∈ E then xt−1xta5a6a1a3xt−1 = C6

with e(xt−1xt, a5a6a1a3) = 7. But τ(a2a4, L) ≤ 2 + 1 = 3 and x1a2 ∈ E, a contradiction.
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Thus a2a4 /∈ E or a3a1 /∈ E. Similarly, a2a6 /∈ E or a3a1 /∈ E. Since τ(a2, L) ≤ 2, this implies

that τ(a2a3, L) ≤ 4, so τ(C) ≥ τ(L). Since x1x2...x5a2a3 + C≥6 and e(x1x2, a2a3) = 3, we

know that e(x1, x4x5) = 0. Since e(xt−1xt, a3a4) = 3 and x1x2a5a6a1a2x1 = C6, we know

that e(xt, xt−3xt−4) = 0, for otherwise xtxt−1...xt−4a3a4 ⊇ C≥6. Let R = a3a2x1x2...xt−2.

Since a3x2 ∈ E, r(R) > 3 ≥ r(P ), contradicting Condition (4.4).

Case 2.4.3: N(x1, L) = {a1, a2, a4, a5}. Suppose τ(a3, L) > 0. Then x1 → (L, ai) for i =

2, 3, 4, 6, so e(x2xt−1, a2a3a4a6) ≤ 4. Then e(x2xt−1, a1a5) = 4, and similarly e(x2xt, a1a5) ≥

2. Then τ(a6, L) = 0, so e(x2xt, a6) = 0 since e(x1, L − a6) = 4. Since e(x2xt−1, a1a5) = 2,

we see that x1xt 9 (L, a5a6) and x1xt 9 (L, a6a1). But it is easy to see that this is a

contradiction, since e(xt, L−a6) = 3. Therefore τ(a3, L) = 0, and by symmetry τ(a6, L) = 0.

This implies that e(x2xt, a3a6) = 0, so WLOG let e(xt, a1a2a4) = 3. Then we notice that

x1xt → (L, aiai+1) for i = 2, 3, 5, so e(x2xt−1, ai) ≤ 1 for i = 2, 3, 4, 5, 6, a contradiction.

Case 2.5: e(x2, L) = 2. We have e(xt−1, L) = 6. Note that if xt → (L, ai), then x1ai /∈ E.

Since e(x1, L) = 4, this implies that xt → (L, ai) for at most two ai ∈ L. We immedi-

ately see that N(xt, L) 6= {a1, a3, a5}. Suppose N(xt, L) = {a1, a2, a3}. Then x1a2 /∈ E,

so e(x1, L − a2) = 4. Then τ(a5a6, L) ≤ 4, so xt−1xt
1−→ (L, a5a6), a contradiction since

e(x1, a5a6) ≥ 1. Thus N(xt, L) = {a1, a2, a4}, so e(x1, L − a3) = 4. Again, τ(a5a6, L) ≤ 4,

e(xt−1xt, a1a2a3a4) = 7, and e(x1, a5a6) ≥ 1, a contradiction.

Case 3: e(x1xt, L) = 6. WLOG let e(x1, L) ≥ e(xt, L). Then 3 ≤ e(x1, L) ≤ 4.

Case 3.1: e(x1, L) = 4.

Case 3.1.1: N(x1, L) = {a1, a2, a3, a4}. Since x1 → (L, ai) for i = 2, 3, e(x2xt−1, a2a3) ≤ 2.

Then e(x2xt−1, a4a5a6a1) ≥ 7, so x1 9 (L, ai) for three i ∈ {4, 5, 6, 1}. Thus τ(a5a6, L) ≤ 2,

so x1x2
1−→ (L, a5a6). Then e(xt, a5a6) = 0, so e(xt, a1a2a3a4) = 2. But then x1xt → (L, a5a6)

and e(x2xt−1, a5a6) ≥ 3, a contradiction.

Case 3.1.2: N(x1, L) = {a1, a2, a3, a5}. Since e(x2xt−1, a2a4a6) ≤ 3, e(x2xt−1, a1a3a5) = 6.

Then also, e(x2xt−1, ai) = 1 for i = 2, 4, 6. Since e(x2xt−1, a1a3a5) = 6, we have e(a6, a2a4) =

e(a4, a2a6) = 0. Then x1
1−→ (L, ai) for i = 4, 6, so e(x2xt, a4a6) = 0. Therefore e(xt−1, a4a6) =
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2, so xt−1
2−→ (L, a2) because τ(a2, L) ≤ 1. Then, because x1a2 ∈ E, we know that xta2 /∈ E.

Hence e(xt, a1a3a5) = 2, and by symmetry we can assume xta1 ∈ E.

Suppose that x2a2 ∈ E. Then e(x1x2, a2a3a4a5) = 6 and τ(a6a1, L) ≤ 1 + 3 = 4, so

x1x2
0−→ (L, a6a1). Therefore, because a6a1xtxt−1...x3 = Pt and a6xt−1 ∈ E, by Condition

(4.4) we know that r(P ) ≥ 4. Since x1x2 → (L, a6a1), xtxt−1xt−2xt−3xt−4a6a1 does not have

a large cycle. Because e(xtxt−1, a6a1) = 3, this implies that e(xt, xt−3xt−4) = 0. Hence

r(xt, P ) ≤ 3, so r(x1, P ) ≥ 4. But similarly, xt−1xt → (L, a2a3) and e(x1x2, a2a3) = 4, a

contradiction.

Therefore x2a2 /∈ E, so e(x2, L) = e(x2, a1a3a5) = 3 and e(xt−1, L) = 6. Suppose

that xta3 ∈ E. Then e(x1xt, a1a3) = 4, so τ(a1a3, L) = 6 because e(xt−1, L) = 6. Since

e(xt−1xt, a1a2a3a4) = 6 and x1a5 ∈ E, we have τ(a5a6, L) ≥ 4. Because e(a6, a2a4) = 0,

this implies that τ(a5, L) = 3 and a3a6 ∈ E. Let L′ = a6a1xta3a4xt−1a6. We see that

τ(L′) = τ(L), because e(xt−1xt, a6a1a3a4) = 6 and τ(a2, L) = 1. Hence r(P ) ≥ 4, since

a5a2x1x2...xt−2 = Pt with a5x2 ∈ E. Since L′ is a 6-cycle and e(x1x2, a2a5) = 3, we know

that r(x1, P ) ≤ 3. Then r(xt, P ) ≥ 4, so xtxt−1xt−2xt−3xt−4a3a4 contains a large cycle since

e(xt−1xt, a3a4) = 3. But x1x2 → (L, a3a4), a contradiction.

Hence xta3 /∈ E, so e(xt, a1a5) = 2. Let L′ = a4a5a6a1xtxt−1a4. We see that τ(L′) = τ(L),

because e(xt−1xt, a4a5a6a1) = 6 and τ(a2, L) ≤ 1. Hence r(P ) ≥ 4, since a3a2x1x2...xt−2 = Pt

with a3x2 ∈ E. Since L′ is a 6-cycle and e(x1x2, a2a3) = 3, we know that r(x1, P ) ≤ 3. Then

r(xt, P ) ≥ 4, so xtxt−1xt−2xt−3xt−4a6a1 contains a large cycle since e(xt−1xt, a6a1) = 3. But

x1x2 → (L, a6a1), a contradiction.

Case 3.1.3: N(x1, L) = {a1, a2, a4, a5}. Since e(x2xt−1, a3a6) ≤ 2, we have

e(x2xt−1, a1a2a4a5) ≥ 7, and hence τ(a3a6, L) = 0. By symmetry, say e(x2, a1a2a4) = 3.

Then x1x2
1−→ (L, a5a6), so e(xt, a5a6) = 0. Then e(xt, a1a2a3a4) = 2, so e(xt−1, a1a2a3a4) ≤

3, for otherwise xt−1xt
1−→ (L, a5a6) and x1a5 ∈ E.

Suppose that e(xt, a1a3) ≥ 1. Then, because e(xt, a1a2a3a4) = 2, we have x1xt →

(L, a5a6). Thus e(x2xt−1, a5) ≤ 1 and e(x2xt−1, a6) ≤ 1, so e(x2, a1a2a3a4) = 4 and
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e(xt−1, a1a2a4) = 3. Since e(xt−1xt, a1a2a3a4) = 5 and x1a5 ∈ E, we know that τ(a5a6, L) ≥

3, which implies that τ(a5, L) = 3. Because e(x2xt−1, a1a2a4) = 6, we see that xta1 /∈ E, for

otherwise e(xt, a1aj) = 2 for some i ∈ {2, 3, 4}, and hence xt → (L, ai) for some i ∈ {1, 2, 4}.

Similarly, e(xt, a2a3) ≤ 1, so because e(xt, a1a3) ≥ 1 we have e(xt, a3a4) = 2. Then x1xt →

(L, a6a1), so e(x2xt−1, a6a1) ≤ 2. But then e(x2xt−1, L) = e(x2xt−1, a6a1) + e(x2xt−1, a5) +

e(x2xt−1, a3) + e(x2xt−1, a2a4) ≤ 2 + 1 + 1 + 4 = 8, a contradiction.

Therefore e(xt, a1a3) = 0, so e(xt, a2a4) = 2. Since xta4 ∈ E and τ(a3, L) = 0, we know

that e(x1x2, a5a6a1a2) ≤ 5, for otherwise x1x2
1−→ (L, a3a4). Thus e(x2, a5a6) = 0, so, since

e(x2xt−1, a3) ≤ 1 and e(x2xt−1, a6) ≤ 1 and e(xt−1, a1a2a3a4) ≤ 3, we have e(x2, a1a2a3a4) = 4

and e(xt−1, a1a2a4a5a6) = 5. Let C = a4a5a6a1xtxt−1a4, and let R = a3a2x1x2...xt−2. Since

e(xt−1xt, a4a5a6a1) = 5 and τ(a3, L) = 0, τ(C) ≥ τ(L). Since xt−1xt → (L, a2a3) and

e(x1x2, a2a3) = 3, we know that r(x1, P ) ≤ 3. Since x1x2 → (L, a3a4) and e(xt−1xt, a4) = 2,

we know that xtxt−4 /∈ E. Because a3x2 ∈ E, this implies that xtxt−3 ∈ E, for otherwise

r(R) > r(P ), contradicting condition (4.4).

By Condition (4.2) and the path R of order t, e(a3, D − P ) = 0. By Condition (4.4),

r(a3, R) ≤ 4, so e(a3, x3...xt−2) = 0. Then, because e(a3, x1x2xt−1xt) = 1 and τ(a3, L) = 0,

we have e(a3, D + L) ≤ 1 + 2 = 3. Since r(x1, P ) ≤ 3 and r(xt, P ) = 4, we know that

e(x1xt, D) = e(x1xt, P ) ≤ 2 + 3 = 5. Then e(x1xt, D+L) ≤ 5 + 6 = 11. By Conditions (4.2)

and (4.4), and the path R, e(xt−2, D) = e(xt−2, D−P )+e(xt−2, P−xt−1xt)+e(xt−2, xt−1xt) ≤

0 + 3 + 2 = 5. Thus e(xt−2, D + L) ≤ 11, so e(a3x1xtxt−2, D + L) ≤ 3 + 11 + 11 = 25.

Thus e(a3x1xtxt−2, Li) ≥ 15 for some Li ∈ σ − {L}. Let L′ = xt−1a4a5a6a1a2xt−1, and

P ′ = x2x3...xt−3. Since e(xt−1, L− a3) = 5 and τ(a3, L) = 0, τ(L′) = τ(L) + 3. But P ′ is a

path of order t− 4 ≥ 3 and e(x2, x1a3) = e(xt−3, xt−2xt) = 2, so either the maximality of k0

or Condition (4.3) is contradicted by Lemma 3.0.4.

Case 3.2: e(x1, L) = 3. Since e(x1, L) = e(xt, L) = 3, WLOG we can let e(x2, L) ≥

e(xt−1, L). Thus e(x2, L) ≥ 5.

Case 3.2.1: e(x2, L) = 6. Since e(xt−1xt, L) ≥ 6 and e(x2, L) = 6, we immediately see
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that N(x1, L) 6= {a1, a3, a5} We break further into cases to consider the other possibilities

for N(x1, L).

Case 3.2.1.1: N(x1, L) = {a1, a2, a3}. Since x1 → (L, a2), e(xt−1xt, a2) = 0. Suppose

that e(xt, a4a5a6) ≥ 1, and by symmetry let e(xt, a5a6) ≥ 1. Since e(x1x2, a1a2a3a4) =

7, this implies that τ(a5a6, L) ≥ 5. Then x1 → (L, ai) for i = 4, 6, so e(xt−1, a4a6) =

0. Then e(xt−1, a1a3a5) = 3, so x1 9 (L, ai) for i = 1, 3, 5. But then τ(a6, L) ≤ 1, a

contradiction. Therefore e(xt, a4a5a6) = 0, so e(xt, a1a2a3) = 3. Since e(x1xt, a1a2a3) = 6,

we have τ(a1a2a3, L) = 9, for otherwise x2
1−→ (L, ai) for some i = 1, 2, 3. But then again

τ(a5a6, L) ≥ 5, a contradiction.

Case 3.2.1.2: N(x1, L) = {a1, a2, a4}. Since x1 → (L, a3), e(xt−1xt, a3) = 0. Since

e(x2xt−1, L) ≥ 9, τ(a5, L) ≤ 2. Suppose τ(a6, L) = 3. Then x1 → (L, ai) for i = 1, 5, so

e(xt−1xt, a1a5) = 0. Then e(xt−1, a2a4a6) = 3, so τ(a5, L) ≤ 1. This argument implies that

τ(a5a6, L) ≤ 4, and since e(x1x2, a1a2a3a4) = 7 we have e(xt, a5a6) = 0. Since xta3 /∈ E, we

know that e(xt, a1a2a4) = 3. Then, because e(x2xt, a1a2a4) = 6, we have e(a3, a5a6) = 0.

Since e(x1x2, a4a5a6a1) = 6 and xta2 ∈ E, this implies that a3a1 ∈ E and τ(a2, L) = 3. Then

x1 → (L, a5) and x1 → (L, a6), so e(xt−1, a5a6) = 0. Hence e(xt−1, a1a2a4) = 3 (see Figure

4.13).

Let L′ = x1x2a1a2a3a4x1. Since τ(a5a6, L) ≤ 4, we know that τ(L′) ≥ τ(L) + 1. Since

τ(a3, L) = 1 and τ(a2, L) = 3, we see that τ ′(L′) ≥ τ ′(L)+1 (see Figure 4.14). We will apply

Lemma 3.0.6 to the path R = x3x4...xt of order t− 2 and the edge a5a6. We first show that

e(x3xta5a6, C) ≥ 15 for a 6-cycle C. By Condition (4.3), R + a5a6 does not contain a Pt, so

e(x3, a5a6) = 0. Since x2 → L and e(xt, a1a2a4) = 3, we know that e(x3, a1a2a4) = 0 by the

maximality of k0. Since x1x2 → (L, a2a3) and xta2 ∈ E, e(x3, D−P ) = 0 by Condition (4.2).

Also, because x2 → (L, a2) we have x1x3 /∈ E, for otherwise x1x3x4...xta2x1 = C≥6. Clearly

e(x3, x8x9...xt) = 0, so e(x3, D + L) ≤ 5 + 1 = 6. Since x2 → (L, a1) and e(xt−1xt, a1) = 2,

we know that xtxt−4 /∈ E by the maximality of k0. Thus by Proposition 4.1.3, e(xt, D) ≤ 3.

Hence e(xt, D+L) ≤ 3 + 3 = 6. Since L′ is a 6-cycle, P − x1x2 + a5a6 does not have a large
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Figure 4.13: Case 3.2.1.2
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Figure 4.14: Case 3.2.1.2: The cycles L and L′. Dashed lines represent possible edges.
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Figure 4.15: Case 3.2.1.2: If xt → (C, v) and e(v, a5a6) = 2 then L+C +P contains two 6-cycles
and a large cycle.

cycle. Suppose that e(a5a6, P −x1x2) ≥ 5. By Lemma 2.1.4, there is 4 ≤ i ≤ t− 1 such that

a5xi ∈ E and a6xi+1 ∈ E. But then x3...xia5a6xi+1...xt = Pt, contradicting Condition (4.3)

since τ(L′) ≥ τ(L) + 1. Therefore e(a5a6, P − x1x2) ≤ 4, and hence e(a5a6, P ) ≤ 6.

Suppose that there is u ∈ D − P with ua5 ∈ E. Since ua5a6x2...xt−2 = Pt and xt−1xt →

(L, a5a6), we have e(u,D − P ) = 0 and ux1 /∈ E by Condition (4.2). Further, uxi /∈ E

for i ≥ 4, for otherwise x2x3...xiua5a6x2 = C≥6, contradicting the maximality of k0. Thus

e(u,D) ≤ 2, and since x1x3 /∈ E, we have e(ux1, D) ≤ 2 + 3 = 5 by Proposition 4.1.3.

Then e(ux1, H) ≥ 7k − 5 = 7(k − 1) + 2 ≥ 7k0 + 2, so e(ux1, Li) ≥ 8 for some Li ∈ σ.

Since e(x1, a1a2a4) = 3, by Condition (4.2) we know that u 9 (L, ai) for i = 1, 2, 4. Hence

e(u, L) ≤ 4, and since e(x1, L) = 3, we know that Li 6= L. By Lemmas 1.4.15 and 1.4.17,

and Condition (4.2), we know that e(u, Li) ≤ 4 and e(ux1, Li) = 8. Further, since xt−1xt →

(L, a5a6) and ua5a6x2...xt−2 = Pt, we know by Lemma 1.4.15 that e(x1, Li) ≤ 4. Hence

by Lemma 1.4.18 and Condition (4.2), we see that there is z ∈ Li such that u
1−→ (Li, z).

But, since u ∈ D − P , this contradicts Condition (4.3). Thus, there is no u ∈ D − P with

ua5 ∈ E, and similarly there is no u ∈ D − P with ua6 ∈ E. Therefore e(a5a6, D) ≤ 6, so

e(a5a6, D + L) ≤ 14 since τ(a5a6, L) ≤ 4.
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We have e(x3xta5a6, D+L) ≤ 6+6+14 = 26, so e(x3xta5a6, H−L) ≥ 14k−26 ≥ 14k0+2.

Then e(x3xta5a6, C) ≥ 15 for some C ∈ σ − {L}, and C is a 6-cycle by Lemma 2.2.1. Since

e(x1xt−1, a2) = 2, by the maximality of k0 we know that C + L − a2 + xt does not contain

two disjoint 6-cycles. Suppose that xt → (C, v) for some v ∈ C (see Figure 4.15). Then

L− a2 + v does not have a 6-cycle, which implies that e(v, a5a6) ≤ 1 since a1a3 ∈ E. With

R = x3 . . . xt and a5a6, we have now satisfied the conditions of Lemma 3.0.6.

By the maximality of k0, (i) from Lemma 3.0.6 does not hold. Since τ(L′) ≥ τ(L)+1 and

R is a path of order t−2, by Condition (4.3) we see that (ii) from Lemma 3.0.6 does not hold.

Since x2 → (L, a1) and e(xt−1xt, a1) = 2, we know that xtxt−4 /∈ E. Since xt−1xt → (L, a2a3)

and e(x1x2, a2) = 2, we know that x1x5 /∈ E. Hence r(P ) ≤ 4, so because τ ′(L′) ≥ τ ′(L) + 1,

by Condition (4.5) we see that (iii) from Lemma 3.0.6 does not hold.

Hence we know that, for some u, v ∈ C, R + C + a5a6 contains a path P ′ = uvx3...xt of

order t with ux3 ∈ E, and a 6-cycle C ′ with τ(C ′) ≥ τ(C)− 1 and τ ′(C ′) ≥ τ ′(C)− 1. Since

x2 → (L, a2) and e(x1xt, a2) = 2, we know that x1x3 /∈ E, for otherwise x1x3x4...xta2x1 =

C≥6. Similarly, x1x4 /∈ E since t ≥ 7. Above, we saw that x1x5 /∈ E, so r(x1, P ) = 2.

Since P ′ = uvx3...xt, this implies that r(P ) = r(xt, P ) = r(xt, P
′) ≤ r(P ′). Thus, because

τ(L′) + τ(C ′) ≥ τ(L) + τ(C) and τ ′(L′) + τ ′(C ′) ≥ τ ′(L) + τ ′(C), by Condition (4.6) we

know that s(P ) ≥ s(P ′). But, since ux3 ∈ E, we also have s(P ) = r(x1, P ) + r(xt, P ) =

2 + r(xt, P ) = 2 + r(xt, P
′) < 3 + r(xt, P

′) ≤ r(u, P ′) + r(xt, P
′) = s(P ′), a contradiction.

Case 3.2.2: e(x2, L) = 5. Since e(xt−1xt, L) ≥ 7, we clearly have N(x1, L) 6= {a1, a3, a5}.

The following two cases will therefore complete Case 3.

Case 3.2.2.1: N(x1, L) = {a1, a2, a3}. Since x1 → (L, a2), e(x2xt−1, L − a2) ≥ 8 and

e(x2xt, L − a2) ≥ 7. Suppose that x2a6 /∈ E. Then e(xt−1xt, a2) = 0. If e(xt, a5a6) ≥ 1,

then τ(a5a6, L) ≥ 5 since e(x1x2, a1a2a3a4) = 7. Then x1 → (L, ai) for i = 4, 6, so

e(xt−1xt, a4) = 0. Hence e(xt−1, a1a3a5a6) = 4, so x1 9 (L, ai) for i = 1, 5. But this is

a contradiction, because τ(a6, L) ≥ 2. Therefore e(xt, a5a6) = 0, so e(xt, a1a3a4) = 3. Then

x1 9 (L, ai) for i = 1, 3, 4, so τ(a2, L) = 0. But then xt
1−→ (L, a2) and x1a2 ∈ E, a



140

contradiction. Therefore x2a6 ∈ E, and by symmetry x2a4 ∈ E.

Suppose that x2a1 /∈ E. Then e(xt−1xt, a2) = 0. If xta1 ∈ E, then e(x1xt, a1) = 2, so

τ(a1, L) = 3. Then x1 → (L, a6), so e(xt−1xt, a6) = 0. Hence e(xt−1, a1a3a4a5) = 4, so

x1 9 (L, ai) for i = 3, 4, 5. Hence τ(a4a5, L) ≤ 2, so x1x2
2−→ (L, a4a5). But e(xt, a4a5) ≥

3 − 2 = 1, a contradiction. Hence xta1 /∈ E, so e(xt, a3a4a5a6) = 3. Since e(xt, a4a5) ≥ 1

and e(x1x2, a6a1a2a3) = 6, we know that τ(a4a5, L) ≥ 4. It is easy to see that this is

a contradiction, since e(x2xt−1, a3a4a5a6) ≥ 7. Therefore x2a1 ∈ E, and by symmetry

x2a3 ∈ E.

Suppose that x2a2 ∈ E. Then e(xt−1xt, a2) = 0. Clearly τ(a5a6, L) ≤ 4, so e(xt, a5a6) = 0

because e(x1x2, a1a2a3a4) = 7. Hence e(xt, a1a3a4) = 3, so x1 9 (L, ai) for i = 1, 3, 4. But

then τ(a2, L) = 0, so xt
1−→ (L, a2), a contradiction since x2a2 ∈ E. Therefore x2a2 /∈ E, so

e(x2, L− a2) = 5.

Suppose that τ(a5, L) ≥ 2. Then x1 → (L, a4) and x1 → (L, a6), so e(xt−1xt, a4a6) = 0.

Thus e(xt−1, a1a2a3a5) = 4, so τ(a6, L) ≤ 1 and τ(a2, L) ≤ 1. This implies that x2
2−→ (L, a2),

so xta2 /∈ E. Further, since e(x1xt−1, a2) = 2, e(xt, a1a3) ≤ 1. But then e(xt, L) ≤ 2, a

contradiction. Therefore τ(a5, L) ≤ 1. If τ(a6, L) = 3, then x1 → (L, a1) and x1 → (L, a5).

Then e(xt−1, a2a3a4a6) = 4, so τ(a5, L) = 0. This shows that τ(a5a6, L) ≤ 3, so x1x2
1−→

(L, a5a6). Hence e(xt, a5a6), and by symmetry xta4 /∈ E. Thus e(xt, a1a2a3) = 3. Since

e(x2xt, a1a3) = 4, τ(a2, L) ≤ 1. But e(x2, L− a2) = 5 and e(x1xt, a2) = 2, a contradiction.

Case 3.2.2.2: N(x1, L) = {a1, a2, a4}. Since e(x2xt−1, a3) ≤ 1, e(x2xt−1, L − a3) ≥ 8.

Hence a3a5 /∈ E, for otherwise x1 → (L, ai) for i = 2, 4, 6. Similarly, e(a3, a6a1) ≤ 1, so

τ(a3, L) ≤ 1. Suppose that e(x2, L − a1) = 5. Then e(xt−1xt, a3) = 0 because x2a3 ∈ E.

If τ(a1, L) = 3, then x1 → (L, a6), so e(xt−1xt, a6) = 0. Then e(xt−1, a1a2a4a5) = 4,

and because e(x2xt−1, a5) = 2, we know that x1xt 9 (L, a5a6). Since e(x1, a1a2a4) = 3,

this implies that e(xt, a1a2) ≤ 1 and e(xt, a1a4) ≤ 1. Therefore xta1 /∈ E, for other-

wise e(xt, a3a6a2a4) = 0. Hence e(xt, a2a4a5) = 3, so xt → (L, a2) since a1a3 ∈ E.

But e(x1xt−1, a2) = 2, a contradiction. So τ(a1, L) ≤ 2, which means x2
1−→ (L, a1).
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Hence xta1 /∈ E, so e(xt, a2a4a5a6) = 3. If xta6 ∈ E, then τ(a6a1, L) ≥ 4, for otherwise

x1x2
1−→ (L, a6a1). Then x1 → (L, a5), so e(xt−1xt, a5) = 0. Then e(xt−1, a1a2a4a6) = 4

and e(xt, a2a4a6) = 3, so xt → (L, a1) and e(x1xt−1, a1) = 2, a contradiction. Thus

xta6 /∈ E, so e(xt, a2a4a5) = 3. Since x2a5 ∈ E, this implies that τ(a6, L) = 0. But

since e(xt−1, a2a3a4a5) ≥ 2 and τ(a1, L) ≤ 2, we have xt−1xt
1−→ (L, a6a1), a contradiction.

Therefore x2a1 ∈ E.

Suppose that e(x2, L − a2) = 5. Since x2a3 ∈ E, e(xt−1xt, a3) = 0. Suppose that

τ(a2, L) ≤ 2. Then x2
1−→ (L, a2), so xta2 /∈ E and hence e(xt, a1a4a5a6) = 3. Since

τ(a3, L) ≤ 1, τ(a3a4, L) ≤ 4, so e(xt−1xt, a5a6a1a2) ≤ 6. Hence e(xt−1xt, a4) ≥ 7 − 6 = 1.

We also know that e(xt−1xt, a1) ≥ 1, for otherwise e(xt−1xt, a4a5a6) = 6, which implies that

xt → (L, a5) and e(x2xt−1, a5) = 2. Then e(xt−1xt, a4) ≥ 1 and e(xt−1xt, a1) ≥ 1, and because

e(xt, a1a4) ≥ 1 and e(xt−1, a1a4) ≥ 1, we know that xt−1xt → (L, a2a3). But τ(a2a3, L) ≤

2 + 1 = 3, so xt−1xt
1−→ (L, a2a3) because e(xt−1xt, a4a5a6a1) ≥ 6, a contradiction because

x1a2 ∈ E. So τ(a2, L) = 3, which means that x1 → (L, a5). Since x2a5 ∈ E, e(xt−1xt, a5) = 0.

Then e(xt−1, a1a2a4a6) = 4 and e(xt, a1a2a4a6) = 3. Because e(x2xt−1, a6) = 2, we have

xta1 /∈ E, for otherwise x1xt → (L, a5a6). Then e(xt, a2a4a6) = 3, so xt → (L, a1) and

e(x2xt−1, a1) = 2, a contradiction. Therefore x2a2 ∈ E.

Suppose that e(x2, L − a3) = 5. If e(xt, a2a3) = 0, then e(xt, a1a4a5a6) = 3, so because

e(x1x2, a1a2a3a4) = 6 we must have τ(a5a6, L) ≥ 4. Since e(x2xt, a1a5) ≥ 3, τ(a6, L) ≤ 2,

for otherwise x1 → (L, ai) for i = 1, 5. But then τ(a5, L) ≥ 2, so x1 → (L, ai) for i = 5, 6,

a contradiction because e(x2xt, a5a6) ≥ 3. So e(xt, a2a3) > 0. Since e(x1x2, a4a5a6a1) = 6,

this implies that τ(a2a3, L) ≥ 4. Since a3a5 /∈ E and τ(a3, L) ≤ 1, we have τ(a2, L) = 3 and

e(a3, a6a1) = 1. Then x1 → (L, a5), so e(xt−1xt, a5) = 0.

Suppose a3a6 ∈ E. Then x1 → (L, a1), so e(xt−1xt, a1) = 0. Hence e(xt−1, a2a3a4a6) =

4 and e(xt, a2a3a4a6) = 3. Since e(x2xt−1, a6) = 2, we know that e(xt, a2a3) ≤ 1 and

e(xt, a3a4) ≤ 1, for otherwise x1xt → (L, a5a6). Hence xta3 /∈ E, so e(xt, a2a4a6) = 3. Since

x1 9 (L, a6), τ(a5, L) ≤ 1. Then, since xta6 ∈ E and e(x1x2, a1a2a3a4) = 6, we must have
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τ(a6, L) = 3. Let L′ = x1x2a5a4a2a1x1. Since e(x1x2, a5a4a2a1) = 7 and τ(a3a6) = 4, we see

τ(L′) > τ(L). But a3a6 ∈ E and xta6 ∈ E, a contradiction.

Therefore a3a6 /∈ E, so a3a1 ∈ E. Then x1 → (L, a6), so e(xt−1xt, a6) = 0. Thus

e(xt−1, a1a2a3a4) = 4 and e(xt, a1a2a3a4) = 3. Since e(x2xt−1, a2) = 2, we must have

e(xt, a1a3) = 1, for otherwise xt → (L, a2). Thus e(xt, a2a4) = 2. Let L′ = x1x2a4a5a6a1x1

and R = x3...xt−1xta2a3. Since τ(a2a3, L) ≤ 3+1 = 4, τ(L′) ≥ τ(L). Thus, because xt−1a3 ∈

E, we have r(P ) ≥ 4 by Condition (4.4). Since e(xt−1xt, a2a3) ≥ 3 and x1x2 → (L, a2a3),

we know that r(xt, P ) ≤ 3. Since xt−1xt → (L, a2a3) and e(x1x2, a2) = 2, we know that

x1x5 /∈ E. Hence x1x4 ∈ E. Since τ(L′) = τ(L) by Condition (4.3), we have τ(a2, L) = 3.

Then x1x4x3x2a5a2x1 = C6, so xt−1xta1a3a4a6 + C6. Because e(xt−1xt, a1a3) ≥ 3, this

implies that a4a6 /∈ E, for otherwise a1a6a4a3 = P4. Then τ(a3a4, L) ≤ 1 + 2 = 3, so

x1x2
1−→ (L, a3a4). But e(xt, a3a4) ≥ 1, a contradiction. Therefore x2a3 ∈ E.

Since x2a3 ∈ E, e(xt−1xt, a3) = 0. Suppose that e(x2, L − a4) = 5. If τ(a4, L) = 3, then

x1 → (L, a5), so e(xt−1xt, a5) = 0. Thus e(xt−1, a1a2a4a6) = 4 and e(xt, a1a2a4a6) = 3. Since

e(x2xt−1, a6) = 2, x1xt 9 (L, a5a6), which implies that e(xt, a1a2) ≤ 1 and e(xt, a1a4) ≤ 1.

Hence xta1 /∈ E, so e(xt, a2a4a6) = 3. But then xt → (L, a1) and e(x2xt−1, a1) = 2, a

contradiction. So τ(a4, L) ≤ 2, which implies that x2
1−→ (L, a4). Hence xta4 /∈ E, so

e(xt, a1a2a5a6) = 3. Then τ(a5a6, L) ≥ 4, for otherwise x1x2
1−→ (L, a5a6). It is easy

to see that this is a contradiction, because e(x2xt−1, a5a6a1) ≥ 5 and a3a5 /∈ E. There-

fore x2a4 ∈ E. Since e(x2xt−1, a1a2a4a5a6) ≥ 8, we observe that τ(a5a6, L) ≤ 4. Since

e(x1x2, a1a2a3a4) = 7, this implies that e(xt, a5a6) = 0. Hence e(xt, a1a2a4) = 3, so

x1xt → (L, a5a6). Thus e(x2xt−1, a5) ≤ 1 and e(x2xt−1, a6) ≤ 1, so e(xt−1, a1a2a4) = 3

and e(x2xt−1, a5) = e(x2xt−1, a6) = 1.

Let L′ = x1x2a1a2a3a4. Since x1 9 (L, ai) for i = 1, 2, 4, we have e(a3, a5a6) = 0. Then

τ(a5a6, L) ≤ 4, so τ(L′) ≥ τ(L) + 1 because e(x1x2, a1a2a3a4) = 7. Since x2a3 ∈ E, we have

a1a3 ∈ E, for otherwise x1
1−→ (L, a3). Suppose that τ ′(L′) ≤ τ ′(L). Since τ(a3, L) ≤ 1, this

implies that τ ′(L′) ≤ 1. Then, because e(x1, L
′) = 4 and e(x2, L

′) = 5, it must be the case
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that τ(ai, L
′) ≤ 1 for some i = 1, 2, 3, 4. Since e(a3, x2a1) = 2, i 6= 3. Similarly, i 6= 1. Since

e(a2, x1x2) = 2, i 6= 2. Hence τ(a4, L
′) ≤ 1. Since a4x2 ∈ E, this implies that e(a4, a1a2) = 0.

But then x2
1−→ (L, a4) and e(x1xt, a4) = 2, a contradiction. Thus τ ′(L′) ≥ τ ′(L′) + 1.

If e(x2, L− a6) = 5 then e(x1x2, a2a3a4a5) = 6, so τ(a6a1, L) ≥ 4 because xta1 ∈ E. This

shows that if e(x2, L − a6) = 5, then x2 → L. Similarly, if e(x2, L − a5) = 5 then x2 → L.

Therefore, we can use the same argument as in Paragraph 2 from Case 3.2.1.2 to see that

e(x3, D + L) ≤ 6, e(xt, D + L) ≤ 6, and e(a5a6, P ) ≤ 6. From Paragraph 3 of Case 3.2.1.2,

we see that if x2a6 ∈ E, then e(a5, D − P ) = 0. Further, if x2a6 ∈ E then xt−1a5 ∈ E,

so x3x4...xt−1a5a6 = Pt−1, which by Condition (4.3) implies that e(a6, D − P ) = 0 since

x1x2
1−→ (L, a5a6). Thus if x2a6 ∈ E, then e(a5a6, D − P ) = 0. Similarly, if x2a5 ∈ E, then

e(a5a6, D − P ) = 0. Therefore e(a5a6, D + L) ≤ 14. This case is completed using the same

argument as in the last two paragraphs of Case 3.2.1.2.

Case 4: e(x1xt, L) = 5. WLOG let e(x1, L) ≥ e(xt, L). Since e(x2xt−1, L) ≥ 10, x1 → (L, ai)

for at most two ai ∈ L.

Case 4.1: e(x1, L) = 4.We immediately see thatN(x1, L) 6= {a1, a2, a3, a5}. IfN(x1, L) =

{a1, a2, a4, a5}, then e(x2xt−1, a3a6) ≤ 2, so e(x2xt−1, a1a2a4a5) = 8. Then x1 9 (L, ai) for

i = 1, 2, 4, 5, so τ(a3a6, L) = 0. But then x1x2
1−→ (L, aiai+1) for i = 1, 2, 4, 5, a contradiction

since e(xt, L) > 0. Therefore N(x1, L) = {a1, a2, a3, a4}, so e(x2xt−1, a4a5a6a1) = 8. Then

τ(a5a6, L) = 0 and τ(a2a3, L) ≤ 2, so x1x2
4−→ (L, a5a6) and x1x2

2−→ (L, a2a3). This implies

that e(xt, a2a3a5a6) = 0, so e(xt, a1a4) = 1. But then xt−1xt
1−→ (L, a2a3) and x1a2 ∈ E, a

contradiction.

Case 4.2: e(x1, L) = 3. We have e(xt, L) = 2, and N(x1, L) 6= {a1, a3, a5}.

Case 4.2.1: N(x1, L) = {a1, a2, a3}. Since e(x2xt−1, L − a2) ≥ 10 − 1 = 9, we see that

τ(a2, L) ≤ 1, τ(a5, L) ≤ 1, τ(a4a5, L) ≤ 2, and τ(a5a6, L) ≤ 2. Since τ(a2, L) ≤ 1,

either x2
2−→ (L, a2) or xt−1

2−→ (L, a2), and hence xta2 /∈ E. Suppose that xta5 ∈ E.

Then, since τ(a4a5, L) ≤ 2 and e(x1x2, a6a1a2a3) ≥ 5, we observe that x2a6 /∈ E. Then

e(x2xt−1, a1a3a4a5) = 8 and xt−1a6 ∈ E. Since e(x2xt−1, a4) = 2, xt 9 (L, a4), which
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implies that xta3 /∈ E. Since e(x2xt−1, a1a3a4a5) = 8, τ(a2, L) = 0. Thus, because

e(xt−1, a3a4a5a6) = 4 and xta5 ∈ E, we have e(xt, a4a6) = 0 for otherwise xtxt−1
1−→ (L, a1a2).

Hence e(xt, a1a5) = 2, so xtxt−1
2−→ (L, a2a3), a contradiction.

Therefore xta5 /∈ E. Because e(x2xt−1, a5a6) ≥ 3, x1xt 9 (L, a5a6). Since e(x1, a1a2) = 2,

this implies that e(xt, a1a4) ≤ 1. Similarly, e(xt, a3a6) ≤ 1. Suppose e(xt, a4a6) ≥ 1, and

WLOG say xta6 ∈ E. Then e(xt, a1a4) = 1. Since τ(a5a6, L) ≤ 2 and e(x1x2, a1a2a3a4) ≥ 5,

we have x2a4 6 inE. Then e(xt−1, L− a2) = 5, so because e(xt, a1a4a6) = 2 and τ(a2, L) ≤ 1,

we know that τ(a3, L) = 3, for otherwise xtxt−1
1−→ (L, a2a3). Since e(x2xt−1, a5) = 2, x1xt 9

(L, a4a5) and x1xt 9 (L, a2a5). But either xta6a3x1a2a1xt = C6 or xta6a1x1a3a4xt = C6, a

contradiction.

Therefore e(xt, a4a6) = 0, so e(xt, a1a3) = 2. Then xt → (L, a2), and since x1a2 ∈ E, we

know that xt−1a2 /∈ E. Because e(x2xt−1, L− a2) ≥ 9, τ(a1a3, L) ≤ 5. WLOG let τ(a1, L) ≤

2. Then e(x2, L) ≤ 5, for otherwise x2
1−→ (L, a1) and e(x1xt, a1) = 2, a contradiction.

Therefore e(xt−1, L − a2) = 5, so because e(xtxt−1, a4a5a6a1) = 5, we have τ(a2a3, L) ≥ 3.

Similarly, τ(a1a2, L) ≥ 3. Since τ(a1a3, L) ≤ 5, this implies that τ(a2, L) = 1. We know that

a2a5 /∈ E since e(x2xt−1, a4a6) ≥ 3, so WLOG let a2a4 ∈ E. Then x1 → (L, a3), so x2a3 /∈ E.

Then e(x2xt−1, a4a6) = 4, so e(a5, a1a3) = 0. Therefore e(a1, a3a4) = e(a3, a1a6) = 2, so

xta3x1a2a4a1xt = C6 and e(x2xt−1, a5) = 2, a contradiction.

Case 4.2.2: N(x1, L) = {a1, a2, a4}. We have e(x2xt−1, L−a3) ≥ 9, and thus observe that

e(a3, a5a6) = 0. Then τ(a3, L) ≤ 1, τ(a5, L) ≤ 2, and τ(a6, L) ≤ 2. We further observe

from Lemma 1.4.10 that τ(a5a6, L) ≤ 3 and τ(a2a3, L) ≤ 3. Suppose that e(xt, a5a6) ≥

1. Then τ(a5a6, L) = 3 and e(x2, a1a2a4) ≤ 2, for otherwise x1x2
1−→ (L, a5a6). Then

τ(a6, L) ≥ 3 − 2 = 1, so x1 → (L, a5). But e(x2xt−1, a5) ≥ 9 − 7 = 2, a contradiction.

Therefore e(xt, a5a6) = 0, so e(xt, a1a2a3a4) = 2. Since e(xtxt−1, a5a6) ≥ 3, x1xt 9 (L, a5a6).

Therefore, since e(x1, a1a2a4) = 2 and e(xt, a1a2a3a4) = 2, we see that e(xt, a2a4) = 2.

Since τ(a2a3, L) ≤ 3 and xta2 ∈ E, we see that e(x2, a4a5a6a1) ≤ 3, for otherwise

x1x2
1−→ (L, a2a3). Therefore e(xt−1, L − a3) = 5. Suppose that e(xt−1, L) = 6. Then, since
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e(x1xt, a2a4) = 4, we know that τ(a2a4, L) = 6. Then τ(a3, L) = 0, so a1a3 /∈ E, and

τ(a6, L) = 2, so x1 → (L, a5). Then x2a5 /∈ E, so e(x2xt−1, a6) ≥ 9− 7 = 2. Thus a5a1 /∈ E,

so τ(a1a6, L) ≤ 1 + 2 = 3. But x1a1 and e(xtxt−1, a2a3a4a5) = 6, a contradiction.

Hence e(xt−1, L) = 5, so xt−1a3 /∈ E. Further, e(x2, a2a3) = 2 and e(x2, a4a5a6a1) = 3.

Since e(x1, L−a3) = 3 and x2a3 ∈ E, we have τ(a3, L) ≥ 1. Since e(a3, a5a6) = 0, this implies

that a3a1 ∈ E. Since e(xt−1xt, a4a5a6a1) = 5 and x1a2 ∈ E, we have τ(a2a3, L) = 3. Then

τ(a2, L) = 2, and since e(x2xt−1, a5a6) ≥ 3 and a1a3 ∈ E, we see that e(a2, a5a6) = 1 and

a2a4 ∈ E. Suppose a2a6 ∈ E. Then x1 → (L, a5), so x2a5 /∈ E and hence e(x2, L− a5) = 5.

Then x1 9 (L, a6), so e(a5, a1a3) = 0. Since a2a5 /∈ E, this implies that τ(a5, L) = 0. But

e(x1x2, a6a1a2a3) = 6, so x1x2
1−→ (L, a4a5), a contradiction because xta4 ∈ E. Therefore

a2a6 /∈ E, so e(a2, a4a5) = 2. Since a2a5 ∈ E and a1a3 ∈ E, x1 → (L, a6). Then e(x2, L −

a6) = 5, so x1 9 (L, a5). Then τ(a6, L) = 0, so τ(a5a6, L) ≤ 2. Since e(x1x2, a1a2a3a4) = 7,

this implies that x1x2
3−→ (L, a5a6).

Let L′ = x1x2a1a2a3a4x1. Since τ(a5a6, L) ≤ 2, we know that e(a5a6, L) ≤ 6. Since

x2 → (L, a2) and xta2 ∈ E, we have x3a2 /∈ E, for otherwise x3...xta2x3 = C≥6. Similarly,

x3a4 /∈ E. Since L′ is a 6-cycle and x3...xt−1a5a6 = Pt−1, we see that x3a6 /∈ E. Similarly,

x3a5 /∈ E. Then e(x3, L) ≤ 2, and since e(xt, L) = 2, we have e(x3xta5a6, L) ≤ 2 +

2 + 6 = 10. Since τ(L′) ≥ τ(L) + 3 and x3...xt−1a5a6 = Pt−1, by Condition (4.3) we

know that e(a6, D − P ) = 0, and similarly that e(a5, D − P ) = 0. Since x3...xt−1a5a6

does not contain a large cycle, by Lemma 2.1.4 we have e(a5a6, P − x1x2) ≤ 6. Then,

since e(x1x2, a5a6) = 1, we get e(a5a6, D) = e(a5a6, P ) ≤ 7. Similarly, e(x3, D − P ) = 0

and e(x3, P − x1x2) ≤ 4, so e(x3, D) ≤ 6. By the maximality of k0 and Condition (4.2),

e(xt, D) = e(xt, P ) ≤ 4, so e(x3xta5a6, D) ≤ 6 + 4 + 7 = 17. Then e(x3xta5a6, D + L) ≤ 27,

so e(x3xta5a6, H − L) ≥ 14k − 27 = 14(k − 2) + 1 ≥ 14(k0 − 1) + 1, so e(x3xta5a6, Li) ≥ 15

for some Li ∈ σ. By Condition (4.1) and Lemma 2.2.1, |Li| = 6. By the maximality of k0,

Li+x3...xt+a5a6 + C6∪C≥6, since L′ is a 6-cycle. Therefore, because x3...xt is a path of order

t − 2 ≥ 5 and a5a6xt−1 = K3, by Lemma 3.0.3 it must be the case that Li + x3...xt + a5a6
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contains a 6-cycle C with τ(C) ≥ τ(Li) − 1 and a path of order t − 2 + 2 = t. But

τ(C) + τ(L′) ≥ τ(Li)− 1 + τ(L) + 3 ≥ τ(Li) + τ(L) + 2, contradicting Condition (4.3).

Case 5: e(x1xt, L) = 4. Since e(x2xt−1, L) ≥ 11, WLOG let e(x2, L) = 6 and e(xt−1, L−a6) =

5. This implies that x1 9 (L, ai) for i = 1, 2, 3, 4, 5, and xt 9 (L, ai) for i = 1, 2, 3, 4, 5.

Therefore, for i = 1 and i = t, e(xi, a2a4a6) ≤ 1, e(xi, a1a3) ≤ 1, and e(xt, a3a5) ≤ 1. Thus

e(xi, L) ≤ 3, and if e(xi, L) = 3 then e(xi, a1a5) = 2 and e(xi, a2a4a6) = 1.

Case 5.1: e(x1, L) = 3. From above, we have e(x1, a2a4a6) = 1 and e(x1, a1a5) = 2.

By symmetry, either x1a2 ∈ E or x1a6 ∈ E. If x1a2 ∈ E, then since x1ai 9 (L,)

for i = 1, 2, 3, 4, 5, τ(a3, L) = 0, τ(a4, L) ≤ 1, τ(a6, L) ≤ 1, and τ(a1, L) ≤ 2. Thus

τ(a3a4, L) ≤ 1 and τ(a6a1, L) ≤ 3, so e(xt, a3a4a6a1) = 0 because e(x1x2, a5a6a1a2) = 7

and e(x1x2, a2a3a4a5) = 6. Also, since e(x1x2, a4a5a6a1) = 6 and τ(a2a3, L) ≤ 3, we see that

xta2 /∈ E. Therefore xta5 ∈ E, so because e(x1x2, a1a2a3a4) = 6 we must have τ(a5a6, L) ≥ 4.

But τ(a6, L) ≤ 1, and since a3a5 /∈ E, τ(a5, L) ≤ 2, a contradiction. Therefore x1a2 /∈ E,

so x1a6 ∈ E. We observe that τ(a5, L) ≤ 2, τ(a6, L) ≤ 2, τ(a1, L) ≤ 1, τ(a2, L) ≤ 2,

τ(a3, L) ≤ 1, and τ(a4, L) = 0. Since e(x1x2, a5a6a1a2) = 7 and e(x1x2, a3a4a5a6) =

6, x1x2
1−→ (L, aiai+1) for i = 3, 1, so e(xt, a1a2a3a4) = 0. Then e(xt, a5a6) = 1, so

e(x1xt, a5a6) ≥ 3. But since e(x2, L) = 6, we know that x2
1−→ (L, ai) for i = 5, 6, a

contradiction.

Case 5.2: e(x1, L) = 2. First suppose that x1a3 ∈ E. Then e(x1, a1a5) = 0, so (x1, a2a4a6) =

1. Suppose that x1a6 ∈ E. Since x1 9 (L, ai) for i 6= 6, we see that τ(aj, L) ≤ 1 for j =

1, 2, 4, 5. Since e(x1x2, aiai+1ai+2ai+3) = 6 for i = 3, 6, this implies that e(xt, a1a2a4a5) = 0.

Hence e(xt, a3a6) = 2. We know that x3a1 /∈ E, for otherwise x1x2a3a4a5a6x1 = C6 and

x3...xt−1a2a1x3 = C≥6. By symmetry, e(x3, a1a2a4a5) = 0. Also, e(x3, a3a6) = 0 because

x2 → (L, a3), x2 → (L, a6), and e(xt, a3a6) = 2. Therefore e(x3xta4a5, L) ≤ 0+2+3+3 = 8.

Since x2 → (L, a3) and x3...xta3x1 = Pt, we know that e(x3, D) = e(x3, P ) ≤ 6 by Condition

(4.2) and the maximality of k0. Because x1x2 → (L, a4a5), by Lemma 2.1.5 we see that

e(a4a5, P −x1x2) ≤ 6. Also, since x1x2
2−→ (L, a4a5) and x3...xt−1 = Pt−3 with e(xt−1, a4a5) =
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2, we have e(a4a5, D − P ) = 0 by Condition (4.3). Therefore e(a4a5, D) ≤ 6 + 2 = 8.

Clearly e(xt, D) ≤ 4 by the maximality of k0 and by Condition (4.2), so e(x3xta4a5, D) ≤

6 + 4 + 8 = 18. Combining this with the above, we get e(x3xta4a5, D + L) ≤ 18 + 8 = 26,

so that e(x3xta4a5, H − L) ≥ 14k − 26 ≥ 14(k0 − 1) + 2. Hence e(x3xta4a5, Li) ≥ 15 for

some Li ∈ σ − {L}. Let L′ = x1x2a6a1a2a3x1. Since τ(a4a5, L) ≤ 2, τ(L′) ≥ τ(L) + 2.

Also, e(xt−1, a4a5) = 2 and x3...xt is a path of order t − 2 ≥ 5. Hence by Lemma 3.0.3 we

contradict either the maximality of k0 or Condition (4.3).

Therefore x1a6 /∈ E. Since e(x1, a2a4a6) = 1, WLOG we can say x1a2 ∈ E. Since

x1 9 (L, ai) for i 6= 6, e(a6, a2a4) = 0 and a3a5 /∈ E. Thus τ(a5a6, L) ≤ 3, so x1x2
1−→

(L, a5a6) and hence e(xt, a5a6) = 0. Since e(x1, a2a3) = 2 and x2
1−→ (L, ai) for i = 2, 3,

we know that e(xt, a2a3) = 0. Hence e(xt, a1a4) = 2, so since xt 9 (L, ai) for i 6= 6, we

have e(a3, a1a6) ≤ 1 and e(a2, a4a5) ≤ 1. Since a3a5 /∈ E and a2a6 /∈ E from above, this

implies that τ(a2a3, L) ≤ 1 + 1 = 2. Then xt−1xt
1−→ (L, a2a3), a contradiction because

e(x1, a2a3) > 0. Hence x1a3 /∈ E, and since e(x1, a1a3a5) ≥ 1 we can say WLOG that

x1a1 ∈ E.

Case 5.2.1: x1a5 ∈ E. Since x1 9 (L, ai) for i 6= 6, a3a6 /∈ E and e(a2, a4) + e(a2, a6) +

e(a4, a6) ≤ 1. Also, e(a1, a3) + e(a4, a6) ≤ 1 and e(a3, a5) + e(a2, a6) ≤ 1. Suppose that

e(xt, a2a3a4) ≥ 1, and WLOG say e(xt, a3a4) ≥ 1. Then, since e(x1x2, a5a6a1a2) = 6, we

have τ(a3a4, L) ≥ 4. This implies that e(a3, a5a1) = 2 and a4a1 ∈ E. Since a1a3 ∈ E,

a4a6 /∈ E, so e(a4, a1a2) = 2.

Suppose xta4 ∈ E. Let L′ = x1x2a6a5a3a1x1 and P ′ = x3...xt−1xta4a2. Since τ(a2a4, L) ≤

4, τ(L′) ≥ τ(L). Therefore, by Condition (4.4) we have r(P ) ≥ 4, for otherwise r(P ′) > r(P )

since a2xt−1 ∈ E. Since xtxt−1a1a2a3a4xt = C6, we see that e(x1, x4x5) = 0, because

x1a5x2x3x4x5 and x1a5a6x2x3x4 are 6-paths. Hence e(xt, xt−3xt−4) ≥ 1. But x1x2a2a1a6a5x1 =

C6, and xta4xt−1xt−2xt−3xt−4 and xta4a3xt−1xt−2xt−3 are 6-paths, a contradiction. Therefore

xta4 /∈ E, so xta3 ∈ E.

Let L′ = x1x2a4a5a6a1x1, and P ′ = x3...xt−1xta3a2. Since τ(a2a3, L) ≤ 2 + 2 = 4, we
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see that τ(L′) ≥ τ(L). Because x1x2a2a1a6a5x1 and xt−1xta3a4a1a2xt−1 are 6-cycles, and

xta3xt−1xt−2xt−3xt−4 and x1a5x2x3x4x5 are 6-paths, we see that xtxt−4 /∈ E and x1x5 /∈ E.

Thus, since xt−1a2 ∈ E, we know that r(P ′) ≥ r(P ). Since a2a4 ∈ E, e(a6, a2a4) = 0, which

means τ(a6, L) = 0 because a3a6 /∈ E. But then τ ′(L′) = 1 > 0 = τ ′(L), contradicting

Condition (4.5). Hence e(xt, a2a3a4) = 0.

Since e(xt, a5a6a1) = 2, e(x1, a1a5) = 2, e(xt−1, L − a6) = 5, and e(x2, L) = 6, by

symmetry we can let xta1 ∈ E. If xta6 ∈ E then a1a3 /∈ E, for otherwise xt → (L, a2). But

then e(x1xt, a1) = 2 and x2
1−→ (L, a1), a contradiction. Thus xta6 /∈ E, so e(xt, a1a5) = 2.

Since e(x1xt, a1a5) = 4 and e(x2, L) = 6, we have τ(a1a5, L) = 6. Since e(a3, a1a5) = 2,

e(a6, a2a4) = 0, and thus τ(a6, L) = 0. Then xt−1xt
0−→ (L, a5a6) and a6a5x1x2...xt−2 =

Pt with a6x2 ∈ E, so r(P ) ≥ 4 by Condition (4.4). Because xt−1xt → (L, a5a6), and

x1a5x2x3x4x5 and x1a5a6x2x3x4 are 6-paths, we know that e(x1, x4x5) = 0 by the maximality

of r0. Since xta1xt−1xt−2xt−3xt−4 is a 6-path and x2 → (L, a1), we know that xtxt−4 /∈ E.

Therefore xtxt−3 ∈ E.

Let L′ = xt−1a1a2a3a4a5xt−1. Since τ(a6, L) = 0 and e(xt−1, L − a6) = 5, we see that

τ(L′) = τ(L) + 3. Since x1 → (L, a6) and a6x2...xt = Pt, we have e(a6, D) = e(a6, P ) =

e(a6, P − x1) ≤ 4 by Condition (4.2) and the maximality of k0. Since xt−1xt → (L, a5a6),

by Condition (4.2) and the maximality of k0 we have e(xt−2, D) = e(xt−2, P ) ≤ 6. Since

xtxt−4 /∈ E and e(x1, x4x5) = 0, we have e(x1xt, D) = e(x1xt, P ) ≤ 2 + 3 = 5. Therefore,

because τ(a6, L) = 0 and e(x1xt, L) = 4, we get e(a6x1xt−2xt, D+ L) ≤ 6 + 4 + 12 + 5 = 27.

Hence e(a6x1xt−2xt, Li) ≥ 15 for some Li ∈ σ−{L}. Since L′ is a 6-cycle, Li +P −xt−1 +a6

does not have both a 6-cycle and a large cycle, by the maximality of k0. Therefore, since

x2x3...xt−3 is a path of order t − 4 ≥ 3, e(x2, x1a6) = 2, and e(xt−3, xt−2xt) = 2, we see by

Lemma 3.0.4 that Li + P − xt−1 + a6 has a 6-cycle C with τ(C) ≥ τ(Li)− 2 and a path of

order t− 4 + 4 = t. But this contradicts Condition (4.3), because τ(L′) = τ(L) + 3.

Case 5.2.2: x1a5 /∈ E. Since e(x1, L) = 2, e(x1, a2a4a6) = 1. Suppose that x1a2 ∈ E.

Since x1 9 (L, ai) for i 6= 6, e(a4, a2a6) = 0, a3a5 /∈ E, and e(a1, a5) + e(a3, a6) ≤
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1. Then τ(a5a6, L) ≤ 3, τ(a3a4, L) ≤ 3, and τ(a2, L) ≤ 2. Since e(x1x2, a1a2a3a4) =

e(x1x2, a5a6a1a2) = 6 and e(x2, L − a2) = 5, this implies that e(xt, a5a6a3a4a2) = 0, a con-

tradiction because e(xt, L) = 2. Therefore x1a2 /∈ E, and similarly it is easy to see that

x1a6 /∈ E. Hence x1a4 ∈ E, and e(x1, a1a4) = 2.

Since x1 9 (L, ai) for i 6= 6, we have τ(a2a3, L) ≤ 2 and τ(a5a6, L) ≤ 3. Since

e(x1x2, a1a2a3a4) = e(x1x2, a4a5a6a1) = 6, this implies that e(xt, a2a3a5a6) = 0. Then

e(xt, a1a4) = 2, so e(x1xt, a1a4) = 4. Then τ(a1a4, L) = 6, for otherwise x2
1−→ (L, ai) for

i = 1 or i = 4. Since x1 9 (L, a2) and a1a3 ∈ E, we have e(a3, a5a6) = 0. Since x1 9 (L, a3)

and a4a2 ∈ E, we have e(a2, a5a6) = 0. Hence τ(a5a6, L) = 2, so xt−1xt
2−→ (L, a5a6) because

e(xt−1xt, L − a5a6) = 6. Let L′ = xt−1xta1a2a3a4xt−1. Since τ(L′) > τ(L) and xt−2...x2 is

a Pt−3 and e(x2, a5a6) = 2, by Condition (4.3) we must have e(a5a6, D − P ) = 0. By the

maximality of k0 and Lemma 2.1.4, e(a5a6, P − xt−1xt) ≤ 6. Thus, since e(a5a6, x1) = 0

and e(a5a6, L) = 4 + τ(a5a6, L) ≤ 6, we have e(a5a6, D + L) ≤ 8 + 6 = 14. Since

τ(L′) > τ(L) and xt−2....x2a5a6 = Pt−1, by Condition (4.3) e(xt−2, D−P ) = 0. If xt−2xt ∈ E

and x1x3 ∈ E, then x1x3x2a5a6a1x1 = C6 and xtxt−2xt−1a2a3a4xt = C6, a contradiction.

Thus e(x1xt−2, D) = e(x1xt−2, P ) ≤ 4 + 6 − 1 = 9 by the maximality of k0. Because

xt−1xt → (L, a5a6) and xt−1xt → (L, a2a3), and because t − 3 ≥ 4 and e(x2, L) = 6, we

see that e(xt−2, a5a6a2a3) = 0 by the maximality of k0. Hence e(x1xt−2, L) ≤ 2 + 2 = 4, so

e(x1xt−2, D+L) ≤ 9+4 = 13. Therefore e(x1xt−2a5a6, D+L) ≤ 27, so e(x1xt−2a5a6, Li) ≥ 15

for some Li ∈ σ − {L}. But τ(L′) ≥ τ(L) + 2, x1x2...xt−2 is a path of order t − 2 ≥ 5, and

e(x2, a5a6) = 2, contradicting either the maximality of k0 or Condition (4.3) via Lemma

3.0.3.

Case 5.3: e(x1, L) = 1. Here e(xt, L) = 3, so because e(xt, a2a4a6) ≤ 1, e(xt, a1a3) ≤ 1,

and e(xt, a3a5) ≤ 1, we know that e(xt, a1a5) = 2 and e(xt, a2a4a6) = 1. By symmetry,

either xta2 ∈ E or xta6 ∈ E. First suppose that xta2 ∈ E. Since xt 9 (L, ai) for i 6= 6,

τ(a3, L) = 0 and e(a4, a2a6) = 0. Then τ(a3a4, L) ≤ 1 and τ(a5a6, L) ≤ 2+1 = 3, so because

e(xt−1xt, a5a6a1a2) = e(xt−1xt, a1a2a3a4) = 6 we know that e(x1, a3a4a5a6) = 0. Because
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a1a3 /∈ E, we have x2
1−→ (L, a1). Thus x1a1 /∈ E, for otherwise e(x1xt, a1) = 2. Therefore

x1a2 ∈ E, so e(x1x2, a2a3a4a5) = 5. Since xta1 ∈ E, this implies that τ(a6a1, L) ≥ 3.

Because e(a3, a1a6) = 0 and a6a4 /∈ E, we know that e(a1, a4a5) = 2 and a2a6 ∈ E. But then

xt → (L, a3), a contradiction.

Therefore xta2 /∈ E, so xta6 ∈ E and hence e(xt, a5a6a1) = 3. Since xt 9 (L, ai) for

i 6= 6, we observe that τ(a3a6, L) = 0 and a2a4 /∈ E. Then τ(a3a4, L) ≤ 0 + 1 = 1,

τ(a5a6, L) ≤ 2 + 0 = 2, and τ(a6a1, L) ≤ 0 + 2 = 2. Thus, since e(xt−1xt, a5a6a1a2) = 6 and

e(xt−1xt, a1a2a3a4) = e(xt−1xt, a2a3a4a5) = 5, we know that e(x1, a3a4a5a6a1) = 0. But then,

since τ(a2a3, L) ≤ 1 + 0 = 1, we have xt−1xt
3−→ (L, a2a3) and x1a2 ∈ E, a contradiction.

Case 6: e(x1xt, L) = 3. For each ai ∈ L, we have x1 9 (L, ai) and xt 9 (L, ai), be-

cause e(x2xt−1, ai) = 2. Thus e(x1, L) ≤ 2 and e(xt, L) ≤ 2, so WLOG let e(x1, L) = 2

and e(xt, L) = 1. Further, WLOG let x1a1 ∈ E. Then e(x1, a3a5) = 0. Suppose that

e(x1, a2a6) = 1, and WLOG let x1a2 ∈ E. Then a2a4 /∈ E, a3a5 /∈ E, a4a6 /∈ E,

and a1a5 /∈ E. This implies that x1x2
1−→ (L, a3a4), so e(xt, a3a4) = 0. By symmetry,

e(xt, a5a6) = 0, so WLOG let xta1 ∈ E. But then e(x1xt, a1) = 2 and x2
1−→ (L, a1), a contra-

diction. Therefore e(x1, a2a6) = 0, so e(x1, a1a4) = 2. Then a2a6 /∈ E and a3a5 /∈ E. Further,

e(a1, a3) + e(a2, a5) ≤ 1. Then τ(a2a3, L) ≤ 3, so x1x2
1−→ (L, a2a3). Hence e(xt, a2a3) = 0,

and by symmetry e(xt, a5a6) = 0.

Therefore e(xt, a1a4) = 1, so WLOG let xta1 ∈ E. Since e(x1xt, a1) = 2 and e(x2, L) = 6,

we see that τ(a1, L) = 3. Since a1a3 ∈ E, a2a5 /∈ E and a3a6 /∈ E, and because a2a6 /∈ E

and a3a5 /∈ E, we have τ(a5a6, L) ≤ 1 + 1 = 2. Therefore x1x2
2−→ (L, a5a6). Let L′ =

x1x2a1a2a3a4x1. Since x1x2 → (L, a5a6), P − x1x2 + a5a6 does not have a large cycle.

Thus, because e(xt−1, a5a6) = 2, we have e(x3, a5a6) = 0. By symmetry, e(x3, a2a3) = 0.

Since x2 → (L, a1) and xta1 ∈ E, we also have x3a1 /∈ E. Hence e(x3, L) ≤ 1. Since

x2 → (L, a1) and x1a1xt...x3 = Pt, we have e(x3, D) = e(x3, P ) ≤ 6 by Condition (4.2).

Since τ(a5a6, L) ≤ 2, e(a5a6, L) ≤ 2 + 4 = 6. Also, since x1x2 → (L, a5a6), by Lemma 2.1.4
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we have e(a5a6, P−x1x2) ≤ 6. Since τ(L′) > τ(L), and x3x4...xt−1 is a path of order t−3 with

e(xt−1, a5a6) = 2, we see that e(a5a6, D−P ) = 0 by Condition (4.3). Then e(a5a6, D+L) ≤

8+6 = 14. Since e(xt, D) ≤ 4 and e(xt, L) = 1, we have e(x3xta5a6, D+L) ≤ 7+5+14 = 26.

Then e(x3xta5a6, Li) ≥ 15 for some Li ∈ σ − {L}. Since x3...xt is a path of order t− 2 ≥ 5

and e(xt−1, a5a6) = 2, the conditions of Lemma 3.0.3 are satisfied. But this contradicts either

the maximality of k0 or Condition (4.3), since τ(L′) ≥ τ(L) + 2.
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Chapter 5

Proof of Theorem 2

In this chapter, we prove that if G is a graph of order n ≥ 6k + 6 and δ(G) ≥ n
2
, then G

contains k disjoint cycles covering all the vertices of G such that k − 1 are 6-cycles. The

general strategy of the proof is somewhat similar to that of Theorem 1, except we will be

working with a hamiltonian cycle rather than a path. Also, since we want to cover all the

vertices of G we will be much more interested in |G|, using the following cases: n = 6k + 6,

n = 6k + 7, and n ≥ 6k + 8. Lemma 5.1.4 will aid the case n ≥ 6k + 8.

5.1 Lemmas

A graph G of order n is hamiltonian if there is a cycle v1v2 . . . vnv1 using all the vertices of

G. Such a cycle is called a hamiltonian cycle. A hamiltonian path is a path y1y2 . . . yn

using all the vertices of G.

Lemma 5.1.1 (Ore’s Theorem) Let G be a graph of order n ≥ 3. If e(uv,G) ≥ n for

each pair of nonadjacent vertices u, v ∈ G, then G is hamiltonian.

Proof: Suppose G is not hamiltonian. Among all graphs G′ of order n containing G that are

not hamiltonian, let H be maximal with respect to size. Then clearly, e(uv,H) ≥ e(uv,G) ≥

n for each pair of nonadjacent vertices u, v ∈ H. Since H is maximal, there is a hamiltonian

path x1x2 . . . xn in H, and x1xn /∈ E. Then e(x1, x3x4 . . . xn−1)+e(xn, x2x3 . . . xn−2) ≥ n−2,

so e(x1, xi) + e(xn, xi−1) = 2 for some 3 ≤ i ≤ n− 1. But then x1x2 . . . xi−1xnxn−1 . . . xix1 is

a hamiltonian cycle in H, a contradiction.

Lemma 5.1.2 Let P = x1x2 . . . xn and Q = y1y2 . . . ym be disjoint paths, n ≥ 3. Suppose

that P + Q does not have a hamiltonian path starting at x1. Then e(xny1, P ) ≤ n, and if

e(xny1, P ) = n then x1y1 ∈ E and e(xn, xi−1) + e(y1, xi) = 1 for each i ∈ {2, 3, . . . , n− 1}.
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Proof: Clearly xny1 /∈ E. Also, for each i ∈ {2, 3, . . . , n−1}, e(xn, xi−1)+e(y1, xi) ≤ 1, for

otherwise x1 . . . xi−1xnxn−1 . . . xiy1y2 . . . ym is a hamiltonian path. The conclusion is therefore

immediate.

Lemma 5.1.3 Let P = x1x2 . . . xn and Q = y1y2 . . . ym be disjoint paths, n ≥ 4. Suppose

that P + Q does not have a hamiltonian path starting at x1, and that e(y1, xixi+1) ≤ 1 for

each i ∈ {1, 2, . . . , n − 1}. If e(xny1, P ) = n and e(y1, P ) ≥ 2, then P has a hamiltonian

path x1z2 . . . zn such that y1zn−1 ∈ E.

Proof: Let j be maximal such that y1xj ∈ E. By Lemma 5.1.2, we know that x1y1 ∈ E,

so y1x2 /∈ E by assumption. Therefore 3 ≤ j ≤ n − 2. Also by assumption we know that

y1xj−1 /∈ E, so that xnxj−2 ∈ E by Lemma 5.1.2. Then x1x2 . . . xj−2xnxn−1 . . . xjxj−1 is a

hamiltonian path in P , and y1xj ∈ E.

Lemma 5.1.4 Let G be a graph of order n ≥ 11, and suppose that e(xy,G) ≥ n for each

pair of nonadjacent vertices x and y. Then for each u ∈ G, G has a 6-cycle C such that

G− C has a hamiltonian path starting at u.

Proof: Suppose that the lemma is not true. Let x0 ∈ G be such that there does not exist

a 6-cycle C such that G− C has a hamiltonian path starting at x0.

Case 1: G− x0 does not have a 6-cycle. First suppose that G − x0 is hamiltonian, and let

x1x2 . . . xn−1x1 be a hamiltonian cycle inG−x0. Let P = x4x5 . . . xn−1, a path of order n−4 ≥

7. By Lemma 2.1.8, e(x1x3, P ) ≤ n−5. Hence x1x3 ∈ E, for otherwise x1 and x3 are nonadja-

cent vertices with e(x1x3, G) = e(x1x3, x0x1x2x3)+e(x1x3, P ) ≤ 4+(n−5) = n−1. This argu-

ment implies that xixi+2 ∈ E for each i ∈ {1, 2, . . . , n−1}, mod n−1. Therefore n ≥ 13, since

x1x2x3x5x7x9x1 is a 6-cycle if n = 11 and x1x2x4x6x8x10x1 is a 6-cycle if n = 12. Similarly, it

can be seen that for each xi ∈ G− x0, we have e(xi, xi+4, xi+5, . . . , xi+10) = 0. For example,

if x2x6 ∈ E then x2x6x7x5x4x3x2 is a 6-cycle. Therefore, because x1x5 /∈ E, this implies that

e(x1x5, G−{x0, x1, x2, x3, x4, x5, x9, x10, x11}) ≥ n−8. But |G−{x0, x1, . . . , x5, x9, x10, x11}| =
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n − 9, so x1 and x5 have a common neighbor outside of G − {x0, x1, . . . , x5}. Clearly then,

G− x0 has a 6-cycle, a contradiction.

Thus G−x0 is not hamiltonian. Since G is hamiltonian, however, G−x0 has a hamiltonian

path x1x2 . . . xn−1. Then x1xn−1 /∈ E, so e(x1xn−1, G) ≥ n. WLOG let e(x1, G) ≥ e(xn−1, G).

Since n ≥ 11, e(x1, G − x0) ≥ 5. Also, since G − x0 does not have a 6-cycle, we know that

x1x6 /∈ E. Therefore, x1xi ∈ E for some i ≥ 7. Let j be maximal such that x1xj ∈ E, and

let P = x2x3 . . . xj. Then e(x1, x2xj) = 2, and since G−x0 is not hamiltonian, we know that

if x1xi ∈ E then xn−1xi−1 /∈ E. By Lemma 2.1.9, we see that e(x1xn−1, P ) ≤ j − 1. Then

j ≤ n−3, because if j = n−2 then e(x1xn−1, G) = e(x1xn−1, P )+e(x1xn−1, x0) ≤ (n−3)+2 =

n − 1. Hence e(x1, xj+1 . . . xn−2) = 0 by the maximality of j, so e(xn−1, xj+1 . . . xn−2) ≥

n− e(x1xn−1, x0)− e(x1xn−1, P ) ≥ n− 2− (j − 1) = n− j − 1 > n− j − 2, a contradiction.

Case 2: G− x0 has a 6-cycle. Let C be a 6-cycle in G − x0, and choose C such that the

length t of a longest path in G−C starting at x0 is maximal. Under that condition, further

choose C such that τ(C) is maximal. Let P = x0x1 . . . xt and C = a1a2 . . . a6a1. Since P is

not a hamiltonian path in G−C by assumption, we have t+ 1 < n−6. Let D = G−C−P ,

and let |D| = r. Then t = n − 7 − r. By Lemma 1.4.17 we know that e(uxt, C) ≤ 8 for

each u ∈ D, for otherwise u → (C, ai) and xtai ∈ E for some ai ∈ C, contradicting the

maximality of t. Furthermore, by Lemma 1.4.18 and the maximality of τ(C) we see that if

e(uxt, C) = 8 then e(u,C) ≤ 3.

Suppose that t = 0. Then e(x0, D) = 0 by the maximality of t. Therefore, for each u ∈ D,

e(ux0, C) = e(ux0, G)− e(ux0, D) = n− e(u,D) ≥ n− (r− 1) = 8. Since e(ux0, C) ≤ 8 from

above, this implies that e(ux0, C) = 8 and e(u,D) = r − 1. Hence D = Kr, and because

n ≥ 11 and |P | = 1, we have r ≥ 4. Thus, for each 2 ≤ s ≤ 4 and for each x, y ∈ D, there

is an x − y path of order s in D. Also, between any two vertices ai and aj in C there is

an ai − aj path of order between 2 and 4. Therefore, for x, y ∈ D, if xai ∈ E and yaj ∈ E

and i 6= j, then C + D − ak contains a 6-cycle for some k /∈ {i, j}. For any such ak, we

see that x0ak /∈ E by the maximality of t. Since e(x0u,C) = 8 for each u ∈ D, this implies
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that e(x0, C) ≤ 5. Because e(u,C) ≤ 3 for each u ∈ D by the preceding paragraph, we have

e(x0, C) = 5 and e(u,C) = 3. WLOG let e(x0, C − a6) = 5. Then u 9 (C, ai) for each

i = 1, 2, 3, 4, 5, so e(u, a1a5) = 2. Since this applies to each u ∈ D, we see that D + a5a6a1

contains a 6-cycle, contradicting the maximality of t.

Now suppose that t = 1. If ux0 ∈ E for some u ∈ D, then e(u,G − C) = 1 by the

maximality of t. Clearly e(x1, G−C) = 1 as well, so e(ux1, C) ≥ n− 2 ≥ 9, a contradiction.

Hence e(x0, D) = 0, so e(ux0, C) = e(ux0, G)− e(ux0, G−C) ≥ n− (r− 1)− 1 = n− r = 8.

But also e(ux1, C) ≥ 8, which contradicts either the maximality of t or the maximality of

τ(C) by Lemma 3.0.1.

Now suppose that t = 2. If ux1 ∈ E for some u ∈ D, then by Lemma 1.4.19 we have

e(ux2, C) ≤ 6. Also, e(u, x0x2) = e(ux2, D) = 0 by the maximality of t. But then e(ux2, G) ≤

6 + 2 < n, a contradiction. Therefore e(x1, D) = 0, so e(ux1, C) ≥ n − 3 − (r − 1) = 7 for

each u ∈ D. Similarly, e(ux2, C) ≥ 7 for each u ∈ D. Hence by Lemma 3.0.1, for each u ∈ D

we have e(ux2, C) = 7, which implies that e(ux2, P ) ≥ n − (r − 1) − 7 = n − r − 6 = 3.

Thus, since e(u, x1x2) = 0 we know that ux0 ∈ E and e(u,D) = r − 1. Then D = Kr, and

by the maximality of t we see that r = 2. Let u, v ∈ D. There are two paths x0uv and

x0x1x2 of order three starting at x0 with {u, v} and {x1, x2} disjoint. Since e(v, P ) = 1 and

e(x2, D) = 0, we have e(vx2, C) ≥ 11− 4 = 7. But this contradicts either the maximality of

t or the maximality of τ(C) by Lemma 1.4.19.

Therefore t ≥ 3. Let u ∈ D. By Lemma 5.1.2, we see that e(uxt, P ) ≤ t + 1. Then

e(uxt, C) ≥ n− (t+ 1)− (r− 1) = n− t− r = 7, and from before we know that e(uxt, C) ≤

8. Suppose that e(uxt, C) = 8. By Lemma 3.0.1, e(uxt−1, C) ≤ 6. By Lemma 1.4.19,

e(xt−1, D) = 0. Thus e(uxt−1, P ) ≥ n−6−(r−1) = n−r−5 = t+2. Then e(uxt−1, P−xt) ≥

t+1, so by Lemma 5.1.2, P−xt+u has a hamiltonian path starting at x0. But this contradicts

Lemma 1.4.19, since e(uxt, C) = 8.

So e(uxt, C) = 7 and e(uxt, P ) = t+1. By Lemma 5.1.2 we have ux0 ∈ E and e(xt, xi−1)+

e(u, xi) = 1 for each i ∈ {1, 2, . . . , t−1}. Suppose that e(u, P ) ≥ 2. Then, by the maximality
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of t and by Lemma 5.1.3, we see that P has a hamiltonian path x0z1 . . . zt such that uzt−1 ∈ E.

Thus uzt /∈ E, so e(uzt, G) ≥ n. By Lemma 5.1.2, e(uzt, P ) ≤ t + 1, so e(uzt, C) ≥

n− (t+ 1)− (r − 1) = 7. But this contradicts Lemma 1.4.19, because uzt−1 ∈ E.

Hence e(u, P ) ≤ 1, and because ux0 ∈ E we have e(u, P − x0) = 0. Then e(xt, xi−1) +

e(u, xi) = 1 for each i ∈ {1, 2, . . . , t− 1} implies that xtxi ∈ E for each i ∈ {0, 1, . . . , t− 2}.

Then for each i ∈ {0, 1, . . . , t−2}, x0 . . . xixtxt−1 . . . xi+1 is a path of order t+1 starting at x0.

Replacing xt with xi+1 in the preceding two paragraphs, we see that for each i ∈ {1, 2, . . . , t},

that e(uxi, C) = 7 and e(xi, P ) = t. Since [x0, x1, . . . , xt] = Kt+1, as in the case t = 0 we see

that either u→ (C, ai) for some ai ∈ C, or G contains a path P ′ of order ≥ t+ 2 starting at

x0 and a 6-cycle C ′ such that P ′ and C ′ are disjoint. This completes the proof.

Lemma 5.1.5 Let G be a graph, and let C = y1y2 . . . y6y1 be a 6-cycle. Suppose that G and

C are disjoint, and that G+C is not hamiltonian. If there is a hamiltonian path in G from

xi to xj, then e(xixj, C) ≤ 6. Further,

• If e(xi, C) = 6 then e(xj, C) = 0.

• If e(xi, C) = 5 then e(xj, C) = 0.

• If e(xi, C) = 4 then e(xj, C) ≤ 1, and if e(xj, C) = 1 then WLOG N(xi, C) =

{y1, y2, y3, y5} and xjy5 ∈ E.

• If e(xi, C) = 3 then e(xj, C) ≤ 3, and if e(xj, C) = 3 then WLOG N(xi, C) =

N(xj, C) = {y1, y3, y5}.

Proof: For each yk ∈ C, there is a hamiltonian path in C from yk to yk±1. Thus if xiyk ∈ E

then e(xj, yk−1yk+1) = 0. The conclusion is an easy exercise.

The next lemma is similar, so a proof is omitted.

Lemma 5.1.6 Let G be a graph, and let L = y1y2 . . . y7y1 be a 7-cycle. Suppose that G and

L are disjoint, and that G+ L is not hamiltonian. If there is a hamiltonian path in G from

xi to xj, then e(xixj, L) ≤ 7. Further,
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• If e(xi, L) ≥ 6 then e(xj, L) = 0.

• If e(xi, L) = 5 then e(xj, L) ≤ 1.

• If e(xi, L) = 4 then e(xj, L) ≤ 2.

The following two lemmas are immediate consequences of Lemmas 5.1.5 and 5.1.6.

Lemma 5.1.7 Let C1 = x1x2 . . . x6x1 and C2 = y1y2 . . . y6y1 be disjoint 6-cycles, and sup-

pose that e(C1, C2) ≥ 18. Then C1 + C2 is hamiltonian unless e(C1, C2) = 18. In that

case, WLOG either N(u,C2) = {y1, y3, y5} for each u ∈ C1, or e(u,C2) = 6 for each

u ∈ {x1, x3, x5}.

Lemma 5.1.8 Let C1 = x1x2 . . . x6x1 be a 6-cycle and L be a 7-cycle, with C and L disjoint.

If e(C,L) ≥ 22, then C + L is hamiltonian. If e(C,L) ≥ 19 and C + L is not hamiltonian,

then WLOG e(u, L) = 0 for each u ∈ {x2, x4, x6}.

Lemma 5.1.9 Let C be a 6-cycle. If τ(C) ≥ 7, then for each pair of vertices x, y ∈ C, there

is a hamiltonian path from x to y.

Proof: Let C = x1x2 . . . x6x1. Suppose there is no hamiltonian path in C from x1 to xi.

Then i ∈ {3, 4, 5}, so by symmetry we may assume that i = 3 or i = 4. If i = 3, then

e(x2, x6x4) = 0. Since τ(C) ≥ 7, this implies that x1x2x5x6x4x3 is a hamiltonian path, a

contradiction. Hence i = 4. Then x2x5 /∈ E and x3x6 /∈ E, so x1x2x6x5x3x4 is a hamiltonian

path, a contradiction.

Lemma 5.1.10 Let C be a 7-cycle. If τ(C) ≥ 11, then for each pair of vertices x, y ∈ C,

there is a hamiltonian path from x to y.

Proof: Let C = x1x2 . . . x7x1. Suppose there is no hamiltonian path in C from x1 to

xi. Then i ∈ {3, 4, 5, 6}, so by symmetry we may assume that i = 3 or i = 4. If i = 3,

then e(x2, x7x4) = 0 and e(x2, x5x6) ≤ 1. Since τ(C) ≥ 11, this implies that x4x7 ∈ E
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and e(x2, x5x6) = 1. WLOG let x2x5 ∈ E. Then x3x4x7x6x5x2x1 is a hamiltonian path, a

contradiction. Hence i = 4. Then x3x7 /∈ E, x2x5 /∈ E, and if x2x7 ∈ E then e(x3, x5x6) =

0. Since τ(C) ≥ 11, this implies that x2x7 /∈ E. Then x3x5 ∈ E and x2x6 ∈ E, so

x4x5x3x2x6x7x1 is a hamiltonian path, a contradiction.

The following results are due to Wang ([9],[10]).

Lemma 5.1.11 Let G be a graph of order 6(k + 1) with minimum degree at least 3(k + 1).

Then G contains k 6-cycles and a path of order 6, all of which are disjoint. [10]

Lemma 5.1.12 Suppose that G has a hamiltonian path and that e(xy,G) ≥ n + s for any

two endvertices of a hamiltonian path of G, where s is nonnegative. Then for any two distinct

vertices u, v ∈ G, e(uv,G) ≥ n+ s. [9]

Lemma 5.1.13 Suppose that e(xy,G) ≥ n for every two nonadjacent vertices x and y of

G. Then for any two distinct vertices u and v, G has a hamiltonian path from u to v

unless either {u, v} is a vertex-cut of G or G has an independent set X with |X| ≥ n/2 and

{u, v} ⊆ G−X. [9]

5.2 Main Proof

Let G be a graph of order n ≥ 6(k + 1) with minimum degree n/2. Suppose that G does

not contain k disjoint cycles covering all the vertices of G such that k − 1 are 6-cycles. By

Lemma 5.1.1, G is hamiltonian, so k ≥ 2. Let s = n− 6k. By Lemma 5.1.11, G ⊇ kC6 ∪Ps.

Since n ≥ 6k + 6, s ≥ 6. Let Q1, Q2, . . . , Qk be the k disjoint cycles, let H =
∑k

i=1Qi, and

let D = G − H. Then D has a hamiltonian path. Since Qi + D is not hamiltonian, we

see by Lemma 5.1.5 that for each i ∈ {1, 2, . . . , k} and for any two endvertices u and v of a

hamiltonian path of D we have

e(uv,Qi) ≤ 6. (5.1)
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Hence e(uv,D) ≥ dn
2
e+ dn

2
e − 6k, so

e(uv,D) ≥


s+ 1 if s is odd

s if s is even.

(5.2)

Therefore, by Lemma 5.1.12 we know that (5.2) holds for each pair of distinct vertices

u, v ∈ D. Since s ≥ 6, D is hamiltonian. Choose Q1, Q2, . . . , Qk and Ps such that

k∑
i=1

τ(Qi) is maximal. (5.3)

Lemma 5.2.1 Let s ≥ 8. Then D contains a 6-cycle C and a hamiltonian path x1x2 . . . xs−6

in D − C such that e(x1xs−6, H) ≥ 1.

Proof: Since G is hamiltonian, e(u,H) ≥ 1 for some u ∈ D. Thus if s ≥ 11, the

lemma is true by Lemma 5.1.4. Therefore, suppose that s ≤ 10. Since D is hamiltonian,

we see by (5.2) and Lemma 2.1.8 that D contains a 6-cycle C. Choose a 6-cycle C such

that the length of a longest path P in D − C is maximal, and from among all such pairs

C and P choose one such that τ(C) is maximal. We note that since s ≤ 10 and k ≥ 2,

e(uv,H) ≥ 6k + s − 2(s − 1) = 6k − s + 1 ≥ 1 for each u, v ∈ D, so we have only left to

prove that P is a hamiltonian path in D − C.

If s = 8 then |P | = 2 by Lemma 1.4.18 and the maximality of τ(C). If s = 9 then

e(uv,D) ≥ 10 for each u, v ∈ D, so P is hamiltonian by Lemma 1.4.17. Thus we are left

with s = 10. It is clear by Lemma 1.4.17 that |P | ≥ 2, and then by Lemma 1.4.18 that

|P | ≥ 3. Finally, |P | = 4 by Lemma 3.0.1.

We use three cases to complete the proof of Theorem 2.

Case 1: s ≥ 8.

By Lemma 5.2.1, choose a 6-cycle Q′ and vertex u from D such that e(u,H) ≥ 1 and u

is an endvertex of a hamiltonian path in D − Q′. WLOG let e(u,Q1) ≥ 1, and denote Q1
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by Q. If possible, further choose Q′ such that

D −Q′ does not have a vertex-cut of D with order 2. (5.4)

Let D′ = D − Q′ + Q. Since D − Q′ has a hamiltonian path starting at u, and because

e(u,Q) ≥ 1, D′ must have a hamiltonian path. Also, for each i ∈ {1, 2, . . . , k} we know that

D′ +Qi is not hamiltonian. Thus, as above we see that (5.2) holds for each pair of distinct

vertices u, v ∈ D′. Hence D′ is hamiltonian.

Claim: There are independent edges x1y1 and x2y2, with y1, y2 ∈ Q, between Q and D′ −Q

such that Q has a hamiltonian path from y1 to y2.

Proof: Suppose not. Since D′−Q has at least eight vertices and D′ is hamiltonian, there are

independent edges between D′ −Q and Q. Let L be a hamiltonian cycle in D′. Then there

must be an even number of edges from L between Q and D′ −Q, and because there are no

such edges x1y1 and x2y2, there must be at least four edges from L between Q and D′ −Q.

Let Q = a1a2 . . . a6a1, and let P = b1b2 . . . bt, t ≥ 2, be a hamiltonian path in D′ − Q.

Then for at least four ai ∈ Q, there is an edge of L that is incident with ai. WLOG let

a1 and a2 be two such vertices. Since there is a hamiltonian path in Q from a1 to a2,

we have e(a1a2, P ) = 2, and WLOG e(a1a2, b1) = 2 with a1b1a2 ⊆ L. Since there is a

hamiltonian path in Q from a1 to a6, there can be no edge from L between Q and P that

is incident with a6. Similarly, there is no such edge incident with a3. Then e(a4, P ) ≥ 1

and e(a5, P ) ≥ 1, so e(a4a5, P ) = e(a4a5, bi) = 2 for some bi ∈ P − b1, with a4bia5 ⊆ L.

Since e(a1a2, b1) = e(a4a5, bi) = 2, we have e(a3a6, P ) = 0, and hence that t = 2 since D′ is

hamiltonian.

Since (5.2) holds for D′, we have e(D′, D′) ≥ 8(4) = 32. Then, because e(Q,P ) = 4 and

e(P, P ) = 2, this implies that e(Q,Q) ≥ 32 − 2(4) − 2 = 22. Hence τ(Q) ≥ 5. But then

for some j ∈ {1, 2} and some l ∈ {4, 5}, there is a hamiltonian path in Q from aj to al, a
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contradiction.

QED

By the claim, there is no hamiltonian path in D from x1 to x2, for otherwise D+Q would

be hamiltonian. Let X = {x1, x2}. By Lemma 5.1.13, either X is a vertex-cut of D or D

has an independent set Y such that |Y | ≥ s
2

and X ⊆ D − Y .

First suppose that X is a vertex-cut of D. If there is a component U of D − X with

at most s−3
2

vertices, then |U | = 1, for otherwise there is u1, u2 ∈ U with e(u1u2, D) =

e(u1u2, X) + e(u1u2, U) ≤ 4 + 2
(
s−5
2

)
= s−1, contradicting (5.2). In this case, let U = {u′}.

By (5.2), e(u′x,D) ≥ s for each x ∈ D − u′, so e(u′, x1x2) = 2 and e(x,D) ≥ s − 2. This

implies thatD−u′ = Ks−1. If there is no such component U , thenD−X = K(s−2)/2∪K(s−2)/2,

and e(x1x2, x) = 2 for each x ∈ D −X.

Either way we see that D −X has two components, U1 and U2, such that x1 and x2 are

adjacent to each vertex in D − X. Further, both U1 and U2 are complete graphs. WLOG

let |U1| ≥ |U2|. Since x1, x2 ∈ D′, neither x1 nor x2 are in Q′. Thus Q′ ⊆ D − X, so

|U1| ≥ 6. Therefore, let u1 ∈ U1, and let Q′′ be a 6-cycle in U1−u1 +x1 with x1 ∈ Q′′. Then,

since x1 and x2 are adjacent to each vertex in D − X, there is a vertex u2 ∈ U2 such that

there is a hamiltonian path in D − Q′′ from u1 to u2. Since e(u1u2, D) = s, we know that

e(u1u2, H) ≥ 6k, and hence that e(u1u2, Qi) ≥ 1 for some Qi ∈ H. Because U1 and U2 are

complete graphs and x1 ∈ Q′′, and because x2 is adjacent to every vertex in D −X, we see

that D −Q′′ does not have a vertex-cut of D with order 2. But this contradicts (5.4), since

X ⊆ D −Q′ is a vertex-cut of D.

Therefore, D has an independent set Y such that |Y | ≥ s
2

and X ⊆ D − Y . Since Y

is independent, by (5.2) we see that |D − Y | = |Y | = s
2
, and that D contains a complete

bipartite subgraph with (D − Y, Y ) as its bipartition. Let y ∈ Y . Since e(y,D) = s
2
,

e(y,H) ≥ 3k, so e(y,Qi) ≥ 3 for some Qi ∈ H. We may assume that Qi = Q, as the only

condition on Q was that e(Q,D) ≥ 1. Let Q = z1z2 . . . z6z1, where y1 = zj and y2 = zk.

Since D contains Ks/2,s/2 and X ⊆ D − Y , there is a hamiltonian path in D from y to x1
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and from y to x2. From before, we know that there is a hamiltonian path in Q from zj to zk.

Since e(y,Q) ≥ 3, there is zm ∈ Q such that yzm ∈ E and m ∈ {j, k, j−1, j+1, k−1, k+1},

a set of order at least four. Hence, WLOG there is a hamiltonian path in Q from zm to y1.

But x1y1 ∈ E and there is a hamiltonian path in D from y to x1, which means that D + Q

is hamiltonian, a contradiction.

Case 2: s = 6. In this case, n = 6(k + 1) and G contains k + 1 disjoint 6-cycles. Label the

6-cycles Q1, Q2, . . . , Qk+1.

Suppose that for each pair of 6-cycles Qi and Qj in G, we have e(Qi, Qj) = 18. Let

Q1 = x1x2 . . . x6. By Lemma 5.1.7, WLOG we may assume that e(u,Q2) = 6 for each

u ∈ {x1, x3, x5}. Since e(x2x4x6, Q1 +Q2) ≤ 15 + 0 = 15, we know that e(x2x4x6, G−Q1 −

Q2) ≥ 9k + 9 − 15 = 9(k − 1) + 3. Hence e(x2x4x6, Qi) ≥ 10 for some Qi ∈ G − Q1 − Q2.

WLOG let e(x2x4x6, Q3) ≥ 10. By Lemma 5.1.7, this implies that e(x2x4x6, Q3) = 18.

Let Q2 = y1y2 . . . y6y1 and Q3 = z1z2 . . . z6z1. Again by Lemma 5.1.7, we may assume

WLOG that e(u,Q3) = 6 for each u ∈ {y1, y3, y5}. But then z1y1y2x1x2z2z1 is a 6-cycle and

z3z4z5z6y3y4y5y6x3x4x5x6z3 is a 12-cycle, so G contains (k − 1)C6 ∪ C12, a contradiction.

Therefore e(Qi, Qj) 6= 18 for some pair of 6-cycles Qi and Qj in G. By Lemma 5.1.7,

this implies that e(Qi, Qj) ≤ 17. WLOG let e(Q1, Q2) ≤ 17. Since e(Q1, Qi) ≤ 18 for each

i 6= 1, we have e(Q1, Q1) ≥ 18(k + 1)− 18(k − 1)− 17 = 19. Thus τ(Q1) ≥ 4, and similarly

τ(Q2) ≥ 4.

We now claim that for each 6-cycle Qi such that e(Q1, Qi) = 18, e(u,Qi) = 3 for each

u ∈ Q1. Suppose not. By Lemma 5.1.7, we may assume that e(u,Qi) = 6 for each u ∈

{x1, x3, x5}. Then for each pair of vertices xj, xk ∈ {x1, x3, x5}, there is no hamiltonian path

in Q1 from xj to xk by Lemma 5.1.5. Then x2x4 /∈ E, x2x6 /∈ E, and x4x6 /∈ E. Also, since

e(x2x4x6, Qi) = 0, for each pair of vertices xj, xk ∈ {x2, x4, x6} we have e(xjxk, G−Q1−Qi) ≥

6(k + 1) − 10 = 6(k − 1) + 2, so e(xjxk, Qm) ≥ 7 for some Qm ∈ G − Q1 − Qi. By Lemma

5.1.5, there is no hamiltonian path in Q1 from xj to xk. Hence x1x3 /∈ E, x1x5 /∈ E, and

x3x5 /∈ E. But then τ(Q1) ≤ 3, a contradiction. Thus the claim is true, and holds for Q2 as
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well since τ(Q2) ≥ 4.

Suppose that for each i ∈ {3, 4, . . . , k+1}, e(Q1, Qi) = e(Q2, Qi) = 18. By the claim in the

previous paragraph, we have e(u,Qi) = 3 for each u ∈ Q1 +Q2 and each i ∈ {3, 4, . . . , k+1}.

Then for each u ∈ Q1 + Q2, e(u,Q1 + Q2) ≥ 3k + 3 − 3(k − 1) = 6. But then Q1 + Q2 is

hamiltonian, a contradiction. Therefore, WLOG e(Q2, Qi) ≤ 17 for some i ∈ {3, 4, . . . , k+1}.

Then e(Q2, Q1 + Q2) ≥ 18(k + 1) − 18(k − 2) − 17 = 37. Similarly, e(Q1, Q1 + Q2) ≥ 36.

WLOG let

e(y1, Q1) ≥ e(yj, Q1) for each yj ∈ Q2 (5.5)

We break the remainder of the proof into cases. Note that since τ(Q2) ≤ 9, we have

e(Q1, Q2) ≥ 37− 30 = 7.

Case 2.1: e(y1, Q1) ≥ 5. By Lemma 5.1.5, e(y2y6, Q1) = 0. Then there is no hamiltonian

path in Q2 from y2 to y6, for otherwise e(y2y6, G) ≤ 6(k−1)+10 < 6(k+1) by Lemma 5.1.5,

a contradiction. This implies that e(y1, y3y5) = 0. Also, since e(y3y4y5, Q1) ≥ 7 − 6 = 1,

by Lemma 5.1.5 we see that for some i ∈ {3, 4, 5} there is no hamiltonian path in Q2

from y1 to yi. Combining this with the fact that e(y1, y3y5) = 0 we get τ(Q2) ≤ 5, so

e(Q2, Q1) ≥ 37 − 22 = 15. Hence e(y3y4y5, Q1) ≥ 9, so by Lemma 5.1.5 we have that

e(y3, Q1) ≥ 1 and e(y5, Q1) ≥ 1, and therefore also that there is neither a hamiltonian path

in Q2 from y1 to y3, nor a hamiltonian path from y1 to y5. Thus e(y2, y4y6) = 0 and y4y6 /∈ E,

so τ(Q2) = 4 with y3y5 ∈ E. Since y3y5 ∈ E, there is a hamiltonian path in Q2 from y2

to y4, so e(y2y4, G − Q1 − Q2) ≤ 6(k − 1). Then e(y2y4, Q1 + Q2) ≥ 12. Since τ(Q2) = 4,

e(Q1, Q2) ≥ 37 − 20 = 17 and therefore e(y3y4y5, Q1) ≥ 11. Thus e(y4, Q1) ≤ 1 by Lemma

5.1.5. Since e(y2, Q1) = 0, this implies that e(y2y4, Q2) ≥ 12 − 1 = 11. This is clearly

impossible, which completes the case.

Case 2.2: e(y1, Q1) = 4. Suppose that e(y2y6, Q1) = 0. Then e(y2y6, G − Q1 − Q2) ≥

6k + 6 − 10 = 6(k − 1) + 2, so by Lemma 5.1.5 there is no hamiltonian path in Q2 from

y2 to y6. Thus e(y1, y3y5) = 0, so τ(Q2) ≤ 7 and e(Q1, Q2) ≥ 11. Then e(y3y4y5, Q1) ≥ 7,

so e(y3, Q1) ≥ 1 and e(y5, Q1) ≥ 1 by Lemma 5.1.5. If there is no hamiltonian path y1
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to y3 and no hamiltonian path from y1 to y5, then e(y2, y4y6) = 0 and y4y6 /∈ E. Then

τ(Q2) = 4, so e(y3y4y5, Q1) ≥ 37 − 20 − 4 = 13, contradicting Lemma 5.1.5. Otherwise,

by Lemma 5.1.5 we see that N(y1, Q1) = {x1, x2, x3, x5}, and that for some i ∈ {3, 5},

e(yi, Q1) = 1 with yix5 ∈ E. WLOG let e(y3, Q1) = 1 with y3x5 ∈ E. Then e(y4y5, Q1) = 6.

It is easy to see from Lemma 5.1.5 that e(y4, Q1) ≤ 3, so e(y5, Q1) ≥ 3 and thus there

is no hamiltonian path from y1 to y5. Then e(y6, y2y4) = 0, so τ(Q2) ≤ 5 and therefore

e(y4y5, Q1) ≥ 37− 22− 4− 1 = 10, again contradicting Lemma 5.1.5.

Therefore e(y2y6, Q1) > 0. WLOG let e(y2, Q1) > 0. By Lemma 5.1.5 we see that

e(y1, x1x2x3x5) = 4, and e(y2, Q1) = 1 with y2x5 ∈ E. Then for each i ∈ {1, 2, 3}, there

is no hamiltonian path in Q1 from x5 to xi. This implies that τ(x6, Q1) = τ(x4, Q1) =

0, so τ(Q1) = 4. Hence e(Q1, Q2) ≥ 36 − 20 = 16. Since e(y1y2y6, Q1) ≤ 6, we have

e(y3y4y5, Q1) ≥ 10. This implies that e(y4, Q1) = 0 by Lemma 5.1.5. Then e(y3y5, Q1) ≥ 10,

and since y2x5 ∈ E we see that e(y5, Q1) = 6 and e(y3, x1x2x3x5) = 4. But then e(y6, Q1) = 0,

so e(Q1, Q2) ≤ 6 + 4 + 4 + 1 = 15 < 16, a contradiction.

Case 2.3: e(y1, Q1) = 3. Note that since e(Q1, Q2) ≥ 7, we have e(Q1, Q2) ≥ 12 by

Lemma 5.1.9, for otherwise τ(Q1) ≥ 7 and τ(Q2) ≥ 7.

Suppose that e(y2y6, Q1) ≤ 2. If there is a hamiltonian path in Q2 from y2 to y6, then

e(y2y6, Q1 + Q2) ≥ 12, so τ(y2, Q2) = τ(y6, Q2) = 3. Then for each i ∈ {2, 3, 4, 5, 6}, there

is a hamiltonian path in Q2 from y1 to yi. Since e(Q1, Q2) ≥ 12, we have e(y3y4y5, Q1) ≥

12− 5 = 7. Then WLOG e(y1, x1x3x5) = 3 and e(Q2 − y1, x2x4x6) = 0. Therefore, because

e(x1x3x5, Q2) = 0 we see that for each xi, xj ∈ {x1, x3, x5}, e(xixj, Q1 +Q2) ≤ 10. Then by

Lemma 5.1.5 there is no hamiltonian path in Q1 from xi to xj, so x2x6 /∈ E, x2x4 /∈ E, and

x4x6 /∈ E. Also, because e(y1, x1x3x5) = 3 and e(y3y4y5, x1x3x5) ≥ 7, we similarly see that

x1x3 /∈ E, x1x5 /∈ E, and x3x5 /∈ E. But then τ(Q1) ≤ 3, a contradiction. Thus there is no

hamiltonian path in Q2 from y2 to y6, so e(y1, y3y5) = 0. Since e(yi, Q1) ≤ 3 for each yi ∈ Q2,

and e(y2y6, Q1) ≤ 2, we have e(Q2, Q1) ≤ 14. Then τ(Q2) ≥ 6, so for each yi ∈ Q2 there is a

y1 − yi hamiltonian path. As in the last paragraph we see that τ(Q1) ≤ 3, a contradiction.
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Therefore e(y2y6, Q1) ≥ 3, which implies that WLOG e(y1, x1x3x5) = 3 and e(y2y6, x2x4x6) =

0. Since e(y2y6, x1x3x5) ≥ 3, for each xi, xj ∈ {x1, x3, x5} there is no hamiltonian path in

Q1 from xi to xj. Then x2x4 /∈ E, x2x6 /∈ E, and x4x6 /∈ E. Hence either x1x3 ∈ E,

x1x5 ∈ E, or x3x5 ∈ E, so WLOG there is a hamiltonian path in Q1 from x2 to x4. Then

e(x2x4, Q1 + Q2) ≥ 12, and because τ(xi, Q1) ≤ 3 for each i ∈ {2, 4, 6}, this implies that

e(x2x4, Q2) ≥ 6. But then e(x2x4, y3y4y5) ≥ 6, so clearly Q1 + Q2 is hamiltonian, a contra-

diction.

Case 2.4: e(y1, Q1) = 2. As noted in the previous case e(Q1, Q2) ≥ 12, so e(yi, Q1) = 2

for each yi ∈ Q2. Further e(Q2, Q2) ≥ 37− 12 = 25, so τ(Q2) ≥ 7. If e(y1, x1x2) = 2 then by

Lemma 5.1.9 e(Q2−y1, x6x1x2x3) = 0, so e(Q2−y1, x4x5) = 10. Then Q1+Q2 is hamiltonian,

a contradiction. If e(y1, x1x4) = 2, then similarly we have e(Q2 − y1, x1x4) = 10. But then

e(x2x3, Q1 +Q2) ≤ 10, so e(x2x3, Qi) ≥ 7 for some Qi ∈ G−Q1, contradicting Lemma 5.1.5.

Then WLOG e(y1, x1x3) = 2, and so e(Q2−y1, x1x3x5) = 10 by Lemma 5.1.9. Clearly, there

is no hamiltonian path in Q1 from x1 to x3, so e(x2, x4x6) = 0. Since τ(Q1) ≥ 6, either

x1x3 ∈ E, x1x5 ∈ E, or x3x5 ∈ E. Therefore, WLOG there is a hamiltonian path in Q1 from

x2 to x4. This clearly contradicts Lemma 5.1.5, since e(x2x4, Q1) = 0.

Case 3: s = 7. By (5.2), e(uv,D) ≥ 8 for each u, v ∈ D. Hence for each x ∈ D, D − x is

hamiltonian. Let L = a1a2 . . . a7a1 be a hamiltonian cycle in D. WLOG let

τ(a1, L) ≤ τ(ai, L) for each ai ∈ L. (5.6)

Suppose that τ(L) ≥ 11. Let L′ be a hamiltonian cycle in D−a1. Then τ(L′) ≥ 7. Since

e(a1, L) ≤ 6, we have e(a1, H) ≥ 3k + 4− 6 ≥ 1, so e(a1, Qi) ≥ 1 for some Qi ∈ H. WLOG

let e(a1, Q1) ≥ 1. Then Q1 + a1 has a hamiltonian path, and hence is hamiltonian by (5.2).

This implies that τ(Q1) ≥ 7 by (5.3). Hence we see from Lemmas 5.1.9 and 5.1.10 that there

are no independent edges between Q1 and D. Because Q1 +a1 is hamiltonian, e(a1, Q1) ≥ 2,

so e(ai, Q1) = 0 for each i 6= 1. Then e(D,Q1) ≤ 6, and by Lemma 5.1.8 e(D,Qi) ≤ 21 for
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each i 6= 1. Thus e(D,D) ≥ 21k + 28− 21(k − 1)− 6 = 43 > 42, a contradiction. Therefore

τ(L) ≤ 10.

Suppose that there is Qi ∈ H such that e(D,Qi) ≥ 19, and WLOG let e(D,Q1) ≥ 19. Let

Q1 = x1x2 . . . x6x1. By Lemma 5.1.8, WLOG we have e(u,D) = 0 for each u ∈ {x2, x4, x6}.

Then clearly, for each pair of vertices xi, xj ∈ {x1, x3, x5} there is no hamiltonian path in

Q1 from xi to xj. Hence x2x4 /∈ E, x2x6 /∈ E, and x4x6 /∈ E. Then e(x2x4, Qi) ≥ 7

for some Qi ∈ H − Q1. Thus, if there is a hamiltonian path in Q1 from x2 to x4, then

Q1 +Qi has a hamiltonian cycle C such that at least two of x1, x3, x5 are consecutive on C.

Since e(D, x1x3x5) ≥ 19, there is u ∈ D such that e(u, x1x3x5) = 3. Then Q1 + Qi + u is

hamiltonian, a contradiction because D − u is hamiltonian.

Hence there is no hamiltonian path in Q1 from x2 to x4, and similarly no such x2−x6 path

nor x4 − x6 path. Then x1x3 /∈ E, x1x5 /∈ E, and x3x5 /∈ E, so τ(Q1) ≤ 3. Since τ(L) ≤ 10

we know that τ(a1, L) ≤ 2 by (5.6). Let L′ be a hamiltonian cycle in D − a1. Then

τ(L′) ≥ τ(L) − 3 since τ(a1, L) ≤ 2. Because e(D, x1x3x5) ≥ 19, e(a1, Q1) ≥ 1, so Q1 + a1

is hamiltonian is hamiltonian by (5.1). Thus by (5.3) we see that τ(L′) ≤ 3, so τ(L) ≤ 6

and hence e(D,D) ≤ 26. Then by Lemma 5.1.8 we have e(D,G) ≤ 26 + 21k < 7(4 + 3k), a

contradiction.

So e(D,Qi) ≤ 18 for each Qi ∈ H, and since τ(L) ≤ 10 we have e(D,G) ≤ 18k + 34.

Therefore, because e(D,G) ≥ 21k + 28 we have k = 2, e(D,Q1) = e(D,Q2) = 18, and

e(D,D) = 34.

Suppose that Q1 + Q2 is hamiltonian, and WLOG let Q = x1x2 . . . x6y6y5 . . . y1x1 be a

hamiltonian cycle in Q1 +Q2. For each u ∈ D, we know that Q1 +Q2 +u is not hamiltonian

because D − u is hamiltonian. Then for each u ∈ D, e(u,Q1) ≤ 3 and e(u,Q2) ≤ 3.

Since τ(L) ≤ 10, we know that τ(a1, L) ≤ 2 by (5.6), so (a1, Q1) = e(a1, Q2) = 3 and

τ(a1, L) = 2. WLOG let e(a1, x1x3x5y2y4y6) = 6. Then for each x ∈ {x3, x5, y2.y4, y6},

there is no hamiltonian path in Q1 + Q2 from x1 to x. Hence e(y1, x2x4x6y3y5) = 0, so

e(y1, D) ≥ 10− 6 = 4. Since e(a1, y2y4y6) = 3 and Q2 +D is not hamiltonian, we know that
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e(a2a7, y1y3y5) = 0. Because y1a1 /∈ E and (y1, D) ≥ 4, this implies that e(y1, a3a4a5a6) =

4. Therefore e(y2y6, a2a7) = 0, so e(a2a7, Q2) = e(a2a7, y4) ≤ 2. By symmetry in the

hamiltonian cycle Q, we see that e(a2a7, Q1) = e(a2a7, x5) ≤ 2. But then e(a2a7, D) ≥

20− 4 = 16, a contradiction.

Therefore Q1 + Q2 is not hamiltonian, so by Lemma 5.1.7 e(Q1, Q2) ≤ 18. Then

e(Q1, Q1) ≥ 60− 2(18) = 24, and similarly e(Q2, Q2) ≥ 24. Then τ(Q1) ≥ 6 and τ(Q2) ≥ 6.

Relabel L as L = v1v2 . . . v7v1, and suppose e(vi, Q1) = 6 for some vi ∈ L. WLOG let

e(v1, Q1) = 6.

Since L+Q1 is not hamiltonian, we have e(v2v7, Q1) = 0. Hence e(v3v4v5v6, Q1) ≥ 12, so

e(v3v4, Q1) = e(v5v6, Q1) = 6 by Lemma 5.1.5. Suppose that there is no hamiltonian path

in L from v1 to v3. Then e(v2, v4v7) = 0 and e(v2, v5v6) ≤ 1, so since τ(L) = 10 we have

τ(v7, L) ≥ 2. Hence there is a hamiltonian path in L from v1 to v6, so e(v6, Q1) = 0. Then

e(v5, Q1) = 6, so there is no hamiltonian path in L from v1 to v5. Hence v4v7 /∈ E and

v2v6 /∈ E, so since e(v2, v4v7) = 0 and τ(L) = 10 we know that v2v5 ∈ E and v4v6 ∈ E. But

then v1v7v6v4v5v2v3 is a hamiltonian path from v1 to v3, a contradiction.

Thus there is a hamiltonian path in L from v1 to v3, so e(v3, Q1) = 0. Then e(v4, Q1) = 6,

so there is no hamiltonian path from v1 to v4. Hence v2v5 /∈ E, v3v7 /∈ E, and either v2v7 /∈ E

or v3v5 /∈ E. Then v2v6 ∈ E or v4v7 ∈ E, so there is a hamiltonian path from v1 to v5. Thus

e(v5, Q1) = 0 and e(v6, Q1) = 6. Then there is no hamiltonian path from v1 to v6, so

e(v7, v2v5) = 0. Since v2v5 /∈ E and v3v7 /∈ E, and because τ(L) = 10, this implies that

v3v5 ∈ E and v2v6 ∈ E. But then v4v5v3v2v6v7v1 is a hamiltonian path from v1 to v4, a

contradiction.

Then there is no vi ∈ L with e(vi, Q1) = 6. Since e(L,Q1) = 18, there is vi, vi+1 ∈

L such that e(vivi+1, Q1) ≥ 6. WLOG let e(v1v2, Q1) = 6. By Lemma 5.1.5, we have

e(v1, Q1) = e(v2, Q1) = 3, and WLOG e(v1v2, x1x3x5) = 6. Since there is no hamiltonian

path from x1 to x3 and no hamiltonian path from x1 to x5, we know that e(x2, x4x6) = 0 and

x4x6 /∈ E. Then e(x1, x3x5) = 2 and x3x5 ∈ E since τ(Q1) ≥ 6. Then there is a hamiltonian
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path in Q1 from x2 to x4, so e(x2x4, Q2) ≤ 6 by Lemma 5.1.5. Since e(x2, x4x6) = 0 and

x4x6 /∈ E, we also know that e(x2x4, Q1) ≤ 6. Hence e(x2x4, D) ≥ 20− 12 = 8, and because

e(v1v2, x2x4x6) = 0 we have e(x2x4, v3v4v5v6v7) ≥ 8. Thus e(x2x4, v3v7) ≥ 1, a contradiction

because e(v1v2, x1x3x5) = 6 and Q1 +Q2 is not hamiltonian.
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Appendix A: Lemmas 1.4.6-1.4.14

Appendix A.1: Lemma 1.4.6

1. N(u,C) = {v1, v2, v3, v4}.

u→ (C, v2) and u→ (C, v3).a) If u9 (C, v1) then e(v6, v2v3) = 0.b)

If u9 (C, v4) then e(v5, v2v3) = 0.c) If u9 (C, v5) then τ(v6, C) = 0.d)

If u9 (C, v6) then τ(v5, C) = 0.e)

2. N(u,C) = {v2, v3, v4, v5}.

u→ (C, v3) and u→ (C, v4).a) If u9 (C, v2) then e(v1, v3v4) = 0.b)

If u9 (C, v5) then e(v6, v3v4) = 0.c) If u9 (C, v6) then τ(v1, C) = 0.d)

If u9 (C, v1) then τ(v6, C) = 0.e)

3. N(u,C) = {v3, v4, v5, v6}.

u→ (C, v4) and u→ (C, v5).a) If u9 (C, v3) then e(v2, v4v5) = 0.b)

If u9 (C, v6) then e(v1, v4v5) = 0.c) If u9 (C, v1) then τ(v2, C) = 0.d)

If u9 (C, v2) then τ(v1, C) = 0.e)

4. N(u,C) = {v4, v5, v6, v1}.

u→ (C, v5) and u→ (C, v6).a) If u9 (C, v4) then e(v3, v5v6) = 0.b)

If u9 (C, v1) then e(v2, v5v6) = 0.c) If u9 (C, v2) then τ(v3, C) = 0.d)

If u9 (C, v3) then τ(v2, C) = 0.e)

5. N(u,C) = {v5, v6, v1, v2}.
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u→ (C, v6) and u→ (C, v1).a) If u9 (C, v5) then e(v4, v6v1) = 0.b)

If u9 (C, v2) then e(v3, v6v1) = 0.c) If u9 (C, v3) then τ(v4, C) = 0.d)

If u9 (C, v4) then τ(v3, C) = 0.e)

6. N(u,C) = {v6, v1, v2, v3}.

u→ (C, v1) and u→ (C, v2).a) If u9 (C, v6) then e(v5, v1v2) = 0.b)

If u9 (C, v3) then e(v4, v1v2) = 0.c) If u9 (C, v4) then τ(v5, C) = 0.d)

If u9 (C, v5) then τ(v4, C) = 0.e)

Appendix A.2: Lemma 1.4.7

1. N(u,C) = {v1, v2, v3, v5}.

u→ (C, v2), u→ (C, v4), and u→ (C, v6).a)

If u9 (C, v1) then e(v6, v2v4) = 0.b)

If u9 (C, v3) then e(v4, v2v6) = 0.c)

If u9 (C, v5) then v4v6 /∈ E and e(v2, v4v6) ≤ 1.d)

2. N(u,C) = {v2, v3, v4, v6}.

u→ (C, v3), u→ (C, v5), and u→ (C, v1).a)

If u9 (C, v2) then e(v1, v3v5) = 0.b)

If u9 (C, v4) then e(v5, v3v1) = 0.c)

If u9 (C, v6) then v5v1 /∈ E and e(v3, v5v1) ≤ 1.d)

3. N(u,C) = {v3, v4, v5, v1}.



172

u→ (C, v4), u→ (C, v6), and u→ (C, v2).a)

If u9 (C, v3) then e(v2, v4v6) = 0.b)

If u9 (C, v5) then e(v6, v4v2) = 0.c)

If u9 (C, v1) then v6v2 /∈ E and e(v4, v6v2) ≤ 1.d)

4. N(u,C) = {v4, v5, v6, v2}.

u→ (C, v5), u→ (C, v1), and u→ (C, v3).a)

If u9 (C, v4) then e(v3, v5v1) = 0.b)

If u9 (C, v6) then e(v1, v5v3) = 0.c)

If u9 (C, v2) then v1v3 /∈ E and e(v5, v1v3) ≤ 1.d)

5. N(u,C) = {v5, v6, v1, v3}.

u→ (C, v6), u→ (C, v2), and u→ (C, v4).a)

If u9 (C, v5) then e(v4, v6v2) = 0.b)

If u9 (C, v1) then e(v2, v6v4) = 0.c)

If u9 (C, v3) then v2v4 /∈ E and e(v6, v2v4) ≤ 1.d)

6. N(u,C) = {v6, v1, v2, v4}.

u→ (C, v1), u→ (C, v3), and u→ (C, v5).a)

If u9 (C, v6) then e(v5, v1v3) = 0.b)

If u9 (C, v2) then e(v3, v1v5) = 0.c)

If u9 (C, v4) then v3v5 /∈ E and e(v1, v3v5) ≤ 1.d)
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Appendix A.3: Lemma 1.4.8

In this Lemma, the cases j = 1, 2, 3, are the same as j = 4, 5, 6, respectively.

1. N(u,C) = {v1, v2, v4, v5}.

u→ (C, v3) and u→ (C, v6).a)

If u9 (C, v1) or u9 (C, v5), then τ(v6, C) = 0.b)

If u9 (C, v2) or u9 (C, v4), then τ(v3, C) = 0.c)

2. N(u,C) = {v2, v3, v5, v6}.

u→ (C, v4) and u→ (C, v1).a)

If u9 (C, v2) or u9 (C, v6), then τ(v1, C) = 0.b)

If u9 (C, v3) or u9 (C, v5), then τ(v4, C) = 0.c)

3. N(u,C) = {v3, v4, v6, v1}.

u→ (C, v5) and u→ (C, v2).a)

If u9 (C, v3) or u9 (C, v1), then τ(v2, C) = 0.b)

If u9 (C, v4) or u9 (C, v6), then τ(v5, C) = 0.c)

Appendix A.4: Lemma 1.4.9

1. N(u,C) = {v1, v2, v3}.

u→ (C, v2).a) If u9 (C, v1) then v2v6 /∈ E.b)

If u9 (C, v3) then v2v4 /∈ E.c) If u9 (C, v4) then e(v5, v2v3) = 0.d)

If u9 (C, v5) then v4v6 /∈ E and e(v2, v4v6) ≤ 1.e)

If u9 (C, v6) then e(v5, v1v2) = 0.f)
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2. N(u,C) = {v2, v3, v4}.

u→ (C, v3).a) If u9 (C, v2) then v3v1 /∈ E.b)

If u9 (C, v4) then v3v5 /∈ E.c) If u9 (C, v5) then e(v6, v3v4) = 0.d)

If u9 (C, v6) then v5v1 /∈ E and e(v3, v5v1) ≤ 1.e)

If u9 (C, v1) then e(v6, v2v3) = 0.f)

3. N(u,C) = {v3, v4, v5}.

u→ (C, v4).a) If u9 (C, v3) then v4v2 /∈ E.b)

If u9 (C, v5) then v4v6 /∈ E.c) If u9 (C, v6) then e(v1, v4v5) = 0.d)

If u9 (C, v1) then v6v2 /∈ E and e(v4, v6v2) ≤ 1.e)

If u9 (C, v2) then e(v1, v3v4) = 0.f)

4. N(u,C) = {v4, v5, v6}.

u→ (C, v5).a) If u9 (C, v4) then v5v3 /∈ E.b)

If u9 (C, v6) then v5v1 /∈ E.c) If u9 (C, v1) then e(v2, v5v6) = 0.d)

If u9 (C, v2) then v1v3 /∈ E and e(v5, v1v3) ≤ 1.e)

If u9 (C, v3) then e(v2, v4v5) = 0.f)

5. N(u,C) = {v5, v6, v1}.

u→ (C, v6).a) If u9 (C, v5) then v6v4 /∈ E.b)

If u9 (C, v1) then v6v2 /∈ E.c) If u9 (C, v2) then e(v3, v6v1) = 0.d)

If u9 (C, v3) then v2v4 /∈ E and e(v6, v2v4) ≤ 1.e)

If u9 (C, v4) then e(v3, v5v6) = 0.f)

6. N(u,C) = {v6, v1, v2}.
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u→ (C, v1).a) If u9 (C, v6) then v1v5 /∈ E.b)

If u9 (C, v2) then v1v3 /∈ E.c) If u9 (C, v3) then e(v4, v1v2) = 0.d)

If u9 (C, v4) then v3v5 /∈ E and e(v1, v3v5) ≤ 1.e)

If u9 (C, v5) then e(v4, v6v1) = 0.f)

Appendix A.5: Lemma 1.4.10

1. N(u,C) = {v1, v2, v4}.

u→ (C, v3).a) If u9 (C, v1) then v3v6 /∈ E.b)

If u9 (C, v2) then v3v5 /∈ E and e(v3, v1v6) ≤ 1.c)

If u9 (C, v4) then v3v5 /∈ E, and either v3v6 /∈ E or v1v5 /∈ E.d)

If u9 (C, v5) then τ(v6, C) = 0.e)

If u9 (C, v6) then e(v5, v1v3) = 0, and either v1v3 /∈ E or v2v5 /∈ E.f)

2. N(u,C) = {v2, v3, v5}.

u→ (C, v4).a) If u9 (C, v2) then v4v1 /∈ E.b)

If u9 (C, v3) then v4v6 /∈ E and e(v4, v2v1) ≤ 1.c)

If u9 (C, v5) then v4v6 /∈ E, and either v4v1 /∈ E or v2v6 /∈ E.d)

If u9 (C, v6) then τ(v1, C) = 0.e)

If u9 (C, v1) then e(v6, v2v4) = 0, and either v2v4 /∈ E or v3v6 /∈ E.f)

3. N(u,C) = {v3, v4, v6}.
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u→ (C, v5).a) If u9 (C, v3) then v5v2 /∈ E.b)

If u9 (C, v4) then v5v1 /∈ E and e(v5, v3v2) ≤ 1.c)

If u9 (C, v6) then v5v1 /∈ E, and either v5v2 /∈ E or v3v1 /∈ E.d)

If u9 (C, v1) then τ(v2, C) = 0.e)

If u9 (C, v2) then e(v1, v3v5) = 0, and either v3v5 /∈ E or v4v1 /∈ E.f)

4. N(u,C) = {v4, v5, v1}.

u→ (C, v6).a) If u9 (C, v4) then v6v3 /∈ E.b)

If u9 (C, v5) then v6v2 /∈ E and e(v6, v4v3) ≤ 1.c)

If u9 (C, v1) then v6v2 /∈ E, and either v6v3 /∈ E or v4v2 /∈ E.d)

If u9 (C, v2) then τ(v3, C) = 0.e)

If u9 (C, v3) then e(v2, v4v6) = 0, and either v4v6 /∈ E or v5v2 /∈ E.f)

5. N(u,C) = {v5, v6, v2}.

u→ (C, v1).a) If u9 (C, v5) then v1v4 /∈ E.b)

If u9 (C, v6) then v1v3 /∈ E and e(v1, v5v4) ≤ 1.c)

If u9 (C, v2) then v1v3 /∈ E, and either v1v4 /∈ E or v5v3 /∈ E.d)

If u9 (C, v3) then τ(v4, C) = 0.e)

If u9 (C, v4) then e(v3, v5v1) = 0, and either v5v1 /∈ E or v6v3 /∈ E.f)

6. N(u,C) = {v6, v1, v3}.

u→ (C, v2).a) If u9 (C, v6) then v2v5 /∈ E.b)

If u9 (C, v1) then v2v4 /∈ E and e(v2, v6v5) ≤ 1.c)

If u9 (C, v3) then v2v4 /∈ E, and either v2v5 /∈ E or v6v4 /∈ E.d)

If u9 (C, v4) then τ(v5, C) = 0.e)

If u9 (C, v5) then e(v4, v6v2) = 0, and either v6v2 /∈ E or v1v4 /∈ E.f)
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Appendix A.6: Lemma 1.4.11

In this Lemma, the cases j = 3, 5, are the same as j = 1, and the cases j = 4, 6, are the

same as j = 2.

1. N(u,C) = {v1, v3, v5}.

u→ (C, vi) for each i ∈ {2, 4, 6}.a)

If u9 (C, vi) for some i ∈ {1, 3, 5}, then e(v2, v4) + e(v2, v6) + e(v4, v6) ≤ 1.b)

2. N(u,C) = {v2, v4, v6}.

u→ (C, vi) for each i ∈ {1, 3, 5}.a)

If u9 (C, vi) for some i ∈ {2, 4, 6}, then e(v1, v3) + e(v1, v5) + e(v3, v5) ≤ 1.b)

Appendix A.7: Lemma 1.4.12

1. N(u,C) = {v1, v2}.

If u9 (C, v3) then v2v4 /∈ E, and either v2v6 /∈ E or v1v4 /∈ E.a)

If u9 (C, v4) then v3v5 /∈ E, and either v1v5 /∈ E or v3v6 /∈ E.b)

If u9 (C, v5) then v4v6 /∈ E, and either v2v4 /∈ E or v3v6 /∈ E.c)

If u9 (C, v6) then v1v5 /∈ E, and either v1v3 /∈ E or v2v5 /∈ E.d)

2. N(u,C) = {v2, v3}.

If u9 (C, v4) then v3v5 /∈ E, and either v3v1 /∈ E or v2v5 /∈ E.a)

If u9 (C, v5) then v4v6 /∈ E, and either v2v6 /∈ E or v4v1 /∈ E.b)

If u9 (C, v6) then v5v1 /∈ E, and either v3v5 /∈ E or v4v1 /∈ E.c)

If u9 (C, v1) then v2v6 /∈ E, and either v2v4 /∈ E or v3v6 /∈ E.d)
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3. N(u,C) = {v3, v4}.

If u9 (C, v5) then v4v6 /∈ E, and either v4v2 /∈ E or v3v6 /∈ E.a)

If u9 (C, v6) then v5v1 /∈ E, and either v3v1 /∈ E or v5v2 /∈ E.b)

If u9 (C, v1) then v6v2 /∈ E, and either v4v6 /∈ E or v5v2 /∈ E.c)

If u9 (C, v2) then v3v1 /∈ E, and either v3v5 /∈ E or v4v1 /∈ E.d)

4. N(u,C) = {v4, v5}.

If u9 (C, v6) then v5v1 /∈ E, and either v5v3 /∈ E or v4v1 /∈ E.a)

If u9 (C, v1) then v6v2 /∈ E, and either v4v2 /∈ E or v6v3 /∈ E.b)

If u9 (C, v2) then v1v3 /∈ E, and either v5v1 /∈ E or v6v3 /∈ E.c)

If u9 (C, v3) then v4v2 /∈ E, and either v4v6 /∈ E or v5v2 /∈ E.d)

5. N(u,C) = {v5, v6}.

If u9 (C, v1) then v6v2 /∈ E, and either v6v4 /∈ E or v5v2 /∈ E.a)

If u9 (C, v2) then v1v3 /∈ E, and either v5v3 /∈ E or v1v4 /∈ E.b)

If u9 (C, v3) then v2v4 /∈ E, and either v6v2 /∈ E or v1v4 /∈ E.c)

If u9 (C, v4) then v5v3 /∈ E, and either v5v1 /∈ E or v6v3 /∈ E.d)

6. N(u,C) = {v6, v1}.

If u9 (C, v2) then v1v3 /∈ E, and either v1v5 /∈ E or v6v3 /∈ E.a)

If u9 (C, v3) then v2v4 /∈ E, and either v6v4 /∈ E or v2v5 /∈ E.b)

If u9 (C, v4) then v3v5 /∈ E, and either v1v3 /∈ E or v2v5 /∈ E.c)

If u9 (C, v5) then v6v4 /∈ E, and either v6v2 /∈ E or v1v4 /∈ E.d)
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Appendix A.8: Lemma 1.4.13

1. N(u,C) = {v1, v3}.

u→ (C, v2).a)

If u9 (C, v4) then v2v5 /∈ E, and either v3v5 /∈ E or v2v6 /∈ E.b)

If u9 (C, v5) then e(v2, v4) + e(v2, v6) + e(v4, v6) ≤ 1.c)

If u9 (C, v6) then v2v5 /∈ E, and either v1v5 /∈ E or v2v4 /∈ E.d)

2. N(u,C) = {v2, v4}.

u→ (C, v3).a)

If u9 (C, v5) then v3v6 /∈ E, and either v4v6 /∈ E or v3v1 /∈ E.b)

If u9 (C, v6) then e(v3, v5) + e(v3, v1) + e(v5, v1) ≤ 1.c)

If u9 (C, v1) then v3v6 /∈ E, and either v2v6 /∈ E or v3v5 /∈ E.d)

3. N(u,C) = {v3, v5}.

u→ (C, v4).a)

If u9 (C, v6) then v4v1 /∈ E, and either v5v1 /∈ E or v4v2 /∈ E.b)

If u9 (C, v1) then e(v4, v6) + e(v4, v2) + e(v6, v2) ≤ 1.c)

If u9 (C, v2) then v4v1 /∈ E, and either v3v1 /∈ E or v4v6 /∈ E.d)

4. N(u,C) = {v4, v6}.

u→ (C, v5).a)

If u9 (C, v1) then v5v2 /∈ E, and either v6v2 /∈ E or v5v3 /∈ E.b)

If u9 (C, v2) then e(v5, v1) + e(v5, v3) + e(v1, v3) ≤ 1.c)

If u9 (C, v3) then v5v2 /∈ E, and either v4v2 /∈ E or v5v1 /∈ E.d)
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5. N(u,C) = {v5, v1}.

u→ (C, v6).a)

If u9 (C, v2) then v6v3 /∈ E, and either v1v3 /∈ E or v6v4 /∈ E.b)

If u9 (C, v3) then e(v6, v2) + e(v6, v4) + e(v2, v4) ≤ 1.c)

If u9 (C, v4) then v6v3 /∈ E, and either v5v3 /∈ E or v6v2 /∈ E.d)

6. N(u,C) = {v6, v2}.

u→ (C, v1).a)

If u9 (C, v3) then v1v4 /∈ E, and either v2v4 /∈ E or v1v5 /∈ E.b)

If u9 (C, v4) then e(v1, v3) + e(v1, v5) + e(v3, v5) ≤ 1.c)

If u9 (C, v5) then v1v4 /∈ E, and either v6v4 /∈ E or v1v3 /∈ E.d)

Appendix A.9: Lemma 1.4.14

In this lemma, the cases j = 1, 2, 3, are the same as j = 4, 5, 6, respectively.

1. N(u,C) = {v1, v4}.

If u9 (C, v2) then v3v5 /∈ E, e(v3, v1v6) ≤ 1, and either v3v6 /∈ E or v1v5 /∈ E.a)

If u9 (C, v3) then v2v6 /∈ E, e(v2, v4v5) ≤ 1, and either v2v5 /∈ E or v4v6 /∈ E.b)

If u9 (C, v5) then v2v6 /∈ E, e(v6, v3v4) ≤ 1, and either v2v4 /∈ E or v3v6 /∈ E.c)

If u9 (C, v6) then v3v5 /∈ E, e(v5, v1v2) ≤ 1, and either v1v3 /∈ E or v2v5 /∈ E.d)

2. N(u,C) = {v2, v5}.

If u9 (C, v3) then v4v6 /∈ E, e(v4, v2v1) ≤ 1, and either v4v1 /∈ E or v2v6 /∈ E.a)

If u9 (C, v4) then v3v1 /∈ E, e(v3, v5v6) ≤ 1, and either v3v6 /∈ E or v5v1 /∈ E.b)

If u9 (C, v6) then v3v1 /∈ E, e(v1, v4v5) ≤ 1, and either v3v5 /∈ E or v4v1 /∈ E.c)

If u9 (C, v1) then v4v6 /∈ E, e(v6, v2v3) ≤ 1, and either v2v4 /∈ E or v3v6 /∈ E.d)
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3. N(u,C) = {v3, v6}.

If u9 (C, v4) then v5v1 /∈ E, e(v5, v3v2) ≤ 1, and either v5v2 /∈ E or v3v1 /∈ E.a)

If u9 (C, v5) then v4v2 /∈ E, e(v4, v6v1) ≤ 1, and either v4v1 /∈ E or v6v2 /∈ E.b)

If u9 (C, v1) then v4v2 /∈ E, e(v2, v5v6) ≤ 1, and either v4v6 /∈ E or v5v2 /∈ E.c)

If u9 (C, v2) then v5v1 /∈ E, e(v1, v3v4) ≤ 1, and either v3v5 /∈ E or v4v1 /∈ E.d)

Appendix B: List of Symbols

uv ∈ E: The vertices u and v are adjacent 1

uv /∈ E: The vertices u and v are not adjacent 1

N(v,G): The neighborhood of v in G. . . 1

degGv: The degree of v in G. . . 1

δ(G): Minimum degree in G. . . 1

∆(G): Maximum degree in G. . . 1

Kn: Complete graph of order n. . . 2

Pn: Path of order n. . . 2

Cn: Cycle of order n. . . 2

v1 − vn path: A path of order n with v1 and vn as endvertices. . . 2

v1v2 . . . vn: A path of order n, or the subgraph induced by {v1, . . . , vn}. . . 2 and 4

v1v2 . . . vnv1: A cycle of order n. . . 2

dG(v1, v2): The distance in G between v1 and v2. . . 2

Kr,s: The complete bipartite graph on r + s vertices. . . 2

G1 ∪G2: The union of G1 and G2. . . 2

G: The complement of G. . . 3

G = Cn: G is an n-cycle. . . 3

G = Pn: G is a path of order n. . . 3
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G = Kn: G is a complete graph of order n. . . 3

WLOG: Without loss of generality. . . 3

N(G1, G2): The set of all vertices in G2 that are adjacent to some vertex in G1. . . 3

N(v1v2 . . . vn, G): The set of all vertices in G that are adjacent to some vi, 1 ≤ i ≤ n. . . 3

u ∈ G: Vertex u is in V (G). . . 3

u /∈ G: Vertex u is not in V (G). . . 3

l(C): Length of the cycle C. . . 3

e(G1, G2): The sum of degrees in G2 of vertices from G1. . . 4

e(v,G): The degree of v in G. . . 4

e(v1 . . . vn, G): The sum of degrees in G of vertices in {v1, . . . , vn}. . . 4

G1 +G2: The graph induced by the vertices in V (G1) ∪ V (G2). . . 4

G+ v: The graph induced by the vertices in V (G) ∪ {v}. . . 4

G1 −G2: The graph induced by the vertices in V (G1)− V (G2). . . 4

τ(C): The number of chords in C. . . 6

τ(v, C): The number of chords in C that are incident with v. . . 6

u→ (C, v): The graph C + u− v contains a 6-cycle. . . 8

u→ C: For each v ∈ C, C + u− v contains a 6-cycle. . . 8

uv → (C, xy): C + uv − xy contains a 6-cycle. . . 8

uv → C: For each x, y ∈ C, C + uv − xy contains a 6-cycle. . . 8

u
n−→ (C, v): C + u− v contains a 6-cycle C ′ with τ(C ′) ≥ τ(C) + n. . . 19

r(y1, P ): The largest integer j such that y1yj ∈ E, where P = y1y2 . . . yn is a path of order

n. . . 54

r(yn, P ): The largest integer j such that ynys−j+1 ∈ E, where P = y1y2 . . . yn is a path of

order n. . . 54

r(P ): The maximum of r(y1, P ) and r(yn, P ), where P = y1 . . . yn. . . 54

s(P ): The sum of r(y1, P ) and r(yn, P ), where P = y1 . . . yn. . . 54

τ ′(C): The minimum among all vertices v ∈ C of τ(v, C). . . 54


