Vertex-Disjoint Large Cycles

A Dissertation

Presented in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
with a
Major in Mathematics
in the
College of Graduate Studies
University of Idaho
by
Douglas J. Decock

Major Professor: Hong Wang, Ph.D.
Committee Members: Somantika Datta, Ph.D.; Stefan Tohaneanu, Ph.D.; Alexander Woo, Ph.D.
Department Administrator: Christopher Williams, Ph.D.

May 2020

Authorization to Submit Dissertation

This dissertation of Douglas J. Decock, submitted for the degree of Doctor of Philosophy with a major in Mathematics and titled "Vertex-Disjoint Large Cycles," has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: \qquad Hong Wang, Ph.D.

Committee Members:

Somantika Datta, Ph.D.
Date \qquad

Date \qquad
Stefan Tohaneanu, Ph.D.

Date
Alexander Woo, Ph.D.

Department
Administrator:
Date \qquad
Christopher Williams, Ph.D.

Abstract

In this dissertation, we discuss cycles of length at least six. We prove that (Theorem 1) if G is a graph of order $n \geq 6 k+1$ and the minimum degree of G is at least $\frac{7 k}{2}$, then G contains k disjoint cycles of length at least six, and (Theorem 2) if G is a graph of order $n \geq 6 k+6$ and the minimum degree of G is at least $\frac{n}{2}$, then G contains k disjoint cycles covering all the vertices of G such that $k-1$ are 6 -cycles.

Acknowledgements

I would like to thank Hong Wang for the choice of problem.

Table of Contents

Authorization to Submit Dissertation ii
Abstract iii
Acknowledgements iv
Table of Contents v
List of Figures vii
1 Preliminaries 1
1.1 Fundamental Graph Theory Definitions 1
1.2 Notation and Terminology 3
1.3 Background 6
1.4 Chords and Vertex-Replacement in Cycles 7
2 Foundational Lemmas 21
2.1 Getting Cycles from Paths 21
2.2 Getting Smaller Cycles from Larger Ones 31
3 Lemmas With Very Specific Conditions 55
4 Proof of Theorem 1 87
4.1 Part One 87
4.2 Part Two 122
5 Proof of Theorem 2 152
5.1 Lemmas 152
5.2 Main Proof 158
References 169
Appendix A: Lemmas 1.4.6-1.4.14 170
Appendix B: List of Symbols 181

List of Figures

1.1 The complement of a 6-cycle. 1
1.2 C is the 6 -cycle on the left, and L is the 6 -cycle on the right. 4
1.3 Clockwise from top left: $C+u_{2}, C+L-v_{6} v_{1}, u_{1} u_{2} u_{3}+v_{4} v_{5} v_{6} v_{1}$, and $C+u_{3}-v_{3}$. 5
1.4 Top left: a chordless 6 -cycle. Top right: a 6 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$, with the twochords $v_{2} v_{6}$ and $v_{1} v_{4}$. Bottom: a graph with two different chorded 6 -cycles. Thefirst is $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$, with chords $v_{1} v_{4}$ and $v_{3} v_{6}$. The second is $v_{1} v_{2} v_{3} v_{6} v_{5} v_{4} v_{1}$,with chords $v_{1} v_{6}$ and $v_{3} v_{4}$.8
1.5 Top: an 8-cycle with a chord. Bottom: the two cycles created by the chord (note that they have two vertices in common). 8
1.6 Replacement of vertices in 6-cycles. 9
1.7 The three possibilities for $C+u$, when $e(u, C)=4$. 11
1.8 The three possibilities for $C+u$, when $e(u, C)=3$. 13
1.9 The three possibilities for $C+u$, when $e(u, C)=2$. 161.10 Lemma 1.4.18: If we relabel the graph on the right, we see that the 'useless' edge$x a_{4}$ is replaced by the chord $a_{2} a_{4}$, yielding a cycle with more chords.19
2.1 Top: If the arrows are extended into edges incident with the endvertices, then acycle of length $5+6=11$ is formed. Bottom left: A 'twisted' 11-cycle. Bottomright: The same cycle, but 'untwisted' by rotating the $v_{1}-v_{5}$ path by 180 degrees. 22
2.2 The graphs from Lemma 2.1.3 that do not contain large cycles of length at length at most p. 23
2.3 The graphs from Lemma 2.1.4 that do not contain large cycles. Five or six of thedashed lines may be present. The graph on the left is a 'worst-case' scenario, andwill therefore figure prominently in this paper23
2.4 The resulting graph of Lemma 2.1.5. The only large cycle uses every vertex. 24
2.5 The cases $d=0, d=1$, and $d=2$. 27
2.6 In each graph, the top path is a subpath of a path P and the bottom path is a subpath of a path Q. If P and Q satisfy the conditions of Lemma 2.1.6, then $P+Q$ must contain one of these three graphs as a subgraph. In the bottom graph, one of the two dashed lines is present 28
2.7 Lemma 2.2.2: The graph $L+u-x_{r} x_{r+1}$ (left) has a 6 -cycle, so the graph $P+x_{r} x_{r+1}$ (right) cannot have a 6-cycle. 32
2.8 Lemma 2.2.2: If $a_{4} x_{r} \in E$, then $e\left(a_{1}, x_{r-1} x_{r+1}\right)=0$. 32
2.9 Lemma 2.2.2: The only scenario in which $e\left(a_{1}, L\right)=4$ and $e\left(a_{4}, L\right)=2$. Left: a_{4} cannot be adjacent to any of the white vertices. Right: a_{1} cannot be adjacent to any of the white vertices. 33
2.10 Lemma 2.2.3: The only 6 -cycles using the path P are $a_{1} a_{2} a_{3} a_{4} x_{6} x_{5} a_{1}$ and $a_{1} a_{2} a_{3} a_{4} x_{1} x_{2} a_{1}$,and neither $x_{5} x_{6}$ nor $x_{1} x_{2}$ are in F.34
2.11 Lemma 2.2.5, Case 1.1 35
2.12 Lemma 2.2.5, Case 2: The graphs $L+a_{1}$ and $L+a_{1}-x_{3} x_{4}$. 36
2.13 Lemma 2.2.5, Case 3.2. 44
2.14 Lemma 2.2.5, Case 3.3. 47
2.15 Lemma 2.2.7, Case 1.2. 522.16 If $q \geq 8$ and a_{1} does not have two neighbors whose distance in L is at least four,then it is easy to see that $e\left(a_{1}, x_{5} \ldots x_{q-3}\right)=0, e\left(a_{1}, x_{2} x_{q-2}\right) \leq 1, e\left(a_{1}, x_{3} x_{q-1}\right) \leq$1 , and $e\left(a_{1}, x_{4} x_{q}\right) \leq 1$.53
3.1 A path P of order 7 with $r(P)=4$ and $s(P)=4+3=7$. 55
3.2 Left: A 6 -cycle C_{1} with $\tau\left(C_{1}\right)=3$ and $\tau^{\prime}\left(C_{1}\right)=1$. Right: A 6 -cycle C_{2} with$\tau\left(C_{2}\right)=6$ and $\tau^{\prime}\left(C_{2}\right)=0$.56
3.3 Lemma 3.0.2: $R+u$ contains a path of order $r+1 \geq 6$ from x_{1} to $u ; R+v$contains a path of order $r+1$ from x_{1} to v.56
3.4 Let C_{1} be a 6 -cycle in the graph at top, and let C_{2} be a 6 -cycle in the graph at bottom. Since $u v \notin E$ and $a_{5} a_{6} \in E$, if $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right)=e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)+k$ then $\tau\left(C_{1}\right)=\tau\left(C_{2}\right)+(k+1)$.
3.5 Lemma 3.0.3: $R-x_{r}+u v$ contains the paths $x_{1} x_{2} \ldots x_{r-1} u v$ and $x_{1} x_{2} \ldots x_{r-1} v u$ of order $r+1$.
3.6 Lemma 3.0.3: If $u a_{i} \in E$ and $v a_{i+3} \in E$, then $u v \rightarrow\left(C, a_{i+1} a_{i+2}\right)$ and $u v \rightarrow$ $\left(C, a_{i+4} a_{i+5}\right)$.62
3.7 Lemma 3.0.4: $u_{1} x_{1} x_{2} \ldots x_{r} u_{3}, u_{1} x_{1} x_{2} \ldots x_{r} u_{4}, u_{2} x_{1} x_{2} \ldots x_{r} u_{3}$, and $u_{2} x_{1} x_{2} \ldots x_{r} u_{4}$ are paths of order $r+2 \geq 5$.67
3.8 Lemma 3.0.5: If $t=9$, then x_{1} and x_{9} have x_{5} as a common neighbor. 72
3.9 Since there are paths of order 2,3 , and 4 from x_{t} to x_{t-1} that do not include x_{5}, there is a path, not including x_{5}, of order at least 6 from x_{t-1} to each $a_{i} \neq a_{2}$.
3.10 Lemma 3.0.6, Claim 3: When $\tau\left(a_{6}, C\right)=0$, there is a 6 -cycle C^{\prime} (middle) with $\tau\left(C^{\prime}\right) \geq \tau(C)$, and a path P^{\prime} (bottom) of order $r+2$.80
3.11 Lemma 3.0.6, Case 3: The dashed lines represent possible edges. 81
4.1 Proposition 4.1.2, Case 3.2, $\left|L_{1}\right| \geq 7$. 93
4.2 Top: $x_{1} \rightarrow(L, u)$ and $e\left(u, x_{2} x_{t-1}\right)=2$. Here $L+P$ contains a 6 -cycle and a large cycle. Bottom: $x_{t-1} \xrightarrow{1}(L, u)$ and $e\left(x_{1} x_{t}, u\right)=2$. Here $L+P$ contains a path of order t and a 6 -cycle L^{\prime} with $\tau\left(L^{\prime}\right) \geq \tau(L)+1$.100

4.4 Proposition 4.1.7, Case B.3: Unfortunately, even with all of the edges between P and L, we can neither find a way to contradict the maximality of k_{0}, nor any of the Conditions (4.3)-(4.6).
4.5 Proposition 4.1.7, Case B.3. 106
4.6 The bold edges reveal a large cycle and a 6 -cycle. If $x_{1} \rightarrow\left(L^{\prime}, v_{1}\right)$ then we would have another 6 -cycle, disjoint with the other two large cycles.
4.7 As in Figure 4.6, we see that if $x_{1} \rightarrow\left(L^{\prime}, v_{1}\right)$ then we have two 6 -cycles and a large cycle, each disjoint. 107
4.8 In this picture, we recognize a path of order t and a 6 -cycle with more chords

4.9 Applying Lemma 3.0.7 to the graph in the boxed region, and then combining that graph with the 6-cycle on the left, gives us a contradiction. 108
4.10 A situation similar to that in Case B.3. Lemma 3.0.7 is applicable. Not shown at top are the edges $a_{4} a_{1}, a_{3} a_{5}, a_{3} a_{6}$, and $a_{3} a_{1}$.
4.11 If $x_{t} x_{t-1} \rightarrow\left(L, a_{i} a_{j}\right)$ and $e\left(x_{1} x_{2}, a_{i}\right)=2$, then the maximality of r_{0} is contradicted. 116
4.12 Case 2.3.2, when $\tau\left(a_{4}, L\right) \geq 2$ and $x_{t} a_{4} \in E$. 131
4.13 Case 3.2.1.2 . 137
4.14 Case 3.2.1.2: The cycles L and L^{\prime}. Dashed lines represent possible edges. 137
4.15 Case 3.2.1.2: If $x_{t} \rightarrow(C, v)$ and $e\left(v, a_{5} a_{6}\right)=2$ then $L+C+P$ contains two 6-cycles and a large cycle. 138

Chapter 1

Preliminaries

1.1 Fundamental Graph Theory Definitions

We borrow notation and terminology from [2]. A graph $G=(V, E)$ is a finite nonempty set $V($ or $V(G))$ of elements called vertices, together with a set E (or $E(G)$) of 2-element subsets of V, called edges. Let $G=(V, E)$ be a graph. If u and v are vertices in V, we use $u v$ to denote the edge $\{u, v\}$. If $u v \in E$, then we say that u and v are adjacent. Given a vertex $v \in V$, the set $N(v, G)=\{u \in V(G): u v \in E\}$ is called the neighborhood of v in G, and the vertices in $N(v, G)$ are called the neighbors of v. We define the degree of v in G to be the order of $N(v, G)$, and denote it ${\operatorname{by~} \operatorname{deg}_{G} v \text {. If the graph } G \text { is understood, we write }}^{2}$ just $N(v)$ and $\operatorname{deg} v$ to denote the neighborhood and degree of v, respectively. The minimum degree among all vertices of G is denoted by $\delta(G)$, and the maximum degree among all vertices of G is denoted by $\Delta(G)$. The vertices u and v are said to be incident with the edge $u v$. The orders of V and E are called the order and size of G, respectively.

Let G^{\prime} be the graph in Figure 1.1. Then G^{\prime} has six vertices, nine edges, vertex set $V\left(G^{\prime}\right)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$, and edge set $E\left(G^{\prime}\right)=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{6}, v_{2} v_{3}, v_{2} v_{5}, v_{3} v_{4}, v_{4} v_{5}, v_{4} v_{6}, v_{5} v_{6}\right\}$. The neighborhood $N\left(v_{1}, G^{\prime}\right)$ of v_{1} in G^{\prime} is $\left\{v_{2}, v_{3}, v_{6}\right\}$. The degree of every vertex is three, so $\delta\left(G^{\prime}\right)=\Delta\left(G^{\prime}\right)=3$. The vertex v_{4} is incident with the edges $v_{4} v_{3}, v_{4} v_{5}$, and $v_{4} v_{6}$. The order and size of G^{\prime} are 6 and 9 , respectively.

Figure 1.1: The complement of a 6-cycle.

A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If $E(H)=\{u v \in$ $E(G): u, v \in V(H)\}$, then H is called a vertex-induced subgraph (or just induced subgraph) of G, and we say that H is induced by $V(H)$. In general, we use $G[X]$ to denote the subgraph of G induced by the vertex set X. A graph in which every pair of vertices is adjacent is called a complete graph. The complete graph of order n is denoted by K_{n}. A graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$ is called a path, and is denoted by P_{n}. The vertices v_{1} and v_{n} are called endvertices of the path, and instead of saying that the path has endvertices v_{1} and v_{n}, we say that it is a $v_{1}-v_{n}$ path. If the edge $v_{n} v_{1}$ is added to the edge set, we call it a cycle (specifically, an n-cycle), denoted by C_{n}. Another way of representing a cycle C_{n} is by writing $v_{1} v_{2} \ldots v_{n} v_{1}$, where two vertices in the sequence are consecutive if and only if they are adjacent in the graph. Similarly, we can write $P_{n}=v_{1} v_{2} \ldots v_{n}$. The length of a path (or cycle) is the number of edges in the path (or cycle), and we denote the length of the cycle C by $l(C)$. Clearly, the length of P_{n} is $n-1$ and the length of C_{n} is n. The distance between two vertices v_{1} and v_{2} in H is the length of a shortest path in H from v_{1} to v_{2}, and is denoted by $d_{H}\left(v_{1}, v_{2}\right)$ (or just $\left.d\left(v_{1}, v_{2}\right)\right)$.

The 6 -cycle $v_{1} v_{2} v_{5} v_{6} v_{4} v_{3} v_{1}$ is a subgraph of G^{\prime} (Figure 1.1), but is not an induced subgraph of G^{\prime}, because (for example) of the edge $v_{1} v_{6}$, which is not included in the cycle. On the other hand, the 4 -cycles $v_{2} v_{5} v_{4} v_{3} v_{2}, v_{1} v_{2} v_{5} v_{6} v_{1}$, and $v_{1} v_{6} v_{4} v_{3} v_{1}$, are all induced subgraphs of G^{\prime}. The path $v_{1} v_{2} v_{5} v_{6}$ is a subgraph of G^{\prime}, but not an induced subgraph because of the edge $v_{1} v_{6}$. The path $v_{1} v_{2} v_{5} v_{4}$ is, however, an induced subgraph. The largest complete graph contained in G^{\prime} is K_{3}, which is represented in G^{\prime} by the subgraphs induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}, v_{6}\right\}$. The distance between v_{2} and v_{6} is two, since $v_{2} v_{6} \notin E$ but $v_{2} v_{5} v_{6}$ is a path of length two from v_{2} to v_{6}.

A graph is bipartite if it has no cycles with odd length. The complete bipartite graph $K_{r, s}$ has vertex set $V=V_{1} \cup V_{2}$, with $\left|V_{1}\right|=r$ and $\left|V_{2}\right|=s$, and edge set $E=\left\{u v \mid u \in V_{1}, v \in\right.$ $\left.V_{2}\right\}$. Clearly complete bipartite graphs are bipartite, since any cycle must alternate between
V_{1} and V_{2}. Two graphs are said to be isomorphic if they can be labeled in such a way that they have the same vertex set and edge set. A graph in which every vertex has degree k is called k-regular. Clearly, C_{n} is 2-regular and K_{n} is n - 1 -regular. The complement of G, written \bar{G}, is the graph with vertex set $V(G)$ and edge set $(V(G) \times V(G))-E(G)$. The union of G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The union of more than two graphs is defined similarly. The union of k copies of G is denoted by $k G$. The graphs $G_{1}, G_{2}, \ldots, G_{i}$, are disjoint if they have no vertex in common. Thus the graph $k G$ contains k disjoint copies of G.

The complement $\overline{G^{\prime}}$ of G^{\prime} (Figure 1.1) is the 6 -cycle $v_{1} v_{4} v_{2} v_{6} v_{3} v_{5} v_{1}$, and we write $\overline{G^{\prime}}=C_{6}$ (or equivalently, $G^{\prime}=\overline{C_{6}}$). G^{\prime} is a 3-regular graph, which can be seen either by looking at each of the degrees, or noting that $G^{\prime}=\overline{C_{6}}$, and that C_{6} is $(5-3=2)$-regular.

1.2 Notation and Terminology

A large cycle is a cycle of length at least six. Let G be a graph. If H is a subgraph of G, we say that G contains H, and write $H \subseteq G$. Let $H_{1}, H_{2}, \ldots, H_{k} \subseteq G$. If v is a vertex in $V\left(H_{i}\right)$, we will write $v \in H_{i}$ instead of the more cumbersome $v \in V\left(H_{i}\right)$. We will write $v \notin H_{i}$ if v is not a vertex in $V\left(H_{i}\right)$. The vertices in a cycle of length n will be indexed modulo n. If $C=v_{1} v_{2} \ldots v_{n} v_{1}$ is a cycle, and v_{i} and v_{j} are consecutive in the sequence $v_{1} v_{2} \ldots v_{n}$, then we shall say that v_{i} and v_{j} are consecutive in C. We will use the same terminology for a set of more than two consecutive vertices in $v_{1} v_{2} \ldots v_{m}$. If H_{i} is isomorphic to some cycle C_{n}, then we will write $H_{i}=C_{n}$. We will use equality in a similar way for paths and complete graphs. If H_{i} and H_{j} are isomorphic, but use a different vertex set or edge set, we will say that H_{i} and H_{j} are different graphs. If H_{i} and H_{j} are not isomorphic, we will say that they are distinct graphs. We abbreviate without loss of generality with WLOG.

The set of vertices $u \in H_{i}$ such that $u v \in E$ for some $v \in H_{j}$ will be denoted by $N\left(H_{j}, H_{i}\right)$, read as the neighborhood of H_{j} in H_{i}. If H_{j} is the subgraph of G induced by the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then we will write $N\left(v_{1} v_{2} \ldots v_{m}, H_{i}\right)$ instead of $N\left(G\left[\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right], H_{i}\right)$.

Figure 1.2: C is the 6 -cycle on the left, and L is the 6 -cycle on the right.

Thus $N\left(v, H_{i}\right)$ as defined here coincides with the definition of $N\left(v, H_{i}\right)$ from Section 1.1. We define

$$
e\left(H_{j}, H_{i}\right):=\sum_{v \in H_{j}}\left|N\left(v, H_{i}\right)\right|
$$

Notice that, in general, $e\left(H_{j}, H_{i}\right) \neq\left|N\left(H_{j}, H_{i}\right)\right|$. Instead, $e\left(H_{j}, H_{i}\right)$ is the number of edges $u v$ such that $u \in H_{i}$ and $v \in H_{j}$, and we will say that $e\left(H_{j}, H_{i}\right)$ is the number of edges between H_{j} and H_{i}. We again use $e\left(v_{1} v_{2} \ldots v_{m}, H_{i}\right)$ in place of $e\left(G\left[\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right], H_{i}\right)$. Thus

$$
e\left(v_{1} v_{2} \ldots v_{m}, H_{i}\right)=\sum_{k=1}^{m} e\left(v_{k}, H_{i}\right)
$$

where $e\left(v_{k}, H_{i}\right)=\left|N\left(v_{k}, H_{i}\right)\right|$ is the degree of v_{k} in H_{i}. Finally, we denote the subgraph of G induced by the vertex set $\bigcup_{i=1}^{k} V\left(H_{i}\right)$ by $H_{1}+H_{2}+\ldots H_{k}$. If H_{i} is induced by the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then as before we write $v_{1} v_{2} \ldots v_{m}$ instead of $G\left[\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right]$. For example, $H_{1}+v_{1} v_{2} \ldots v_{m}$ is the subgraph of G induced by $V\left(H_{1}\right) \cup\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Similarly, we define $H_{i}-v_{1} v_{2} \ldots v_{m}$ to be the subgraph induced by $V\left(H_{i}\right)-\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.

In Figure 1.2, $N(C, L)=\left\{u_{1}, u_{2}, u_{3}, u_{5}, u_{6}\right\}$. The vertex u_{4} is not in $N(C, L)$ because it is not adjacent to any vertex in C. Also, $N\left(v_{1}, L\right)=\left\{u_{1}, u_{2}\right\}, N\left(v_{1} v_{3}, L\right)=N\left(v_{1} v_{3} v_{5}, L\right)=$ $\left\{u_{1}, u_{2}, u_{5}, u_{6}\right\}$, and $N\left(v_{1} v_{2} v_{3}, L\right)=N(C, L)$. The number of edges between C and L is $e(C, L)=e\left(v_{1}, L\right)+e\left(v_{2}, L\right)+e\left(v_{3}, L\right)+e\left(v_{4}, L\right)+e\left(v_{5}, L\right)+e\left(v_{6}, L\right)=2+2+2+2+0+0=$

Figure 1.3: Clockwise from top left: $C+u_{2}, C+L-v_{6} v_{1}, u_{1} u_{2} u_{3}+v_{4} v_{5} v_{6} v_{1}$, and $C+u_{3}-v_{3}$.
8. The number $e\left(v_{2} v_{4} v_{6}, u_{2} u_{4} u_{6}\right)$ of edges between $v_{2} v_{4} v_{6}$ and $u_{2} u_{4} u_{6}$ is $e\left(v_{2}, u_{2} u_{4} u_{6}\right)+$ $e\left(v_{4}, u_{2} u_{4} u_{6}\right)+e\left(v_{6}, u_{2} u_{4} u_{6}\right)=1+0+0=1$. The graph in Figure 1.2 is the graph $C+L$ induced by the vertices of C and L. The graphs of $C+u_{2}, C+L-v_{6} v_{1}, C+u_{3}-v_{3}$, and $L+v_{4} v_{5} v_{6} v_{1}-u_{4} u_{5} u_{6}$, are shown in Figure 1.3. Note that $L+v_{4} v_{5} v_{6} v_{1}-u_{4} u_{5} u_{6}$ can be written (slightly) more succinctly as $u_{1} u_{2} u_{3}+v_{4} v_{5} v_{6} v_{1}$.

1.3 Background

In 1963, K. Corrádi and A. Hajnal [3] proved that if G is a graph of order at least $3 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles. In 2012, H. Wang [6] proposed the following conjecture:

Let d and k be two positive integers with $k \geq 2$. If G is a graph of order at least $(2 d+1) k$ and the minimum degree of G is at least $(d+1) k$, then G contains k disjoint cycles of length at least $2 d+1$.

Clearly, the theorem of Corrádi and A. Hajnal proves the case $d=1$. In 2018 Wang ([7] and [8]) proved the case $d=2$. For the even cycles, Wang [6] proposed the following:

Let d and k be two positive integers with $k, d \geq 2$. Let G be a graph of order $n \geq 2 d k$ with minimum degree at least $d k$. Then G contains k disjoint cycles of length at least $2 d$, unless k is odd and $n=2 d k+r$ for some $1 \leq r \leq 2 d-2$.

In 2012 Wang ([5] and [6]) proved this conjecture for the case $d=2$. In this paper, we prove a weaker version (Theorem 1) of the case $d=3$.

The above conjectures are related to a conjecture made by M. H. El-Zahar [4] in 1984, which states that if G is a graph of order $n=n_{1}+n_{2}+\ldots n_{k}$ with $n_{i} \geq 3$ and the minimum degree of G is at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil+\ldots\left\lceil n_{k} / 2\right\rceil$, then G contains k disjoint cycles with lengths $n_{1}, n_{2}, \ldots n_{k}$.

Theorem 2 is similar to the theorems above, and follows a theorem in [9] due to Wang, which states that if G is a graph of order $n \geq 4 k$ with minimum degree at least $n / 2$, then G contains k disjoint cycles covering all the vertices of G such that $k-1$ are 4 -cycles. Theorem 2 provides a special type of subgraph known as a 2 -factor. In general, a k-factor is a spanning subgraph that is k-regular.

1.4 Chords and Vertex-Replacement in Cycles

Let G be a graph, and let $C=a_{1} a_{2} \ldots a_{n} a_{1}$ be a subgraph of G. A chord of C is any edge $a_{i} a_{j} \in E(G), 1 \leq i, j \leq n$, such that $a_{i} a_{j} \notin E(C)$. Thus C has a chord if and only if C is not an induced subgraph of G. A cycle that has a chord is called chorded, while one that does not is called chordless. See Figure 1.4. We will use $\tau(C)$ to denote the number of chords in C, and $\tau\left(a_{i}, C\right)$ to denote the number of chords in C that are incident with a_{i}. Thus if L is the 6 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ in the bottom graph of Figure 1.4, then $\tau(L)=2$, $\tau\left(v_{1}, L\right)=\tau\left(v_{3}, L\right)=\tau\left(v_{4}, L\right)=\tau\left(v_{6}, L\right)=1$, and $\tau\left(v_{2}, L\right)=\tau\left(v_{5}, L\right)=0$. It is easy to see that

$$
2 \tau(C)=\sum_{a_{i} \in C} \tau\left(a_{i}, C\right)
$$

for any cycle C. In general, given a set $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$, we define

$$
\tau\left(a_{i_{1}} \ldots a_{i_{k}}, C\right\}:=\sum_{j=1}^{k} \tau\left(a_{i_{j}}, C\right)
$$

The following lemma is a simple observation about chords in cycles. See Figure 1.5.

Lemma 1.4.1 Let C be a cycle of length n. If C has a chord, then C contains two cycles C_{1} and C_{2} such that $l\left(C_{1}\right)+l\left(C_{2}\right)=n+2$.

More chords means more options. For example, the 6-cycle on the right in Figure 1.4 has the 5 -cycle $C^{\prime}=v_{2} v_{3} v_{4} v_{5} v_{6} v_{2}$ as a subgraph. If there is a vertex u that is adjacent to v_{3} and v_{4}, for example, then $u v_{4} v_{5} v_{6} v_{2} v_{3} u$ is a 6 -cycle. This would be beneficial if the vertex v_{1} is better used elsewhere, outside of the cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. The replacement of one vertex with another in a cycle (u replacing v_{1} in this case) is something that will be used extensively throughout this paper.

Consider again the cycle $C=a_{1} a_{2} \ldots a_{n} a_{1}$, and let u and v be vertices in $G-C$. If, for some $1 \leq i \leq n, C+u-a_{i}$ contains a cycle of length n, then we say that u replaces a_{i} in

Figure 1.4: Top left: a chordless 6 -cycle. Top right: a 6 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$, with the two chords $v_{2} v_{6}$ and $v_{1} v_{4}$. Bottom: a graph with two different chorded 6 -cycles. The first is $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$, with chords $v_{1} v_{4}$ and $v_{3} v_{6}$. The second is $v_{1} v_{2} v_{3} v_{6} v_{5} v_{4} v_{1}$, with chords $v_{1} v_{6}$ and $v_{3} v_{4}$.

Figure 1.5: Top: an 8 -cycle with a chord. Bottom: the two cycles created by the chord (note that they have two vertices in common).

Figure 1.6: Replacement of vertices in 6-cycles.
C, and write $u \rightarrow\left(C, a_{i}\right)$. In Figure 1.2 we have $u_{3} \rightarrow\left(C, v_{3}\right)$, as can be seen from the graph $C+u_{3}-v_{3}$ in Figure 1.3. Similarly, if $C+u v-a_{i} a_{j}$ contains C_{n}, then we say that u and v replace a_{i} and a_{j} in C, and write $u v \rightarrow\left(C, a_{i} a_{j}\right)$. If u replaces every vertex in C, then we write $u \rightarrow C$, and say that u replaces C. Similarly, we write $u v \rightarrow C$ if u and v replace each pair of vertices in C.

Consider the graphs in Figure 1.6. Let $C_{1}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{1}$ and $C_{2}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. Since $u u_{1} u_{6} u_{2} u_{5} u_{3} u$ is a 6 -cycle, we can say that $u \rightarrow\left(C_{1}, u_{4}\right)$. In fact, it turns out that $u \rightarrow\left(C_{1}, u_{i}\right)$ for each $u_{i} \in C_{1}$, and therefore that $u \rightarrow C_{1}$. Since $e\left(x_{1}, C_{2}\right)=e\left(x_{2}, C_{2}\right)=2$, it is easy to see that neither x_{1} nor x_{2} replace C_{2}, since clearly $x_{1} \nrightarrow\left(C_{2}, v_{i}\right)$ for $i=3,6$, and $x_{2} \nrightarrow\left(C_{2}, v_{i}\right)$ for $i=3,5$. However, $x_{1} x_{2} \rightarrow\left(C_{2}, v_{4} v_{5}\right)$ and $x_{1} x_{2} \rightarrow\left(C_{2}, v_{2} v_{3}\right)$, since $x_{2} v_{3} v_{2} v_{1} v_{6} x_{1} x_{2}$ and $x_{2} v_{5} v_{4} v_{1} v_{6} x_{1} x_{2}$ are 6 -cycles. Because $N\left(x_{1}, C_{2}-v_{5} v_{6}\right)=N\left(x_{2}, C_{2}-\right.$ $\left.v_{5} v_{6}\right)=\left\{v_{3}\right\}, x_{1}$ and x_{2} do not replace v_{5} and v_{6} in C_{2}, and therefore $x_{1} x_{2} \nrightarrow C_{2}$.

The following lemma is a generalization of the observation that $u_{3} \rightarrow\left(C, v_{3}\right)$ in Figure 1.2. The subsequent two lemmas are consequences of the first.

Lemma 1.4.2 Let $C=a_{1} a_{2} \ldots a_{n} a_{1}$ be a cycle, let $1 \leq i \leq n$, and let $u \notin C$. If $e\left(u, a_{i-1} a_{i+1}\right)=2$, then $u \rightarrow\left(C, a_{i}\right)$.

Proof: The cycle $u a_{i-1} a_{i-2} \ldots a_{1} a_{n} a_{n-1} \ldots a_{i+1} u$ is a cycle of length $1+(i-1)+(n-i)=n$ in $C+u-a_{i}$.

Lemma 1.4.3 Let $C=a_{1} a_{2} \ldots a_{n} a_{1}$ be a cycle, and let $u \notin C$. If $e(u, C)=n$, then $u \rightarrow C$.

Proof: \quad Since C is an n-cycle and $e(u, C)=n$, we know that $e\left(u, a_{i-1} a_{i+1}\right)=2$ for each vertex $a_{i} \in C$. The lemma is therefore true by Lemma 1.4.2.

Lemma 1.4.4 Let $C=a_{1} a_{2} \ldots a_{n} a_{1}$ be a cycle, and let $u \notin C$. Let $e(u, C)=n-1$, with $u a_{i} \notin E$. Then $u \rightarrow\left(C, a_{j}\right)$ for all $j \neq i \pm 1$.

Proof: We have $e\left(u, a_{j-1} a_{j+1}\right)=2$ for all $j \neq i \pm 1$, so the lemmma is true by Lemma 1.4.2.

In Lemmas 1.4.2-1.4.4, no assumptions were made about the chords in the given cycle. Often, we will at least have some knowledge about the number of chords in a 6-cycle. We can see from Figure 1.6 that having just a few chords in a 6 -cycle can greatly affect the number of vertices that are replaceable by a given vertex. The following lemmas expand on Lemmas 1.4.2-1.4.4, and will be used extensively in the proof of Theorem 1.

Lemma 1.4.5 Let $C=v_{1} v_{2} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $e\left(u, C-v_{j}\right)=5$. Then $u \nrightarrow C$ if and only if $\tau\left(v_{j}, C\right)=0$.

Proof: WLOG let $j=6$. By Lemma 1.4.4, $u \rightarrow\left(C, v_{i}\right)$ for $i=2,3,4,6$. Clearly, if $\tau\left(v_{6}, C\right)=0$ then $u \nrightarrow C$, since if that is the case then $u \nrightarrow\left(C, v_{1}\right)$ and $u \nrightarrow\left(C, v_{5}\right)$. Hence it suffices to prove that if $\tau\left(v_{6}, C\right)>0$ then $u \rightarrow C$. Using symmetry, we need only show that if $\tau\left(v_{6}, C\right)>0$ then $u \rightarrow\left(C, v_{1}\right)$. Well, if $v_{6} v_{2} \in E$ then $v_{6} v_{2} v_{3} v_{4} u v_{5} v_{6}$ is a 6 -cycle; if $v_{6} v_{3} \in E$ then $v_{6} v_{3} v_{2} u v_{4} v_{5} v_{6}$ is a 6 -cycle; and if $v_{6} v_{4} \in E$ then $v_{6} v_{4} v_{3} v_{2} u v_{5} v_{6}$ is a 6 -cycle. This completes the proof.

If $C=v_{1} v_{2} \ldots v_{6} v_{1}$ is a 6 -cycle and $e(u, C)=4$ for some $u \notin C$, then there are three possible distinct graphs $C+u$. Indeed, u may be adjacent to four consecutive vertices in C (see Figure 1.7); u may be adjacent to exactly three consecutive vertices in C, leaving only one option for the last neighbor of u in C; or, if u is not adjacent to three or more consecutive

Figure 1.7: The three possibilities for $C+u$, when $e(u, C)=4$.
vertices in C, then u must be adjacent to two disjoint pairs of consecutive vertices in C. We consider these three possibilities in the following three lemmas.

Lemma 1.4.6 Let $C=v_{1} v_{2} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+1}, v_{j+2}, v_{j+3}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. $u \rightarrow\left(C, v_{j+1}\right)$ and $u \rightarrow\left(C, v_{j+2}\right)$.
2. If $u \nrightarrow\left(C, v_{j}\right)$ then $e\left(v_{j+5}, v_{j+1} v_{j+2}\right)=0$.
3. If $u \nrightarrow\left(C, v_{j+3}\right)$ then $e\left(v_{j+4}, v_{j+1} v_{j+2}\right)=0$.
4. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $\tau\left(v_{j+5}, C\right)=0$.
5. If $u \nrightarrow\left(C, v_{j+5}\right)$ then $\tau\left(v_{j+4}, C\right)=0$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

1. True by Lemma 1.4.2.
2. Because $v_{2} u v_{3} v_{4} v_{5} v_{6}$ and $v_{3} v_{2} u v_{4} v_{5} v_{6}$ are paths of order six in $C+u-v_{1}$.
3. True by Lemma 1.4.6-2 and symmetry.
4. Because $v_{2} v_{3} v_{4} u v_{1} v_{6}, v_{3} v_{4} u v_{2} v_{1} v_{6}$, and $v_{4} v_{3} u v_{2} v_{1} v_{6}$ are paths of order six in $C+u-v_{5}$.
5. True by Lemma 1.4.6-4 and symmetry.

Lemma 1.4.7 Let $C=v_{1} v_{2} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+1}, v_{j+2}, v_{j+4}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. $u \rightarrow\left(C, v_{j+1}\right), u \rightarrow\left(C, v_{j+3}\right)$, and $u \rightarrow\left(C, v_{j+5}\right)$.
2. If $u \nrightarrow\left(C, v_{j}\right)$ then $e\left(v_{j+5}, v_{j+1} v_{j+3}\right)=0$.
3. If $u \nrightarrow\left(C, v_{j+2}\right)$ then $e\left(v_{j+3}, v_{j+1} v_{j+5}\right)=0$.
4. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $v_{j+3} v_{j+5} \notin E$ and $e\left(v_{j+1}, v_{j+3} v_{j+5}\right) \leq 1$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$.

1. True by Lemma 1.4.2.
2. Because $v_{2} u v_{3} v_{4} v_{5} v_{6}$ and $v_{4} v_{3} v_{2} u v_{5} v_{6}$ are paths of order six in $C+u-v_{1}$.
3. True by Lemma 1.4.7-2 and symmetry.
4. Suppose $u \nrightarrow\left(C, v_{5}\right)$. Then $v_{4} v_{6} \notin E$ because $v_{4} v_{3} u v_{2} v_{1} v_{6}$ is a path of order six in $C+u-v_{5}$, and $e\left(v_{2}, v_{4} v_{6}\right) \leq 1$ for otherwise $v_{6} v_{2} v_{4} v_{3} u v_{1} v_{6}$ is a 6 -cycle in $C+u-v_{5}$.

Lemma 1.4.8 Let $C=v_{1} v_{2} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+1}, v_{j+3}, v_{j+4}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. $u \rightarrow\left(C, v_{j+2}\right)$ and $u \rightarrow\left(C, v_{j+5}\right)$.
2. If $u \nrightarrow\left(C, v_{j}\right)$ or $u \nrightarrow\left(C, v_{j+4}\right)$, then $\tau\left(v_{j+5}, C\right)=0$.
3. If $u \nrightarrow\left(C, v_{j+1}\right)$ or $u \nrightarrow\left(C, v_{j+3}\right)$, then $\tau\left(v_{j+2}, C\right)=0$.

Figure 1.8: The three possibilities for $C+u$, when $e(u, C)=3$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$.

1. True by Lemma 1.4.2.
2. By symmetry, we may assume that $u \nrightarrow\left(C, v_{1}\right)$. The existence of the paths $v_{2} v_{3} v_{4} u v_{5} v_{6}$, $v_{3} v_{2} u v_{4} v_{5} v_{6}$, and $v_{4} v_{3} v_{2} u v_{5} v_{6}$ implies that $\tau\left(v_{6}, C\right)=0$.
3. True by Lemma 1.4.8-2 and symmetry.

Next, we consider the graphs $C+u$ when $e(u, C)=3$. Again, there are three distinct graphs (see Figure 1.8).

Lemma 1.4.9 Let $C=v_{1} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+1}, v_{j+2}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. $u \rightarrow\left(C, v_{j+1}\right)$.
2. If $u \nrightarrow\left(C, v_{j}\right)$ then $v_{j+1} v_{j+5} \notin E$.
3. If $u \nrightarrow\left(C, v_{j+2}\right)$ then $v_{j+1} v_{j+3} \notin E$.
4. If $u \nrightarrow\left(C, v_{j+3}\right)$ then $e\left(v_{j+4}, v_{j+1} v_{j+2}\right)=0$.
5. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $v_{j+3} v_{j+5} \notin E$ and $e\left(v_{j+1}, v_{j+3} v_{j+5}\right) \leq 1$.
6. If $u \nrightarrow\left(C, v_{j+5}\right)$ then $e\left(v_{j+4}, v_{j} v_{j+1}\right)=0$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{2}, v_{3}\right\}$.

1. True by Lemma 1.4.2.
2. Because $v_{2} u v_{3} v_{4} v_{5} v_{6}$ is a path of order six in $C+u-v_{1}$.
3. True by Lemma 1.4.9-2 and symmetry.
4. Because $v_{2} v_{3} u v_{1} v_{6} v_{5}$ and $v_{3} u v_{2} v_{1} v_{6} v_{5}$ are paths of order six in $C+u-v_{1}$.
5. Suppose $u \nrightarrow\left(C, v_{5}\right)$. Then $v_{4} v_{6} \notin E$ because $v_{4} v_{3} u v_{2} v_{1} v_{6}$ is a path of order six in $C+u-v_{5}$, and $e\left(v_{2}, v_{4} v_{6}\right) \leq 1$ for otherwise $v_{6} v_{2} v_{4} v_{3} u v_{1} v_{6}$ is a 6 -cycle in $C+u-v_{5}$.
6. True by Lemma 1.4.9-4 and symmetry.

Lemma 1.4.10 Let $C=v_{1} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+1}, v_{j+3}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. $u \rightarrow\left(C, v_{j+2}\right)$.
2. If $u \nrightarrow\left(C, v_{j}\right)$ then $v_{j+2} v_{j+5} \notin E$.
3. If $u \nrightarrow\left(C, v_{j+1}\right)$ then $v_{j+2} v_{j+4} \notin E$ and $e\left(v_{j+2}, v_{j} v_{j+5}\right) \leq 1$.
4. If $u \nrightarrow\left(C, v_{j+3}\right)$ then $v_{j+2} v_{j+4} \notin E$, and either $v_{j+2} v_{j+5} \notin E$ or $v_{j} v_{j+4} \notin E$.
5. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $\tau\left(v_{j+5}, C\right)=0$.
6. If $u \nrightarrow\left(C, v_{j+5}\right)$ then $e\left(v_{j+4}, v_{j} v_{j+2}\right)=0$, and either $v_{j} v_{j+2} \notin E$ or $v_{j+1} v_{j+4} \notin E$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{2}, v_{4}\right\}$.

1. True by Lemma 1.4.2.
2. Because $v_{3} v_{2} u v_{4} v_{5} v_{6}$ is a path of order six in $C+u-v_{1}$.
3. Suppose $u \nrightarrow\left(C, v_{2}\right)$. Then $v_{3} v_{5} \notin E$ because $v_{3} v_{4} u v_{1} v_{6} v_{5}$ is a path of order six in $C+u-v_{2}$, and $e\left(v_{3}, v_{1} v_{6}\right) \leq 1$ for otherwise $v_{6} v_{3} v_{1} u v_{4} v_{5} v_{6}$ is a 6 -cycle in $C+u-v_{2}$.
4. Suppose $u \nrightarrow\left(C, v_{4}\right)$. Then $v_{3} v_{5} \notin E$ because $v_{3} v_{2} u v_{1} v_{6} v_{5}$ is a path of order six in $C+u-v_{4}$, and either $v_{3} v_{6} \notin E$ or $v_{1} v_{5} \notin E$ for otherwise $v_{3} v_{6} v_{5} v_{1} u v_{2} v_{3}$ is a 6 -cycle in $C+u-v_{4}$.
5. Because $v_{2} v_{3} v_{4} u v_{1} v_{6}, v_{3} v_{4} u v_{2} v_{1} v_{6}$, and $v_{4} v_{3} v_{2} u v_{1} v_{6}$ are paths of order six in $C+u-v_{5}$.
6. Suppose $u \nrightarrow\left(C, v_{6}\right)$. Then $e\left(v_{5}, v_{1} v_{3}\right)=0$ because $v_{1} u v_{2} v_{3} v_{4} v_{5}$ and $v_{3} v_{2} v_{1} u v_{4} v_{5}$ are paths of order six in $C+u-v_{6}$. Either $v_{1} v_{3} \notin E$ or $v_{2} v_{5} \notin E$ for otherwise $v_{1} v_{3} v_{4} v_{5} v_{2} u v_{1}$ is a 6 -cycle in $C+u-v_{6}$.

Lemma 1.4.11 Let $C=v_{1} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+2}, v_{j+4}\right\}$ for some $1 \leq j \leq 6$. Then $u \rightarrow\left(C, v_{i}\right)$ for each $i \in\{j+1, j+3, j+5\}$, and if $u \nrightarrow\left(C, v_{i}\right)$ for some $i \in\{j, j+2, j+4\}$, then $e\left(v_{j+1}, v_{j+3}\right)+e\left(v_{j+1}, v_{j+5}\right)+e\left(v_{j+3}, v_{j+5}\right) \leq 1$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{3}, v_{5}\right\}$. The first statement is true by Lemma 1.4.2. Suppose that $e\left(v_{2}, v_{4}\right)+e\left(v_{2}, v_{6}\right)+e\left(v_{4}, v_{6}\right) \geq 2$. By symmetry, we may assume WLOG that $e\left(v_{2}, v_{4} v_{6}\right)=2$. Then $v_{6} v_{2} v_{4} v_{3} u v_{5} v_{6}$ is a 6 -cycle in $C+u-v_{1}, v_{6} v_{2} v_{4} v_{5} u v_{1} v_{6}$ is a 6 -cycle in $C+u-v_{3}$, and $v_{6} v_{2} v_{4} v_{3} u v_{1} v_{6}$ is a 6 -cycle in $C+u-v_{5}$. This shows that $u \rightarrow C$, and thus completes the proof.

Finally, we consider the graphs $C+u$ when $e(u, C)=2$ (see Figure 1.9). Note that if $N(u, C)=\left\{v_{i}, v_{k}\right\}$, then $u \nrightarrow\left(C, v_{i}\right)$ since $\operatorname{deg} u=1$ in $C+u-v_{i}$. Similarly, $u \nrightarrow\left(C, v_{k}\right)$.

Lemma 1.4.12 Let $C=v_{1} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+1}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. If $u \nrightarrow\left(C, v_{j+2}\right)$ then $v_{j+1} v_{j+3} \notin E$, and either $v_{j+1} v_{j+5} \notin E$ or $v_{j} v_{j+3} \notin E$.

Figure 1.9: The three possibilities for $C+u$, when $e(u, C)=2$.
2. If $u \nrightarrow\left(C, v_{j+3}\right)$ then $v_{j+2} v_{j+4} \notin E$, and either $v_{j} v_{j+4} \notin E$ or $v_{j+2} v_{j+5} \notin E$.
3. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $v_{j+3} v_{j+5} \notin E$, and either $v_{j+1} v_{j+3} \notin E$ or $v_{j+2} v_{j+5} \notin E$.
4. If $u \nrightarrow\left(C, v_{j+5}\right)$ then $v_{j} v_{j+4} \notin E$, and either $v_{j} v_{j+2} \notin E$ or $v_{j+1} v_{j+4} \notin E$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{2}\right\}$.

1. Suppose that $u \nrightarrow\left(C, v_{3}\right)$. Then $v_{2} v_{4} \notin E$ because $v_{2} u v_{1} v_{6} v_{5} v_{4}$ is a path of order six in $C+u-v_{3}$, and either $v_{2} v_{6} \notin E$ or $v_{1} v_{4} \notin E$ for otherwise $v_{2} v_{6} v_{5} v_{4} v_{1} u v_{2}$ is a 6 -cycle in $C+u-v_{3}$.
2. Suppose that $u \nrightarrow\left(C, v_{4}\right)$. Then $v_{3} v_{5} \notin E$ because $v_{3} v_{2} u v_{1} v_{6} v_{5}$ is a path of order six in $C+u-v_{4}$, and either $v_{1} v_{5} \notin E$ or $v_{3} v_{6} \notin E$ for otherwise $v_{1} v_{5} v_{6} v_{3} v_{2} u v_{1}$ is a 6 -cycle in $C+u-v_{4}$.
3. True by Lemma 1.4.12-2 and symmetry.
4. True by Lemma 1.4.12-1 and symmetry.

Lemma 1.4.13 Let $C=v_{1} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+2}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. $u \rightarrow\left(C, v_{j+1}\right)$.
2. If $u \nrightarrow\left(C, v_{j+3}\right)$ then $v_{j+1} v_{j+4} \notin E$, and either $v_{j+2} v_{j+4} \notin E$ or $v_{j+1} v_{j+5} \notin E$.
3. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $e\left(v_{j+1}, v_{j+3}\right)+e\left(v_{j+1}, v_{j+5}\right)+e\left(v_{j+3}, v_{j+5}\right) \leq 1$.
4. If $u \nrightarrow\left(C, v_{j+5}\right)$ then $v_{j+1} v_{j+4} \notin E$, and either $v_{j} v_{j+4} \notin E$ or $v_{j+1} v_{j+3} \notin E$.

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{3}\right\}$.

1. True by Lemma 1.4.2.
2. Suppose that $u \nrightarrow\left(C, v_{4}\right)$. Then $v_{2} v_{5} \notin E$ because $v_{2} v_{3} u v_{1} v_{6} v_{5}$ is a path of order six in $C+u-v_{4}$, and either $v_{3} v_{5} \notin E$ or $v_{2} v_{6} \notin E$ for otherwise $v_{3} v_{5} v_{6} v_{2} v_{1} u v_{3}$ is a 6 -cycle in $C+u-v_{4}$.
3. First suppose that $e\left(v_{2}, v_{4} v_{6}\right)=2$. Then $v_{4} v_{2} v_{6} v_{1} u v_{3} v_{4}$ is a 6 -cycle, so $u \rightarrow\left(C, v_{5}\right)$. Now suppose that $e\left(v_{4}, v_{2} v_{6}\right)=2$ or $e\left(v_{6}, v_{2} v_{4}\right)=2$, and WLOG let $e\left(v_{4}, v_{2} v_{6}\right)=2$. Then $v_{2} v_{4} v_{6} v_{1} u v_{3} v_{2}$ is a 6 -cycle, so $u \rightarrow\left(C, v_{5}\right)$.
4. True by Lemma 1.4.13-2 and symmetry.

Lemma 1.4.14 Let $C=v_{1} \ldots v_{6} v_{1}$ be a 6 -cycle, and let $u \notin C$ with $N(u, C)=\left\{v_{j}, v_{j+3}\right\}$ for some $1 \leq j \leq 6$. The following statements are true.

1. If $u \nrightarrow\left(C, v_{j+1}\right)$ then $v_{j+2} v_{j+4} \notin E, e\left(v_{j+2}, v_{j} v_{j+5}\right) \leq 1$, and either $v_{j+2} v_{j+5} \notin E$ or $v_{j} v_{j+4} \notin E$.
2. If $u \nrightarrow\left(C, v_{j+2}\right)$ then $v_{j+1} v_{j+5} \notin E, e\left(v_{j+1}, v_{j+3} v_{j+4}\right) \leq 1$, and either $v_{j+1} v_{j+4} \notin E$ or $v_{j+3} v_{j+5} \notin E$.
3. If $u \nrightarrow\left(C, v_{j+4}\right)$ then $v_{j+1} v_{j+5} \notin E, e\left(v_{j+5}, v_{j+2} v_{j+3}\right) \leq 1$, and either $v_{j+1} v_{j+3} \notin E$ or $v_{j+2} v_{j+5} \notin E$.
4. If $u \nrightarrow\left(C, v_{j+5}\right)$ then $v_{j+2} v_{j+4} \notin E, e\left(v_{j+4}, v_{j} v_{j+1}\right) \leq 1$, and either $v_{j} v_{j+2} \notin E$ or $v_{j+1} v_{j+4} \notin E$

Proof: WLOG let $j=1$, so $N(u, C)=\left\{v_{1}, v_{4}\right\}$. We will prove the first statement; the others follow by symmetry. To that end, suppose that $u \nrightarrow\left(C, v_{2}\right)$. Then $v_{3} v_{5} \notin E$ because $v_{3} v_{4} u v_{1} v_{6} v_{5}$ is a path of order six in $C+u-v_{2}$, and $e\left(v_{3}, v_{1} v_{6}\right) \leq 1$ for otherwise $v_{3} v_{6} v_{5} v_{4} u v_{1} v_{3}$ is a 6 -cycle in $C+u-v_{2}$. Finally, either $v_{3} v_{6} \notin E$ or $v_{1} v_{5} \notin E$ for otherwise $v_{3} v_{6} v_{5} v_{1} u v_{4} v_{3}$ is a 6 -cycle in $C+u-v_{2}$.

To bypass the repeated calculation of indices, Lemmas 1.4.6-1.4.14 will be listed for each $j \in\{1,2, \ldots, 6\}$ in Appendix A.

Lemma 1.4.15 Let C be a 6 -cycle and let $x, y \notin C$ with $e(x y, C) \geq 8$. If $e(x, C) \geq 5$, then there exists $z \in C$ such that $x \rightarrow(C, z)$ and $y z \in E$.

Proof: Let $C=a_{1} a_{2} \ldots a_{6} a_{1}$. If $e(x, C)=6$ then the lemma clearly holds since $x \rightarrow C$ and $e(y, C) \geq 2$. If $e(x, C)=5$, then $x \rightarrow\left(C, a_{i}\right)$ for four $a_{i} \in C$, so the lemma again holds since $e(y, C) \geq 3>2=6-4$.

Lemma 1.4.16 Let C be a 6 -cycle and let $x, y \notin C$ with $e(x y, C) \geq 8$ and $e(x, C) \geq e(y, C)$. Suppose that there does not exist $z \in C$ such that $x \rightarrow(C, z)$ and $y z \in E$. Then $e(x, C)=$ $e(y, C)=4$, and there is a labeling of C such that either $N(x, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N(y, C)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$ or $N(x, C)=N(y, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$.

Proof: Let $C=a_{1} a_{2} \ldots a_{6} a_{1}$. By Lemma 1.4.15, $e(x, C)=e(y, C)=4$. Since $e(y, C)=4$, $x \rightarrow\left(C, a_{i}\right)$ for at most two $a_{i} \in C$. Then WLOG we have either $N(x, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ or $N(x, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. In the first case, $x \rightarrow\left(C, a_{i}\right)$ for $i=2,3$, so the lemma holds. In the second case $x \rightarrow\left(C, a_{i}\right)$ for $i=3,6$, so again the lemma holds.

Lemma 1.4.17 Let C be a 6 -cycle and let $x, y \notin C$ with $e(x y, C) \geq 9$. Then there is $u, v \in C$ such that $x \rightarrow(C, u)$ with $y u \in E$ and $y \rightarrow(C, v)$ with $x v \in E$.

Figure 1.10: Lemma 1.4.18: If we relabel the graph on the right, we see that the 'useless' edge $x a_{4}$ is replaced by the chord $a_{2} a_{4}$, yielding a cycle with more chords.

Proof: WLOG let $e(x, C) \geq e(y, C)$. If $e(x, C)=6$, then $e(y, C) \geq 3$, so $x \rightarrow C$ and $y \rightarrow(C, v)$ for some $v \in C$. The lemma holds in this case since $e(y, C) \geq 1$ and $x v \in E$. If $e(x, C)=5$, then $e(y, C) \geq 4$, so $x \rightarrow\left(C, a_{j}\right)$ for four $a_{j} \in C$ and $y \rightarrow\left(C, a_{j}\right)$ for at least two $a_{j} \in C$. The lemma again holds since $e(y, C) \geq 3$ and $e(x, C) \geq 5$.

Often, if $u \rightarrow\left(C, a_{i}\right)$ then the resulting 6 -cycle $C+u-a_{i}$ does not have the same number of chords as C. Notation: If $u \rightarrow\left(C, a_{i}\right)$ and $\tau\left(C+u-a_{i}\right) \geq \tau(C)+n$, we write $u \xrightarrow{n}\left(C, a_{i}\right)$. We define $u v \xrightarrow{n}\left(C, a_{i} a_{j}\right)$ similarly.

Lemma 1.4.18 Let C be a 6-cycle and let $x, y \notin C$ with $e(x y, C) \geq 8$ and $e(x, C) \geq e(y, C)$. If there is no $z \in C$ such that $x \rightarrow(C, z)$ and $y z \in E$, then there is $z^{\prime} \in C$ such that $x \xrightarrow{1}\left(C, z^{\prime}\right)$.

Proof: By Lemma 1.4.16, either $N(x, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N(y, C)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$ or $N(x, C)=N(y, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. In the first case, $y \nrightarrow\left(C, a_{i}\right)$ for $i=1,2,3,4$, so $\tau\left(a_{2} a_{3}, C\right)=0$. Hence $x \xrightarrow{1}\left(C, a_{2}\right)$. In the second case, $y \nrightarrow\left(C, a_{i}\right)$ for $i=1,2,4,5$, so $\tau\left(a_{3} a_{6}, C\right)=0$. Hence $x \xrightarrow{1}\left(C, a_{3}\right)$.

Lemma 1.4.19 Let $C=a_{1} a_{2} \ldots a_{6} a_{1}$ be a 6 -cycle, and let $u, v \notin C$ with $e(u v, C) \geq 7$. Then
for some $x \in\{u, v\}$ and some $a_{i} \in C$, either $x \rightarrow\left(C, a_{i}\right)$ and $y a_{i} \in E$ for $x \neq y \in\{u, v\}$, or $x \xrightarrow{1}\left(C, a_{i}\right)$.

Proof: Suppose that there is no $a_{i} \in C$ such that $x \rightarrow\left(C, a_{i}\right)$ and $y a_{i}$ for $x, y \in\{u, v\}$. Then $u \nrightarrow C$ and $v \nrightarrow C$, so $e(u, C) \leq 5$ and $e(v, C) \leq 5$. WLOG let $e(u, C) \geq e(v, C)$. Suppose that $e(u, C)=5$, with $u a_{6} \notin E$. By Lemma 1.4.5, either $u \rightarrow C$ or $\tau\left(a_{6}, C\right)=0$. Since $e(v, C)=2$, this implies that $\tau\left(a_{6}, C\right)=0$. Then $u \xrightarrow{3}\left(C, a_{6}\right)$, as desired. Now suppose that $e(u, C)=4$.
Case 1: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $u \rightarrow\left(C, a_{i}\right)$ for $i=2,3$, we have $N(v, C) \subseteq$ $\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$. If $\tau\left(a_{2}, C\right)=0$ or $\tau\left(a_{3}, C\right)=0$, then $u \xrightarrow{1}\left(C, a_{2}\right)$ or $u \xrightarrow{1}\left(C, a_{3}\right)$ and we are done, so suppose $\tau\left(a_{2}, C\right) \geq 1$ and $\tau\left(a_{3}, C\right) \geq 1$. Since $e(v, C) \geq 3$, we know by Lemma 1.4.6 that $e\left(a_{2}, a_{5} a_{6}\right)=e\left(a_{3}, a_{5} a_{6}\right)=0$. Hence $a_{2} a_{4} \in E$ and $a_{3} a_{1} \in E$. Since $v \nrightarrow\left(C, a_{3}\right)$ and $v \nrightarrow\left(C, a_{2}\right)$, we have $e\left(v, a_{4} a_{5}\right) \leq 1$ and $e\left(v, a_{6} a_{1}\right) \leq 1$. But $e(v, C) \geq 3$, a contradiction.

Case 2: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $u \rightarrow\left(C, a_{i}\right)$ for $i=2,4,6$, we have $N(v, C)=$ $\left\{a_{1}, a_{3}, a_{5}\right\}$. But then $v \rightarrow\left(C, a_{2}\right)$ and $u a_{2} \in E$, a contradiction.
Case 3: $N(u, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\} . ~ S i m i l a r ~ t o ~ a b o v e, ~ w e ~ h a v e ~ N(v, C) \subseteq\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $u \nrightarrow C$, by Lemma 1.4.8 we know that either $\tau\left(a_{6}, C\right)=0$ or $\tau\left(a_{3}, C\right)=0$. WLOG let $\tau\left(a_{6}, C\right)=0$. Then $u \xrightarrow{2}\left(C, a_{6}\right)$, as desired.

Chapter 2

Foundational Lemmas

2.1 Getting Cycles from Paths

In this section, we introduce some simple lemmas that will be used throughout the paper. These lemmas provide sufficient conditions - mainly in the form of a specific number of edges between two paths - for a graph to contain some type of large cycle as a subgraph, as well as information in the case that those sufficient conditions are not quite met.

Lemma 2.1.1 Let $P=v_{1} v_{2} v_{3} v_{4}$ be a path of order four, and let $u, v \notin P$. Suppose that $P+u v \nsupseteq C_{6}$. Then

1. If $e(u, P)=4$ then $e(v, P) \leq 1$.
2. If $e\left(u, v_{1} v_{4}\right)=2$ then $e\left(v, v_{i} v_{i+1}\right) \leq 1$ for each $1 \leq i \leq 3$.
3. If $e\left(u, v_{1} v_{2} v_{4}\right)=3$ then either $e(v, P) \leq 1$ or $N(v, P)=\left\{v_{2}, v_{4}\right\}$. If $e\left(u, v_{1} v_{3} v_{4}\right)=3$ then either $e(v, P) \leq 1$ or $N(v, P)=\left\{v_{1}, v_{3}\right\}$.

Proof:

1. Since $e(u, P)=4, P+u$ has the following paths of order five: $v_{1} u v_{2} v_{3} v_{4}, v_{1} v_{2} u v_{4} v_{3}$, $v_{1} u v_{4} v_{3} v_{2}, v_{2} v_{1} u v_{3} v_{4}, v_{2} v_{1} u v_{4} v_{3}$, and $v_{3} v_{2} v_{1} u v_{4}$. Therefore $e\left(v, v_{i} v_{j}\right) \leq 1$ for each $i, j \in$ $\{1,2,3,4\}$, so $e(v, P) \leq 1$.
2. This is true because $C=u v_{1} v_{2} v_{3} v_{4} u$ is a 5 -cycle, and if a vertex v is adjacent to consecutive vertices of a 5 -cycle, then $C+v$ has a 6 -cycle.
3. Since $e\left(u, v_{1} v_{2} v_{3}\right)=3, P+u$ has the following paths of order five: $v_{1} u v_{2} v_{3} v_{4}, v_{1} v_{2} u v_{4} v_{3}$, $v_{1} u v_{4} v_{3} v_{2}, v_{2} v_{1} u v_{4} v_{3}$, and $v_{3} v_{2} v_{1} u v_{4}$. Therefore $e\left(v, v_{i} v_{j}\right) \leq 1$ for each $(i, j) \in\{(1,4),(1,3),(1,2),(2,3),(3,4)\}$, so if $e(v, P) \geq 2$ then $e(v, P)=e\left(v, v_{2} v_{4}\right)=2$.

Figure 2.1: Top: If the arrows are extended into edges incident with the endvertices, then a cycle of length $5+6=11$ is formed. Bottom left: A 'twisted' 11-cycle. Bottom right: The same cycle, but 'untwisted' by rotating the $v_{1}-v_{5}$ path by 180 degrees.

The following lemma is a formal expression of the idea that if you take two paths and join them together by their endvertices (Figure 2.1), then you get a cycle.

Lemma 2.1.2 Let $P=v_{1} v_{2} \ldots v_{p}$ and $Q=u_{1} u_{2} \ldots u_{q}$. If $e\left(u_{1} u_{q}, v_{1} v_{p}\right) \geq 3$, then $P+$ $Q \supseteq C_{p+q}$. Further, if $e\left(u_{1} u_{q}, v_{1} v_{p}\right)=2$ and $P+Q$ does not have $a(p+q)$-cycle, then $e\left(u_{1}, v_{1} v_{p}\right)=2$, $e\left(u_{q}, v_{1} v_{p}\right)=2, e\left(u_{1} u_{q}, v_{1}\right)=2$, or $e\left(u_{1} u_{q}, v_{p}\right)=2$.

Lemma 2.1.3 Let $P=v_{1} v_{2} \ldots v_{p}$ be a path of order $p \geq 6$. Let $v \notin P$ with $e(v, P) \geq 4$. Suppose that $N(v, P)$ is not four consecutive vertices of P. Then either $P+v$ has a large cycle of length at most p, or $e(v, P)=4, p=6$, and $N(v, P)=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$.

Proof: Suppose that $P+v$ does not have a large cycle of length at most p. Let i be minimum such that $v v_{i} \in E$. Then $1 \leq i \leq p-4$. First suppose $i=1$. If $v v_{j} \in E$ for some j with $5 \leq j \leq p-1$, then $v v_{1} v_{2} \ldots v_{j} v$ is a cycle of length $6 \leq j+1 \leq p$, a contradiction. Therefore $N(v, P) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{p}\right\}$, and since $N(v, P)$ is not four consecutive vertices of P, we know that $v v_{p} \in E$. Since there is no large cycle of length at most p and $e(v, P) \geq 4$, it must be the case that $p=6$ and $v v_{2} \notin E$. That is, it must be the case that $N(v, P)=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$.

Figure 2.2: The graphs from Lemma 2.1.3 that do not contain large cycles of length at length at most p.

Figure 2.3: The graphs from Lemma 2.1.4 that do not contain large cycles. Five or six of the dashed lines may be present. The graph on the left is a 'worst-case' scenario, and will therefore figure prominently in this paper.

Now suppose $i \geq 2$. Since $e(v, P) \geq 4$ and v is not adjacent to four consecutive vertices of P, we have $v v_{j} \in E$ for some j with $i+4 \leq j \leq p$. But then $v v_{i} v_{i+1} \ldots v_{j} v$ is a cycle of length $6 \leq j-i+2 \leq p$, a contradiction.

Lemma 2.1.4 Let $P=v_{1} v_{2} \ldots v_{p}$ be a path of order p. Let $u_{1} u_{2} \in E$ with $u_{1}, u_{2} \notin P$ and $e\left(u_{1} u_{2}, P\right) \geq 5$. Then either (1) $P+u_{1} u_{2}$ has a large cycle or (2) $N\left(u_{1}, P\right)=\{b\}$ and $N\left(u_{2}, P\right)=\{a, b, c, d\}$ for a path abcd or (3) $N\left(u_{1} u_{2}, P\right)=\{a, b, c\}$ for a path abc.

Proof: Suppose that neither (1) nor (3) holds. Clearly, since (1) does not hold we have $e\left(u_{1}, P\right) \geq 1$ and $e\left(u_{2}, P\right) \geq 1$. Let i be minimum such that $e\left(u_{1} u_{2}, v_{i}\right)>0$, and j be

Figure 2.4: The resulting graph of Lemma 2.1.5. The only large cycle uses every vertex.
maximum such that $e\left(u_{1} u_{2}, v_{j}\right)>0$. WLOG let $u_{2} v_{i} \in E$. Then $u_{2} v_{k} \notin E$ for $k \geq i+4$, for otherwise $u_{2} v_{i} v_{i+1} v_{i+2} v_{i+3} \ldots v_{k} u_{2}$ is a large cycle. Similarly, $u_{1} v_{k} \notin E$ for $k \geq i+3$. Since (3) does not hold, $j \geq i+3$, so $u_{2} v_{j} \in E$ and $j=i+3$. By Lemma 2.1.2, $e\left(u_{1}, v_{i} v_{j}\right)=0$, and by Lemma 2.1.1-2, $e\left(u_{1}, v_{i+1} v_{i+2}\right) \leq 1$. Thus (2) holds.

Lemma 2.1.5 Let $P=v_{1} v_{2} \ldots v_{p}$ be a path of order $p \geq 5$. Let $u_{1} u_{2} \in E$ with $u_{1}, u_{2} \notin P$ and $e\left(u_{1} u_{2}, P\right) \geq 5$. Suppose that neither (2) nor (3) from Lemma 2.1.4 hold. If $P+u_{1} u_{2}$ has no large cycle of length at most $p+1$, then $p=5$, and $\left(P+u_{1} u_{2}\right.$ is isomorphic to the graph with) $N\left(u_{1}, P\right)=\left\{v_{1}, v_{3}, v_{4}\right\}$ and $N\left(u_{2}, P\right)=\left\{v_{3}, v_{5}\right\}$.

Proof: By Lemma 2.1.4, $P+u_{1} u_{2}$ has a large cycle, and by assumption that large cycle has length $p+2$. Suppose that $e\left(u_{1} u_{2}, v_{1}\right)=0$ or $e\left(u_{1} u_{2}, v_{p}\right)=0$, and WLOG let $e\left(u_{1} u_{2}, v_{1}\right)=0$. Then $e\left(u_{1} u_{2}, P-v_{1}\right) \geq 5$, so by Lemma 2.1.4 $P+u_{1} u_{2}-v_{1}$ has a large cycle. But then $P+u_{1} u_{2}$ has a large cycle of length at most $p+1$, a contradiction. Therefore $e\left(u_{1} u_{2}, v_{1}\right) \geq 1$ and $e\left(u_{1} u_{2}, v_{p}\right) \geq 1$. We also know that $e\left(u_{1}, v_{1} v_{p}\right) \geq 1$ and $e\left(u_{2}, v_{1} v_{p}\right) \geq 1$, for otherwise $e\left(u_{2}, v_{1} v_{p}\right)=2$ or $e\left(u_{1}, v_{1} v_{p}\right)=2$, which would yield a cycle of order $p+1$. So WLOG let $u_{1} v_{1} \in E$ and $u_{2} v_{p} \in E$. Since $u_{1} v_{1} \in E$ and $P+u_{1} u_{2}$ does not have a large cycle of length at most $p+1$, we know that $u_{2} v_{j} \notin E$ for $4 \leq j \leq p-1$ and $u_{1} v_{j} \notin E$ for $j \geq 5$. Similarly, since $u_{2} v_{p} \in E$ we have $u_{1} v_{j} \notin E$ for $2 \leq j \leq p-3$ and $u_{2} v_{j} \notin E$ for $j \leq p-4$. Then, because $p \geq 5, N\left(u_{1}, P\right) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \cap\left\{v_{1}, v_{p-2}, v_{p-1}\right\}$ and $N\left(u_{2}, P\right) \subseteq$ $\left\{v_{p}, v_{p-1}, v_{p-2}, v_{p-3}\right\} \cap\left\{v_{2}, v_{3}, v_{p}\right\}$. Since $e\left(u_{1} u_{2}, P\right) \geq 5$, this implies that $p=5$. Therefore $N\left(u_{1}, P\right) \subseteq\left\{v_{1}, v_{3}, v_{4}\right\}$ and $N\left(u_{2}, P\right) \subseteq\left\{v_{2}, v_{3}, v_{5}\right\}$. Then $e\left(u_{1}, v_{3} v_{4}\right)+e\left(u_{2}, v_{2} v_{3}\right) \geq 3$, so either $u_{1} v_{4} \in E$ or $u_{2} v_{2} \in E$. WLOG let $u_{1} v_{4} \in E$. Since $P+u_{1} u_{2}$ does not have a 6 -cycle
and $v_{2} v_{1} u_{1} v_{4} v_{5} u_{2}$ is a path of order 6 , we know that $u_{2} v_{2} \notin E$, which completes the proof.

Lemma 2.1.6 Let P and Q be disjoint paths with $|P|+|Q| \geq 7$. Suppose that $e(P, Q) \geq 6$ and that $P+Q$ does not contain a large cycle of order at most $|P|+|Q|-1$. Then $e(P, Q)=6$, and there is a labeling of P and Q such that one of the following is true (see Figure 2.6):

1. There are paths $x y \subseteq P$ and $a b c \subseteq Q$ such that $N(x, Q)=N(y, Q)=\{a, b, c\}$.
2. There are paths $x y z \subseteq P$ and $a b c \subseteq Q$ such that $N(x, Q)=\{a, b\}, N(y, Q)=\{a, b, c\}$, and $N(z, Q)=\{b\}$.
3. There are paths $x y z \subseteq P$ and $a b c d \subseteq Q$ such that $N(x, Q)=\{b\}, N(y, Q)=\{a, b, c, d\}$, and $N(z, Q)=\{b\}$ or $\{c\}$.

Proof: Let $P=x_{1} x_{2} \ldots x_{m}$ and $Q=y_{1} y_{2} \ldots y_{n}$. WLOG let $m \leq n$. By Lemma 2.1.3, $m \geq 2$. If $m=2$ we get (1), via Lemma 2.1.4. Hence we may assume $m \geq 3$ and $n \geq 4$.

Case 1: $m+n=7$. We have $m=3$ and $n=4$. First suppose that $e\left(x_{1} x_{3}, y_{1} y_{4}\right) \geq 3$, and WLOG let $x_{1} y_{1} \in E$ and $x_{3} y_{4} \in E$. Then, since $P+Q$ does not contain a 6-cycle, $x_{1} y_{2} \notin E$, $x_{3} y_{3} \notin E$, and $e\left(x_{2}, y_{1} y_{4}\right)=0$. Further, if $x_{1} y_{4} \in E$ then $x_{3} y_{2} \notin E$ and if $x_{1} y_{3} \in E$ then $x_{3} y_{1} \notin E$. Hence $e\left(x_{1} x_{3}, Q\right) \leq 4$, so $e\left(x_{2}, y_{2} y_{3}\right)=e\left(x_{2}, Q\right) \geq 6-4=2$. Then $x_{1} y_{4} \notin E$ and $x_{3} y_{1} \notin E$, so $x_{1} y_{3} \in E$ and $x_{3} y_{2} \in E$. But then $x_{1} y_{1} y_{2} x_{3} y_{4} y_{3} x_{1}$ is a 6 -cycle, a contradiction.

Therefore $e\left(x_{1} x_{3}, y_{1} y_{4}\right) \leq 2$. Suppose that $e\left(x_{1} x_{3}, y_{1} y_{4}\right)=2$. From the preceding paragraph, we see that WLOG either $e\left(x_{1}, y_{1} y_{4}\right)=2$ or $e\left(y_{1}, x_{1} x_{3}\right)=2$. Then $x_{1} y_{1} \in E$, and either $x_{1} y_{4} \in E$ or $x_{3} y_{1} \in E$. If $x_{1} y_{4} \in E$, then $e\left(x_{2}, y_{1} y_{4}\right)=e\left(x_{3}, y_{2} y_{3}\right)=0$ and $e\left(x_{2}, y_{2} y_{3}\right) \leq$ 1. But then $e(P, Q) \leq 5$, a contradiction. Thus $x_{3} y_{1} \in E$, so $\left\{x_{1} y_{3}, x_{2} y_{4}, x_{3} y_{3}\right\} \cap E=\emptyset$. If $x_{3} y_{2} \in E$ and $x_{2} y_{3} \in E$, then $x_{2} y_{3} y_{2} x_{3} y_{1} x_{1} x_{2}$ is a C_{6}, a contradiction. Hence $e\left(x_{1} x_{2}, y_{1} y_{2}\right) \geq$ $6-2=4$ and $x_{3} y_{1} \in E$, so $x_{2} y_{3} \notin E$. Then $e\left(x_{1} x_{2} x_{3}, y_{1} y_{2}\right)=6$, which yields (1).

Therefore $e\left(x_{1} x_{3}, y_{1} y_{4}\right) \leq 1$. Suppose that $e\left(x_{1} x_{3}, y_{1} y_{4}\right)=1$, and WLOG let $x_{1} y_{1} \in E$. Then $x_{2} y_{4} \notin E$ and $x_{3} y_{3} \notin E$, so $e\left(y_{4}, P\right)=0$ and $e\left(x_{3}, Q\right) \leq 1$. If $x_{3} y_{2} \notin E$ then (1) holds,
so suppose $x_{3} y_{2} \in E$. Then $e\left(x_{1} x_{2}, y_{1} y_{2} y_{3}\right) \geq 5$. If $e\left(x_{1} x_{2}, y_{3}\right)=2$ then $x_{1} y_{1} y_{2} x_{3} x_{2} y_{3} x_{1}$ is a 6 -cycle, a contradiction. Hence $e\left(x_{1} x_{2}, y_{1} y_{2}\right)=4$. If $x_{1} y_{3} \in E$ then $x_{2} y_{1} x_{1} y_{3} y_{2} x_{3} x_{2}$ is a 6 -cycle, so $x_{2} y_{3} \in E$. This yields (2).

Hence $e\left(x_{1} x_{3}, y_{1} y_{4}\right)=0$. Then $e\left(x_{1} x_{3}, y_{2} y_{3}\right)+e\left(x_{2}, Q\right) \geq 6$. If $e\left(x_{2}, y_{1} y_{4}\right)=0$ then (1) holds, so suppose $e\left(x_{2}, y_{1} y_{4}\right) \geq 1$. WLOG let $x_{2} y_{1} \in E$. If $e\left(x_{2}, Q\right)=4$ then (3) holds, so suppose $e\left(x_{2}, Q\right) \leq 3$. If $x_{3} y_{3} \in E$ then $e\left(x_{1}, y_{2} y_{3}\right) \leq 1$, and if $x_{1} y_{3} \in E$ then $e\left(x_{3}, y_{2} y_{3}\right) \leq 1$. Thus, since $e\left(x_{1} x_{3}, y_{2} y_{3}\right) \geq 3$, we have $e\left(x_{1} x_{3}, y_{2}\right)=2, e\left(x_{2}, Q\right)=3$, and WLOG $x_{1} y_{3} \in E$. Since $e\left(x_{1}, y_{2} y_{3}\right)=2$ and $x_{2} y_{1} \in E$, we have $e\left(x_{2}, y_{1} y_{2} y_{3}\right)=3$. This yields (2).

Case 2: $m+n=8$. First say $m=3$ and $n=5$. By Lemma 2.1.4 and Case 1, we may assume that $e\left(x_{1}, Q\right) \geq 1, e\left(x_{3}, Q\right) \geq 1, e\left(y_{1}, P\right) \geq 1$, and $e\left(y_{5}, P\right) \geq 1$. Let $d=|t-s|$ be maximum such that $y_{1} x_{s} \in E$ and $y_{5} x_{t} \in E$ (see Figure 2.5). If $d=0$ then $y_{1} y_{2} y_{3} y_{4} y_{5} x_{s} y_{1}$ is a 6 -cycle, and if $d=1$ then $y_{1} y_{2} y_{3} y_{4} y_{5} x_{t} x_{s} y_{1}$ is a 7 -cycle. Since $P+Q$ does not have a large cycle of length at most 7 , this implies that $d=2$, and WLOG that $s=1$ and $t=3$. Then $e\left(x_{1}, y_{2} y_{3} y_{5}\right)=e\left(x_{2}, y_{1} y_{2} y_{4} y_{5}\right)=e\left(x_{3}, y_{1} y_{3} y_{4}\right)=0$, so $e(P, Q) \leq 2+1+2=5$, a contradiction.

So $m=n=4$. As before, we may assume $e\left(x_{i}, Q\right) \geq 1$ and $e\left(y_{i}, P\right) \geq 1$ for $i=1,4$. Let $d=|t-s|$ be maximum such that $y_{1} x_{s} \in E$ and $y_{4} x_{t} \in E$. Since $P+Q$ has neither a 6 -cycle nor 7 -cycle, it is clear that $d \neq 1$ and $d \neq 2$. Suppose that $d=3$ and WLOG let $s=1$ and $t=4$. Then $e\left(x_{1}, y_{2} y_{3}\right)=e\left(x_{2}, y_{1} y_{2} y_{4}\right)=e\left(x_{3}, y_{1} y_{3} y_{4}\right)=e\left(x_{4}, y_{2} y_{3}\right)=0$, so $x_{1} y_{4} \in E$ and $x_{3} y_{2} \in E$. But then $x_{1} y_{4} y_{3} y_{2} x_{3} x_{2} x_{1}$ is a 6 -cycle, a contradiction. Therefore $d=0$, and WLOG $s=1$ or $s=2$. Suppose $s=1$. Then by the maximality of $d, y_{1} x_{4} \notin E$ and $y_{4} x_{4} \notin E$. Since $e\left(x_{4}, Q\right) \geq 1$, either $x_{4} y_{2} \in E$ or $x_{4} y_{3} \in E$. If $x_{4} y_{2} \in E$ then $x_{4} y_{2} y_{1} x_{1} x_{2} x_{3} x_{4}$ is a 6-cycle, and if $x_{4} y_{3} \in E$ then $x_{4} y_{3} y_{4} x_{1} x_{2} x_{3} x_{4}$ is a 6 -cycle. This is a contradiction, so $s=2$. Again, either $x_{4} y_{2} \in E$ or $x_{4} y_{3} \in E$. But $x_{4} x_{3} x_{2} y_{4} y_{3} y_{2}$ and $x_{4} x_{3} x_{2} y_{1} y_{2} y_{3}$ are paths of order six, a contradiction.

Case 3: $m+n \geq 9$. For contradiction, let $k=m+n$ be minimal such that the lemma

Figure 2.5: The cases $d=0, d=1$, and $d=2$.
fails Suppose $e\left(x_{i}, Q\right)=0$ or $e\left(y_{j}, P\right)=0$ for some $i=1, m$, or some $j=1, n$. WLOG say $e\left(x_{1}, Q\right)=0$. Since $P+Q$ has no cycle of length $6 \leq l \leq k-1$, it is also true that $P+Q-x_{1}$ has no cycle of length l. Therefore, since $e\left(P-x_{1}, Q\right) \geq 6$ and k is minimal, one of (1)-(3) holds. Hence one of (1)-(3) also holds in $P+Q$, a contradiction. Thus $e\left(x_{i}, Q\right) \geq 1$ for $i=1, m$, and $e\left(y_{j}, P\right) \geq 1$ for $j=1, n$. Let $d=|t-s|$ be maximum such that $y_{1} x_{s} \in E$ and $y_{n} x_{t} \in E$. Suppose that $d=m-1$, and WLOG let $s=1$ and $t=m$. Then $L=x_{1} x_{2} \ldots x_{m} y_{n} \ldots y_{1} x_{1}$ is a k-cycle. Since $e(P, Q) \geq 6, L$ has a chord. By Lemma 1.4.1, L contains two cycles L_{1} and L_{2} such that $l\left(L_{1}\right)+l\left(L_{2}\right)=k+2 \geq 11$. This implies that L has a large cycle of length at most $k+2-3=k-1$, a contradiction. Therefore $d \leq m-2$. Since $k \geq 9$, we know that $n \geq 5$. Then $C=y_{1} y_{2} \ldots y_{n} x_{t} x_{t \pm 1} \ldots x_{s} y_{1}$ is a cycle of length $6 \leq n+1 \leq l(C) \leq n+m-1=k-1$, a contradiction. This completes the proof.

Lemma 2.1.7 If P and Q are paths of order 3 and 5 with $e(P, Q) \geq 7$, then $P+Q \supseteq C_{6}$.

Proof: Let $P=x_{1} x_{2} x_{3}$ and $Q=y_{1} y_{2} y_{3} y_{4} y_{5}$. For contradiction, suppose that there is no 6 -cycle. By Lemma 2.1.6, it must be the case that $e\left(x_{1}, Q\right) \geq 1, e\left(x_{3}, Q\right) \geq 1, e\left(y_{1}, P\right) \geq 1$, and $e\left(y_{5}, P\right) \geq 1$, for otherwise there are at least seven edges between two paths P^{\prime} and Q^{\prime} with $\left|P^{\prime}\right|+\left|Q^{\prime}\right|=7$. Since $P+Q$ does not have a 6 -cycle, we know that $e\left(x_{2}, y_{1} y_{5}\right) \leq 1$.

Figure 2.6: In each graph, the top path is a subpath of a path P and the bottom path is a subpath of a path Q. If P and Q satisfy the conditions of Lemma 2.1.6, then $P+Q$ must contain one of these three graphs as a subgraph. In the bottom graph, one of the two dashed lines is present.

Therefore, because $e\left(y_{1} y_{5}, P\right) \geq 2$, we have $e\left(y_{1} y_{5}, x_{1} x_{3}\right) \geq 1$. Thus by symmetry, WLOG we can let $x_{1} y_{1} \in E$. Then, since $P+Q$ does not have a 6 -cycle, we know that $x_{1} y_{5} \notin E$, $x_{2} y_{4} \notin E$, and $x_{3} y_{3} \notin E$. Since $e\left(y_{5}, P\right) \geq 1$, we know that either $y_{5} x_{2} \in E$ or $y_{5} x_{3} \in E$.

First suppose that $y_{5} x_{3} \in E$. Then similar to above, we know that $x_{3} y_{1} \notin E, x_{2} y_{2} \notin E$, and $x_{1} y_{3} \notin E$. Therefore $e\left(x_{1}, y_{2} y_{4}\right)+e\left(x_{2}, y_{1} y_{3} y_{5}\right)+e\left(x_{3}, y_{2} y_{4}\right) \geq 7-2=5$. Further, since $P+Q$ does not have a 6 -cycle, we know by Lemma 2.1.2 that $e\left(x_{1} x_{3}, y_{2} y_{4}\right) \leq 2$. Hence $e\left(x_{2}, y_{1} y_{3} y_{5}\right)=3$, so $x_{2} y_{5} y_{4} y_{3} y_{2} y_{1} x_{2}=C_{6}$, a contradiction. Thus $y_{5} x_{3} \notin E$, so $y_{5} x_{2} \in E$. Then $x_{2} y_{1} \notin E$ and $e\left(x_{1} x_{3}, y_{2}\right)=0$, so $e\left(x_{1}, y_{3} y_{4}\right)+e\left(x_{2}, y_{2} y_{3}\right)+e\left(x_{3}, y_{1} y_{4}\right) \geq 5$. Further, by Lemma 2.1.2 it is not the case that $x_{1} y_{3} \in E$ and $x_{3} y_{1} \in E$, so we have $e\left(y_{4}, x_{1} x_{3}\right)=e\left(x_{2}, y_{2} y_{3}\right)=2$. But then $x_{1} y_{1} y_{2} x_{2} y_{3} y_{4} x_{1}=C_{6}$, a contradiction.

Lemma 2.1.8 Let $P=x_{1} x_{2} x_{3}$ and $Q=y_{1} y_{2} \ldots y_{n}$ be disjoint paths, with $n \geq 5$. If $e\left(x_{1} x_{3}, Q\right) \geq n, x_{1} y_{1} \in E$, and $x_{3} y_{n} \in E$, then $P+Q \supseteq C_{6}$.

Proof: For contradiction, let k be minimal such that the lemma is not true. Let $P=x_{1} x_{2} x_{3}$ and $Q=y_{1} y_{2} \ldots y_{k}$ be disjoint paths with $x_{1} y_{1} \in E, x_{3} y_{k} \in E$, and $e\left(x_{1} x_{3}, Q\right) \geq k$, and
assume $P+Q \nsupseteq C_{6}$. If $k=5$ then $e\left(x_{1} x_{3}, y_{3}\right)=0, x_{1} y_{5} \notin E, x_{3} y_{1} \notin E$, and $e\left(x_{1} x_{3}, y_{2} y_{4}\right) \leq 2$. But then $e\left(x_{1} x_{3}, Q\right) \leq 4$, a contradiction. Hence $k \geq 6$.

Case 1: $x_{1} y_{2} \in E$. By the minimality of $k, x_{3} y_{1} \in E$, for otherwise $e\left(x_{1} x_{3}, y_{2} \ldots y_{k}\right) \geq k-1$ and so $P+Q \supseteq C_{6}$. Therefore $x_{1} y_{3} \notin E$, and since $e\left(x_{1}, y_{1} y_{2}\right)=2$ we also have $e\left(x_{1}, y_{5} y_{6}\right)=$ 0 . Further, since $x_{3} y_{1} \in E$ we have $x_{3} y_{5} \notin E$, and since $e\left(x_{1}, y_{1} y_{2}\right)=2$ we have $e\left(x_{3}, y_{3} y_{4}\right)=$ 0 . Hence $e\left(x_{1} x_{3}, y_{1} y_{2} y_{3} y_{4} y_{5} y_{6}\right)=e\left(x_{1}, y_{1} y_{2} y_{4}\right)+e\left(x_{3}, y_{1} y_{2} y_{6}\right)$. Because $e\left(x_{3}, y_{2} y_{6}\right) \leq 1$, and because if $x_{1} y_{4} \in E$ then $e\left(x_{3}, y_{2} y_{6}\right)=0$, this implies that $e\left(x_{1} x_{3}, y_{1} y_{2} y_{3} y_{4} y_{5} y_{6}\right) \leq 4$. Therefore, since $e\left(x_{1} x_{3}, Q\right) \geq k$, we have $k \geq 8$, and if $k=8$ then $e\left(x_{1} x_{3}, y_{7} y_{8}\right)=4$. Suppose $k=8$. Since $e\left(x_{1}, y_{7} y_{8}\right)=2$ we know that $x_{1} y_{4} \notin E$ and $x_{3} y_{6} \notin E$. Therefore $e\left(x_{1} x_{3}, y_{1} y_{2}\right)=4$. But then $x_{1} y_{1} y_{2} x_{3} y_{8} y_{7} x_{1}=C_{6}$, a contradiction. Hence $k \geq 9$.

Because $e\left(x_{1} x_{3}, y_{1} \ldots y_{6}\right) \leq 4$, we have $e\left(x_{1} x_{3}, y_{7} \ldots y_{k}\right) \geq k-4$. Then $x_{1} y_{j} \in E$ for some $7 \leq j \leq k$, so let $j \geq 7$ be minimal such that $x_{1} y_{j} \in E$. Suppose $j=7$. Then by the minimality of k and because $e\left(x_{1} x_{3}, y_{7} \ldots y_{k}\right) \geq k-4>k-6$, we know that $k-6 \leq 4$, for otherwise $P+Q \supseteq C_{6}$. This implies that $k=10$, because otherwise $x_{1} y_{7} y_{8} y_{9} x_{3} x_{2} x_{1}=C_{6}$. Then $x_{1} y_{7} \in E$ and $x_{3} y_{10} \in E$, so $x_{3} y_{9} \notin E$ and $x_{1} y_{8} \notin E$. Therefore, since $e\left(x_{1} x_{3}, y_{7} y_{8} y_{9} y_{10}\right) \geq 10-4=6$, we see that $x_{1} y_{9} y_{10} x_{3} y_{8} y_{7} x_{1}=C_{6}$, a contradiction. Thus $j \geq 8$. By the minimality of $j, e\left(x_{1}, y_{7} \ldots y_{j-1}\right)=0$. Therefore $e\left(x_{1} x_{3}, y_{j} \ldots y_{k}\right) \geq(k-4)-(j-7)=k-j+3$. Hence $j \leq k-1$, and by the minimality of k we must have $(k-j+1) \leq 4$, because $y_{j} \ldots y_{k}$ is a path of order $k-j+1$ with $x_{1} y_{j} \in E$ and $x_{3} y_{k} \in E$. Thus $k-1 \geq j \geq k-3$.

If $k=9$ then $e\left(x_{1} x_{3}, y_{7} y_{8} y_{9}\right) \geq 5$, so by the minimality of j we have $e\left(x_{1} x_{3}, y_{8} y_{9}\right)=4$ and $x_{3} y_{7} \in E$. But then $x_{1} x_{2} x_{3} y_{7} y_{8} y_{9} x_{1}=C_{6}$, a contradiction. If $k=10$ then $x_{3} y_{10} \in E$ so $x_{1} y_{8} \notin E$, which means that $e\left(x_{1} x_{3}, y_{9} y_{10}\right) \geq 6-e\left(x_{1} x_{3}, y_{7} y_{8}\right)=6-e\left(x_{3}, y_{7} y_{8}\right) \geq 4$. But then $x_{1} y_{9} \in E$ and $x_{3} y_{7} \in E$, a contradiction. Therefore $k \geq 11$. Since $j \geq k-3$, by the minimality of j we know that $e\left(x_{1}, y_{7} \ldots y_{k-4}\right)=0$. Thus $e\left(x_{1} x_{3}, y_{k-3} \ldots y_{k}\right)=$ $e\left(x_{1} x_{3}, y_{7} \ldots y_{k}\right)-e\left(x_{1} x_{3}, y_{7} \ldots y_{k-4}\right) \geq(k-4)-(k-10)=6$. It is easy to see that this implies $P+Q \supseteq C_{6}$, a contradiction.

Case 2: $x_{1} y_{2} \notin E$. Since $P+Q \nsupseteq C_{6}$, we know that $x_{3} y_{k-4} \notin E$ and $x_{3} y_{3} \notin E$. Therefore $e\left(x_{1}, Q\right) \geq k-(k-2)$, so let $j \geq 3$ be minimal such that $x_{1} y_{j} \in E$. Suppose $j \leq k-4$. Then $y_{j} \ldots y_{k}$ is a path of order at least five, so by the minimality of k we must have $e\left(x_{1} x_{3}, y_{j} \ldots y_{k}\right) \leq k-j$. Then $e\left(x_{1} x_{3}, y_{1} \ldots y_{j-1}\right) \geq j$, so by the minimality of j we have $e\left(x_{3}, y_{1} \ldots y_{j-1}\right) \geq j-1$. Since $x_{3} y_{3} \notin E$, this implies that $j=3$. But then $x_{1} y_{3} y_{2} y_{1} x_{3} x_{2} x_{1}=$ C_{6}, a contradiction. Therefore $j \geq k-3$, so $e\left(x_{1}, y_{2} \ldots y_{k-4}\right)=0$. Since $P+Q \nsupseteq C_{6}$, we have $e\left(x_{1} x_{3}, y_{k-3} y_{k-1}\right) \leq 2, e\left(x_{1} x_{3}, y_{k-2} y_{k}\right) \leq 2$, and $e\left(x_{3}, y_{3} y_{k-4}\right)=0$. Thus $e\left(x_{3}, y_{1} \ldots y_{k-5}\right) \geq$ $k-1-4=k-5$ and $k \leq 7$. It is easy to see that $P+Q \supseteq C_{6}$, so the proof is complete.

Lemma 2.1.9 Let $P=x_{1} x_{2} \ldots x_{n}$ be a path of order $n \geq 6$. Let $u, v \notin P$ with $u v \notin E$ and $e(u v, P) \geq n+1$. Suppose that $e\left(u, x_{1} x_{n}\right)=2$, and that if $u x_{i} \in E$ then $v x_{i-1} \notin E$. Then $P+u v \supseteq C_{6}$.

Proof: Suppose not. Let k be minimal such that the lemma fails. It is easy to see that $k \geq 7$. Let $i \geq 2$ be minimal such that $u x_{i} \in E$.

Suppose that $i \leq k-4$. Since $u x_{k} \in E$ and $P+u v \nsupseteq C_{6}$, we know that $i \leq k-5$. Then $x_{i} \ldots x_{k}$ is a path of order $k-i+1 \geq 6$ and $e\left(u, x_{i} x_{k}\right)=2$, so by the minimality of k we have $e\left(u v, x_{i} \ldots x_{k}\right) \leq k-i+1$. Thus $e\left(u v, x_{1} \ldots x_{i-1}\right) \geq(k+1)-(k-i+1)=i$, and by the minimality of i this implies that $e\left(v, x_{1} \ldots x_{i-1}\right) \geq i-1$. But then $u x_{i} \in E$ and $v x_{i-1} \in E$, a contradiction.

Hence $i \geq k-3$. Suppose that $e\left(u v, x_{k-3} \ldots x_{k}\right) \geq 5$. Since $u x_{k} \in E, v x_{k-1} \notin E$, so $e\left(u, x_{k-3} x_{k-2} x_{k-1}\right)+e\left(v, x_{k-3} x_{k-2} x_{k}\right) \geq 4$. Also, $e\left(u, x_{k-2} x_{k-1}\right)+e\left(v, x_{k-3} x_{k-2}\right) \leq 2$, so $u x_{k-3} \in E$ and $v x_{k} \in E$. Then $v x_{k-4} \notin E$, and $u x_{k-4} \notin E$ by the minimality of i. This argument shows that $e\left(u v, x_{k-4} \ldots x_{k}\right) \leq 5$, which implies that $e\left(u v, x_{1} \ldots x_{k-5}\right) \geq k-4$. Hence, by the minimality of i we know that $e\left(v, x_{1} \ldots x_{k=5}\right)=k-5$. Since $P+u v \nsupseteq C_{6}$, we see that $k \leq 9$. It is easy to check that $P+u v \supseteq C_{6}$, a contradiction.

2.2 Getting Smaller Cycles from Larger Ones

In this section, we show that if C and L are disjoint cycles with lengths p and q, where $q \geq p \geq 6$ with $q \geq 7$, and if $e(C, L) \geq \frac{7 q+1}{2}$, then (i) if $p \geq 7$, then either $C+L$ contains a 6 -cycle or $C+L$ contains two disjoint large cycles C^{\prime} and L^{\prime} with $l\left(C^{\prime}\right)+l\left(L^{\prime}\right)<p+q$, and (ii) if $p=6$, then $C+L$ contains disjoint large cycles C^{\prime} and L^{\prime} such that $l\left(C^{\prime}\right)=6$ and $l\left(C^{\prime}\right)+l\left(L^{\prime}\right)<p+q$. This result is proved by Lemmas 2.2.5-2.2.7. Lemmas 2.2.2-2.2.4 will serve the proof of Lemma 2.2.5. We begin with a simple result concerning the number of edges between a vertex and a large cycle.

Lemma 2.2.1 If $L=v_{1} v_{2} \ldots v_{p} v_{1}$ is a cycle of order $p \geq 7$ and $v \notin L$ with $e(v, L) \geq 3$, then either $L+v$ has a large cycle C with $l(C)<p$, or $e(v, L)=3$ with v adjacent to three consecutive vertices of L.

Proof: Suppose $L+v$ does not have a large cycle with length less than p. WLOG let $v v_{1} \in E$. If $v v_{4} \in E$ then $v v_{4} v_{5} \ldots v_{p} v_{1} v$ is a cycle of length $p-1$. If $v v_{j} \in E$ for some j with $5 \leq j \leq p-2$, then $v v_{1} v_{2} \ldots v_{j} v$ is a cycle of length $6 \leq j+1 \leq p-1$. Hence $v v_{j} \notin E$ for $j \in\{4,5, \ldots, p-2\}$, so $N(v, P) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{p-1}, v_{p}\right\}$. If $v v_{2} \in E$, then $v v_{2} v_{3} \ldots v_{p-1}$ is a path of order $p-1$, so $v v_{p-1} \notin E$. Similarly, if $v v_{3} \in E$ then $v v_{p} \notin E$. Further, $e\left(v, v_{3} v_{p-1}\right) \leq 1$, for otherwise $v v_{p-1} v_{p} v_{1} v_{2} v_{3} v=C_{6}$. Therefore, since $e(v, P) \geq 3$, it is easy to see that v is adjacent to three consecutive vertices of L.

Lemma 2.2.2 Let $L=x_{1} x_{2} \ldots x_{7} x_{1}$ be a 7 -cycle, and let $P=a_{1} a_{2} a_{3} a_{4}$ be a 4-path with P and L disjoint and $e\left(a_{1}, L\right) \geq e\left(a_{4}, L\right)$. Let $u \notin L+P$ with $e(u, L)=7$, and suppose that $L+P+u$ does not contain $2 C_{6}$. (1) If $e\left(a_{1}, L\right) \geq 5$, then either $e\left(a_{4}, L\right)=0$ or $e\left(a_{1}, L\right)=5, e\left(a_{4}, L\right)=1$, and the neighbor of a_{4} in L is adjacent to the nonneighbors of a_{1} in L. (2) If $e\left(a_{1}, L\right)=4$, then either $e\left(a_{4}, L\right) \leq 1$ or ($P+L$ is isomorphic to the graph with) $N\left(a_{1}, L\right)=\{2,4,6,7\}$ and $N\left(a_{4}, L\right)=\{2,4\}$.

Figure 2.7: Lemma 2.2.2: The graph $L+u-x_{r} x_{r+1}$ (left) has a 6 -cycle, so the graph $P+x_{r} x_{r+1}$ (right) cannot have a 6 -cycle.

Figure 2.8: Lemma 2.2.2: If $a_{4} x_{r} \in E$, then $e\left(a_{1}, x_{r-1} x_{r+1}\right)=0$.

Figure 2.9: Lemma 2.2.2: The only scenario in which $e\left(a_{1}, L\right)=4$ and $e\left(a_{4}, L\right)=2$. Left: a_{4} cannot be adjacent to any of the white vertices. Right: a_{1} cannot be adjacent to any of the white vertices.

Proof: \quad Since $e(u, L)=7, L+u-x_{r} x_{r+1} \supseteq C_{6}$ for each $x_{r} \in L$. Hence for each $x_{r} \in L$, $P+x_{r} x_{r+1}$ does not have a 6 -cycle. First suppose $e\left(a_{1}, L\right) \geq 6$. Then every vertex in L has a neighbor in $N\left(a_{1}, L\right)$, so $e\left(a_{4}, L\right)=0$, for otherwise $x_{r \pm 1} a_{1} a_{2} a_{3} a_{4} x_{r} x_{r \pm 1}$ is a 6-cycle for $x_{r} \in N\left(a_{4}, L\right)$. Now suppose $e\left(a_{1}, L\right)=5$ with $x_{i}, x_{j} \notin N\left(a_{1}, L\right)$. WLOG there are three possibilities for the set $\{i, j\}:\{1,2\},\{1,3\}$, and $\{1,4\}$. If every vertex in L has a neighbor in $N\left(a_{1}, L\right)$, then as above we get $N\left(a_{4}, L\right)=0$. Thus if $e\left(a_{4}, L\right) \geq 1$ we must have $\{i, j\}=\{1,3\}$, with x_{2} the only nonneighbor of $N\left(a_{1}, L\right)$. Hence $e\left(a_{1}, L\right)=5, e\left(a_{4}, L\right)=1$, and the neighbor of a_{4} is adjacent to the nonneighbors of a_{1}. Finally, suppose $e\left(a_{1}, L\right)=4$. There are four possibilities for the nonneighbors x_{i}, x_{j}, x_{k} of $a_{1}:\{i, j, k\}=\{1,2,3\},\{1,2,4\}$, $\{1,2,5\}$, or $\{1,3,5\}$. For the first three cases there is at most one nonneighbor of $N\left(a_{1}, L\right)$: x_{2} in the first and x_{3} in the second, with none in the third. Thus if $e\left(a_{4}, L\right) \geq 2$, then $N\left(a_{1}, L\right)=\{2,4,6,7\}$ and $N\left(a_{4}, L\right)=\{2,4\}$.

Lemma 2.2.3 Let $L=x_{1} x_{2} \ldots x_{7} x_{1}$ be a 7 -cycle, and let $P=a_{1} a_{2} a_{3} a_{4}$ be a 4-path with P and L disjoint and $e\left(a_{1}, L\right) \geq e\left(a_{4}, L\right)$. Let $u \notin L+P$ with $e(u, L)=6$, and suppose that $L+P+u$ does not contain $2 C_{6}$. If $e\left(a_{1}, L\right) \geq 6$, then either $e\left(a_{4}, L\right) \leq 1$, or $e\left(a_{4}, L\right)=2$, $N\left(a_{1}, L\right)=N(u, L)$, and the nonneighbor of a_{1} and u is adjacent to both neighbors of a_{4}.

Proof: WLOG say $e\left(u, L-x_{7}\right)=6$. Then $L+u-x_{r} x_{r+1} \supseteq C_{6}$ for $r=2,3,4,6,7$, so

Figure 2.10: Lemma 2.2.3: The only 6 -cycles using the path P are $a_{1} a_{2} a_{3} a_{4} x_{6} x_{5} a_{1}$ and $a_{1} a_{2} a_{3} a_{4} x_{1} x_{2} a_{1}$, and neither $x_{5} x_{6}$ nor $x_{1} x_{2}$ are in F.
for each such $r, P+x_{r} x_{r+1}$ does not have a 6-cycle. Let $F=\left\{x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{6} x_{7}, x_{7} x_{1}\right\}$ be the set of edges $x_{r} x_{r+1}$ such that $L+u-x_{r} x_{r+1} \supseteq C_{6}$. Then for each $x_{i} x_{j} \in F$, if $a_{1} x_{i} \in E$ then $a_{4} x_{j} \notin E$ and if $a_{1} x_{j} \in E$ then $a_{4} x_{i} \notin E$. Suppose $e\left(a_{4}, L\right) \geq 2$. Then clearly $e\left(a_{1}, L\right)=6$, for otherwise we have $a_{4} x_{j} \notin E$ for each $x_{j} \in L$. Let $a_{1} x_{k} \notin E$. It is easy to check that if $k=4,5,6$, then $e\left(a_{4}, L\right) \leq 1$, so by symmetry we must have $a_{1} x_{7} \notin E$ with $N\left(a_{4}, L\right)=\left\{x_{1}, x_{6}\right\}$.

Lemma 2.2.4 Let L be a 7-cycle and let $P=a_{1} a_{2} \ldots a_{5}$ be a 5-path with P and L disjoint. Let $u \notin L+P$ with $e(u, L) \geq 6$. If $L+P+u$ does not contain $2 C_{6}$ then $e\left(a_{1} a_{5}, L\right) \leq 7$.

Proof: \quad Since $e(u, L) \geq 6, L+u-x_{r} \supseteq C_{6}$ for each $x_{r} \in L$, so $P+x_{r}$ does not have a 6 -cycle. Hence $e\left(x_{r}, a_{1} a_{5}\right) \leq 1$ for each $x_{r} \in L$, which means $e\left(a_{1} a_{5}, L\right) \leq 7$.

Lemma 2.2.5 Let L be a cycle of length 7 and let C be a cycle of length 6 . If e $(C, L) \geq 25$, then $C+L$ contains two disjoint 6 -cycles.

Proof: Suppose that the lemma is not true. Let $L=x_{1} \ldots x_{7} x_{1}$ and $C=a_{1} \ldots a_{6} a_{1}$. WLOG let $e\left(a_{1}, L\right) \geq e\left(a_{i}, L\right)$ for each $a_{i} \in C$. Since $e(C, L) \geq 25, e\left(a_{1}, L\right) \geq 5$. Let $i \in\{1,2, \ldots, 6\}$ and $r \in\{1,2, \ldots, 7\}$. If $L+a_{i}-x_{r} x_{r+1}$ contains a 6 -cycle then $C-a_{i}+x_{r} x_{r+1}$ does not have a 6 -cycle. Therefore, by Lemma 2.1.6 we know that

$$
\begin{equation*}
e\left(x_{r} x_{r+1}, C-a_{i}\right) \leq 6 \tag{2.1}
\end{equation*}
$$

Figure 2.11: Lemma 2.2.5, Case 1.1
for each i and r such that $L+a_{i}-x_{r} x_{r+1}$ contains a 6-cycle.
We use cases based on the number of edges from a_{1} to L to complete the proof of this lemma. In each case, we will rely on (2.1). We will use Lemma 2.1.6 to give us information about the edges between $x_{r} x_{r+1}$ and $C-a_{i}$.

Case 1: $e\left(a_{1}, L\right)=7$. Since $L+a_{1}-x_{r} x_{r+1} \supseteq C_{6}$ for each $1 \leq r \leq 7$, we have $e\left(x_{r} x_{r+1}, C-\right.$ $\left.a_{1}\right) \leq 6$ for each r by (2.1). If $e\left(x_{r} x_{r+1}, C-a_{1}\right) \leq 5$ for each r, then $e(C, L) \leq 7+$ $5\left(\frac{7}{2}\right)=\frac{49}{2}<25$, a contradiction. Thus WLOG say $e\left(x_{1} x_{2}, C-a_{1}\right)=6$. By Lemma 2.1.6, $N\left(x_{1} x_{2}, C-a_{1}\right)=\left\{a_{r}, a_{r+1}, a_{r+2}\right\}$ for some $2 \leq r \leq 4$. By symmetry, we need only consider the cases $r=2$ and $r=3$.

Case 1.1: $N\left(x_{1} x_{2}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Since $x_{2} a_{2} \in E$, we know that $x_{3} a_{5} \notin E$, for otherwise $C-a_{1}+x_{2} x_{3}$ has the 6-cycle $x_{2} a_{2} a_{3} a_{4} a_{5} x_{3} x_{2}$. Similarly, $x_{3} a_{6} \notin E$ because $x_{2} a_{3} \in$ E. By symmetry, $e\left(x_{7}, a_{5} a_{6}\right)=0$ since $e\left(x_{1}, a_{2} a_{3}\right)=2$. Suppose that $e\left(x_{3}, a_{2} a_{3} a_{4}\right)=$ $e\left(x_{7}, a_{2} a_{3} a_{4}\right)=0$. Then $e\left(x_{3}, C\right)=e\left(x_{7}, C\right)=1, e\left(x_{1} x_{2}, C\right)=8$, and $e\left(x_{4} x_{5}, C\right) \leq 8$, so $e\left(x_{6}, C\right) \geq 25-18=7$, a contradiction. Thus either $e\left(x_{3}, a_{2} a_{3} a_{4}\right)>0$ or $e\left(x_{7}, a_{2} a_{3} a_{4}\right)>0$. WLOG let $e\left(x_{3}, a_{2} a_{3} a_{4}\right)>0$. If $x_{3} a_{2} \in E$ or $x_{3} a_{4} \in E$ then $x_{1} x_{2} x_{3}+a_{2} a_{3} a_{4}$ contains a 6 -cycle by Lemma 2.1.2, since $e\left(x_{1}, a_{2} a_{4}\right)=2$. If $x_{3} a_{3} \in E$, then $x_{1} x_{2} x_{3}+a_{2} a_{3} a_{4}$ contains the 6-cycle $x_{3} a_{3} a_{2} x_{1} a_{4} x_{2} x_{3}$. Since $e\left(x_{3}, a_{2} a_{3} a_{4}\right)>0$, this implies that $x_{1} x_{2} x_{3}+a_{2} a_{3} a_{4} \supseteq C_{6}$, and hence that $a_{5} a_{6} a_{1}+x_{4} x_{5} x_{6} x_{7}$ does not have a 6 -cycle.

Let $P=a_{5} a_{6} a_{1}$ and $Q=x_{4} x_{5} x_{6} x_{7}$. Since $e\left(a_{1}, Q\right)=4$, we know that $e\left(a_{5} a_{6}, Q\right) \leq 2$

Figure 2.12: Lemma 2.2.5, Case 2: The graphs $L+a_{1}$ and $L+a_{1}-x_{3} x_{4}$.
by Lemma 2.1.6. Further, since $e\left(a_{1}, Q\right)=4$ we actually know that $e\left(a_{5} a_{6}, Q\right) \leq 1$, for otherwise $e(P, Q)=6$ and $P+Q$ contains none of the graphs in Figure 2.6 as a subgraph. Since $e\left(a_{5} a_{6}, x_{1} x_{2}\right)=0$ and $e\left(a_{5} a_{6}, x_{3}\right)=0$, this means that $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-1-7=17$. If $e\left(a_{2}, L\right) \geq 6$ or $e\left(a_{3}, L\right) \geq 6$, then $e\left(a_{4}, L\right) \leq 1$ by Lemma 2.2.2 or Lemma 2.2.3, since $a_{4} a_{5} a_{6} a_{1}$ is a 4-path. But then $e\left(a_{2} a_{3} a_{4}, L\right) \leq 1+14=15$, a contradiction. Hence $e\left(a_{2} a_{3}, L\right) \leq 10$, so $e\left(a_{4}, L\right)=7$. Then $a_{4} a_{5} a_{6} a_{1} x_{4} x_{3} a_{4}$ is a 6 -cycle, so $e\left(a_{2} a_{3}, L-x_{3} x_{4}\right) \leq 6$ by Lemma 2.1.5. Since $e\left(a_{2} a_{3}, L\right)=10, e\left(a_{2} a_{3}, x_{3} x_{4}\right)=4$. But then $a_{2} a_{3} x_{4} x_{3} x_{2} x_{1} a_{2}$ is a 6 -cycle and $a_{4} a_{5} a_{6} a_{1} x_{5} x_{6} a_{4}$ is a 6-cycle, a contradiction.

Case 1.2: $N\left(x_{1} x_{2}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. Since $C-a_{1}+x_{2} x_{3}$ does not have a 6 -cycle and $C-a_{1}+x_{7} x_{1}$ does not have a 6-cycle, $e\left(x_{3} x_{7}, a_{2} a_{6}\right)=0$. Suppose $e\left(x_{3}, a_{3} a_{4} a_{5}\right)>$ 0. Then $x_{1} x_{2} x_{3} a_{5} a_{4} a_{3} \supseteq C_{6}$, so $x_{4} x_{5} x_{6} x_{7} a_{6} a_{1} a_{2}$ does not have a C_{6}. Since $e\left(a_{1}, L\right)=7$, $e\left(a_{2} a_{6}, x_{4} x_{5} x_{6} x_{7}\right) \leq 2$ by Lemma 2.1.6. Then $e\left(a_{2} a_{6}, L\right) \leq 2$, so $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-2-7=16$. If $e\left(a_{5}, L\right) \geq 6$ or $e\left(a_{3}, L\right) \geq 6$, then $e\left(a_{4}, L\right) \leq 1$ by Lemma 2.2.2 or Lemma 2.2.3, since $a_{1} a_{2} a_{3} a_{4}$ and $a_{4} a_{5} a_{6} a_{1}$ are 4-paths. Then $e\left(a_{3} a_{4} a_{5}, L\right) \leq 1+14=15$, a contradiction. Therefore $e\left(a_{3} a_{5}, L\right) \leq 10$, so $e\left(a_{4}, L\right) \geq 6$. But then since $a_{5} a_{6} a_{1} a_{2} a_{3}$ is a 5 -path, we have $e\left(a_{5} a_{3}, L\right) \leq 7$ by Lemma 2.2.4. This is of course a contradiction, since $e\left(a_{3} a_{4} a_{5}, L\right) \geq 16$. Hence $e\left(x_{3}, C\right)=1$, and by symmetry $e\left(x_{7}, C\right)=1$. But then $e\left(x_{6}, C\right) \geq 25-1-1-8-8=7$, a contradiction.

Case 2: $e\left(a_{1}, L\right)=6$. WLOG let $a_{1} x_{7} \notin E$. Then $L+a_{1}-x_{r} x_{r+1} \supseteq C_{6}$ for $r=2,3,4,6,7$, so $e\left(x_{r} x_{r+1}, C-a_{1}\right) \leq 6$ for $r=2,3,4,6,7$ by (2.1).

Claim: $e\left(x_{2} x_{3}, C-a_{1}\right) \leq 5$ and $e\left(x_{4} x_{5}, C-a_{1}\right) \leq 5$.

Proof: Suppose not. By symmetry, we may assume that $e\left(x_{2} x_{3}, C-a_{1}\right)=6$. As in Case 1, we have two cases to consider.

Case A: $N\left(x_{2} x_{3}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Since $C-a_{1}+x_{3} x_{4}$ does not have a C_{6}, we have $e\left(x_{4}, a_{5} a_{6}\right)=0$. Suppose $e\left(x_{4}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{2} a_{3} a_{4} x_{2} x_{3} x_{4} \supseteq C_{6}$, so $a_{5} a_{6} a_{1} x_{5} x_{6} x_{7} x_{1}$ does not have a 6 -cycle. Since $e\left(a_{1}, x_{5} x_{6} x_{1}\right)=3$, this implies that $e\left(a_{5} a_{6}, x_{5} x_{6} x_{7} x_{1}\right) \leq 2$. Then $e\left(a_{5} a_{6}, L\right) \leq 2$, so $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-2-6=17$. Since $e\left(a_{i}, L\right) \leq 6$ for each a_{i}, we have $e\left(a_{2} a_{3}, L\right) \geq 11$. Since $a_{4} a_{5} a_{6} a_{1}$ is a 4 -path and $e\left(a_{1}, L\right)=6$, by Lemma 2.2.3 we know that $e\left(a_{4}, L\right) \leq 2$. But then $e\left(a_{2} a_{3}, L\right) \geq 15$, a contradiction. Hence $e\left(x_{4}, a_{2} a_{3} a_{4}\right)=0$, so $e\left(x_{4}, C\right)=e\left(x_{4}, a_{1}\right)=1$.

Suppose that $e\left(x_{1}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{4} x_{5} x_{6} x_{7}$ does not have a 6 -cycle, so since $e\left(a_{1}, x_{4} x_{5} x_{6}\right)=3$ we have $e\left(a_{5} a_{6}, x_{5} x_{6} x_{7}\right) \leq 2$ and $e\left(a_{5} a_{6}, x_{6} x_{7}\right) \leq 1$. Then since $e\left(x_{4}, a_{5} a_{6}\right)=0$, we have $e\left(a_{5} a_{6}, L\right) \leq 2+2=4$. Then $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-4-6=15$. By Lemma 2.2.3 we know that $e\left(a_{2}, L\right) \leq 5$ and $e\left(a_{3}, L\right) \leq 5$, as above, for otherwise $e\left(a_{2} a_{3} a_{4}, L\right) \leq 6+2+6=14<15$. Suppose $e\left(a_{5} a_{6}, x_{1} x_{5}\right)=3$. Then $a_{5} a_{6} x_{5} x_{6} x_{7} x_{1} \supseteq C_{6}$ and $a_{1} x_{2} x_{3} a_{4} a_{3} a_{2} a_{1}$ is a 6 -cycle, a contradiction. So $e\left(a_{5} a_{6}, x_{1} x_{5} x_{6} x_{7}\right) \leq 2+1=3$, and hence $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-3-6=16$. Then $e\left(a_{4}, L\right) \geq 16-10=6$, and $e\left(a_{5} a_{6}, L\right)=3$ with $e\left(a_{5} a_{6}, x_{1} x_{5}\right)=2$ and $e\left(a_{5} a_{6}, x_{6} x_{7}\right)=1$. Since $a_{5} a_{6} a_{1} x_{4} x_{5} x_{6} x_{7}$ does not have a $C_{6}, a_{6} x_{6} \in E$. Since $e\left(a_{4}, L\right)=6$ and $e\left(x_{4}, C\right)=1$, we also know that $a_{4} x_{1} \in E$. But then $a_{1} a_{2} a_{3} x_{2} x_{3} x_{4} a_{1}$ and $a_{4} a_{5} a_{6} x_{6} x_{7} x_{1} a_{4}$ are 6 -cycles, a contradiction. Therefore $e\left(x_{1}, a_{2} a_{3} a_{4}\right)=0$, so $e\left(x_{1}, C\right) \leq$ 3.

So $e\left(x_{1}, C\right) \geq 3$ and $e\left(x_{4}, C\right)=1$. Since $e\left(x_{2} x_{3}, C-a_{1}\right) \leq 6$ and $e\left(x_{6} x_{7}, C-a_{1}\right) \leq 6$, and $a_{1} x_{7} \notin E$, we have $e\left(x_{5}, C\right) \geq 25-3-1-8-7=6$. But then $C+x_{5}-a_{1}$ and $L-x_{4} x_{5}+a_{1}$ contain 6-cycles, a contradiction.

Case B: $N\left(x_{2} x_{3}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. Since $C-a_{1}+x_{3} x_{4}$ does not have a C_{6}, we have $e\left(x_{4}, a_{2} a_{6}\right)=0$. Suppose that $e\left(x_{4}, a_{3} a_{4} a_{5}\right)>0$. Then $a_{3} a_{4} a_{5} x_{2} x_{3} x_{4} \supseteq C_{6}$, so $a_{6} a_{1} a_{2} x_{5} x_{6} x_{7} x_{1}$ does not have a 6 -cycle. Since $e\left(a_{1}, x_{1} x_{5} x_{6}\right)=3$, this implies that $e\left(a_{2} a_{6}, x_{5} x_{6} x_{7} x_{1}\right) \leq 2$. Then $e\left(a_{2} a_{6}, L\right) \leq 2$, so $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-2-6=17$. Then $e\left(a_{3} a_{5}, L\right) \geq 17-6=11$, so since $a_{1} a_{2} a_{3} a_{4}$ and $a_{4} a_{5} a_{6} a_{1}$ are 4 -paths we have $e\left(a_{4}, L\right) \leq 2$ by Lemma 2.2.3. But then $e\left(a_{2} a_{3}, L\right) \geq 17-2=15$, a contradiction. Hence $e\left(x_{4}, C\right)=1$. Since $L+a_{1}-x_{4} x_{5}$ has a 6 -cycle, $C+x_{5}-a_{1}$ does not have a 6 -cycle, so $e\left(x_{5}, C\right) \leq 5$. Since $e\left(x_{2} x_{3}, C-a_{1}\right) \leq 6$ and $e\left(x_{6} x_{7}, C-a_{1}\right) \leq 6$, we have $e\left(L-x_{1}, C\right) \leq 1+5+8+7=21$. Hence $e\left(x_{1}, C\right) \geq 4$.

Because $e\left(x_{1}, a_{3} a_{4} a_{5}\right)>0, a_{6} a_{1} a_{2} x_{4} x_{5} x_{6} x_{7}$ does not have a C_{6}. Since $a_{1} x_{4} \in E$, this implies that $e\left(x_{7}, a_{2} a_{6}\right)=0$. Since $L+a_{1}-x_{4} x_{5}$ and $L+a_{1}-x_{6} x_{7}$ have 6 -cycles, $e\left(x_{5}, a_{2} a_{6}\right) \leq 1$ and $e\left(x_{6}, a_{2} a_{6}\right) \leq 1$. Since $a_{4} a_{5} a_{6} a_{1} x_{4} x_{3} a_{4}$ and $a_{4} a_{3} a_{2} a_{1} x_{4} x_{3} a_{4}$ are 6 -cycles, $a_{2} a_{3} x_{6} x_{7} x_{1} x_{2}$ and $a_{5} a_{6} x_{6} x_{7} x_{1} x_{2}$ don't have 6 -cycles. Because $a_{3} x_{2} \in E$ and $a_{5} x_{2} \in E$, this implies that $e\left(x_{6}, a_{2} a_{6}\right)=0$. Then $e\left(a_{2} a_{6}, L\right) \leq 1+2=3$, so $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-3-6=16$. Then by Lemma 2.2.3 $e\left(a_{3}, L\right) \leq 5$ and $e\left(a_{5}, L\right) \leq 5$, for otherwise $e\left(a_{3} a_{4} a_{5}, L\right) \leq 6+2+6=$ $14<16$. Hence $e\left(a_{4}, L\right)=6, e\left(a_{2} a_{6}, x_{1}\right)=2$, and $e\left(a_{2} a_{6}, x_{5}\right)=1$. Since $a_{4} x_{4} \notin E$, we know that $a_{4} x_{7} \in E$. Then $x_{7} x_{1} a_{4} a_{5} a_{6} a_{1}$ and $x_{7} x_{1} a_{4} a_{3} a_{2} a_{1}$ have 6 -cycles, so $a_{2} a_{3} x_{2} x_{3} x_{4} x_{5}$ and $a_{6} a_{5} x_{2} x_{3} x_{4} x_{5}$ do not have 6 -cycles. But since $e\left(x_{2}, a_{3} a_{5}\right)=2$, this implies that $e\left(x_{5}, a_{2} a_{6}\right)=$ 0 , a contradiction.

QED

By the claim, we have $e\left(x_{2} x_{3}, C-a_{1}\right) \leq 5$ and $e\left(x_{4} x_{5}, C-a_{1}\right) \leq 5$. Then $e\left(x_{6} x_{7} x_{1}, C-\right.$ $\left.a_{1}\right) \geq 19-5-5=9$.

Suppose $e\left(x_{6} x_{7}, C-a_{1}\right)=6$. Then $e\left(x_{1}, C-a_{1}\right) \geq 3$. If $N\left(x_{6} x_{7}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$, then $e\left(x_{1}, a_{5} a_{6}\right)=0$ since $C-a_{1}+x_{7} x_{1}$ does not have a 6 -cycle. Then $x_{1} a_{4} \in E$, so $x_{6} x_{7} x_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$, which means $a_{5} a_{6} a_{1} x_{2} x_{3} x_{4} x_{5}$ does not have a 6 -cycle. Since $e\left(a_{1}, x_{2} x_{3} x_{4} x_{5}\right)=4$, by Lemma 2.1.6 we know that $e\left(a_{5} a_{6}, x_{2} x_{3} x_{4} x_{5}\right) \leq 1$. Then $e\left(a_{5} a_{6}, L\right) \leq$ 1 , so $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-1-6=18$. Then $e\left(a_{3}, L\right)=6$, so $e\left(a_{4} a_{2}, L\right) \leq 7$ by Lemma 2.2.4, a contradiction. Then $N\left(x_{6} x_{7}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$, so $e\left(x_{1}, a_{2} a_{6}\right)=0$. Then $x_{1} a_{5} \in E$
since $e\left(x_{1}, C-a_{1}\right)=3$, so $x_{6} x_{7} x_{1} a_{3} a_{4} a_{5} \supseteq C_{6}$. Then $x_{2} x_{3} x_{4} x_{5} a_{6} a_{1} a_{2}$ does not have a 6 -cycle and $e\left(a_{1}, x_{2} x_{3} x_{4} x_{5}\right)=4$, so $e\left(a_{2} a_{6}, x_{2} x_{3} x_{4} x_{5}\right) \leq 2$ by Lemma 2.1.6. Thus $e\left(a_{2} a_{6}, L\right) \leq 2$, so $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-2-6=17$. Then $e\left(a_{3}, L\right)=6$ or $e\left(a_{5}, L\right)=6$, a contradiction by Lemma 2.2.3 since $a_{4} a_{5} a_{6} a_{1}$ and $a_{4} a_{3} a_{2} a_{1}$ are 4 -paths and $e\left(a_{4}, L\right) \geq 5$.

Therefore $e\left(x_{6} x_{7}, C-a_{1}\right) \leq 5$, and by symmetry $e\left(x_{7} x_{1}, C-a_{1}\right) \leq 5$. Since $e\left(x_{6} x_{7} x_{1}, C-\right.$ $\left.a_{1}\right) \geq 9$, this implies that $e\left(x_{7}, C-a_{1}\right) \leq 1, e\left(x_{6}, C-a_{1}\right) \geq 4$, and $e\left(x_{1}, C-a_{1}\right) \geq 4$. Further, because $L+a_{1}-x_{7} x_{1} \supseteq C_{6}$ and $L+a_{1}-x_{6} x_{7} \supseteq C_{6}$ we know that $e\left(x_{6}, C-a_{1}\right)=e\left(x_{1}, C-a_{1}\right)=$ 4 and $e\left(x_{7}, C-a_{1}\right)=1$, and that $e\left(x_{1}, a_{2} a_{6}\right)=e\left(x_{6}, a_{2} a_{6}\right)=1$. Then $e\left(x_{1} x_{6}, a_{3} a_{4} a_{5}\right)=6$, so $e\left(x_{7}, a_{2} a_{6}\right)=0$ because otherwise $x_{7} x_{1} a_{5} a_{4} a_{3} a_{2} x_{7}$ is a 6-cycle or $x_{7} x_{6} a_{3} a_{4} a_{5} a_{6} x_{7}$ is a 6-cycle, a contradiction since $L+a_{1}-x_{7} x_{1} \supseteq C_{6}$ and $L+a_{1}-x_{6} x_{7} \supseteq C_{6}$. Since $x_{1} x_{7} x_{6} a_{3} a_{4} a_{5} x_{1}$ is a 6-cycle, $a_{6} a_{1} a_{2} x_{2} x_{3} x_{4} x_{5}$ does not have a 6 -cycle. Because $e\left(a_{1}, x_{2} x_{3} x_{4} x_{5}\right)=4$, this implies that $e\left(a_{2} a_{6}, x_{2} x_{3} x_{4} x_{5}\right) \leq 2$ by Lemma 2.1.6.

Because $e\left(a_{2} a_{6}, x_{1} x_{6}\right)=2$ and $e\left(a_{2} a_{6}, x_{7}\right)=0$, we have $e\left(a_{2} a_{6}, L\right) \leq 4$, and hence $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-10=15$. By Lemma 2.2.3, $e\left(a_{3}, L\right) \leq 5$ and $e\left(a_{5}, L\right) \leq 5$, so $e\left(a_{4}, L\right) \geq 5$. Since $e\left(x_{1} x_{6}, a_{3} a_{5}\right)=4, x_{1} \rightarrow\left(C, a_{4}\right)$ and $x_{6} \rightarrow\left(C, a_{4}\right)$. Then $L+a_{4}-x_{1}$ and $L+a_{4}-x_{6}$ do not have 6 -cycles, so $e\left(a_{4}, x_{6} x_{2}\right) \leq 1$, $e\left(a_{4}, x_{1} x_{5}\right) \leq 1$, and $e\left(a_{4}, x_{3} x_{7}\right) \leq 1$. But then $e\left(a_{4}, L\right) \leq 4$, a contradiction.

Case 3: $e\left(a_{1}, L\right)=5$. By symmetry, there are three cases for $N\left(a_{1}, L\right)$, which we consider presently.

Case 3.1: $e\left(a_{1}, x_{6} x_{7}\right)=0$. In this case $L+a_{1}-x_{r} x_{r+1} \supseteq C_{6}$ for $r=2,3,6$, so $e\left(x_{2} x_{3}, C-\right.$ $\left.a_{1}\right) \leq 6, e\left(x_{3} x_{4}, C-a_{1}\right) \leq 6$, and $e\left(x_{6} x_{7}, C-a_{1}\right) \leq 6$ by (2.1).

Claim: $e\left(x_{2} x_{3}, C-a_{1}\right) \leq 5$ and $e\left(x_{3} x_{4}, C-a_{1}\right) \leq 5$.

Proof: Suppose not. By symmetry, we may assume that $e\left(x_{2} x_{3}, C-a_{1}\right)=6$. As in Case 1, we have two cases to consider.

Case A: $N\left(x_{2} x_{3}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. We have $e\left(x_{4}, a_{5} a_{6}\right)=0$ because $L+a_{1}-x_{3} x_{4} \supseteq$
C_{6}. Suppose $e\left(x_{4}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{5} x_{6} x_{7} x_{1}$ does not have a 6 -cycle, so because $e\left(a_{1}, x_{5} x_{1}\right)=2$ we know that $e\left(a_{5}, x_{5} x_{6} x_{7} x_{1}\right) \leq 2$ and $e\left(a_{6}, x_{5} x_{6} x_{7} x_{1}\right) \leq 1$. Thus $e\left(a_{5} a_{6}, L\right) \leq$ $1+2=3$. Then $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-5-3=17$, a contradiction as $e\left(a_{i}, L\right) \leq 5$ for each a_{i}. Hence $e\left(x_{4}, C\right)=1$. Then $e\left(x_{1} x_{5}, C\right) \geq 25-e\left(x_{2} x_{3}, C\right)-e\left(x_{4}, C\right)-e\left(x_{6} x_{7}, C\right) \geq$ $25-8-1-6=10$, so $e\left(x_{1}, C\right) \geq 4$. Since $e\left(x_{1}, a_{2} a_{3} a_{4}\right)>0, a_{5} a_{6} a_{1} x_{4} x_{5} x_{6} x_{7}$ does not have a 6-cycle. Then, because $e\left(a_{1}, x_{4} x_{5}\right)=2$, we have $e\left(a_{5}, x_{5} x_{6} x_{7}\right) \leq 1$ and $e\left(a_{6}, x_{5} x_{6} x_{7}\right) \leq 2$. Hence $e\left(a_{5} a_{6}, L\right) \leq 1+2+2=5$. If $e\left(a_{5} a_{6}, L\right)=5$ then $e\left(a_{5} a_{6}, x_{1}\right)=2, e\left(a_{6}, x_{5} x_{6}\right)=2$, and $a_{5} x_{5} \in E$. Then $a_{5} a_{6} x_{1} x_{7} x_{6} x_{5} a_{5}$ and $a_{1} a_{2} a_{3} a_{4} x_{3} x_{2} a_{1}$ are 6 -cycles, a contradiction. Hence $e\left(a_{5} a_{6}, L\right) \leq 4$, so $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-5-4=16$, a contradiction since $e\left(a_{i}, L\right) \leq 5$ for each a_{i}.

Case B: $N\left(x_{2} x_{3}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. In this case $e\left(x_{4}, a_{2} a_{6}\right)=0$. Suppose $e\left(x_{4}, a_{3} a_{4} a_{5}\right)>0$. Then $a_{6} a_{1} a_{2} x_{5} x_{6} x_{7} x_{1}$ does not have a 6 -cycle, so $e\left(a_{2} a_{6}, x_{5} x_{6} x_{7} x_{1}\right) \leq 2$ because $e\left(a_{1}, x_{1} x_{5}\right)=2$. Then $e\left(a_{2} a_{6}, L\right) \leq 2$, so $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-5-2=18$, a contradiction. Hence $e\left(x_{4}, C\right)=1$, so $e\left(x_{1}, C\right) \geq 25-8-6-1-6=4$. Thus $e\left(x_{1}, a_{3} a_{4} a_{5}\right)>0$. Then $x_{4} x_{5} x_{6} x_{7} a_{6} a_{1} a_{2}$ does not have a 6 -cycle, so $e\left(x_{7}, a_{2} a_{6}\right)=0$. If $\left\{x_{5} a_{6}, x_{6} a_{6}, x_{6} a_{2}\right\} \subseteq E$, then $x_{4} x_{5} a_{6} x_{6} a_{2} a_{1} x_{4}$ is a 6 -cycle, a contradiction. Thus $e\left(a_{2} a_{6}, x_{5} x_{6}\right) \leq 3$, so $e\left(a_{2} a_{6}, L\right) \leq$ $3+2=5$. Since $e\left(a_{1} a_{3} a_{4} a_{5}, L\right) \leq 20, e\left(a_{2} a_{6}, L\right)=5$, so $e\left(a_{2} a_{6}, x_{5} x_{6}\right)=3$ and $e\left(a_{2} a_{6}, x_{1}\right)=2$, with $x_{5} a_{2} \in E$.

Then $x_{1} x_{2} a_{5} a_{4} a_{3} a_{2} x_{1}$ is a C_{6} and $a_{6} a_{1} x_{3} x_{4} x_{5} x_{6}$ is a 6 -path, so $a_{6} x_{6} \notin E$, which means $x_{5} a_{6} \in E$ and $x_{6} a_{2} \in E$. Suppose that $e\left(x_{7}, a_{3} a_{4}\right)=0$. Then, since $e\left(x_{7}, a_{1} a_{2} a_{6}\right)=0$, we have $e\left(x_{7}, C\right) \leq 1$. Since $e\left(x_{6}, a_{1} a_{6}\right)=0$, this implies that $e\left(x_{1} x_{5}, C\right) \geq 25-4-1-1-8=$ 11. Then $e\left(x_{1} x_{5}, a_{5} a_{6}\right) \geq 3$, so $a_{5} a_{6} x_{5} x_{6} x_{7} x_{1} \supseteq C_{6}$. But $x_{2} x_{3} a_{4} a_{3} a_{2} a_{1} x_{2}$ is a 6 -cycle, a contradiction. Thus $e\left(x_{7}, a_{3} a_{4}\right) \geq 1$, so $a_{3} a_{4} x_{3} x_{2} x_{1} x_{7} a_{3}$ or $a_{4} a_{3} x_{3} x_{2} x_{1} x_{7} a_{4}$ is a 6 -cycle, which means $a_{5} a_{6} a_{1} a_{2} x_{5} x_{6}$ does not have a 6 -cycle. Since $e\left(a_{2}, x_{5} x_{6}\right)=2$, this implies that $e\left(a_{5}, x_{5} x_{6}\right)=0$. Therefore $e\left(a_{3} a_{4} a_{5}, L\right) \leq 14$, since $x_{4} a_{5} \notin E$. Then $e(C, L) \leq 14+5+5=24$, a contradiction.

By the claim, we have $e\left(x_{2} x_{3}, C-a_{1}\right) \leq 5$ and $e\left(x_{3} x_{4}, C-a_{1}\right) \leq 5$. Suppose that $e\left(x_{6} x_{7}, C-a_{1}\right)=6$. First say $N\left(x_{6}, x_{7}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. If $e\left(x_{1}, a_{2} a_{3} a_{4}\right)>0$, then $x_{6} x_{7} x_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$. Then $a_{5} a_{6} a_{1} x_{2} x_{3} x_{4} x_{5}$ does not have a C_{6}, so because $e\left(a_{1}, x_{2} x_{3} x_{4} x_{5}\right)=4$ we have $e\left(a_{5} a_{6}, x_{2} x_{3} x_{4} x_{5}\right) \leq 1$ by Lemma 2.1.6. Then $e\left(a_{5} a_{6}, L\right) \leq 3$, so $e\left(a_{2} a_{3} a_{4}, L\right) \geq$ $25-3-5=17$, a contradiction. Thus $e\left(x_{1}, C\right) \leq 3$, and by symmetry $e\left(x_{5}, C\right) \leq 3$. Then $e\left(x_{4}, C\right) \geq 25-6-7-6=6$, so $x_{4} \rightarrow C$. But $L-x_{4}+a_{1} \supseteq C_{6}$, a contradiction. Hence $N\left(x_{6}, x_{7}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. If $e\left(x_{1}, a_{3} a_{4} a_{5}\right)>0$ then $a_{6} a_{1} a_{2} x_{2} x_{3} x_{4} x_{5}$ does not have a 6 -cycle. Since $e\left(a_{1}, x_{2} x_{3} x_{4} x_{5}\right)=4$, this implies that $e\left(a_{2} a_{6}, L\right) \leq 2+2=4$ by Lemma 2.1.6. But then $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-4-5=16$, a contradiction. Then $e\left(x_{1}, C\right) \leq 3$, and by symmetry we have $e\left(x_{1} x_{5}, C\right) \leq 6$. But then again we have $e\left(x_{4}, C\right) \geq 25-6-7-6=6$, a contradiction. Therefore $e\left(x_{6} x_{7}, C-a_{1}\right) \leq 5$.

Since $L+a_{1}-x_{3} x_{4} \supseteq C_{6}, e\left(x_{4}, a_{2} a_{6}\right) \leq 1$. Suppose that $e\left(x_{4}, C\right)=5$, and WLOG say $e\left(x_{4}, C-a_{6}\right)=5$. Then because $C-a_{1}+x_{3} x_{4}$ does not have a 6 -cycle, we have $e\left(x_{3}, a_{2} a_{5} a_{6}\right)=0$ and $e\left(x_{3}, a_{3} a_{4}\right) \leq 1$. Suppose that $e\left(x_{2}, a_{3} a_{5}\right)>0$. Then since $e\left(x_{4}, a_{3} a_{5}\right)=$ 2, $x_{2} x_{3} x_{4} a_{3} a_{4} a_{5} \supseteq C_{6}$. Because $e\left(a_{1}, x_{1} x_{5}\right)=2$ and $a_{6} a_{1} a_{2} x_{5} x_{6} x_{7} x_{1}$ does not have a 6 -cycle, $e\left(a_{2} a_{6}, x_{5} x_{6} x_{7} x_{1}\right) \leq 2$. Since $x_{2} \nrightarrow\left(C, a_{1}\right)$ we have $e\left(x_{2}, a_{2} a_{6}\right) \leq 1$. Then $e\left(a_{2} a_{6}, L\right) \leq$ $2+1+1=4$, so $e\left(a_{3} a_{4} a_{5}, L\right) \geq 25-5-4=16$, a contradiction. Thus $e\left(x_{2}, a_{3} a_{5}\right)=0$.

Suppose that $e\left(x_{2}, a_{2} a_{4}\right)=2$. Then $x_{2} x_{3} x_{4} a_{2} a_{3} a_{4} \supseteq C_{6}$ since $e\left(x_{4}, a_{2} a_{4}\right)=2$, so $x_{5} x_{6} x_{7} x_{1} a_{5} a_{6} a_{1}$ does not have a 6-cycle. Since $e\left(a_{1}, x_{1} x_{5}\right)=2$, this implies that $e\left(a_{5}, x_{6} x_{7}\right)=$ $0, e\left(a_{6}, x_{6} x_{7}\right) \leq 1, e\left(a_{5}, x_{5} x_{1}\right) \leq 2$, and $e\left(a_{6}, x_{5} x_{1}\right)=0$. Hence $e\left(a_{5} a_{6}, L\right) \leq 3+3=6$, since $x_{4} a_{6} \notin E$ and $e\left(x_{3}, a_{5} a_{6}\right)=0$. Suppose $e\left(a_{5}, x_{5} x_{1}\right)=2$. Since $x_{5} x_{6} x_{7} x_{1} a_{5} a_{6} a_{1} \nsupseteq C_{6}$, $e\left(a_{6}, x_{6} x_{7}\right)=0$ for otherwise $x_{1} a_{1} x_{5} x_{6} a_{6} a_{5} x_{1}$ is a 6 -cycle or $x_{5} a_{5} x_{1} x_{7} a_{6} a_{1} x_{5}$ is a 6 -cycle. Hence $e\left(a_{5} a_{6}, x_{5} x_{6} x_{7} x_{1}\right) \leq 2$, so $e\left(a_{5} a_{6}, L\right) \leq 2+3=5$. Since $e\left(x_{2}, a_{2} a_{4}\right)=2, x_{2} \rightarrow\left(C, a_{3}\right)$, so $L+a_{3}-x_{2}$ does not have a 6 -cycle. Then by Lemma 2.1.3, e $\left(a_{3}, L-x_{2}\right) \leq 4$. Because $e\left(x_{2}, a_{3} a_{5}\right)=0$, this implies that $e\left(a_{3}, L\right) \leq 4$, so $e\left(a_{2} a_{4}, L\right) \geq 25-4-5-5=11$, a contradiction. Then $e\left(a_{5}, x_{1} x_{5}\right) \leq 1$, so $e\left(a_{5} a_{6}, L\right) \leq 5$, again a contradiction. Thus $e\left(x_{2}, a_{2} a_{4}\right) \leq 1$. Hence $e\left(x_{2}, a_{2} a_{3} a_{4} a_{5}\right) \leq 1$, so $e\left(x_{2}, C\right) \leq 3$. Suppose that $e\left(x_{1} x_{5}, C\right) \geq 11$. Then
$x_{5} x_{6} x_{7} x_{1} a_{5} a_{6} \supseteq C_{6}$ and $x_{2} a_{1} a_{2} a_{3} x_{4} x_{3} x_{2}$ is a 6 -cycle, a contradiction. Then because $e\left(x_{3} x_{4}, C\right) \leq 7$ and $e\left(x_{6} x_{7}, C\right) \leq 5$, we have $e\left(x_{2}, C\right) \geq 25-10-7-5=3$. Thus $x_{2} a_{6} \in E$, so $x_{2} a_{6} a_{5} a_{4} a_{3} x_{4} x_{3} x_{2}$ is a 6 -cycle. Then $x_{5} x_{6} x_{7} x_{1} a_{1} a_{2}$ does not have a 6 -cycle, so $e\left(x_{1} x_{5}, a_{2}\right)=$ 0 because $e\left(a_{1}, x_{1} x_{5}\right)=2$. Since $e\left(x_{1} x_{5}, C\right) \geq 25-7-3-5=10$, this implies that $e\left(x_{1} x_{5}, a_{5} a_{6}\right)=4$. But then $x_{5} x_{6} x_{7} x_{1} a_{5} a_{6} \supseteq C_{6}$ and $a_{1} a_{2} a_{3} a_{4} x_{3} x_{4} \supseteq C_{6}$, a contradiction.

Therefore $e\left(x_{4}, C\right) \leq 4$, and by symmetry $e\left(x_{2}, C\right) \leq 4$. Because $e\left(x_{2} x_{3}, C\right) \leq 7$, we have $e\left(x_{2} x_{3} x_{4}, C\right) \leq 11$, so $e\left(x_{1} x_{5}, C\right) \geq 25-11-5=9$.

Either $e\left(x_{1} x_{5}, a_{2} a_{3}\right) \geq 3$ or $e\left(x_{1} x_{5}, a_{5} a_{6}\right) \geq 3$. By symmetry, we may assume
$e\left(x_{1} x_{5}, a_{5} a_{6}\right) \geq 3$. Then $x_{5} x_{6} x_{7} x_{1} a_{5} a_{6} \supseteq C_{6}$, so $a_{1} a_{2} a_{3} a_{4} x_{2} x_{3} x_{4}$ does not have a 6 -cycle. Since $e\left(a_{1}, x_{2} x_{3} x_{4}\right)=3$, this implies that $e\left(x_{2} x_{4}, a_{3} a_{4}\right)=0$ and $x_{3} a_{4} \notin E$. Because $e\left(x_{r}, a_{2} a_{6}\right) \leq 1$ for $r=2,3,4$, we have $e\left(x_{4}, C\right) \leq 3, e\left(x_{2}, C\right) \leq 3$, and $e\left(x_{3}, C\right) \leq 4$. Then $e\left(x_{1} x_{5}, C\right) \geq$ $25-10-5=10$. Since $L+a_{1}-x_{2} x_{3} \supseteq C_{6}$ and $L+a_{1}-x_{3} x_{4} \supseteq C_{6}, x_{2} x_{3} a_{2} a_{3} a_{4} a_{5}$, $x_{2} x_{3} a_{3} a_{4} a_{5} a_{6}, x_{3} x_{4} a_{2} a_{3} a_{4} a_{5}$, and $x_{3} x_{4} a_{3} a_{4} a_{5} a_{6}$ do not have 6 -cycles. Thus if $e\left(x_{3}, a_{3} a_{5}\right)=2$, then $e\left(x_{2} x_{4}, a_{2} a_{6}\right)=0$, so $e\left(x_{2} x_{4}, C\right) \leq 4$. Then $e\left(x_{2} x_{3} x_{4}, C\right) \leq 8$, so $e\left(x_{1} x_{5}, C\right)=12$ and $e\left(x_{2} x_{4}, a_{1} a_{5}\right)=4$. But then $x_{5} x_{6} x_{7} x_{1} a_{2} a_{3} \supseteq C_{6}$ and $x_{2} x_{3} x_{4} a_{5} a_{6} a_{1} \supseteq C_{6}$, a contradiction. Hence $e\left(x_{3}, a_{3} a_{5}\right) \leq 1$, so $e\left(x_{3}, C\right) \leq 3$, which means $e\left(x_{2} x_{4}, C\right) \geq 25-12-3-5=5$. Since $e\left(x_{2} x_{4}, a_{2} a_{3} a_{4} a_{6}\right) \leq 2, e\left(x_{2} x_{4}, a_{1} a_{5}\right) \geq 5-2=3$. Then $x_{2} x_{3} x_{4} a_{5} a_{6} a_{1} \supseteq C_{6}$, so $e\left(x_{1} x_{5}, a_{2} a_{3}\right) \leq 2$. But then $e\left(x_{1} x_{5}, C\right) \leq 10$, so $e(L, C) \leq 10+3+3+3+5=24$, a contradiction.

Case 3.2: $e\left(a_{1}, x_{5} x_{7}\right)=0$. In this case $L+a_{1}-x_{r} x_{r+1} \supseteq C_{6}$ for $r=2,4,7$, so $e\left(x_{2} x_{3}, C-\right.$ $\left.a_{1}\right) \leq 6, e\left(x_{4} x_{5}, C-a_{1}\right) \leq 6$, and $e\left(x_{7} x_{1}, C-a_{1}\right) \leq 6$ by (2.1).

Claim: $e\left(x_{4} x_{5}, C-a_{1}\right) \leq 5$ and $e\left(x_{7} x_{1}, C-a_{1}\right) \leq 5$.

Proof: Suppose not. By symmetry, we may assume that $e\left(x_{4} x_{5}, C-a_{1}\right)=6$. As in Case 1, we have two cases to consider.

Case A: $N\left(x_{4} x_{5}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Suppose $e\left(x_{3}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{6} x_{7} x_{1} x_{2}$ does not have a 6-cycle, so because $e\left(a_{1}, x_{1} x_{2} x_{6}\right)=3$ we have $e\left(a_{5}, x_{6} x_{7} x_{1}\right)=0, e\left(a_{6}, x_{2} x_{6}\right)=$

0 , and $e\left(a_{6}, x_{7} x_{1}\right) \leq 1$. Then $e\left(a_{5} a_{6}, L\right) \leq 2+2=4$, so $e\left(a_{1} a_{2} a_{3} a_{4}\right) \geq 25-4=21$, a contradiction. Hence $e\left(x_{3}, a_{2} a_{3} a_{4}\right)=0$. Suppose $e\left(x_{6}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{7} x_{1} x_{2} x_{3}$ does not have a C_{6}, so because $e\left(a_{1}, x_{1} x_{2} x_{3}\right)=3$ we have $e\left(a_{5}, x_{7} x_{1} x_{3}\right)=0$ and $a_{6} x_{7} \notin E$. Further, if $e\left(a_{6}, x_{3} x_{6}\right)=2$, then $a_{6} x_{3} x_{2} x_{1} x_{7} x_{6} a_{6}$ and $a_{1} a_{2} a_{3} a_{4} x_{5} x_{4} a_{1}$ are 6 -cycles, a contradiction. Then $e\left(a_{5} a_{6}, L\right) \leq 2+3$, so since $e\left(a_{5} a_{6}, L\right) \geq 5$, we have $e\left(a_{5}, x_{2} x_{6}\right)=2$ and $e\left(a_{6}, x_{1} x_{2}\right)=2$. But then $a_{6} x_{1} a_{1} x_{3} x_{2} a_{5} a_{6}$ is a 6-cycle, a contradiction. Hence $e\left(x_{6}, a_{2} a_{3} a_{4}\right)=0$. Because $a_{1} a_{2} a_{3} a_{4} x_{5} x_{4} a_{1}$ is a 6 -cycle, we have $e\left(a_{5}, x_{3} x_{6}\right) \leq 1$ and $e\left(a_{6}, x_{3} x_{6}\right) \leq 1$. Then $e\left(x_{3} x_{6}, C\right) \leq 1+1+2=4$, so $e\left(x_{2}, C\right) \geq 25-4-7-7=7$, a contradiction.

Case B: $N\left(x_{4} x_{5}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. Suppose that $e\left(x_{3}, a_{3} a_{4} a_{5}\right)>0$. Then $a_{6} a_{1} a_{2} x_{6} x_{7} x_{1} x_{2}$ does not have a 6-cycle, so because $e\left(a_{1}, x_{2} x_{6}\right)=2$ we have $e\left(a_{2} a_{6}, x_{2} x_{6}\right)=0$ and $e\left(a_{2} a_{6}, x_{1} x_{7}\right) \leq 2$. Then $e\left(a_{2} a_{6}, L\right) \leq 2+2=4$, a contradiction. So $e\left(x_{3}, a_{3} a_{4} a_{5}\right)=$ 0 . Suppose $e\left(x_{6}, a_{3} a_{4} a_{5}\right)>0$. Then $a_{6} a_{1} a_{2} x_{7} x_{1} x_{2} x_{3}$ does not have a 6 -cycle, so because $e\left(a_{1}, x_{1} x_{2} x_{3}\right)=3$ we have $e\left(a_{2} a_{6}, x_{7}\right)=0$. Then by Lemma 2.1.6 we have $e\left(a_{2} a_{6}, x_{1} x_{2} x_{3}\right) \leq$ 3, and thus $e\left(a_{2} a_{6}, x_{6}\right) \geq 5-3=2$. If $e\left(x_{3}, a_{2} a_{6}\right)>0$ then either $a_{2} x_{3} x_{2} x_{1} x_{7} x_{6} a_{2}$ or $a_{6} x_{3} x_{2} x_{1} x_{7} x_{6} a_{6}$ is a 6-cycle, a contradiction since $x_{4} a_{1} a_{6} a_{5} a_{4} a_{3} x_{4}$ and $x_{4} a_{1} a_{2} a_{3} a_{4} a_{5} x_{4}$ are 6cycles. Then $e\left(a_{2} a_{6}, x_{3}\right)=0$, so $e\left(a_{2} a_{6}, x_{1} x_{2}\right) \geq 5-2=3$. This implies that $e\left(a_{2} a_{6}, x_{6}\right)=2$ and $e\left(a_{2} a_{6}, x_{1} x_{2}\right)=3$. This is a contradiction, since $L+a_{1}-x_{2} x_{3} \supseteq C_{6}$ and $L+a_{1}-x_{1} x_{7} \supseteq C_{6}$. Thus $e\left(x_{6}, a_{3} a_{4} a_{5}\right)=0$. Since $x_{4} a_{1} a_{6} a_{5} a_{4} a_{3} x_{4}$ and $x_{4} a_{1} a_{2} a_{3} a_{4} a_{5} x_{4}$ are 6-cycles, $e\left(x_{3} x_{6}, a_{2}\right) \leq$ 1 and $e\left(x_{3} x_{6}, a_{6}\right) \leq 1$, so $e\left(x_{3} x_{6}, C\right) \leq 4$. Hence $e\left(x_{2}, C\right) \geq 25-4-7-7=7$, a contradiction.

By the claim, $e\left(x_{4} x_{5}, C-a_{1}\right) \leq 5$ and $e\left(x_{7} x_{1}, C-a_{1}\right) \leq 5$. Then $e\left(x_{2} x_{3} x_{6}, C\right) \geq$ $25-6-6=13$.

Suppose that $e\left(x_{6}, C\right)=6$. If $a_{1} a_{2} x_{4} x_{3} x_{2} x_{1} \supseteq C_{6}$, then $a_{3} a_{4} a_{5} a_{6} x_{5} x_{6} x_{7}$ does not have a 6 -cycle (see Figure 2.13), so $e\left(x_{5} x_{7}, a_{3} a_{6}\right)=0, e\left(x_{5}, a_{4} a_{5}\right) \leq 1$, and $e\left(x_{7}, a_{4} a_{5}\right) \leq 1$. Since $e\left(x_{5} x_{7}, a_{1}\right)=0$, we have $e\left(x_{5}, C\right) \leq 2$ and $e\left(x_{7}, C\right) \leq 2$. If $x_{5} a_{2} \in E$ then $a_{1} a_{2} x_{5} x_{4} x_{3} x_{2} a_{1}$ is a 6 -cycle so $a_{3} a_{4} a_{5} a_{6} x_{6} x_{7} x_{1}$ does not have a 6 -cycle. But then $e\left(x_{1}, C\right) \leq 2$, so $e\left(x_{1} x_{7}, C\right) \leq$ $2+2=4$, which means $e(L, C) \leq 4+8+6+6=24$, a contradiction. Hence $x_{5} a_{2} \notin E$,

Figure 2.13: Lemma 2.2.5, Case 3.2.
and by symmetry $x_{7} a_{2} \notin E$, so $e\left(x_{5} x_{7}, C\right) \leq 2$. Then $e\left(x_{1} x_{4}, C\right) \geq 25-2-8-6=9$, so WLOG let $e\left(x_{1}, C\right) \geq 5$. Since $x_{1} \nrightarrow\left(C, a_{1}\right), e\left(x_{1}, a_{2} a_{6}\right)=1$, which means $x_{1} a_{3} \in E$. Then $x_{1} a_{3} a_{2} a_{1} x_{3} x_{2} x_{1}$ is a 6 -cycle, so $x_{4} x_{5} x_{6} a_{4} a_{5} a_{6}$ does not have a 6 -cycle. Since $e\left(x_{6}, C\right)=6$, this implies that $e\left(x_{4}, a_{4} a_{6}\right)=0$, so that $e\left(x_{4}, C\right) \leq 4$. Hence $e\left(x_{6}, C\right)=6, e\left(x_{1}, C\right)=5$, $e\left(x_{5}, C\right)=e\left(x_{7}, C\right)=1, e\left(x_{4}, C\right)=4$, and $e\left(x_{2} x_{3}, C\right)=8$. Since $x_{4} a_{5} \in E, x_{5} x_{4} a_{5} a_{6} x_{6} a_{4}$ is a 6 -path, so $a_{4} x_{5} \notin E$. Then $a_{5} x_{5} \in E$ since $e\left(x_{5}, C\right)=1$. Since $e\left(x_{1}, C\right)=5$ we have $x_{1} a_{5} \in E$, so $x_{1} x_{2} x_{3} x_{4} x_{5} a_{5} x_{1}$ and $x_{6} a_{4} a_{3} a_{2} a_{1} a_{6} x_{6}$ are 6 -cycles, a contradiction. Thus $a_{1} a_{2} x_{4} x_{3} x_{2} x_{1}$ does not have a C_{6}. By symmetry, the same is true for $a_{1} a_{6} x_{4} x_{3} x_{2} x_{1}$. Then $e\left(a_{2} a_{6}, x_{1} x_{4}\right)=0$ and $e\left(a_{2} a_{6}, x_{2} x_{3}\right) \leq 1+1=2$.

Suppose that $a_{1} a_{2} x_{5} x_{4} x_{3} x_{2} \supseteq C_{6}$. Then $a_{3} a_{4} a_{5} a_{6} x_{6} x_{7} x_{1}$ does not have a 6 -cycle, so $e\left(x_{7}, a_{3} a_{6}\right)=0, e\left(x_{7}, a_{4} a_{5}\right) \leq 1$, and $e\left(x_{1}, a_{3} a_{4} a_{5} a_{6}\right)=0$. Since $x_{1} a_{2} \notin E$ and $x_{7} a_{1} \notin E$, this implies that $e\left(x_{1} x_{7}, C\right) \leq 1+2=3$. But then $e(L, C) \leq 3+8+6+6=23$, a contradiction. Thus $a_{1} a_{2} x_{5} x_{4} x_{3} x_{2}$ does not have a 6-cycle. By symmetry, the same is true for $a_{1} a_{6} x_{5} x_{4} x_{3} x_{2}$, $a_{1} a_{2} x_{7} x_{1} x_{2} x_{3}$, and $a_{1} a_{6} x_{7} x_{1} x_{2} x_{3}$. Since $e\left(a_{1}, x_{2} x_{3}\right)=2$, this means that $e\left(a_{2} a_{6}, x_{5} x_{7}\right)=0$. But then $e\left(a_{2} a_{6}, L\right) \leq 2+2=4$, so $e\left(a_{1} a_{3} a_{4} a_{5}, L\right) \geq 25-4=21$, a contradiction.

Thus $e\left(x_{6}, C\right) \leq 5$. so $e\left(x_{2} x_{3}, C\right)=8, e\left(x_{1} x_{7}, C\right)=e\left(x_{4} x_{5}, C\right)=6$, and $e\left(x_{6}, C\right)=5$. Since $e\left(x_{2} x_{3}, C-a_{1}\right)=6$, we have two cases to consider for $N\left(x_{2} x_{3}, C-a_{1}\right)$, which will complete Case 3.2.

Case 3.2.1: $N\left(x_{2} x_{3}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Suppose that $e\left(x_{1} x_{4}, a_{2} a_{3} a_{4}\right)>0$, and WLOG
let $e\left(x_{1}, a_{2} a_{3} a_{4}\right)>0$. Then $x_{1} x_{2} x_{3} a_{2} a_{3} a_{4} \supseteq C_{6}$, so $x_{4} x_{5} x_{6} x_{7} a_{5} a_{6} a_{1}$ does not have a C_{6}. Since $e\left(a_{1}, x_{4} x_{6}\right)=2$, we have $e\left(a_{5}, x_{4} x_{6}\right)=0$ and $a_{6} x_{7} \notin E$. If $e\left(a_{5}, x_{5} x_{7}\right)=2$, then $a_{5} x_{7} x_{6} a_{1} x_{4} x_{5} a_{5}$ is a 6 -cycle, a contradiction. Thus $e\left(a_{5}, x_{5} x_{7}\right) \leq 1$. Suppose $a_{5} x_{5} \in E$. Then $a_{6} a_{5} x_{5} x_{6} a_{1} x_{4}$ and $a_{6} a_{5} x_{5} x_{4} a_{1} x_{6}$ are 6 -paths, so $e\left(a_{6}, x_{4} x_{6}\right)=0$. Then $e\left(a_{5} a_{6}, x_{4} x_{5} x_{6} x_{7}\right) \leq$ $1+1=2$, so $e\left(a_{5} a_{6}, L\right) \leq 4$. But then $e\left(a_{2} a_{3} a_{4}, L\right) \geq 25-9=16$, a contradiction. Thus $a_{5} x_{5} \notin E$. Suppose $a_{5} x_{7} \in E$. Then $a_{6} a_{5} x_{7} x_{6} x_{5} x_{4}$ is a 6 -path, so $a_{6} x_{4} \notin E$, which means $e\left(a_{5} a_{6}, L\right) \leq 5$. Then $e\left(a_{5} a_{6}, L\right)=5$, so we have $a_{5} x_{7} \in E, e\left(a_{6}, x_{5} x_{6}\right)=2$, and $e\left(a_{5} a_{6}, x_{1}\right)=2$. But then, because $a_{1} x_{3} \in E$ and $a_{3} x_{2} \in E, x_{7} x_{1} x_{2} a_{3} a_{4} a_{5} \supseteq C_{6}$ and $a_{6} a_{1} x_{3} x_{4} x_{5} x_{6} \supseteq C_{6}$, a contradiction.

Hence $e\left(a_{5}, L\right) \leq 1$, so $e\left(a_{6}, L\right)=4$ with $e\left(a_{6}, x_{1} x_{4} x_{5} x_{6}\right)=4$, and $e\left(a_{5}, L\right)=1$ with $a_{5} x_{1} \in E$. But then $a_{6} a_{5} x_{1} x_{7} x_{6} x_{5} \supseteq C_{6}$ and $x_{2} x_{3} a_{4} a_{3} a_{2} a_{1} \supseteq C_{6}$, a contradiction. So $e\left(x_{1} x_{4}, a_{2} a_{3} a_{4}\right)=0$. Since $x_{2} x_{3} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}, x_{4} x_{5} x_{6} x_{7} x_{1} a_{5} a_{6}$ does not have a C_{6}, so $e\left(x_{1} x_{4}, a_{5}\right) \leq 1$ and $e\left(x_{1} x_{4} a_{6}\right) \leq 1$. Thus $e\left(x_{1} x_{4}, C\right) \leq 1+1+2=4$, so $e\left(x_{5} x_{7}, C\right) \geq 12-4=$ 8. Since $e\left(x_{5} x_{7}, a_{1}\right)=0, e\left(x_{5}, a_{2} a_{6}\right) \leq 1$, and $e\left(x_{7}, a_{2} a_{6}\right) \leq 1$, we have $e\left(x_{5} x_{7}, a_{3} a_{4} a_{5}\right) \geq$ $8-2=6$. Since $a_{2} x_{2} \in E$ and $a_{1} x_{6} \in E, a_{2} x_{2} x_{3} x_{4} x_{5} a_{3} a_{2}$ and $a_{1} x_{6} x_{7} a_{4} a_{5} a_{6} a_{1}$ are 6-cycles, a contradiction.

Case 3.2.2: $N\left(x_{2} x_{3}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. Suppose that $e\left(x_{1} x_{4}, a_{3} a_{4} a_{5}\right)>0$, and WLOG say $e\left(x_{1}, a_{3} a_{4} a_{5}\right)>0$. Then $x_{4} x_{5} x_{6} x_{7} a_{6} a_{1} a_{2}$ does not have a 6 -cycle and $e\left(a_{1}, x_{4} x_{6}\right)=2$, so $e\left(a_{2} a_{6}, x_{7}\right)=0$. Further, since $a_{1} x_{5} \notin E$, e($\left.a_{2} a_{1} a_{6}, x_{4} x_{5} x_{6}\right) \leq 5$ by Lemma 2.1.6, so $e\left(a_{2} a_{6}, x_{4} x_{5} x_{6}\right) \leq 3$. Then $e\left(a_{2} a_{6}, L\right) \leq 5$, so $e\left(a_{2} a_{6}, L\right)=5$ with $e\left(a_{2} a_{6}, x_{1}\right)=2$. But then $C-a_{1}+x_{1} \supseteq C_{6}$, a contradiction since $L+a_{1}-x_{1} x_{7} \supseteq C_{6}$. Hence $e\left(x_{1} x_{4}, a_{3} a_{4} a_{5}\right)=0$, and since $e\left(x_{1} x_{4}, a_{2} a_{6}\right) \leq 1+1=2$, we have $e\left(x_{5} x_{7}, C\right) \geq 12-2-2=8$. Then, since $L+a_{1}-x_{r} \supseteq C_{6}$ for $r=1,4,5,7, e\left(x_{r}, a_{2} a_{6}\right)=1$ for each $r=1,4,5,7$. Hence $e\left(x_{5} x_{7}, a_{3} a_{4} a_{5}\right)=8-2=6$. Since $x_{2} x_{3} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$ and $x_{4} x_{5} x_{6} x_{7} x_{1}$ is a 5 -path, we know that $e\left(a_{2}, x_{1} x_{4}\right) \leq 1$. By symmetry, $e\left(a_{6}, x_{1} x_{4}\right) \leq 1$, so WLOG we can say $x_{1} a_{2} \in E$ and $x_{4} a_{6} \in E$. Since $e\left(x_{6}, C\right)=5$, we can say WLOG that $x_{6} a_{2} \in E$, and since $e\left(x_{5} x_{7}, a_{3} a_{4} a_{5}\right)=6$, we know that $x_{7} a_{4} \in E$. Thus $x_{7} x_{1} x_{2} x_{3} a_{3} a_{4}$ and $x_{4} x_{5} x_{6} a_{2} a_{1} a_{6}$
have 6-cycles, a contradiction.
Case 3.3: $e\left(a_{1}, x_{4} x_{7}\right)=0$. In this case $L+a_{1}-x_{r} x_{r+1} \supseteq C_{6}$ for $r=3,4,6,7$, so $e\left(x_{r} x_{r+1}, C-\right.$ $\left.a_{1}\right) \leq 6$ for $r=3,4,6,7$ by (2.1).

Claim 1: $e\left(x_{4} x_{5}, C-a_{1}\right) \leq 5$ and $e\left(x_{6} x_{7}, C-a_{1}\right) \leq 5$.

Proof: Suppose not. By symmetry, we may assume that $e\left(x_{4} x_{5}, C-a_{1}\right)=6$. As in Case 1, we have two cases to consider.

Case A: $N\left(x_{4} x_{5}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Suppose that $e\left(x_{3}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{6} x_{7} x_{1} x_{2}$ does not have a 6 -cycle, so $e\left(a_{5}, x_{6} x_{7} x_{1}\right)=e\left(a_{6}, x_{2} x_{6}\right)=0$, and $e\left(a_{6}, x_{1} x_{7}\right) \leq$ 1. Then $e\left(a_{5} a_{6}, L\right) \leq 2+2=4$, a contradiction. Hence $e\left(x_{3}, a_{2} a_{3} a_{4}\right)=0$. Suppose that $e\left(x_{6}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{7} x_{1} x_{2} x_{3}$ does not have a 6 -cycle, so $e\left(a_{5}, x_{7} x_{1} x_{3}\right)=0$ and $a_{6} x_{7} \notin E$. Since $a_{1} a_{2} a_{3} a_{4} x_{4} x_{5} \supseteq C_{6}, e\left(a_{6}, x_{3} x_{6}\right) \leq 1$. Then $e\left(a_{5} a_{6}, L\right) \leq 2+3=5$, so $e\left(a_{5}, x_{2} x_{6}\right)=2$ and $e\left(a_{6}, x_{1} x_{2}\right)=2$. But then $a_{5} a_{6} a_{1} x_{1} x_{2} x_{3} \supseteq C_{6}$, a contradiction. Hence $e\left(x_{6}, a_{2} a_{3} a_{4}\right)=0$. Since $a_{1} a_{2} a_{3} a_{4} x_{4} x_{5} \supseteq C_{6}$, so $e\left(x_{3} x_{6}, a_{5} a_{6}\right) \leq 2$. Then $e\left(x_{3} x_{6}, C\right) \leq 2+2=$ 4, so $e\left(x_{2}, C\right) \geq 25-4-7-7=7$, a contradiction.

Case B: $N\left(x_{4} x_{5}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. Suppose that $e\left(x_{3}, a_{3} a_{4} a_{5}\right)>0$. Then $a_{6} a_{1} a_{2} x_{6} x_{7} x_{1} x_{2}$ does not have a 6 -cycle, so $e\left(a_{2} a_{6}, x_{2} x_{6}\right)=0$ and $e\left(a_{2} a_{6}, x_{1} x_{7}\right) \leq 2$. Then $e\left(a_{5} a_{6}, L\right) \leq 2+2=4$, a contradiction. Hence $e\left(x_{3}, a_{3} a_{4} a_{5}\right)=0$. Suppose that $e\left(x_{6}, a_{3} a_{4} a_{5}\right)>$ 0 . Then $a_{6} a_{1} a_{2} x_{7} x_{1} x_{2} x_{3}$ does not have a 6 -cycle, so $e\left(a_{2} a_{6}, x_{7}\right)=0$ and by Lemma 2.1.6, $e\left(a_{2} a_{6}, x_{1} x_{2} x_{3}\right) \leq 3$. Thus $e\left(a_{2} a_{6}, x_{6}\right) \geq 5-3=2$. But then $x_{6} \rightarrow\left(C, a_{1}\right)$, a contradiction since $L+a_{1}-x_{6} x_{7} \supseteq C_{6}$. Hence $e\left(x_{6}, a_{3} a_{4} a_{5}\right)=0$. Since $e\left(x_{5}, a_{1} a_{3} a_{5}\right)=3, x_{5} \rightarrow\left(C, a_{2}\right)$ and $x_{5} \rightarrow\left(C, a_{6}\right)$. Then $e\left(a_{2}, x_{6} x_{3}\right) \leq 1$ and $e\left(a_{6}, x_{6} x_{3}\right) \leq 1$, so $e\left(x_{3} x_{6}, C\right) \leq 2+2=4$, a contradiction.

Claim 2: $e\left(x_{3} x_{4}, C-a_{1}\right) \leq 5$ and $e\left(x_{7} x_{1}, C-a_{1}\right) \leq 5$.

Proof: Suppose not. By symmetry, we may assume that $e\left(x_{3} x_{4}, C-a_{1}\right)=6$. First say $N\left(x_{3} x_{4}, C-a_{1}\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Suppose that $e\left(x_{2}, a_{2} a_{3} a_{4}\right)>0$. Then $a_{5} a_{6} a_{1} x_{5} x_{6} x_{7} x_{1}$

Figure 2.14: Lemma 2.2.5, Case 3.3.
does not have a 6 -cycle, so $e\left(a_{6}, x_{5} x_{1}\right)=e\left(a_{5}, x_{6} x_{7} x_{1}\right)=0$, and $e\left(a_{6}, x_{6} x_{7}\right) \leq 1$. Then $e\left(a_{5} a_{6}, L\right) \leq 2+2=4$, a contradiction. Hence $e\left(x_{2}, a_{2} a_{3} a_{4}\right)=0$, and similarly $e\left(x_{5}, a_{2} a_{3} a_{4}\right)=$ 0 . Since $a_{1} a_{2} a_{3} a_{4} x_{3} x_{4} \supseteq C_{6}, e\left(x_{5} x_{2}, a_{5} a_{6}\right) \leq 2$, so $e\left(x_{5} x_{2}, C\right) \leq 4$. But then $e\left(x_{1}, C\right) \geq$ $25-4-7-6=8$, a contradiction. Therefore $N\left(x_{3} x_{4}, C-a_{1}\right)=\left\{a_{3}, a_{4}, a_{5}\right\}$. Suppose that $e\left(x_{2}, a_{3} a_{4} a_{5}\right)>0$. Then $a_{6} a_{1} a_{2} x_{5} x_{6} x_{7} x_{1}$ does not have a 6 -cycle, so $e\left(a_{2} a_{6}, x_{1} x_{5}\right)=0$ and $e\left(a_{2} a_{6}, x_{6} x_{7}\right) \leq 2$. Then $e\left(a_{5} a_{6}, L\right) \leq 2+2=4$, a contradiction. Hence $e\left(x_{2}, a_{3} a_{4} a_{5}\right)=0$, and similarly $e\left(x_{5}, a_{3} a_{4} a_{5}\right)=0$. Since $x_{3} \rightarrow\left(C, a_{2}\right)$ and $x_{3} \rightarrow\left(C, a_{6}\right), e\left(x_{5} x_{2}, a_{2} a_{6}\right) \leq 2$. Then $e\left(x_{2} x_{5}, C\right) \leq 4$, a contradiction.

By Claims 1 and 2, we have $e\left(x_{r} x_{r+1}, C\right) \leq 6$ for each $r=3,4,6,7$. Since $L+a_{1}-x_{7} x_{1} \supseteq$ C_{6} and $L+a_{1}-x_{3} x_{4} \supseteq C_{6}$, we have $e\left(x_{1}, a_{2} a_{6}\right) \leq 1$ and $e\left(x_{3}, a_{2} a_{6}\right) \leq 1$.

Claim 3: $e\left(x_{1}, C\right) \leq 4$ and $e\left(x_{3}, C\right) \leq 4$.

Proof: Suppose not. By symmetry, we may assume that $e\left(x_{1}, C\right)=5$, and since $e\left(x_{1}, a_{2} a_{6}\right) \leq 1$, WLOG let $e\left(x_{1}, C-a_{6}\right)=5$. Since $C-a_{1}+x_{7} x_{1} \nsupseteq C_{6}, e\left(x_{7}, a_{2} a_{5} a_{6}\right)=0$ (see Figure 2.14). Suppose that $e\left(x_{6}, a_{3} a_{5}\right)>0$. Then $x_{1} x_{7} x_{6} a_{3} a_{4} a_{5} \supseteq C_{6}$, so $a_{6} a_{1} a_{2} x_{2} x_{3} x_{4} x_{5}$ does not have a 6 -cycle. Then $e\left(a_{2} a_{6}, x_{2} x_{3} x_{4} x_{5}\right) \leq 2$. Further, $e\left(a_{2} a_{6}, x_{1} x_{6}\right) \leq 2$ since $x_{1} \nrightarrow\left(C, a_{1}\right)$ and $x_{6} \nrightarrow\left(C, a_{1}\right)$. Since $e\left(x_{7}, a_{2} a_{6}\right)=0$, this implies that $e\left(a_{2} a_{6}, L\right) \leq 4$, a contradiction. Hence $e\left(x_{6}, a_{3} a_{5}\right)=0$. Suppose that $e\left(x_{6}, a_{2} a_{4}\right)=2$. Then $x_{1} x_{7} x_{6} a_{2} a_{3} a_{4} \supseteq C_{6}$,
so $a_{5} a_{6} a_{1} x_{2} x_{3} x_{4} x_{5}$ does not have a C_{6}. Then $e\left(a_{5} a_{6}, x_{2} x_{3} x_{4} x_{5}\right) \leq 2$, and since $e\left(x_{7}, a_{5} a_{6}\right)=0$ and $x_{1} a_{6} \notin E$, we have $e\left(a_{5} a_{6}, L\right) \leq 2+3=5$. Then $e\left(a_{3}, L\right) \geq 25-20=5$, and since $x_{6} a_{3} \notin E, e\left(a_{3}, L-x_{6}\right)=5$. By Lemma 2.1.3, $L+a_{3}-x_{6} \supseteq C_{6}$. But since $e\left(x_{6}, a_{2} a_{4}\right)=2$, $x_{6} \rightarrow\left(C, a_{3}\right)$, a contradiction. Therefore $e\left(x_{6}, a_{2} a_{4}\right) \leq 1$, so $e\left(x_{6}, C\right) \leq 3$.

Then $e\left(x_{2} x_{3}, C\right) \geq 25-3-6-6=10$. Since $x_{1} a_{2} \in E$, $x_{5} x_{6} x_{7} x_{1} a_{2} a_{1} x_{5}=C_{6}$, so $e\left(x_{2} x_{3}, a_{3} a_{4} a_{5} a_{6}\right) \leq 6$. Hence $e\left(x_{2} x_{3}, C\right)=10$, which also means $e\left(x_{6}, C\right)=3$ and $e\left(x_{4} x_{5}, C\right)=e\left(x_{7} x_{1}, C\right)=6$. Since $x_{6} a_{6} \in E$ and $e\left(a_{1}, x_{2} x_{5}\right)=2$, we know $e\left(a_{2}, x_{2} x_{5}\right)=0$, for otherwise $x_{1} x_{7} x_{6} a_{4} a_{5} a_{6} \supseteq C_{6}$ and $a_{1} a_{2} x_{2} x_{3} x_{4} x_{5} \supseteq C_{6}$. Since $e\left(x_{2} x_{3}, C\right)=10$ and $x_{2} a_{2} \notin E, e\left(x_{3}, C\right)=5$ and $e\left(x_{2}, C-a_{2}\right)=5$. Then, because $x_{3} \nrightarrow\left(C, a_{1}\right), x_{3} a_{3} \in E$. But then $a_{1} a_{2} a_{3} x_{3} x_{4} x_{5} a_{1}=C_{6}$ and $x_{2} x_{1} x_{7} x_{6} a_{6} a_{5} x_{2}=C_{6}$, a contradiction.

QED

So $e\left(x_{1}, C\right) \leq 4$ and $e\left(x_{3}, C\right) \leq 4$. Since $e\left(x_{1} x_{2} x_{3}, C\right) \geq 25-12=13$, we have $e\left(x_{1} x_{3}, C\right) \geq 7$. WLOG let $e\left(x_{1}, C\right)=4$. Suppose that $e\left(x_{2}, C\right)=6$. If $C+x_{1} x_{2}-a_{i} a_{i+1} \supseteq C_{6}$ for each $i=1,3,5$, then $L-x_{1} x_{2}+a_{i} a_{i+1}$ does not have a 6 -cycle for each such i, so $e\left(x_{3} x_{6}, a_{2}\right)=0$ and $e\left(x_{3} x_{6}, a_{3} a_{4} a_{5} a_{6}\right) \leq 2+2=4$. But then $e\left(x_{3} x_{6}, C\right) \leq 6$, a contradiction. Hence $C+x_{1} x_{2}-a_{i} a_{i+1}$ does not have a 6 -cycle for some $i=1,3$, or 5 . Since $e\left(x_{2}, C\right)=6$ and $x_{1} a_{1} \in E$, we know $C+x_{1} x_{2}-a_{5} a_{6} \supseteq C_{6}$. Thus either $e\left(x_{1}, a_{2} a_{5}\right)=0$ and $e\left(x_{1}, a_{1} a_{6}\right) \leq 1$, or $e\left(x_{1}, a_{3} a_{6}\right)=0$ and $e\left(x_{1}, a_{4} a_{5}\right) \leq 1$. But $e\left(x_{1}, C\right)=4$, a contradiction. Therefore $e\left(x_{2}, C\right) \leq 5$.

We know that $e\left(x_{2}, C\right)=5, e\left(x_{1}, C\right)=e\left(x_{3}, C\right)=4, e\left(x_{4}, C\right) \leq 2, e\left(x_{7}, C\right) \leq 2$, $e\left(x_{5}, C\right) \geq 4$, and $e\left(x_{6}, C\right) \geq 4$. Recall that $L+a_{1}-x_{r} x_{r+1} \supseteq C_{6}$ for $r=3,4,6,7$, so $e\left(x_{i}, a_{2} a_{6}\right) \leq 1$ for $i=1,3,4,5,6,7$. Since $e\left(x_{2}, a_{2} a_{6}\right) \geq 1$, WLOG we can let $x_{2} a_{2} \in E$. Then $x_{2} x_{3} x_{4} x_{5} a_{1} a_{2} x_{2}=C_{6}$ and $x_{2} x_{1} x_{7} x_{6} a_{1} a_{2} x_{2}=C_{6}$, so $x_{6} x_{7} x_{1} a_{3} a_{4} a_{5}$ does not have a 6 -cycle and $x_{3} x_{4} x_{5} a_{3} a_{4} a_{5}$ does not have a 6-cycle. Hence $e\left(x_{6} x_{1}, a_{3} a_{5}\right) \leq 2$ and $e\left(x_{3} x_{5}, a_{3} a_{5}\right) \leq 2$. Since $e\left(x_{i}, a_{2} a_{6}\right) \leq 1$ and $e\left(x_{i}, C\right) \geq 4$ for $i=1,3,5,6$, we have $e\left(x_{1} x_{3} x_{5} x_{6}, a_{4}\right) \geq 16-4-4-4=4$. Since $x_{6} x_{7} x_{1} a_{4} a_{5} a_{6}$ does not have a 6 -cycle and $x_{3} x_{4} x_{5} a_{4} a_{5} a_{6}$ does not have a 6 -cycle, this implies that $e\left(x_{1} x_{3} x_{5} x_{6}, a_{6}\right)=0$. Then $e\left(x_{1} x_{3} x_{5} x_{6}, a_{2}\right) \geq 16-4-4-4=4$, so $x_{6} x_{7} x_{1} a_{2} a_{3} a_{4} x_{6}=$
C_{6} and $x_{3} x_{4} x_{5} a_{2} a_{3} a_{4} x_{3}=C_{6}$. Then $a_{5} a_{6} a_{1} x_{3} x_{4} x_{5} \nsupseteq C_{6}$ and $a_{5} a_{6} a_{1} x_{6} x_{7} x_{1} \nsupseteq C_{6}$, so $e\left(x_{1} x_{3} x_{5} x_{6}, a_{5}\right)=0$ since $e\left(x_{1} x_{3} x_{5} x_{6}, a_{1}\right)=4$. Hence $e\left(x_{1} x_{3} x_{5} x_{6}, a_{3}\right)=16-12=4$, so $x_{1} x_{2} x_{3} a_{1} a_{2} a_{3}=C_{6}$. But then $e\left(a_{5} a_{6}, x_{4} x_{7}\right) \leq 2$, so $e\left(a_{5} a_{6}, L\right)=e\left(a_{5} a_{6}, x_{2} x_{4} x_{7}\right) \leq 4$, a contradiction.

Lemma 2.2.6 Let L be a cycle of length 8. If C is a cycle of length $6 \leq p \leq 8$ and $e(C, L) \geq$ 29, then $C+L$ has two disjoint large cycles C^{\prime} and L^{\prime} such that $l\left(C^{\prime}\right)+l\left(L^{\prime}\right) \leq p+8-1$.

Proof: Suppose that the lemma is not true. Let $L=x_{1} \ldots x_{8} x_{1}$ and let $C=a_{1} \ldots a_{p} a_{1}$. WLOG let $e\left(a_{1}, L\right) \geq e\left(a_{i}, L\right)$ for each $a_{i} \in C$. Suppose $e\left(a_{1}, L\right) \geq 7$, and WLOG let $e\left(a_{1}, L-x_{8}\right)=7$. Then $a_{1} x_{3} \ldots x_{7} a_{1}, a_{1} x_{6} x_{7} \ldots x_{2} a_{1}$, and $a_{1} x_{1} \ldots x_{5} a_{1}$ are 6 -cycles. Hence by Lemma 2.1.6, $e(C, L) \leq e\left(x_{8} x_{1} x_{2}, C\right)+e\left(x_{3} x_{4} x_{5}, C\right)+e\left(x_{6} x_{7} x_{8}, C\right) \leq(6+3) \times 3=27$, a contradiction. Then $e\left(a_{i}, L\right) \leq 6$ for each $a_{i} \in C$. Suppose $e\left(a_{1}, L\right)=6$. WLOG let $e\left(a_{1}, x_{1} x_{5}\right)=2$ and $e\left(a_{1}, x_{r} x_{r+4}\right)=2$ for some $r=2,3$, or 4 . Then $a_{1} x_{1} x_{2} x_{3} x_{4} x_{5} a_{1}=C_{6}$ and $a_{1} x_{1} x_{8} x_{7} x_{6} x_{5} a_{1}=C_{6}$, so by Lemma 2.1.6 $e\left(x_{6} x_{7} x_{8}, C-a_{1}\right) \leq 6$ and $e\left(x_{2} x_{3} x_{4}, C-a_{1}\right) \leq 6$. Then $e\left(x_{1} x_{5}, C\right) \geq 29-6-6-4=13$, so WLOG let $e\left(x_{1}, C\right) \geq 7$. Then $C+x_{1}-a_{1}$ contains a large cycle of length at most $p-1$ by Lemma 2.1.3, a contradiction since $a_{1} x_{r} \ldots x_{r+4} a_{1}=C_{6}$ for $2 \leq r \leq 4$. Thus $e\left(a_{i}, L\right) \leq 5$ for each $a_{i} \in C$. Similarly, if $p=8$ then $e\left(x_{i}, C\right) \leq 5$ for each $x_{i} \in L$.

Suppose $e\left(a_{1}, L\right)=5$, and WLOG let $e\left(a_{1}, x_{1} x_{5}\right)=2$. Then $a_{1} x_{1} x_{2} \ldots x_{5} a_{1}$ and $a_{1} x_{1} x_{8} \ldots x_{5} a_{1}$ are 6 -cycles, so by Lemma 2.1.6 $e\left(x_{6} x_{7} x_{8}, C-a_{1}\right) \leq 6$ and $e\left(x_{2} x_{3} x_{4}, C-a_{1}\right) \leq 6$. Then $e\left(x_{1} x_{5}, C\right) \geq 29-12-3=14$, so $p \geq 7$ and WLOG $e\left(x_{1}, C\right) \geq 7$. By the end of the last paragraph, this means $p=7$. Hence $e\left(x_{1}, C\right)=e\left(x_{5}, C\right)=7$, so $x_{1} a_{2} \ldots a_{6} x_{1}$ is a 6 -cycle and thus $e\left(a_{1} a_{7}, L-x_{1}\right) \leq 6$ by Lemma 2.1.6. Since $e\left(a_{1}, L\right)=5$, we have $e\left(a_{7}, L\right) \leq 3$. Now since $e\left(x_{1}, C\right)=7$, we have by Lemma 2.1.6 that $e\left(a_{r} a_{r+1}, L-x_{1}\right) \leq 6$ for each r. Using this fact with $r=1,3,5$, we get $e\left(a_{7}, L\right) \geq 29-24=5$. But this is a contradiction, so $e\left(a_{i}, L\right) \leq 4$ for each $a_{i} \in C$. Similarly, if $p=8$ then $e\left(x_{i}, C\right) \leq 4$ for each $x_{i} \in L$.

By the preceding paragraph, we see that $p=8$, for otherwise $e\left(a_{i}, L\right) \geq 5$ for some $a_{i} \in C$, since $e(C, L) \geq 29$. Let r be such that $e\left(x_{r} x_{r+1}, C\right) \geq e\left(x_{i} x_{i+1}, C\right)$ for each i. Then
$e\left(x_{r} x_{r+1}, C\right) \geq 8$ since $l(L)=8$ and $e(C, L) \geq 29$, so WLOG let $e\left(x_{1}, C\right)=e\left(x_{2}, C\right)=4$. If x_{1} is adjacent to opposite vertices in C, then similar to above we get a contradiction, so WLOG we can say $N\left(x_{1}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. If $x_{2} a_{i} \in E$ for some $i \in\{4,5,6,7$,$\} then$ $x_{1} x_{2} a_{i} a_{i-1} a_{i-2} a_{i-3} x_{1}$ is a 6 -cycle and so by Lemma 2.1.6, $e\left(a_{i+1} a_{i+2} a_{i+3} a_{i+4}, L-x_{1} x_{2}\right) \leq 6$. Since $i \in\{4,5,6,7\}$ and $N\left(x_{1}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $e\left(x_{2}, C\right)=4$ with $x_{2} a_{i} \in E$, we have $e\left(a_{i+1} a_{i+2} a_{i+3} a_{i+4}, L\right) \leq 6+3+3=12$. Thus $e\left(a_{i-3} a_{i-2} a_{i-1} a_{i}, L\right) \geq 17$, a contradiction as $e\left(a_{j}, L\right) \leq 4$ for each j. Thus $N\left(x_{2}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{8}\right\}$, so $x_{1} x_{2} a_{1} a_{2} a_{3} a_{4} x_{1}$ is a 6 -cycle. Then $e\left(a_{5} a_{6} a_{7} a_{8}, L\right) \leq 6+1=7$ by Lemma 2.1.6, so $e\left(a_{1} a_{2} a_{3} a_{4}, L\right) \geq 22$, a contradiction.

Lemma 2.2.7 Let $q \geq p \geq 6$ with $q \geq 9$. Let C and L be disjoint cycles with $l(C)=p$ and $l(L)=q$. If $e(C, L) \geq \frac{7 q+1}{2}$, then $C+L$ contains two disjoint large cycles C^{\prime} and L^{\prime} such that $l\left(C^{\prime}\right)+l\left(L^{\prime}\right)<p+q$, with $l\left(C^{\prime}\right)=6$ if $p=6$.

Proof: Let $C=a_{1} a_{2} \ldots a_{p} a_{1}$ and $L=x_{1} x_{2} \ldots x_{q} x_{1}$. Suppose that the lemma is not true.

Case 1: $p=6$. We first claim that $e\left(a_{i}, L\right) \leq 7$ for each $a_{i} \in C$. Suppose not, and WLOG let $e\left(a_{1}, L\right) \geq 8$. Then for each $1 \leq r \leq q, e\left(a_{1}, L-x_{r} x_{r+1} x_{r+2}\right) \geq 5$, so $L+a_{1}-x_{r} x_{r+1} x_{r+2}$ has a large cycle by Lemma 2.1.3. Since $e\left(C-a_{1}, L\right) \geq \frac{7 q}{2}-q=\frac{5 q}{2}, e\left(x_{r} x_{r+1} x_{r+2}, C-a_{1}\right) \geq 7$ for some $1 \leq r \leq q$. But this contradicts Lemma 2.1.7, since $L+a_{1}-x_{r} x_{r+1} x_{r+2}$ has a large cycle. Hence $e\left(a_{i}, L\right) \leq 7$ for each $a_{i} \in C$.

WLOG let $e\left(x_{1} x_{2}, C\right) \geq e\left(x_{k} x_{k+1}, C\right)$ for each $x_{k} \in L$. Then $e\left(x_{1} x_{2}, C\right) \geq 7$. WLOG let $e\left(x_{1}, C\right) \geq e\left(x_{2}, C\right)$. If $e\left(x_{1}, C\right)=6$, then $x_{1} \rightarrow C$ so $e(C, L) \leq 6+4 \times 6=30<32$ by Lemma 2.1.3, a contradiction. Hence $e\left(x_{1}, C\right) \leq 5$ and $e\left(x_{2}, C\right) \geq 2$. Suppose $e\left(x_{1}, C\right)=5$, and WLOG let $e\left(x_{1}, C-a_{6}\right)=5$. Then $x_{1} \rightarrow\left(C, a_{i}\right)$ for $i=2,3,4,6$, so $e\left(a_{i}, L-x_{1}\right) \leq 4$ for each such i by Lemma 2.1.3. Hence $\frac{7 q+1}{2} \leq e(C, L) \leq 16+3+e\left(a_{1} a_{5}, L\right)$, so $\frac{7 q-37}{2} \leq e\left(a_{1} a_{5}, L\right)$ and thus $e\left(a_{1} a_{5}, L\right) \geq 13$. If $a_{6} x_{2} \in E$ then $x_{2} a_{6} a_{1} a_{2} a_{3} x_{1} x_{2}$ and $x_{2} a_{6} a_{5} a_{4} a_{3} x_{1} x_{2}$ are 6 -cycles, so $e\left(a_{4} a_{5}, L\right) \leq 10$ and $e\left(a_{1} a_{2}, L\right) \leq 10$ by Lemma 2.1.6. But then $e\left(a_{3} a_{6}, L\right) \geq 13$, so $e\left(a_{3}, L\right) \geq 8$, a contradiction. Hence $a_{6} x_{2} \notin E$, so $e\left(a_{6}, x_{1} x_{2}\right)=0$. Suppose $a_{1} x_{2} \in E$. Then
$x_{2} a_{1} a_{2} a_{3} a_{4} x_{1} x_{2}$ is a C_{6}, so $e\left(a_{5} a_{6}, L\right) \leq 6+2=8$, and thus $e\left(a_{1}, L\right) \geq 32-8-15=9$, a contradiction. Hence $a_{1} x_{2} \notin E$. Similarly, $a_{2} x_{2} \notin E$ for otherwise $x_{2} a_{2} a_{3} a_{4} a_{5} x_{1} x_{2}$ is a C_{6} and again $e\left(a_{1}, L\right) \geq 9$. By symmetry, we also have $a_{5} x_{2} \notin E$ and $a_{4} x_{2} \notin E$. But then $e\left(x_{2}, C\right) \leq 1$, a contradiction. Therefore $e\left(x_{1}, C\right)=4$ and $3 \leq e\left(x_{2}, C\right) \leq 4$.

Case 1.1: $N\left(x_{1}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. We know that $x_{1} \rightarrow\left(C, a_{i}\right)$ for $i=2,3$, so by Lemma 2.1.3 $e\left(a_{1} a_{4} a_{5} a_{6}, L\right) \geq \frac{7 q+1}{2}-10$. Suppose $x_{2} a_{1} \in E$. Then $x_{2} a_{1} a_{2} a_{3} a_{4} x_{1} x_{2}$ is a 6 -cycle so $e\left(a_{5} a_{6}, L\right) \leq 6+2=8$ by Lemma 2.1.6. Then $e\left(a_{1} a_{4}, L\right) \geq \frac{7 q+1}{2}-18 \geq 14$, so $e\left(a_{1}, L\right)=e\left(a_{4}, L\right)=7, e\left(a_{5} a_{6}, L\right)=8$, and $e\left(a_{2}, L\right)=e\left(a_{3}, L\right)=5$. Since $e\left(a_{5} a_{6}, L\right)=8$, $e\left(x_{2}, a_{5} a_{6}\right)=2$. Then $x_{1} x_{2} a_{5} a_{6} a_{1} a_{2} x_{1}$ and $x_{1} x_{2} a_{6} a_{5} a_{4} a_{3} x_{1}$ are 6 -cycles, so by Lemma 2.1.5 $e\left(a_{3} a_{4}, L\right) \leq 10$ and $e\left(a_{1} a_{2}, L\right) \leq 10$. This is clearly a contradiction, so $x_{2} a_{1} \notin E$. By symmetry, $x_{2} a_{4} \notin E$. Similarly, we know that $e\left(x_{2}, a_{2} a_{3}\right) \leq 1$, for otherwise $x_{2} a_{2} a_{1} x_{1} a_{4} a_{3} x_{2}$ is a 6 -cycle and hence $e\left(a_{5} a_{6}, L\right) \leq 8$, which leads to a contradiction as above. Thus WLOG let $N\left(x_{2}, C\right)=\left\{a_{2}, a_{5}, a_{6}\right\}$. Then $x_{1} x_{2} \rightarrow\left(C, a_{6} a_{1}\right)$, so $e\left(a_{1} a_{6}, L\right) \leq 6+2=8$ by Lemma 2.1.6. Then $e\left(a_{4} a_{5}, L\right) \geq 32-10-8=14$. But this is a contradition, since $x_{1} x_{2} \rightarrow\left(C, a_{4} a_{5}\right)$.

Case 1.2: $N\left(x_{1}, C\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $p=6, x_{1}$ and x_{2} have a common neighbor in C. By symmetry, WLOG we can let $x_{2} a_{1} \in E$. Then $x_{2} a_{1} a_{2} a_{3} a_{4} x_{1} x_{2}$ and $x_{2} a_{1} a_{6} a_{5} a_{4} x_{1} x_{2}$ are 6 -cycles, so $e\left(a_{5} a_{6}, L\right) \leq 9$ and $e\left(a_{2} a_{3}, L\right) \leq 9$. Further, since $x_{1} \rightarrow\left(C, a_{3}\right)$ and $x_{1} \rightarrow\left(C, a_{6}\right)$, we have $e\left(a_{3}, L\right) \leq 4$ and $e\left(a_{6}, L\right) \leq 4$. Then $e\left(a_{1} a_{4}, L\right) \geq \frac{7 q+1}{2}-18$, so $e\left(a_{1} a_{4}, L\right) \geq 14$. Hence $e\left(a_{1}, L\right)=e\left(a_{4}, L\right)=7, e\left(a_{5}, L\right)=e\left(a_{2}, L\right)=5$, and $e\left(a_{3}, L\right)=e\left(a_{6}, L\right)=4$. Since $e\left(a_{3} a_{4}, L\right)=4+7=11, x_{1} x_{2} \nrightarrow\left(C, a_{3} a_{4}\right)$ by Lemma 2.1.6. Thus $e\left(x_{2}, a_{2} a_{5}\right)=0$ (see Figure 2.15), so $e\left(x_{2}, a_{3} a_{4} a_{6}\right) \geq 2$. Similarly, since $x_{2} a_{1} \in E$ we have $x_{2} a_{6} \notin E$. Thus $e\left(x_{2}, a_{3} a_{4}\right)=2$, so $x_{1} x_{2} \rightarrow\left(C, a_{1} a_{6}\right)$, a contradiction since $e\left(a_{1} a_{6}, L\right)=11$.

Case 1.3: $N\left(x_{1}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $x_{1} \rightarrow\left(C, a_{i}\right)$ for each $i=2,4,6$, by Lemma 2.1.3 we have $e\left(a_{i}, L-x_{1}\right) \leq 4$ for each $i=2,4,6$. Hence $21 \geq e\left(a_{1} a_{3} a_{5}, L\right) \geq \frac{7 q+1}{2}-4 \times 3-1$, so $21 \geq e\left(a_{1} a_{3} a_{5}, L\right) \geq 19$ and $q=9$. Suppose $x_{2} a_{2} \in E$. Then $x_{2} a_{2} a_{3} a_{4} a_{5} x_{1} x_{2}=C_{6}$ and $x_{2} a_{2} a_{1} a_{6} a_{5} x_{1} x_{2}=C_{6}$, so $e\left(a_{1} a_{6}, L\right) \leq 6+3=9$ and $e\left(a_{3} a_{4}, L\right) \leq 6+3=9$. Then $e(C, L)=e\left(a_{2}, L\right)+e\left(a_{3} a_{4}, L\right)+e\left(a_{1} a_{6}, L\right)+e\left(a_{5}, L\right) \leq 5+9+9+7=30$, a contradiction.

Figure 2.15: Lemma 2.2.7, Case 1.2.

Figure 2.16: If $q \geq 8$ and a_{1} does not have two neighbors whose distance in L is at least four, then it is easy to see that $e\left(a_{1}, x_{5} \ldots x_{q-3}\right)=0, e\left(a_{1}, x_{2} x_{q-2}\right) \leq 1, e\left(a_{1}, x_{3} x_{q-1}\right) \leq 1$, and $e\left(a_{1}, x_{4} x_{q}\right) \leq 1$.

Hence $x_{2} a_{2} \notin E$, and similarly $x_{2} a_{5} \notin E$. Then $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right) \geq 3$. WLOG let $x_{2} a_{4} \in$ E. Then $x_{2} a_{4} a_{5} a_{6} a_{1} x_{1}=C_{6}$ and $x_{2} a_{4} a_{3} a_{2} a_{1} x_{1} x_{2}=C_{6}$, so $e\left(a_{2} a_{3}, L\right) \leq 6+4=10$ and $e\left(a_{5} a_{6}, L\right) \leq 6+3=9$. Then $e\left(a_{1} a_{4}, L\right) \geq 32-19=13$, so $e\left(a_{1}, L\right) \geq 13-4=9$, a contradiction.

Case 2: $p \geq 7$. If for each $x_{r} \in L, L-x_{r} x_{r+1} x_{r+2}+a_{1}$ has a large cycle, then $e\left(x_{r} x_{r+1} x_{r+2}, C-\right.$ $\left.a_{1}\right) \leq 6$ by Lemma 2.1.6. But then $e(C, L) \leq 9\left(\frac{q}{3}\right)=3 q$, a contradiction. Hence $L-$ $x_{r} x_{r+1} x_{r+2}+a_{1}$ does not have a large cycle for some r. Then $e\left(a_{1}, L\right) \leq 7$ by Lemma 2.1.3, and similarly $e\left(a_{i}, L\right) \leq 7$ for each $a_{i} \in C$. If $e\left(x_{i}, C\right) \geq 8$ then $p \geq 8$, so by the same reasoning as above we know that $e\left(x_{i}, C\right) \leq 7$ for each $x_{i} \in L$.

Suppose that $e\left(a_{1}, L\right) \geq 5$. Then, since $q \geq 8$, there are vertices x_{i} and x_{j} in $N\left(a_{1}, L\right)$ such that $d_{L}\left(x_{i}, x_{j}\right) \geq 4$ (see Figure 2.16). Hence $a_{1} x_{i} x_{i+1} \ldots x_{j-1} x_{j} a_{1}$ and $a_{1} x_{i} x_{i-1} \ldots x_{j+1} x_{j} a_{1}$ are large cycles, so $e\left(x_{j+1} x_{j+2} \ldots x_{i-2} x_{i-1}, C-a_{1}\right) \leq 6$ and $e\left(x_{i+1} x_{i+2} \ldots x_{j-2} x_{j-1}, C-a_{1}\right) \leq 6$ by Lemma 2.1.6. But then $e\left(x_{i} x_{j}, C\right) \geq 32-12-e\left(a_{1}, L-x_{i} x_{j}\right) \geq 20-5=15$, so WLOG $e\left(x_{i}, C\right) \geq 8>7$, a contradiction. Therefore $e\left(a_{i}, L\right) \leq 4$ for each $a_{i} \in C$. Since $e(C, L) \geq 32$,
this implies that $p \geq 8$, and using the same argument as above we see that $e\left(x_{i}, C\right) \leq 4$ for each $x_{i} \in L$.

Since $e(C, L) \geq \frac{7 q+1}{2}$, we know that $e\left(x_{i} x_{i+1}, C\right) \geq 8$ for some $x_{i} \in L$. WLOG let $e\left(x_{1} x_{2}, C\right) \geq 8$. Since $e\left(x_{i}, C\right) \leq 4$ for each $x_{i} \in L$, we have $e\left(x_{1}, C\right)=e\left(x_{2}, C\right)=4$. WLOG let $x_{1} a_{1} \in E$. As above, there is no neighbor of x_{1} with distance at least 4 from a_{1}, so $e\left(x_{1}, a_{5} \ldots a_{p-3}\right)=0$. If there is $a_{i} \in N\left(x_{2}, C\right)$ such that $d_{C}\left(a_{i}, a_{1}\right) \geq 3$, then $x_{2} a_{i} a_{i+1} \ldots a_{p} a_{1} x_{1} x_{2}$ and $x_{2} a_{i} a_{i-1} \ldots a_{2} a_{1} x_{1} x_{2}$ are large cycles. Then $e\left(a_{2} a_{3} \ldots a_{i-1}, L-\right.$ $\left.x_{1} x_{2}\right) \leq 6$ and $e\left(a_{p} a_{p-1} \ldots a_{i+1}, L-x_{1} x_{2}\right) \leq 6$ by Lemma 2.1.6. Hence $e\left(a_{i} a_{1}, L\right) \geq$ $32-12-e\left(x_{1} x_{2}, C-a_{1} a_{i}\right)=20-6=14$, a contradiction. Therefore there is no such $a_{i} \in N\left(x_{2}, C\right)$. This implies that $e\left(x_{2}, a_{4} a_{5} \ldots a_{p-2}\right)=0$, so $e\left(x_{2}, a_{p-1} a_{p} a_{1} a_{2} a_{3}\right)=4$. Since $e\left(x_{2}, a_{p} a_{2}\right) \geq 1$, WLOG let $x_{2} a_{p} \in E$. Then similarly, there is no $a_{i} \in N\left(x_{1}, C\right)$ such that $d_{C}\left(a_{i}, a_{p}\right) \geq 3$, so $e\left(x_{1}, a_{3} a_{4}\right)=0$. Hence $e\left(x_{1}, a_{1} a_{2} a_{p-2} a_{p-1} a_{p}\right)=4$. Since $d_{C}\left(a_{2}, a_{p-2}\right)=4$, we have $e\left(x_{1}, a_{1} a_{p-1} a_{p}\right)=3$. But then $e\left(x_{2}, a_{2} a_{3}\right)=0$ since $d_{C}\left(a_{2}, a_{p-1}\right)=d_{C}\left(a_{3}, a_{p}\right)=3$, so $e\left(x_{2}, C\right) \leq 3$, a contradiction.

Chapter 3

Lemmas With Very Specific Conditions

Let $P=y_{1} y_{2} \ldots y_{s}$ be a path of order s. We denote the largest integer i such that $y_{1} y_{i} \in$ E by $r\left(y_{1}, P\right)$, and the largest integer j such that $y_{s} y_{s-j+1} \in E$ by $r\left(y_{s}, P\right)$ (see Figure 3.1). We define $r(P):=\max \left\{r\left(y_{1}, P\right), r\left(y_{s}, P\right)\right\}$ and $s(P):=r\left(y_{1}, P\right)+r\left(y_{s}, P\right)$. Clearly $r\left(y_{k}, P\right) \geq 2$ for $k=1, s$, and if $r\left(y_{k}, P\right) \geq 6$ then P contains a large cycle. We let $\tau^{\prime}(C):=\min _{a_{i} \in C} \tau\left(a_{i}, C\right)$ (see Figure 3.2) .

Lemma 3.0.1 is used to prove Theorem 2; the others are used to prove Theorem 1.

Lemma 3.0.1 Let $P=x_{1} x_{2} \ldots x_{t}$ be a path of order $t \geq 2$, and let $C=a_{1} a_{2} \ldots a_{6} a_{1}$ be a 6-cycle, with P and C disjoint. Let $u \notin C \cup P$ with $e\left(u x_{t}, C\right) \geq 8$ and $e\left(u x_{t-1}, C\right) \geq 7$. Then $P+C+u$ contains either $P_{t+1} \cup C_{6}$, or a path of order t and a 6-cycle L, disjoint, with $\tau(L)>\tau(C)$. In either case, the path has x_{1} as an endvertex.

Proof: Suppose that $P+C+u$ does not contain $P_{t+1} \cup C_{6}$. By Lemma 1.4.17, $e\left(u x_{t}, C\right)=8$, for otherwise $u \rightarrow\left(C, a_{i}\right)$ and $a_{i} x_{t} \in E$ for some $a_{i} \in C$. Hence by Lemma 1.4.18, if $e(u, C) \geq 4$ then there is $a_{i} \in C$ such that $u \xrightarrow{1}\left(C, a_{i}\right)$, and we are done. Thus we may assume that $e(u, C) \leq 3$. Suppose that $e(u, C)=2$. Then $e\left(x_{t}, C\right)=6$, so $x_{t} \rightarrow C$. Since $e\left(u x_{t-1}, C\right) \geq 7$, this implies that there is $a_{i} \in C$ such that $x_{t} \rightarrow\left(C, a_{i}\right)$ and $e\left(u x_{t-1}, a_{i}\right)=2$. But then $C+x_{t}-a_{i}$ has a 6 -cycle and $x_{1} x_{2} \ldots x_{t-1} a_{i} u$ is a path of order $t+1$, a contradiction. Therefore $e(u, C)=3$.

WLOG let $e\left(x_{t}, C-a_{6}\right)=5$. Then, since $P+C+u$ does not contain $P_{t+1} \cup C_{6}$, for each $1 \leq i \leq 5$ we have $u \nrightarrow\left(C, a_{i}\right)$. Because $e(u, C)=3$, this implies that $e\left(u, a_{1} a_{5}\right)=2$ and $u a_{i} \in E$ for some $i \in\{2,4,6\}$. Suppose that $u a_{6} \in E$. Then by Lemma 1.4.9, $e\left(a_{6}, a_{2} a_{4}\right)=0$

Figure 3.1: A path P of order 7 with $r(P)=4$ and $s(P)=4+3=7$.

Figure 3.2: Left: A 6 -cycle C_{1} with $\tau\left(C_{1}\right)=3$ and $\tau^{\prime}\left(C_{1}\right)=1$. Right: A 6 -cycle C_{2} with $\tau\left(C_{2}\right)=6$ and $\tau^{\prime}\left(C_{2}\right)=0$.

Figure 3.3: Lemma 3.0.2: $R+u$ contains a path of order $r+1 \geq 6$ from x_{1} to $u ; R+v$ contains a path of order $r+1$ from x_{1} to v.
and $a_{2} a_{4} \notin E$, so $x_{t} \xrightarrow{1}\left(C, a_{i}\right)$ for each $i=2,4,6$. Since $e\left(x_{t-1}, C\right) \geq 4, x_{1} x_{2} \ldots x_{t-1} a_{i}$ is a path of order t for some $i=2,4,6$, as desired. Now suppose that $e\left(u, a_{2} a_{4}\right)=1$, and WLOG let $u a_{2} \in E$. By Lemma 1.4 .7 we see that $\tau\left(a_{i}, C\right) \leq 1$ for each $i=3,4,6$. So similarly, we again get a path of order t and a 6 -cycle with more chords than C. This completes the proof.

Lemma 3.0.2 Let $R=x_{1} \ldots x_{r}$ be a path of order $r \geq 5$ and let $C=a_{1} a_{2} \ldots a_{6} a_{1}$ be a 6-cycle. Let $u, v \notin R+C$ with $e\left(x_{r}, u v\right)=2$. If $e\left(u v x_{1}, C\right) \geq 11$, then $C+R+u v$ has either (1) two disjoint large cycles, one of which is a 6-cycle, or (2) a 6-cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-2$ and a path of order $r+2$.

Proof: Suppose the lemma is not true. We first make four easy observations (see Figure 3.3):
(a) If $u \rightarrow\left(C, a_{i}\right)$, then $e\left(v x_{1}, a_{i}\right) \leq 1$. If $v \rightarrow\left(C, a_{i}\right)$, then $e\left(u x_{1}, a_{i}\right) \leq 1$.
(b) If $u \xrightarrow{-2}\left(C, a_{i}\right)$, then $e\left(v x_{1}, a_{i}\right)=0$. If $v \xrightarrow{-2}\left(C, a_{i}\right)$, then $e\left(u x_{1}, a_{i}\right)=0$.
(c) If $u v \xrightarrow{-2}\left(C, a_{i} a_{i+1}\right)$, then $e\left(x_{1}, a_{i} a_{i+1}\right)=0$.
(d) If $x_{1} \xrightarrow{-2}\left(C, a_{i}\right)$, then $e\left(u v, a_{i}\right) \leq 1$.
If $e(u, C)=6$ then $u \xrightarrow{0}\left(C, a_{i}\right)$ for each $a_{i} \in C$, so $e\left(v x_{1}, C\right)=0$ by (b). This is clearly a contradiction since $e\left(u v x_{1}, C\right) \geq 11$. Thus $e(u, C) \leq 5$, and similarly $e(v, C) \leq 5$. Suppose that $e(u, C)=5$, and WLOG let $e\left(u, C-a_{6}\right)=5$. Then $u \xrightarrow{-1}\left(C, a_{i}\right)$ for each $i=2,3,4,6$, so $e\left(v x_{1}, a_{2} a_{3} a_{4} a_{6}\right)=0$ by (b). But then $e\left(v x_{1}, C\right) \leq 4$, a contradiction. Hence $e(u, C) \leq 4$, and similarly $e(v, C) \leq 4$. WLOG let $e(u, C) \geq e(v, C)$. Since $e\left(u v x_{1}, C\right) \geq 11$, we know that $e(u, C) \geq 3$.

Case 1: $e(u, C)=4$. By (b) we can see that $N(u, C) \neq\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$, for otherwise $e\left(v x_{1}, a_{2} a_{4} a_{6}\right)=0$ and so $e\left(v x_{1}, C\right) \leq 6$. Suppose that $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $e\left(u, C-a_{2}\right)=e\left(u, C-a_{3}\right)=3$, by (b) we have $e\left(v x_{1}, a_{2} a_{3}\right)=0$. Then $e\left(v x_{1}, a_{4} a_{5} a_{6} a_{1}\right) \geq 11-$ $4=7$. Suppose that $e\left(v, a_{1} a_{4}\right)=2$. Then $u v \xrightarrow{-2}\left(C, a_{5} a_{6}\right)$ because $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=6$, so $e\left(x_{1}, a_{5} a_{6}\right)=0$ by (c). But then $e\left(v x_{1}, C\right) \leq 6$, a contradiction. Therefore $e\left(x_{1}, a_{4} a_{5} a_{6} a_{1}\right)=$ $4, e\left(v, a_{5} a_{6}\right)=2$, and $e\left(v, a_{1} a_{4}\right)=1$. WLOG let $e\left(v, a_{5} a_{6} a_{1}\right)=3$. Then by $(\mathrm{a}), u \nrightarrow\left(C, a_{i}\right)$ for each $i=5,6,1$, so $\tau\left(a_{5} a_{6}, C\right)=0$ by Lemma 1.4.6. Thus $v \xrightarrow{0}\left(C, a_{6}\right)$, so $x_{1} a_{6} \notin E$ by (b), a contradiction.

Hence $N(u, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $e\left(u, C-a_{3}\right)=e\left(u, C-a_{6}\right)=4$, by (b) we have $e\left(v x_{1}, a_{3} a_{6}\right)=0$. Then $e\left(v x_{1}, a_{1} a_{2} a_{4} a_{5}\right) \geq 7$, so WLOG let $e\left(v x_{1}, a_{1} a_{2} a_{4}\right)=6$. By (a), $u \nrightarrow\left(C, a_{i}\right)$ for $i=1,2,4$, so by Lemma 1.4.8 $\tau\left(a_{3} a_{6}, C\right)=0$. Then $\tau\left(a_{5} a_{6}, C\right) \leq 2$. Since $e\left(v, a_{1} a_{2} a_{4}\right)=3, a_{1} u a_{2} a_{3} a_{4} v a_{1}$ is a 6 -cycle, and since $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=6$, we have $u v \xrightarrow{1}\left(C, a_{5} a_{6}\right)$. By (c), this implies that $x_{1} a_{5} \notin E$. Then $v a_{5} \in E$, so similar to above we have $u v \xrightarrow{1}\left(C, a_{6} a_{1}\right)$. This contradicts (c) since $x_{1} a_{1} \in E$, so this case is complete.

Case 2: $e(u, C)=3$. Since $e(v, C) \leq e(u, C)$, we have $e\left(x_{1}, C\right) \geq 11-6=5$. By (b)

Figure 3.4: Let C_{1} be a 6 -cycle in the graph at top, and let C_{2} be a 6 -cycle in the graph at bottom. Since $u v \notin E$ and $a_{5} a_{6} \in E$, if $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right)=e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)+k$ then $\tau\left(C_{1}\right)=\tau\left(C_{2}\right)+(k+1)$.
we can see that $N(u, C) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$, for otherwise $e\left(v x_{1}, a_{2} a_{4} a_{6}\right)=0$. Suppose that $N(u, C)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $e\left(v x_{1}, C\right) \geq 8$, by (a) we know that $u \nrightarrow(C)$. Then by Lemma 1.4.9 $\tau\left(a_{2}, C\right) \leq 2$, so by (b) we have $e\left(v x_{1}, a_{2}\right)=0$. Then $e\left(x_{1}, C-a_{2}\right)=5$, and $e\left(v, C-a_{2}\right)=3$. By the above argument, we see that v is not adjacent to three consecutive vertices of $C-a_{2}$. Thus WLOG let $v a_{3} \in E$. By (d) and Lemma 1.4.5, this implies that $\tau\left(a_{2}, C\right)=0$. Hence $\tau\left(a_{i}, C\right) \leq 2$ for $i=4,5,6$. Then by $(\mathrm{b}), v \nrightarrow\left(C, a_{i}\right)$ for $i=4,5,6$, which means $v a_{1} \in E$ and $e\left(v, a_{4} a_{6}\right)=1$. WLOG let $v a_{4} \in E$. Then $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=6$, so by (c) $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6+2=8$ (see Figure 3.4). Therefore $\tau\left(a_{5} a_{6}, C\right)=8-2=6$, a contradiction.

Therefore $N(u, C)=\left\{a_{1}, a_{2}, a_{4}\right\}$. By (b), e(vx,$\left.a_{3}\right)=0$, so $e\left(x_{1}, C-a_{3}\right)=5$. Since $e\left(x_{1}, a_{5} a_{6}\right)=2$ and $e\left(u, C-a_{5}\right)=e\left(u, C-a_{6}\right)=2$, by (b) we know that $u \nrightarrow\left(C, a_{i}\right)$ for $i=5,6$. Then by Lemma 1.4.10, $\tau\left(a_{5} a_{6}, C\right) \leq 1$. Then $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right) \leq 3$, so by (c) we know that if $C-a_{5} a_{6}+u v$ contains a 6 -cycle, then $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \leq 1$. This clearly implies that $C-a_{5} a_{6}+u v$ does not have a 6 -cycle, so $e\left(v, a_{1} a_{4}\right) \leq 1$. Since $e\left(a_{1}, u x_{1}\right)=2$, by (a)

Figure 3.5: Lemma 3.0.3: $R-x_{r}+u v$ contains the paths $x_{1} x_{2} \ldots x_{r-1} u v$ and $x_{1} x_{2} \ldots x_{r-1} v u$ of order $r+1$.
we see that $e\left(v, a_{2} a_{6}\right) \leq 1$. Since $e\left(v, C-a_{3}\right)=3$, we have $e\left(v, a_{1} a_{4}\right)=e\left(v, a_{2} a_{6}\right)=1$ and $v a_{5} \in E$. Let C^{\prime} be the 6 -cycle $x_{1} a_{4} a_{3} a_{2} u a_{1} x_{1}$. Since $e\left(x_{1} u, a_{1} a_{2} a_{3} a_{4}\right)=6$ and $\tau\left(a_{5} a_{6}, C\right) \leq$ 1, we have $\tau\left(C^{\prime}\right) \geq \tau(C)+2$. But $x_{2} x_{3} \ldots x_{r} v a_{5} a_{6}$ is a path of order $r+2$, a contradiction.

Lemma 3.0.3 Let $C=a_{1} \ldots a_{6} a_{1}$ be a 6 -cycle and let $R=x_{1} x_{2} \ldots x_{r}$ be a path of order $r \geq 5$. Let $u, v \notin C+R$ with $u v x_{r-1}=K_{3}$. If $e\left(x_{1} x_{r} u v, C\right) \geq 15$, then $C+R+u v$ has either (1) two disjoint large cycles, one of which is a 6 -cycle, or (2) a 6 -cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-1$ and a path of order $r+2$.

Proof: Suppose that the lemma is not true. We first make four easy observations (see Figure 3.5):
(a) If $u v \xrightarrow{-1}\left(C, a_{i} a_{j}\right)$ and $a_{i} a_{j} \in E$, then $e\left(x_{1} x_{r}, a_{i} a_{j}\right)=0$.
(b) If $u \rightarrow\left(C, a_{i}\right)$ then $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$. If $v \rightarrow\left(C, a_{i}\right)$ then $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$. If $u v \rightarrow\left(C, a_{i} a_{j}\right)$ then $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$ and $e\left(x_{1} x_{r}, a_{j}\right) \leq 1$.
(c) If $x_{r} \xrightarrow{-1}\left(C, a_{i}\right)$, then $e\left(x_{1} u v, a_{i}\right)=0$.
(d) If $u \xrightarrow{-1}\left(C, a_{i}\right)$, then $e\left(x_{r} v, a_{i}\right) \leq 1$. If $v \xrightarrow{-1}\left(C, a_{i}\right)$, then $e\left(x_{r} u, a_{i}\right) \leq 1$.

Suppose $e\left(x_{r}, C\right) \geq 5$. WLOG let $e\left(x_{r}, C-a_{6}\right)=5$. Then $e\left(x_{r}, C-a_{i}\right) \geq 4$ for each $a_{i} \in C$, so $x_{r} \xrightarrow{-1}\left(C, a_{i}\right)$ for each $i=2,3,4,6$. By (c), this implies that $e\left(x_{1} u v, a_{2} a_{3} a_{4} a_{6}\right)=0$. But then $e\left(x_{1} u v, a_{1} a_{5}\right) \geq 15-6=9$, a contradiction. Hence $e\left(x_{r}, C\right) \leq 4$.

Claim 1: $e\left(x_{r}, C\right) \leq 3$.

Proof: Suppose not. Then $e\left(x_{r}, C\right)=4$, and we have three cases to consider.
Case A: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Suppose $\tau\left(a_{2}, C\right)=3$. Then by Lemma 1.4.6, $x_{r} \rightarrow$ C. Since $e\left(x_{r}, C-a_{5} a_{6}\right)=4$, we have $x_{r} \xrightarrow{-1}\left(C, a_{i}\right)$ for $i=5$ and $i=6$. This implies by (c) that $e\left(x_{1} u v, a_{5} a_{6}\right)=0$, so $e\left(x_{1} u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 15-4=11$. Hence $e\left(x_{1} x_{r}, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$ and $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$. WLOG let $e\left(u, a_{1} a_{2} a_{3} a_{4}\right)=4$. Then $u \rightarrow\left(C, a_{2}\right)$ and $u \rightarrow\left(C, a_{3}\right)$, a contradiction by (b) since $e\left(x_{1} x_{r}, a_{2} a_{3}\right) \geq 3$. Therefore $\tau\left(a_{2}, C\right) \leq 2$, and by symmetry $\tau\left(a_{3}, C\right) \leq 2$. Thus by (c), $e\left(x_{1} u v, a_{2} a_{3}\right)=0$, so we have $e\left(x_{1} u v, a_{4} a_{5} a_{6} a_{1}\right) \geq 11$. Further, we have $e\left(a_{2} a_{3}, a_{4} a_{5} a_{6} a_{1}\right) \leq 2(2)+2(1)=6$. Since $e\left(u v, a_{4} a_{5} a_{6} a_{1}\right) \geq 7$, this implies that $u v \xrightarrow{1}\left(C, a_{2} a_{3}\right)$. But $e\left(x_{1} x_{r}, a_{2} a_{3}\right)=2>0$, contradicting (a).

Case B: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $e\left(x_{r}, C-a_{4}\right)=e\left(x_{r}, C-a_{6}\right)=4$, by (c) we have $e\left(x_{1} u v, a_{4} a_{6}\right)=0$. Hence $e\left(x_{1} u v, a_{1} a_{2} a_{3} a_{5}\right) \geq 11$. Then $e\left(x_{1} u v, a_{2}\right) \geq 2$, so since $x_{r} \rightarrow\left(C, a_{2}\right)$ with $e\left(x_{r}, C-a_{2}\right)=3$, by (c) we have $\tau\left(a_{2}, C\right)=3$. Then by Lemma 1.4.6, $x_{r} \rightarrow C$, so $\tau\left(a_{i}, C\right)=3$ for $i=1,3,5$, by (c). WLOG let $e\left(u, a_{1} a_{2} a_{3} a_{5}\right)=4$. Then $u a_{1} a_{6} a_{3} a_{4} a_{2} u$ is a 6 -cycle, so $e\left(x_{1} x_{r}, a_{5}\right) \leq 1$ by (b). Then $x_{1} a_{5} \notin E$, so since $e\left(x_{1} u v, a_{1} a_{2} a_{3} a_{5}\right) \geq 11$ we have $e\left(x_{1}, a_{1} a_{2} a_{3}\right)=3$. But then $e\left(x_{1} x_{r}, a_{1}\right)=2$ and $u a_{2} a_{6} a_{5} a_{4} a_{3} u$ is a 6 -cycle, contradicting (b).

$$
\text { Case C: } N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\} . \text { By (c) we have } e\left(x_{1} u v, a_{3} a_{6}\right)=0 \text {, so }
$$

$e\left(x_{1} u v, a_{1} a_{2} a_{4} a_{5}\right) \geq 11$. WLOG let $e\left(u, a_{1} a_{2} a_{4} a_{5}\right)=4$, and by symmetry let $e\left(x_{1}, a_{1} a_{2} a_{4}\right)=$ 3. Then $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4}\right)=6$, so by (b) we have $u \nrightarrow\left(C, a_{i}\right)$ for $i=1,2,4$. Hence by Lemma 1.4.8 we know that $\tau\left(a_{3}, C\right)=\tau\left(a_{6}, C\right)=0$, and hence that $\tau\left(a_{5} a_{6}, C\right) \leq 2$. Since $e\left(u, a_{1} a_{4}\right)=2$ and $e\left(v, a_{1} a_{4}\right) \geq 1$, we have $u v \rightarrow\left(C, a_{5} a_{6}\right)$. Since $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 3+2=5$ and $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right) \leq 2+2=4$, this implies that $u v \xrightarrow{1}\left(C, a_{5} a_{6}\right)$. But then by (a) we see that $e\left(x_{1} x_{r}, a_{5} a_{6}\right)=0$, a contradiction.

Claim 2: $e\left(x_{1} x_{r}, C\right) \leq 8$.

Proof: Suppose not. By Claim 1, this implies that $e\left(x_{1}, C\right)=6$ and $e\left(x_{r}, C\right)=3$.

Case A: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. For each $i=1,2,3$ we have $e\left(x_{1} x_{r}, a_{i}\right)=2$, so by (b) $u \nrightarrow\left(C, a_{i}\right)$ and $v \nrightarrow\left(C, a_{i}\right)$. Further, by (c) we know that $\tau\left(a_{2}, C\right) \geq 2$, since $x_{r} \rightarrow\left(C, a_{2}\right)$ and $x_{1} a_{2} \in E$. Suppose that $e\left(a_{2}, a_{4} a_{6}\right)=2$, so that $a_{2} a_{3} a_{4} a_{5} a_{6} a_{2}$ and $a_{2} a_{4} a_{5} a_{6} a_{1} a_{2}$ are 5-cycles. Then, since $u, v \nrightarrow\left(C, a_{1}\right)$ and $u, v \nrightarrow\left(C, a_{3}\right)$, it must be the case that u and v are not adjacent to consecutive vertices in C. Because $e(u v, C) \geq 15-9=6$, this implies that $e\left(u, a_{1} a_{3} a_{5}\right)=e\left(v, a_{1} a_{3} a_{5}\right)=3$ or $e\left(u, a_{2} a_{4} a_{6}\right)=e\left(v, a_{2} a_{4} a_{6}\right)=3$. But then $u \rightarrow\left(C, a_{2}\right)$ or $u \rightarrow\left(C, a_{1}\right)$, a contradiction. Thus $e\left(a_{2}, a_{4} a_{6}\right) \leq 1$, and since $\tau\left(a_{2}, C\right) \geq 2$ we can say by symmetry that $e\left(a_{2}, a_{4} a_{5}\right)=2$. Then by Lemma 1.4 .9 we have $x_{r} \rightarrow\left(C, a_{i}\right)$ for each $i=3,4,6$. Since $e\left(x_{r}, C-a_{6}\right)=3$ and $a_{6} a_{2} \notin E$, this implies that $x_{r} \xrightarrow{-1}\left(C, a_{6}\right)$. But $x_{1} a_{6} \in E$, which contradicts (c).

Case B: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. For each $i=1,2,4$, we have $e\left(x_{1} x_{r}, a_{i}\right)=2$, so by (b) $u \nrightarrow\left(C, a_{i}\right)$ and $v \nrightarrow\left(C, a_{i}\right)$. By (c), since $e\left(x_{r}, C-a_{3}\right)=3$ we have $\tau\left(a_{3}, C\right)=3$. Then $a_{3} a_{5} a_{6} a_{1} a_{2} a_{3}$ and $a_{3} a_{4} a_{5} a_{6} a_{1} a_{3}$ are 5 -cycles. Since $u, v \nrightarrow\left(C, a_{4}\right)$ and $u, v \nrightarrow\left(C, a_{2}\right)$, it must be the case that u and v are not adjacent to consecutive vertices in C. But then, as in Case A we see that $u \rightarrow\left(C, a_{1}\right)$ or $u \rightarrow\left(C, a_{2}\right)$, a contradiction.

Case C: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$. In this case, for each $i=1,3,5$ we know by (b) that $u \nrightarrow\left(C, a_{i}\right)$ and $v \nrightarrow\left(C, a_{i}\right)$. Further, for each $i=2,4,6$ we have $e\left(x_{r}, C-a_{i}\right)=3$ and $x_{r} \rightarrow\left(C, a_{i}\right)$, so $\tau\left(a_{i}, C\right)=3$ by (c). Similar to Case B, we see that u and v are not adjacent to consecutive vertices in C. Since $u \nrightarrow\left(C, a_{1}\right)$, this implies that $e\left(u, a_{1} a_{3} a_{5}\right)=e\left(v, a_{1} a_{3} a_{5}\right)=3$. Since $u \nrightarrow\left(C, a_{i}\right)$ for each $i=1,3,5$, by Lemma 1.4.11 we have $\tau\left(a_{2}, C\right) \leq 2$, a contradiction.

QED

By Claims 1 and 2, we have $e\left(x_{1} x_{r}, C\right) \leq 8$ and $e\left(x_{r}, C\right) \leq 3$. Thus $e(u v, C) \geq 15-8=7$. Suppose that $e(u v, C) \geq 11$. Then $e\left(u v, C-a_{i} a_{i+1}\right) \geq 7$ for each i, so for each $a_{i} \in C$ we have $u v \xrightarrow{-1}\left(C, a_{i} a_{i+1}\right)$. But then $e\left(x_{1} x_{r}, C\right)=0$ by (a), which is clearly a contradiction. Hence $e(u v, C) \leq 10$. WLOG let $e(u, C) \geq e(v, C)$. We complete the proof by considering the cases $e(u v, C)=10,9,8,7$, separately.

Figure 3.6: Lemma 3.0.3: If $u a_{i} \in E$ and $v a_{i+3} \in E$, then $u v \rightarrow\left(C, a_{i+1} a_{i+2}\right)$ and $u v \rightarrow$ (C, $a_{i+4} a_{i+5}$).

Case 1: $e(u v, C)=10$. Either $e(u, C)=6$ or $e(u, C)=5$. First suppose that $e(u, C)=6$. If $N(v, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, then $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right)=7$ and $e\left(u v, a_{6} a_{1} a_{2} a_{3}\right)=7$. By (a), this implies that $e\left(x_{1} x_{r}, a_{6} a_{1} a_{4} a_{5}\right)=0$. But then $e\left(x_{1} x_{r}, a_{2} a_{3}\right) \geq 5$, a contradiction. Similarly, we see that $N(v, C) \neq\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$ and $N(v, C) \neq\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Therefore $e(u, C)=$ $e(v, C)=5$.

WLOG let $e\left(u, C-a_{6}\right)=5$. Suppose that $v a_{6} \in E$. Then $e\left(v, C-a_{i}\right)=5$ for some $i \neq 6$. If $i \in\{2,5\}$ then $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right)=7$, and either $e\left(u v, a_{6} a_{1} a_{2} a_{3}\right)=7$ or $e\left(u v, a_{4} a_{5} a_{6} a_{1}\right)=7$. Then by (a), e($\left.x_{1} x_{r}, C\right) \leq 4$, a contradiction. Thus $i \notin\{2,5\}$, and by symmetry $i \notin\{1,4\}$. Hence $i=3$, so $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right)=e\left(u v, a_{5} a_{6} a_{1} a_{2}\right)=7$, again contradicting (a). Therefore $v a_{6} \notin E$, so we have $e\left(u v, C-a_{6}\right)=10$. This implies that $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=e\left(u v, a_{2} a_{3} a_{4} a_{5}\right)=$ 8 , so by (a) we see that $e\left(x_{1} x_{r}, a_{5} a_{6} a_{1}\right)=0$. Thus $e\left(x_{1} x_{r}, a_{2} a_{3} a_{4}\right) \geq 5$. WLOG let $x_{r} a_{2} \in E$. Since $e\left(u, C-a_{2}\right)=4$ with $e\left(u, a_{1} a_{3}\right)=2$, we know that $u \xrightarrow{-1}\left(C, a_{2}\right)$. But $e\left(x_{r} v, a_{2}\right)=2$, contradicting (d).
 $N(v, C)=\left\{a_{1}, a_{2}, a_{3}\right\}$, then $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=7$ and $e\left(u v, a_{6} a_{1} a_{2} a_{3}\right)=7$. By (a) this implies that $e\left(x_{1} x_{r}, a_{5} a_{6} a_{4}\right)=0$, so $e\left(x_{1} x_{r}, a_{1} a_{2} a_{3}\right) \geq 15-9=6$. But then $e\left(x_{r} v, a_{1} a_{2} a_{3}\right)=6$, clearly contradicting (d) since $e(u, C)=6$. If $N(v, C)=\left\{a_{1}, a_{2}, a_{4}\right\}$ then $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=7$, so $e\left(x_{1} x_{r}, a_{5} a_{6}\right)=0$ by (a). Then $e\left(x_{1} x_{r}, a_{1} a_{2} a_{3} a_{4}\right) \geq 15-9=6$, so $e\left(x_{r} v, a_{1} a_{2} a_{4}\right) \geq 3+1=4$, again contradicting (d).

Therefore $N(v, C)=\left\{a_{1}, a_{3}, a_{5}\right\}$. Since $e\left(x_{1} x_{r}, C\right) \geq 6$ and $e\left(x_{r}, C\right) \leq 3$, we have $e\left(x_{1}, a_{1} a_{2}\right)+e\left(x_{1}, a_{3} a_{4}\right)+e\left(x_{1}, a_{5} a_{6}\right) \geq 3$. Thus by symmetry we can say $e\left(x_{1}, a_{5} a_{6}\right) \geq$ 1. Then, since $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=6$ and $C+u v-a_{5} a_{6}$ has a 6 -cycle, by (a) we have $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right)=8$. This implies that $u v a_{1} a_{2} a_{3} a_{5} u$ is a 6 -cycle, and that $u v \xrightarrow{-1}\left(C, a_{4} a_{6}\right)$ because $e\left(u v, a_{1} a_{2} a_{3} a_{5}\right)=7$. Further, we have $a_{4} a_{6} \in E$, so by (a) we get $e\left(x_{1} x_{r}, a_{4} a_{6}\right)=0$. Then $e\left(x_{1} x_{r}, a_{1} a_{2} a_{3} a_{5}\right) \geq 6$, so $e\left(x_{r}, a_{1} a_{3} a_{5}\right) \geq 6-5=1$. But then $e\left(x_{r} v, a_{1} a_{3} a_{5}\right) \geq 4$, contradicting (d) since $e(u, C)=6$.

Therefore $e(u, C)=5$ and $e(v, C)=4$. WLOG let $u a_{6} \notin E$. Then for each $i \in\{2,3,4,6\}$,
$u \xrightarrow{-1}\left(C, a_{i}\right)$, so

$$
\begin{equation*}
e\left(x_{r} v, a_{i}\right) \leq 1 \text { for each } i \in\{2,3,4,6\} \tag{3.1}
\end{equation*}
$$

by (d). Suppose that $v a_{6} \notin E$. Then $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$ and $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right) \geq 7$, so $e\left(x_{1} x_{r}, a_{1} a_{5} a_{6}\right)=0$ by (a). Hence $e\left(x_{1} x_{r}, a_{2} a_{3} a_{4}\right)=6$, so $e\left(x_{r} v, a_{2} a_{3} a_{4}\right) \geq 3+2=5$, contradicting (3.1). Hence $v a_{6} \in E$. We have $\binom{5}{3}$ cases to consider, four of which are absorbed by the others due to symmetry.

Case 2.1: $N(v, C)=\left\{a_{6}, a_{5}, a_{4}, a_{3}\right\}$ or $N(v, C)=\left\{a_{6}, a_{1}, a_{2}, a_{3}\right\}$. WLOG let $N(v, C)=$ $\left\{a_{6}, a_{5}, a_{4}, a_{3}\right\}$. Then $e\left(u v, a_{6} a_{5} a_{4} a_{3}\right) \geq 7$ and $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right) \geq 7$, so $e\left(x_{1} x_{r}, a_{1} a_{2} a_{6}\right)=0$ by (a). Then $e\left(x_{1} x_{r}, a_{3} a_{4} a_{5}\right)=6$, so $e\left(x_{r} v, a_{3} a_{4}\right)=4$, contradicting (3.1).

Case 2.2: $N(v, C)=\left\{a_{1}, a_{6}, a_{5}, a_{4}\right\}$ or $N(v, C)=\left\{a_{5}, a_{6}, a_{1}, a_{2}\right\}$. WLOG let $N(v, C)=$ $\left\{a_{1}, a_{6}, a_{5}, a_{4}\right\}$. Then $e\left(u v, a_{1} a_{6} a_{5} a_{4}\right) \geq 7$, so $e\left(x_{1} x_{r}, a_{2} a_{3}\right)=0$ by (a). Then $e\left(x_{1} x_{r}, a_{1} a_{4} a_{5} a_{6}\right) \geq$ 6 , so by (3.1) we have $e\left(x_{r}, a_{1} a_{5}\right)=2$ and $e\left(x_{1}, a_{1} a_{4} a_{5} a_{6}\right)=4$. Since $e\left(v, a_{4} a_{6}\right)=2$ we know that $v \rightarrow\left(C, a_{5}\right)$. But this contradicts (b), because $e\left(x_{1} x_{r}, a_{5}\right)=2$.

Case 2.3: $N(v, C)=\left\{a_{6}, a_{5}, a_{4}, a_{2}\right\}$ or $N(v, C)=\left\{a_{6}, a_{5}, a_{4}, a_{2}\right\}$. WLOG let $N(v, C)=$ $\left\{a_{6}, a_{5}, a_{4}, a_{2}\right\}$. Then $e\left(u v, a_{5} a_{4} a_{3} a_{2}\right) \geq 7$, so $e\left(x_{1} x_{r}, a_{1} a_{6}\right)=0$ by (a). Then $e\left(x_{1} x_{r}, a_{2} a_{3} a_{4} a_{5}\right) \geq$ 6 , so by (3.1) we have $e\left(x_{r}, a_{3} a_{5}\right)=2$ and $e\left(x_{1}, a_{2} a_{3} a_{4} a_{5}\right)=4$. But then $e\left(x_{r} u, a_{3}\right)=2$, contradicting (d) since $e\left(v, C-a_{3}\right)=4$ and $v \rightarrow\left(C, a_{3}\right)$.

Case 2.4: $N(v, C)=\left\{a_{6}, a_{4}, a_{3}, a_{2}\right\}$. In this case we see that $e\left(x_{r}, a_{2} a_{3} a_{4} a_{6}\right)=0$ by (3.1). Since $e\left(u v, a_{5} a_{4} a_{3} a_{2}\right) \geq 7$ and $e\left(u v, a_{4} a_{3} a_{2} a_{1}\right) \geq 7$, we also have $e\left(x_{1} x_{r}, a_{1} a_{5} a_{6}\right)=0$ by (a). But then $e\left(x_{1} x_{r}, C\right) \leq 3+0=3<6$, a contradiction.

Case 2.5: $N(v, C)=\left\{a_{6}, a_{5}, a_{3}, a_{1}\right\} . ~ I n ~ t h i s ~ c a s e ~ v \xrightarrow{-1}\left(C, a_{2}\right)$ and $v \xrightarrow{-1}\left(C, a_{4}\right)$. Since $e\left(u, a_{2} a_{4}\right)=2$ this implies that $e\left(x_{r}, a_{2} a_{4}\right)=0$ by (d). Then by (3.1) we know that $e\left(x_{r}, a_{2} a_{3} a_{4} a_{6}\right)=0$. Therefore $e\left(x_{1} x_{r}, a_{5} a_{6}\right) \geq 6-5=1$, so since $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=6$ we have $\tau\left(a_{5}, C\right)=\tau\left(a_{6}, C\right)=3$ by (a). Hence by Lemma 1.4.5, $u \rightarrow C$, so $e\left(x_{r}, a_{1} a_{5}\right)=0$ by (d). Then $e\left(x_{r}, C\right)=0$, so $e\left(x_{1}, C\right)=6$. Since $\tau\left(a_{6}, C\right)=3$ we have $a_{2} a_{6} \in E$, and since $\tau\left(a_{5}, C\right)=3$ we have $e\left(a_{5}, a_{1} a_{3}\right)=2$. Then $a_{1} a_{5} a_{3} a_{4} u v a_{1}$ is a 6 -cycle and $e\left(u v, a_{1} a_{5} a_{3} a_{4}\right)=7$, so $u v \xrightarrow{-1}\left(C, a_{2} a_{6}\right)$. But $a_{2} a_{6} \in E$ and $e\left(x_{1}, a_{2} a_{6}\right)=2$, contradicting (a).

Case 2.6: $N(v, C)=\left\{a_{6}, a_{5}, a_{3}, a_{2}\right\}$ or $N(v, C)=\left\{a_{6}, a_{1}, a_{3}, a_{4}\right\}$. WLOG let $N(v, C)=$ $\left\{a_{6}, a_{5}, a_{3}, a_{2}\right\}$. Then $e\left(u v, a_{5} a_{4} a_{3} a_{2}\right) \geq 7$, so $e\left(x_{1} x_{r}, a_{1} a_{6}\right)=0$ by (a). Then $e\left(x_{1} x_{r}, a_{2} a_{3} a_{4} a_{5}\right) \geq$ 6 , so by (3.1) we see that $e\left(x_{r}, a_{4} a_{5}\right)=2$ and $e\left(x_{1}, a_{2} a_{3} a_{4} a_{5}\right)=4$. But then $e\left(x_{r} u, a_{4}\right)=2$ and $v \rightarrow\left(C, a_{4}\right)$ with $e\left(v, C-a_{4}\right)=4$, contradicting (d).

Case 3: $e(u v, C)=8$. Since $e\left(x_{1} x_{r}, C\right) \geq 7$, by (b) we have $u \nrightarrow C$ and $v \nrightarrow C$, and hence also that $e(u, C) \leq 5$ and $e(v, C) \leq 5$.

Suppose $e(u, C)=5$. WLOG let $u a_{6} \notin E$. Then by Lemma 1.4.5, $\tau\left(a_{6}, C\right)=0$. Since $e(v, C)=3$, we know that either $e\left(v, a_{1} a_{4}\right) \geq 1$ or $e\left(v, a_{2} a_{5}\right) \geq 1$. By symmetry, WLOG let $e\left(v, a_{1} a_{4}\right) \geq 1$. Then $C+u v-a_{5} a_{6}$ has a 6 -cycle and $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 5$. Since $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right) \leq 4+1=5$, this implies that $e\left(x_{1} x_{r}, a_{5} a_{6}\right)=0$ by (a). Hence $e\left(x_{1} x_{r}, a_{2} a_{3} a_{4}\right) \geq 7-2=5$, contradicting (b) because $u \rightarrow\left(C, a_{i}\right)$ for each $i=2,3,4$. Therefore $e(u, C)=e(v, C)=4$, and we have three cases concerning $N(u, C)$.

Case 3.1: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Because $u \rightarrow\left(C, a_{2}\right)$ and $u \rightarrow\left(C, a_{3}\right)$, by (b) we have $e\left(x_{1} x_{r}, a_{2}\right) \leq 1$ and $e\left(x_{1} x_{r}, a_{3}\right) \leq 1$. Hence $e\left(x_{1} x_{r}, a_{1} a_{4} a_{5} a_{6}\right) \geq 7-2=5$. Suppose $e\left(v, a_{1} a_{2} a_{3} a_{4}\right) \geq 3$. Then $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$, so by (a) we have $e\left(x_{1} x_{r}, a_{5} a_{6}\right)=0$. But then $e\left(x_{1} x_{r}, a_{1} a_{4}\right) \geq 5$, a contradiction. Therefore $e\left(v, a_{1} a_{2} a_{3} a_{4}\right) \leq 2$, so since $e(v, C)=4$ we have $e\left(v, a_{5} a_{6}\right)=2$. Then $v a_{6} a_{1} a_{2} a_{3} u v$ and $v a_{5} a_{4} a_{3} a_{2} u v$ are 6 -cycles, so $e\left(x_{1} x_{r}, a_{4} a_{5} a_{6} a_{1}\right) \leq 4$ by (b), a contradiction.

Case 3.2: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. By (b) we have $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$ for each $i=2,4,6$, so $e\left(x_{1} x_{r}, a_{1} a_{3} a_{5}\right) \geq 7-3=4$. Suppose that $e\left(v, a_{2} a_{3} a_{4} a_{5}\right) \geq 3$. Then $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right) \geq 6$ and $e\left(x_{1} x_{r}, a_{1} a_{6}\right) \geq 7-2 \times 1-2 \times 2=1$, so by (a) we have $\tau\left(a_{1}, C\right)=\tau\left(a_{6}, C\right)=3$. Thus by Lemma 1.4.7 $u \rightarrow C$, a contradiction. Therefore $e\left(v, a_{2} a_{3} a_{4} a_{5}\right) \leq 2$, so $e\left(v, a_{1} a_{6}\right)=2$. Suppose $e\left(v, a_{2} a_{3}\right) \geq 1$. Then $e\left(u v, a_{6} a_{1} a_{2} a_{3}\right) \geq 6$ and $e\left(x_{1} x_{r}, a_{4} a_{5}\right) \geq 7-6=1$, so by (a) we have $\tau\left(a_{4}, C\right)=\tau\left(a_{5}, C\right)=3$. But then again $u \rightarrow C$ by Lemma 1.4.7, a contradiction. Hence $e\left(v, a_{1} a_{4} a_{5} a_{6}\right)=4$, so $v \rightarrow\left(C, a_{5}\right), u v \rightarrow\left(C, a_{1} a_{6}\right)$, and $u v \rightarrow\left(C, a_{3} a_{4}\right)$. But then by (b), $e\left(x_{1} x_{r}, a_{1} a_{3} a_{5}\right) \leq 3<4$, a contradiction.
$\underline{\text { Case 3.3: } N(u, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\} .}$ By (b) we have $e\left(x_{1} x_{r}, a_{3}\right) \leq 1$ and $e\left(x_{1} x_{r}, a_{6}\right) \leq 1$.

Hence $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4} a_{5}\right) \geq 7-2=5$. By symmetry, WLOG we can let $v a_{1} \in E$. Then $u v \rightarrow\left(C, a_{5} a_{5}\right)$ and $u v \rightarrow\left(C, a_{2} a_{3}\right)$, so by (b) $e\left(x_{1} x_{r}, a_{2} a_{5}\right) \leq 2$. Hence $e\left(x_{1} x_{r}, a_{1} a_{4}\right) \geq 3$, so by (b) either $C+u v-a_{1} a_{6} \nsupseteq C_{6}$ or $C+u v-a_{3} a_{4} \nsupseteq C_{6}$. Hence $e\left(v, a_{2} a_{5}\right)=0$, so $e\left(v, a_{1} a_{3} a_{4} a_{6}\right)=4$ and thus $a_{6} a_{5} u a_{2} a_{3} v a_{6}$ is a 6 -cycle. But $e\left(x_{1} x_{r}, a_{1} a_{4}\right) \geq 3$, contradicting (b).

Case 4: $e(u v, C)=7$. As in Case 3 we have $e(u, C) \leq 5, u \nrightarrow C$, and $v \nrightarrow C$. Suppose $e(u, C)=5$, and WLOG let $u a_{6} \notin E$. By Lemma 1.4.5, $\tau\left(a_{6}, C\right)=0$, and by (b) we have $e\left(x_{1} x_{r}, a_{2} a_{3} a_{4} a_{6}\right) \leq 4$. Then $e\left(x_{1} x_{r}, a_{1} a_{5}\right) \geq 8-4=4$, so by (b) $C+u v-a_{6} a_{1} \nsupseteq C_{6}$ and $C+u v-a_{5} a_{6} \nsupseteq C_{6}$. Since $e\left(u, a_{2} a_{5} a_{1} a_{4}\right)=4$, this implies that $e\left(v, a_{5} a_{2} a_{4} a_{1}\right)=0$. Hence $e\left(v, a_{3} a_{6}\right)=2$, so $u v \rightarrow\left(C, a_{1} a_{2}\right)$. But this contradicts (b), since $e\left(x_{1} x_{r}, a_{1}\right)=2$. Therefore $e(u, C)=4$ and $e(v, C)=3$.

Case 4.1: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By (b) we have $e\left(x_{1} x_{r}, a_{2} a_{3}\right) \leq 2$, so $e\left(x_{1} x_{r}, a_{1} a_{4} a_{5} a_{6}\right)$ ≥ 6. Suppose $e\left(v, a_{1} a_{2} a_{3} a_{4}\right) \geq 2$. Then $u v \rightarrow\left(C, a_{5} a_{6}\right)$ and $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$, so since $e\left(x_{1} x_{r}, a_{5} a_{6}\right) \geq 6-4=2$, by (a) we have $\tau\left(a_{5}, C\right)=\tau\left(a_{6}, C\right)=3$. But then $u \rightarrow C$ by Lemma 1.4.6, a contradiction. Hence $e\left(v, a_{1} a_{2} a_{3} a_{4}\right) \leq 1$, so $e\left(v, a_{5} a_{6}\right)=2$. But then $C+u v-a_{6} a_{1} \supseteq C_{6}$ and $C+u v-a_{4} a_{5} \supseteq C_{6}$, contradicting (b) since $e\left(x_{1} x_{r}, a_{1} a_{4} a_{5} a_{6}\right) \geq 6$. Case 4.2: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. By (b) we have $e\left(x_{1} x_{r}, a_{2} a_{4} a_{6}\right) \leq 3$, so $e\left(x_{1} x_{r}, a_{1} a_{3} a_{5}\right)$ ≥ 5. Suppose $e\left(v, a_{4} a_{6}\right) \geq 1$. By symmetry, WLOG let $v a_{4} \in E$. Then $C+u v-a_{5} a_{6} \supseteq C_{6}$ and $C+u v-a_{2} a_{3} \supseteq C_{6}$. But $e\left(x_{1} x_{r}, a_{3} a_{5}\right) \geq 3$, contradicting (b). Hence $e\left(v, a_{4} a_{6}\right)=0$, so $e\left(v, a_{2} a_{5}\right) \geq 3-2=1$. Since $e\left(u, a_{2} a_{5}\right)=2$, this implies that $u v \rightarrow\left(C, a_{6} a_{1}\right)$ and $u v \rightarrow\left(C, a_{3} a_{4}\right)$. Hence $e\left(x_{1} x_{r}, a_{1} a_{3}\right) \leq 2<3$ by (b), a contradiction.

Case 4.3: $N(u, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. By (b) we have $e\left(x_{1} x_{r}, a_{3} a_{6}\right) \leq 2$, so $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4} a_{5}\right)$ ≥ 6. WLOG let $v a_{1} \in E$. Then $u v \rightarrow\left(C, a_{5} a_{6}\right)$ and $u v \rightarrow\left(C, a_{2} a_{3}\right)$, so by $(\mathrm{b}) e\left(x_{1} x_{r}, a_{5} a_{6}\right) \leq$ 2 and $e\left(x_{1} x_{r}, a_{2} a_{3}\right) \leq 2$. Thus $e\left(x_{1} x_{r}, a_{1} a_{4}\right)=4$, and therefore $e\left(v, a_{2} a_{5}\right)=0$ by (b), for otherwise $u v \rightarrow\left(C, a_{6} a_{1}\right)$ and $u v \rightarrow\left(C, a_{3} a_{4}\right)$. Thus $e\left(v, a_{3} a_{4} a_{6}\right)=2$. If $v a_{6} \in E$, then $v a_{6} a_{5} u a_{2} a_{1} v$ is a 6-cycle, contradicting (b) because $e\left(x_{1} x_{r}, a_{4}\right)=2$. But then $e\left(v, a_{3} a_{4}\right)=2$, so $v a_{3} a_{2} u a_{5} a_{4} v$ is a 6 -cycle, again contradicting (b).

Figure 3.7: Lemma 3.0.4: $u_{1} x_{1} x_{2} \ldots x_{r} u_{3}, u_{1} x_{1} x_{2} \ldots x_{r} u_{4}, u_{2} x_{1} x_{2} \ldots x_{r} u_{3}$, and $u_{2} x_{1} x_{2} \ldots x_{r} u_{4}$ are paths of order $r+2 \geq 5$.

Lemma 3.0.4 Let $C=a_{1} \ldots a_{6} a_{1}$ be a 6 -cycle and let $R=x_{1} x_{2} \ldots x_{r}$ be a path of order $r \geq 3$. Let $u_{1}, u_{2}, u_{3}, u_{4} \notin C+R$ with $e\left(x_{1}, u_{1} u_{2}\right)=2$ and $e\left(x_{r}, u_{3} u_{4}\right)=2$. If $e\left(u_{1} u_{2} u_{3} u_{4}, C\right) \geq 15$, then $C+R+u_{1} u_{2} u_{3} u_{4}$ has either (1) two disjoint large cycles, one of which is a 6 -cycle, or (2) a 6-cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-2$ and a path of order $r+4$.

Proof: Suppose that the lemma is not true. We first make some easy observations (see Figure 3.7):
(a) If $u_{1} \rightarrow\left(C, a_{i}\right)$, then $e\left(a_{i}, u_{2} u_{3}\right) \leq 1$ and $e\left(a_{i}, u_{2} u_{4}\right) \leq 1$.
(b) If $u_{2} \rightarrow\left(C, a_{i}\right)$, then $e\left(a_{i}, u_{1} u_{3}\right) \leq 1$ and $e\left(a_{i}, u_{1} u_{4}\right) \leq 1$.
(c) If $u_{3} \rightarrow\left(C, a_{i}\right)$, then $e\left(a_{i}, u_{1} u_{4}\right) \leq 1$ and $e\left(a_{i}, u_{2} u_{4}\right) \leq 1$.
(d) If $u_{4} \rightarrow\left(C, a_{i}\right)$, then $e\left(a_{i}, u_{1} u_{3}\right) \leq 1$ and $e\left(a_{i}, u_{2} u_{3}\right) \leq 1$.
(e) If $x, y \in C$ with $x y \in E$ and $u_{1} u_{4} \xrightarrow{-2}(C, x y)$, then $e\left(u_{2} u_{3}, x y\right)=0$.
(f) If $x, y \in C$ with $x y \in E$ and $u_{1} u_{3} \xrightarrow{-2}(C, x y)$, then $e\left(u_{2} u_{4}, x y\right)=0$.
(g) If $x, y \in C$ with $x y \in E$ and $u_{2} u_{3} \xrightarrow{-2}(C, x y)$, then $e\left(u_{1} u_{4}, x y\right)=0$.
(h) If $x, y \in C$ with $x y \in E$ and $u_{2} u_{4} \xrightarrow{-2}(C, x y)$, then $e\left(u_{1} u_{3}, x y\right)=0$.

WLOG let $e\left(u_{1} u_{4}, C\right) \geq e\left(u_{2} u_{3}, C\right)$, and $e\left(u_{1}, C\right) \geq e\left(u_{4}, C\right)$. Then $e\left(u_{1} u_{4}, C\right) \geq 8$ and $e\left(u_{1}, C\right) \geq 4$. Suppose that $e\left(u_{1} u_{4}, C\right)=12$. Then $u_{1} \rightarrow C$ and $u_{4} \rightarrow C$, so by (a) and
(d) $e\left(u_{2} u_{4}, C\right) \leq 6$ and $e\left(u_{1} u_{3}, C\right) \leq 6$, a contradiction. Suppose that $e\left(u_{1} u_{4}, C\right)=11$, and WLOG let $u_{4} a_{6} \notin E$. Since $u_{1} \rightarrow C$ and $e\left(u_{4}, C-a_{6}\right)=5$, we have $e\left(u_{2}, C-a_{6}\right)=0$ by (a). Since $u_{4} \rightarrow\left(C, a_{i}\right)$ for each $i=2,3,4,6$ and $e\left(u_{1}, C\right)=6$, we have $e\left(u_{3}, a_{2} a_{3} a_{4} a_{6}\right)=0$ by (d). Thus $e\left(u_{2} u_{3}, C\right) \leq 1+2=3$, a contradiction since $e\left(u_{1} u_{4}, C\right)=11$. Hence $8 \leq$ $e\left(u_{1} u_{4}, C\right) \leq 10$, and we consider each possible value of $e\left(u_{1} u_{4}, C\right)$ in the following cases.

Case 1: $e\left(u_{1} u_{4}, C\right)=10$. First suppose $e\left(u_{1}, C\right)=6$. Then $u_{1} \rightarrow C$, so for each $a_{i} \in C$ we have $e\left(u_{2} u_{4}, a_{i}\right) \leq 1$ and $e\left(u_{2} u_{3}, a_{i}\right) \leq 1$ by (a).

If $N\left(u_{4}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, then $e\left(u_{2}, a_{1} a_{2} a_{3} a_{4}\right)=0$. By (d), $e\left(u_{3}, a_{2} a_{3}\right)=0$ because $u_{4} \rightarrow\left(C, a_{2}\right)$ and $u_{4} \rightarrow\left(C, a_{3}\right)$. But then $e\left(u_{2} u_{3}, C\right)=e\left(u_{2} u_{3}, a_{2} a_{3}\right)+e\left(u_{2} u_{3}, a_{4} a_{5} a_{6} a_{1}\right) \leq$ $0+1(4)<5$, a contradiction. If $N\left(u_{4}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$, then $e\left(u_{2}, a_{1} a_{2} a_{3} a_{5}\right)=0$. By (d), $e\left(u_{3}, a_{2} a_{4} a_{6}\right)=0$ since $u_{4} \rightarrow\left(C, a_{i}\right)$ for each $i=2,4,6$. Since $e\left(u_{2} u_{3}, C\right) \geq 5$, this implies that $e\left(u_{3}, a_{1} a_{3}\right)=2$. But then $u_{3} \rightarrow\left(C, a_{2}\right)$ and $e\left(a_{2}, u_{1} u_{4}\right)=2$, contradicting (c). Then $N\left(u_{4}, C\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$, so $e\left(u_{2}, a_{1} a_{2} a_{4} a_{5}\right)=0$. By (d), e(u, $\left.u_{3} a_{6}\right)=0$. Then $e\left(u_{3}, a_{1} a_{2} a_{4} a_{5}\right) \geq 5-2=3$ so WLOG let $e\left(u_{3}, a_{1} a_{2} a_{4}\right)=3$. Since $e\left(u_{1} u_{4}, a_{5}\right)=2$, $u_{3} \nrightarrow\left(C, a_{5}\right)$ by (c). Then by Lemma 1.4.10, $\tau\left(a_{6}, C\right)=0$. Since $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=7$ and $u_{1} a_{1} u_{4} a_{4} a_{3} a_{2} u_{1}$ is a 6 -cycle, this implies that $u_{1} u_{4} \xrightarrow{1}\left(C, a_{5} a_{6}\right)$. Then by (e), e($\left.u_{2} u_{3}, a_{5} a_{6}\right)=$ 0 , so $e\left(u_{2} u_{3}, C\right) \leq 1+3=4<5$, a contradiction.

Hence $e\left(u_{1}, C\right)=e\left(u_{4}, C\right)=5$. WLOG let $u_{1} a_{6} \notin E$. By (a), e($\left.u_{2} u_{3}, a_{i}\right) \leq 1$ and $e\left(u_{2} u_{4}, a_{i}\right) \leq 1$ for each $i=2,3,4,6$. Suppose $e\left(u_{4}, C-a_{6}\right)=5$. Then by (a) we have $e\left(u_{2}, a_{2} a_{3} a_{4}\right)=0$ and by (d) we have $e\left(u_{3}, a_{2} a_{3} a_{4}\right)=0$, so $e\left(u_{2} u_{3}, a_{1} a_{5} a_{6}\right) \geq 5$. But $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=8$, so we have $e\left(u_{2} u_{3}, a_{5} a_{6}\right)=0$ by (e), a contradiction. Hence $u_{4} a_{6} \in E$. We also see that $u_{4} a_{5} \in E$, for otherwise $e\left(u_{2}, a_{2} a_{3} a_{4} a_{6}\right)=0$ and $e\left(u_{3}, a_{1} a_{2} a_{3} a_{5}\right)=0$ by (a) and (d), and thus $e\left(u_{2} u_{3}, C\right) \leq 4$. By symmetry, $u_{4} a_{1} \in E$. Suppose that $u_{4} a_{4} \notin E$. By (a) and (d), e($\left.u_{2}, a_{2} a_{3} a_{6}\right)=0$ and $e\left(u_{3}, a_{1} a_{2} a_{4}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 5-3=2$, so by (e) we see that it is not the case that $u_{1} u_{4} \xrightarrow{-2}\left(C, a_{5} a_{6}\right)$. But $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=7$, a contradiction. Therefore $u_{4} a_{4} \in E$, and by symmetry $u_{4} a_{2} \in E$, so $e\left(u_{4}, C-a_{3}\right)=5$. By (a) and (d), e(u2, $\left.a_{2} a_{4} a_{6}\right)=0$ and $e\left(u_{3}, a_{1} a_{3} a_{5}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 5-2-2=1$. But
again $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=7$, contradicting (e).

Case 2: $e\left(u_{1} u_{4}, L\right)=9$. Suppose that $e\left(u_{1}, C\right)=6$. By (a), we have $e\left(u_{2} u_{3}, a_{i}\right) \leq 1$ for each $a_{i} \in C$. Since $e\left(u_{2} u_{3}, C\right) \geq 15-9=6$, this implies that $e\left(u_{2} u_{3}, a_{i}\right)=1$ for each $a_{i} \in C$. By (a) and (d) we know that $u_{2} a_{i} \notin E$ if $u_{4} a_{i} \in E$, and $u_{3} a_{i} \notin E$ if $u_{4} \rightarrow\left(C, a_{i}\right)$. Since $e\left(u_{2} u_{3}, a_{i}\right)=1$ for each $a_{i} \in C$, this implies that $N\left(u_{4}, C\right) \neq\left\{a_{1}, a_{2}, a_{3}\right\}$. If $N\left(u_{4}, C\right)=$ $\left\{a_{1}, a_{2}, a_{4}\right\}$, then $e\left(u_{2}, a_{1} a_{2} a_{4}\right)=0$ and $e\left(u_{3}, a_{3}\right)=0$ by (a) and (d). Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq$ $6-1-3=2$ and $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=7$, contradicting (e). Hence $N\left(u_{4}, C\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$. By (a) and (d), e($\left.u_{2}, a_{1} a_{3} a_{5}\right)=e\left(u_{3}, a_{2} a_{4} a_{6}\right)=0$, so $e\left(u_{2}, a_{2} a_{4} a_{6}\right)=e\left(u_{3}, a_{1} a_{3} a_{5}\right)=3$. Thus $u_{4} \nrightarrow\left(C, a_{i}\right)$ for $i=1,3,5$, so by Lemma 1.4.11 we have $\tau\left(a_{2}, C\right) \leq 1, \tau\left(a_{4}, C\right) \leq 1$, and $\tau\left(a_{6}, C\right) \leq 1$. Since $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=6$ and $e\left(u_{2} u_{3}, a_{5} a_{6}\right)=2$, by (e) we have $\tau\left(a_{5} a_{6}, C\right)=6$, a contradiction since $\tau\left(a_{6}, C\right) \leq 1$. Therefore $e\left(u_{1}, C\right)=5$ and $e\left(u_{4}, C\right)=4$. Case 2.1: $N\left(u_{4}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $e\left(u_{1}, a_{1} a_{2} a_{3} a_{4}\right) \geq 5-2=3$, we have $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$. Thus by (e) we see that $e\left(u_{2} u_{3}, a_{5} a_{6}\right)=0$, so $e\left(u_{2} u_{3}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$. Then $u_{1} a_{1} \in E$, for otherwise $e\left(u_{1}, C-a_{1}\right)=5$ and hence $e\left(u_{2}, a_{1} a_{3} a_{4}\right)=0$ by (a). Similarly, we have $e\left(u_{1}, a_{4} a_{5} a_{6}\right)=3$. Then WLOG $u_{1} a_{2} \notin E$. By (a), e($\left.u_{2}, a_{2} a_{4}\right)=0$, and by (d), $u_{3} a_{3} \notin E$. But then $e\left(u_{2} u_{3}, C\right) \leq 5$, a contradiction.

Case 2.2: $N\left(u_{4}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. If $u_{1} a_{1} \notin E$, then $e\left(u_{2}, a_{1} a_{3} a_{5}\right)=0$ and $e\left(u_{3}, a_{2} a_{4} a_{6}\right)=$ 0 by (a) and (d). Then $e\left(u_{2}, a_{2} a_{4} a_{6}\right)=3$ so $u_{2} \rightarrow\left(C, a_{3}\right)$. But this contradicts (b) since $e\left(a_{3}, u_{1} u_{4}\right)=2$. Thus $u_{1} a_{1} \in E$, and similarly $u_{1} a_{3} \in E$. If $u_{1} a_{4} \notin E$, then $e\left(u_{2}, a_{1} a_{2}\right)=0$ and $e\left(u_{3}, a_{2} a_{6}\right)=0$ by (a) and (d). But then $e\left(u_{2} u_{3}, a_{3} a_{4}\right) \geq 6-4=2$, contradicting (e) since $e\left(u_{1} u_{4}, a_{5} a_{6} a_{1} a_{2}\right)=7$. Hence $u_{1} a_{4} \in E$, and by symmetry $u_{4} a_{6} \in E$. By (a) and (d), it is easy to see that $u_{1} a_{5} \in E$, so $e\left(u_{1}, C-a_{2}\right)=5$. Then $e\left(u_{2}, a_{2} a_{5}\right)=0$ and $e\left(u_{3}, a_{4} a_{6}\right)=0$. Since $e\left(u_{1} u_{4}, a_{5}\right)=2$, by (b) we know that $u_{2} \nrightarrow\left(C, a_{5}\right)$. Hence $e\left(u_{2}, a_{4} a_{6}\right) \leq 1$. Then $e\left(u_{2} u_{3}, a_{1} a_{3}\right) \geq 6-1-2=3$, so by (a) we know that $u \nrightarrow(C)$. Then $\tau\left(a_{2}, C\right)=0$ by Lemma 1.4.5, so $\tau\left(a_{1} a_{2}, C\right) \leq 3$. Since $e\left(u_{1} u_{4}, a_{3} a_{4} a_{5} a_{6}\right)=6$ and $u_{4} a_{5} a_{6} u_{1} a_{4} a_{3} u_{4}$ is a 6 cycle, this implies that $u_{1} u_{4} \xrightarrow{0}\left(C, a_{1} a_{2}\right)$. But $e\left(u_{2} u_{3}, a_{1} a_{2}\right) \geq e\left(u_{2} u_{3}, a_{1}\right) \geq 3-2=1$, contradicting (e).

Case 2.3: $N\left(u_{4}, C\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. If $u_{1} a_{1} \notin E$, then $e\left(u_{2}, a_{1} a_{4} a_{5}\right)=0$ and $e\left(u_{3}, a_{3} a_{6}\right)=$ 0 by (a) and (d). Then $e\left(u_{2} u_{3}, a_{2}\right) \geq 6-2-3=1$, so by (e) $e\left(a_{1} a_{2}, a_{3} a_{4} a_{5} a_{6}\right) \geq$ $e\left(u_{1} u_{4}, a_{3} a_{4} a_{5} a_{6}\right)+2=8$. Hence $\tau\left(a_{1} a_{2}, C\right)=6$, so $u_{4} \rightarrow C$ by Lemma 1.4.8. But then $e\left(u_{3}, a_{2} a_{4} a_{5}\right)=0$ by (d), so $e\left(u_{2} u_{3}, C\right) \leq 3+1=4$, a contradiction. Hence $u_{1} a_{1} \in E$, and by symmetry $e\left(u_{1}, a_{1} a_{2} a_{4} a_{5}\right)=4$. WLOG let $e\left(u_{1}, C-a_{6}\right)=5$. Then by (a) and (d), e(u2, $\left.a_{2} a_{4}\right)=0$ and $e\left(u_{3}, a_{3}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 1$, contradicting (e) since $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=7$.

Case 3: $e\left(u_{1} u_{4}, C\right)=8$. Since $e\left(u_{2} u_{3}, C\right) \geq 7$, by (a) and (d) we know that $u_{1} \nrightarrow C$ and $u_{4} \nrightarrow C$. Then $e\left(u_{1}, C\right) \leq 5$. Suppose $e\left(u_{1}, C\right)=5$, and WLOG let $u_{1} a_{6} \notin E$. Since $u_{1} \nrightarrow C$, $\tau\left(a_{6}, C\right)=0$. Suppose that $e\left(u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \geq 2$. Then $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$ and $C-a_{5} a_{6}+$ $u_{1} u_{4}$ has a 6 -cycle, so because $\tau\left(a_{6}, C\right)=0$ we have $u_{1} u_{4} \xrightarrow{0}\left(C, a_{5} a_{6}\right)$. By (e), this implies that $e\left(u_{2} u_{3}, a_{5} a_{6}\right)=0$. Then $e\left(u_{2} u_{3}, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$, so by (g) $e\left(u_{1} u_{4}, a_{5} a_{6}\right)=0$, a contradiction since $e\left(u_{1}, C\right)=5$. Hence $e\left(u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \leq 1$, and by symmetry $e\left(u_{4}, a_{2} a_{3} a_{4} a_{5}\right) \leq 1$. Then $e\left(u_{4}, a_{5} a_{6} a_{1}\right)=3$, so $e\left(u_{1} u_{4}, a_{5} a_{6} a_{1} a_{2}\right)=6$. Since $\tau\left(a_{6}, C\right)=0, \tau\left(a_{3} a_{4}, C\right) \leq 4$. Therefore, since $u_{4} a_{1} a_{2} u_{1} a_{5} a_{6} u_{4}$ is a 6 -cycle and $e\left(u_{1} u_{4}, a_{5} a_{6} a_{1} a_{2}\right)=6$, we have $u_{1} u_{4} \xrightarrow{-1}\left(C, a_{3} a_{4}\right)$. Hence $e\left(u_{2} u_{3}, a_{3} a_{4}\right)=0$ by (e), so $e\left(u_{2} u_{3}, a_{5} a_{6} a_{1} a_{2}\right) \geq 7$. But $u_{1} \rightarrow\left(C, a_{i}\right)$ for both $i=2$ and $i=6$, contradicting (a). Therefore $e\left(u_{1}, C\right)=e\left(u_{4}, C\right)=4$.

Case 3.1: $N\left(u_{1}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} . ~ S i n c e ~ u_{1} \nrightarrow C, \tau\left(a_{5} a_{6}, C\right) \leq 4$ by Lemma 1.4.6. Since $u_{1} \rightarrow\left(C, a_{i}\right)$ for $i=2$ and $i=3, e\left(u_{2} u_{3}, a_{2} a_{3}\right) \leq 2$ by (a). Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq$ $7-2-4=1$, contradicting (e) since $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \geq 4+2=6$ and $e\left(a_{5} a_{6}, a_{1} a_{2} a_{3} a_{4}\right) \leq 6$.
$\underline{\text { Case 3.2: } N\left(u_{1}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\} . ~ W e ~ b r e a k ~ f u r t h e r ~ i n t o ~ s e v e r a l ~ s h o r t ~ c a s e s, ~ d e t e r-~}$ mined by $N\left(u_{4}, C\right)$.

Case 3.2.1: $e\left(u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=4$. By (a) and (d), $e\left(u_{2}, a_{2} a_{4}\right)=0$ and $e\left(u_{3}, a_{2} a_{3}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 7-4=3$. But $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=7$, which contradicts (e).

Case 3.2.2: $e\left(u_{4}, a_{2} a_{3} a_{4} a_{5}\right)=4$. By (a) and (d), $e\left(u_{2}, a_{2} a_{4}\right)=0$ and $e\left(u_{3}, a_{3}\right)=0$. Then $e\left(u_{2} u_{3}, a_{6} a_{1}\right) \geq 7-5=2$. But $e\left(u_{1} u_{4}, a_{2} a_{3} a_{4} a_{5}\right)=7$, which contradicts (e).

Case 3.2.3: $e\left(u_{4}, a_{3} a_{4} a_{5} a_{6}\right)=4$. By (a) and (d), e($\left.u_{2}, a_{4} a_{6}\right)=0$ and $e\left(u_{3}, a_{5}\right)=0$. Then
$e\left(u_{2} u_{3}, a_{1} a_{2}\right) \geq 7-5=2$. Since $e\left(u_{1} u_{4}, a_{3} a_{4} a_{5} a_{6}\right)=6$ and $u_{1} u_{4} \rightarrow\left(C, a_{1} a_{2}\right)$, this implies that $\tau\left(a_{1} a_{2}, C\right)=6$ by (e). But then $u_{4} \rightarrow C$, a contradiction.

Case 3.2.4: $e\left(u_{4}, a_{1} a_{2} a_{3} a_{5}\right)=4$. By (a) and (d), $e\left(u_{2} u_{3}, a_{2}\right)=0$. Further, $e\left(u_{2} u_{3}, a_{4}\right) \leq 1$ and $e\left(u_{2} u_{3}, a_{6}\right) \leq 1$. Then $e\left(u_{2} u_{3}, a_{1} a_{3}\right) \geq 7-4=3$. WLOG let $e\left(u_{2}, a_{1} a_{3}\right)=2$. Then $u_{2} \rightarrow\left(C, a_{2}\right)$, contradicting (b) since $e\left(u_{1} u_{4}, a_{2}\right)=2$.
$\underline{\text { Case 3.2.5: } e\left(u_{4}, a_{2} a_{3} a_{4} a_{6}\right)=4}$. By (a) and (d), $e\left(u_{2}, a_{2} a_{4} a_{6}\right)=0$ and $e\left(u_{3}, a_{1} a_{3} a_{5}\right)=0$, a contradiction since $e\left(u_{2} u_{3}, C\right) \geq 7$.

Case 3.2.6: $e\left(u_{4}, a_{3} a_{4} a_{5} a_{1}\right)=4$. By (a) and (d), $e\left(u_{2}, a_{4}\right)=0$ and $e\left(u_{3}, a_{2}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 7-6=1$. Since $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=6$ and $u_{4} a_{4} a_{3} a_{2} u_{1} a_{1} u_{4}$ is a 6 -cycle, by (e) we have $\tau\left(a_{5} a_{6}, C\right)=6$. But then $u_{1} \rightarrow C$ by Lemma 1.4.7, a contradiction.
$\underline{\text { Case 3.2.7: } e\left(u_{4}, a_{4} a_{5} a_{6} a_{2}\right)=4 .}$ By (a) and (d), $e\left(u_{2}, a_{2} a_{4} a_{6}\right)=0$ and $e\left(u_{3}, a_{1} a_{3} a_{5}\right)=0$, a contradiction.

Case 3.2.8: $e\left(u_{4}, a_{1} a_{2} a_{4} a_{5}\right)=4$. By (a) and (d), $e\left(u_{2}, a_{2} a_{4}\right)=0$ and $e\left(u_{3}, a_{3}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 7-5=2$, so because $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=6$ we have $\tau\left(a_{5} a_{6}, C\right)=6$ by (e). But then $u_{1} \rightarrow C$ by Lemma 1.4.7, a contradiction.

Case 3.2.9: $e\left(u_{4}, a_{3} a_{4} a_{6} a_{1}\right)=4 . \quad$ By (a) and (d), $e\left(u_{2}, a_{4} a_{6}\right)=0$ and $e\left(u_{3}, a_{2} a_{5}\right)=0$. Then $e\left(u_{2} u_{3}, a_{5} a_{6}\right) \geq 7-6=1$, so because $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=6$ we have $\tau\left(a_{5} a_{6}, C\right)=6$ by (e). But then $u_{1} \rightarrow C$ by Lemma 1.4.7, a contradiction.

Case 3.3: $N\left(u_{1}, C\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $u_{1} \nrightarrow C$, by Lemma 1.4 .8 we have $\tau\left(a_{3}, C\right)=$ 0 or $\tau\left(a_{6}, C\right)=0$. WLOG let $\tau\left(a_{6}, C\right)=0$. By (a), $e\left(u_{2} u_{3}, a_{3}\right) \leq 1$ and $e\left(u_{2} u_{3}, a_{6}\right) \leq 1$. Suppose that $e\left(u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \geq 3$. Then, because $e\left(u_{1} u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$ and $\tau\left(a_{5} a_{6}, C\right) \leq$ $3+0=3$, we have $u_{1} u_{4} \xrightarrow{0}\left(C, a_{5} a_{6}\right)$. Hence $e\left(u_{2} u_{3}, a_{5} a_{6}\right)=0$ by (e), so $e\left(u_{2} u_{3}, a_{1} a_{2} a_{4}\right) \geq$ $7-1=6$ and $e\left(u_{2} u_{3}, a_{3}\right)=1$. Then $e\left(u_{1} u_{3}, a_{1} a_{2} a_{3} a_{4}\right)=6$, so by (f) we have $e\left(u_{4}, a_{5} a_{6}\right)=0$, Then $e\left(u_{4}, a_{1} a_{2} a_{3} a_{4}\right)=4$, so $e\left(u_{1} u_{4}, a_{2} a_{3} a_{4} a_{5}\right)=6$. But then $e\left(u_{2} u_{3}, a_{6} a_{1}\right)=0$ by (e), a contradiction.

Hence $e\left(u_{4}, a_{1} a_{2} a_{3} a_{4}\right) \leq 2$, so $e\left(u_{4}, a_{5} a_{6}\right)=2$. Suppose that $e\left(u_{4}, a_{1} a_{2}\right) \geq 1$. Then $e\left(u_{1} u_{4}, a_{5} a_{6} a_{1} a_{2}\right) \geq 3+3=6$, so since $\tau\left(a_{3} a_{4}, C\right)=e\left(a_{3}, a_{5} a_{1}\right)+e\left(a_{4}, a_{1} a_{2}\right) \leq 4$ we have

Figure 3.8: Lemma 3.0.5: If $t=9$, then x_{1} and x_{9} have x_{5} as a common neighbor.
$e\left(u_{2} u_{3}, a_{3} a_{4}\right)=0$ by (e). Then $e\left(u_{2} u_{3}, a_{1} a_{2} a_{5}\right) \geq 7-1=6$, so $e\left(u_{2} u_{4}, a_{5} a_{6} a_{1} a_{2}\right) \geq 3+$ $3=6$. But then $e\left(u_{1}, a_{3} a_{4}\right)=0$ by (h), a contradiction. Hence $e\left(u_{4}, a_{3} a_{4} a_{5} a_{6}\right)=4$, so $e\left(u_{2} u_{3}, a_{4} a_{5}\right) \leq 2$ by (d). Then $e\left(u_{2} u_{3}, a_{1} a_{2}\right) \geq 7-2-2(1)=3$, a contradiction by (e) since $e\left(u_{1} u_{4}, a_{4} a_{5} a_{6} a_{1}\right)=6$ and $\tau\left(a_{2} a_{3}, C\right) \leq 4$.

Lemma 3.0.5 Let $R=x_{1} x_{2} \ldots x_{t}$ be a path of order $t \geq 9$, and let $C=a_{1} a_{2} \ldots a_{6} a_{1}$ be a 6 -cycle. Suppose that $e\left(x_{1}, x_{3} x_{4} x_{5}\right)=e\left(x_{t}, x_{t-2} x_{t-3} x_{t-4}\right)=3, e\left(x_{i}, C\right) \geq 3$ for $i=2, x_{t-1}, x_{t}$, and $e\left(x_{1}, C\right) \geq 2$. Then $R+C$ has two disjoint large cycles, one of which has length six. (The lemma also holds if the condition $x_{1} x_{3} \in E$ or $x_{1} x_{5} \in E$ is replaced by $x_{2} x_{5} \in E$, or if $x_{1} x_{4} \in E$ is replaced by $\left.x_{2} x_{4} \in E.\right)$

Proof: Suppose that the lemma is not true. Note that $x_{1} x_{5} x_{4} x_{3} x_{2}, x_{1} x_{4} x_{3} x_{2}$, and $x_{1} x_{3} x_{2}$ are paths of order five, four, and three, and that similar paths hold for x_{t-1} and x_{t}. For the comment in parentheses, note that if $x_{2} x_{5} \in E$, then $x_{1} x_{3} x_{4} x_{5} x_{2}$ is a path of order five that does not use the edge $x_{1} x_{5}$, and $x_{1} x_{5} x_{2}$ is a path of order three that does not include $x_{1} x_{3}$. If $x_{2} x_{4} \in E$ then $x_{1} x_{5} x_{4} x_{2}$ is a path of order four that does not use $x_{1} x_{4}$.

Since there is an $x_{1}-x_{2}$ path of order five in $x_{1} x_{2} x_{3} x_{4} x_{5}$, we know that if $e\left(x_{1} x_{2}, a_{i}\right)=2$ for some $a_{i} \in C$, then $x_{1} x_{2} x_{3} x_{4} x_{5}+a_{i}$ has a 6-cycle. Similarly, if $e\left(x_{t} x_{t-1}, a_{i}\right)=2$ for some

Figure 3.9: Since there are paths of order 2, 3, and 4 from x_{t} to x_{t-1} that do not include x_{5}, there is a path, not including x_{5}, of order at least 6 from x_{t-1} to each $a_{i} \neq a_{2}$.
$a_{i} \in C$, then $x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4}+a_{i}$ has a 6-cycle. Suppose that $e\left(x_{1} x_{2}, a_{i}\right)=2$ for some $a_{i} \in C$, and WLOG let $e\left(x_{1} x_{2}, a_{1}\right)=2$. Then $C-a_{1}+x_{6} \ldots x_{t}$ does not have a large cycle, so we see that $x_{t} a_{2} \notin E$, for otherwise $e\left(x_{t-1}, C\right)=e\left(x_{t-1}, a_{3} a_{4} a_{5} a_{6}\right)+e\left(x_{t-1}, a_{1} a_{2}\right) \leq 0+2=2$ (see Figure 3.9). Similarly, we see that $e\left(x_{t}, a_{3} a_{4} a_{5} a_{6}\right)=0$, a contradiction since $e\left(x_{t}, C\right) \geq 3$.

Therefore

$$
\begin{equation*}
e\left(x_{1} x_{2}, a_{i}\right) \leq 1 \text { for each } a_{i} \in C \tag{3.2}
\end{equation*}
$$

and by the same reasoning

$$
\begin{equation*}
e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1 \text { for each } a_{i} \in C . \tag{3.3}
\end{equation*}
$$

From (3.3) we know that $e\left(x_{t}, C\right)=e\left(x_{t-1}, C\right)=3$, and that $N\left(x_{t}, C\right) \cap N\left(x_{t-1}, C\right)=\emptyset$. WLOG there are three possibilities for $N\left(x_{t}, C\right)$, which we consider presently.

Case 1: $N\left(x_{t}, C\right)=\left\{a_{1}, a_{2}, a_{3}\right\}, N\left(x_{t-1}, C\right)=\left\{a_{4}, a_{5}, a_{6}\right\}$. Suppose that $x_{1} a_{1} \in E$. Then $x_{2} a_{2} \notin E$, for otherwise $x_{1} x_{4} x_{3} x_{2} a_{2} a_{1} x_{1}=C_{6}$ and $a_{3} a_{4} a_{5} a_{6} x_{t-1} x_{t} a_{3}=C_{6}$. Similarly, $x_{2} a_{6} \notin$ E, so $e\left(x_{2}, a_{3} a_{4} a_{5}\right)=3$ by (3.2). But then $x_{1} x_{3} x_{2} a_{5} a_{6} a_{1} x_{1}=C_{6}$ and $x_{t} x_{t-2} x_{t-1} a_{4} a_{3} a_{2} x_{t}=$ C_{6}, a contradiction. Therefore $x_{1} a_{1} \notin E$, and by symmetry $e\left(x_{1}, a_{1} a_{3} a_{4} a_{6}\right)=0$. Thus $e\left(x_{1}, a_{2} a_{5}\right)=2$, so by (3.2) $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right)=3$. WLOG let $e\left(x_{2}, a_{1} a_{3} a_{4}\right)=3$. Then $x_{1} x_{4} x_{3} x_{2} a_{1} a_{2} x_{1}=C_{6}$ and $x_{t} x_{t-1} a_{6} a_{5} a_{4} a_{3} x_{t}=C_{6}$, a contradiction.

Case 2: $N\left(x_{t}, C\right)=\left\{a_{1}, a_{2}, a_{4}\right\}, N\left(x_{t-1}, C\right)=\left\{a_{3}, a_{5}, a_{6}\right\}$. We observe that the following graphs have 6-cycles: $x_{t-1} x_{t} a_{2} a_{3} a_{4} a_{5}, x_{t-1} x_{t} a_{5} a_{6} a_{1} a_{2}, x_{t} x_{t-1} x_{t-2} x_{t-3} a_{6} a_{1}, x_{t} x_{t-1} x_{t-2} x_{t-3} a_{2} a_{3}$, and $x_{t} x_{t-1} x_{t-2} x_{t-3} a_{4} a_{5}$. Since $R+C$ does not have two disjoint cycles, one of which has length 6 , we readily see that $e\left(x_{1}, a_{1} a_{3} a_{4} a_{6}\right)=0$. Then $e\left(x_{1}, a_{2} a_{5}\right)=2$ and $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right)=3$. WLOG let $e\left(x_{2}, a_{1} a_{3}\right)=2$. Then $x_{1} x_{3} x_{2} a_{3} a_{4} a_{5} x_{1}=C_{6}$ and $x_{t} x_{t-2} x_{t-1} a_{6} a_{1} a_{2} x_{t}=C_{6}$, a contradiction.

Case 3: $N\left(x_{t}, C\right)=\left\{a_{1}, a_{3}, a_{5}\right\}, N\left(x_{t-1}, C\right)=\left\{a_{2}, a_{4}, a_{6}\right\}$. For each $x \in N\left(x_{t}, C\right)$, there is $y \in N\left(x_{t-1}, C\right)$ such that $d_{C}(x, y)=3$. Therefore, we readily see that the following graphs do not have large cycles: $x_{1} x_{2} x_{3} x_{4} x_{5} a_{i} a_{i+1}$, for each $1 \leq i \leq 6$. WLOG let $x_{1} a_{1} \in E$. Then $e\left(x_{2}, a_{1} a_{2} a_{6}\right)=0$, so $e\left(x_{2}, a_{3} a_{4} a_{5}\right)=3$. But then $e\left(x_{1}, a_{3} a_{4} a_{5} a_{2} a_{6}\right)=0$, a contradiction.

The following lemma is used in Cases 3.2.1.2 and 3.2.2.2 of Part 2 of the proof of Theorem 1.

Lemma 3.0.6 Let $R=x_{1} \ldots x_{r}$ be a path of order $r \geq 5$, and let $C=a_{1} a_{2} \ldots a_{6} a_{1}$ be a 6 -cycle. Let $u, v \notin R+C$ with $u v \in E$ and $e\left(x_{1} x_{r} u v, C\right) \geq 15$. Suppose that, for each $a_{i} \in C$, if $x_{r} \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, u v\right) \leq 1$. Then $C+R+u v$ contains either (i) $C_{6} \cup C_{\geq 6}$, or (ii) a path P of order $r+2$ and a 6 -cycle C^{\prime}, with P and C^{\prime} disjoint, such that $\tau\left(C^{\prime}\right) \geq \tau(C)$, or (iii) a path P of order $r+2$ and a 6-cycle C^{\prime}, with P and C^{\prime} disjoint, such that $r(P) \geq 4$, $\tau\left(C^{\prime}\right) \geq \tau(C)-1$, and $\tau^{\prime}\left(C^{\prime}\right) \geq \tau^{\prime}(C)$, or (iv) a path $P=a_{i} a_{j} x_{1} \ldots x_{r}$ of order $r+2$ with $a_{i} x_{1} \in E$, and a 6-cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-1$ and $\tau^{\prime}\left(C^{\prime}\right) \geq \tau^{\prime}(C)-1$, such that P and
C^{\prime} are disjoint.

Proof: Suppose that the lemma is not true. The following statements follow from the fact that (i)-(iv) are not true. Since (iv) is not true, (h) holds. The rest follow from (i) and (ii).
(a) If $u \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$. If $v \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$.
(b) If $u v \rightarrow\left(C, a_{i} a_{j}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{j}, x_{1} x_{r}\right) \leq 1$. Further, if $a_{i} a_{j} \in E$ and $e\left(a_{i} a_{j}, x_{1} x_{r}\right)=2$, then $e\left(x_{1}, a_{i} a_{j}\right)=2$ or $e\left(x_{r}, a_{i} a_{j}\right)=2$.
(c) If $u \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, v x_{1} x_{r}\right) \leq 1$. If $v \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, u x_{1} x_{r}\right) \leq 1$.
(d) If $u v \xrightarrow{0}\left(C, a_{i} a_{j}\right)$ and $a_{i} a_{j} \in E$, then $e\left(a_{i} a_{j}, x_{1} x_{r}\right)=0$.
(e) If $x_{r} \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, u v\right) \leq 1$ (by assumption).
(f) If $x_{1} \xrightarrow{0}\left(C, a_{i}\right)$, then $e\left(a_{i}, x_{r} u\right) \leq 1$ and $e\left(a_{i}, x_{r} v\right) \leq 1$. If $x_{r} \xrightarrow{0}\left(C, a_{i}\right)$, then $e\left(a_{i}, x_{1} u\right) \leq 1$ and $e\left(a_{i}, x_{1} v\right) \leq 1$.
(g) If $x_{r} \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} u v\right) \leq 1$ (by (e) and (f)).
(h) If $u v \xrightarrow{-1}\left(C, a_{i} a_{j}\right)$ with $a_{i} a_{j} \in E$, and $\tau^{\prime}\left(C+u v-a_{i} a_{j}\right) \geq \tau^{\prime}(C)-1$, then $e\left(x_{1}, a_{i} a_{j}\right) \leq 1$.

Claim 1: $e(u, C) \leq 4$ and $e(v, C) \leq 4$.

Proof: WLOG let $e(u, C) \geq e(v, C)$. By (c), clearly $e(u, C) \leq 5$. Suppose $e(u, C)=5$, and WLOG let $e\left(u, C-a_{6}\right)=5$. If $\tau\left(a_{6}, C\right)=0$, then by (c) $e\left(a_{i}, v x_{1} x_{r}\right) \leq 1$ for each $i=2,3,4,6$, so $e\left(a_{1} a_{5}, v x_{1} x_{r}\right) \geq 15-5-4=6$. Hence $u v \xrightarrow{0}\left(C, a_{5} a_{6}\right)$, contradicting (d). Therefore $\tau\left(a_{6}, C\right)>0$, so $u \rightarrow C$. By (a), $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$ for each $a_{i} \in C$, so $e(v, C) \geq 15-11=4$. Suppose that $v a_{6} \in E$. Then $e\left(a_{6}, x_{1} x_{r}\right)=0$ by (c), so $e(v, C)=5$ and $e\left(x_{1} x_{r}, a_{i}\right)=1$ for each $i \neq 6$. But then for some $k \neq 6, e\left(v, C-a_{k}\right)=5$ and $e\left(a_{k}, u x_{1} x_{r}\right)=2$, contradicting (c). Hence $v a_{6} \notin E$. Since $e\left(x_{1} x_{r}, a_{5} a_{6}\right) \geq 5-4=1$ and $e\left(u, a_{1} a_{2} a_{3} a_{4}\right)=4$, by (d) we see that $e\left(v, a_{1} a_{2} a_{3} a_{4}\right) \leq 3$. By symmetry, $e\left(v, a_{2} a_{3} a_{4} a_{5}\right) \leq 3$. This implies that $e(v, C)=4$, $e\left(v, a_{1} a_{5}\right)=2, e\left(v, a_{2} a_{3} a_{4}\right)=2$, and $e\left(a_{i}, x_{1} x_{r}\right)=1$ for each $a_{i} \in C$.

Suppose $v a_{3} \notin E$. Then $e\left(v, a_{1} a_{2} a_{4} a_{5}\right)=4$, so by (e) $x_{r} \nrightarrow\left(C, a_{i}\right)$ for each $i=1,2,4,5$. If $e\left(x_{r}, a_{5} a_{6}\right)=2$, then by (b) $x_{r} a_{1} \in E$ since $u v \rightarrow\left(C, a_{6} a_{1}\right)$ and $e\left(a_{6} a_{1}, x_{1} x_{r}\right)=2$. But then $x_{r} \rightarrow\left(C, a_{i}\right)$ for some $i \in\{1,2,4,5\}$ because $\tau\left(a_{6}, C\right)>0$, a contradiction. Hence $e\left(x_{r}, a_{5} a_{6}\right) \leq 1$, and since $u v \rightarrow\left(C, a_{5} a_{6}\right)$ and $e\left(x_{1} x_{r}, a_{5} a_{6}\right)=2$, by (b) we have $e\left(x_{1}, a_{5} a_{6}\right)=2$. But this contradicts (h), since $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=7$. Therefore $v a_{3} \in E$, and WLOG we can let $v a_{2} \in E$. By (e), $x_{r} \nrightarrow\left(C, a_{i}\right)$ for each $i=1,2,3,5$, so $e\left(x_{r}, a_{5} a_{6} a_{1}\right) \leq 2$ by Lemma 1.4.9 since $\tau\left(a_{6}, C\right)>0$. Since $u v \rightarrow\left(C, a_{5} a_{6}\right)$ and $u v \rightarrow\left(C, a_{6} a_{1}\right)$, by (b) this implies that $e\left(x_{r} a_{5} a_{6} a_{1}\right)=0$ and $e\left(x_{1}, a_{5} a_{6} a_{1}\right)=3$. But $e\left(u v, a_{1} a_{2} a_{3} a_{4}\right)=7$, contradicting (h).

By Claim 1 we have $e(u v, C) \leq 8$, so $e\left(x_{1} x_{r}, C\right) \geq 7$. By (a), this implies that $u \nrightarrow C$ and $v \nrightarrow C$.

Claim 2: $e(u, C) \leq 3$ and $e(v, C) \leq 3$.

Proof: WLOG let $e(u, C) \geq e(v, C)$. Suppose that $e(u, C) \geq 4$. By Claim 1, $e(u, C)=4$.
Case A: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By (a), $e\left(a_{2}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{3}, x_{1} x_{r}\right) \leq 1$. Suppose that $\tau\left(a_{5} a_{6}, C\right) \leq 3$. Since $e\left(x_{1} x_{r}, a_{5} a_{6}\right) \geq 7-1-1-4=1$, we see by (d) that $e\left(v, a_{1} a_{4}\right)=0$, for otherwise $u v \xrightarrow{0}\left(C, a_{5} a_{6}\right)$. Similarly, $e\left(v, a_{2} a_{3}\right) \leq 1$, so $e(v, C) \leq 3$. Then $e\left(x_{1} x_{r}, C\right) \geq 8$, so $e\left(x_{1} x_{r}, a_{1} a_{3} a_{4} a_{6}\right) \geq 8-1-2=5$. This implies that $v a_{5} \notin E$, for otherwise $u v \rightarrow$ $\left(C, a_{3} a_{4}\right)$ and $u v \rightarrow\left(C, a_{6} a_{1}\right)$, contradicting (b). By symmetry, we also know that $v a_{6} \notin E$, so $e(v, C) \leq 1$ and $e\left(x_{1} x_{r}, C\right) \geq 10$. Since $e\left(a_{2}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{3}, x_{1} x_{r}\right) \leq 1$, we have $e\left(x_{1} x_{r}, a_{4} a_{5} a_{6} a_{1}\right)=8$, and $e\left(a_{2}, x_{1} x_{r}\right)=e\left(a_{3}, x_{1} x_{r}\right)=c(v, C)=1$. WLOG let $v a_{2} \in E$. By (e), $x_{r} \nrightarrow\left(C, a_{2}\right)$, so $x_{r} a_{3} \notin E$. Then $x_{1} a_{3} \in E$, so $\tau\left(a_{4}, C\right)=3$, for otherwise $x_{1} \xrightarrow{0}\left(C, a_{4}\right)$ and $e\left(a_{4}, x_{r} u\right)=2$, contradicting (f). But then $a_{1} a_{4} a_{3} a_{2} v u a_{1}=C_{6}$, contradicting (b) since $e\left(a_{5} a_{6}, x_{1} x_{r}\right)=4$.

Therefore $\tau\left(a_{5} a_{6}, C\right) \geq 4$. WLOG let $\tau\left(a_{5}, C\right) \geq 2$. Then by Lemma 1.4.6, $u \rightarrow\left(C, a_{4}\right)$ and $u \rightarrow\left(C, a_{6}\right)$ Further, since $\tau\left(a_{6}, C\right) \geq 1$ we also know that $u \rightarrow\left(C, a_{5}\right)$. By (a), this
imples $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$ for each $i=4,5,6$, so $e\left(x_{1} x_{r}, a_{i}\right)=1$ for each $i \neq 1$ and $e\left(x_{1} x_{r}, a_{1}\right)=2$. Then $u \nrightarrow\left(C, a_{1}\right)$, so $\tau\left(a_{6}, C\right) \leq 1$ by Lemma 1.4.6. Since $e\left(u, C-a_{6}\right)=4$, this implies that $u \xrightarrow{1}\left(C, a_{6}\right)$. By (c), this implies that $v a_{6} \notin E$, so $e\left(v, C-a_{6}\right) \geq 15-4-7=4$. But then $u v \xrightarrow{1}\left(C, a_{5} a_{6}\right)$ because $\tau\left(a_{5} a_{6}, C\right)=4$, contradicting (d) since $e\left(x_{1} x_{r}, a_{5} a_{6}\right)=2$.

Case B: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. By (a), $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$ for each $i=2,4,6$, so $e\left(x_{1} x_{r}, a_{1} a_{3} a_{5}\right) \geq 7-3=4$. Since $u \nrightarrow C, \tau\left(a_{4}, C\right) \leq 2$ by Lemma 1.4.7. Then $u \xrightarrow{0}\left(C, a_{4}\right)$, so by (c) $e\left(a_{4}, x_{1} x_{r} v\right) \leq 1$. By symmetry, $e\left(a_{6}, x_{1} x_{r} v\right) \leq 1$.

Suppose that $e\left(v, a_{2} a_{5}\right)>0$. Then $u v \rightarrow\left(C, a_{6} a_{1}\right)$ and $u v \rightarrow\left(C, a_{3} a_{4}\right)$, so by (b) $e\left(a_{1}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{3}, x_{1} x_{r}\right) \leq 1$. Then $e\left(a_{5}, x_{1} x_{r}\right)=2, e\left(a_{i}, x_{1} x_{r}\right)=1$ for $i \neq 5$, and $e(v, C)=4$. Further, since $e\left(a_{4}, x_{1} x_{r}\right)=e\left(a_{6}, x_{1} x_{r}\right)=1$, we know that $e\left(v, a_{1} a_{2} a_{3} a_{5}\right)=4$. Then $e\left(u v, a_{2} a_{3} a_{4} a_{5}\right)=6$, so by (d) $\tau\left(a_{6} a_{1}, C\right) \geq 5$. By symmetry, $\tau\left(a_{3} a_{4}, C\right) \geq 5$. Thus $a_{4} a_{6} \in E$ or $e\left(a_{2}, a_{4} a_{6}\right)=2$, so $u \rightarrow\left(C, a_{5}\right)$ by Lemma 1.4.7. But this contradicts (a), because $e\left(a_{5}, x_{1} x_{r}\right)=2$.

Therefore $e\left(v, a_{2} a_{5}\right)=0$. Since $e\left(a_{4}, x_{1} x_{r} v\right) \leq 1$ we see that $v a_{4} \notin E$, for otherwise $u v \rightarrow$ $\left(C, a_{5} a_{6}\right)$ and $u v \rightarrow\left(C, a_{2} a_{3}\right)$, contradicting (b) since $e\left(x_{1} x_{r}, a_{3} a_{5}\right) \geq 7-e\left(x_{1} x_{r}, a_{2} a_{6}\right)-$ $e\left(x_{1} x_{r}, a_{1}\right)-e\left(x_{1} x_{r}, a_{4}\right) \geq 7-2-2-0=3$. By symmetry, $v a_{6} \notin E$, so $e(v, C) \leq 2$. This implies that $e\left(v, a_{1} a_{3}\right)=2, e\left(x_{1} x_{r}, a_{1} a_{3} a_{5}\right)=6$, and $e\left(x_{1} x_{r}, a_{i}\right)=1$ for each $i=2,4,6$. By (a), $u \nrightarrow\left(C, a_{i}\right)$ for any $i=1,3,5$, so $\tau\left(a_{2}, C\right) \leq 1$ by Lemma 1.4.7. But then $x_{1} \xrightarrow{0}\left(C, a_{2}\right)$ and $x_{r} \xrightarrow{0}\left(C, a_{2}\right)$, contradicting (f) because $e\left(x_{1} x_{r}, a_{2}\right)=1$ and $u a_{2} \in E$.

Case C: $N(u, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. By (a), $e\left(a_{3}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{6}, x_{1} x_{r}\right) \leq 1$. Suppose that $e\left(v, a_{1} a_{2} a_{4} a_{5}\right)=0$. Then $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4} a_{5}\right) \geq 15-e(u v, C)-1-1 \geq 15-8=7$, so by (a) we see that $u \rightarrow\left(C, a_{i}\right)$ for at most one $a_{i} \in\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. By Lemma 1.4.8, this implies that $\tau\left(a_{3} a_{6}, C\right)=0$. Since $e(v, C) \geq 15-4-10=1$ and $e\left(v, a_{1} a_{2} a_{4} a_{5}\right)=0$, WLOG let $v a_{3} \in E$. Then by (c), $e\left(a_{3}, x_{1} x_{r}\right)=0$ because $u \xrightarrow{2}\left(C, a_{3}\right)$, so $e\left(x_{1} x_{r}, C\right) \leq 9$. Therefore $e(v, C)=2$, so $v a_{6} \in E$. By the same reasoning as above we have $e\left(a_{6}, x_{1} x_{r}\right)=0$, so $e\left(x_{1} x_{r}, C\right) \leq 8$. But then $e\left(u v x_{1} x_{r}, C\right) \leq 4+2+8=14<15$, a contradiction.

Therefore $e\left(v, a_{1} a_{2} a_{4} a_{5}\right) \geq 1$. WLOG let $v a_{1} \in E$. Then $u v \rightarrow\left(C, a_{2} a_{3}\right)$ and $u v \rightarrow$
(C, $a_{5} a_{6}$), so by (b) $e\left(a_{2}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{5}, x_{1} x_{r}\right) \leq 1$. Hence $e\left(x_{1} x_{r}, a_{1} a_{4}\right) \geq 7-4=3$, so we see that $e\left(v, a_{2} a_{5}\right)=0$ by (b), for otherwise $u v \rightarrow\left(C, a_{3} a_{4}\right)$ and $u v \rightarrow\left(C, a_{6} a_{1}\right)$. Then $e\left(a_{3} a_{6}, x_{1} x_{r} v\right) \geq 11-e\left(a_{2} a_{5}, x_{1} x_{r} v\right)-e\left(a_{1} a_{4}, x_{1} x_{r} v\right) \geq 11-2-6=3$, so by (c) $\tau\left(a_{3} a_{6}, C\right)>0$. Then by Lemma 1.4.8, $u \rightarrow\left(C, a_{1}\right)$ or $u \rightarrow\left(C, a_{4}\right)$, so $e\left(x_{1} x_{r}, a_{1} a_{4}\right)=3$ by (a). This implies that $e\left(x_{1} x_{r}, a_{i}\right)=1$ for each $i=2,3,5,6$, and $e\left(v, a_{1} a_{3} a_{4} a_{6}\right)=4$. Since $e\left(x_{1} x_{r}, a_{1} a_{4}\right)=3$, either $\tau\left(a_{3}, C\right)=0$ or $\tau\left(a_{6}, C\right)=0$ by (a) and Lemma 1.4.8. Then $u \xrightarrow{2}\left(C, a_{3}\right)$ or $u \xrightarrow{2}\left(C, a_{6}\right)$, contradicting (c) because $e\left(a_{3}, x_{1} x_{r} v\right)=e\left(a_{6}, x_{1} x_{r} v\right)=2$.

QED

By Claim 2 we have $e(u, C) \leq 3$ and $e(v, C) \leq 3$, so $e\left(x_{1} x_{r}, C\right) \geq 9$. Clearly, $e\left(x_{r}, C\right) \leq 5$ by (g). Suppose that $e\left(x_{1}, C\right)=6$. . Then by (f), $e\left(x_{r} u, a_{i}\right) \leq 1$ and $e\left(x_{r} v, a_{i}\right) \leq 1$ for each $a_{i} \in C$. Since $e\left(x_{r} u v, C\right) \geq 9$ and $6 \geq e(u v, C) \geq 4$, this implies that $e\left(x_{r}, C\right)=$ $e(u, C)=e(v, C)=3, N(u, C)=N(v, C), N(u, C) \cap N\left(x_{r}, C\right)=\emptyset$, and $N(u, C) \cup N\left(x_{r}, C\right)=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$. We see by (e) that $N\left(x_{r}, C\right) \neq\left\{a_{1}, a_{2}, a_{4}\right\}$ and $N\left(x_{r}, C\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$, so WLOG we can let $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $N(u, C)=N(v, C)=\left\{a_{4}, a_{5}, a_{6}\right\}$, so by (e) and Lemma 1.4.9 we have $\tau\left(a_{5}, C\right)=0$. But then $u \xrightarrow{0}\left(C, a_{5}\right)$ and $e\left(x_{1} x_{r} v, a_{5}\right)=2$, contradicting (c). Thus $e\left(x_{1}, C\right) \leq 5$.

Claim 3: $e\left(x_{r}, C\right) \leq 4$.

Proof: Suppose $e\left(x_{r}, C\right)=5$, and WLOG let $e\left(x_{r}, C-a_{6}\right)=5$. Suppose $\tau\left(a_{6}, C\right)=0$. Then $x_{r} \xrightarrow{0}\left(C, a_{i}\right)$ for each $i=2,3,4,6$, so $e\left(a_{i}, x_{1} u v\right) \leq 1$ for each such i by (g). Hence $e\left(x_{1} u v, a_{1} a_{5}\right)=6$ and $e\left(x_{1} u v, a_{i}\right)=1$ for each $i=2,3,4,6$. Since $e\left(x_{1} x_{r}, a_{5}\right)=2$, by (b) we know that $e\left(u v, a_{4}\right)=0$, for otherwise $u v \rightarrow\left(C, a_{5} a_{6}\right)$. By symmetry, $e\left(u v, a_{2}\right)=0$. Then $e\left(x_{1}, a_{1} a_{2} a_{4} a_{5}\right)=4$, so because $a_{3} a_{6} \notin E$ we have $x_{1} \xrightarrow{0}\left(C, a_{3}\right)$. By (f), this implies that $e\left(u v, a_{3}\right)=0$. Therefore $e\left(x_{1}, C-a_{6}\right)=5$ and $e\left(u v, a_{6}\right)=1$. WLOG let $u a_{6} \in E$ (see Figure 3.10). Since $u \nrightarrow\left(C, a_{i}\right)$ for $i \neq 6$ by (a), we see that $a_{2} a_{4} \notin E$ and $e\left(a_{3}, a_{1} a_{5}\right)=0$. Because $\tau\left(a_{6}, C\right)=0$, this implies that $\tau\left(a_{2} a_{3} a_{4}, C\right) \leq 2$. Let $C^{\prime}=x_{1} a_{5} a_{6} u v a_{1} x_{1}$ and let
$P^{\prime}=x_{2} \ldots x_{r} a_{2} a_{3} a_{4}$. Since $\tau\left(a_{2} a_{3} a_{4}, C\right) \leq 2$ and $\tau\left(a_{6}, C\right)=0$, we know that $\tau(C) \leq 3$. Since $e\left(u, a_{1} a_{5}\right)=2$ and $v a_{5} \in E$, we know that $\tau\left(C^{\prime}\right) \geq 3$. But P^{\prime} is a path of order $r-1+3=r+2$, a contradiction.

Therefore $\tau\left(a_{6}, C\right)>0$, so $x_{r} \rightarrow C$ by Lemma 1.4.5. Then $e\left(u v, a_{i}\right) \leq 1$ for each $a_{i} \in C$ by (e), and because $e\left(x_{r}, C-a_{6}\right)=5$ we have $e\left(u v x_{1}, a_{6}\right) \leq 1$ by (g). Suppose that $x_{1} a_{6} \in E$. Then $e\left(u v, a_{6}\right)=0$, so $e\left(u v, a_{i}\right)=1$ for each $i \neq 6$, and $e\left(x_{1}, C\right)=5$. WLOG let $u a_{1} \in E$. Then by (b), va $\notin E$, for otherwise $u v \rightarrow\left(C, a_{2} a_{3}\right)$ and $e\left(a_{2} a_{3}, x_{1} x_{r}\right) \geq 3$. Hence $u a_{4} \in E$. Since $e\left(u, a_{1} a_{4}\right)=2$ and $e(u, C) \leq 3$ by Claim 2, we have $e\left(u, a_{2} a_{5}\right) \leq$ 1. If $e\left(u, a_{2} a_{5}\right)=1$ then $e\left(v, a_{2} a_{5}\right)=1$, which implies that $u v \rightarrow\left(C, a_{3} a_{4}\right)$ and $u v \rightarrow$ $\left(C, a_{6} a_{1}\right)$. But $e\left(a_{3} a_{4} a_{6} a_{1}, x_{1} x_{r}\right) \geq 10-4=6>4$, contradicting (b). Thus $e\left(u, a_{2} a_{5}\right)=0$, so $e\left(v, a_{2} a_{5}\right)=2$. Since $e\left(u v, a_{3}\right)=1$, by symmetry we can let $u a_{3} \in E$. Then $u \rightarrow\left(C, a_{2}\right)$, so by (a) $x_{1} a_{2} \notin E$. But then $x_{1} \xrightarrow{0}\left(C, a_{2}\right)$ and $e\left(a_{2}, x_{r} v\right)=2$, contradicting (f).

Therefore $x_{1} a_{6} \notin E$. Since $e\left(x_{1} x_{r}, C-a_{6}\right) \geq 9-0=9$, we know that $e\left(x_{1} x_{r}, a_{i} a_{i+1}\right) \geq 3$ for each $i \in\{1,2,3,4\}$. Then by (b) we see that for each $i \in\{1,2,3,4\}, u v \nrightarrow\left(C, a_{i} a_{i+1}\right)$. Thus, for each $a_{i} \in C$, if $u a_{i} \in E$ then $v a_{i+3} \notin E$. Since $e\left(u v, a_{i}\right) \leq 1$ for each $a_{i} \in C$, and because $e(u, C) \leq 3$ and $e(v, C) \leq 3$, this implies that $e(u v, C) \leq 5$. Hence $e\left(x_{1}, C-a_{6}\right)=5$ and $e(u v, C)=5$. WLOG let $u a_{1} \in E$. Since $e\left(x_{1} x_{r}, C-a_{6}\right)=10$, by (a) and (b) we see that $u \nrightarrow\left(C, a_{2}\right)$ and $u v \nrightarrow\left(C, a_{2} a_{3}\right)$. Therefore $u a_{3} \notin E$ and $v a_{4} \notin E$. Further, by (a) we have $e\left(u, a_{2} a_{4}\right) \leq 1, e\left(u, a_{4} a_{6}\right) \leq 1, e\left(u, a_{2} a_{6}\right) \leq 1, e\left(v, a_{3} a_{5}\right) \leq 1$, and $e\left(v, a_{2} a_{6}\right) \leq 1$. Since $u a_{1} \in E$ and $e\left(u v, a_{1}\right) \leq 1$, we have $v a_{1} \notin E$, so $e(v, C)=2$ and $e(u, C)=3$. Since $e\left(u, a_{2} a_{4} a_{6}\right) \leq 1$ and $u a_{3} \notin E$, this implies that $u a_{5} \in E$. Hence $v a_{5} \notin E$, and by (b) $v a_{2} \notin E$. Thus $e\left(v, a_{3} a_{6}\right)=2, e\left(u, a_{1} a_{5}\right)=2$, and $e\left(u, a_{2} a_{4}\right)=1$. WLOG let $u a_{4} \in E$. By (a), $u \nrightarrow\left(C, a_{2}\right)$, so by Lemma 1.4.10 we have $\tau\left(a_{3}, C\right)=0$. But then $x_{1} \xrightarrow{2}\left(C, a_{3}\right)$ and $e\left(x_{r} v, a_{3}\right)=2$, contradicting (f).

Since $e\left(x_{1}, C\right) \leq 5, e\left(x_{r}, C\right) \leq 4, e(u, C) \leq 3$, and $e(v, C) \leq 3$, each inequality is an equality. The following three cases will complete the proof.

Figure 3.10: Lemma 3.0.6, Claim 3: When $\tau\left(a_{6}, C\right)=0$, there is a 6 -cycle C^{\prime} (middle) with $\tau\left(C^{\prime}\right) \geq \tau(C)$, and a path P^{\prime} (bottom) of order $r+2$.

Figure 3.11: Lemma 3.0.6, Case 3: The dashed lines represent possible edges.

Case 1: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}\right\} . ~ B y ~(a), e\left(x_{1} x_{r}, a_{2}\right) \leq 1$, so $e\left(x_{1} x_{r}, C-a_{2}\right) \geq 8$. Since $e\left(x_{1} x_{r}, C\right)=9>8$, by (b) we see that $e\left(v, a_{4} a_{5} a_{6}\right)=0$, for otherwise $u v \rightarrow\left(C, a_{i} a_{i+1}\right)$ and $u v \rightarrow\left(C, a_{i+3} a_{i+4}\right)$ for some $a_{i} \in C$. Then $e\left(v, a_{1} a_{2} a_{3}\right)=3$, so by (e) we have $x_{r} \nrightarrow\left(C, a_{i}\right)$ for each $i=1,2,3$. Hence $e\left(x_{r}, a_{6} a_{2}\right) \leq 1, e\left(x_{r}, a_{1} a_{3}\right) \leq 1$, and $e\left(x_{r}, a_{2} a_{4}\right) \leq 1$. We observe that $x_{r} a_{2} \notin E$, for otherwise $e\left(x_{1}, C-a_{2}\right)=5$, which implies that $x_{1} \xrightarrow{0}\left(C, a_{2}\right)$ and $e\left(a_{2}, x_{r} u\right)=2$, contradicting (f).

Thus $e\left(x_{r}, C-a_{2}\right)=4$, so WLOG let $x_{r} a_{1} \in E$. Then $x_{r} a_{3} \notin E$, so we have $e\left(x_{r}, a_{1} a_{4} a_{5} a_{6}\right)=$ 4. Since $x_{r} \nrightarrow\left(C, a_{3}\right)$, we know that $\tau\left(a_{2}, C\right)=0$ by Lemma 1.4.6. Hence $u \xrightarrow{0}\left(C, a_{2}\right)$, so by (c) $x_{1} a_{2} \notin E$, which implies that $e\left(x_{1}, C-a_{2}\right)=5$. Since $x_{r} \nrightarrow\left(C, a_{2}\right)$, we know that $\tau\left(a_{3}, C\right)=0$ by Lemma 1.4.6. Thus $\tau\left(a_{2} a_{3}, C\right)=0$, so $\tau(C) \leq 3$. Let $C^{\prime}=a_{1} x_{1} a_{3} u v a_{2} a_{1}$. Since $\left(u v x_{1}, a_{1} a_{2} a_{3}\right)=8, u v \in E, a_{1} a_{2} \in E$, and $a_{2} a_{3} \in E$, we have $\tau\left(C^{\prime}\right) \geq 11-6=5>3$. But $x_{2} \ldots x_{r} a_{4} a_{5} a_{6}=P_{r+2}$, a contradiction.
$\underline{\text { Case 2: } N(u, C)=\left\{a_{1}, a_{2}, a_{4}\right\} . ~ S i n c e ~} e\left(x_{1} x_{r}, C\right) \geq 9$, by (b) we have $e\left(v, a_{4} a_{5} a_{1}\right)=0$, so $e\left(v, a_{2} a_{3} a_{6}\right)=3$. Thus $e\left(x_{1} x_{r}, a_{3}\right) \leq 1$ and $e\left(x_{1} x_{r}, a_{1}\right) \leq 1$ by (a), so $e\left(x_{1} x_{r}, a_{2} a_{4} a_{5} a_{6}\right) \geq 7$. Hence $u \rightarrow\left(C, a_{i}\right)$ for at most one $i \in\{2,4,5,6\}$, so $\tau\left(a_{3}, C\right) \leq 1$ by Lemma 1.4.10. Then $u \xrightarrow{0}\left(C, a_{3}\right)$, so by (c) $e\left(x_{1} x_{r}, a_{3}\right)=0$. Similarly, since $e\left(v, a_{2} a_{3} a_{6}\right)=3$ we have $e\left(x_{1} x_{r}, a_{1}\right)=0$. But then $e\left(x_{1} x_{r}, C\right) \leq 8$, a contradiction.

Case 3: $N(u, C)=\left\{a_{1}, a_{3}, a_{5}\right\} . ~ S i m i l a r ~ t o ~ t h e ~ p r e v i o u s ~ c a s e, ~ w e ~ h a v e ~ e\left(v, a_{1} a_{3} a_{5}\right)=3$. By (a), $e\left(x_{1} x_{r}, a_{i}\right) \leq 1$ for each $i=2,4,6$, so $e\left(x_{1} x_{r}, a_{1} a_{3} a_{5}\right)=6$. By symmetry, WLOG let $x_{r} a_{2} \in E$ and $e\left(x_{1}, a_{4} a_{6}\right)=2$. Since $x_{r} \nrightarrow\left(C, a_{i}\right)$ for each $i=1,3,5$ by (e), we know that $e\left(a_{4}, a_{2} a_{6}\right)=e\left(a_{6}, a_{2} a_{4}\right)=0$ by Lemma 1.4.7. Then $\tau(C) \leq 6$, and $\tau(C) \leq 5$ if $a_{1} a_{3} \notin E$ (see Figure 3.11). Let $C^{\prime}=u v a_{3} x_{r} a_{2} a_{1} u$. Since $e\left(u v x_{r}, a_{1} a_{2} a_{3}\right)=7, u v \in E, a_{1} a_{2} \in E$, and $a_{2} a_{3} \in E$, we have $\tau\left(C^{\prime}\right) \geq 10-6=4$, and $\tau\left(C^{\prime}\right) \geq 5$ if $a_{1} a_{3} \in E$. Therefore $\tau\left(C^{\prime}\right) \geq \tau(C)-1$. Clearly $\tau^{\prime}\left(C^{\prime}\right)=1$, and $\tau^{\prime}(C) \leq 1$ since $e\left(a_{2}, a_{4} a_{6}\right)=0$. Hence $\tau^{\prime}\left(C^{\prime}\right) \geq \tau^{\prime}(C)$. Since (iii) from this lemma is not true, it must be the case that $R+C-x_{r}-a_{1} a_{2} a_{3}$ does not have a path P of order $r+2$ such that $r(P) \geq 4$. But $a_{4} x_{1} \in E$, so $a_{4} a_{5} a_{6} x_{1} x_{2} \ldots x_{r-1}$ is such a path, a contradiction.

The following Lemma will be used in Cases B. 3 and C. 2 of Proposition 4.1.7.

Lemma 3.0.7 Let $R=x_{1} \ldots x_{r}$ be a path of order $r \geq 5$, and let $C=a_{1} a_{2} \ldots a_{6} a_{1}$ be a 6 -cycle. Let $u, v \notin R+C$ with $e\left(x_{1} x_{r} u v, C\right) \geq 15$. Suppose that the following are true:

1. If $x_{r} \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} u v\right) \leq 1$.
2. If $u \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right)=0$. If $v \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right)=0$.
3. If $x_{r} \xrightarrow{1}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} v\right)=0$.

Then $C+R+u v$ contains either $C_{6} \cup C_{\geq 6}$, or a path of order $r+2$ and a 6 -cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-1$.

Proof: Suppose that the lemma is not true. We begin with some easy observations, the last three of which are just part of the lemma's assumptions.
(a) If $u \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$. If $v \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$.
(b) If $u v \rightarrow\left(C, a_{i} a_{j}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{j}, x_{1} x_{r}\right) \leq 1$.
(c) If $u \xrightarrow{-1}\left(C, a_{i}\right)$ then $e\left(a_{i}, v x_{1} x_{r}\right) \leq 1$. If $v \xrightarrow{-1}\left(C, a_{i}\right)$ then $e\left(a_{i}, u x_{1} x_{r}\right) \leq 1$.
(d) If $u \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right)=0$. If $v \xrightarrow{0}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} x_{r}\right)=0$.
(e) If $x_{r} \rightarrow\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} u v\right) \leq 1$.
(f) If $x_{r} \xrightarrow{1}\left(C, a_{i}\right)$ then $e\left(a_{i}, x_{1} v\right)=0$.

Claim 1: $e(u, C) \leq 3$ and $e(v, C) \leq 3$.

Proof: We will not use (f) in the proof of this claim, and hence WLOG we let $e(u, C) \geq$ $e(v, C)$. Clearly, $e(u, C) \leq 5$ and $e(v, C) \leq 5$. Suppose that $e(u, C) \geq 4$, and first let $e(u, C)=5$. WLOG let $e\left(u, C-a_{6}\right)=5$. By $(\mathrm{c}), u \nrightarrow C$, so $\tau\left(a_{6}, C\right)=0$ by Lemma 1.4.5. Then $\tau\left(a_{i}, C\right) \leq 2$ for each $i=2,3,4,6$, so by (d) $e\left(a_{2} a_{3} a_{4} a_{6}, x_{1} x_{r}\right)=0$. But then $e\left(x_{1} x_{r}, a_{1} a_{5}\right) \geq 15-10=5$, a contradiction. Thus $e(u, C)=4$ and $(v, C) \leq 4$. Since $e\left(x_{1} x_{r}, C\right) \geq 15-8=7, u \nrightarrow C$ and $v \nrightarrow C$ by (a).
$\underline{\text { Case A: } N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} . ~ S i n c e ~} u \nrightarrow C, \tau\left(a_{2}, C\right) \leq 2$ and $\tau\left(a_{3}, C\right) \leq 2$ by Lemma 1.4.6. Then by (c), e($\left.a_{2}, v x_{1} x_{r}\right) \leq 1$ and $e\left(a_{3}, v x_{1} x_{r}\right) \leq 1$. Suppose $e\left(a_{6}, a_{2} a_{3}\right)>0$ or $e\left(a_{5}, a_{2} a_{3}\right)>0$. WLOG let $a_{6} a_{2} \in E$. Then by Lemma 1.4.6, $u \rightarrow\left(C, a_{1}\right)$ and $u \rightarrow\left(C, a_{5}\right)$. Since $e\left(u, C-a_{5}\right)=4$, we have further that $u \xrightarrow{-1}\left(C, a_{5}\right)$, and so $e\left(a_{5}, v x_{1} x_{r}\right) \leq 1$ by (c). Then $e\left(a_{1} a_{4} a_{6}, x_{1} x_{r} v\right) \geq 15-4-3=8$, so $\tau\left(a_{1}, C\right)=3$, for otherwise $e\left(a_{1}, v x_{1} x_{r}\right) \leq 1$ by (c). But then $u \xrightarrow{-1}\left(C, a_{6}\right)$ by Lemma 1.4.6 since $a_{5} a_{1} \in E$, contradicting (c) because $e\left(a_{6}, x_{1} x_{r} v\right) \geq 2$.

Therefore $e\left(a_{5}, a_{2} a_{3}\right)=e\left(a_{6}, a_{2} a_{3}\right)=0$. Then $u \xrightarrow{0}\left(C, a_{2}\right)$ and $u \xrightarrow{0}\left(C, a_{3}\right)$, so $e\left(a_{2} a_{3}, x_{1} x_{r}\right)=0$ by (d). Hence $e\left(x_{1} x_{r}, a_{4} a_{5} a_{6} a_{1}\right) \geq 7$. Since $e\left(x_{1} x_{r}, a_{5} a_{6}\right) \geq 3$, we know that $e\left(v, a_{1} a_{2} a_{3} a_{4}\right) \leq 1$ for otherwise $u v \rightarrow\left(C, a_{5} a_{6}\right)$, contradicting (b). Thus $e\left(x_{1} x_{r}, a_{4} a_{5} a_{6} a_{1}\right)=$ 8 and $e\left(v, a_{5} a_{6}\right)=2$, which clearly contradicts (e).

Case B: $N(u, C)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. By (c), $e\left(a_{4}, v x_{1} x_{r}\right) \leq 1$ and $e\left(a_{6}, v x_{1} x_{r}\right) \leq 1$. Further, because $u \nrightarrow C$ we have $\tau\left(a_{2}, C\right) \leq 2$ by Lemma 1.4.7, so we also get $e\left(a_{2}, v x_{1} x_{r}\right) \leq 1$. Thus $e\left(a_{1} a_{3} a_{5}, v x_{1} x_{r}\right) \geq 15-4-3=8$. WLOG let $e\left(a_{1}, v x_{1} x_{r}\right)=3$. Then $u \nrightarrow\left(C, a_{1}\right)$ by (a), so $e\left(a_{6}, a_{2} a_{4}\right)=0$ by Lemma 1.4.7. Then $\tau\left(a_{4}, C\right) \leq 2$ and $\tau\left(a_{6}, C\right) \leq 1$, so
by (d) $e\left(a_{4} a_{6}, x_{1} x_{r}\right)=0$. Then $e\left(v, a_{4} a_{6}\right) \geq 15-4-e\left(a_{1} a_{3} a_{5}, v x_{1} x_{r}\right)-e\left(a_{2}, v x_{1} x_{r}\right) \geq$ $15-4-9-1=1$, so $u v \rightarrow\left(C, a_{5} a_{6}\right)$ or $u v \rightarrow\left(C, a_{4} a_{5}\right)$. Thus $e\left(a_{5}, x_{1} x_{r}\right) \leq 1$ by (b). But then $e(v, C) \geq 15-e(u, C)-e\left(x_{1} x_{r}, C\right)=15-4-e\left(x_{1} x_{r}, a_{4} a_{6}\right)-e\left(x_{1} x_{r}, a_{2} a_{5}\right)-e\left(x_{1} x_{r}, a_{1} a_{3}\right) \geq$ $15-4-0-2-4=5$, a contradiction.

Case C: $N(u, C)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. By (c), $e\left(a_{3}, v x_{1} x_{r}\right) \leq 1$ and $e\left(a_{6}, v x_{1} x_{r}\right) \leq 1$. Since $u \nrightarrow C$, WLOG we can let $\tau\left(a_{6}, C\right)=0$ by Lemma 1.4.8. Then $e\left(a_{6}, x_{1} x_{r}\right)=0$ by (d). Suppose that $\tau\left(a_{3}, C\right)>0$. Then by Lemma 1.4.8 $u \rightarrow\left(C, a_{2}\right)$ and $u \rightarrow\left(C, a_{4}\right)$, so $e\left(a_{2}, x_{1} x_{r}\right) \leq 1$ and $e\left(a_{4}, x_{1} x_{r}\right) \leq 1$ by (a). Hence $e\left(x_{1} x_{r}, a_{1} a_{5}\right)=4, e\left(x_{1} x_{r}, a_{i}\right)=1$ for each $i=2,3,4$, and $e(v, C)=4$. Since $e\left(x_{1} x_{r}, a_{3}\right)=1$, we know that $e\left(v, C-a_{3}\right)=4$ because $e\left(a_{3}, v x_{1} x_{r}\right) \leq 1$. Therefore $e\left(v, a_{2} a_{4}\right) \geq 1$. Since $e\left(x_{1} x_{r}, a_{1} a_{5}\right)=4$, we know that $v \nrightarrow\left(C, a_{1}\right)$ and $v \nrightarrow\left(C, a_{5}\right)$ by (a). Since $e\left(v, a_{2} a_{4}\right) \geq 1$, this implies that $v a_{6} \notin E$. Thus $e\left(v, a_{1} a_{2} a_{4} a_{5}\right)=4$, so $u v \rightarrow\left(C, a_{6} a_{1}\right)$, contradicting (b).

Therefore $\tau\left(a_{3}, C\right)=0$, so by (d) $e\left(a_{3}, x_{1} x_{r}\right)=0$. Then $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4} a_{5}\right) \geq 7$, so WLOG let $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4}\right)=6$. Thus by (b) we have $u v \nrightarrow\left(C, a_{6} a_{1}\right), u v \nrightarrow\left(C, a_{2} a_{3}\right)$, and $u v \nrightarrow$ $\left(C, a_{3} a_{4}\right)$. Since $e\left(u, a_{1} a_{2} a_{4} a_{5}\right)=4$, this implies that $e\left(v, a_{2} a_{3} a_{4} a_{5}\right) \leq 2, e\left(v, a_{4} a_{5} a_{6} a_{1}\right) \leq 2$, and $e\left(v, a_{5} a_{6} a_{1} a_{2}\right) \leq 2$. Hence $e(v, C) \leq 3$, so $e\left(x_{1} x_{r}, a_{1} a_{2} a_{4} a_{5}\right)=8$ and $e(v, C)=3$. WLOG let $v a_{1} \in E$. Since $e\left(x_{1} x_{r}, a_{5}\right)=2$, by (b) we have $u v \nrightarrow\left(C, a_{5} a_{6}\right)$. Because $v a_{1} \in E$ and $e\left(u, a_{1} a_{2} a_{4}\right)=3$, this implies that $e\left(v, a_{2} a_{3} a_{4}\right)=0$. But then $e\left(v, a_{5} a_{6} a_{1}\right)=3$, so $u v \rightarrow\left(C, a_{3} a_{4}\right)$, contradicting (b).

Claim 2: $e\left(x_{r}, C\right) \leq 3$.

Proof: Suppose that $e\left(x_{r}, C\right) \geq 4$. By (e), we know that $e\left(x_{r}, C\right) \leq 5$. If $e\left(x_{r}, C\right)=5$, and WLOG $e\left(x_{r}, C-a_{6}\right)=5$, then by (e) $e\left(a_{i}, x_{1} u v\right) \leq 1$ for each $i=2,3,4,6$. Then $e\left(x_{1} u v, a_{1} a_{5}\right) \geq 15-5-4=6$, so $x_{r} \nrightarrow\left(C, a_{1}\right)$ and $x_{r} \nrightarrow\left(C, a_{5}\right)$. Hence $\tau\left(a_{6}, C\right)=0$, so by (f) $e\left(a_{6}, x_{1} v\right)=0$. Then $u a_{6} \in E$ and $e\left(a_{i}, x_{1} u v\right)=1$ for each $i=2,3,4$. Since $e\left(u, a_{5} a_{6} a_{1}\right)=3$ and $e(u, C) \leq 3$, we have $e\left(a_{i}, x_{1} v\right)=1$ for each $i=2,3,4$. Thus by $(\mathrm{f}), \tau\left(a_{i}, C\right) \geq 2$ for each
$i=2,3,4$. Since $\tau\left(a_{6}, C\right)=0$, this imples that $e\left(a_{2}, a_{4} a_{5}\right)=e\left(a_{3}, a_{5} a_{1}\right)=e\left(a_{4}, a_{1} a_{2}\right)=2$. Then $u \rightarrow\left(C, a_{2}\right)$ and $u \rightarrow\left(C, a_{4}\right)$ by Lemma 1.4 .9 , so by (a) $e\left(x_{1}, a_{2} a_{4}\right)=0$. But then $e\left(v, a_{1} a_{2} a_{4} a_{5}\right)=4$, a contradiction since $e(v, C) \leq 3$. Therefore $e\left(x_{r}, C\right)=4$.

Case A: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By $(\mathrm{e}), e\left(a_{2}, x_{1} u v\right) \leq 1$ and $e\left(a_{3}, x_{1} u v\right) \leq 1$. Hence $e\left(x_{1} u v, a_{4} a_{5} a_{6} a_{1}\right) \geq 15-4-2=9$. Suppose that $\tau\left(a_{5}, C\right)>0$. Then $x_{r} \rightarrow\left(C, a_{6}\right)$ by Lemma 1.4.6, so $e\left(a_{6}, x_{1} u v\right) \leq 1$ by (e), and hence $e\left(x_{1} u v, a_{4} a_{5} a_{1}\right) \geq 8$. Then $x_{r} \nrightarrow\left(C, a_{i}\right)$ for each $i=4,5,1$, so by Lemma 1.4.6 $\tau\left(a_{6}, C\right)=0$ and $e\left(a_{5}, a_{2} a_{3}\right)=0$. Since $x_{r} \rightarrow\left(C, a_{6}\right)$, this implies that $e\left(a_{6}, x_{1} v\right)=0$ by (f). Then $e\left(x_{1}, C-a_{6}\right)=15-4-6=5$, so $e\left(a_{2} a_{3}, u v\right)=0$, and hence $e\left(u, a_{4} a_{5} a_{6} a_{1}\right)=3$ and $e\left(v, a_{4} a_{5} a_{1}\right)=3$. But then $u v \rightarrow\left(C, a_{2} a_{3}\right)$, contradicting (b).

Hence $\tau\left(a_{5}, C\right)=0$, and by symmetry $\tau\left(a_{6}, C\right)=0$. Because $e\left(x_{1}, C\right) \geq 5$, WLOG we can let $x_{1} a_{5} \in E$. Then by (d), because $\tau\left(a_{5} a_{6}, C\right)=0$ we have $u \nrightarrow\left(C, a_{5}\right)$ and $v \nrightarrow\left(C, a_{5}\right)$. Therefore $e\left(u, a_{4} a_{6}\right) \leq 1$ and $e\left(v, a_{4} a_{6}\right) \leq 1$. Since $e\left(x_{1} u v, a_{4} a_{5} a_{6} a_{1}\right) \geq 9$ from the beginning of Case A, we get $e\left(u v, a_{1} a_{5}\right) \geq 9-e\left(x_{1}, a_{4} a_{5} a_{6} a_{1}\right)-e\left(u v, a_{4} a_{6}\right) \geq 9-4-2=3$. Then either $u \rightarrow\left(C, a_{6}\right)$ or $v \rightarrow\left(C, a_{6}\right)$, and since $\tau\left(a_{6}, C\right)=0$ this implies that $x_{1} a_{6} \notin E$ by (d). Therefore $e\left(x_{1}, C-a_{6}\right)=5, e\left(u v, a_{1} a_{5}\right)=4$, and $e\left(u, a_{4} a_{6}\right)=e\left(v, a_{4} a_{6}\right)=1$. Since $e\left(x_{1} x_{r}, a_{2} a_{3}\right)=4$, we have $u v \nrightarrow\left(C, a_{2} a_{3}\right)$ by (b). Thus, because $e\left(u v, a_{1} a_{5}\right)=4$ and $e\left(u, a_{4} a_{6}\right)=e\left(v, a_{4} a_{6}\right)=1$, this implies that $e\left(u v, a_{6}\right)=2$. Since $x_{1} a_{3} \in E$ and $x_{r} \rightarrow\left(C, a_{3}\right)$, we know that $\tau\left(a_{3}, C\right) \geq 1$ by (f). Thus, because $\tau\left(a_{6}, C\right)=0$ and $\tau\left(a_{5}, C\right)=0$, we must have $\tau\left(a_{3}, C\right)=1$ with $a_{3} a_{1} \in E$. But $e\left(u, a_{5} a_{6} a_{1}\right)=3$, so $u \rightarrow\left(C, a_{2}\right)$ by Lemma 1.4.9, contradicting (a).

Case B: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\} . \quad$ By (e), $e\left(a_{i}, x_{1} u v\right) \leq 1$ for each $i=2,4,6$, so $e\left(a_{1} a_{3} a_{5}, x_{1} u v\right) \geq 15-4-3=8$. Then again by (e), $x_{r} \nrightarrow\left(C, a_{i}\right)$ for each $i=1,3,5$, so $\tau\left(a_{4}, C\right) \leq 1$ and $\tau\left(a_{6}, C\right) \leq 1$ by Lemma 1.4.7. Hence by (f), e($\left.a_{4} a_{6}, x_{1} v\right)=0$, a contradiction since $e\left(x_{1}, C\right) \geq 5$.

Case C: $N\left(x_{r}, C\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. By $(\mathrm{e}), e\left(a_{3}, x_{1} u v\right) \leq 1$ and $e\left(a_{6}, x_{1} u v\right) \leq 1$. Then $e\left(a_{1} a_{2} a_{4} a_{5}, x_{1} u v\right) \geq 15-4-2=9$, so $e\left(a_{2} a_{4}, x_{1} u v\right) \geq 3$ and $e\left(a_{1} a_{5}, x_{1} u v\right) \geq 3$. Thus by (e)
we have $x_{r} \nrightarrow\left(C, a_{2}\right)$ or $x_{r} \nrightarrow\left(C, a_{4}\right)$, and $x_{r} \nrightarrow\left(C, a_{1}\right)$ or $x_{r} \nrightarrow\left(C, a_{5}\right)$. By Lemma 1.4.8, this implies that $\tau\left(a_{3} a_{6}, C\right)=0$. But then $x_{r} \xrightarrow{2}\left(C, a_{3}\right)$ and $x_{r} \xrightarrow{2}\left(C, a_{6}\right)$, contradicting (f) since $e\left(x_{1}, C\right) \geq 5$.

QED

By Claims 1 and 2, we have $e\left(x_{1}, C\right)=6$ and $e\left(x_{r}, C\right)=e(u, C)=e(v, C)=3$. Since $e\left(x_{1}, C\right)=6$, by (a) we know that if $u \rightarrow\left(C, a_{i}\right)$ then $x_{r} a_{i} \notin E$. Thus $u \rightarrow\left(C, a_{i}\right)$ for at most three $a_{i} \in C$. Also, by (d) we know that there cannot be $a_{i} \in C$ such that $u \xrightarrow{0}\left(C, a_{i}\right)$. Therefore $N(u, C) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$, for otherwise by Lemma 1.4.11 we see that either $u \rightarrow C$ or $\tau\left(a_{i}, C\right) \leq 1$ for some $i \in\{2,4,6\}$, and hence $u \xrightarrow{0}\left(C, a_{i}\right)$. If $N(u, C)=\left\{a_{1}, a_{2}, a_{4}\right\}$ then $\tau\left(a_{3}, C\right) \geq 2$, for otherwise $u \xrightarrow{0}\left(C, a_{3}\right)$. Then either $a_{3} a_{5} \in E$ or $e\left(a_{3}, a_{6} a_{1}\right)=2$. In the first case, by Lemma 1.4 .10 we have $u \rightarrow\left(C, a_{i}\right)$ for each $i \in\{2,3,4,6\}$, a contradiction since $4>3$. In the second case, by Lemma 1.4 .10 we have $u \rightarrow\left(C, a_{i}\right)$ for each $i \in\{1,2,3,5\}$, again a contradiction.

Thus WLOG $N(u, C)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $x_{1} a_{2} \in E$, by (a) and (d) we have $x_{r} a_{2} \notin E$ and $\tau\left(a_{2}, C\right) \geq 1$. Suppose that $a_{2} a_{5} \in E$. Then $u \rightarrow\left(C, a_{4}\right)$ and $u \rightarrow\left(C, a_{6}\right)$ by Lemma 1.4.9, so $e\left(x_{r}, a_{4} a_{6}\right)=0$. But then $e\left(x_{r}, a_{1} a_{3} a_{5}\right)=3$, so $x_{r} \rightarrow\left(C, a_{2}\right)$, contradicting (e) because $e\left(x_{1} u, a_{2}\right)=2$. Thus $a_{2} a_{5} \notin E$, so $e\left(a_{2}, a_{4} a_{6}\right) \geq 1$. WLOG let $a_{2} a_{4} \in E$. Then $u \rightarrow\left(C, a_{3}\right)$ by Lemma 1.4.9, so $x_{r} a_{3} \notin E$, and hence $e\left(x_{r}, a_{4} a_{5} a_{6} a_{1}\right)=3$. Then x_{r} is adjacent to two consecutive vertices of the path $a_{4} a_{5} a_{6} a_{1} a_{2}$. But then, because $a_{2} a_{4} \in E$, we see that $x_{r} \rightarrow\left(C, a_{3}\right)$, contradicting (e). This completes that proof.

Chapter 4

Proof of Theorem 1

In this chapter, we prove that if G is a graph of order $n \geq 6 k+1$ and $\delta(G) \geq \frac{7}{2} k, k \geq 2$, then G contains k vertex-disjoint cycles of length at least six. The proof is done by way of contradiction. Assuming the theorem does not hold, we choose a collection of large cycles and a path disjoint from these cycles, each subject to certain minimality and maximality conditions. We then use dozens of cases (the rest of the proof) to investigate the edges between the path and a 6 -cycle to find something that contradicts one of the maximal/minimal conditions, so that no such path can exist and the theorem holds. In Propositions 4.1.4, 4.1.5, and 4.1 .7 we use the fact that if the path has limited edges to every large cycle, then it must have more edges to itself.

It is clear from the proof that any attempt at proving a stronger theorem, or proving a similar theorem for larger cycles, may not be a good use of time unless a different strategy was used.

4.1 Part One

Let G be a graph of order $n \geq 6 k+1$ and $\delta(G) \geq \frac{7}{2} k, k \geq 2$. Suppose that G does not contain k disjoint large cycles. Let r_{0} be the largest integer such that G contains r_{0} disjoint 6 -cycles. Over all such collections of r_{0} disjoint 6 -cycles, let k_{0} be the largest integer such that G contains k_{0} disjoint large cycles. Then $r_{0} \leq k_{0} \leq k-1$. A chain of G is a set $\left\{L_{1}, \ldots, L_{r_{0}}, \ldots, L_{k_{0}}\right\}$ of k_{0} disjoint large cycles that includes r_{0} disjoint 6 -cycles, and such that

$$
\begin{equation*}
\sum_{i=1}^{k_{0}} l\left(L_{i}\right) \text { is minimal among all such sets. } \tag{4.1}
\end{equation*}
$$

. We choose a chain $\sigma=\left\{L_{1}, \ldots, L_{r_{0}}, \ldots, L_{k_{0}}\right\}$ of G such that

$$
\begin{equation*}
\text { the length of a longest path in } D \text { is maximal, } \tag{4.2}
\end{equation*}
$$

where

$$
D=G-\sum_{i=1}^{k_{0}} L_{i}
$$

Let $H=G-D$, and let $P=x_{1} x_{2} \ldots x_{t}$ be a longest path in D.

Lemma 4.1.1 Let $j=2$ or $j=4$, and suppose there is $x_{1}, \ldots, x_{j} \in D$ with $e\left(x_{1} \ldots x_{j}, D\right) \leq$ $\frac{7 j}{2}-1$. Then there is $L_{i} \in \sigma$ such that $e\left(x_{1} \ldots x_{j}, L_{i}\right) \geq \frac{7 j}{2}+1$ and $\left|L_{i}\right|=6$.

Proof: \quad Since $e\left(x_{1} \ldots x_{j}, D\right) \leq \frac{7 j}{2}-1$ and $e\left(x_{1} \ldots x_{j}, G\right) \geq \frac{7 j}{2} k$, we have $e\left(x_{1} \ldots x_{j}, H\right) \geq$ $\frac{7 j}{2} k-\frac{7 j}{2}+1=\frac{7 j}{2}(k-1)+1 \geq \frac{7 j}{2} k_{0}+1$. Hence $e\left(x_{1} \ldots x_{j}, L_{i}\right) \geq \frac{7 j}{2}+1$ for some $L_{i} \in \sigma$, and thus WLOG $e\left(x_{1}, L_{i}\right) \geq 4$. By (4.1) we see that $L_{i}+D$ does not contain a cycle of length less than L_{i}. Hence $\left|L_{i}\right|=6$ by Lemma 2.2.1.

Proposition 4.1.2 $t \geq 7$.

Proof: We first show that $|D| \geq 7$. Suppose that $|D| \leq 6$. Then $|H| \geq 6 k+1-6=$ $6(k-1)+1 \geq 6 k_{0}+1$, so $\left|L_{i}\right| \geq 7$ for some $L_{i} \in \sigma$. WLOG let $\left|L_{i}\right| \geq\left|L_{j}\right|$ for each $L_{j} \in \sigma$, and let $q=\left|L_{i}\right|$. By Lemma 2.2.1 and (4.1), $e\left(D, L_{i}\right) \leq 3|D| \leq 3(6) \leq 3(q-1)$. By Lemma 2.1.3 and (4.1), $e\left(L_{i}, L_{i}\right)=\sum_{v \in L_{i}} e\left(v, L_{i}-v\right) \leq 4 q$, for otherwise L_{i} contains a large cycle of length at most $q-1$. Then $e\left(L_{i}, H-L_{i}\right) \geq \frac{7}{2} k(q)-e\left(L_{i}, D\right)-e\left(L_{i}, L_{i}\right) \geq \frac{7}{2} k(q)-7 q+3=\frac{7 q}{2}(k-2)+3$, so $e\left(L_{i}, L_{j}\right) \geq \frac{7 q+1}{2}$ for some $L_{j} \in \sigma$ with $i \neq j$. By Lemmas 2.2.7 and 2.2.6, and (4.1), we see that $q=7$. Then $e\left(L_{i}, L_{j}\right) \geq 25$, so by Lemma 2.2.1 and the maximality of r_{0} we see that $\left|L_{j}\right|=6$. But this contradicts (4.1) by Lemma 2.2.5, so $|D| \geq 7$.

Suppose that $t \leq 6$. Let $Q=y_{1} \ldots y_{s}$ be a path of order s in $D-P$, and let σ and P be such that s is maximal. Clearly Q exists since $|D| \geq 7$. To complete the proof, we first show that s and t cannot both be small, and that $t \geq 3$. Then, we consider the cases $t=3,4,5,6$ separately.

If D has two vertices x and y with $e(x y, D) \leq 6$, then by Lemma 4.1.1 there is $L_{i} \in \sigma$ with $\left|L_{i}\right|=6$ and $e\left(x y, L_{i}\right) \geq 8$. Suppose that $L_{i}+x y$ does not contain $C_{6} \cup P_{2}$. Then there is no $u \in L_{i}$ such that either $x \rightarrow(C, u)$ and $y u \in E$ or $y \rightarrow(C, u)$ and $x u \in E$. By Lemma
1.4.16, this implies that there is a labeling $L_{i}=a_{1} a_{2} \ldots a_{6} a_{1}$ such that either $N\left(x, L_{i}\right)=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N\left(y, L_{i}\right)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$, or $N\left(x, L_{i}\right)=N\left(y, L_{i}\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. In the first case, $x a_{4} a_{5} y a_{6} a_{1} x$ is a 6 -cycle and $a_{2} a_{3} \in E$, a contradiction. In the second case $a_{1} a_{6} a_{5} y a_{4} x a_{1}$ is a 6-cycle and $a_{2} a_{3} \in E$, a contradiction. Therefore $L_{i}+x y$ contains $C_{6} \cup P_{2}$.

Because of this we may, and do, choose σ so that $D, D-P$, and $D-(P+Q)$ do not have two isolated vertices u and v with $e(u v, D) \leq 6$. Since $|D| \geq 7$, this implies that $t \geq 2$, and that $s \geq 2$ if $t \leq 5$. Further, if $s=1$ then $t=6$ and $|D|=7$.

If D has two edges $u_{1} u_{2}$ and $v_{1} v_{2}$ with $e\left(u_{1} u_{2} v_{1} v_{2}, D\right) \leq 13$, then by Lemma 4.1.1 there is $L_{i} \in H$ with $\left|L_{i}\right|=6$ and $e\left(u_{1} u_{2} v_{1} v_{2}, L_{i}\right) \geq 15$. WLOG let $e\left(u_{1} v_{1}, L_{i}\right) \geq 8$. If there is $z \in L_{i}$ with $u_{1} \rightarrow\left(L_{i}, z\right)$ and $v_{1} z \in E$, then $L_{i}+u_{1} v_{1} v_{2} \supseteq C_{6} \cup P_{3}$; and if $v_{1} \rightarrow\left(L_{i}, z\right)$ with $u_{1} z \in E$, then $L_{i}+v_{1} u_{1} u_{2} \supseteq C_{6} \cup P_{3}$. If there is no such z, then by Lemma 1.4.16 we have either $N\left(u_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N\left(v_{1}, L_{i}\right)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$ or $N\left(u_{1}, L_{i}\right)=N\left(v_{1}, L_{i}\right)=$ $\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$ for a labeling $L_{i}=a_{1} \ldots a_{6} a_{1}$. Then $e\left(u_{1} v_{1}, L_{i}\right)=8$, so $e\left(u_{2} v_{2}, L_{i}\right) \geq 7$. WLOG say $e\left(u_{2}, L_{i}\right) \geq 4$. Then $e\left(u_{2} v_{1}, L_{i}\right) \geq 4+4=8$, so by the same argument as above with u_{2} replacing u_{1} we have either $L_{i}+u_{1} u_{2} v_{1} v_{2} \supseteq C_{6} \cup P_{3}$ or $e\left(u_{2}, a_{1} a_{4}\right)=2$. In the latter case, $e\left(u_{1} u_{2}, a_{1} a_{4}\right)=4$, so that $u_{1} u_{2} a_{1} a_{2} a_{3} a_{4} u_{1}=C_{6}$ and $v_{2} v_{1} a_{5} a_{6}=P_{4}$. In any case we see that $L_{i}+u_{1} u_{2} v_{1} v_{2} \supseteq C_{6} \cup P_{3}$.

Thus we may, and do, choose σ so that $D, D-P$, and $D-(P+Q)$ have neither two isolated edges $x y$ and $u v$ with $e(x y u v, D) \leq 13$, nor two isolated vertices a and b with $e(a b, D) \leq 6$. Since $|D| \geq 7$, this implies that $t \geq 3$, and that $s=3$ if $t=3$. Combining this with the above gives us he following information:

- $t \geq 3$. If $t=3$ then $s=3$.
- If $t \leq 5$ then $s \geq 2$.
- If $s=1$ then $t=6$ and $|D|=7$.

Case 1: $t=3$. Since $e\left(x_{1} x_{3} y_{1} y_{3}, D\right) \leq 2 \times 4=8$, there is $L_{i} \in H$ with $\left|L_{i}\right|=6$ and $e\left(x_{1} x_{3} y_{1} y_{3}, L_{i}\right) \geq 15$ by Lemma 4.1.1. WLOG let $e\left(x_{1} y_{1}, L_{i}\right) \geq 8$. Since $t=3$, by Lemma
1.4.16 we have $L_{i}=a_{1} a_{2} \ldots a_{6} a_{1}$, and either $N\left(x_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N\left(y_{1}, L_{i}\right)=$ $\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$ or $N\left(x_{1}, L_{i}\right)=N\left(y_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Then $e\left(x_{3} y_{3}, L_{i}\right) \geq 7$, so WLOG let $e\left(x_{3}, L_{i}\right) \geq 4$. Then $e\left(y_{1} x_{3}, L_{i}\right) \geq 8$, so since $t=3$ we have $N\left(x_{3}, L_{i}\right)=N\left(x_{1}, L_{i}\right)$ by Lemma 1.4.16. If $e\left(x_{1} x_{3}, a_{3}\right)=2$ then $a_{3} a_{2} a_{1} x_{1} x_{2} x_{3} a_{3}=C_{6}$ and $a_{5} y_{1} y_{2} y_{3}=P_{4}$, a contradiction. Then $e\left(x_{1} x_{3}, a_{2} a_{4}\right)=4$, so $a_{2} a_{3} a_{4} x_{1} x_{2} x_{3} a_{2}=C_{6}$ and $a_{5} y_{1} y_{2} y_{3}=P_{4}$, again a contradiction.

Case 2: $t=4$. Since $t \leq 5, s \geq 2$. By the maximality of t, we have $e\left(x_{1} x_{4}, D\right)=e\left(x_{1} x_{4}, P\right) \leq$ 6 and $e\left(y_{1} y_{s}, P\right)=0$. By the maximality of s, we have $e\left(y_{1} y_{s}, D-P\right)=e\left(y_{1} y_{s}, Q\right) \leq 6$. Hence $e\left(x_{1} x_{4} y_{1} y_{s}, D\right) \leq 12$, so by Lemma 4.1.1 $e\left(x_{1} x_{4} y_{1} y_{s}, L_{i}\right) \geq 15$ for some $L_{i} \in H$ with $\left|L_{i}\right|=6$. By the maximality of t and Lemma 1.4.17, we know that $e\left(x_{1} y_{1}, L_{i}\right) \leq 8$ and $e\left(x_{4} y_{s}, L_{i}\right) \leq 8$. WLOG let $e\left(x_{1} y_{1}, L_{i}\right)=8$ and $e\left(x_{4} y_{s}, L_{i}\right) \geq 7$. By Lemma 1.4.15 and the maximality of t, $e\left(y_{1}, L_{i}\right) \leq 4$. Let $L_{i}=a_{1} a_{2} \ldots a_{6} a_{1}$. Suppose $e\left(y_{1}, L_{i}\right)=4$. Then by the maximality of t and Lemma 1.4.16, we have either $N\left(y_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N\left(x_{1}, L_{i}\right)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$ or $N\left(y_{1}, L_{i}\right)=N\left(x_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$.

First suppose $N\left(y_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $N\left(x_{1}, L_{i}\right)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$. If $e\left(y_{s}, L_{i}\right) \geq 4$, then by the maximality of t and Lemma 1.4.16 we have $N\left(y_{s}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. But then $y_{1} \ldots y_{s} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$ and $a_{5} x_{1} x_{2} x_{3} x_{4}=P_{5}$, a contradiction. Hence $e\left(y_{s}, L_{i}\right) \leq 3$, so $e\left(x_{4}, L_{i}\right) \geq 4$. Then $e\left(y_{1} x_{4}, L_{i}\right)=8$ by Lemma 1.4.17, so by Lemma 1.4.16 we have $N\left(x_{4}, L_{i}\right)=\left\{a_{4}, a_{5}, a_{6}, a_{1}\right\}$. But then $x_{1} x_{2} x_{3} x_{4} a_{5} a_{6} x_{1}=C_{6}$ and $a_{1} a_{2} a_{3} a_{4} y_{1} \ldots y_{s} \supseteq P_{\geq 6}$, a contradiction. Thus $N\left(y_{1}, L_{i}\right)=N\left(x_{1}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. If $e\left(y_{s}, L_{i}\right) \geq 4$, then by the maximality of t and Lemma 1.4.16 we have $N\left(y_{s}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. But then $y_{1} \ldots y_{s} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$ and $a_{5} x_{1} x_{2} x_{3} x_{4}=P_{5}$, a contradiction. Hence $e\left(y_{s}, L_{i}\right) \leq 3$, so $e\left(x_{4}, L_{i}\right) \geq 4$. Then $e\left(y_{1} x_{4}, L_{i}\right)=8$ by Lemma 1.4.17, so by Lemma 1.4.16 we have $N\left(x_{4}, L_{i}\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. But then $x_{1} x_{2} x_{3} x_{4} a_{1} a_{2}=C_{6}$ and $a_{3} a_{4} a_{5} y_{1} \ldots y_{s} \supseteq P_{\geq 5}$, a contradiction.

Therefore $e\left(y_{1}, L_{i}\right) \leq 3$, so $e\left(x_{1}, L_{i}\right) \geq 5$. Thus by Lemma 1.4.17, $e\left(y_{s}, L_{i}\right) \leq 3$, and thus also $e\left(x_{4}, L_{i}\right) \geq 4$. Suppose $e\left(y_{1}, L_{i}\right)=3$. Then $e\left(x_{1}, L_{i}\right)=5$, so WLOG let $x_{1} a_{6} \notin E$. By
the maximality of $t, y_{1} \nrightarrow\left(L_{i}, a_{j}\right)$ for $j=1, \ldots, 5$. Since $y_{1} \nrightarrow\left(L_{i}, a_{j}\right)$ for $j=1,3,5$, we have $e\left(y_{1}, a_{2} a_{4} a_{6}\right) \leq 1$. Then $e\left(y_{1}, a_{1} a_{3} a_{5}\right) \geq 2$, so because $y_{1} \nrightarrow\left(L_{i}, a_{j}\right)$ for $j=2$, 4, we have $e\left(y_{1}, a_{1} a_{5}\right)=2$. Then $x_{4} a_{6} \notin E$ since $t=4$, so $e\left(x_{4}, a_{3} a_{4}\right) \geq 1$ because $e\left(x_{4}, L_{i}\right) \geq 4$. But then $x_{1} x_{2} x_{3} x_{4} a_{3} a_{4} \supseteq C_{6}$ and $a_{2} a_{1} a_{6} a_{5} y_{1} \ldots y_{s} \supseteq P_{\geq 6}$, a contradiction. So we have $e\left(y_{1}, L_{i}\right)=2$ and $e\left(x_{1}, L_{i}\right)=6$, and by Lemma 1.4.17 we have $e\left(y_{s}, L_{i}\right) \leq 2$ and $e\left(x_{4}, L_{i}\right) \geq 5$. WLOG let $y_{1} a_{1} \in E$. Since $e\left(x_{1} x_{4}, L_{i}\right) \geq 11$ we have $e\left(x_{1} x_{4}, a_{5} a_{6}\right) \geq 3$. But then $x_{1} x_{2} x_{3} x_{4} a_{5} a_{6} \supseteq C_{6}$ and $a_{4} a_{3} a_{2} a_{1} y_{1} \ldots y_{s} \supseteq P_{\geq 6}$, a contradiction.

Case 3: $t=5$. Since $t \leq 5, s \geq 2$.
Case 3.1: $s \leq 4$. By the maximality of $t, e\left(x_{1} x_{5}, D\right)=e\left(x_{1} x_{5}, P\right) \leq 4+4=8$ and $e\left(y_{1} y_{s}, P\right) \leq 2$. By the maximality of $s, e\left(y_{1} y_{s}, D-P\right)=e\left(y_{1} y_{s}, Q\right) \leq 3+3=6$. Further, if $s=2$ then $e\left(y_{1} y_{2}, Q\right)=2$ and if $s \geq 3$ then $e\left(y_{1} y_{s}, P\right)=0$. Hence $e\left(y_{1} y_{s}, D\right) \leq 6$, so $e\left(x_{1} x_{5} y_{1} y_{s}, D\right) \leq 14$. Then $e\left(x_{1} x_{5} y_{1} y_{s}, H\right) \geq 14 k-14 \geq 14 k_{0}$, so $e\left(x_{1} x_{5} y_{1} y_{s}, L_{i}\right) \geq 14$ for some $L_{i} \in H$. By Lemma 2.2.1 and the minimality of $\sigma,\left|L_{i}\right|=6$. Let $L_{i}=a_{1} a_{2} \ldots a_{6} a_{1}$.

Suppose that $e\left(x_{1} x_{5}, a_{j}\right)=2$ for some $a_{j} \in L_{i}$, and WLOG let $j=1$. Then $x_{1} x_{2} x_{3} x_{4} x_{5} a_{1} x_{1}=$ C_{6}, so $a_{2} a_{3} a_{4} a_{5} a_{6} y_{1} \ldots y_{s} \nsupseteq P_{\geq 6}$. Thus $e\left(y_{1} y_{s}, a_{2} a_{3} a_{5} a_{6}\right)=0$, and $e\left(y_{1} y_{s}, a_{4}\right)=0$ if $s \geq 3$. Therefore $e\left(y_{1} y_{s}, L_{i}\right) \leq 4$. If $e\left(y_{1} y_{s}, L_{i}\right) \leq 2$ then $e\left(x_{1} x_{5}, L_{i}\right) \geq 14-2=12$. Then $e\left(x_{1} x_{5}, a_{6}\right)=2$, which means $a_{1} a_{2} a_{3} a_{4} a_{5} y_{1} \ldots y_{s} \nsupseteq P_{\geq 6}$. Therefore $e\left(y_{1} y_{s}, a_{1} a_{2} a_{4} a_{5}\right)=0$, so $e\left(y_{1} y_{s}, L_{i}\right)=0$. But then $e\left(x_{1} x_{5}, L_{i}\right) \geq 14$, a contradiction. Hence $e\left(y_{1} y_{s}, L_{i}\right) \geq 3$, so $e\left(y_{1} y_{s}, a_{1} a_{4}\right) \geq 3$ and $s=2$. Then $y_{1} y_{2} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$ and $y_{1} y_{2} a_{4} a_{5} a_{6} a_{1} \supseteq C_{6}$, so $x_{1} x_{2} x_{3} x_{4} x_{5} a_{5} a_{6} \nsupseteq P_{\geq 6}$ and $x_{1} x_{2} x_{3} x_{4} x_{5} a_{2} a_{3} \nsupseteq P_{\geq 6}$. Then $e\left(x_{1} x_{5}, a_{5} a_{6} a_{2} a_{3}\right)=0$, a contradiction since $e\left(y_{1} y_{2}, L_{i}\right) \leq 4$ and $e\left(x_{1} x_{5} y_{1} y_{2}, L_{i}\right) \geq 14$.

So $e\left(x_{1} x_{5}, a_{j}\right) \leq 1$ for each $a_{j} \in L_{i}$. Then $e\left(x_{1} x_{5}, L_{i}\right) \leq 6$, so $e\left(y_{1} y_{s}, L_{i}\right) \geq 8$. If $e\left(y_{1}, L_{i}\right)=6$ then $y \rightarrow L_{i}$, so that by the maximality of t we have $e\left(x_{1} x_{5}, L_{i}\right)=0$. But then $e\left(y_{1} y_{s}, L_{i}\right) \geq 14$, a contradiction. Thus $e\left(y_{1} y_{s}, L_{i}\right) \leq 10$, so $e\left(x_{1} x_{5}, L_{i}\right) \geq 4$. Suppose $e\left(y_{1}, L_{i}\right)=5$. WLOG let $y_{1} a_{6} \notin E$. Then $y_{1} \rightarrow\left(L_{i}, a_{j}\right)$ for $j=2,3,4,6$, so since $t=5$ we have $e\left(x_{1} x_{5}, a_{2} a_{3} a_{4} a_{6}\right)=0$. But then $e\left(x_{1} x_{5}, a_{1} a_{5}\right)=4$, contradicting the first sentence of this paragraph. Hence $e\left(y_{1}, L_{i}\right) \leq 4$, so $e\left(y_{1}, L_{i}\right)=e\left(y_{s}, L_{i}\right)=4$, and $e\left(x_{1} x_{5}, L_{i}\right)=6$. Then
for each $a_{j} \in L_{i}$ we have $e\left(a_{j}, x_{1} x_{5}\right)=1$, and hence $y_{1} \nrightarrow\left(L_{i}, a_{j}\right)$ since $t=5$. This is a contradiction since $e\left(y_{1}, L_{i}\right) \geq 4$.

Case 3.2: $s=5$. By the maximality of t, we have $e\left(x_{1} x_{5}, D\right)=e\left(x_{1} x_{5}, P\right) \leq 4+4=8$ and $e\left(y_{1} y_{5}, D\right)=e\left(y_{1} y_{5}, Q\right) \leq 8$. Thus $e\left(x_{1} x_{5} y_{1} y_{5}, D\right) \leq 16$. Suppose that for each $L_{i} \in H$, we have $e\left(x_{1} x_{5} y_{1} y_{5}, L_{i}\right) \leq 12$. Then $e\left(x_{1} x_{5} y_{1} y_{5}, H\right) \leq 12 k_{0} \leq 12(k-1)=12 k+2 k-2 k-12 \leq$ $14 k-16$. Since $e\left(x_{1} x_{5} y_{1} y_{5}, G\right) \geq 14 k$, it must be that $k=2, k_{0}=1, e\left(x_{1} x_{5} y_{1} y_{5}, D\right)=16$, and $e\left(x_{1} x_{5} y_{1} y_{5}, L_{1}\right)=12$. Since $e\left(x_{1} x_{5} y_{1} y_{5}, D\right)=16$, we know that $x_{1} x_{5} \in E$ and $y_{1} y_{5} \in E$.

Suppose $\left|L_{1}\right|=p \geq 7$, and let $L_{1}=a_{1} a_{2} \ldots a_{p} a_{1}$ (see Figure 4.1). By the maximality of r_{0}, $G \nsupseteq C_{6}$, so for each $a_{j} \in L_{1}$ we have $e\left(x_{1} x_{5}, a_{j}\right) \leq 1$ and $e\left(y_{1} y_{5}, a_{j}\right) \leq 1$. Also, by Lemma 2.2.1 and (4.1) we have $e\left(x_{1}, L_{1}\right)=e\left(x_{5}, L_{1}\right)=e\left(y_{1}, L_{1}\right)=e\left(y_{5}, L_{1}\right)=3$, with $x_{1}, x_{5}, y_{1}, y_{5}$ each being adjacent to three consecutive vertices of L_{1}. Suppose that there is j between 1 and p such that $e\left(x_{1} x_{5}, L_{1}-a_{j} a_{j+1}\right)=6$. Then by Lemmas 2.1.5 and 2.1.4 we have $N\left(x_{1}, L_{1}\right)=N\left(x_{5}, L_{1}\right)$, contradicting the fact that $e\left(x_{1} x_{5}, a_{j}\right) \leq 1$ for each $a_{j} \in L_{1}$. Hence there are not two consecutive vertices in L_{1} which are each adjacent to neither x_{1} nor x_{5}. Since x_{1} and x_{5} are each adjacent to three consecutive vertices of L_{1}, this implies that $p \leq 8$. Thus WLOG we have either (if $p=8$) $N\left(x_{1}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $N\left(x_{5}, L_{1}\right)=\left\{a_{5}, a_{6}, a_{7}\right\}$ or (if $p=7) N\left(x_{1}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $N\left(x_{5}, L_{1}\right)=\left\{a_{4}, a_{5}, a_{6}\right\}$. Either way, we see that $L_{1}+x_{1} x_{5} \supseteq C_{6}$, a contradiction.

Therefore $p=6$. Suppose that there is $a_{j} \in L_{1}$ with $e\left(x_{1} x_{5}, a_{j}\right)=2$, and WLOG let $j=1$. Then $L_{1}+Q-a_{1} \nsupseteq P_{\geq 6}$ by (4.2), so $e\left(y_{1} y_{5}, L_{1}-a_{1}\right)=0$. But then $e\left(y_{1} y_{5}, D\right) \geq 14-2=10$, a contradiction. Hence for all $a_{j} \in L_{1}, e\left(x_{1} x_{5}, a_{j}\right) \leq 1$, and similarly $e\left(y_{1} y_{5}, a_{j}\right) \leq 1$. Since $e\left(x_{1} x_{5} y_{1} y_{5}, L_{1}\right)=12$, this implies that for all $a_{j} \in L_{1}, e\left(a_{j}, x_{1} x_{5}\right)=e\left(a_{j}, y_{1} y_{5}\right)=1$. Then by (4.2) we have, for each $a_{j} \in L_{1}$ and each $r \in\{1,5\}$, that $y_{r} \nrightarrow\left(L_{1}, a_{j}\right)$ and $x_{r} \nrightarrow\left(L_{1}, a_{j}\right)$. But this is impossible, since $e\left(u, L_{1}\right) \geq 3$ for some $u \in\left\{x_{1}, x_{5}, y_{1}, y_{5}\right\}$.

So we know that $e\left(x_{1} x_{5} y_{1} y_{5}, L_{i}\right) \geq 13$ for some $L_{i} \in H$. Then $\left|L_{i}\right|=6$. If $e\left(x_{1} x_{5}, a_{j}\right)=2$ for some $a_{j} \in L_{i}$, then $e\left(y_{1} y_{5}, L_{i}-a_{j}\right)=0$ by the maximality of t. Thus $e\left(x_{1} x_{5}, L_{i}\right) \geq$ $13-2=11$, so WLOG we can say that $x_{1} \rightarrow L_{i}$. But then $e\left(y_{1} y_{5}, L_{i}\right)=0$, which means

Figure 4.1: Proposition 4.1.2, Case $3.2,\left|L_{1}\right| \geq 7$.
that $e\left(x_{1} x_{5}, L_{i}\right) \geq 13$, a contradiction. Hence $e\left(x_{1} x_{5}, L_{i}\right) \leq 6$, and similarly $e\left(y_{1} y_{5}, L_{i}\right) \leq 6$, which is again a contradiction since $6+6<13$.

Case 4: $t=6$. We first claim that either $e\left(x_{2} x_{6}, D\right) \leq 8$ or $e\left(x_{1} x_{5}, D\right) \leq 8$. By the maximality of t and because $D \nsupseteq C_{6}$, we have $e\left(x_{1} x_{6}, D\right) \leq 5$. WLOG let $e\left(x_{1}, D\right) \leq 2$. If $s=1$ then $|D|=7$ since $D-P$ does not have two isolated vertices, so the claim holds trivially in this case. Hence assume that $s \geq 2$. Then by the maximality of t we have $e\left(x_{5}, y_{1} y_{s}\right)=0$. Suppose that there is $u, v \in D-P$ with $e\left(x_{5}, u v\right)=2$. Then $u, v \in D-(P+Q)$. By the maximality of t, e(uv,D-P)=0 and $e\left(u v, x_{4} x_{6}\right)=0$. Since $D \nsupseteq C_{6}, e\left(u v, x_{1}\right)=0$. Thus $e(u v, D) \leq 6$, and u and v are isolated in $D-(P+Q)$, a contradiction. Therefore $e\left(x_{5}, D-P\right) \leq 1$, so $e\left(x_{1} x_{5}, D\right) \leq 1+5+2=8$ and the claim holds.

Claim: There are not paths $B=b_{1} b_{2} \ldots b_{5}$ and $C=c_{1} c_{2}$ of order 5 and 2 in D
with $e\left(b_{1} b_{2} c_{1} c_{2}, D\right) \leq 13$.

Proof: On the contrary, suppose that there are. By Lemma 4.1.1, there is L_{i} in H with $e\left(b_{1} b_{5} c_{1} c_{2}, L_{i}\right) \geq 15$, and $\left|L_{i}\right|=6$. Let $L_{i}=L=a_{1} a_{2} \ldots a_{6} a_{1}$. Suppose that $e\left(c_{1} c_{2}, a_{1} a_{4}\right) \geq 3$. Then $c_{1} c_{2} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$ and $c_{1} c_{2} a_{4} a_{5} a_{6} a_{1} \supseteq C_{6}$, so $e\left(b_{1} b_{5}, a_{5} a_{6} a_{2} a_{3}\right)=0$ by the maximality of t. Then $e\left(b_{1} b_{5}, L\right) \leq 4$, so $e\left(c_{1} c_{2}, L\right) \geq 11$. Then $e\left(c_{1} c_{2}, a_{2} a_{5}\right) \geq 3$, so similar to above we have $e\left(b_{1} b_{5}, a_{6} a_{1} a_{3} a_{4}\right)=0$. But then $e\left(b_{1} b_{5}, L\right)=0$, a contradiction. Hence $e\left(c_{1} c_{2}, a_{1} a_{4}\right) \leq 2$, and by symmetry $e\left(c_{1} c_{2}, a_{2} a_{5}\right) \leq 2$ and $e\left(c_{1} c_{2}, a_{3} a_{6}\right) \leq 2$. Then $e\left(c_{1} c_{2}, L\right) \leq 6$, so $e\left(b_{1} b_{5}, L\right) \geq 9$.

WLOG let $e\left(b_{1} b_{5}, a_{1}\right)=2$. Then $b_{1} b_{2} b_{3} b_{4} b_{5} a_{1} b_{1}=C_{6}$, so $L-a_{1}+c_{1} c_{2} \nsupseteq P_{7}$. Thus $e\left(c_{1} c_{2}, a_{2} a_{6}\right)=0$. Suppose that $e\left(b_{1} b_{5}, a_{4}\right)=2$. Then $b_{1} b_{2} b_{3} b_{4} b_{5} a_{4} b_{1}=C_{6}$, so similar to above we have $e\left(c_{1} c_{2}, a_{3} a_{5}\right)=0$. But then $e\left(c_{1} c_{2}, a_{1} a_{4}\right) \geq 15-12=3$, a contradiction. Hence $e\left(b_{1} b_{5}, a_{4}\right) \leq 1$, so $e\left(b_{1} b_{5}, L-a_{1} a_{4}\right) \geq 9-3=6$. Suppose that $e\left(b_{1} b_{5}, a_{2}\right)=2$. Then $e\left(c_{1} c_{2}, a_{3} a_{1}\right)=0$, so $e\left(c_{1} c_{2}, L\right) \leq 4$ and $e\left(b_{1} b_{5}, L\right)=11$. But then $e\left(b_{1} b_{5}, a_{3}\right)=2$, so $e\left(c_{1} c_{2}, a_{4} a_{2}\right)=0$ and hence $e\left(c_{1} c_{2}, L\right) \leq 2$, a contradiction. Therefore $e\left(b_{1} b_{5}, a_{2}\right) \leq$ 1 , and by symmetry $e\left(b_{1} b_{5}, a_{6}\right) \leq 1$. Then $e\left(b_{1} b_{5}, a_{3} a_{5}\right) \geq 9-5=4$, so by the same
reasoning as above we have $e\left(c_{1} c_{2}, a_{4}\right)=0$. Hence $e\left(c_{1} c_{2}, a_{1} a_{3} a_{5}\right)=6, e\left(b_{1} b_{5}, a_{1} a_{3} a_{5}\right)=6$, and $e\left(b_{1} b_{5}, a_{2}\right)=e\left(b_{1} b_{5}, a_{4}\right)=e\left(b_{1} b_{5}, a_{6}\right)=1$. WLOG let $e\left(b_{1}, L\right) \geq 5$ with $e\left(b_{1}, L-a_{6}\right)=5$. Then $b_{1} a_{4} a_{5} a_{6} a_{1} a_{2} b_{1}=C_{6}$ and $b_{2} b_{3} b_{4} b_{5} a_{3} c_{2} c_{1}=P_{7}$, a contradiction.

QED

By the claim we know that $s \neq 2$, for otherwise $e\left(y_{1} y_{2}, D\right) \leq 4$ and thus either $e\left(x_{1} x_{5} y_{1} y_{2}, D\right) \leq 4+8=12$ or $e\left(x_{2} x_{6} y_{1} y_{2}, D\right) \leq 12$ for paths P and Q of order 5 and 2. Thus we consider the cases $3 \leq s \leq 6$, and finish the proof with the case $s=1$.

Case 4.1: $s=3$. By the maximality of $t, e\left(y_{1} y_{3}, D-Q\right)=0$. Thus $e\left(y_{1} y_{3}, D\right) \leq 4$, so $e\left(x_{1} x_{5} y_{1} y_{3}, D\right) \leq 12$. Then by Lemma 4.1.1, $e\left(x_{1} x_{5} y_{1} y_{3}, D\right) \geq 15$ for some L_{i} in H, and $\left|L_{i}\right|=6$. Let $L_{i}=L=a_{1} a_{2} \ldots a_{6} a_{1}$. Suppose that $e\left(y_{1} y_{3}, a_{1} a_{3}\right) \geq 3$. Then $y_{1} y_{2} y_{3} a_{1} a_{2} a_{3} \supseteq C_{6}$, so $P-x_{6}+a_{4} a_{5} a_{6} \nsupseteq P_{\geq 7}$. Hence $e\left(x_{1} x_{5}, a_{4} a_{5} a_{6}\right)=0$, so $e\left(x_{1} x_{5}, L\right) \leq 6$ and $e\left(y_{1} y_{3}, L\right) \geq 9$. If $e\left(y_{1} y_{3}, a_{3} a_{5}\right) \geq 3$ then similar to above we have $e\left(x_{1} x_{5}, a_{6} a_{1} a_{2}\right)=0$, so that $e\left(x_{1} x_{5}, L\right) \leq 2$, a contradiction. Therefore $e\left(y_{1} y_{3}, a_{3} a_{5}\right) \leq 2$, and similarly $e\left(y_{1} y_{3}, a_{4} a_{6}\right) \leq 2$. But then $e\left(y_{1} y_{3}, a_{1} a_{2}\right) \geq 9-4=5$, a contradiction. So $e\left(y_{1} y_{3}, a_{1} a_{3}\right) \leq 2$, and similarly $e\left(y_{1} y_{3}, a_{2} a_{4}\right) \leq$ 2. Then $e\left(y_{1} y_{3}, L\right) \leq 8$, so $e\left(x_{1} x_{5}, L\right) \geq 7$. WLOG let $e\left(x_{1} x_{5}, a_{1}\right)=2$. Then $L-a_{1}+$ $y_{1} y_{2} y_{3} \nsupseteq P_{\geq 7}$, so $e\left(y_{1} y_{3}, a_{2} a_{3} a_{5} a_{6}\right)=0$ and hence $e\left(x_{1} x_{5}, L\right) \geq 15-4=11$. Then WLOG $e\left(x_{1} x_{5}, a_{2}\right)=2$, so $e\left(y_{1} y_{3}, a_{3} a_{4} a_{6} a_{1}\right)=0$ and therefore $e\left(y_{1} y_{3}, L\right)=0$, a contradiction.

Case 4.2: $s=4$. By the maximality of t and $s, e\left(y_{1} y_{4}, D\right) \leq 3+3=6$. Then $e\left(x_{1} x_{5} y_{1} y_{4}, D\right)$ ≤ 14, so $e\left(x_{1} x_{5} y_{1} y_{4}, L_{i}\right) \geq 14$ for some $L_{i} \in H$, and $\left|L_{i}\right|=6$ by Lemma 2.2.1. Let $L_{i}=L=a_{1} a_{2} \ldots a_{6} a_{1}$. Suppose that $e\left(y_{1} y_{4}, a_{1} a_{2}\right) \geq 3$. Then $L-a_{1} a_{2}+P-x_{6} \nsupseteq P_{\geq 7}$, so $e\left(x_{1} x_{5}, L-a_{1} a_{2}\right)=0$. If $e\left(x_{1} x_{5}, a_{1}\right)=2$ then $L-a_{1}+Q \nsupseteq P_{\geq 7}$, so $e\left(y_{1} y_{4}, L-a_{1}\right)=0$. But then $e\left(x_{1} x_{5}, L\right) \leq 4$ and $e\left(y_{1} y_{4}, L\right) \leq 2$, a contradiction. Hence $e\left(x_{1} x_{5}, a_{1}\right) \leq 1$, and similarly $e\left(x_{1} x_{5}, a_{2}\right) \leq 1$. Then $e\left(x_{1} x_{5}, L\right) \leq 2$, so $e\left(y_{1} y_{4}, L\right)=12$. Then $e\left(y_{1} y_{4}, a_{3} a_{4}\right)=4$, so similar to above we get $e\left(x_{1} x_{5}, L-a_{3} a_{4}\right)=0$. But then $e\left(x_{1} x_{5}, L\right)=0$, a contradiction.

Therefore, by symmetry $e\left(y_{1} y_{4}, a_{j} a_{j+1}\right) \leq 2$ for $j=1,3,5$, so $e\left(y_{1} y_{4}, L\right) \leq 6$. Thus $e\left(x_{1} x_{5}, L\right) \geq 9$, so WLOG let $e\left(x_{1} x_{5}, a_{1}\right)=2$. Then $L-a_{1}+Q \nsupseteq P_{\geq 7}$, so $e\left(y_{1} y_{4}, L-a_{1}\right)=0$.

Hence $e\left(y_{1} y_{4}, L\right) \leq 2$, so $e\left(x_{1} x_{5}, L\right)=12$. Then $e\left(x_{1} x_{5}, a_{2}\right)=2$, so similar to above we have $e\left(y_{1} y_{4}, L-a_{2}\right)=0$. But then $e\left(y_{1} y_{4}, L\right)=0$, a contradiction.

Case 4.3: $5 \leq s \leq 6$. By the maximality of $t, e\left(x_{1} x_{6}, D\right) \leq 5$. Similarly, if $s=6$ then $e\left(y_{1} y_{6}, D\right) \leq 5$. We first claim that D has a path $B=b_{1} b_{2} \ldots b_{6}$ of length 6 and a path $C=c_{1} c_{2} \ldots c_{5}$ of length five such that $e\left(b_{1} b_{6} c_{1} c_{5}, D\right) \leq 13$. If $s=5$, then $e\left(y_{1} y_{5}, D\right) \leq 8$ by the maximality of t and s, so $e\left(x_{1} x_{6} y_{1} y_{5}, D\right) \leq 5+8=13$. Since WLOG $e\left(x_{1} x_{5}, D\right) \leq 8$ by the first paragraph of Case 4, we also have $e\left(x_{1} x_{5} y_{1} y_{6}, D\right) \leq 8+5=13$ if $s=6$. Thus the claim holds, so consider such paths B and C.

Since $e\left(b_{1} b_{6} c_{1} c_{5}, D\right) \leq 13$, by Lemma 4.1.1 we have $e\left(b_{1} b_{6} c_{1} c_{5}, L_{i}\right) \geq 15$ for some $L_{i} \in H$ with $\left|L_{i}\right|=6$. Let $L_{i}=L=a_{1} a_{2} \ldots a_{6} a_{1}$. Suppose that $e\left(c_{1} c_{5}, a_{1}\right)=2$. Then $L-a_{1}+B \nsupseteq$ $P_{\geq 7}$, so $e\left(b_{1} b_{6}, L-a_{1}\right)=0$. But then $e\left(b_{1} b_{6}, L\right) \leq 2$, so $e\left(c_{1} c_{5}, L\right) \geq 13$, a contradiction. Hence $e\left(c_{1} c_{5}, a_{j}\right) \leq 1$ for each $a_{j} \in L$. Thus $e\left(c_{1} c_{5}, L\right) \leq 6$, so $e\left(b_{1} b_{6}, L\right) \geq 9$. WLOG let $e\left(b_{1}, L\right) \geq e\left(b_{6}, L\right)$. First suppose that $e\left(b_{1}, L\right)=6$, so that $b_{1} \rightarrow L$. Then $e\left(c_{1} c_{5} b_{6}, a_{j}\right) \leq 1$ for each $a_{j} \in L$, for otherwise $b_{2} b_{3} b_{4} b_{5} b_{6} a_{j} c_{1} c_{2} c_{3} c_{4} c_{5} \supseteq P_{11}$ and $L-a_{j}+b_{1} \supseteq C_{6}$. Then $e\left(c_{1} c_{5} b_{6}, L\right) \leq 6$, so $e\left(b_{1}, L\right) \geq 9$, a contradiction. Hence $e\left(b_{1}, L\right)=5$ and $e\left(b_{6}, L\right) \geq 4$. Similar to above, we see that $e\left(c_{1} c_{5} b_{6}, a_{j}\right) \leq 1$ for four $a_{j} \in L$, since $e\left(b_{1}, L\right)=5$. Since $e\left(c_{1} c_{5}, a_{j}\right) \leq 1$ for each $a_{j} \in L$, we have $e\left(c_{1} c_{5} b_{6}, L\right) \leq 1 \times 4+2 \times 2=8$. But then $e\left(b_{1}, L\right) \geq 7$, a contradiction.

Case 4.4: $s=1$. Since $s=1$ we have $|D|=7$. Since $e\left(x_{1} x_{6}, D\right) \leq 5$, WLOG we can let $e\left(x_{1}, D\right) \leq 2$. Since $|D|=7$ and $D \nsupseteq P_{7}$, we know that $e\left(y_{1}, D\right) \leq 2$. Then $e\left(x_{1} y_{1}, D\right) \leq 4$, so by Lemma 4.1.1 we have $e\left(x_{1} y_{1}, L_{i}\right) \geq 8$ for some $L_{i} \in H$, and $\left|L_{i}\right|=6$. By Lemma 1.4.16, $L_{i}+x_{1} y_{1} \supseteq C_{6} \cup P_{2}$. Hence $L_{i}+P+Q \supseteq C_{6} \cup P_{2} \cup P_{5}$. Label the paths of length 5 and $2 B=b_{1} \ldots b_{5}$ and $C=c_{1} c_{2}$, and reassign D as $D=B \cup C$. By the maximality of t we know that $e\left(c_{1} c_{2}, B\right) \leq 4$ with $e\left(c_{1} c_{2}, b_{1} b_{5}\right)=0$. Further, if $e\left(c_{1} c_{2}, B\right)=4$ then $e\left(c_{1} c_{2}, b_{2} b_{4}\right)=4$. Suppose that $e\left(b_{1} b_{5} c_{1} c_{2}, D\right) \geq 14$. Then $e\left(b_{1} b_{5}, D\right)=e\left(b_{1} b_{5}, B\right)=8$ and $e\left(c_{1} c_{2}, D\right)=4+2=6$. But then $e\left(c_{1} c_{2}, b_{2} b_{4}\right)=4$, so $b_{1} b_{2} c_{1} c_{2} b_{4} b_{5} b_{1}$ is a 6 -cycle, a contradiction. Hence B and C are paths of length 5 and 2 in D with $e\left(b_{1} b_{5} c_{1} c_{2}, D\right) \leq 13$, a
contradiction. This completes the proof.

We define $\tau(\sigma):=\sum_{L_{i} \in \sigma} \tau\left(L_{i}\right)$, and $\tau^{\prime}(\sigma):=\sum_{L_{i} \in \sigma} \tau^{\prime}\left(L_{i}\right)$. Subject to (4.1) and (4.2), we choose σ and P such that the following conditions hold, in order:

$$
\begin{align*}
& \tau(\sigma) \text { is maximal. } \tag{4.3}\\
& r(P) \text { is maximal. } \tag{4.4}\\
& \tau^{\prime}(\sigma) \text { is maximal. } \tag{4.5}\\
& s(P) \text { is maximal. } \tag{4.6}
\end{align*}
$$

Proposition 4.1.3 $e\left(x_{1} x_{2} x_{t-1} x_{t}, D-P\right)=0, e\left(x_{1} x_{2}, P\right) \leq 8, e\left(x_{t-1} x_{t}, P\right) \leq 8$. If $e\left(x_{1} x_{2}, P\right)=$ 8, then $N\left(x_{1} x_{2}, P\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. If $e\left(x_{t-1} x_{t}, P\right)=8$, then
$N\left(x_{t-1} x_{t}, P\right)=\left\{x_{t}, x_{t-1}, x_{t-2}, x_{t-3}, x_{t-4}\right\}$.

Proof: Clearly, $e\left(x_{1} x_{t}, D-P\right)=0$ by (4.2). Suppose $e\left(x_{2} x_{t-1}, D-P\right)>0$, and WLOG let $u x_{2} \in E$ for some $u \in D-P$. By (4.2), $u x_{1} \notin E$ and $e(u, D-P)=0$. Further, $e\left(u x_{1}, x_{3}\right)=0$. Then by the maximality of $k_{0}, e\left(u x_{1}, P\right) \leq 3+3=6$ since $e\left(u x_{1}, x_{i}\right)=0$ for $i \geq 6$. Thus $e\left(u x_{1}, H\right) \geq 7 k-6 \geq 7 k_{0}+1$, so $e\left(u x_{1}, L_{i}\right) \geq 8$ for some $L_{i} \in \sigma$. But this contradicts Condition (4.3) by Lemma 1.4.18, so $e\left(x_{2} x_{t-1}, D-P\right)=0$. By the maximality of $k_{0}, e\left(x_{1}, P\right) \leq 4, e\left(x_{2}, P\right) \leq 5, e\left(x_{t-1}, P\right) \leq 5$, and $e\left(x_{t}, P\right) \leq 4$. It is clear that $e\left(x_{1} x_{2}, P\right) \leq 8$, for otherwise $x_{1} x_{3} \in E$ and $x_{2} x_{6} \in E$, contradicting the maximality of r_{0}. Suppose that $e\left(x_{1} x_{2}, P\right)=8$, and that $x_{2} x_{6} \in E$. Then $x_{1} x_{3} \notin E$, so $e\left(x_{1}, x_{2} x_{4} x_{5}\right)=3$ and $e\left(x_{2}, x_{1} x_{3} x_{4} x_{5} x_{6}\right)=5$. But then $x_{1} x_{4} x_{3} x_{2} x_{6} x_{5} x_{1}=C_{6}$, a contradiction. Therefore the Proposition holds.

The remainder of this section will be used to show that there is a 6-cycle L in σ such that $e\left(x_{1} x_{2} x_{t-1} x_{t}, L\right) \geq 15$. We start by showing $e\left(x_{1} x_{2} x_{t-1} x_{t}, L\right) \geq 13$ for some 6 -cycle L (Prop. 4.1.4), and then increase 13 to 14 (Prop. 4.1.5) and finally, 14 to 15 (Prop. 4.1.7).

In each step, we take advantage of the fact that if $e\left(x_{1} x_{2} x_{t-1} x_{t}, L\right)$ is small for each $L \in \sigma$, then $e\left(x_{1} x_{2} x_{t-1} x_{t}, D\right)$ (and hence $e\left(x_{1} x_{2} x_{t-1} x_{t}, P\right)$ by Prop. 4.1.3) must be large.

Proposition 4.1.4 There is $L_{i} \in \sigma$ such that $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{i}\right) \geq 13$.

Proof: \quad Suppose that $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{i}\right) \leq 12$ for each $L_{i} \in \sigma$. Then $e\left(x_{1} x_{2} x_{t-1} x_{t}, H\right) \leq$ $12 k_{0} \leq 12(k-1)$, so $e\left(x_{1} x_{2} x_{t-1} x_{t}, D\right) \geq 14 k-12 k+12$. Since $e\left(x_{1} x_{2} x_{t-1} x_{t}, D\right) \leq 16$ by Proposition 4.1.3, we have $4 \geq 2 k$, so $k=2$. Then $e\left(x_{1} x_{2} x_{t-1} x_{t}, D\right)=16$ and $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{1}\right)=$ 12. Let $L_{1}=a_{1} a_{2} \ldots a_{p} a_{1}$. By Proposition 4.1.3 we have $e\left(x_{i}, P\right)=4$ for each $i=1,2, x_{t-1}, x_{t}$. Then for each such i, since $e\left(x_{i}, G\right) \geq 7$, we have $e\left(x_{i}, L_{1}\right) \geq 3$. Suppose $\left|L_{1}\right| \geq 7$. By Lemma 2.2.1 and by (4.1), we have $e\left(x_{i}, L_{1}\right)=3$ for each $i=1,2, x_{t-1}, x_{t}$. Further, x_{i} is adjacent to three consecutive vertices of L_{1}. Since $x_{1} x_{5} \in E$ we have $e\left(x_{1} x_{2}, a_{i}\right) \leq 1$ for each $a_{i} \in L_{1}$ by (4.1). By Lemma 2.1.5 and (4.1) we see that there is no $1 \leq j \leq p$ such that $e\left(x_{1} x_{2}, L_{1}-a_{j} a_{j+1}\right)=6$. Since x_{1} and x_{2} are each adjacent to three consecutive vertices of L_{1}, this implies that $p \leq 8$. Thus WLOG we have either (if $p=8$) $N\left(x_{1}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $N\left(x_{2}, L_{1}\right)=\left\{a_{5}, a_{6}, a_{7}\right\}$ or (if $\left.p=7\right) N\left(x_{1}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $N\left(x_{2}, L_{1}\right)=\left\{a_{4}, a_{5}, a_{6}\right\}$. Either way, we see that $L_{1}+x_{1} x_{2} \supseteq C_{6}$, a contradiction. Therefore $\left|L_{1}\right|=6$. Since $x_{1} x_{5} \in E$ and $x_{t} x_{t-4} \in E$, we see that $t \geq 9$, for otherwise $x_{1} x_{5} x_{6} \ldots x_{t} x_{t-4} \ldots x_{1}$ is a large cycle. Hence by Lemma 3.0.5 we see that $L_{1}+P$ contains two disjoint cycles, one of which has length 6 , contradicting the maximality of k_{0}.

Proposition 4.1.5 There is $L_{i} \in \sigma$ such that $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{i}\right) \geq 14$.

Proof: Suppose that $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{i}\right) \leq 13$ for each $L_{i} \in \sigma$. Then $14 k \leq e\left(x_{1} x_{2} x_{t-1} x_{t}, G\right) \leq$ $13 k_{0}+16 \leq 13 k+3$ by Proposition 4.1.3, so $k \leq 3$. Further, we know that $k=2$ for otherwise $\delta(G) \geq 11$ and hence $e\left(x_{1} x_{2} x_{t-1} x_{t}, P\right) \geq 44-26=18$, a contradiction. By Proposition 4.1.4, we have $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{1}\right)=13$ and $e\left(x_{1} x_{2} x_{t-1} x_{t}, P\right) \geq 15$. WLOG let $e\left(x_{t-1} x_{t}, P\right) \geq 8$. By Proposition 4.1.3, Lemma 3.0.5, and the maximality of k_{0} we see that $e\left(x_{t-1} x_{t}, P\right)=8$ and $e\left(x_{1} x_{2}, P\right)=7$.

Suppose that $e\left(x_{2}, P\right)=5$. Then by the maximality of $k_{0}, e\left(x_{3}, x_{1} x_{7}\right)=0$ since $e\left(x_{2}, x_{4} x_{6}\right)=2$. Suppose there is $u \in D-P$ with $x_{3} u \in E$. Then $x_{t} x_{t-1} \ldots x_{4} x_{2} x_{3} u$ is a path of order t, so $e(u, D-P)=0$ by (4.2) and $u x_{i} \notin E$ for $i \geq 6$ by the maximality of k_{0}. Further, by (4.2) we see that $e\left(u, x_{1} x_{2}\right)=0$. Then $e(u, D) \leq 3$, so since $e\left(x_{1}, D\right) \leq 2$, we have $e\left(u x_{1}, L_{1}\right) \geq 14-5=9$, contradicting (4.2) via Lemma 1.4.17. Hence $e\left(x_{3}, D-P\right)=0$, so $e\left(x_{3}, D\right) \leq 4$. Since $x_{2} x_{6} \in E$ and $e\left(x_{t-1} x_{t}, P\right)=8$, by Proposition 4.1.3 we know that $t \geq 8$. Then, we see that $t \geq 10$, for otherwise $x_{2} x_{6} x_{7} \ldots x_{t} x_{t-4} \ldots x_{2}$ is a large cycle. Let $S=x_{2} x_{3} \ldots x_{t-1} x_{t}$. Since $e\left(x_{2}, D\right)=e\left(x_{2}, P\right)=5, e\left(x_{2}, L_{1}\right) \geq 2$. Since $e\left(x_{t-1}, D\right)=e\left(x_{t}, D\right)=4$ and $e\left(x_{3}, D\right) \leq 4, e\left(x_{i}, L_{1}\right) \geq 3$ for each $i=3, x_{t-1}, x_{t}$. But $e\left(x_{2}, x_{3} x_{4} x_{5}\right)=3$, contradicting the maximality of k_{0} via Lemma 3.0.5.

Therefore $e\left(x_{2}, P\right) \leq 4$, and thus $e\left(x_{1}, P\right) \geq 3$. By Lemma 3.0.5 we see that $e\left(x_{1}, x_{3} x_{4} x_{5}\right) \leq$ 2, so $e\left(x_{1}, P\right)=3$ and $e\left(x_{2}, P\right)=4$. Since $e\left(x_{1}, x_{3} x_{4} x_{5}\right)=2, x_{2} x_{6} \notin E$. But then $e\left(x_{2}, x_{4} x_{5}\right)=2$ and $e\left(x_{1}, x_{3} x_{4} x_{5}\right)=2$, contradicting Lemma 3.0.5.

By the maximality of k_{0} and by Condition (4.3), we have the following Proposition (see Figure 4.2 for two examples), which will be used throughout the remainder of the paper without reference. We note here that we will also make extensive use of Lemmas 1.4.5-1.4.14 without reference.

Proposition 4.1.6 Let L be a 6 -cycle, and let $u, v \in L$.

- If $x_{1} \rightarrow(L, u)$ then $e\left(u, x_{2} x_{t-1}\right) \leq 1$ and $e\left(u, x_{2} x_{t}\right) \leq 1$.
- If $x_{t} \rightarrow(L, u)$ then $e\left(u, x_{1} x_{t-1}\right) \leq 1$ and $e\left(u, x_{2} x_{t-1}\right) \leq 1$.
- If $x_{1} x_{t} \rightarrow(L, u v)$ then $e\left(u, x_{2} x_{t-1}\right) \leq 1$ and $e\left(v, x_{2} x_{t-1}\right) \leq 1$.
- If $x_{1} \xrightarrow{1}(L, u)$, then $e\left(x_{2} x_{t}, u\right)=0$.
- If $x_{t} \xrightarrow{1}(L, u)$, then $e\left(x_{1} x_{t-1}, u\right)=0$.
- If $x_{2} \xrightarrow{1}(L, u)$, then $e\left(x_{1} x_{t}, u\right) \leq 1$.

Figure 4.2: Top: $x_{1} \rightarrow(L, u)$ and $e\left(u, x_{2} x_{t-1}\right)=2$. Here $L+P$ contains a 6 -cycle and a large cycle. Bottom: $x_{t-1} \xrightarrow{1}(L, u)$ and $e\left(x_{1} x_{t}, u\right)=2$. Here $L+P$ contains a path of order t and a 6 -cycle L^{\prime} with $\tau\left(L^{\prime}\right) \geq \tau(L)+1$.

Figure 4.3: In each case, there is a path of order five from x_{1} to x_{2}.

- If $x_{t-1} \xrightarrow{1}(L, u)$, then $e\left(x_{1} x_{t}, u\right) \leq 1$.
- If $x_{1} x_{2} \xrightarrow{1}(L, u v)$ with $u v \in E$, then $e\left(x_{t}, u v\right)=0$.
- If $x_{t-1} x_{t} \xrightarrow{1}(L, u v)$ with $u v \in E$, then $e\left(x_{1}, u v\right)=0$.

Proposition 4.1.7 There is $L_{i} \in \sigma$ such that $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{i}\right) \geq 15$.

Proof: Suppose not. By Proposition 4.1.3, we have $e\left(x_{1} x_{2} x_{t-1} x_{t}, P\right) \geq 14 k-14 k_{0} \geq 14$. By Proposition 4.1.5, $e\left(x_{1} x_{2} x_{t-1} x_{t}, L_{i}\right)=14$ for some $L_{i} \in \sigma$. Let $L_{i}=L=a_{1} a_{2} \ldots a_{6} a_{1}$.

Claim 1(see Figure 4.3): Either (1) $x_{1} x_{5} \in E$ or (2) $x_{2} x_{6} \in E$ and $x_{1} x_{4} \in E$ or (3) $x_{2} x_{5} \in E$ and $x_{1} x_{3} \in E$. Either (1) $x_{t} x_{t-4} \in E$ or (2) $x_{t-1} x_{t-5} \in E$ and $x_{t} x_{t-3} \in E$ or (3) $x_{t-1} x_{t-4} \in E$ and $x_{t} x_{t-2} \in E$.
 and $x_{2} x_{5} \notin E$ or $x_{1} x_{3} \notin E$. We see that $e\left(x_{1} x_{2}, P\right) \leq 6$, so $e\left(x_{t-1} x_{t}, P\right)=8$. By Proposition 4.1.3, $e\left(x_{t} x_{t-1}, x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4}\right)=8$. We make a few easy observations, which follow from the maximality of k_{0}, from Condition (4.3), and from the fact that
$e\left(x_{t} x_{t-1}, x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4}\right)=8$ (and hence that x_{t-1} and x_{t} are interchangeable.) We note that Proposition 4.1.6 still holds.
(a) If $x_{1} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{2} x_{t-1} x_{t}, a_{i}\right) \leq 1$.
(b) If $x_{1} \xrightarrow{1}\left(L, a_{i}\right)$, then $e\left(x_{2} x_{t-1} x_{t}, a_{i}\right)=0$.
(c) If $x_{2} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$.
(d) If $x_{1} x_{2} \rightarrow\left(L, a_{i} a_{j}\right)$, then $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ and $e\left(x_{t-1} x_{t}, a_{j}\right) \leq 1$.
(e) If $x_{1} x_{2} \xrightarrow{1}\left(L, a_{i} a_{j}\right)$ with $a_{i} a_{j} \in E$, then $e\left(x_{t-1} x_{t}, a_{i} a_{j}\right)=0$.
(f) If $x_{t-1} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{1} x_{t}, a_{i}\right) \leq 1$ and $e\left(x_{2} x_{t}, a_{i}\right) \leq 1$.
(g) If $x_{1} x_{t-1} \rightarrow\left(L, a_{i} a_{j}\right)$, then $e\left(x_{2} x_{t}, a_{i}\right) \leq 1$ and $e\left(x_{2} x_{t}, a_{j}\right) \leq 1$.

We immediately see that $x_{1} \nrightarrow L$, so $e\left(x_{1}, L\right) \leq 5$. Suppose that $e\left(x_{1}, L\right)=5$, and WLOG let $e\left(x_{1}, L-a_{6}\right)=5$. Then $\tau\left(a_{6}, L\right)=0$, so by (b) $e\left(x_{2} x_{t-1} x_{t}, a_{6}\right)=0$. By (a), $e\left(x_{2} x_{t-1} x_{t}, a_{2} a_{3} a_{4}\right) \leq 3$, so $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{5}\right) \geq 14-5-3=6$. But then $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$ and $e\left(x_{t-1} x_{t}, a_{1}\right)=2$, contradicting (d). Therefore $e\left(x_{1}, L\right) \leq 4$.

Case A: $e\left(x_{1}, L\right)=4$.
Case A.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By (a), $e\left(x_{2} x_{t-1} x_{t}, a_{i}\right) \leq 1$ for $i=2,3$. Thus $e\left(x_{2} x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right) \geq 14-6=8$. Suppose that $\tau\left(a_{6}, L\right) \geq 2$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,5$, so $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{5}\right) \leq 2$ and hence $e\left(x_{2} x_{t-1} x_{t}, a_{4} a_{6}\right) \geq 8-2=6$. Then $x_{1} \rightarrow$ $\left(L, a_{6}\right)$, so $\tau\left(a_{5}, L\right)=0$. Since $e\left(x_{t-1} x_{t}, a_{5} a_{6}\right) \geq 2$, this implies that $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \leq 5$ by (e). Then $e\left(x_{2}, a_{1} a_{2} a_{3}\right)=0$ since $x_{2} a_{4} \in E$. Thus $e\left(x_{t-1} x_{t}, a_{2}\right)=e\left(x_{t-1} x_{t}, a_{3}\right)=$ $e\left(x_{t-1} x_{t}, a_{1}\right)=e\left(x_{2} x_{t-1} x_{t}, a_{5}\right)=1$ and $e\left(x_{2} x_{t-1} x_{t}, a_{4} a_{6}\right)=6$. But $x_{1} \xrightarrow{2}\left(L, a_{5}\right)$, contradicting (b). Hence $\tau\left(a_{5}, L\right) \leq 1$, and by symmetry $\tau\left(a_{6}, L\right) \leq 1$. Suppose that $e\left(x_{t-1} x_{t}, a_{5} a_{6}\right)>$ 0 . Then by $(\mathrm{e}), x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{2}, a_{1} a_{4}\right)=0$. Then $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right) \geq 8-$ $2=6$. WLOG let $e\left(x_{t-1} x_{t}, a_{4} a_{5}\right) \geq 3$. Then by (d), $x_{1} x_{2} \nrightarrow\left(L, a_{4} a_{5}\right)$, so $x_{2} a_{6} \notin E$. Hence $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right) \geq 7$, so again by (d) $x_{1} x_{2} \nrightarrow\left(L, a_{6} a_{1}\right)$. Then $x_{2} a_{5} \notin E$, so
$e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=8$. Also, since $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right)=4$, by (a) $e\left(a_{2} a_{3}, a_{5} a_{6}\right)=0$. But this is clearly a contradiction, since now $x_{t-1} x_{t} \xrightarrow{4}\left(L, a_{2} a_{3}\right)$ and $e\left(x_{1}, a_{2} a_{3}\right)=2$. Therefore $e\left(x_{t-1} x_{t}, a_{5} a_{6}\right)=0$, so $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right) \geq 8-4=4$ and $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right)=4$, contradicting (d).

Case A.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. By (a) $e\left(x_{2} x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right) \leq 3$, so $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \geq 14-7=7$. Suppose $\tau\left(a_{4}, L\right) \leq 1$. Then $x_{1} \xrightarrow{1}\left(L, a_{4}\right)$, so by (b) $e\left(x_{2} x_{t-1} x_{t}, a_{4}\right)=0$. Then $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \geq 8$, so $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,3,5$, by (a). Thus $\tau\left(a_{6}, L\right) \leq 1$, so similarly we have $e\left(x_{2} x_{t-1} x_{t}, a_{6}\right)=0$ and hence $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right)=9$ and $e\left(x_{2} x_{t-1} x_{t}, a_{2}\right)=1$. But then $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$ and $e\left(x_{t-1} x_{t}, a_{1}\right)=2$, contradicting (d). Therefore $\tau\left(a_{4}, L\right) \geq 2$, and by symmetry $\tau\left(a_{6}, L\right) \geq 2$. But then $x_{1} \rightarrow L$, a contradiction.

Case A.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. By (a) $e\left(x_{2} x_{t-1} x_{t}, a_{3} a_{6}\right) \leq 2$, so $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{2} a_{4} a_{5}\right) \geq 8$. Suppose $\tau\left(a_{3} a_{6}, L\right)>0$, and WLOG let $\tau\left(a_{6}, L\right)>0$. Then $x_{1} \rightarrow$ $\left(L, a_{i}\right)$ for $i=1,5$, so by (a) this implies that $e\left(x_{2} x_{t-1} x_{t}, a_{2} a_{4}\right)=6$. Then $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $e\left(x_{t-1} x_{t}, a_{2}\right)=2$, contradicting (d). Hence $\tau\left(a_{3} a_{6}, L\right)=0$, so by (b) $e\left(x_{2} x_{t-1} x_{t}, a_{3} a_{6}\right)=$ 0 . Then $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{2} a_{4} a_{5}\right) \geq 10$. If $e\left(x_{2}, a_{1} a_{2} a_{4} a_{5}\right) \geq 3$, then $x_{1} x_{2} \rightarrow\left(L, a_{i} a_{i+1}\right)$ for $i=$ $2,3,5,6$, so by (d) $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{4} a_{5}\right) \leq 4$, a contradiction. Hence $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{4} a_{5}\right)=8$, so since $\tau\left(a_{6}, L\right)=0$ we get $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$. But $x_{1} a_{5} \in E$, a contradiction.

Case B: $e\left(x_{1}, L\right)=3$. Since $e\left(x_{2} x_{t-1} x_{t}, L\right) \geq 11$, we observe that $x_{1} \rightarrow\left(L, a_{i}\right)$ for at most three $a_{i} \in L$.

Case B.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. By (a), $e\left(x_{2} x_{t-1} x_{t}, L-a_{2}\right) \geq 11$. Suppose $x_{2} a_{4} \in$ E. Then $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so by (d) e(xt-1$\left.x_{t}, a_{3} a_{5} a_{6}\right) \leq 3$. Then $e\left(x_{2}, L-a_{2}\right) \geq 11-7=4$, so $e\left(x_{2}, a_{5} a_{6}\right) \geq 1$. But then by a similar argument we see that $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \leq 2$, so $e\left(x_{t-1} x_{t}, L-a_{2}\right) \leq 5$, a contradiction. Hence $x_{2} a_{4} \notin E$, and by symmetry we have $e\left(x_{2}, a_{4} a_{6}\right)=0$. Then $e\left(x_{t-1} x_{t}, L-a_{2}\right) \geq 11-3=8$, so by (d) $x_{2} a_{5} \notin E$ for otherwise $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right)$. Then $e\left(x_{2}, a_{4} a_{5} a_{6}\right)=$ 0 and $e\left(x_{t-1} x_{t}, L-a_{2}\right) \geq 9$. Then $e\left(x_{t-1} x_{t}, a_{3} a_{4} a_{5} a_{6}\right) \geq 7$, so since $e\left(x_{1}, a_{1} a_{2}\right) \geq 1$ we have $\tau\left(a_{1} a_{2}, L\right) \geq 5$. Then $x_{1} \rightarrow\left(L, a_{6}\right)$, so by (a) $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,3,4,5$, since $e\left(x_{t-1} x_{t}, a_{i}\right)=2$. But $e\left(a_{2}, a_{4} a_{6}\right) \geq 1$, so $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1$ or $i=3$, a contradiction.

Figure 4.4: Proposition 4.1.7, Case B.3: Unfortunately, even with all of the edges between P and L, we can neither find a way to contradict the maximality of k_{0}, nor any of the Conditions (4.3)-(4.6).

Case B.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. By (a), $e\left(x_{2} x_{t-1} x_{t}, L-a_{3}\right) \geq 11$. Suppose $e\left(x_{2}, a_{1} a_{4}\right)>$ 0 . Then $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so by (d) e(x-1$\left.x_{t}, a_{2} a_{5} a_{6}\right) \leq 3$. Then $e\left(x_{2}, L-a_{3}\right) \geq 11-7=4$ and $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \geq 11-5-3=3$. Then $x_{2} a_{5} \notin E$, for otherwise $x_{1} x_{2} \rightarrow\left(L, a_{i} a_{i+1}\right)$ for $i=3,6$, contradicting (d). Then $e\left(x_{2}, a_{1} a_{2} a_{4} a_{6}\right)=4$, $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right)=4$, and $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=2,5,6$. By (e) we see that $\tau\left(a_{5} a_{6}, L\right) \geq 4$, and since $x_{1} \nrightarrow\left(L, a_{6}\right)$ by (a), we have $e\left(a_{5}, a_{1} a_{3}\right)=0$. Then $\tau\left(a_{6}, L\right)=3$, so $x_{1} \rightarrow\left(L, a_{1}\right)$ and $x_{1} \rightarrow\left(L, a_{5}\right)$. But this clearly contradicts (a), since $e\left(x_{2} x_{t-1} x_{t}, a_{1}\right)=3$. Therefore $e\left(x_{2}, a_{1} a_{4}\right)=0$, so $e\left(x_{t-1} x_{t}, L-a_{3}\right) \geq 11-3=8$. Then $e\left(x_{t-1} x_{t}, a_{4} a_{6} a_{1}\right) \geq 8-4=4$, so $x_{2} a_{5} \notin E$ by (d), for otherwise $x_{1} x_{2} \rightarrow\left(L, a_{i} a_{i+1}\right)$ for $i=3,6$. Thus $e\left(x_{2}, a_{1} a_{4} a_{5}\right)=0$ and $e\left(x_{t-1} x_{t}, L-a_{3}\right) \geq 9$. Then $e\left(x_{t-1} x_{t}, a_{5} a_{6} a_{1} a_{2}\right) \geq 7$, so since $x_{1} a_{4} \in E$ we have $\tau\left(a_{3} a_{4}, L\right) \geq 5$. But this contradicts (a), since $e\left(x_{t-1} x_{t}, L-a_{3}\right) \geq 9$.

Case B.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$. By (a), $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \geq 11-3=8$. By (d), we see that $e\left(x_{2}, a_{2} a_{4} a_{6}\right)=0$, for otherwise $e\left(x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \leq 4$. Then $e\left(x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right) \geq$ $11-9=2$. WLOG let $e\left(x_{t-1} x_{t}, a_{2}\right)=e\left(x_{t-1} x_{t}, a_{4}\right)=1$. If $a_{2} a_{4} \in E$, then $a_{1} a_{2} a_{4} a_{5}$ is a P_{4}, so since $e\left(x_{1} x_{2}, a_{1} a_{5}\right) \geq 3, x_{1} x_{2} \rightarrow\left(L, a_{3} a_{6}\right)$. Similarly, $a_{3} a_{2} a_{4} a_{5}$ is a P_{4}, so $x_{1} x_{2} \rightarrow\left(L, a_{1} a_{6}\right)$. But then by (d), e(xt-1 $\left.x_{t}, a_{3} a_{1}\right) \leq 2$, a contradiction. Then $a_{2} a_{4} \notin E$, and by symmetry
$a_{2} a_{6} \notin E$ and $a_{4} a_{6} \notin E$. Suppose $e\left(x_{t-1} x_{t}, a_{6}\right)=1$, and since $e\left(x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right)=3$ WLOG let $e\left(x_{t}, a_{2} a_{4}\right)=2$. Then by (b), $\tau\left(a_{i}, L\right) \geq 1$ for $i=2,4,6$. Since $x_{t} \rightarrow\left(L, a_{3}\right)$, we know $x_{t-1} a_{3} \notin E$. Then $e\left(x_{t}, L-a_{6}\right)=5$ and $\tau\left(a_{6}, L\right)=1$, so $x_{t} \rightarrow L$. But $e\left(x_{1} x_{t-1}, a_{1}\right)=2$, a contradiction. Therefore $e\left(x_{t-1} x_{t}, a_{6}\right)=0$, so $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right)=9$. Then $x_{t-1} \nrightarrow$ $\left(L, a_{i}\right)$ and $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=1,3,5$, since $e\left(x_{1} x_{t}, a_{1} a_{3} a_{5}\right)=6$ and $e\left(x_{1} x_{t-1}, a_{1} a_{3} a_{5}\right)=6$. Since $e\left(x_{1}, a_{1} a_{5}\right)=2$ and $e\left(x_{2} x_{t}, a_{3}\right)=2$, by (g) we have $e\left(x_{t-1}, a_{2} a_{4}\right) \leq 1$, for otherwise $x_{1} a_{1} a_{2} x_{t-1} a_{4} a_{5} x_{1}=C_{6}$ and $a_{3} x_{2} \ldots x_{t-2} x_{t} a_{3}=C_{\geq 6}$. Similarly, $e\left(x_{t}, a_{2} a_{4}\right) \leq 1$. WLOG let $x_{t-1} a_{2} \in E$ and $x_{t} a_{4} \in E$.

With Lemma 3.0.7 in mind, we now show that $e\left(x_{1} x_{t-2} a_{2} a_{6}, L_{i}\right) \geq 15$ for some $L_{i} \in$ $\sigma-\{L\}$. Since $x_{t} \rightarrow\left(L, a_{2}\right)$ and $a_{2} x_{t-1} \in E$, we know that $e\left(a_{2}, D-P\right)=0$ by Condition (4.2). Since $x_{t-1} x_{t} \rightarrow\left(L, a_{6} a_{1}\right)$ and $a_{6} a_{1} x_{1} \ldots x_{t-2}=P_{t}$, we have $e\left(a_{6} x_{t-2}, D-P\right)=0$. Thus $e\left(x_{1} x_{t-2} a_{2} a_{6}, D-P\right)=0$. Since $x_{1} x_{5} \notin E, e\left(x_{1}, P\right) \leq 3$. Since $x_{t} x_{t-3} \in E$, by the maximality of k_{0} we have $e\left(x_{t-2}, x_{t-5} x_{t-6}\right)=0$. Hence $e\left(x_{t-2}, P\right) \leq 4$. Since $x_{t-1} x_{t} \rightarrow$ $\left(L, a_{6} a_{1}\right)$ and $a_{6} a_{1} \ldots x_{t-2}=P_{t}, e\left(a_{6}, P\right) \leq 3$ by the maximality of k_{0}. Similarly, $e\left(a_{2}, P\right) \leq$ $3+e\left(a_{2}, x_{t-1} x_{t}\right)=4$. Therefore $e\left(x_{1} x_{t-2} a_{2} a_{6}, P\right) \leq 14$. Because $e\left(a_{2}, a_{4} a_{6}\right)=0$ and $a_{4} a_{6} \notin E$, we have $e\left(a_{2} a_{6}, L\right) \leq 3+3=6$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{1} a_{3} \in E$, we have $x_{t-2} a_{3} \notin E$, for otherwise $x_{1} x_{2} \ldots x_{t-2} a_{3} x_{1}=C_{\geq 6}$. Similarly, $e\left(x_{t-2}, a_{1} a_{5}\right)=0$. Hence $e\left(x_{t-2}, L\right) \leq 3$, and since $e\left(x_{1}, L\right)=3$ we have $e\left(x_{1} x_{t-2} a_{2} a_{6}, L\right) \leq 12$. Therefore $e\left(x_{1} x_{t-2} a_{2} a_{6}, D+L\right) \leq 26$, so $e\left(x_{1} x_{t-2} a_{2} a_{6}, H-L\right) \geq 14 k-26 \geq 14\left(k_{0}-1\right)+2$. Hence $e\left(x_{1} x_{t-2} a_{2} a_{6}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$ (see Figure 4.5).

Let $L_{i}=L^{\prime}=v_{1} v_{2} \ldots v_{6} v_{1}$, and let $P^{\prime}=x_{t-2} x_{t-3} \ldots x_{2} x_{1}$. We now show that the three numbered assumptions in Lemma 3.0.7 are satisfied. That is, we show that if $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} a_{2} a_{6}\right) \leq 1$, if $a_{2} \xrightarrow{0}\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} x_{1}\right)=0$, if $a_{6} \xrightarrow{0}\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} x_{1}\right)=0$, and if $x_{1} \xrightarrow{1}\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} a_{6}\right)=0$. Since $x_{2} x_{3} \ldots x_{t} a_{1} x_{2}=C_{\geq 6}$, we see that (see Figure 4.6) if $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, a_{2} a_{6}\right) \leq 1$, for otherwise $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$ and $v_{j} \rightarrow\left(L, a_{1}\right)$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$, we see that (see Figure 4.7) if $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} a_{2}\right) \leq 1$, for otherwise $v_{j} a_{2} a_{3} x_{2} x_{3} \ldots x_{t-2} v_{j}=C_{\geq 6}$. Similarly, since $x_{t-1} x_{t} \rightarrow$

Figure 4.5: Proposition 4.1.7, Case B.3.
($L, a_{5} a_{6}$) we know that if $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$, then $e\left(v_{j}, x_{t-2} a_{6}\right) \leq 1$. Therefore, if $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} a_{2} a_{6}\right) \leq 1$.

Since $\tau\left(a_{2}, L\right) \leq 1$ and $e\left(x_{t}, L-a_{2}\right)=4$, we have $x_{t} \xrightarrow{1}\left(L, a_{2}\right)$. Therefore, since $x_{1} x_{2} \ldots x_{t-3} x_{t-1} x_{t-2}=P_{t-1}$ (recall from the beginning of this proof that $e\left(x_{t} x_{t-1}, x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4}\right)=8$), we see by Condition (4.3) that if $a_{2} \xrightarrow{0}\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{1} x_{t-2}\right)=0$ (see Figure 4.8). Similarly, if $a_{6} \xrightarrow{0}\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{1} x_{t-2}\right)=0$. Since $e\left(a_{6}, a_{2} a_{4}\right)=0$, we know that $x_{t-1} x_{t} \xrightarrow{0}\left(L, a_{5} a_{6}\right)$. Thus, because $a_{6} a_{5} x_{2} x_{3} \ldots x_{t-2}=P_{t-1}$, we observe by Condition (4.3) that if $x_{1} \xrightarrow{1}\left(L^{\prime}, v_{j}\right)$ then $e\left(v_{j}, x_{t-2} a_{6}\right)=0$.

Thus, by Lemma 3.0.7 we see that $L^{\prime}+P^{\prime}+a_{2} a_{6}$ contains either $C_{6} \cup C_{\geq 6}$ or a path of order $t-2+2=t$ and a 6-cycle C with $\tau(C) \geq \tau\left(L^{\prime}\right)-1$ (see Figure 4.9). Because $e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{4} a_{5}\right)=6$, we know that $\tau\left(a_{6} a_{1}, L\right) \geq 4$, for otherwise $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{6} a_{1}\right)$ and $a_{6} a_{1} x_{1} \ldots x_{t-2}=P_{t}$. Thus, because $e\left(a_{6}, a_{2} a_{4}\right)=0$, we must have $\tau\left(a_{1}, L\right)=3$. Then $C^{\prime}=x_{t-1} x_{t} a_{1} a_{3} a_{4} a_{5} x_{t-1}$ is a 6 -cycle, and $e\left(x_{t-1} x_{t}, C^{\prime}\right)-e\left(x_{t-1}, x_{t}\right)=4+5-1=8$. Since $e\left(a_{2}, a_{4} a_{6}\right)=0$ and $a_{4} a_{6} \notin E, e\left(a_{2} a_{6}, L\right) \leq 3+3=6$. Hence $\tau\left(C^{\prime}\right) \geq \tau(L)+2$. But then $L+L^{\prime}+P$ contains either $2 C_{6} \cup C_{\geq 6}$, or a path of order t and two 6 -cycles C and C^{\prime} with $\tau(C)+\tau\left(C^{\prime}\right) \geq \tau\left(L^{\prime}\right)-1+\tau(L)+2$, contradicting either the maximality of k_{0} or Condition (4.3).

Figure 4.6: The bold edges reveal a large cycle and a 6 -cycle. If $x_{1} \rightarrow\left(L^{\prime}, v_{1}\right)$ then we would have another 6 -cycle, disjoint with the other two large cycles.

Figure 4.7: As in Figure 4.6, we see that if $x_{1} \rightarrow\left(L^{\prime}, v_{1}\right)$ then we have two 6 -cycles and a large cycle, each disjoint.

Figure 4.8: In this picture, we recognize a path of order t and a 6 -cycle with more chords than L. The remaining vertices are a_{2} and those in $L^{\prime}-v_{1}$.

Figure 4.9: Applying Lemma 3.0.7 to the graph in the boxed region, and then combining that graph with the 6 -cycle on the left, gives us a contradiction.
$\underline{\text { Case C: } e\left(x_{1}, L\right) \leq 2 . \text { We have } e\left(x_{2} x_{t-1} x_{t}, L\right) \geq 12 \text {. WLOG let } e\left(x_{t}, L\right) \geq e\left(x_{t-1}, L\right) . ~}$

Claim C1: $e\left(x_{t}, L\right) \leq 4$.

Proof: Suppose not. If $e\left(x_{t}, L\right)=6$, then $e\left(x_{1} x_{t-1}, a_{i}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{i}\right) \leq 1$ for each $a_{i} \in L$. Since $e\left(x_{1}, L\right) \leq 2$ and $e\left(x_{1} x_{2} x_{t-1}, L\right) \geq 8$, we have $e\left(x_{1}, L\right)=e\left(x_{2}, L\right)=2$ and $e\left(x_{t-1}, L\right)=4$, with $N\left(x_{1}, L\right)=N\left(x_{2}, L\right)$ and $N\left(x_{t-1}, L\right)$ disjoint. If $N\left(x_{t-1}, L\right)=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ then $e\left(x_{1} x_{2}, a_{5} a_{6}\right)=4$, so by (f) $\tau\left(a_{5} a_{6}, L\right)=0$. But then $x_{t-1} x_{t} \xrightarrow{6}\left(L, a_{5} a_{6}\right)$, a massive contradiction. If $N\left(x_{t-1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$, then $e\left(x_{1} x_{2}, a_{4} a_{6}\right)=4$, contradicting (f). Then $N\left(x_{t-1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$, which again contradicts (f). Therefore $e\left(x_{t}, L\right)=5$. WLOG let $e\left(x_{t}, L-a_{6}\right)=5$. Then $x_{t} \rightarrow\left(L, a_{i}\right)$ for $i=2,3,4,6$, so $e\left(x_{1} x_{t-1}, a_{i}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{i}\right) \leq 1$ for each such a_{i}. Since $e\left(x_{2} x_{t-1}, L\right) \geq 14-2-5=7, x_{t} \nrightarrow L$, so $\tau\left(a_{6}, L\right)=0$. Then $x_{t} \xrightarrow{3}\left(L, a_{6}\right)$, so $e\left(x_{1} x_{t-1}, a_{6}\right)=0$.

Suppose $x_{2} a_{6} \in E$. If $x_{2} a_{4} \in E$ then $x_{2} \rightarrow\left(L, a_{5}\right)$, so $x_{t-1} a_{5} \notin E$. Then $e\left(x_{2} x_{t-1}, a_{1}\right) \geq$ $7-5=2$ and $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i \neq 1$. Since $x_{t-1} a_{1} \in E, x_{2} \nrightarrow\left(L, a_{1}\right)$, so $x_{2} a_{2} \notin E$. Thus $x_{t-1} a_{2} \in E$, so $x_{2} a_{3} \notin E$ and hence $x_{t-1} a_{3} \in E$. Hence $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=4$ and $e\left(x_{t-1}, a_{1} a_{2} a_{3}\right)=3$. Since $x_{1} a_{6} \notin E$ and $e\left(x_{1}, L\right) \geq 14-5-7=2, e\left(x_{1}, L-a_{5} a_{6}\right) \geq 1$. Thus $x_{1} x_{2} \rightarrow\left(L, a_{i} a_{i+1}\right)$ for some $i=1,2,3,6$, contradicting (d) since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3}\right)=6$. Therefore $x_{2} a_{4} \notin E$, and by symmetry $x_{2} a_{2} \notin E$.

We have $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right) \geq 7-2-e\left(x_{2}, a_{1} a_{2} a_{4} a_{5}\right) \geq 3$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$ and $\tau\left(a_{6}, L\right)=0$, we know that $x_{1} a_{5} \notin E$. By symmetry, $x_{1} a_{1} \notin E$. Suppose $e\left(x_{2}, a_{1} a_{5}\right)=2$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{2}\right) \geq 3, x_{1} x_{2} \nrightarrow\left(L, a_{1} a_{2}\right)$ by (d). Since $x_{2} a_{6} \in E$, this implies that $x_{1} a_{3} \notin$ E. Thus, because $e\left(x_{1}, L\right) \geq 14-5-8=1$, we know that $e\left(x_{1}, a_{2} a_{4}\right) \geq 1$. Then $x_{1} x_{2} \rightarrow$ $\left(L, a_{5} a_{6}\right)$ or $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$, so because $e\left(x_{t}, a_{5} a_{6} a_{1}\right)=3$ we have $e\left(x_{t-1}, a_{1} a_{5}\right) \leq 1$ by (d). Therefore $e\left(x_{t-1}, a_{2} a_{4}\right)=2, e\left(x_{2} x_{t-1}, a_{3}\right)=e\left(x_{t-1}, a_{1} a_{5}\right)=1$, and $e\left(x_{1}, L\right)=2$. WLOG let $x_{t-1} a_{1} \in E$. Then $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$, so $x_{1} a_{2} \notin E$. Thus $e\left(x_{1}, a_{3} a_{4}\right)=2$, so $x_{1} x_{2} \rightarrow\left(L, a_{1} a_{2}\right)$ and $x_{t-1} a_{2} \in E$, a contradiction. Therefore $e\left(x_{2}, a_{1} a_{5}\right) \leq 1$, so $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right)=4$. Then $x_{1} x_{2} \nrightarrow\left(L, a_{1} a_{2}\right)$, so since $x_{2} a_{6} \in E$ and $e\left(x_{1}, L\right)=2$, we have $e\left(x_{1}, a_{2} a_{4}\right)=2$. Since
$x_{1} x_{2} \nrightarrow\left(L, a_{6} a_{1}\right)$ and $x_{1} x_{2} \nrightarrow\left(L, a_{5} a_{6}\right)$ by (d), this implies that $e\left(x_{2}, a_{1} a_{5}\right)=0$. But then $e\left(x_{2} x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right) \leq 6$, a contradiction.

Therefore $x_{2} a_{6} \notin E$, so $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4, e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,4$, and $e\left(x_{1}, L\right)=$ 2. Since $e\left(x_{t-1} x_{t}, a_{1}\right)=2$, by (d) we have $x_{1} x_{2} \nrightarrow\left(L, a_{6} a_{1}\right)$, and therefore $x_{1} a_{2} \notin E$. By symmetry, $x_{1} a_{4} \notin E$. Since $e\left(x_{2} x_{t-1} x_{t}, a_{2}\right)=e\left(x_{2} x_{t-1} x_{t}, a_{4}\right)=2, x_{1} \nrightarrow\left(L, a_{2}\right)$ and $x_{1} \nrightarrow\left(L, a_{4}\right)$ by (a). Then $e\left(x_{1}, a_{1} a_{3} a_{5}\right) \leq 1$, a contradiction since $e\left(x_{1}, L\right)=2$.

QED

By Claim C1 we have $e\left(x_{t}, L\right) \leq 4$ and $e\left(x_{t-1}, L\right) \leq 4$, so $e\left(x_{1} x_{2}, L\right) \geq 14-8=6$ and $e\left(x_{2}, L\right) \geq 6-2=4$.

Claim C2: $e\left(x_{2}, L\right)=4$.

Proof: Suppose not. If $e\left(x_{2}, L\right)=6$, then by (c) we have $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for each $a_{i} \in L$, and $e\left(x_{1}, L\right)=2$. WLOG let $x_{1} a_{1} \in E$. By (a), $e\left(x_{1}, a_{3} a_{5}\right)=0$. Suppose $x_{1} a_{2} \in E$. By (e), $\tau\left(a_{5} a_{6}, L\right) \geq 4$. But then $x_{1} \rightarrow\left(L, a_{i}\right)$ for some $i=3,4,5,6$, contradicting (a). Hence $x_{1} a_{2} \notin E$, and by symmetry $x_{1} a_{6} \notin E$. Therefore $e\left(x_{1}, a_{1} a_{4}\right)=2$, so again we must have $\tau\left(a_{5} a_{6}, L\right) \geq 4$, and again we see that $x_{1} \rightarrow\left(L, a_{i}\right)$ for some $i=5,6$, a contradiction. So $e\left(x_{2}, L\right)=5$.

WLOG let $e\left(x_{2}, L-a_{6}\right)=5$. By (c), $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $i=2,3,4,6$. Since $e\left(x_{t-1} x_{t}, L\right) \geq 14-2-5=7, x_{2} \nrightarrow L$, we have $\tau\left(a_{6}, L\right)=0$. Then $x_{2} \xrightarrow{3}\left(L, a_{6}\right)$, so $e\left(x_{1} x_{t-1} x_{t}, a_{6}\right) \leq 1$. Suppose that $e\left(x_{1}, a_{1} a_{4}\right) \geq 1$. Then $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{5}\right) \leq$ 1 and hence $e\left(x_{t-1} x_{t}, a_{1}\right)=2$. Then $x_{1} x_{2} \nrightarrow\left(L, a_{6} a_{1}\right)$, so $e\left(x_{1}, a_{2} a_{5}\right)=0$. Similarly, $x_{1} a_{6} \notin E$ since $x_{2} a_{3} \in E$, which implies that $e\left(x_{1}, a_{1} a_{3} a_{4}\right)=2$. But then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, contradicting (e) since $e\left(x_{t-1} x_{t}, a_{5} a_{6}\right)=2$.

Therefore $e\left(x_{1}, a_{1} a_{4}\right)=0$, and by symmetry $e\left(x_{1}, a_{2} a_{5}\right)=0$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right) \geq$ $7-4=3, x_{1} a_{6} \notin E$ by (d), for otherwise $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{4} a_{5}\right)$. Thus $x_{1} a_{3} \in E$, and since $e\left(x_{1}, L\right)=1$ we also have $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right)=4$ and $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for
$i=2,3,4,6$. WLOG let $x_{t-1} a_{2} \in E$. If $x_{t-1} a_{4} \in E$, then by (f) $x_{t} a_{3} \notin E$ since $x_{1} a_{3} \in E$. But then $x_{t-1} a_{3} \in E$, so $e\left(x_{t-1}, L\right) \geq 5$, a contradiction. Therefore $x_{t-1} a_{4} \notin E$, so $x_{t} a_{4} \in E$. Then similarly, $x_{t} a_{6} \notin E$, so $x_{t-1} a_{6} \in E$. But then $x_{t-1} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{2} x_{t}, a_{1}\right)=2$, contradicting (f).

By Claims C1 and C2 we have $e\left(x_{2}, L\right)=e\left(x_{t-1}, L\right)=e\left(x_{t}, L\right)=4$ and $e\left(x_{1}, L\right)=2$. We finish Case C, and hence the proof of Claim 1, with the following three subcases.

Case C.1: $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} . ~ S i n c e ~ e\left(x_{2} x_{t-1}, a_{2} a_{3}\right) \leq 2, e\left(x_{2} x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right) \geq$ $8-2=6$. Then $\tau\left(a_{5} a_{6}, L\right) \leq 3$ and $\tau\left(a_{2} a_{3}, L\right) \leq 4$. Suppose that $\tau\left(a_{5}, L\right) \geq 2$. Then $x_{t} \rightarrow\left(L, a_{4}\right)$ and $x_{t} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4$. Then $\tau\left(a_{6}, L\right)=0$, so $x_{t} \xrightarrow{2}$ $\left(L, a_{6}\right)$. Hence $e\left(x_{1} x_{t-1}, a_{6}\right)=0$. Then $e\left(x_{t-1}, L-a_{6}\right)=4$, so $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$ and $e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{4} a_{5}\right) \geq 6$. Since $\tau\left(a_{6}, L\right)=0$, this implies that $e\left(x_{1}, a_{1} a_{5}\right)=0$. Thus $e\left(x_{1}, a_{2} a_{3} a_{4}\right)=2$, and since $e\left(x_{1}, a_{2} a_{3}\right) \geq 1$, we have $e\left(x_{t-1}, a_{2} a_{3}\right) \leq 1$ since $x_{t} \rightarrow\left(L, a_{2}\right)$ and $x_{t} \rightarrow\left(L, a_{3}\right)$. Therefore $e\left(x_{t-1}, a_{1} a_{4} a_{5}\right)=3$ and $e\left(x_{t-1}, a_{2} a_{3}\right)=1$. Since $x_{t} a_{3} \in E$, we see that $x_{t-1} a_{2} \notin E$, for otherwise $x_{t-1} \rightarrow\left(L, a_{3}\right)$, which by (f) implies that $e\left(x_{1}, a_{2} a_{4}\right)=2$, contradicting the fact that $x_{t} \rightarrow\left(L, a_{2}\right)$. Hence $e\left(x_{t-1}, a_{1} a_{3} a_{4} a_{5}\right)=4$, and since $e\left(x_{2} x_{t-1}, a_{i}\right) \leq 1$ for $i=2,3,4,6$, we have $e\left(x_{2}, a_{1} a_{2} a_{5} a_{6}\right)=4$. But then $x_{t-1} \rightarrow\left(L, a_{2}\right)$ and $e\left(x_{2} x_{t}, a_{2}\right)=2$, contradicting (f).

Therefore $\tau\left(a_{5}, L\right) \leq 1$, and by symmetry $\tau\left(a_{6}, L\right) \leq 1$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$, this implies that $e\left(x_{1}, a_{5} a_{6}\right)=0$. Hence $e\left(x_{1}, a_{1} a_{2} a_{3} a_{4}\right)=2$, so $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \leq 3$, for otherwise $e\left(x_{t-1}, a_{2} a_{3}\right)=0$ and $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, contradicting (e) since $e\left(x_{t-1}, a_{5} a_{6}\right)=2$. Suppose that $\tau\left(a_{5}, L\right)=\tau\left(a_{6}, L\right)=1$. Then $x_{t} \rightarrow\left(L, a_{5}\right)$ and $x_{t} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{2} x_{t-1}, a_{1} a_{4}\right)=4$ and $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,5,6$. By (a), $x_{1} \nrightarrow\left(L, a_{2}\right)$ and $x_{1} \nrightarrow\left(L, a_{3}\right)$, so $e\left(x_{1}, a_{1} a_{3}\right)=1$ and $e\left(x_{1}, a_{2} a_{4}\right)=1$. Since $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \leq 3$ and $e\left(x_{2}, a_{1} a_{4}\right)=2$, we know that $e\left(x_{t-1}, a_{2} a_{3}\right) \geq 1$. Then by (d), $x_{1} x_{2} \nrightarrow\left(L, a_{2} a_{3}\right)$, so $e\left(x_{1}, a_{1} a_{4}\right)=0$. But then $e\left(x_{1}, a_{2} a_{3}\right)=2$, a contradiction since $e\left(x_{t-1}, a_{2} a_{3}\right) \geq 1$ and $x_{t} \rightarrow\left(L, a_{i}\right)$ for $i=2,3$.

Therefore $\tau\left(a_{5} a_{6}, L\right) \leq 1$, and hence also $\tau\left(a_{2} a_{3}, L\right) \leq 3$. Suppose that $\tau\left(a_{5} a_{6}, L\right)=1$,
and WLOG let $\tau\left(a_{5}, L\right)=1$. Then $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$, so $e\left(x_{2} x_{t-1}, a_{1} a_{4} a_{5}\right) \geq 5$. Suppose that $e\left(x_{1}, a_{1} a_{4}\right)=2$. Then, since $e\left(x_{2}, a_{1} a_{4}\right) \geq 1$, we have $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$. Thus $e\left(x_{t-1}, a_{2} a_{3}\right)=$ 0 by (d), since $e\left(x_{t}, a_{2} a_{3}\right)=2$. Hence $e\left(x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right)=4$ and $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 4-1=3$. But then $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 5$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, contradicting (e) since $\tau\left(a_{5} a_{6}, L\right)=1$ and $e\left(x_{t-1}, a_{5} a_{6}\right)=2$. Thus $e\left(x_{1}, a_{1} a_{4}\right) \leq 1$, so $e\left(x_{2}, a_{2} a_{3}\right) \geq 1$.

Suppose that $x_{1} a_{2} \in E$. Then $x_{2} a_{5} \notin E$, for otherwise $e\left(x_{t-1}, a_{1} a_{3} a_{4}\right)=0$ by (d) since $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right)$. Hence $e\left(x_{2}, a_{1} a_{4}\right)=2, e\left(x_{t-1}, a_{1} a_{4} a_{5}\right)=3$, and $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,6$. By (a), we see that $x_{1} \nrightarrow\left(L, a_{3}\right)$, so $x_{1} a_{4} \notin E$. Since $x_{1} a_{2} \in E$ and $\tau\left(a_{2} a_{3}, L\right) \leq 3$, we know that $x_{t-1} a_{6} \notin E$, for otherwise $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$. Then $e\left(x_{t-1}, a_{2} a_{3} a_{4} a_{5}\right)=3$, so $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{6} a_{1}\right)$ because $\tau\left(a_{6}, L\right)=0$. Hence $x_{1} a_{1} \notin E$, so $e\left(x_{1}, a_{2} a_{3}\right)=2$. But then, since $x_{2} a_{6} \in E$, we know that $x_{1} x_{2} \rightarrow\left(L, a_{1} a_{2}\right)$, contradicting (d) since $e\left(x_{t-1} x_{t}, a_{1}\right)=2$.

Therefore $x_{1} a_{2} \notin E$, so $x_{1} a_{3} \in E$ and $e\left(x_{1}, a_{1} a_{4}\right)=2$. Then $x_{2} a_{6} \notin E$, for otherwise $x_{1} x_{2} \rightarrow\left(L, a_{1} a_{2}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{4} a_{5}\right)$, contradicting (d) since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{4}\right) \geq 4$. If $x_{1} a_{1} \in E$ then $x_{1} \rightarrow\left(L, a_{2}\right)$, so $e\left(x_{2} x_{t-1}, a_{2}\right)=0$. Then $e\left(x_{2} x_{t-1}, a_{1} a_{4} a_{5}\right)=6, x_{t-1} a_{6} \in E$, and $x_{2} a_{3} \in E$. But then $x_{2} \rightarrow\left(L, a_{4}\right)$ and $e\left(x_{t-1} x_{t}, a_{4}\right)=2$, contradicting (c). Thus $x_{1} a_{1} \notin E$, so $e\left(x_{1}, a_{3} a_{4}\right)=2$. Then, because $x_{t} a_{1} \in E$, we have $e\left(x_{2}, a_{2} a_{3} a_{4} a_{5}\right) \leq 3$, for otherwise $x_{1} x_{2} \xrightarrow{1}\left(L, a_{6} a_{1}\right)$. Hence $x_{2} a_{1} \in E$, so $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$, which by (d) implies that $e\left(x_{t-1}, a_{2} a_{3}\right)=0$. But then $e\left(x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right)=4$, and hence $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$, a contradiction since $x_{1} a_{3} \in E$.

Therefore $\tau\left(a_{5} a_{6}, L\right)=0$ and $e\left(a_{2} a_{3}, a_{5} a_{6}\right)=0$. Suppose $e\left(x_{1}, a_{2} a_{3}\right)>0$. Then $e\left(x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right) \leq 2$, for otherwise $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$ since $\tau\left(a_{2} a_{3}, L\right) \leq 2$. Hence $e\left(x_{t-1}, a_{2} a_{3}\right)=2$ and $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=4$. Then, since $e\left(x_{1}, a_{2} a_{3}\right)>0$, we know that $x_{1} x_{2} \rightarrow\left(L, a_{1} a_{2}\right)$ or $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right)$, contradicting (d) since $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=4$. Thus $e\left(x_{1}, a_{2} a_{3}\right)=0$, so $e\left(x_{1}, a_{1} a_{4}\right)=2$. Then $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{2} x_{t-1}, a_{5}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$. Hence $e\left(x_{2} x_{t-1}, a_{1} a_{4}\right)=4$. Since $e\left(x_{1} x_{2}, a_{1} a_{4}\right)=2, x_{1} x_{2} \xrightarrow{2}\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t-1}, a_{5} a_{6}\right)=0$ by (e). But then $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=4$, contradicting (d) since $x_{1} x_{2} \rightarrow$
$\left(L, a_{2} a_{3}\right)$.
Case C.2: $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $x_{t} \rightarrow\left(L, a_{i}\right)$ for $i=2,4,6, e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right) \geq$ 5. Suppose that $a_{2} a_{4} \in E$. Then $x_{t} \rightarrow\left(L, a_{3}\right)$, so $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4$ and $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,4,6$. Since $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=1,5, e\left(a_{6}, a_{2} a_{4}\right)=0$. Then $x_{t} \xrightarrow{1}\left(L, a_{6}\right)$, so $x_{t-1} a_{6} \notin E$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right)=2$ we know that $x_{2} \nrightarrow\left(L, a_{i}\right)$ for $i=1,5$ by (c). Since $e\left(x_{2}, a_{5} a_{6} a_{1}\right)=3$, this implies that $e\left(x_{2}, a_{2} a_{4}\right)=0$, and hence $e\left(x_{2}, a_{1} a_{3} a_{5} a_{6}\right)=4$. But then $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right)=4$, so $x_{2} \rightarrow\left(L, a_{2}\right)$ and $e\left(x_{t-1} x_{t}, a_{2}\right)=2$, contradicting (c). Therefore $a_{2} a_{4} \notin E$, and by symmetry $a_{2} a_{6} \notin E$. Since $x_{t} \nrightarrow L, a_{4} a_{6} \notin E$. Thus $x_{t} \xrightarrow{1}\left(L, a_{4}\right)$ and $x_{t} \xrightarrow{1}\left(L, a_{6}\right)$, so $e\left(x_{1} x_{t-1}, a_{4} a_{6}\right)=0$. Then $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{5}\right)=4$ and $e\left(x_{2}, a_{1} a_{3} a_{4} a_{5} a_{6}\right)=4$. By (c) we know that $x_{2} \nrightarrow\left(L, a_{5}\right)$, which implies that $e\left(x_{2}, a_{1} a_{3} a_{5}\right)=3$ and $e\left(x_{2}, a_{4} a_{6}\right)=1$. WLOG let $e\left(x_{2}, a_{1} a_{3} a_{4} a_{5}\right)=4$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right)=4$, by (d) we have $x_{1} x_{2} \nrightarrow\left(L, a_{5} a_{6}\right)$ and $x_{1} x_{2} \nrightarrow\left(L, a_{6} a_{1}\right)$. Thus $e\left(x_{1}, a_{1} a_{4} a_{2}\right)=0$, so $e\left(x_{1}, a_{3} a_{5}\right)=2$ (see Figure 4.10). Therefore, because $e\left(x_{t-1} x_{t}, a_{5} a_{6} a_{1} a_{2}\right)=6$, this implies that $\tau\left(a_{3} a_{4}, L\right) \geq 4$. Since $e\left(a_{4}, a_{2} a_{6}\right)=0$, we know that $a_{4} a_{1} \in E$ and $\tau\left(a_{3}, L\right)=3$.

Since $x_{t-1} x_{t} \rightarrow\left(L, a_{3} a_{4}\right)$ and $a_{4} a_{3} x_{1} \ldots x_{t-2}=P_{t}$, by Condition (4.2) we know that $e\left(a_{4} x_{t-2}, D-P\right)=0$. Since $x_{t-1} a_{5} a_{4} a_{1} a_{2} x_{t} x_{t-1}=C_{6}$ and $a_{6} a_{3} x_{1} \ldots x_{t-2}=P_{t}$, we know that $e\left(a_{6}, D-P\right)=0$. Hence $e\left(x_{1} x_{t-2} a_{4} a_{6}, D-P\right)=0$. Since $x_{1} x_{5} \notin E, e\left(x_{1}, P\right) \leq 3$. Since $x_{t} x_{t-3} \in E$, we have $e\left(x_{t-2}, x_{t-5} x_{t-6}\right)=0$, so $e\left(x_{t-2}, P\right) \leq 4$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{3} a_{4}\right)$ and $a_{4} a_{3} x_{1} \ldots x_{t-2}=P_{t}$, we know that $e\left(a_{4}, P-x_{t-1} x_{t}\right)=e\left(a_{4}, P\right) \leq 3$. Similarly, $e\left(a_{6}, P\right) \leq 3$. Hence $e\left(x_{1} x_{t-2} a_{4} a_{6}, D\right) \leq 13$. Since $e\left(a_{2}, a_{4} a_{6}\right)=0$ and $a_{4} a_{6} \notin E$, we have $e\left(a_{4} a_{6}, L\right) \leq$ 6. Therefore $e\left(x_{1} x_{t-2} a_{4} a_{6}, L\right) \leq 2+6+6=14$, so $e\left(x_{1} x_{t-2} a_{4} a_{6}, D+L\right) \leq 27$. Then $e\left(x_{1} x_{t-2} a_{4} a_{6}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$.

Let $L_{i}=L^{\prime}=v_{1} v_{2} \ldots v_{6} v_{1}$, and let $P^{\prime}=x_{t-2} x_{t-3} \ldots x_{2} x_{1}$. Suppose that $x_{1} \rightarrow\left(L^{\prime}, v_{j}\right)$. Then $e\left(v_{j}, a_{4} a_{6}\right) \leq 1$, for otherwise $v_{j} \rightarrow\left(L, a_{5}\right)$ and $x_{2} x_{3} \ldots x_{t-1} x_{t} a_{5} x_{2}=C_{\geq 6}$. Since $x_{t-1} x_{t} \rightarrow$ $\left(L, a_{3} a_{6}\right)$ (recall $a_{1} a_{4} \in E$) and $a_{6} a_{3} x_{2} \ldots x_{t-2}=P_{\geq 6}$, we also know that $e\left(v_{j}, a_{6} x_{t-2}\right) \leq 1$. Similarly, $e\left(v_{j}, a_{4} x_{t-2}\right) \leq 1$, so $e\left(v_{j}, x_{t-2} a_{4} a_{6}\right) \leq 1$. Now suppose that $a_{4} \xrightarrow{0}\left(L^{\prime}, v_{j}\right)$. Since $x_{t} \xrightarrow{1}\left(L, a_{4}\right)$ and $x_{1} x_{2} \ldots x_{t-3} x_{t-1} x_{t-2}=P_{t-1}$, by Condition (4.3) we have $e\left(v_{j}, x_{1} x_{t-2}\right)=0$.

Figure 4.10: A situation similar to that in Case B.3. Lemma 3.0.7 is applicable. Not shown at top are the edges $a_{4} a_{1}, a_{3} a_{5}, a_{3} a_{6}$, and $a_{3} a_{1}$.

Similarly, if $a_{6} \xrightarrow{0}\left(L^{\prime}, v_{j}\right)$, then $e\left(v_{j}, x_{1} x_{t-2}\right)=0$. Finally, suppose that $x_{1} \xrightarrow{1}\left(L^{\prime}, v_{j}\right)$. Since $x_{t-1} x_{t} \xrightarrow{0}\left(L, a_{3} a_{4}\right)$ and $a_{4} a_{3} x_{2} \ldots x_{t-2}=P_{t-1}$, we know that $e\left(v_{j}, a_{4} x_{t-2}\right)=0$. This paragraph shows that Lemma 3.0.7 is contradicted, because $x_{t-1} x_{t} \xrightarrow{3}\left(L, a_{4} a_{6}\right)$.

Case C.3: $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\} . ~ S i n c e ~ x_{t} \rightarrow\left(L, a_{i}\right)$ for $i=3,6, e\left(x_{2} x_{t-1}, a_{i}\right) \leq 1$. Since $x_{t} \nrightarrow L$, either $\tau\left(a_{3}, L\right)=0$ or $\tau\left(a_{6}, L\right)=0$. WLOG let $\tau\left(a_{3}, L\right)=0$. Then $x_{t} \xrightarrow{2}$ $\left(L, a_{3}\right)$, so $e\left(x_{1} x_{t-1}, a_{3}\right)=0$. We observe that $\tau\left(a_{6}, L\right)>0$, for otherwise $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right)=$ 4 and hence $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{i} a_{i+1}\right)$ for $i=5,6,2,3$, a contradiction since $e\left(x_{1}, L\right)>0$. Since $\tau\left(a_{6}, L\right)>0, x_{t} \rightarrow\left(L, a_{1}\right)$ and $x_{t} \rightarrow\left(L, a_{5}\right)$. Then $e\left(x_{2} x_{t-1}, a_{2} a_{4}\right)=4$ and $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=1,3,5,6$. Since $x_{t-1} a_{3} \notin E, x_{2} a_{3} \in E$. Thus by (d), $x_{1} a_{6} \notin E$, for otherwise $x_{1} x_{2} \rightarrow$ $\left(L, a_{1} a_{2}\right)$ and $e\left(x_{t-1} x_{t}, a_{2}\right)=2$. Similarly, since $e\left(x_{2}, a_{2} a_{4}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{4} a_{2}\right)=2$, we have $e\left(x_{1}, a_{5} a_{1}\right)=0$ by (d). Thus $e\left(x_{1}, a_{2} a_{4}\right)=2$. Since $x_{t-1} a_{3} \notin E, e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=$ $3+3=6$. But then, because $\tau\left(a_{3}, L\right)=0$, we have $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$, a contradiction since $x_{1} a_{2} \in E$. This concludes the proof of Claim 1 .

QED

By Claim 1, there is a path $x_{1} \ldots x_{2}$ of order 5 in P and a path $x_{t} \ldots x_{t-1}$ of order 5 in P. Clearly, there is a 5 -path $x_{1} \ldots x_{2}$ that does not include x_{t}. Suppose that there is no 5-path $x_{1} \ldots x_{2}$ in P that does not include x_{t-1}. Then it must be the case that $x_{2} x_{6} \in E$ and $x_{1} x_{4} \in E, x_{1} x_{5} \notin E$, and $x_{2} x_{5} \notin E$ or $x_{1} x_{3} \notin E$. Also, $t=7$. Since $P \nsupseteq C_{\geq 6}$, we see that $e\left(x_{7}, x_{3} x_{5}\right)=0$. Then, because $e\left(x_{1} x_{2} x_{t-1} x_{t}, P\right) \geq 14$, this implies that $e\left(x_{6}, x_{3} x_{4}\right)=2$ and $x_{2} x_{4} \in E$. But then $x_{1} x_{4} x_{5} x_{6} x_{3} x_{2} x_{1}=C_{6}$, a contradiction. Therefore there is a 5 -path $x_{1} \ldots x_{2}$ in P that includes neither x_{t-1} nor x_{t}, and similarly there is a 5-path $x_{t-1} \ldots x_{t}$ in P that includes neither x_{2} nor x_{1}. Combining this with Proposition 4.1.6, we get the following (see Figure 4.11 for an example):
(a) If $x_{1} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{2} x_{t-1} x_{t}, a_{i}\right) \leq 1$. If $x_{t} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{1} x_{2} x_{t-1}, a_{i}\right) \leq 1$.
(b) If $x_{2} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$. If $x_{t-1} \rightarrow\left(L, a_{i}\right)$, then $e\left(x_{1} x_{2}, a_{i}\right) \leq 1$.

Figure 4.11: If $x_{t} x_{t-1} \rightarrow\left(L, a_{i} a_{j}\right)$ and $e\left(x_{1} x_{2}, a_{i}\right)=2$, then the maximality of r_{0} is contradicted.
(c) If $x_{1} x_{2} \rightarrow\left(L, a_{i} a_{j}\right)$, then $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ and $e\left(x_{t-1} x_{t}, a_{j}\right) \leq 1$. If $x_{t-1} x_{t} \rightarrow\left(L, a_{i} a_{j}\right)$, then $e\left(x_{1} x_{2}, a_{i}\right) \leq 1$ and $e\left(x_{1} x_{2}, a_{j}\right) \leq 1$.
(d) If $e\left(x_{1} x_{2}, a_{i}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{i+1}\right) \leq 1$ and $e\left(x_{t-1} x_{t}, a_{i-1}\right) \leq 1$, then $e\left(x_{t-1} x_{t}, a_{i-1} a_{i+1}\right) \leq$ 1. If $e\left(x_{t-1} x_{t}, a_{i}\right)=2$ and $e\left(x_{1} x_{2}, a_{i+1}\right) \leq 1$ and $e\left(x_{1} x_{2}, a_{i-1}\right) \leq 1$, then $e\left(x_{1} x_{2}, a_{i-1} a_{i+1}\right) \leq$ 1.

To see why part (d) is true, suppose for contradiction that $e\left(x_{1} x_{2}, a_{i}\right)=2, e\left(x_{t-1} x_{t}, a_{i+1}\right) \leq$ $1, e\left(x_{t-1} x_{t}, a_{i-1}\right) \leq 1$, and $e\left(x_{t-1} x_{t}, a_{i-1} a_{i+1}\right)=2$. By (a), $x_{t} \nrightarrow\left(L, a_{i}\right)$, so $e\left(x_{t}, a_{i-1} a_{i+1}\right) \leq 1$. Similarly, by (b) $e\left(x_{t-1}, a_{i-1} a_{i+1}\right) \leq 1$. Then $x_{t-1} a_{i-1} \in E$ and $x_{t} a_{i+1} \in E$, or $x_{t-1} a_{i+1} \in E$ and $x_{t} a_{i-1} \in E$. Either way, $L-a_{i}+x_{t-1} x_{t} \supseteq C_{7}$, contradicting the maximality of k_{0} since $x_{1} \ldots x_{2} a_{i} x_{1}=C_{6}$ for a 5 -path $x_{1} \ldots x_{2}$ that includes neither x_{t-1} nor x_{t}.

Notice that WLOG we may choose between x_{1} and x_{t}, or between x_{2} and x_{t-1}. Clearly, by (a) we have $e\left(x_{1}, L\right) \leq 5$ and $e\left(x_{t}, L\right) \leq 5$. Suppose that $e\left(x_{1}, L\right)=5$, and WLOG let $e\left(x_{1}, L-a_{6}\right)=5$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,3,4,6$, so $e\left(x_{2} x_{t-1} x_{t}, a_{2} a_{3} a_{4} a_{6}\right) \leq 4$. Hence $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{5}\right) \geq 14-9=5$. WLOG let $x_{2} a_{1} \in E$. Then $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so by (c) $e\left(x_{t-1} x_{t}, a_{5}\right) \leq 1$. Then $x_{2} a_{5} \in E$, so similarly $e\left(x_{t-1} x_{t}, a_{1}\right) \leq 1$, a contradiction. Therefore $e\left(x_{1}, L\right) \leq 4$ and $e\left(x_{t}, L\right) \leq 4$. WLOG let $e\left(x_{1} x_{2}, L\right) \geq e\left(x_{t-1} x_{t}, L\right)$. Then $7 \leq e\left(x_{1} x_{2}, L\right) \leq 10$, and we break into cases.

Case 1: $e\left(x_{1} x_{2}, L\right)=10$. Since $e\left(x_{2}, L\right)=6, e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $a_{i} \in L$ by (b). Since
$e\left(x_{t-1} x_{t}, L\right)=4$, by (a) $x_{1} \rightarrow\left(L, a_{i}\right)$ for at most two $a_{i} \in L$, which implies that $N\left(x_{1}, L\right) \neq$ $\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$.

Case 1.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $e\left(x_{2}, L\right)=6$, by (a) we have $e\left(a_{2} a_{3}, x_{t-1} x_{t}\right)=$ 0 . Then $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=4,5,6,1$, so by (a) $x_{1} \nrightarrow\left(L, a_{i}\right)$ for each such a_{i}. Thus $\tau\left(a_{5} a_{6}, L\right)=0$, so $e\left(x_{t}, a_{5} a_{6}\right)=0$ since $x_{1} x_{2} \xrightarrow{6}\left(L, a_{5} a_{6}\right)$. Let $L^{\prime}=x_{1} x_{2} a_{1} a_{2} a_{3} a_{4} x_{1}$ and $P^{\prime}=$ $x_{3} \ldots x_{t-1} x_{t}$. Since $\tau\left(L^{\prime}\right)>\tau(L)$ and $e\left(x_{t-1}, a_{5} a_{6}\right)=2$, we know that $e\left(x_{3} x_{t} a_{5} a_{6}, D-P\right)=0$ by Condition (4.3). By the maximality of k_{0} and Lemma 2.1.4, we have $e\left(a_{5} a_{6}, P^{\prime}\right) \leq 5$. Then $e\left(a_{5} a_{6}, D+L\right)=e\left(a_{5} a_{6}, P\right)+e\left(a_{5} a_{6}, L\right) \leq 7+4=11$. Also by the maximality of k_{0}, $e\left(x_{3}, a_{5} a_{6}\right)=0$ and $e\left(x_{3}, P\right) \leq 6$. Then $e\left(x_{3}, D+L\right) \leq 6+4=10$. Since $e\left(x_{t}, D+L\right) \leq$ $4+2=6$, we have $e\left(a_{5} a_{6} x_{3} x_{t}, D+L\right) \leq 11+10+6=27$, so $e\left(a_{5} a_{6} x_{3} x_{t}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$. But P^{\prime} is a path of order $t-2 \geq 5$ and $e\left(x_{t-1}, a_{5} a_{6}\right)=2$, contradicting Lemma 3.0.3 since $\tau\left(L^{\prime}\right)=\tau(L)+6$.

Case 1.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. We have $e\left(x_{t-1} x_{t}, a_{3} a_{6}\right)=0$, and $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=1,2,4,5$. Then $\tau\left(a_{3}, L\right)=0$, so $x_{1} \xrightarrow{2}\left(L, a_{3}\right)$, a contradiction since $x_{2} a_{3} \in E$.
 $e\left(x_{2}, L\right)=6$, so by (b) $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $a_{i} \in L$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for at most one $a_{i} \in L$ by (a), so we know $N\left(x_{1}, L\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$. If $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ then $e\left(x_{t} x_{t-1}, a_{2}\right)=0$ by (a), so $e\left(x_{t} x_{t-1}, a_{i}\right)=1$ for each $i \in\{1,3,4,5,6\}$. Then $e\left(x_{1} x_{2}, a_{2}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{1} a_{3}\right)=2$, contradicting (d). If $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$ then $e\left(x_{1} x_{2}, a_{1}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{2} a_{6}\right)=2$, again contradicting (d). Therefore $e\left(x_{1}, L\right)=4$ and $e\left(x_{2}, L\right)=5$.

Case 2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} . ~ S u p p o s e ~ t h a t ~ x_{2} a_{6} \notin E$. Then $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=0$ by (a), and $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right) \leq 2$ by (b), so $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right) \geq 5-2=3$. Thus $x_{2} \nrightarrow L$, so $\tau\left(a_{6}, L\right)=0$. Since $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=7$, this implies that $x_{t} a_{1} \notin E$. Hence $x_{t} a_{5} \in E$, a contradiction since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=8$ and $\tau\left(a_{6}, L\right)=0$. Then $x_{2} a_{6} \in E$, and by symmetry $e\left(x_{2}, a_{5} a_{6}\right)=2$. Now suppose that $x_{2} a_{4} \notin E$. By (a), $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=0$, and by (b), $e\left(x_{t-1} x_{t}, a_{1} a_{4} a_{6}\right) \leq 3$, so $e\left(x_{t-1} x_{t}, a_{5}\right)=2$. Then $x_{2} \nrightarrow L$, so $\tau\left(a_{4}, L\right)=0$. But then $x_{t} a_{5} \in E$ and $x_{1} x_{2} \xrightarrow{2}\left(L, a_{4} a_{5}\right)$, a contradiction. Thus $x_{2} a_{4} \in E$, and by symmetry
$e\left(x_{2}, a_{4} a_{1}\right)=2$. Since $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=4$ and $e\left(x_{2}, L\right)=5$, WLOG we can let $x_{2} a_{2} \in E$. Then $e\left(x_{t-1} x_{t}, a_{2}\right)=0$ by (a), and $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $i=1,3,5,6$, by (b).

Suppose that $\tau\left(a_{3}, L\right)>0$. Then $x_{2} \rightarrow L$, so $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i \neq 2$. But $e\left(x_{1} x_{2}, a_{2}\right)=2$, contradicting (d). Hence $\tau\left(a_{3}, L\right)=0$, and thus also $\tau\left(a_{5} a_{6}, L\right) \leq 4$. Since $e\left(x_{1} x_{2}, a_{5} a_{6} a_{1} a_{2}\right)=6$ and $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$, this implies that $e\left(x_{t}, a_{3} a_{4} a_{5} a_{6}\right)=0$. Hence $e\left(x_{t-1}, a_{1} a_{3} a_{4} a_{5} a_{6}\right) \geq 5-1=4$. Since $e\left(x_{1} x_{2}, a_{2} a_{4}\right)=4$, by (b) we have $e\left(x_{t-1}, a_{1} a_{3}\right) \leq 1$ and $e\left(x_{t-1}, a_{3} a_{5}\right) \leq 1$. Therefore $e\left(x_{t-1}, a_{1} a_{4} a_{5} a_{6}\right)=4$, and since $e\left(x_{t}, L-a_{1}\right)=0$, we have $e\left(x_{t-1} x_{t}, a_{1}\right)=2$, a contradiction.

Case 2.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\} . ~ I f ~ x_{2} a_{1} \notin E$, then by (a) $e\left(x_{t-1} x_{t}, a_{3} a_{6}\right)=0$, and by (b) $e\left(x_{t-1} x_{t}, a_{1} a_{4} a_{5}\right) \leq 3$. Then $e\left(x_{t-1} x_{t}, a_{2}\right)=2$, so by (b) $\tau\left(a_{2}, L\right)=0$. But then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{1} a_{2}\right)$ and $x_{t} a_{2} \in E$, a contradiction. Thus $x_{2} a_{1} \in E$, and by symmetry $e\left(x_{2}, a_{1} a_{2} a_{4} a_{5}\right)=4$. WLOG let $e\left(x_{2}, L-a_{6}\right)=5$. Then $e\left(x_{t-1} x_{t}, a_{3}\right)=0$ and $e\left(x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right) \leq 3$, so $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right) \geq 2$. Then $x_{1} \nrightarrow\left(L, a_{1}\right)$ or $x_{1} \nrightarrow\left(L, a_{5}\right)$ by (a), so $\tau\left(a_{6}, L\right)=0$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=7$, this implies that $e\left(x_{t}, a_{5} a_{6} a_{1}\right)=0$. Then $e\left(x_{t-1}, a_{5} a_{6} a_{1}\right)=3$ and $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=2,4$. But then $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right)=2$ and $e\left(x_{1} x_{2}, a_{5}\right)=2$, contradicting (d).

Case 2.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. By (a), $e\left(x_{2} x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right) \leq 3$. Then by (b), $e\left(x_{2}, a_{2} a_{4} a_{6}\right)=2$, for otherwise $e\left(x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right)=0$ and $e\left(x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \leq 3<5$. If $x_{2} a_{4} \notin E$, then $e\left(x_{t-1} x_{t}, a_{2} a_{6}\right)=0$ and $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for $i=1,4$, so $e\left(x_{t-1} x_{t}, a_{3} a_{5}\right) \geq 3$. Then by (b), $x_{2} \nrightarrow L$, so $\tau\left(a_{4}, L\right)=0$. Since $e\left(x_{1} x_{2}, a_{6} a_{1} a_{2} a_{3}\right)=7$, this implies that $e\left(x_{t}, a_{4} a_{5}\right)=0$. Therefore $e\left(x_{t-1} x_{t}, a_{3}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{1}\right)=1$, contradicting either (a) or (b) since $e\left(x_{1} x_{2}, a_{2}\right)=2$. Thus $x_{2} a_{4} \in E$, and by symmetry we have $e\left(x_{2}, L-a_{2}\right)=5$. Since $e\left(x_{2}, a_{4} a_{6}\right)=2$ and $e\left(x_{1}, L-a_{4}\right)=e\left(x_{1}, L-a_{6}\right)=4$, we have $\tau\left(a_{4}, L\right) \geq 2$ and $\tau\left(a_{6}, L\right) \geq 2$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,3$, so $e\left(x_{t-1} x_{t}, a_{1} a_{3} a_{4} a_{6}\right)=0$, a contradiction.
 $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for each $a_{i} \in L$ by (b), and $e\left(x_{1} x_{2}, a_{j}\right)=2$ for some $a_{j} \in L$, contradicting (d). Therefore $3 \leq e\left(x_{1}, L\right) \leq 4$.

Case 3.1: $e\left(x_{1}, L\right)=3$.
Case 3.1.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Suppose that $x_{2} a_{2} \in E$. Then $e\left(x_{t-1} x_{t}, a_{2}\right)=0$ by (a), so $e\left(x_{t-1} x_{t}, L-a_{2}\right) \geq 6$. If $x_{2} a_{3} \notin E$, then $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=1,3,5,6$ by (b), and $e\left(x_{t-1} x_{t}, a_{4}\right)=2$. This contradicts (d), since $e\left(x_{1} x_{2}, a_{2}\right)=2$. Thus $x_{2} a_{3} \in E$, and by symmetry $x_{2} a_{1} \in E$. If $x_{2} a_{4} \notin E$ then $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for $i=1,4,6$, and hence $e\left(x_{t-1} x_{t}, a_{3} a_{5}\right) \geq 3$. Since $x_{2} \nrightarrow L, \tau\left(a_{4}, L\right)=0$, so $x_{1} x_{2} \xrightarrow{2}\left(L, a_{4} a_{5}\right)$. Then $e\left(x_{t}, a_{4} a_{5}\right)=0$, so $e\left(x_{t-1} x_{t}, a_{1}\right)=1$ and $e\left(x_{t-1} x_{t}, a_{3}\right)=2$. But $e\left(x_{1} x_{2}, a_{2}\right)=2$, contradicting either (a) or (b). Thus $x_{2} a_{4} \in E$, and by symmetry we have $e\left(x_{2}, L-a_{5}\right)=5$. So $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for $i=1,3,5$, and hence $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right) \geq 3$. Then $\tau\left(a_{5}, L\right)=0$, so $x_{1} x_{2} \xrightarrow{2}\left(L, a_{5} a_{6}\right)$. Thus $e\left(x_{t}, a_{5} a_{6}\right)=0$, so $e\left(x_{t-1}, a_{4} a_{5} a_{6}\right)=3, e\left(x_{t-1} x_{t}, a_{1}\right)=e\left(x_{t-1} x_{t}, a_{3}\right)=1$, and $x_{t} a_{4} \in E$. This again contradicts (d), since $e\left(x_{1} x_{2}, a_{2}\right)=2$.

Therefore $e\left(x_{2}, L-a_{2}\right)=5$, so $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for $i=2,4,5,6$. Since $e\left(x_{1} x_{2}, a_{3}\right)=2$, by (d) this implies that $e\left(x_{t-1} x_{t}, a_{2} a_{4}\right) \leq 1$. Therefore $e\left(x_{t-1} x_{t}, a_{1} a_{3}\right) \geq 6-3=3$, so $x_{2} \nrightarrow L$. Hence $\tau\left(a_{2}, L\right)=0$, so $x_{2} \xrightarrow{3}\left(L, a_{2}\right)$. Then, since $x_{1} a_{2} \in E$ we know that $x_{t} a_{2} \notin E$. Since $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6}\right) \geq 6-5=1, x_{1} \nrightarrow\left(L, a_{i}\right)$ for some $i=4,5,6$. Thus $e\left(a_{5}, a_{1} a_{3}\right)+e\left(a_{4}, a_{6}\right) \leq$ 2 , and since $e\left(a_{2}, a_{5} a_{6}\right)=0$ we have $\tau\left(a_{5} a_{6}, L\right) \leq 3$. Hence, because $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=6$, we have $e\left(x_{t}, a_{5} a_{6}\right)=0$. By symmetry, $x_{t} a_{4} \notin E$, so $e\left(x_{t}, a_{2} a_{4} a_{5} a_{6}\right)=0$. Since $x_{1} x_{2} \rightarrow$ $\left(L, a_{6} a_{1}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right), e\left(x_{t-1}, a_{1} a_{3}\right) \leq 2$. Thus $e\left(x_{t-1}, a_{2} a_{4} a_{5} a_{6}\right) \geq 6-2=4$, so $x_{t-1} \rightarrow\left(L, a_{3}\right)$, contradicting (b).
$\underline{\text { Case 3.1.2: } N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\} . \text { Since } e\left(x_{2}, a_{1} a_{4}\right) \geq 1 \text {, we see that } x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right) ~}$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$. Hence by (c), e($\left.x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $i=2,3,5,6$. Suppose that $x_{2} a_{5} \in E$. Then $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$, so $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for each $a_{i} \in L$. But this contradicts (d), since $e\left(x_{2}, a_{1} a_{2} a_{4}\right)>0$. Therefore $e\left(x_{2}, L-a_{5}\right)=$ 5, so $e\left(x_{t-1} x_{t}, a_{1}\right) \leq 1$ by (b) and $e\left(x_{t-1} x_{t}, a_{3}\right)=0$ by (a). Then $e\left(x_{t-1} x_{t}, a_{4}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=1,2,5,6$, contradicting (d) since $e\left(x_{1} x_{2}, a_{1}\right)=2$.
 $e\left(x_{2} x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \geq 8$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{3} a_{5}\right) \geq 5$, we see that $e\left(x_{2}, a_{2} a_{4} a_{6}\right)=2$ by (b).

WLOG let $e\left(x_{2}, a_{2} a_{4}\right)=2$. Then $x_{2} \rightarrow\left(L, a_{3}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so by (b) and (c) we have $e\left(x_{t-1} x_{t}, a_{3} a_{5}\right) \leq 2$, a contradiction.

Case 3.2: $e\left(x_{1}, L\right)=4$.
Case 3.2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. If $e\left(x_{2}, a_{5} a_{6}\right)=2$, then $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for each $a_{i} \in L$ by (c). This contradicts (d), since $e\left(x_{1} x_{2}, a_{i}\right)=2$ for some $a_{i} \in L$. Hence $e\left(x_{2}, a_{5} a_{6}\right) \leq$ 1 , so $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 3$. Since $e\left(x_{2}, a_{1} a_{4}\right) \geq 1, x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$, and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $i=2,3,5,6$. Then we see that $e\left(x_{2}, a_{5} a_{6}\right)=0$, for otherwise $e\left(x_{t-1} x_{t}, a_{1}\right) \leq 1$ and $e\left(x_{t-1} x_{t}, a_{4}\right) \leq 1$ by (b), contradicting (d) since $e\left(x_{1} x_{2}, a_{i}\right)=1$ for some $a_{i} \in L$. Hence $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=4$, so $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=0$ by (a). Since $e\left(x_{t-1} x_{t}, a_{5} a_{6}\right) \leq 2$, we have $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right)=4$. But then $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$, contradicting (c) since $e\left(x_{1} x_{2}, a_{2} a_{3}\right)=$ 4.

Case 3.2.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. WLOG let $e\left(x_{2}, a_{1} a_{4}\right)>0$. Then $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $i=2,3,5,6$ by (c). Thus $e\left(x_{2}, a_{2} a_{5}\right)=0$, for otherwise $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for each $a_{i} \in L$, contradicting (d). Hence $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right)=4$, so $e\left(x_{t-1} x_{t}, a_{3} a_{6}\right)=0$ by (a), which means that $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right)=4$. But then $e\left(x_{t-1} x_{t}, a_{1}\right)=$ 2 and $e\left(x_{1} x_{2}, a_{2} a_{6}\right)=2$, contradicting (d).

Case 3.2.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. If $e\left(x_{2}, a_{2} a_{5}\right)=0$ then $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right)=4$, so $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right)=0$ by (a) and $e\left(x_{t-1} x_{t}, a_{2} a_{5}\right) \leq 2$ by (b). But then $e\left(x_{t-1} x_{t}, a_{3}\right)=2$, a contradiction by (c) since $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$. Therefore $e\left(x_{2}, a_{2} a_{5}\right) \geq 1$, so by (c) $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for $i=3,4,6,1$. Since $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,4,6$, by (a) we know that $e\left(x_{t-1} x_{t}, a_{i}\right)=$ 0 for some $a_{i} \in L$, because $e\left(x_{2}, L\right)=4$. Hence by (c), we see that $e\left(x_{2}, a_{4} a_{6}\right)=0$ since $e\left(x_{1}, a_{1} a_{3}\right)=2$, for otherwise $e\left(x_{t-1} x_{t}, a_{2}\right) \leq 1$ and $e\left(x_{t-1} x_{t}, a_{5}\right) \leq 1$, which implies $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for each $a_{i} \in L$. Thus $e\left(x_{2}, a_{1} a_{2} a_{3} a_{5}\right)=4$, so $e\left(x_{t-1} x_{t}, a_{2}\right)=2$ by (a). Then $e\left(x_{t-1} x_{t}, a_{5}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i=3,4,6,1$, contradicting (d) because $e\left(x_{1} x_{2}, a_{2}\right)=2$.

Case 4: $e\left(x_{1} x_{2}, L\right)=7$. We have $e\left(x_{1} x_{2}, L\right)=e\left(x_{t-1} x_{t}, L\right)=7$, so WLOG let $e\left(x_{1}, L\right) \geq$ $e\left(x_{t}, L\right)$. By (b), we see that $x_{2} \nrightarrow L$ and $x_{t-1} \nrightarrow L$, so $e\left(x_{2}, L\right) \leq 5$ and $e\left(x_{t-1}, L\right) \leq 5$.

Case 4.1: $e\left(x_{1}, L\right)=2$. By the above, we have $e\left(x_{t}, L\right)=2$ and $e\left(x_{2}, L\right)=e\left(x_{t-1}, L\right)=5$. WLOG let $e\left(x_{2}, L-a_{6}\right)=5$. Then $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $i=2,3,4,6$ by (b), so $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right) \geq 7-4=3$. Then $x_{1} a_{6} \notin E$ by (c), for otherwise $x_{1} x_{2} \rightarrow\left(L, a_{4} a_{5}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{1} a_{2}\right)$. Thus by symmetry, we can let $e\left(x_{1}, a_{2} a_{5}\right)>0$. Then $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$, so $e\left(x_{t-1} x_{t}, a_{1}\right) \leq 1$ by (c), and therefore $e\left(x_{t-1} x_{t}, a_{5}\right)=2$. Then $x_{1} x_{2} \nrightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{1}, a_{1} a_{4}\right)=0$. Since $e\left(x_{t-1} x_{t}, a_{i}\right)=1$ for $i \neq 5$ and $x_{2} a_{4} \in E$, by (a) we know that $e\left(x_{1}, a_{3} a_{5}\right) \leq 1$. But then $e\left(x_{1} x_{2}, a_{2}\right)=2$ and $e\left(x_{t-1} x_{t}, a_{1} a_{3}\right)=2$, contradicting (d).

Case 4.2: $e\left(x_{1}, L\right)=3$.
Case 4.2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Suppose that $x_{2} a_{5} \in E$. By (c), we see that $e\left(x_{2}, a_{4} a_{5} a_{6}\right) \leq 1$, for otherwise $e\left(x_{t-1} x_{t}, L\right) \leq 6$. Then $e\left(x_{2}, a_{1} a_{2} a_{3}\right)=3$, so $e\left(x_{t-1} x_{t}, a_{2}\right)=0$ by (a). Thus $e\left(x_{t-1} x_{t}, a_{1} a_{3} a_{4} a_{5} a_{6}\right) \geq 7$, so since $e\left(x_{t-1} x_{t}, a_{3} a_{4} a_{6} a_{1}\right) \geq 5$ we have $x_{2} a_{5} \notin E$ by (c). So WLOG let $x_{2} a_{4} \in E$. Then $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{i}\right) \leq$ 1 for $i=3,5,6$. Hence $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right)=4$, so $e\left(x_{t-1} x_{t}, a_{1} a_{3}\right)=3$. But this contradicts (a) or (b), since $e\left(x_{1} x_{2}, a_{2}\right)=2$.

Case 4.2.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. Suppose that $e\left(x_{2}, a_{1} a_{4}\right)>0$. Then by (c),
$e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{5} a_{6}\right) \leq 4$, so $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \geq 3$. Thus again by (c), we see that $x_{2} a_{5} \notin E$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$, we also know by (c) that $x_{2} a_{2} \notin E$. Hence $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right)=4$. But then $x_{2} \ldots x_{1} a_{2} a_{3} x_{2}=C_{7}$ for a 5-path $x_{2} \ldots x_{1}$, a contradiction. Therefore $e\left(x_{1}, a_{1} a_{4}\right)=0$, so $e\left(x_{2}, a_{2} a_{3} a_{5} a_{6}\right)=4$. By (a) and (b), we have $e\left(x_{t-1} x_{t}, a_{3}\right)=0$ and $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \leq 2$. Then $e\left(x_{t-1} x_{t}, a_{2} a_{5} a_{6}\right) \geq 5$, so $x_{t-1} x_{t} \rightarrow\left(L, a_{3} a_{4}\right)$ and $x_{2} \ldots x_{1} a_{4} a_{3} x_{2}=C_{7}$, a contradiction.

Case 4.2.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$. WLOG let $x_{2} a_{2} \in E$. Then by $(\mathrm{a}), e\left(x_{t-1} x_{t}, a_{2}\right)=0$, and by $(\mathrm{c}), e\left(x_{t-1} x_{t}, a_{3} a_{4} a_{6} a_{1}\right) \leq 4$, so $e\left(x_{t-1} x_{t}, a_{5}\right) \geq 3$, a contradiction.

Case 4.3: $e\left(x_{1}, L\right)=4$.
Case 4.3.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $e\left(x_{1}, a_{2} a_{3}\right)=2$ and $e\left(x_{t-1} x_{t}, L\right)=7$, we see by (c) that $e\left(x_{2}, a_{5} a_{6}\right) \leq 1$, for otherwise $e\left(x_{t-1} x_{t}, a_{i}\right) \leq 1$ for each $a_{i} \in L$. If $e\left(x_{2}, a_{1} a_{4}\right)>0$, then by (c) we have $e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{5} a_{6}\right) \leq 1$, so $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \geq 3$. Then $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$, so by (c) we know that $e\left(x_{2}, a_{2} a_{3}\right)=0$. But then $e\left(x_{2}, a_{5} a_{6}\right) \geq 1$, contradicting (c) since
$e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \geq 3$. Hence $e\left(x_{2}, a_{1} a_{4}\right)=0$, so $e\left(x_{2}, a_{2} a_{3}\right)=0$ and WLOG $x_{2} a_{5} \in E$. But then $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=0$ by (a) and $e\left(x_{t-1} x_{t}, a_{4} a_{6} a_{1}\right) \leq 3$ by (c), a contradiction.

Case 4.3.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. WLOG let $x_{2} a_{1} \in E$. Then $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, so by (c) $e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{5} a_{6}\right) \leq 4$. Hence $e\left(x_{t-1} x_{t}, a_{1} a_{4}\right) \geq 3$, so by (c) $e\left(x_{2}, a_{2} a_{5}\right)=0$. Then $e\left(x_{2}, a_{3} a_{4} a_{6}\right)=2$, so WLOG let $x_{2} a_{3} \in E$. Then $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$ and $a_{3} a_{2} x_{1} \ldots x_{2} a_{3}=C_{7}$, a contradiction.

Case 4.3.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Suppose that $e\left(x_{2}, a_{2} a_{5}\right)>0$. Then by (c), $e\left(x_{t-1} x_{t}, a_{3} a_{4} a_{6} a_{1}\right) \leq 4$, so $e\left(x_{t-1} x_{t}, a_{2} a_{5}\right) \geq 3$. Then $x_{t-1} x_{t} \rightarrow\left(L, a_{6} a_{1}\right)$ and $x_{t-1} x_{t} \rightarrow$ $\left(L, a_{3} a_{4}\right)$, so by (c) $e\left(x_{2}, a_{1} a_{3}\right)=0$. Since $e\left(x_{t-1} x_{t}, a_{2}\right) \geq 1$ and $x_{1} \rightarrow\left(L, a_{2}\right)$, by (a) $x_{2} a_{2} \notin E$. Hence $e\left(x_{2}, a_{4} a_{5} a_{6}\right)=3$, so $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right)=0$ by (a). But then $e\left(x_{t-1} x_{t}, a_{2} a_{5}\right) \geq 5$, a contradiction. Therefore $e\left(x_{2}, a_{2} a_{5}\right)=0$, so $e\left(x_{2}, a_{1} a_{3} a_{4} a_{6}\right)=3$. We see that $e\left(x_{2}, a_{4} a_{6}\right)=$ 1, for otherwise $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right)=0$ by (a) and $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right) \leq 2$ by (c), and hence $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right) \geq 5$, a contradiction. Hence WLOG let $e\left(x_{2}, a_{1} a_{3} a_{4}\right)=3$. Then $e\left(x_{t-1} x_{t}, a_{4}\right)=$ 0 by (a) and $e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{5} a_{6}\right) \leq 4$ by (c), a contradiction.

4.2 Part Two

By Proposition 4.1.7, let $L=a_{1} a_{2} \ldots a_{6} a_{1} \in \sigma$ with $e\left(x_{1} x_{2} x_{t-1} x_{t}, L\right) \geq 15$. We first show, using two claims, that $e\left(x_{1}, L\right) \leq 4$ and $e\left(x_{t}, L\right) \leq 4$. Then we finish the proof of Theorem 1 by considering the six remaining cases for $e\left(x_{1} x_{t}, L\right)$.

Claim: $e\left(x_{1}, L\right) \leq 5$ and $e\left(x_{t}, L\right) \leq 5$.

Proof: Suppose not. WLOG let $e\left(x_{1}, L\right)=6$. Then $e\left(a_{i}, x_{2} x_{t-1}\right) \leq 1$ and $e\left(a_{i}, x_{2} x_{t}\right) \leq 1$ for each $a_{i} \in L$, so $e\left(x_{2} x_{t-1}, L\right) \leq 6$ and $e\left(x_{2} x_{t}, L\right) \leq 6$. Since $e\left(x_{2} x_{t-1} x_{t}, L\right) \geq 15-6=9$, this implies that $e\left(x_{2}, L\right) \leq 3$, and if $e\left(x_{2}, L\right)=3$ then $N\left(x_{t-1}, L\right)=N\left(x_{t}, L\right)$ with $e\left(x_{t}, L\right)=3$. Further, $e\left(x_{t-1}, L\right) \geq 3$ and $e\left(x_{t}, L\right) \geq 3$.

Suppose that $e\left(x_{2}, L\right)=3$. If $N\left(x_{2}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ then $N\left(x_{t-1}, L\right)=N\left(x_{t}, L\right)=$
$\left\{a_{4}, a_{5}, a_{6}\right\}$. Then $x_{t} \rightarrow\left(L, a_{5}\right)$, so by $e\left(a_{5}, x_{1} x_{t-1}\right) \leq 1$, a contradiction. If $N\left(x_{2}, L\right)=$ $\left\{a_{1}, a_{2}, a_{4}\right\}$ then $N\left(x_{t-1}, L\right)=N\left(x_{t}, L\right)=\left\{a_{3}, a_{5}, a_{6}\right\}$, so $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=3,5,6$. Since $x_{t} \nrightarrow\left(L, a_{3}\right), a_{2} a_{4} \notin E$. But then, since $e\left(x_{1}, L\right)=6$, we have $\tau\left(L+x_{1}-a_{2}\right)>\tau(L)$, a contradiction since $x_{2} a_{2} \in E$. Thus $N\left(x_{2}, L\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$, so $N\left(x_{t-1}, L\right)=N\left(x_{t}, L\right)=$ $\left\{a_{2}, a_{4}, a_{6}\right\}$. Then $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=2,4,6$. Since $x_{t} \nrightarrow\left(L, a_{2}\right), \tau\left(a_{5}, L\right) \leq 2$. But then $\tau\left(L+x_{1}-a_{5}\right)>\tau(L)$ and $a_{5} x_{2} \in E$, a contradiction.

Therefore $e\left(x_{2}, L\right) \leq 2$, so $e\left(x_{t} x_{t-1}, L\right) \geq 15-6-2=7$. Then $e\left(x_{t}, L\right) \leq 5$, for otherwise $x_{t} \rightarrow L$ and $e\left(x_{1} x_{t-1}, a_{i}\right)=2$ for some $a_{i} \in L$. Suppose $e\left(x_{t}, L\right)=5$, and WLOG say $x_{t} a_{6} \notin E$. Then $N\left(x_{t-1}, L\right) \subseteq\left\{a_{1}, a_{5}\right\}$. But then $e\left(x_{2} x_{t} x_{t-1}, L\right)=e\left(x_{t-1}, L\right)+e\left(x_{2} x_{t}, L\right) \leq$ $2+6=8$, a contradiction. Thus $e\left(x_{t}, L\right) \leq 4$.

Suppose $e\left(x_{t}, L\right)=4$. Then $e\left(x_{2} x_{t-1}, L\right) \geq 15-10=5$. If $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ then $x_{t} \rightarrow\left(L, a_{i}\right)$ for $i=2,3$ and $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=0$. Then $e\left(x_{t-1}, a_{2} a_{3}\right)=0$, so $e\left(x_{2} x_{t-1}, L\right) \leq 2+e\left(x_{2} x_{t-1}, a_{5} a_{6}\right) \leq 2+2<5$, a contradiction. If $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$ then $e\left(x_{2}, a_{1} a_{2} a_{3} a_{5}\right)=0$ and $e\left(x_{t-1}, a_{2} a_{4} a_{6}\right)=0$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 5$, this implies that $N\left(x_{2}, L\right)=\left\{a_{4}, a_{6}\right\}$ and $N\left(x_{t-1}, L\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$. Since $N\left(x_{t-1}, L\right)=\left\{a_{1}, a_{3}, a_{5}\right\}$, $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=1,3,5$. In particular, $x_{t} \nrightarrow\left(L, a_{3}\right)$, so $e\left(a_{4}, a_{2} a_{6}\right) \leq 1$. But then $\tau\left(L+x_{1}-a_{4}\right)>\tau(L)$ and $a_{4} x_{2} \in E$, a contradiction. Hence $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$, so $e\left(x_{2}, a_{1} a_{2} a_{4} a_{5}\right)=0$ and $e\left(x_{t-1}, a_{3} a_{6}\right)=0$. Since $e\left(x_{t-1}, L\right) \geq 3$, by symmetry we can say $e\left(x_{t-1}, a_{1} a_{2} a_{4}\right)=3$. Then $x_{t} \nrightarrow\left(L, a_{2}\right)$, so $a_{3} a_{6} \notin E$. Since $e\left(x_{2}, L\right) \geq 15-6-4-4=1$, we have $e\left(x_{2}, a_{3} a_{6}\right) \geq 1$. Also, since $\tau\left(a_{3}, L\right) \leq 2$ and $\tau\left(a_{6}, L\right) \leq 2$, we have $x_{1} \xrightarrow{1}\left(L, a_{6}\right)$ and $x_{1} \xrightarrow{1}\left(L, a_{3}\right)$, a contradiction.

Thus $e\left(x_{t}, L\right) \leq 3$, and since $e\left(x_{t}, L\right) \geq 3$ we have $e\left(x_{t}, L\right)=3$. Then $e\left(x_{t-1}, L\right) \geq$ $7-3=4$, so we immediately see that $N\left(x_{t}, L\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$. If $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$ then $e\left(x_{2}, a_{1} a_{2} a_{3}\right)=0$ and $e\left(x_{t-1}, a_{2}\right)=0$. If $e\left(x_{t-1}, L\right)=5$ then $e\left(x_{2}, L\right)=0$, which is a contradiction since $e\left(x_{1} x_{t-1} x_{t}, L\right)=6+5+3=14<15$. Hence $e\left(x_{t-1}, L\right)=4$ and $e\left(x_{2}, L\right)=2$. Thus $e\left(x_{t-1}, a_{1} a_{3} a_{4} a_{5} a_{6}\right)=4$ and $e\left(x_{2}, a_{4} a_{5} a_{6}\right)=2$, so $e\left(x_{2} x_{t-1}, a_{4} a_{5} a_{6}\right) \geq 4$, a contradiction. Therefore $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$, so $e\left(x_{2}, a_{1} a_{2} a_{4}\right)=0$ and $e\left(x_{t-1}, a_{3}\right)=0$.

Suppose that $e\left(x_{t-1}, L\right)=5$. Then, since $e\left(x_{2}, L\right) \geq 1$ we have $x_{2} a_{3} \in E$, and since $e\left(x_{t-1} . L-\right.$ $\left.a_{3}\right)=5$ we have $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=1,2,4,5,6$. Hence $a_{3} a_{5} \notin E$, so $\tau\left(L+x_{1}-a_{3}\right)>\tau(L)$ and $a_{3} x_{2} \in E$, a contradiction. Thus $e\left(x_{t-1}, L\right)=4$ and $e\left(x_{2}, L\right)=2$, so $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5} a_{6}\right)=4$ and $e\left(x_{2}, a_{3} a_{5} a_{6}\right)=2$. Then $e\left(x_{t-1}, a_{1} a_{2} a_{4}\right)=3$ and $x_{2} a_{3} \in E$ with $e\left(x_{t-1}, a_{5} a_{6}\right)=1$. Thus $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=1,2,4$ and $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=5$ or $i=6$. Hence $e\left(a_{3}, a_{5} a_{6}\right)=0$, and either $a_{6} a_{4} \notin E$ or $a_{5} a_{1} \notin E$. Hence $\tau\left(a_{5}, L\right)+\tau\left(a_{6}, L\right) \leq 3$, and since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{4}\right)=6$ we have $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, a contradiction.

QED

Claim: $e\left(x_{1}, L\right) \leq 4$ and $e\left(x_{t}, L\right) \leq 4$.

Proof: WLOG let $e\left(x_{1}, L\right) \geq e\left(x_{t}, L\right)$. By the above claim, $e\left(x_{1}, L\right) \leq 5$. Suppose that $e\left(x_{1}, L\right)=5$, and WLOG let $e\left(x_{1}, L-a_{6}\right)=5$. Then $e\left(a_{i}, x_{2} x_{t}\right) \leq 1$ and $e\left(a_{i}, x_{2} x_{t-1}\right) \leq 1$ for each $i=2,3,4,6$. Hence if $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right) \leq 2$, then $e\left(x_{t}, L\right) \geq 15-5-6=4$. Notice also that since $e\left(x_{2} x_{t-1}, L\right) \leq 4+4=8$, we have $e\left(x_{t}, L\right) \geq 15-8-5=2$.

We first claim that $e\left(x_{t}, L\right) \leq 4$. Suppose not. Then by symmetry, $e\left(x_{t}, L-a_{i}\right)=$ 5 for some $i=3,4,5,6$. Suppose $x_{t} a_{6} \notin E$, so that $e\left(x_{t-1}, a_{2} a_{3} a_{4}\right)=e\left(x_{2}, a_{2} a_{3} a_{4}\right)=$ 0 . Since $e\left(x_{2} x_{t-1}, L\right) \geq 15-10=5$ and $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$, we have $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=$ 4 and $e\left(x_{2} x_{t-1}, a_{6}\right)=1$. WLOG let $x_{2} a_{6} \in E$. Then $x_{i} \nrightarrow\left(L, a_{j}\right)$ for $i=1, t$, and $j=1,5$, and hence $\tau\left(a_{6}, L\right)=0$. But then $\tau\left(L+x_{1}-a_{6}\right)>\tau(L)$, a contradiction since $x_{2} a_{6} \in E$. Thus $x_{t} a_{6} \in E$. We see that $x_{t} a_{5} \in E$, for otherwise $e\left(x_{2}, a_{2} a_{3} a_{4} a_{6}\right)=0$ and $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{5}\right)=0$, which implies $e\left(x_{2} x_{t-1}, L\right) \leq 4$. Suppose $x_{t} a_{4} \notin E$, so that $e\left(x_{2}, a_{2} a_{3} a_{6}\right)=0$ and $e\left(x_{t-1}, a_{1} a_{2} a_{4}\right)=0$. Then $e\left(x_{2}, a_{1} a_{4} a_{5}\right)+e\left(x_{t-1}, a_{3} a_{5} a_{6}\right) \geq 5$, so either $e\left(x_{2} x_{t-1}, a_{5}\right)=2$ or $e\left(x_{2} x_{t}, a_{1}\right)=2$. Hence $x_{1} \nrightarrow\left(L, a_{5}\right)$ or $x_{1} \nrightarrow\left(L, a_{1}\right)$. Then $\tau\left(a_{6}, L\right)=0$, so $\tau\left(L+x_{1}-a_{6}\right)>\tau(L)$ and $a_{6} x_{t} \in E$, a contradiction. Therefore $x_{t} a_{3} \notin E$. In this case, $e\left(x_{2}, a_{2} a_{4} a_{6}\right)=0$ and $e\left(x_{t-1}, a_{1} a_{3} a_{5}\right)=0$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 5$, we have $e\left(x_{2} x_{t}, a_{1} a_{5}\right) \geq 3$. Thus $\tau\left(a_{6}, L\right)=0$, so $\tau\left(L+x_{1}-a_{6}\right)>\tau(L)$ and $a_{6} x_{t} \in E$, a contradiction. Therefore $e\left(x_{t}, L\right) \leq 4$. Note that $e\left(x_{1}, L\right)=5, e\left(x_{t}, L\right) \leq 4$, and $e\left(x_{2} x_{t-1}, L\right) \geq 6$.

We now claim that $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right) \leq 2$. Suppose not. Then $x_{1} \nrightarrow\left(L, a_{1}\right)$ or $x_{1} \nrightarrow\left(L, a_{5}\right)$, so $\tau\left(a_{6}, L\right)=0$. Since $x_{1} \xrightarrow{3}\left(L, a_{6}\right)$, we have $e\left(a_{6}, x_{2} x_{t}\right)=0$. Suppose that $e\left(x_{t}, L\right) \geq 3$. Then $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right) \geq 2$ and $e\left(x_{t}, a_{2} a_{3} a_{4} a_{5}\right) \geq 2$. Since $e\left(x_{1}, L-a_{6}\right)=5$, this implies that $x_{1} x_{t} a_{1} a_{2} a_{3} a_{4} \supseteq C_{6}$ and $x_{1} x_{t} a_{2} a_{3} a_{4} a_{5} \supseteq C_{6}$, a contradiction since $e\left(x_{2} x_{t-1}, a_{5} a_{1}\right) \geq$ 3. Hence $e\left(x_{t}, L\right)=2$, and we also see from the above argument that $e\left(x_{t}, a_{2} a_{3} a_{4}\right) \leq 1$. Therefore $e\left(x_{2} x_{t-1}, L\right) \geq 15-5-2=8$, so we have $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,4,6$, and $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4$. Since $e\left(x_{2} x_{t-1}, a_{5}\right)=2$ and $e\left(x_{2} x_{t-1}, a_{1}\right)=2$, we know that $x_{1} x_{t} a_{1} a_{2} a_{3} a_{4} \nsupseteq C_{6}$ and $x_{1} x_{t} a_{2} a_{3} a_{4} a_{5} \nsupseteq C_{6}$. Since $e\left(x_{1}, L-a_{6}\right)=5$ and $e\left(x_{t}, a_{1} a_{5}\right) \geq 1$, this implies that $e\left(x_{t}, a_{2} a_{3} a_{4}\right)=0$. Hence $e\left(x_{t}, a_{1} a_{5}\right)=2$. Since $e\left(x_{1}, a_{2} a_{3} a_{4} a_{5}\right)=4$ and $x_{2} a_{5} \in E, e\left(x_{2}, a_{2} a_{3} a_{4}\right)=0$ since $x_{t} a_{1} \in E$ and $\tau\left(a_{6}, L\right)=0$. Then $e\left(x_{t-1}, a_{2} a_{3} a_{4}\right)=3$, and $x_{t-1} a_{6} \in E$ since $e\left(a_{6}, x_{2} x_{t}\right)=0$.

In summary, we have $e\left(x_{1}, L-a_{6}\right)=5, e\left(x_{2} x_{t}, a_{1} a_{5}\right)=4$, and $e\left(x_{t-1}, L\right)=6$. Let $C=$ $x_{1} a_{1} \ldots a_{5} x_{1}$. Then $\tau(C)=\tau(L)+3$. By Condition (4.3), we have $e\left(a_{6} x_{2} x_{t}, D-P\right)=0$, since $x_{t-1} a_{6} \in E$. By the maximality of $k_{0}, e\left(a_{6}, D\right) \leq 4$. Similarly $e\left(x_{2}, D\right) \leq 5$ and $e\left(x_{t}, D\right) \leq 4$. Then $e\left(a_{6} x_{2} x_{t}, D+L\right) \leq 13+6=19$, so $e\left(a_{6} x_{2} x_{t}, H-L\right) \geq \frac{21}{2} k-19=\frac{21}{2}(k-2)+2$. Then $e\left(a_{6} x_{2} x_{t}, L_{i}\right) \geq 11$ for some $L_{i} \in \sigma-\{L\}$. Let $R=x_{2} x_{3} \ldots x_{t-1}$. Since $e\left(x_{t-1}, x_{t} a_{6}\right)=2$, by Lemma 3.0.2 we see that $R+L_{i}+a_{6}+x_{t}$ has either two disjoint large cycles, one of which is a 6-cycle, or a 6 -cycle C^{\prime} and a path of order t, disjoint, such that $\tau\left(C^{\prime}\right) \geq \tau\left(L_{i}\right)-2$. But $\tau(C)=\tau(L)+3$, so $L+L_{i}+P$ has either three disjoint large cycles, two of which are 6 -cycles, or a path of order t and 6 -cycles C and C^{\prime} with $\tau(C)+\tau\left(C^{\prime}\right) \geq \tau(L)+3+\tau\left(L_{i}\right)-2$. This contradicts either the maximality of k_{0} or Condition (4.3).

Therefore $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right) \leq 2$. This forces $e\left(x_{t}, L\right)=4,\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=2$, and $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,4,6$. If $e\left(x_{t}, a_{2} a_{3} a_{4}\right)=3$, then $x_{t} \rightarrow\left(L, a_{3}\right)$ and since $e\left(x_{2} x_{t}, a_{3}\right) \leq 1, e\left(x_{1} x_{t-1}, a_{3}\right)=2$, a contradiction. Hence $e\left(x_{t}, a_{2} a_{3} a_{4}\right) \leq 2$, and similarly $e\left(x_{t}, a_{3} a_{4} a_{5}\right) \leq 2$ and $e\left(x_{t}, a_{1} a_{2} a_{3}\right) \leq 2$. Then either $x_{t} a_{6} \in E$ or $e\left(x_{t}, a_{1} a_{2} a_{4} a_{5}\right)=4$. If $e\left(x_{t}, a_{1} a_{2} a_{4} a_{5}\right)=4$, then $e\left(x_{2}, a_{2} a_{4}\right)=0$ and hence $e\left(x_{t-1}, a_{2} a_{4}\right)=2$. Then $e\left(x_{1} x_{t-1}, a_{2}\right)=2$, so $x_{t} \nrightarrow\left(L, a_{2}\right)$. But then $\tau\left(a_{3}, L\right)=0$, so $x_{t} \xrightarrow{2}\left(L, a_{3}\right)$ and $x_{1} a_{3} \in E$, a contradiction.

Therefore $e\left(x_{t}, a_{1} a_{2} a_{4} a_{5}\right) \leq 3$ and $x_{t} a_{6} \in E$.
Suppose that $e\left(x_{t}, a_{2} a_{3} a_{4}\right)=2$. By symmetry, either $e\left(x_{t}, a_{2} a_{4}\right)=2$ or $e\left(x_{t}, a_{3} a_{4}\right)=2$. If $e\left(x_{t}, a_{2} a_{4}\right)=2$, then by symmetry we can let $x_{t} a_{1} \in E$. Since $e\left(x_{2}, a_{2} a_{4} a_{6}\right)=0$, we have $e\left(x_{t-1}, a_{2} a_{4} a_{6}\right)=3$. Then $e\left(x_{1} x_{t-1}, a_{2} a_{4}\right)=4$, so $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=2,4$. Then $e\left(a_{3}, a_{1} a_{5}\right)=0$, so $\tau\left(a_{3}, L\right) \leq 1$. But $e\left(x_{t}, L-a_{3}\right)=4$ and $x_{1} a_{3} \in E$, a contradiction. Therefore $e\left(x_{t}, a_{3} a_{4}\right)=2$, which means $x_{t} a_{5} \notin E$ so $e\left(x_{t}, a_{1} a_{3} a_{4} a_{6}\right)=4$. Then $e\left(x_{2}, a_{3} a_{4}\right)=$ 0 , so $e\left(x_{1} x_{t-1}, a_{3} a_{4}\right)=2$. Then $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=3,4$, so $\tau\left(a_{2}, L\right)=0$. This is again a contradiction, as $e\left(x_{t}, L-a_{2}\right)=4$ and $x_{1} a_{2} \in E$.

Therefore $e\left(x_{t}, a_{2} a_{3} a_{4}\right)=1$ and $e\left(x_{t}, a_{1} a_{5} a_{6}\right)=3$. By symmetry, either $x_{t} a_{2} \in E$ or $x_{t} a_{3} \in E$. If $x_{t} a_{2} \in E$, then $e\left(x_{2}, a_{2} a_{6}\right)=0$ and $e\left(x_{t-1}, a_{2} a_{6}\right)=2$. Then $e\left(x_{1} x_{t-1}, a_{2}\right)=2$, so $x_{t} \nrightarrow\left(L, a_{2}\right)$, and thus $e\left(a_{3}, a_{6} a_{1}\right)=0$. Also, since $x_{1} a_{3} \in E$ and $e\left(x_{t}, L-a_{3}\right)=4$, we have $x_{t} \nrightarrow\left(L, a_{3}\right)$. Thus $\tau\left(a_{4}, L\right)=0$, so since $x_{1} \rightarrow\left(L, a_{4}\right)$ and $e\left(x_{1}, L-a_{4}\right)=4$, this implies that $x_{2} a_{4} \notin E$. Then $x_{t-1} a_{4} \in E$, so $x_{t} \nrightarrow\left(L, a_{4}\right)$, which implies that $\tau\left(a_{3}, L\right)=0$. Since $x_{t} \rightarrow\left(L, a_{6}\right)$ and $x_{t-1} a_{6} \in E, \tau\left(a_{6}, L\right) \geq e\left(x_{t}, L-a_{6}\right)-2 \geq 1$. Then $x_{1} \rightarrow L$, so since $e\left(x_{t}, a_{1} a_{5}\right)=2$, we have $e\left(x_{2}, a_{1} a_{5}\right)=0$. Then $e\left(x_{t-1}, a_{1} a_{5}\right)=2$, so $e\left(x_{1} x_{t-1}, a_{1}\right)=2$. But since $e\left(x_{t}, a_{2} a_{6}\right)=2, x_{t} \rightarrow\left(L, a_{1}\right)$, a contradiction. Therefore $e\left(x_{t}, a_{1} a_{3} a_{5} a_{6}\right)=4$. Since $e\left(x_{2}, a_{3} a_{6}\right)=0$ we have $e\left(x_{t-1}, a_{3} a_{6}\right)=2$. Since $x_{t} \rightarrow\left(L, a_{2}\right)$ and $x_{t} \rightarrow\left(L, a_{4}\right)$ with $e\left(x_{t}, L-a_{2}\right)=e\left(x_{t}, L-a_{4}\right)=4$, we know that $\tau\left(a_{2}, L\right) \geq 2$ and $\tau\left(a_{4}, L\right) \geq 2$. But then $x_{t} \rightarrow\left(L, a_{3}\right)$, a contradiction since $e\left(x_{1} x_{t-1}, a_{3}\right)=2$.

By the previous claim, $e\left(x_{1} x_{t}, L\right) \leq 8$. Since $e\left(x_{1} x_{2} x_{t-1} x_{t}, L\right) \geq 15, e\left(x_{1} x_{t}, L\right) \geq 3$. We break the remainder of the proof of Theorem 1 into cases.

Case 1: $e\left(x_{1} x_{t}, L\right)=8$. We have $e\left(x_{1}, L\right)=e\left(x_{t}, L\right)=4, e\left(x_{2} x_{t-1}, L\right) \geq 7$, and WLOG $e\left(x_{2}, L\right) \geq e\left(x_{t-1}, L\right)$. Then $e\left(x_{2}, L\right) \geq 4$. Suppose $e\left(x_{2}, L\right)=6$. Since $e\left(x_{t}, L\right)=4$, $x_{1} \rightarrow\left(L, a_{i}\right)$ for at most two $a_{i} \in L$. Thus $N\left(x_{1}, L\right) \neq\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$, so WLOG either $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ or $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. In the first case, $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=$

8 and $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=4,5,6,1$. But then $x_{1} x_{2} \xrightarrow{6}\left(L, a_{5} a_{6}\right)$, a contradiction since $e\left(x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=4$. In the second case, $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$ and $x_{1} \nrightarrow\left(L, a_{1} a_{2} a_{4} a_{5}\right)$. But then $x_{1} x_{2} \xrightarrow{2}\left(L, a_{5} a_{6}\right)$ and $e\left(x_{t}, a_{1} a_{2} a_{4} a_{5}\right)=4$, again a contradiction. Therefore $e\left(x_{2}, L\right) \leq 5$, and we break into subcases.

Case 1.1: $e\left(x_{2}, L\right)=5$.
Case 1.1.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Suppose that $e\left(x_{2}, a_{2} a_{3}\right)=2$. Then $e\left(x_{t} x_{t-1}, a_{2} a_{3}\right)$ $=0$, so $e\left(x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=4$ and $e\left(x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right) \geq 2$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 7, \tau\left(a_{5} a_{6}, L\right) \geq$ 5. But then $x_{1} \rightarrow L$, a contradiction since $e\left(x_{2} x_{t}, L\right)=9$. Thus WLOG let $e\left(x_{2}, L-a_{3}\right)=5$. Then $x_{2} a_{2} \in E$, so $x_{t} a_{2} \notin E$. Thus $e\left(x_{t}, a_{5} a_{6}\right)>0$. But like before, either $x_{1} \rightarrow L$ or $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, a contradiction.

Case 1.1.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,4,6$, and since $e\left(x_{t}, L\right)$ $=4$, we see that $e\left(x_{2}, a_{2} a_{4} a_{6}\right) \leq 2$. If $e\left(x_{2}, a_{4} a_{6}\right)=2$ then $e\left(x_{t}, a_{1} a_{2} a_{3} a_{5}\right)=4$, so $e\left(x_{1} x_{t}, a_{2}\right)=$ 2. Since $e\left(x_{2}, L-a_{2}\right)=5$, this implies that $\tau\left(a_{2}, L\right)=3$. But then $x_{1} \rightarrow L$, a contradiction. Therefore $e\left(x_{2}, a_{4} a_{6}\right)=1$, so WLOG let $e\left(x_{2}, L-a_{6}\right)=5$. Then $e\left(x_{t}, a_{1} a_{3} a_{5} a_{6}\right)=4$, so since $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=7$, we have $\tau\left(a_{6} a_{1}, L\right) \geq 5$. Then $x_{1} \rightarrow\left(L, a_{1}\right)$, a contradiction since $e\left(x_{2} x_{t}, a_{1}\right)=2$.

Case 1.1.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $e\left(x_{2} x_{t}, L\right)=9$, we see that $\tau\left(a_{3} a_{6}, L\right)=0$, for otherwise $e\left(x_{2} x_{t}, a_{i}\right) \leq 1$ for four $a_{i} \in L$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$ and $\tau\left(a_{6}, L\right)=0$, we see that $e\left(x_{t}, a_{5} a_{6}\right)=0$. By symmetry, $e\left(x_{t}, a_{2} a_{3}\right)=0$, a contradiction.

Case 1.2: $e\left(x_{2}, L\right)=4$.
Case 1.2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Suppose $\tau\left(a_{6}, L\right) \geq 2$. Then $x_{\rightarrow}\left(L, a_{i}\right)$ for $i=$ $1,2,3,5$, so $e\left(x_{2} x_{t}, a_{4} a_{6}\right)=2$. Then $x_{1} \nrightarrow\left(L, a_{6}\right)$, so $\tau\left(a_{5}, L\right)=0$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq$ $4+2=6, x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, a contradiction since $x_{t} a_{6} \in E$. Thus $\tau\left(a_{6}, L\right) \leq 1$, and by symmetry $\tau\left(a_{5}, L\right) \leq 1$. Then, since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$, we see that $e\left(x_{t}, a_{5} a_{6}\right)=0$. Thus $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=4$, and $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=4$. Since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,4, e\left(a_{5} a_{6}, a_{2} a_{3}\right)=0$. Thus $\tau\left(a_{2} a_{3}, L\right) \leq 2$, so $x_{1} x_{2} \xrightarrow{2}\left(L, a_{2} a_{3}\right)$, a contradiction since $x_{t} a_{2} \in E$.
$\underline{\text { Case 1.2.2: } N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\} .}$ Suppose $\tau\left(a_{4}, L\right) \leq 1$. Then $x_{1} \xrightarrow{1}\left(L, a_{4}\right)$, so
$e\left(x_{2} x_{t}, a_{4}\right)=0$. Since $e\left(x_{2} x_{t}, a_{2} a_{6}\right) \leq 2$, this implies that $e\left(x_{2} x_{t}, a_{1} a_{3} a_{5}\right)=6$. Using similar reasoning, we see that $\tau\left(a_{6}, L\right) \geq 2$, for otherwise $e\left(x_{2} x_{t}, a_{6}\right)=0$. But then $x_{1} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{2} x_{t}, a_{1}\right)=2$, a contradiction. Therefore $\tau\left(a_{4}, L\right) \geq 2$, and by symmetry $\tau\left(a_{6}, L\right) \geq 2$. But then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,2,3,4,5$, so $e\left(x_{2} x_{t}, L\right) \leq 5+2=7$, a contradiction.

Case 1.2.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Suppose $e\left(x_{2} x_{t}, a_{1} a_{2}\right)=4$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,2$, so $\tau\left(a_{3} a_{6}, L\right)=0$. If $x_{2} a_{3} \in E$ then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t}, a_{5} a_{6}\right)=0$. Then $x_{t} a_{3} \in E$, a contradiction since $x_{1} \rightarrow\left(L, a_{3}\right)$. Thus $x_{2} a_{3} \notin E$, and by symme$\operatorname{try} x_{2} a_{6} \notin E$. Then $e\left(x_{2}, a_{1} a_{2} a_{4} a_{5}\right)=4$, so again $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$. But also $x_{1} x_{2} \xrightarrow{1}$ $\left(L, a_{2} a_{3}\right)$, so $e\left(x_{t}, a_{2} a_{3} a_{5} a_{6}\right)=0$, a contradiction. Therefore $e\left(x_{2} x_{t}, a_{1} a_{2}\right) \leq 3$. By symmetry, $e\left(x_{2} x_{t}, a_{4} a_{5}\right) \leq 3$, so $e\left(x_{2} x_{t}, a_{1} a_{2}\right)=e\left(x_{2} x_{t}, a_{4} a_{5}\right)=3$ and $e\left(x_{2} x_{t}, a_{3} a_{6}\right)=2$. WLOG let $e\left(x_{2} x_{t}, a_{1}\right)=2$. Then $x_{1} \nrightarrow\left(L, a_{1}\right)$, so $\tau\left(a_{6}, L\right)=0$. But this is a contradiction, since then $x_{1} \xrightarrow{2}\left(L, a_{6}\right)$ and $e\left(x_{2} x_{t}, a_{6}\right)=1$. This completes Case 1.

Case 2: $e\left(x_{1} x_{t}, L\right)=7$. WLOG let $e\left(x_{1}, L\right)=4$ and $e\left(x_{t}, L\right)=3$. Note that $e\left(x_{2} x_{t-1}, L\right) \geq 8$, and hence that $x_{1} \nrightarrow L$. We consider the different possibilities of $e\left(x_{2}, L\right)$ in the following subcases.

Case 2.1: $e\left(x_{2}, L\right)=6$. Note that for each $a_{i} \in L$, if $x_{1} \rightarrow\left(L, a_{i}\right)$ then $e\left(x_{t-1} x_{t}, a_{i}\right)=0$. We break further into subcases.

Case 2.1.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. We have $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=0$, so $e\left(x_{t}, a_{5} a_{6}\right) \geq 1$. Since $x_{1} \nrightarrow L, \tau\left(a_{5} a_{6}, L\right)<6$. But then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, a contradiction.

Case 2.1.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. We have $e\left(x_{t-1} x_{t}, a_{2} a_{4} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{3} a_{5}\right)=$ 3. Since $x_{t} a_{5} \in E$ and $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$, we have $\tau\left(a_{5} a_{6}, L\right) \geq 5$. But then $e\left(x_{2} x_{t}, a_{1}\right)=$ 2 and $x_{1} \rightarrow\left(L, a_{1}\right)$, a contradiction.

Case 2.1.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $e\left(x_{t-1} x_{t}, a_{3} a_{6}\right)=0$, WLOG we can let $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$. Since $e\left(x_{2} x_{t}, a_{1}\right)=2, x_{1} \nrightarrow\left(L, a_{1}\right)$. Thus $\tau\left(a_{6}, L\right)=0$, so $x_{1} x_{2} \xrightarrow{2}\left(L, a_{6} a_{1}\right)$ and $x_{t} a_{1} \in E$, a contradiction.

Case 2.2: $e\left(x_{2}, L\right)=5$. We have $e\left(x_{t-1}, L\right) \geq 3$.
Case 2.2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $x_{1} \nrightarrow L$, we see that $\tau\left(a_{5} a_{6}, L\right) \leq 4$. Since
$e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 7$, this implies that $e\left(x_{t}, a_{5} a_{6}\right)=0$. Then $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=3$, so since $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,3$, and $e\left(x_{2}, L\right)=5$, WLOG we can let $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$ and $e\left(x_{2}, L-a_{2}\right)=5$. Then $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,4$, so $\tau\left(a_{2} a_{3}, L\right) \leq 2$. But $x_{t} a_{2} \in E$ and $e\left(x_{1} x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=6$, a contradiction.

Case 2.2.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $e\left(x_{2} x_{t}, a_{4} a_{6}\right)=8-e\left(x_{2} x_{t}, a_{2}\right)-e\left(x_{2} x_{t}, a_{1} a_{3} a_{5}\right)$ $\geq 8-1-6=1$, WLOG we can let $e\left(x_{2} x_{t}, a_{4}\right)=1$. Since $e\left(x_{1}, L-a_{4}\right)=4$, this implies that $\tau\left(a_{4}, L\right) \geq 2$. Suppose that $a_{4} a_{2} \in E$. Then $x_{1} \rightarrow\left(L, a_{3}\right)$, so $e\left(x_{2} x_{t}, a_{3}\right) \leq 1$. Then $e\left(x_{2} x_{t}, a_{1} a_{5}\right) \geq 8-1-3=4$ and $e\left(x_{2} x_{t}, a_{6}\right)=1$. Since $e\left(x_{1}, L-a_{6}\right)=4$, this implies that $\tau\left(a_{6}, L\right) \geq 2$. But then $x_{1} \rightarrow\left(L, a_{1}\right)$, a contradiction since $e\left(x_{2} x_{t}, a_{1}\right)=2$. Thus $a_{2} a_{4} \notin E$, so $e\left(a_{4}, a_{6} a_{1}\right)=2$. But then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,3$, so $e\left(x_{2} x_{t}, L\right) \leq 5+2=7$, a contradiction.

Case 2.2.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Suppose $e\left(x_{2} x_{t}, a_{3} a_{6}\right) \geq 1$, and WLOG let $e\left(x_{2} x_{t}, a_{3}\right) \geq 1$. Then $\tau\left(a_{3}, L\right) \geq 2$, for otherwise $x_{1} \xrightarrow{1}\left(L, a_{3}\right)$. Thus $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,4$, so $e\left(x_{2} x_{t}, a_{1} a_{5}\right) \geq 8-4=4$. Then $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,5$, so $\tau\left(a_{6}, L\right)=0$. But then $x_{1} \xrightarrow{2}\left(L, a_{6}\right)$, a contradiction since $e\left(x_{2} x_{t}, a_{6}\right)=8-e\left(x_{2} x_{t}, a_{2} a_{3} a_{4}\right)-4 \geq 8-3-4=1$. Hence $e\left(x_{2} x_{t}, a_{1} a_{2} a_{4} a_{5}\right)=8$, so $\tau\left(a_{3} a_{6}, L\right)=0$ since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,2,4,5$. But then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$ and $x_{t} a_{5} \in E$, a contradiction.

Case 2.3: $e\left(x_{2}, L\right)=4$. We have $e\left(x_{t-1}, L\right) \geq 4$.
Case 2.3.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 8, x_{1} \rightarrow\left(L, a_{i}\right)$ for at most four $a_{i} \in L$. From this, we see that $\tau\left(a_{5} a_{6}, L\right) \leq 3, \tau\left(a_{2}, L\right) \leq 2$, and $\tau\left(a_{3}, L\right) \leq 2$. Since $\tau\left(a_{5} a_{6}, L\right) \leq 3$ and $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 6$, we know that $e\left(x_{t}, a_{5} a_{6}\right)=0$. Suppose that $e\left(x_{2}, a_{2} a_{3}\right)=2$. Then $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right)=0$, so $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right) \geq 7$. Since $x_{1} a_{2} \in E$, this implies that $\tau\left(a_{2} a_{3}, L\right) \geq 5$, a contradiction. Suppose that $e\left(x_{2}, a_{2} a_{3}\right)=1$, and WLOG let $x_{2} a_{2} \in E$. Then, because $e\left(x_{t}, a_{5} a_{6}\right)=0$, we have $e\left(x_{t}, a_{1} a_{3} a_{4}\right)=3$. Since $e\left(x_{2}, a_{2} a_{3}\right)=1$, $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=3$. Thus, since $x_{t} a_{3} \in E$ and $e\left(x_{1}, a_{1} a_{4}\right)=2$, we have $\tau\left(a_{2} a_{3}, L\right) \geq 3$. Then $e\left(a_{2} a_{3}, a_{5} a_{6}\right) \geq 1$, so $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,5$ or $i=4,6$. Then $e\left(x_{2} x_{t-1}, a_{4} a_{6}\right) \geq 8-4=4$ or $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4$. But $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{2} x_{t-1}, a_{5}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$, a contradiction.

Therefore $e\left(x_{2}, a_{2} a_{3}\right)=0$, so $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=4$. Since $e\left(x_{1} x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=6$ and $e\left(x_{t}, a_{2} a_{3}\right)=3-e\left(x_{t}, a_{1} a_{4}\right)-e\left(x_{t}, a_{5} a_{6}\right) \geq 3-2-0=1$, we have $\tau\left(a_{2} a_{3}, L\right) \geq 4$. Then $\tau\left(a_{2}, L\right)=\tau\left(a_{3}, L\right)=2$, and since $e\left(x_{2} x_{t-1}, L\right) \geq 8$, we can see that we must have $e\left(a_{2} a_{3}, a_{5} a_{6}\right)=2$ with $e\left(a_{2} a_{3}, a_{5}\right)=2$ or $e\left(a_{2} a_{3}, a_{6}\right)=2$. WLOG let $e\left(a_{2} a_{3}, a_{5}\right)=2$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=4,6$, so $e\left(x_{t-1}, a_{4} a_{6}\right)=0$ since $e\left(x_{2}, a_{4} a_{6}\right)=2$. Then $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{5}\right)=$ 4, so $e\left(x_{2} x_{t-1}, a_{5}\right)=2$. Then $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right) \leq 1$, a contradiction since $e\left(x_{t}, a_{5} a_{6}\right)=0$.

Case 2.3.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 8$ and $e\left(x_{2} x_{t-1}, a_{2} a_{4} a_{6}\right) \leq 3$, we have $e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right) \geq 5$. Similarly, $e\left(x_{2} x_{t}, a_{1} a_{3} a_{5}\right) \geq 4$. From this, we see that $\tau\left(a_{4}, L\right) \leq 1$ or $\tau\left(a_{6}, L\right) \leq 1$, for otherwise $e\left(x_{2} x_{t-1}, a_{1} a_{3}\right) \leq 2$.

Suppose $\tau\left(a_{4}, L\right) \geq 2$. Then $\tau\left(a_{6}, L\right) \leq 1$, so since $e\left(x_{1}, L-a_{6}\right)=4$ we have $e\left(x_{2} x_{t}, a_{6}\right)=$ 0 . Then $e\left(x_{2} x_{t}, a_{1} a_{3} a_{5}\right) \geq 5$. Since $x_{1} \nrightarrow L, a_{4} a_{6} \notin E$, so $a_{4} a_{2} \in E$. Then $x_{1} \rightarrow\left(L, a_{3}\right)$, so $e\left(x_{2} x_{t}, a_{1} a_{5}\right)=4$ and $e\left(x_{2} x_{t}, a_{i}\right)=1$ for $i=2,3,4$. Also, $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4, e\left(x_{2} x_{t-1}, a_{i}\right)=$ 1 for $i=2,3,4$, and $x_{t-1} a_{6} \in E$. Since $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right) \geq 6, x_{1} x_{2} a_{2} a_{3} a_{4} a_{5}$ contains a 6 -cycle C, and since $\tau\left(a_{6}, L\right) \leq 1, \tau(C) \geq \tau(L)$. Let $R=x_{3} \ldots x_{t-1} x_{t} a_{1} a_{6}$. Since $x_{t-1} a_{6} \in E$, $r(P) \geq 4$ by Condition (4.4).

Suppose $x_{t} a_{4} \in E$. Then $x_{2} a_{4} \notin E$, so $e\left(x_{2}, a_{2} a_{3}\right)=2$. Since $x_{t-1} x_{t} a_{4} a_{5} a_{6} a_{1} x_{t-1}=C_{6}$, $x_{1} x_{2} x_{3} x_{4} x_{5} a_{2} a_{3} \nsupseteq C_{6}$. Then, since $e\left(x_{1} x_{2}, a_{2} a_{3}\right)=4$, we see that $e\left(x_{1}, x_{4} x_{5}\right)=0$ (see Figure 4.12). Since $r(P) \geq 4$, this means that $e\left(x_{t}, x_{t-3} x_{t-4}\right) \geq 1$. But C is a 6 -cycle, so $x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4} a_{6} a_{1}$ does not have a 6-cycle, a contradiction since $e\left(x_{t-1} x_{t}, a_{1}\right)=2$ and $x_{t-1} a_{6} \in E$. Therefore $x_{t} a_{4} \notin E$, and it is easy to find similar contradictions if $x_{t} a_{3} \in E$ or $x_{t} a_{2} \in E$. Since $e\left(x_{t}, L\right)=3$ and $x_{t} a_{6} \notin E$, we conclude that $\tau\left(a_{4}, L\right) \leq 1$. By symmetry, $\tau\left(a_{6}, L\right) \leq 1$.

Then $x_{1} \xrightarrow{1}\left(L, a_{i}\right)$ for $i=4,6$, so we know that $e\left(x_{2} x_{t}, a_{4} a_{6}\right)=0$. Then $e\left(x_{2}, a_{1} a_{2} a_{3} a_{5}\right)=$ 4, and since $x_{2} a_{2} \in E$, we have $e\left(x_{t}, a_{1} a_{3} a_{5}\right)=3$ and $e\left(x_{t-1}, L-a_{2}\right) \geq 4$. WLOG let $x_{t-1} a_{6} \in E$. Let $C=x_{1} x_{2} a_{2} a_{3} a_{4} a_{5} x_{1}$ and $R=x_{3} \ldots x_{t-1} x_{t} a_{1} a_{6}$. Just like in the preceding paragraph, we have $\tau(C) \geq \tau(L)$ and $r(P) \geq 4$. Since C is a 6 -cycle, we readily see that

Figure 4.12: Case 2.3.2, when $\tau\left(a_{4}, L\right) \geq 2$ and $x_{t} a_{4} \in E$.
$e\left(x_{t}, x_{t-3} x_{t-4}\right)=0$, because $x_{t-1} a_{6} \in E$ and $e\left(x_{t-1} x_{t}, a_{1}\right)=2$. Then $e\left(x_{1}, x_{4} x_{5}\right) \geq 1$. But $x_{t} x_{t-1} a_{6} a_{5} a_{4} a_{3} x_{t}=C_{6}$ and $e\left(x_{1} x_{2}, a_{1} a_{2}\right)=4$, a contradiction.

Case 2.3.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Suppose $\tau\left(a_{3}, L\right)>0$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,3,4,6$, so $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right) \geq 8-4=4$, and $e\left(x_{2} x_{t}, a_{1} a_{5}\right) \geq 3$. Then $\tau\left(a_{6}, L\right)=0$, so $x_{1} \xrightarrow{2}\left(L, a_{6}\right)$ and hence $e\left(x_{2} x_{t}, a_{6}\right)=0$. Then $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 3$ and $e\left(x_{2} x_{t}, a_{1} a_{5}\right)=4$. But then, since $\tau\left(a_{6}, L\right)=0$, we get $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$ and $x_{t} a_{5} \in E$, a contradiction. Therefore $\tau\left(a_{3}, L\right)=0$, and by symmetry $\tau\left(a_{6}, L\right)=0$. This implies that $e\left(x_{2} x_{t}, a_{3} a_{6}\right)=0$, so $e\left(x_{2}, a_{1} a_{2} a_{4} a_{5}\right)=4$ and $e\left(x_{t}, a_{1} a_{2} a_{4} a_{5}\right) \geq 3$. WLOG let $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$. Then $x_{t} a_{1} \in E$, $\tau\left(a_{6} a_{1}, L\right) \leq 0+3=3$, and $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=6$, a contradiction.

Case 2.4: $e\left(x_{2}, L\right)=3$. We have $e\left(x_{t-1}, L\right) \geq 5$.
Case 2.4.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $e\left(x_{2} x_{t-1}, a_{2} a_{3}\right) \leq 2, e\left(x_{2} x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right) \geq 6$. Because $x_{1} a_{2} \in E$, this implies that $\tau\left(a_{2} a_{3}, L\right) \geq 4$. WLOG let $e\left(a_{2} a_{3}, a_{5}\right) \geq 1$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=4,6$, so $e\left(x_{2} x_{t-1}, a_{4} a_{6}\right) \leq 2$. Then $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4$, so $\tau\left(a_{6}, L\right)=$

0 . Also, since $e\left(x_{2} x_{t-1}, a_{5}\right)=2$, we know that $x_{1} x_{t} \nrightarrow\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right) \leq 1$. Therefore $e\left(x_{t}, a_{5} a_{6}\right)=2$, so since $\tau\left(a_{5} a_{6}, L\right) \leq 3$ and $e\left(x_{1}, a_{1} a_{2} a_{3} a_{4}\right)=4$ with $x_{2} a_{1} \in E$, we have $e\left(x_{2}, a_{2} a_{3} a_{4}\right)=0$. Then $e\left(x_{2}, a_{1} a_{5} a_{6}\right)=3$, so $e\left(x_{2} x_{t}, a_{6}\right)=2$, a contradiction since $x_{1} \rightarrow\left(L, a_{6}\right)$.

Case 2.4.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $e\left(x_{2} x_{t-1}, a_{2} a_{4} a_{6}\right) \leq 3, e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right) \geq 5$.
Similarly, $e\left(x_{2} x_{t}, a_{1} a_{3} a_{5}\right) \geq 3$.
Suppose that $\tau\left(a_{4}, L\right) \geq 2$. Then $x_{1} \rightarrow\left(L, a_{3}\right)$, so $e\left(x_{2} x_{t-1}, a_{3}\right) \leq 1$. Then $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=$ 4, so $\tau\left(a_{6}, L\right) \leq 1$. Then $x_{1} \xrightarrow{1}\left(L, a_{6}\right)$, so $e\left(x_{2} x_{t}, a_{6}\right)=0$. Also, $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,3,4,6$, and since $x_{2} a_{6} \notin E$ we have $x_{t-1} a_{6} \in E$. Since $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4, x_{1} x_{t} \nrightarrow$ $\left(L, a_{i} a_{i+1}\right)$ for $i=6,1,4,5$. Since $e\left(x_{1}, a_{2} a_{3} a_{5}\right)=3$, this implies that $e\left(x_{t}, a_{2} a_{3} a_{4} a_{5}\right) \leq 2$, and since $x_{t} a_{6} \notin E$ we have $e\left(x_{t}, a_{2} a_{3} a_{4} a_{5}\right)=2$. Further, we see that it must be the case that $e\left(x_{t}, a_{3} a_{5}\right)=2$, for otherwise $x_{1} x_{t} a_{2} a_{3} a_{4} a_{5} \supseteq C_{6}$. Hence $e\left(x_{t}, a_{1} a_{3} a_{5}\right)=3$, so $x_{t} \rightarrow\left(L, a_{2}\right)$. Then, because $x_{1} a_{2} \in E$, we know that $x_{t-1} a_{2} \notin E$. In summary, we have $e\left(x_{t-1}, L-a_{2}\right)=5$, $e\left(x_{2}, a_{1} a_{2} a_{5}\right)=3$, and $e\left(x_{t}, a_{1} a_{3} a_{5}\right)=3$.

Since $e\left(x_{2} x_{t-1}, a_{1}\right)=2, e\left(a_{6}, a_{2} a_{4}\right)=0$. Then, since $\tau\left(a_{4}, L\right)=2$, we have $a_{2} a_{4} \in E$. Suppose that $a_{1} a_{3} \in E$. Then $x_{t-1} x_{t} a_{3} a_{1} a_{6} a_{5} x_{t-1}=C_{6}$, and since $a_{2} a_{4} \in E$ with $x_{1} a_{2} \in E$, we must have $e\left(x_{t-1} x_{t}, a_{3} a_{1} a_{6} a_{5}\right) \leq 6$ because $\tau\left(a_{2} a_{4}, L\right) \leq 4$. But $e\left(x_{t-1} x_{t}, a_{3} a_{1} a_{5} a_{6}\right)=7$, a contradiction. Therefore $a_{1} a_{3} \notin E$, and similarly $a_{5} a_{3} \notin E$. Hence $\tau\left(a_{2} a_{3}, L\right) \leq 2+1=3$, so since $x_{1} a_{2} \in E$ we have $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right) \leq 5$, a contradiction.

Therefore $\tau\left(a_{4}, L\right) \leq 1$, and by symmetry $\tau\left(a_{6}, L\right) \leq 1$. This gives us $e\left(x_{2} x_{t}, a_{4} a_{6}\right)=$ 0 , because $x_{1} \xrightarrow{1}\left(L, a_{i}\right)$ for $i=4,6$. Suppose that $x_{t-1} a_{2} \in E$. Then $x_{2} a_{2} \notin E$, so $e\left(x_{2}, a_{1} a_{3} a_{5}\right)=3$. Further, since $e\left(x_{1} x_{t-1}, a_{2}\right)=2, x_{t} \nrightarrow\left(L, a_{2}\right)$, so $e\left(x_{t}, a_{1} a_{3}\right) \leq 1$. Then $e\left(x_{t}, a_{2} a_{5}\right)=2$, so $x_{1} x_{t} \rightarrow\left(L, a_{6} a_{1}\right)$ and $x_{1} x_{t} \rightarrow\left(L, a_{3} a_{4}\right)$. But $e\left(x_{2}, a_{1} a_{3}\right)=2$, so $e\left(x_{t-1}, a_{1} a_{3}\right)=0$, a contradiction. Therefore $\left(x_{t-1}, L-a_{2}\right)=5$. Since $x_{1} \nrightarrow L, \tau\left(a_{2}, L\right) \leq 2$, so $x_{t-1} \xrightarrow{1}\left(L, a_{2}\right)$. Then, since $x_{1} a_{2} \in E$, we have $x_{t} a_{2} \notin E$. Therefore $e\left(x_{t}, a_{1} a_{3} a_{5}\right)=3$.

Let $C=x_{t-1} x_{t} a_{1} a_{6} a_{5} a_{4} x_{t-1}$. If $a_{2} a_{4} \in E$ and $a_{3} a_{1} \in E$ then $x_{t-1} x_{t} a_{5} a_{6} a_{1} a_{3} x_{t-1}=C_{6}$ with $e\left(x_{t-1} x_{t}, a_{5} a_{6} a_{1} a_{3}\right)=7$. But $\tau\left(a_{2} a_{4}, L\right) \leq 2+1=3$ and $x_{1} a_{2} \in E$, a contradiction.

Thus $a_{2} a_{4} \notin E$ or $a_{3} a_{1} \notin E$. Similarly, $a_{2} a_{6} \notin E$ or $a_{3} a_{1} \notin E$. Since $\tau\left(a_{2}, L\right) \leq 2$, this implies that $\tau\left(a_{2} a_{3}, L\right) \leq 4$, so $\tau(C) \geq \tau(L)$. Since $x_{1} x_{2} \ldots x_{5} a_{2} a_{3} \nsupseteq C_{\geq 6}$ and $e\left(x_{1} x_{2}, a_{2} a_{3}\right)=3$, we know that $e\left(x_{1}, x_{4} x_{5}\right)=0$. Since $e\left(x_{t-1} x_{t}, a_{3} a_{4}\right)=3$ and $x_{1} x_{2} a_{5} a_{6} a_{1} a_{2} x_{1}=C_{6}$, we know that $e\left(x_{t}, x_{t-3} x_{t-4}\right)=0$, for otherwise $x_{t} x_{t-1} \ldots x_{t-4} a_{3} a_{4} \supseteq C_{\geq 6}$. Let $R=a_{3} a_{2} x_{1} x_{2} \ldots x_{t-2}$. Since $a_{3} x_{2} \in E, r(R)>3 \geq r(P)$, contradicting Condition (4.4).

Case 2.4.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Suppose $\tau\left(a_{3}, L\right)>0$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=$ $2,3,4,6$, so $e\left(x_{2} x_{t-1}, a_{2} a_{3} a_{4} a_{6}\right) \leq 4$. Then $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=4$, and similarly $e\left(x_{2} x_{t}, a_{1} a_{5}\right) \geq$ 2. Then $\tau\left(a_{6}, L\right)=0$, so $e\left(x_{2} x_{t}, a_{6}\right)=0$ since $e\left(x_{1}, L-a_{6}\right)=4$. Since $e\left(x_{2} x_{t-1}, a_{1} a_{5}\right)=2$, we see that $x_{1} x_{t} \nrightarrow\left(L, a_{5} a_{6}\right)$ and $x_{1} x_{t} \nrightarrow\left(L, a_{6} a_{1}\right)$. But it is easy to see that this is a contradiction, since $e\left(x_{t}, L-a_{6}\right)=3$. Therefore $\tau\left(a_{3}, L\right)=0$, and by symmetry $\tau\left(a_{6}, L\right)=0$. This implies that $e\left(x_{2} x_{t}, a_{3} a_{6}\right)=0$, so WLOG let $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$. Then we notice that $x_{1} x_{t} \rightarrow\left(L, a_{i} a_{i+1}\right)$ for $i=2,3,5$, so $e\left(x_{2} x_{t-1}, a_{i}\right) \leq 1$ for $i=2,3,4,5,6$, a contradiction.

Case 2.5: $e\left(x_{2}, L\right)=2$. We have $e\left(x_{t-1}, L\right)=6$. Note that if $x_{t} \rightarrow\left(L, a_{i}\right)$, then $x_{1} a_{i} \notin E$. Since $e\left(x_{1}, L\right)=4$, this implies that $x_{t} \rightarrow\left(L, a_{i}\right)$ for at most two $a_{i} \in L$. We immediately see that $N\left(x_{t}, L\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$. Suppose $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $x_{1} a_{2} \notin E$, so $e\left(x_{1}, L-a_{2}\right)=4$. Then $\tau\left(a_{5} a_{6}, L\right) \leq 4$, so $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, a contradiction since $e\left(x_{1}, a_{5} a_{6}\right) \geq 1$. Thus $N\left(x_{t}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$, so $e\left(x_{1}, L-a_{3}\right)=4$. Again, $\tau\left(a_{5} a_{6}, L\right) \leq 4$, $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=7$, and $e\left(x_{1}, a_{5} a_{6}\right) \geq 1$, a contradiction.

Case 3.1: $e\left(x_{1}, L\right)=4$.
Case 3.1.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Since $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,3, e\left(x_{2} x_{t-1}, a_{2} a_{3}\right) \leq 2$. Then $e\left(x_{2} x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right) \geq 7$, so $x_{1} \nrightarrow\left(L, a_{i}\right)$ for three $i \in\{4,5,6,1\}$. Thus $\tau\left(a_{5} a_{6}, L\right) \leq 2$, so $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$. Then $e\left(x_{t}, a_{5} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=2$. But then $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$ and $e\left(x_{2} x_{t-1}, a_{5} a_{6}\right) \geq 3$, a contradiction.

Case 3.1.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. Since $e\left(x_{2} x_{t-1}, a_{2} a_{4} a_{6}\right) \leq 3, e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right)=6$. Then also, $e\left(x_{2} x_{t-1}, a_{i}\right)=1$ for $i=2,4,6$. Since $e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right)=6$, we have $e\left(a_{6}, a_{2} a_{4}\right)=$ $e\left(a_{4}, a_{2} a_{6}\right)=0$. Then $x_{1} \xrightarrow{1}\left(L, a_{i}\right)$ for $i=4,6$, so $e\left(x_{2} x_{t}, a_{4} a_{6}\right)=0$. Therefore $e\left(x_{t-1}, a_{4} a_{6}\right)=$

2 , so $x_{t-1} \xrightarrow{2}\left(L, a_{2}\right)$ because $\tau\left(a_{2}, L\right) \leq 1$. Then, because $x_{1} a_{2} \in E$, we know that $x_{t} a_{2} \notin E$. Hence $e\left(x_{t}, a_{1} a_{3} a_{5}\right)=2$, and by symmetry we can assume $x_{t} a_{1} \in E$.

Suppose that $x_{2} a_{2} \in E$. Then $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=6$ and $\tau\left(a_{6} a_{1}, L\right) \leq 1+3=4$, so $x_{1} x_{2} \xrightarrow{0}\left(L, a_{6} a_{1}\right)$. Therefore, because $a_{6} a_{1} x_{t} x_{t-1} \ldots x_{3}=P_{t}$ and $a_{6} x_{t-1} \in E$, by Condition (4.4) we know that $r(P) \geq 4$. Since $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right), x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4} a_{6} a_{1}$ does not have a large cycle. Because $e\left(x_{t} x_{t-1}, a_{6} a_{1}\right)=3$, this implies that $e\left(x_{t}, x_{t-3} x_{t-4}\right)=0$. Hence $r\left(x_{t}, P\right) \leq 3$, so $r\left(x_{1}, P\right) \geq 4$. But similarly, $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$ and $e\left(x_{1} x_{2}, a_{2} a_{3}\right)=4$, a contradiction.

Therefore $x_{2} a_{2} \notin E$, so $e\left(x_{2}, L\right)=e\left(x_{2}, a_{1} a_{3} a_{5}\right)=3$ and $e\left(x_{t-1}, L\right)=6$. Suppose that $x_{t} a_{3} \in E$. Then $e\left(x_{1} x_{t}, a_{1} a_{3}\right)=4$, so $\tau\left(a_{1} a_{3}, L\right)=6$ because $e\left(x_{t-1}, L\right)=6$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=6$ and $x_{1} a_{5} \in E$, we have $\tau\left(a_{5} a_{6}, L\right) \geq 4$. Because $e\left(a_{6}, a_{2} a_{4}\right)=0$, this implies that $\tau\left(a_{5}, L\right)=3$ and $a_{3} a_{6} \in E$. Let $L^{\prime}=a_{6} a_{1} x_{t} a_{3} a_{4} x_{t-1} a_{6}$. We see that $\tau\left(L^{\prime}\right)=\tau(L)$, because $e\left(x_{t-1} x_{t}, a_{6} a_{1} a_{3} a_{4}\right)=6$ and $\tau\left(a_{2}, L\right)=1$. Hence $r(P) \geq 4$, since $a_{5} a_{2} x_{1} x_{2} \ldots x_{t-2}=P_{t}$ with $a_{5} x_{2} \in E$. Since L^{\prime} is a 6 -cycle and $e\left(x_{1} x_{2}, a_{2} a_{5}\right)=3$, we know that $r\left(x_{1}, P\right) \leq 3$. Then $r\left(x_{t}, P\right) \geq 4$, so $x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4} a_{3} a_{4}$ contains a large cycle since $e\left(x_{t-1} x_{t}, a_{3} a_{4}\right)=3$. But $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right)$, a contradiction.

Hence $x_{t} a_{3} \notin E$, so $e\left(x_{t}, a_{1} a_{5}\right)=2$. Let $L^{\prime}=a_{4} a_{5} a_{6} a_{1} x_{t} x_{t-1} a_{4}$. We see that $\tau\left(L^{\prime}\right)=\tau(L)$, because $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=6$ and $\tau\left(a_{2}, L\right) \leq 1$. Hence $r(P) \geq 4$, since $a_{3} a_{2} x_{1} x_{2} \ldots x_{t-2}=P_{t}$ with $a_{3} x_{2} \in E$. Since L^{\prime} is a 6 -cycle and $e\left(x_{1} x_{2}, a_{2} a_{3}\right)=3$, we know that $r\left(x_{1}, P\right) \leq 3$. Then $r\left(x_{t}, P\right) \geq 4$, so $x_{t} x_{t-1} x_{t-2} x_{t-3} x_{t-4} a_{6} a_{1}$ contains a large cycle since $e\left(x_{t-1} x_{t}, a_{6} a_{1}\right)=3$. But $x_{1} x_{2} \rightarrow\left(L, a_{6} a_{1}\right)$, a contradiction.

Case 3.1.3: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$. Since $e\left(x_{2} x_{t-1}, a_{3} a_{6}\right) \leq 2$, we have $e\left(x_{2} x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right) \geq 7$, and hence $\tau\left(a_{3} a_{6}, L\right)=0$. By symmetry, say $e\left(x_{2}, a_{1} a_{2} a_{4}\right)=3$. Then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$, so $e\left(x_{t}, a_{5} a_{6}\right)=0$. Then $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=2$, so $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{4}\right) \leq$ 3 , for otherwise $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$ and $x_{1} a_{5} \in E$.

Suppose that $e\left(x_{t}, a_{1} a_{3}\right) \geq 1$. Then, because $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=2$, we have $x_{1} x_{t} \rightarrow$ $\left(L, a_{5} a_{6}\right)$. Thus $e\left(x_{2} x_{t-1}, a_{5}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$, so $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=4$ and
$e\left(x_{t-1}, a_{1} a_{2} a_{4}\right)=3$. Since $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=5$ and $x_{1} a_{5} \in E$, we know that $\tau\left(a_{5} a_{6}, L\right) \geq$ 3 , which implies that $\tau\left(a_{5}, L\right)=3$. Because $e\left(x_{2} x_{t-1}, a_{1} a_{2} a_{4}\right)=6$, we see that $x_{t} a_{1} \notin E$, for otherwise $e\left(x_{t}, a_{1} a_{j}\right)=2$ for some $i \in\{2,3,4\}$, and hence $x_{t} \rightarrow\left(L, a_{i}\right)$ for some $i \in\{1,2,4\}$. Similarly, $e\left(x_{t}, a_{2} a_{3}\right) \leq 1$, so because $e\left(x_{t}, a_{1} a_{3}\right) \geq 1$ we have $e\left(x_{t}, a_{3} a_{4}\right)=2$. Then $x_{1} x_{t} \rightarrow$ $\left(L, a_{6} a_{1}\right)$, so $e\left(x_{2} x_{t-1}, a_{6} a_{1}\right) \leq 2$. But then $e\left(x_{2} x_{t-1}, L\right)=e\left(x_{2} x_{t-1}, a_{6} a_{1}\right)+e\left(x_{2} x_{t-1}, a_{5}\right)+$ $e\left(x_{2} x_{t-1}, a_{3}\right)+e\left(x_{2} x_{t-1}, a_{2} a_{4}\right) \leq 2+1+1+4=8$, a contradiction.

Therefore $e\left(x_{t}, a_{1} a_{3}\right)=0$, so $e\left(x_{t}, a_{2} a_{4}\right)=2$. Since $x_{t} a_{4} \in E$ and $\tau\left(a_{3}, L\right)=0$, we know that $e\left(x_{1} x_{2}, a_{5} a_{6} a_{1} a_{2}\right) \leq 5$, for otherwise $x_{1} x_{2} \xrightarrow{1}\left(L, a_{3} a_{4}\right)$. Thus $e\left(x_{2}, a_{5} a_{6}\right)=0$, so, since $e\left(x_{2} x_{t-1}, a_{3}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$ and $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{4}\right) \leq 3$, we have $e\left(x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=4$ and $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5} a_{6}\right)=5$. Let $C=a_{4} a_{5} a_{6} a_{1} x_{t} x_{t-1} a_{4}$, and let $R=a_{3} a_{2} x_{1} x_{2} \ldots x_{t-2}$. Since $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=5$ and $\tau\left(a_{3}, L\right)=0, \tau(C) \geq \tau(L)$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$ and $e\left(x_{1} x_{2}, a_{2} a_{3}\right)=3$, we know that $r\left(x_{1}, P\right) \leq 3$. Since $x_{1} x_{2} \rightarrow\left(L, a_{3} a_{4}\right)$ and $e\left(x_{t-1} x_{t}, a_{4}\right)=2$, we know that $x_{t} x_{t-4} \notin E$. Because $a_{3} x_{2} \in E$, this implies that $x_{t} x_{t-3} \in E$, for otherwise $r(R)>r(P)$, contradicting condition (4.4).

By Condition (4.2) and the path R of order $t, e\left(a_{3}, D-P\right)=0$. By Condition (4.4), $r\left(a_{3}, R\right) \leq 4$, so $e\left(a_{3}, x_{3} \ldots x_{t-2}\right)=0$. Then, because $e\left(a_{3}, x_{1} x_{2} x_{t-1} x_{t}\right)=1$ and $\tau\left(a_{3}, L\right)=0$, we have $e\left(a_{3}, D+L\right) \leq 1+2=3$. Since $r\left(x_{1}, P\right) \leq 3$ and $r\left(x_{t}, P\right)=4$, we know that $e\left(x_{1} x_{t}, D\right)=e\left(x_{1} x_{t}, P\right) \leq 2+3=5$. Then $e\left(x_{1} x_{t}, D+L\right) \leq 5+6=11$. By Conditions (4.2) and (4.4), and the path $R, e\left(x_{t-2}, D\right)=e\left(x_{t-2}, D-P\right)+e\left(x_{t-2}, P-x_{t-1} x_{t}\right)+e\left(x_{t-2}, x_{t-1} x_{t}\right) \leq$ $0+3+2=5$. Thus $e\left(x_{t-2}, D+L\right) \leq 11$, so $e\left(a_{3} x_{1} x_{t} x_{t-2}, D+L\right) \leq 3+11+11=25$. Thus $e\left(a_{3} x_{1} x_{t} x_{t-2}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$. Let $L^{\prime}=x_{t-1} a_{4} a_{5} a_{6} a_{1} a_{2} x_{t-1}$, and $P^{\prime}=x_{2} x_{3} \ldots x_{t-3}$. Since $e\left(x_{t-1}, L-a_{3}\right)=5$ and $\tau\left(a_{3}, L\right)=0, \tau\left(L^{\prime}\right)=\tau(L)+3$. But P^{\prime} is a path of order $t-4 \geq 3$ and $e\left(x_{2}, x_{1} a_{3}\right)=e\left(x_{t-3}, x_{t-2} x_{t}\right)=2$, so either the maximality of k_{0} or Condition (4.3) is contradicted by Lemma 3.0.4.

Case 3.2: $e\left(x_{1}, L\right)=3$. Since $e\left(x_{1}, L\right)=e\left(x_{t}, L\right)=3$, WLOG we can let $e\left(x_{2}, L\right) \geq$ $e\left(x_{t-1}, L\right)$. Thus $e\left(x_{2}, L\right) \geq 5$.

Case 3.2.1: $e\left(x_{2}, L\right)=6$. Since $e\left(x_{t-1} x_{t}, L\right) \geq 6$ and $e\left(x_{2}, L\right)=6$, we immediately see
that $N\left(x_{1}, L\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$ We break further into cases to consider the other possibilities for $N\left(x_{1}, L\right)$.

Case 3.2.1.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $x_{1} \rightarrow\left(L, a_{2}\right), e\left(x_{t-1} x_{t}, a_{2}\right)=0 . \quad$ Suppose that $e\left(x_{t}, a_{4} a_{5} a_{6}\right) \geq 1$, and by symmetry let $e\left(x_{t}, a_{5} a_{6}\right) \geq 1$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=$ 7, this implies that $\tau\left(a_{5} a_{6}, L\right) \geq 5$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=4,6$, so $e\left(x_{t-1}, a_{4} a_{6}\right)=$ 0 . Then $e\left(x_{t-1}, a_{1} a_{3} a_{5}\right)=3$, so $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,3,5$. But then $\tau\left(a_{6}, L\right) \leq 1$, a contradiction. Therefore $e\left(x_{t}, a_{4} a_{5} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{2} a_{3}\right)=3$. Since $e\left(x_{1} x_{t}, a_{1} a_{2} a_{3}\right)=6$, we have $\tau\left(a_{1} a_{2} a_{3}, L\right)=9$, for otherwise $x_{2} \xrightarrow{1}\left(L, a_{i}\right)$ for some $i=1,2,3$. But then again $\tau\left(a_{5} a_{6}, L\right) \geq 5$, a contradiction.

Case 3.2.1.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. Since $x_{1} \rightarrow\left(L, a_{3}\right), e\left(x_{t-1} x_{t}, a_{3}\right)=0$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 9, \tau\left(a_{5}, L\right) \leq 2$. Suppose $\tau\left(a_{6}, L\right)=3$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,5$, so $e\left(x_{t-1} x_{t}, a_{1} a_{5}\right)=0$. Then $e\left(x_{t-1}, a_{2} a_{4} a_{6}\right)=3$, so $\tau\left(a_{5}, L\right) \leq 1$. This argument implies that $\tau\left(a_{5} a_{6}, L\right) \leq 4$, and since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$ we have $e\left(x_{t}, a_{5} a_{6}\right)=0$. Since $x_{t} a_{3} \notin E$, we know that $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$. Then, because $e\left(x_{2} x_{t}, a_{1} a_{2} a_{4}\right)=6$, we have $e\left(a_{3}, a_{5} a_{6}\right)=0$. Since $e\left(x_{1} x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=6$ and $x_{t} a_{2} \in E$, this implies that $a_{3} a_{1} \in E$ and $\tau\left(a_{2}, L\right)=3$. Then $x_{1} \rightarrow\left(L, a_{5}\right)$ and $x_{1} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{t-1}, a_{5} a_{6}\right)=0$. Hence $e\left(x_{t-1}, a_{1} a_{2} a_{4}\right)=3$ (see Figure 4.13).

Let $L^{\prime}=x_{1} x_{2} a_{1} a_{2} a_{3} a_{4} x_{1}$. Since $\tau\left(a_{5} a_{6}, L\right) \leq 4$, we know that $\tau\left(L^{\prime}\right) \geq \tau(L)+1$. Since $\tau\left(a_{3}, L\right)=1$ and $\tau\left(a_{2}, L\right)=3$, we see that $\tau^{\prime}\left(L^{\prime}\right) \geq \tau^{\prime}(L)+1$ (see Figure 4.14). We will apply Lemma 3.0.6 to the path $R=x_{3} x_{4} \ldots x_{t}$ of order $t-2$ and the edge $a_{5} a_{6}$. We first show that $e\left(x_{3} x_{t} a_{5} a_{6}, C\right) \geq 15$ for a 6 -cycle C. By Condition (4.3), $R+a_{5} a_{6}$ does not contain a P_{t}, so $e\left(x_{3}, a_{5} a_{6}\right)=0$. Since $x_{2} \rightarrow L$ and $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$, we know that $e\left(x_{3}, a_{1} a_{2} a_{4}\right)=0$ by the maximality of k_{0}. Since $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$ and $x_{t} a_{2} \in E, e\left(x_{3}, D-P\right)=0$ by Condition (4.2). Also, because $x_{2} \rightarrow\left(L, a_{2}\right)$ we have $x_{1} x_{3} \notin E$, for otherwise $x_{1} x_{3} x_{4} \ldots x_{t} a_{2} x_{1}=C_{\geq 6}$. Clearly $e\left(x_{3}, x_{8} x_{9} \ldots x_{t}\right)=0$, so $e\left(x_{3}, D+L\right) \leq 5+1=6$. Since $x_{2} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{t-1} x_{t}, a_{1}\right)=2$, we know that $x_{t} x_{t-4} \notin E$ by the maximality of k_{0}. Thus by Proposition 4.1.3, $e\left(x_{t}, D\right) \leq 3$. Hence $e\left(x_{t}, D+L\right) \leq 3+3=6$. Since L^{\prime} is a 6 -cycle, $P-x_{1} x_{2}+a_{5} a_{6}$ does not have a large

Figure 4.13: Case 3.2.1.2

Figure 4.14: Case 3.2.1.2: The cycles L and L^{\prime}. Dashed lines represent possible edges.

Figure 4.15: Case 3.2.1.2: If $x_{t} \rightarrow(C, v)$ and $e\left(v, a_{5} a_{6}\right)=2$ then $L+C+P$ contains two 6 -cycles and a large cycle.
cycle. Suppose that $e\left(a_{5} a_{6}, P-x_{1} x_{2}\right) \geq 5$. By Lemma 2.1.4, there is $4 \leq i \leq t-1$ such that $a_{5} x_{i} \in E$ and $a_{6} x_{i+1} \in E$. But then $x_{3} \ldots x_{i} a_{5} a_{6} x_{i+1} \ldots x_{t}=P_{t}$, contradicting Condition (4.3) since $\tau\left(L^{\prime}\right) \geq \tau(L)+1$. Therefore $e\left(a_{5} a_{6}, P-x_{1} x_{2}\right) \leq 4$, and hence $e\left(a_{5} a_{6}, P\right) \leq 6$.

Suppose that there is $u \in D-P$ with $u a_{5} \in E$. Since $u a_{5} a_{6} x_{2} \ldots x_{t-2}=P_{t}$ and $x_{t-1} x_{t} \rightarrow$ (L, $a_{5} a_{6}$), we have $e(u, D-P)=0$ and $u x_{1} \notin E$ by Condition (4.2). Further, $u x_{i} \notin E$ for $i \geq 4$, for otherwise $x_{2} x_{3} \ldots x_{i} u a_{5} a_{6} x_{2}=C_{\geq 6}$, contradicting the maximality of k_{0}. Thus $e(u, D) \leq 2$, and since $x_{1} x_{3} \notin E$, we have $e\left(u x_{1}, D\right) \leq 2+3=5$ by Proposition 4.1.3. Then $e\left(u x_{1}, H\right) \geq 7 k-5=7(k-1)+2 \geq 7 k_{0}+2$, so $e\left(u x_{1}, L_{i}\right) \geq 8$ for some $L_{i} \in \sigma$. Since $e\left(x_{1}, a_{1} a_{2} a_{4}\right)=3$, by Condition (4.2) we know that $u \nrightarrow\left(L, a_{i}\right)$ for $i=1,2,4$. Hence $e(u, L) \leq 4$, and since $e\left(x_{1}, L\right)=3$, we know that $L_{i} \neq L$. By Lemmas 1.4.15 and 1.4.17, and Condition (4.2), we know that $e\left(u, L_{i}\right) \leq 4$ and $e\left(u x_{1}, L_{i}\right)=8$. Further, since $x_{t-1} x_{t} \rightarrow$ $\left(L, a_{5} a_{6}\right)$ and $u a_{5} a_{6} x_{2} \ldots x_{t-2}=P_{t}$, we know by Lemma 1.4.15 that $e\left(x_{1}, L_{i}\right) \leq 4$. Hence by Lemma 1.4.18 and Condition (4.2), we see that there is $z \in L_{i}$ such that $u \xrightarrow{1}\left(L_{i}, z\right)$. But, since $u \in D-P$, this contradicts Condition (4.3). Thus, there is no $u \in D-P$ with $u a_{5} \in E$, and similarly there is no $u \in D-P$ with $u a_{6} \in E$. Therefore $e\left(a_{5} a_{6}, D\right) \leq 6$, so $e\left(a_{5} a_{6}, D+L\right) \leq 14$ since $\tau\left(a_{5} a_{6}, L\right) \leq 4$.

We have $e\left(x_{3} x_{t} a_{5} a_{6}, D+L\right) \leq 6+6+14=26$, so $e\left(x_{3} x_{t} a_{5} a_{6}, H-L\right) \geq 14 k-26 \geq 14 k_{0}+2$. Then $e\left(x_{3} x_{t} a_{5} a_{6}, C\right) \geq 15$ for some $C \in \sigma-\{L\}$, and C is a 6 -cycle by Lemma 2.2.1. Since $e\left(x_{1} x_{t-1}, a_{2}\right)=2$, by the maximality of k_{0} we know that $C+L-a_{2}+x_{t}$ does not contain two disjoint 6 -cycles. Suppose that $x_{t} \rightarrow(C, v)$ for some $v \in C$ (see Figure 4.15). Then $L-a_{2}+v$ does not have a 6 -cycle, which implies that $e\left(v, a_{5} a_{6}\right) \leq 1$ since $a_{1} a_{3} \in E$. With $R=x_{3} \ldots x_{t}$ and $a_{5} a_{6}$, we have now satisfied the conditions of Lemma 3.0.6.

By the maximality of k_{0}, (i) from Lemma 3.0.6 does not hold. Since $\tau\left(L^{\prime}\right) \geq \tau(L)+1$ and R is a path of order $t-2$, by Condition (4.3) we see that (ii) from Lemma 3.0.6 does not hold. Since $x_{2} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{t-1} x_{t}, a_{1}\right)=2$, we know that $x_{t} x_{t-4} \notin E$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$ and $e\left(x_{1} x_{2}, a_{2}\right)=2$, we know that $x_{1} x_{5} \notin E$. Hence $r(P) \leq 4$, so because $\tau^{\prime}\left(L^{\prime}\right) \geq \tau^{\prime}(L)+1$, by Condition (4.5) we see that (iii) from Lemma 3.0.6 does not hold.

Hence we know that, for some $u, v \in C, R+C+a_{5} a_{6}$ contains a path $P^{\prime}=u v x_{3} \ldots x_{t}$ of order t with $u x_{3} \in E$, and a 6 -cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-1$ and $\tau^{\prime}\left(C^{\prime}\right) \geq \tau^{\prime}(C)-1$. Since $x_{2} \rightarrow\left(L, a_{2}\right)$ and $e\left(x_{1} x_{t}, a_{2}\right)=2$, we know that $x_{1} x_{3} \notin E$, for otherwise $x_{1} x_{3} x_{4} \ldots x_{t} a_{2} x_{1}=$ $C_{\geq 6}$. Similarly, $x_{1} x_{4} \notin E$ since $t \geq 7$. Above, we saw that $x_{1} x_{5} \notin E$, so $r\left(x_{1}, P\right)=2$. Since $P^{\prime}=u v x_{3} \ldots x_{t}$, this implies that $r(P)=r\left(x_{t}, P\right)=r\left(x_{t}, P^{\prime}\right) \leq r\left(P^{\prime}\right)$. Thus, because $\tau\left(L^{\prime}\right)+\tau\left(C^{\prime}\right) \geq \tau(L)+\tau(C)$ and $\tau^{\prime}\left(L^{\prime}\right)+\tau^{\prime}\left(C^{\prime}\right) \geq \tau^{\prime}(L)+\tau^{\prime}(C)$, by Condition (4.6) we know that $s(P) \geq s\left(P^{\prime}\right)$. But, since $u x_{3} \in E$, we also have $s(P)=r\left(x_{1}, P\right)+r\left(x_{t}, P\right)=$ $2+r\left(x_{t}, P\right)=2+r\left(x_{t}, P^{\prime}\right)<3+r\left(x_{t}, P^{\prime}\right) \leq r\left(u, P^{\prime}\right)+r\left(x_{t}, P^{\prime}\right)=s\left(P^{\prime}\right)$, a contradiction.

Case 3.2.2: $e\left(x_{2}, L\right)=5$. Since $e\left(x_{t-1} x_{t}, L\right) \geq 7$, we clearly have $N\left(x_{1}, L\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$. The following two cases will therefore complete Case 3.

Case 3.2.2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $x_{1} \rightarrow\left(L, a_{2}\right), e\left(x_{2} x_{t-1}, L-a_{2}\right) \geq 8$ and $e\left(x_{2} x_{t}, L-a_{2}\right) \geq 7$. Suppose that $x_{2} a_{6} \notin E$. Then $e\left(x_{t-1} x_{t}, a_{2}\right)=0$. If $e\left(x_{t}, a_{5} a_{6}\right) \geq 1$, then $\tau\left(a_{5} a_{6}, L\right) \geq 5$ since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=4,6$, so $e\left(x_{t-1} x_{t}, a_{4}\right)=0$. Hence $e\left(x_{t-1}, a_{1} a_{3} a_{5} a_{6}\right)=4$, so $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,5$. But this is a contradiction, because $\tau\left(a_{6}, L\right) \geq 2$. Therefore $e\left(x_{t}, a_{5} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{3} a_{4}\right)=3$. Then $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,3,4$, so $\tau\left(a_{2}, L\right)=0$. But then $x_{t} \xrightarrow{1}\left(L, a_{2}\right)$ and $x_{1} a_{2} \in E$, a
contradiction. Therefore $x_{2} a_{6} \in E$, and by symmetry $x_{2} a_{4} \in E$.
Suppose that $x_{2} a_{1} \notin E$. Then $e\left(x_{t-1} x_{t}, a_{2}\right)=0$. If $x_{t} a_{1} \in E$, then $e\left(x_{1} x_{t}, a_{1}\right)=2$, so $\tau\left(a_{1}, L\right)=3$. Then $x_{1} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{6}\right)=0$. Hence $e\left(x_{t-1}, a_{1} a_{3} a_{4} a_{5}\right)=4$, so $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=3,4,5$. Hence $\tau\left(a_{4} a_{5}, L\right) \leq 2$, so $x_{1} x_{2} \xrightarrow{2}\left(L, a_{4} a_{5}\right)$. But $e\left(x_{t}, a_{4} a_{5}\right) \geq$ $3-2=1$, a contradiction. Hence $x_{t} a_{1} \notin E$, so $e\left(x_{t}, a_{3} a_{4} a_{5} a_{6}\right)=3$. Since $e\left(x_{t}, a_{4} a_{5}\right) \geq 1$ and $e\left(x_{1} x_{2}, a_{6} a_{1} a_{2} a_{3}\right)=6$, we know that $\tau\left(a_{4} a_{5}, L\right) \geq 4$. It is easy to see that this is a contradiction, since $e\left(x_{2} x_{t-1}, a_{3} a_{4} a_{5} a_{6}\right) \geq 7$. Therefore $x_{2} a_{1} \in E$, and by symmetry $x_{2} a_{3} \in E$.

Suppose that $x_{2} a_{2} \in E$. Then $e\left(x_{t-1} x_{t}, a_{2}\right)=0$. Clearly $\tau\left(a_{5} a_{6}, L\right) \leq 4$, so $e\left(x_{t}, a_{5} a_{6}\right)=0$ because $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$. Hence $e\left(x_{t}, a_{1} a_{3} a_{4}\right)=3$, so $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,3,4$. But then $\tau\left(a_{2}, L\right)=0$, so $x_{t} \xrightarrow{1}\left(L, a_{2}\right)$, a contradiction since $x_{2} a_{2} \in E$. Therefore $x_{2} a_{2} \notin E$, so $e\left(x_{2}, L-a_{2}\right)=5$.

Suppose that $\tau\left(a_{5}, L\right) \geq 2$. Then $x_{1} \rightarrow\left(L, a_{4}\right)$ and $x_{1} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{4} a_{6}\right)=0$. Thus $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{5}\right)=4$, so $\tau\left(a_{6}, L\right) \leq 1$ and $\tau\left(a_{2}, L\right) \leq 1$. This implies that $x_{2} \xrightarrow{2}\left(L, a_{2}\right)$, so $x_{t} a_{2} \notin E$. Further, since $e\left(x_{1} x_{t-1}, a_{2}\right)=2, e\left(x_{t}, a_{1} a_{3}\right) \leq 1$. But then $e\left(x_{t}, L\right) \leq 2$, a contradiction. Therefore $\tau\left(a_{5}, L\right) \leq 1$. If $\tau\left(a_{6}, L\right)=3$, then $x_{1} \rightarrow\left(L, a_{1}\right)$ and $x_{1} \rightarrow\left(L, a_{5}\right)$. Then $e\left(x_{t-1}, a_{2} a_{3} a_{4} a_{6}\right)=4$, so $\tau\left(a_{5}, L\right)=0$. This shows that $\tau\left(a_{5} a_{6}, L\right) \leq 3$, so $x_{1} x_{2} \xrightarrow{1}$ $\left(L, a_{5} a_{6}\right)$. Hence $e\left(x_{t}, a_{5} a_{6}\right)$, and by symmetry $x_{t} a_{4} \notin E$. Thus $e\left(x_{t}, a_{1} a_{2} a_{3}\right)=3$. Since $e\left(x_{2} x_{t}, a_{1} a_{3}\right)=4, \tau\left(a_{2}, L\right) \leq 1$. But $e\left(x_{2}, L-a_{2}\right)=5$ and $e\left(x_{1} x_{t}, a_{2}\right)=2$, a contradiction.
$\underline{\text { Case 3.2.2.2: } N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\} . ~ S i n c e ~} e\left(x_{2} x_{t-1}, a_{3}\right) \leq 1, e\left(x_{2} x_{t-1}, L-a_{3}\right) \geq 8$. Hence $a_{3} a_{5} \notin E$, for otherwise $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=2,4,6$. Similarly, $e\left(a_{3}, a_{6} a_{1}\right) \leq 1$, so $\tau\left(a_{3}, L\right) \leq 1$. Suppose that $e\left(x_{2}, L-a_{1}\right)=5$. Then $e\left(x_{t-1} x_{t}, a_{3}\right)=0$ because $x_{2} a_{3} \in E$. If $\tau\left(a_{1}, L\right)=3$, then $x_{1} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{6}\right)=0$. Then $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right)=4$, and because $e\left(x_{2} x_{t-1}, a_{5}\right)=2$, we know that $x_{1} x_{t} \nrightarrow\left(L, a_{5} a_{6}\right)$. Since $e\left(x_{1}, a_{1} a_{2} a_{4}\right)=3$, this implies that $e\left(x_{t}, a_{1} a_{2}\right) \leq 1$ and $e\left(x_{t}, a_{1} a_{4}\right) \leq 1$. Therefore $x_{t} a_{1} \notin E$, for otherwise $e\left(x_{t}, a_{3} a_{6} a_{2} a_{4}\right)=0$. Hence $e\left(x_{t}, a_{2} a_{4} a_{5}\right)=3$, so $x_{t} \rightarrow\left(L, a_{2}\right)$ since $a_{1} a_{3} \in E$. But $e\left(x_{1} x_{t-1}, a_{2}\right)=2$, a contradiction. So $\tau\left(a_{1}, L\right) \leq 2$, which means $x_{2} \xrightarrow{1}\left(L, a_{1}\right)$.

Hence $x_{t} a_{1} \notin E$, so $e\left(x_{t}, a_{2} a_{4} a_{5} a_{6}\right)=3$. If $x_{t} a_{6} \in E$, then $\tau\left(a_{6} a_{1}, L\right) \geq 4$, for otherwise $x_{1} x_{2} \xrightarrow{1}\left(L, a_{6} a_{1}\right)$. Then $x_{1} \rightarrow\left(L, a_{5}\right)$, so $e\left(x_{t-1} x_{t}, a_{5}\right)=0$. Then $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{6}\right)=4$ and $e\left(x_{t}, a_{2} a_{4} a_{6}\right)=3$, so $x_{t} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{1} x_{t-1}, a_{1}\right)=2$, a contradiction. Thus $x_{t} a_{6} \notin E$, so $e\left(x_{t}, a_{2} a_{4} a_{5}\right)=3$. Since $x_{2} a_{5} \in E$, this implies that $\tau\left(a_{6}, L\right)=0$. But since $e\left(x_{t-1}, a_{2} a_{3} a_{4} a_{5}\right) \geq 2$ and $\tau\left(a_{1}, L\right) \leq 2$, we have $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{6} a_{1}\right)$, a contradiction. Therefore $x_{2} a_{1} \in E$.

Suppose that $e\left(x_{2}, L-a_{2}\right)=5$. Since $x_{2} a_{3} \in E, e\left(x_{t-1} x_{t}, a_{3}\right)=0$. Suppose that $\tau\left(a_{2}, L\right) \leq 2$. Then $x_{2} \xrightarrow{1}\left(L, a_{2}\right)$, so $x_{t} a_{2} \notin E$ and hence $e\left(x_{t}, a_{1} a_{4} a_{5} a_{6}\right)=3$. Since $\tau\left(a_{3}, L\right) \leq 1, \tau\left(a_{3} a_{4}, L\right) \leq 4$, so $e\left(x_{t-1} x_{t}, a_{5} a_{6} a_{1} a_{2}\right) \leq 6$. Hence $e\left(x_{t-1} x_{t}, a_{4}\right) \geq 7-6=1$. We also know that $e\left(x_{t-1} x_{t}, a_{1}\right) \geq 1$, for otherwise $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6}\right)=6$, which implies that $x_{t} \rightarrow\left(L, a_{5}\right)$ and $e\left(x_{2} x_{t-1}, a_{5}\right)=2$. Then $e\left(x_{t-1} x_{t}, a_{4}\right) \geq 1$ and $e\left(x_{t-1} x_{t}, a_{1}\right) \geq 1$, and because $e\left(x_{t}, a_{1} a_{4}\right) \geq 1$ and $e\left(x_{t-1}, a_{1} a_{4}\right) \geq 1$, we know that $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$. But $\tau\left(a_{2} a_{3}, L\right) \leq$ $2+1=3$, so $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$ because $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right) \geq 6$, a contradiction because $x_{1} a_{2} \in E$. So $\tau\left(a_{2}, L\right)=3$, which means that $x_{1} \rightarrow\left(L, a_{5}\right)$. Since $x_{2} a_{5} \in E, e\left(x_{t-1} x_{t}, a_{5}\right)=0$. Then $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{6}\right)=4$ and $e\left(x_{t}, a_{1} a_{2} a_{4} a_{6}\right)=3$. Because $e\left(x_{2} x_{t-1}, a_{6}\right)=2$, we have $x_{t} a_{1} \notin E$, for otherwise $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$. Then $e\left(x_{t}, a_{2} a_{4} a_{6}\right)=3$, so $x_{t} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{2} x_{t-1}, a_{1}\right)=2$, a contradiction. Therefore $x_{2} a_{2} \in E$.

Suppose that $e\left(x_{2}, L-a_{3}\right)=5$. If $e\left(x_{t}, a_{2} a_{3}\right)=0$, then $e\left(x_{t}, a_{1} a_{4} a_{5} a_{6}\right)=3$, so because $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=6$ we must have $\tau\left(a_{5} a_{6}, L\right) \geq 4$. Since $e\left(x_{2} x_{t}, a_{1} a_{5}\right) \geq 3, \tau\left(a_{6}, L\right) \leq 2$, for otherwise $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,5$. But then $\tau\left(a_{5}, L\right) \geq 2$, so $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=5,6$, a contradiction because $e\left(x_{2} x_{t}, a_{5} a_{6}\right) \geq 3$. So $e\left(x_{t}, a_{2} a_{3}\right)>0$. Since $e\left(x_{1} x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=6$, this implies that $\tau\left(a_{2} a_{3}, L\right) \geq 4$. Since $a_{3} a_{5} \notin E$ and $\tau\left(a_{3}, L\right) \leq 1$, we have $\tau\left(a_{2}, L\right)=3$ and $e\left(a_{3}, a_{6} a_{1}\right)=1$. Then $x_{1} \rightarrow\left(L, a_{5}\right)$, so $e\left(x_{t-1} x_{t}, a_{5}\right)=0$.

Suppose $a_{3} a_{6} \in E$. Then $x_{1} \rightarrow\left(L, a_{1}\right)$, so $e\left(x_{t-1} x_{t}, a_{1}\right)=0$. Hence $e\left(x_{t-1}, a_{2} a_{3} a_{4} a_{6}\right)=$ 4 and $e\left(x_{t}, a_{2} a_{3} a_{4} a_{6}\right)=3$. Since $e\left(x_{2} x_{t-1}, a_{6}\right)=2$, we know that $e\left(x_{t}, a_{2} a_{3}\right) \leq 1$ and $e\left(x_{t}, a_{3} a_{4}\right) \leq 1$, for otherwise $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$. Hence $x_{t} a_{3} \notin E$, so $e\left(x_{t}, a_{2} a_{4} a_{6}\right)=3$. Since $x_{1} \nrightarrow\left(L, a_{6}\right), \tau\left(a_{5}, L\right) \leq 1$. Then, since $x_{t} a_{6} \in E$ and $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=6$, we must have
$\tau\left(a_{6}, L\right)=3$. Let $L^{\prime}=x_{1} x_{2} a_{5} a_{4} a_{2} a_{1} x_{1}$. Since $e\left(x_{1} x_{2}, a_{5} a_{4} a_{2} a_{1}\right)=7$ and $\tau\left(a_{3} a_{6}\right)=4$, we see $\tau\left(L^{\prime}\right)>\tau(L)$. But $a_{3} a_{6} \in E$ and $x_{t} a_{6} \in E$, a contradiction.

Therefore $a_{3} a_{6} \notin E$, so $a_{3} a_{1} \in E$. Then $x_{1} \rightarrow\left(L, a_{6}\right)$, so $e\left(x_{t-1} x_{t}, a_{6}\right)=0$. Thus $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{4}\right)=4$ and $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=3$. Since $e\left(x_{2} x_{t-1}, a_{2}\right)=2$, we must have $e\left(x_{t}, a_{1} a_{3}\right)=1$, for otherwise $x_{t} \rightarrow\left(L, a_{2}\right)$. Thus $e\left(x_{t}, a_{2} a_{4}\right)=2$. Let $L^{\prime}=x_{1} x_{2} a_{4} a_{5} a_{6} a_{1} x_{1}$ and $R=x_{3} \ldots x_{t-1} x_{t} a_{2} a_{3}$. Since $\tau\left(a_{2} a_{3}, L\right) \leq 3+1=4, \tau\left(L^{\prime}\right) \geq \tau(L)$. Thus, because $x_{t-1} a_{3} \in$ E, we have $r(P) \geq 4$ by Condition (4.4). Since $e\left(x_{t-1} x_{t}, a_{2} a_{3}\right) \geq 3$ and $x_{1} x_{2} \rightarrow\left(L, a_{2} a_{3}\right)$, we know that $r\left(x_{t}, P\right) \leq 3$. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$ and $e\left(x_{1} x_{2}, a_{2}\right)=2$, we know that $x_{1} x_{5} \notin E$. Hence $x_{1} x_{4} \in E$. Since $\tau\left(L^{\prime}\right)=\tau(L)$ by Condition (4.3), we have $\tau\left(a_{2}, L\right)=3$. Then $x_{1} x_{4} x_{3} x_{2} a_{5} a_{2} x_{1}=C_{6}$, so $x_{t-1} x_{t} a_{1} a_{3} a_{4} a_{6} \nsupseteq C_{6}$. Because $e\left(x_{t-1} x_{t}, a_{1} a_{3}\right) \geq 3$, this implies that $a_{4} a_{6} \notin E$, for otherwise $a_{1} a_{6} a_{4} a_{3}=P_{4}$. Then $\tau\left(a_{3} a_{4}, L\right) \leq 1+2=3$, so $x_{1} x_{2} \xrightarrow{1}\left(L, a_{3} a_{4}\right)$. But $e\left(x_{t}, a_{3} a_{4}\right) \geq 1$, a contradiction. Therefore $x_{2} a_{3} \in E$.

Since $x_{2} a_{3} \in E, e\left(x_{t-1} x_{t}, a_{3}\right)=0$. Suppose that $e\left(x_{2}, L-a_{4}\right)=5$. If $\tau\left(a_{4}, L\right)=3$, then $x_{1} \rightarrow\left(L, a_{5}\right)$, so $e\left(x_{t-1} x_{t}, a_{5}\right)=0$. Thus $e\left(x_{t-1}, a_{1} a_{2} a_{4} a_{6}\right)=4$ and $e\left(x_{t}, a_{1} a_{2} a_{4} a_{6}\right)=3$. Since $e\left(x_{2} x_{t-1}, a_{6}\right)=2, x_{1} x_{t} \nrightarrow\left(L, a_{5} a_{6}\right)$, which implies that $e\left(x_{t}, a_{1} a_{2}\right) \leq 1$ and $e\left(x_{t}, a_{1} a_{4}\right) \leq 1$. Hence $x_{t} a_{1} \notin E$, so $e\left(x_{t}, a_{2} a_{4} a_{6}\right)=3$. But then $x_{t} \rightarrow\left(L, a_{1}\right)$ and $e\left(x_{2} x_{t-1}, a_{1}\right)=2$, a contradiction. So $\tau\left(a_{4}, L\right) \leq 2$, which implies that $x_{2} \xrightarrow{1}\left(L, a_{4}\right)$. Hence $x_{t} a_{4} \notin E$, so $e\left(x_{t}, a_{1} a_{2} a_{5} a_{6}\right)=3$. Then $\tau\left(a_{5} a_{6}, L\right) \geq 4$, for otherwise $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$. It is easy to see that this is a contradiction, because $e\left(x_{2} x_{t-1}, a_{5} a_{6} a_{1}\right) \geq 5$ and $a_{3} a_{5} \notin E$. Therefore $x_{2} a_{4} \in E$. Since $e\left(x_{2} x_{t-1}, a_{1} a_{2} a_{4} a_{5} a_{6}\right) \geq 8$, we observe that $\tau\left(a_{5} a_{6}, L\right) \leq 4$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$, this implies that $e\left(x_{t}, a_{5} a_{6}\right)=0$. Hence $e\left(x_{t}, a_{1} a_{2} a_{4}\right)=3$, so $x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$. Thus $e\left(x_{2} x_{t-1}, a_{5}\right) \leq 1$ and $e\left(x_{2} x_{t-1}, a_{6}\right) \leq 1$, so $e\left(x_{t-1}, a_{1} a_{2} a_{4}\right)=3$ and $e\left(x_{2} x_{t-1}, a_{5}\right)=e\left(x_{2} x_{t-1}, a_{6}\right)=1$.

Let $L^{\prime}=x_{1} x_{2} a_{1} a_{2} a_{3} a_{4}$. Since $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,2,4$, we have $e\left(a_{3}, a_{5} a_{6}\right)=0$. Then $\tau\left(a_{5} a_{6}, L\right) \leq 4$, so $\tau\left(L^{\prime}\right) \geq \tau(L)+1$ because $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$. Since $x_{2} a_{3} \in E$, we have $a_{1} a_{3} \in E$, for otherwise $x_{1} \xrightarrow{1}\left(L, a_{3}\right)$. Suppose that $\tau^{\prime}\left(L^{\prime}\right) \leq \tau^{\prime}(L)$. Since $\tau\left(a_{3}, L\right) \leq 1$, this implies that $\tau^{\prime}\left(L^{\prime}\right) \leq 1$. Then, because $e\left(x_{1}, L^{\prime}\right)=4$ and $e\left(x_{2}, L^{\prime}\right)=5$, it must be the case
that $\tau\left(a_{i}, L^{\prime}\right) \leq 1$ for some $i=1,2,3,4$. Since $e\left(a_{3}, x_{2} a_{1}\right)=2, i \neq 3$. Similarly, $i \neq 1$. Since $e\left(a_{2}, x_{1} x_{2}\right)=2, i \neq 2$. Hence $\tau\left(a_{4}, L^{\prime}\right) \leq 1$. Since $a_{4} x_{2} \in E$, this implies that $e\left(a_{4}, a_{1} a_{2}\right)=0$. But then $x_{2} \xrightarrow{1}\left(L, a_{4}\right)$ and $e\left(x_{1} x_{t}, a_{4}\right)=2$, a contradiction. Thus $\tau^{\prime}\left(L^{\prime}\right) \geq \tau^{\prime}\left(L^{\prime}\right)+1$.

If $e\left(x_{2}, L-a_{6}\right)=5$ then $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=6$, so $\tau\left(a_{6} a_{1}, L\right) \geq 4$ because $x_{t} a_{1} \in E$. This shows that if $e\left(x_{2}, L-a_{6}\right)=5$, then $x_{2} \rightarrow L$. Similarly, if $e\left(x_{2}, L-a_{5}\right)=5$ then $x_{2} \rightarrow L$. Therefore, we can use the same argument as in Paragraph 2 from Case 3.2.1.2 to see that $e\left(x_{3}, D+L\right) \leq 6, e\left(x_{t}, D+L\right) \leq 6$, and $e\left(a_{5} a_{6}, P\right) \leq 6$. From Paragraph 3 of Case 3.2.1.2, we see that if $x_{2} a_{6} \in E$, then $e\left(a_{5}, D-P\right)=0$. Further, if $x_{2} a_{6} \in E$ then $x_{t-1} a_{5} \in E$, so $x_{3} x_{4} \ldots x_{t-1} a_{5} a_{6}=P_{t-1}$, which by Condition (4.3) implies that $e\left(a_{6}, D-P\right)=0$ since $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$. Thus if $x_{2} a_{6} \in E$, then $e\left(a_{5} a_{6}, D-P\right)=0$. Similarly, if $x_{2} a_{5} \in E$, then $e\left(a_{5} a_{6}, D-P\right)=0$. Therefore $e\left(a_{5} a_{6}, D+L\right) \leq 14$. This case is completed using the same argument as in the last two paragraphs of Case 3.2.1.2.

Case 4: $e\left(x_{1} x_{t}, L\right)=5$. WLOG let $e\left(x_{1}, L\right) \geq e\left(x_{t}, L\right)$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 10, x_{1} \rightarrow\left(L, a_{i}\right)$ for at most two $a_{i} \in L$.

Case 4.1: $e\left(x_{1}, L\right)=4$. We immediately see that $N\left(x_{1}, L\right) \neq\left\{a_{1}, a_{2}, a_{3}, a_{5}\right\}$. If $N\left(x_{1}, L\right)=$ $\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$, then $e\left(x_{2} x_{t-1}, a_{3} a_{6}\right) \leq 2$, so $e\left(x_{2} x_{t-1}, a_{1} a_{2} a_{4} a_{5}\right)=8$. Then $x_{1} \rightarrow\left(L, a_{i}\right)$ for $i=1,2,4,5$, so $\tau\left(a_{3} a_{6}, L\right)=0$. But then $x_{1} x_{2} \xrightarrow{1}\left(L, a_{i} a_{i+1}\right)$ for $i=1,2,4,5$, a contradiction since $e\left(x_{t}, L\right)>0$. Therefore $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, so $e\left(x_{2} x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right)=8$. Then $\tau\left(a_{5} a_{6}, L\right)=0$ and $\tau\left(a_{2} a_{3}, L\right) \leq 2$, so $x_{1} x_{2} \xrightarrow{4}\left(L, a_{5} a_{6}\right)$ and $x_{1} x_{2} \xrightarrow{2}\left(L, a_{2} a_{3}\right)$. This implies that $e\left(x_{t}, a_{2} a_{3} a_{5} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{4}\right)=1$. But then $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$ and $x_{1} a_{2} \in E$, a contradiction.

Case 4.2: $e\left(x_{1}, L\right)=3$. We have $e\left(x_{t}, L\right)=2$, and $N\left(x_{1}, L\right) \neq\left\{a_{1}, a_{3}, a_{5}\right\}$.
Case 4.2.1: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $e\left(x_{2} x_{t-1}, L-a_{2}\right) \geq 10-1=9$, we see that $\tau\left(a_{2}, L\right) \leq 1, \tau\left(a_{5}, L\right) \leq 1, \tau\left(a_{4} a_{5}, L\right) \leq 2$, and $\tau\left(a_{5} a_{6}, L\right) \leq 2$. Since $\tau\left(a_{2}, L\right) \leq 1$, either $x_{2} \xrightarrow{2}\left(L, a_{2}\right)$ or $x_{t-1} \xrightarrow{2}\left(L, a_{2}\right)$, and hence $x_{t} a_{2} \notin E$. Suppose that $x_{t} a_{5} \in E$. Then, since $\tau\left(a_{4} a_{5}, L\right) \leq 2$ and $e\left(x_{1} x_{2}, a_{6} a_{1} a_{2} a_{3}\right) \geq 5$, we observe that $x_{2} a_{6} \notin E$. Then $e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{4} a_{5}\right)=8$ and $x_{t-1} a_{6} \in E$. Since $e\left(x_{2} x_{t-1}, a_{4}\right)=2, x_{t} \nrightarrow\left(L, a_{4}\right)$, which
implies that $x_{t} a_{3} \notin E$. Since $e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{4} a_{5}\right)=8, \tau\left(a_{2}, L\right)=0$. Thus, because $e\left(x_{t-1}, a_{3} a_{4} a_{5} a_{6}\right)=4$ and $x_{t} a_{5} \in E$, we have $e\left(x_{t}, a_{4} a_{6}\right)=0$ for otherwise $x_{t} x_{t-1} \xrightarrow{1}\left(L, a_{1} a_{2}\right)$. Hence $e\left(x_{t}, a_{1} a_{5}\right)=2$, so $x_{t} x_{t-1} \xrightarrow{2}\left(L, a_{2} a_{3}\right)$, a contradiction.

Therefore $x_{t} a_{5} \notin E$. Because $e\left(x_{2} x_{t-1}, a_{5} a_{6}\right) \geq 3, x_{1} x_{t} \nrightarrow\left(L, a_{5} a_{6}\right)$. Since $e\left(x_{1}, a_{1} a_{2}\right)=2$, this implies that $e\left(x_{t}, a_{1} a_{4}\right) \leq 1$. Similarly, $e\left(x_{t}, a_{3} a_{6}\right) \leq 1$. Suppose $e\left(x_{t}, a_{4} a_{6}\right) \geq 1$, and WLOG say $x_{t} a_{6} \in E$. Then $e\left(x_{t}, a_{1} a_{4}\right)=1$. Since $\tau\left(a_{5} a_{6}, L\right) \leq 2$ and $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right) \geq 5$, we have $x_{2} a_{4} \not \mathrm{n} E$. Then $e\left(x_{t-1}, L-a_{2}\right)=5$, so because $e\left(x_{t}, a_{1} a_{4} a_{6}\right)=2$ and $\tau\left(a_{2}, L\right) \leq 1$, we know that $\tau\left(a_{3}, L\right)=3$, for otherwise $x_{t} x_{t-1} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$. Since $e\left(x_{2} x_{t-1}, a_{5}\right)=2, x_{1} x_{t} \nrightarrow$ $\left(L, a_{4} a_{5}\right)$ and $x_{1} x_{t} \rightarrow\left(L, a_{2} a_{5}\right)$. But either $x_{t} a_{6} a_{3} x_{1} a_{2} a_{1} x_{t}=C_{6}$ or $x_{t} a_{6} a_{1} x_{1} a_{3} a_{4} x_{t}=C_{6}$, a contradiction.

Therefore $e\left(x_{t}, a_{4} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{3}\right)=2$. Then $x_{t} \rightarrow\left(L, a_{2}\right)$, and since $x_{1} a_{2} \in E$, we know that $x_{t-1} a_{2} \notin E$. Because $e\left(x_{2} x_{t-1}, L-a_{2}\right) \geq 9, \tau\left(a_{1} a_{3}, L\right) \leq 5$. WLOG let $\tau\left(a_{1}, L\right) \leq$ 2. Then $e\left(x_{2}, L\right) \leq 5$, for otherwise $x_{2} \xrightarrow{1}\left(L, a_{1}\right)$ and $e\left(x_{1} x_{t}, a_{1}\right)=2$, a contradiction. Therefore $e\left(x_{t-1}, L-a_{2}\right)=5$, so because $e\left(x_{t} x_{t-1}, a_{4} a_{5} a_{6} a_{1}\right)=5$, we have $\tau\left(a_{2} a_{3}, L\right) \geq 3$. Similarly, $\tau\left(a_{1} a_{2}, L\right) \geq 3$. Since $\tau\left(a_{1} a_{3}, L\right) \leq 5$, this implies that $\tau\left(a_{2}, L\right)=1$. We know that $a_{2} a_{5} \notin E$ since $e\left(x_{2} x_{t-1}, a_{4} a_{6}\right) \geq 3$, so WLOG let $a_{2} a_{4} \in E$. Then $x_{1} \rightarrow\left(L, a_{3}\right)$, so $x_{2} a_{3} \notin E$. Then $e\left(x_{2} x_{t-1}, a_{4} a_{6}\right)=4$, so $e\left(a_{5}, a_{1} a_{3}\right)=0$. Therefore $e\left(a_{1}, a_{3} a_{4}\right)=e\left(a_{3}, a_{1} a_{6}\right)=2$, so $x_{t} a_{3} x_{1} a_{2} a_{4} a_{1} x_{t}=C_{6}$ and $e\left(x_{2} x_{t-1}, a_{5}\right)=2$, a contradiction.

Case 4.2.2: $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. We have $e\left(x_{2} x_{t-1}, L-a_{3}\right) \geq 9$, and thus observe that $e\left(a_{3}, a_{5} a_{6}\right)=0$. Then $\tau\left(a_{3}, L\right) \leq 1, \tau\left(a_{5}, L\right) \leq 2$, and $\tau\left(a_{6}, L\right) \leq 2$. We further observe from Lemma 1.4.10 that $\tau\left(a_{5} a_{6}, L\right) \leq 3$ and $\tau\left(a_{2} a_{3}, L\right) \leq 3$. Suppose that $e\left(x_{t}, a_{5} a_{6}\right) \geq$ 1. Then $\tau\left(a_{5} a_{6}, L\right)=3$ and $e\left(x_{2}, a_{1} a_{2} a_{4}\right) \leq 2$, for otherwise $x_{1} x_{2} \xrightarrow{1}\left(L, a_{5} a_{6}\right)$. Then $\tau\left(a_{6}, L\right) \geq 3-2=1$, so $x_{1} \rightarrow\left(L, a_{5}\right)$. But $e\left(x_{2} x_{t-1}, a_{5}\right) \geq 9-7=2$, a contradiction. Therefore $e\left(x_{t}, a_{5} a_{6}\right)=0$, so $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=2$. Since $e\left(x_{t} x_{t-1}, a_{5} a_{6}\right) \geq 3, x_{1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$. Therefore, since $e\left(x_{1}, a_{1} a_{2} a_{4}\right)=2$ and $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=2$, we see that $e\left(x_{t}, a_{2} a_{4}\right)=2$.

Since $\tau\left(a_{2} a_{3}, L\right) \leq 3$ and $x_{t} a_{2} \in E$, we see that $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right) \leq 3$, for otherwise $x_{1} x_{2} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$. Therefore $e\left(x_{t-1}, L-a_{3}\right)=5$. Suppose that $e\left(x_{t-1}, L\right)=6$. Then, since
$e\left(x_{1} x_{t}, a_{2} a_{4}\right)=4$, we know that $\tau\left(a_{2} a_{4}, L\right)=6$. Then $\tau\left(a_{3}, L\right)=0$, so $a_{1} a_{3} \notin E$, and $\tau\left(a_{6}, L\right)=2$, so $x_{1} \rightarrow\left(L, a_{5}\right)$. Then $x_{2} a_{5} \notin E$, so $e\left(x_{2} x_{t-1}, a_{6}\right) \geq 9-7=2$. Thus $a_{5} a_{1} \notin E$, so $\tau\left(a_{1} a_{6}, L\right) \leq 1+2=3$. But $x_{1} a_{1}$ and $e\left(x_{t} x_{t-1}, a_{2} a_{3} a_{4} a_{5}\right)=6$, a contradiction.

Hence $e\left(x_{t-1}, L\right)=5$, so $x_{t-1} a_{3} \notin E$. Further, $e\left(x_{2}, a_{2} a_{3}\right)=2$ and $e\left(x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=3$. Since $e\left(x_{1}, L-a_{3}\right)=3$ and $x_{2} a_{3} \in E$, we have $\tau\left(a_{3}, L\right) \geq 1$. Since $e\left(a_{3}, a_{5} a_{6}\right)=0$, this implies that $a_{3} a_{1} \in E$. Since $e\left(x_{t-1} x_{t}, a_{4} a_{5} a_{6} a_{1}\right)=5$ and $x_{1} a_{2} \in E$, we have $\tau\left(a_{2} a_{3}, L\right)=3$. Then $\tau\left(a_{2}, L\right)=2$, and since $e\left(x_{2} x_{t-1}, a_{5} a_{6}\right) \geq 3$ and $a_{1} a_{3} \in E$, we see that $e\left(a_{2}, a_{5} a_{6}\right)=1$ and $a_{2} a_{4} \in E$. Suppose $a_{2} a_{6} \in E$. Then $x_{1} \rightarrow\left(L, a_{5}\right)$, so $x_{2} a_{5} \notin E$ and hence $e\left(x_{2}, L-a_{5}\right)=5$. Then $x_{1} \nrightarrow\left(L, a_{6}\right)$, so $e\left(a_{5}, a_{1} a_{3}\right)=0$. Since $a_{2} a_{5} \notin E$, this implies that $\tau\left(a_{5}, L\right)=0$. But $e\left(x_{1} x_{2}, a_{6} a_{1} a_{2} a_{3}\right)=6$, so $x_{1} x_{2} \xrightarrow{1}\left(L, a_{4} a_{5}\right)$, a contradiction because $x_{t} a_{4} \in E$. Therefore $a_{2} a_{6} \notin E$, so $e\left(a_{2}, a_{4} a_{5}\right)=2$. Since $a_{2} a_{5} \in E$ and $a_{1} a_{3} \in E, x_{1} \rightarrow\left(L, a_{6}\right)$. Then $e\left(x_{2}, L-\right.$ $\left.a_{6}\right)=5$, so $x_{1} \nrightarrow\left(L, a_{5}\right)$. Then $\tau\left(a_{6}, L\right)=0$, so $\tau\left(a_{5} a_{6}, L\right) \leq 2$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=7$, this implies that $x_{1} x_{2} \xrightarrow{3}\left(L, a_{5} a_{6}\right)$.

Let $L^{\prime}=x_{1} x_{2} a_{1} a_{2} a_{3} a_{4} x_{1}$. Since $\tau\left(a_{5} a_{6}, L\right) \leq 2$, we know that $e\left(a_{5} a_{6}, L\right) \leq 6$. Since $x_{2} \rightarrow\left(L, a_{2}\right)$ and $x_{t} a_{2} \in E$, we have $x_{3} a_{2} \notin E$, for otherwise $x_{3} \ldots x_{t} a_{2} x_{3}=C_{\geq 6}$. Similarly, $x_{3} a_{4} \notin E$. Since L^{\prime} is a 6 -cycle and $x_{3} \ldots x_{t-1} a_{5} a_{6}=P_{t-1}$, we see that $x_{3} a_{6} \notin E$. Similarly, $x_{3} a_{5} \notin E$. Then $e\left(x_{3}, L\right) \leq 2$, and since $e\left(x_{t}, L\right)=2$, we have $e\left(x_{3} x_{t} a_{5} a_{6}, L\right) \leq 2+$ $2+6=10$. Since $\tau\left(L^{\prime}\right) \geq \tau(L)+3$ and $x_{3} \ldots x_{t-1} a_{5} a_{6}=P_{t-1}$, by Condition (4.3) we know that $e\left(a_{6}, D-P\right)=0$, and similarly that $e\left(a_{5}, D-P\right)=0$. Since $x_{3} \ldots x_{t-1} a_{5} a_{6}$ does not contain a large cycle, by Lemma 2.1.4 we have $e\left(a_{5} a_{6}, P-x_{1} x_{2}\right) \leq 6$. Then, since $e\left(x_{1} x_{2}, a_{5} a_{6}\right)=1$, we get $e\left(a_{5} a_{6}, D\right)=e\left(a_{5} a_{6}, P\right) \leq 7$. Similarly, $e\left(x_{3}, D-P\right)=0$ and $e\left(x_{3}, P-x_{1} x_{2}\right) \leq 4$, so $e\left(x_{3}, D\right) \leq 6$. By the maximality of k_{0} and Condition (4.2), $e\left(x_{t}, D\right)=e\left(x_{t}, P\right) \leq 4$, so $e\left(x_{3} x_{t} a_{5} a_{6}, D\right) \leq 6+4+7=17$. Then $e\left(x_{3} x_{t} a_{5} a_{6}, D+L\right) \leq 27$, so $e\left(x_{3} x_{t} a_{5} a_{6}, H-L\right) \geq 14 k-27=14(k-2)+1 \geq 14\left(k_{0}-1\right)+1$, so $e\left(x_{3} x_{t} a_{5} a_{6}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma$. By Condition (4.1) and Lemma 2.2.1, $\left|L_{i}\right|=6$. By the maximality of k_{0}, $L_{i}+x_{3} \ldots x_{t}+a_{5} a_{6} \nsupseteq C_{6} \cup C_{\geq 6}$, since L^{\prime} is a 6 -cycle. Therefore, because $x_{3} \ldots x_{t}$ is a path of order $t-2 \geq 5$ and $a_{5} a_{6} x_{t-1}=K_{3}$, by Lemma 3.0.3 it must be the case that $L_{i}+x_{3} \ldots x_{t}+a_{5} a_{6}$
contains a 6 -cycle C with $\tau(C) \geq \tau\left(L_{i}\right)-1$ and a path of order $t-2+2=t$. But $\tau(C)+\tau\left(L^{\prime}\right) \geq \tau\left(L_{i}\right)-1+\tau(L)+3 \geq \tau\left(L_{i}\right)+\tau(L)+2$, contradicting Condition (4.3).

Case 5: $e\left(x_{1} x_{t}, L\right)=4$. Since $e\left(x_{2} x_{t-1}, L\right) \geq 11$, WLOG let $e\left(x_{2}, L\right)=6$ and $e\left(x_{t-1}, L-a_{6}\right)=$ 5. This implies that $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i=1,2,3,4,5$, and $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i=1,2,3,4,5$. Therefore, for $i=1$ and $i=t, e\left(x_{i}, a_{2} a_{4} a_{6}\right) \leq 1, e\left(x_{i}, a_{1} a_{3}\right) \leq 1$, and $e\left(x_{t}, a_{3} a_{5}\right) \leq 1$. Thus $e\left(x_{i}, L\right) \leq 3$, and if $e\left(x_{i}, L\right)=3$ then $e\left(x_{i}, a_{1} a_{5}\right)=2$ and $e\left(x_{i}, a_{2} a_{4} a_{6}\right)=1$.

Case 5.1: $e\left(x_{1}, L\right)=3$. From above, we have $e\left(x_{1}, a_{2} a_{4} a_{6}\right)=1$ and $e\left(x_{1}, a_{1} a_{5}\right)=2$. By symmetry, either $x_{1} a_{2} \in E$ or $x_{1} a_{6} \in E$. If $x_{1} a_{2} \in E$, then since $x_{1} a_{i} \nrightarrow(L$, for $i=1,2,3,4,5, \tau\left(a_{3}, L\right)=0, \tau\left(a_{4}, L\right) \leq 1, \tau\left(a_{6}, L\right) \leq 1$, and $\tau\left(a_{1}, L\right) \leq 2$. Thus $\tau\left(a_{3} a_{4}, L\right) \leq 1$ and $\tau\left(a_{6} a_{1}, L\right) \leq 3$, so $e\left(x_{t}, a_{3} a_{4} a_{6} a_{1}\right)=0$ because $e\left(x_{1} x_{2}, a_{5} a_{6} a_{1} a_{2}\right)=7$ and $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=6$. Also, since $e\left(x_{1} x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=6$ and $\tau\left(a_{2} a_{3}, L\right) \leq 3$, we see that $x_{t} a_{2} \notin E$. Therefore $x_{t} a_{5} \in E$, so because $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=6$ we must have $\tau\left(a_{5} a_{6}, L\right) \geq 4$. But $\tau\left(a_{6}, L\right) \leq 1$, and since $a_{3} a_{5} \notin E, \tau\left(a_{5}, L\right) \leq 2$, a contradiction. Therefore $x_{1} a_{2} \notin E$, so $x_{1} a_{6} \in E$. We observe that $\tau\left(a_{5}, L\right) \leq 2, \tau\left(a_{6}, L\right) \leq 2, \tau\left(a_{1}, L\right) \leq 1, \tau\left(a_{2}, L\right) \leq 2$, $\tau\left(a_{3}, L\right) \leq 1$, and $\tau\left(a_{4}, L\right)=0$. Since $e\left(x_{1} x_{2}, a_{5} a_{6} a_{1} a_{2}\right)=7$ and $e\left(x_{1} x_{2}, a_{3} a_{4} a_{5} a_{6}\right)=$ $6, x_{1} x_{2} \xrightarrow{1}\left(L, a_{i} a_{i+1}\right)$ for $i=3,1$, so $e\left(x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=0$. Then $e\left(x_{t}, a_{5} a_{6}\right)=1$, so $e\left(x_{1} x_{t}, a_{5} a_{6}\right) \geq 3$. But since $e\left(x_{2}, L\right)=6$, we know that $x_{2} \xrightarrow{1}\left(L, a_{i}\right)$ for $i=5,6$, a contradiction.
$\underline{\text { Case 5.2: } e\left(x_{1}, L\right)=2 \text {. First suppose that } x_{1} a_{3} \in E \text {. Then } e\left(x_{1}, a_{1} a_{5}\right)=0 \text {, so }\left(x_{1}, a_{2} a_{4} a_{6}\right)=}$ 1. Suppose that $x_{1} a_{6} \in E$. Since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6$, we see that $\tau\left(a_{j}, L\right) \leq 1$ for $j=$ $1,2,4,5$. Since $e\left(x_{1} x_{2}, a_{i} a_{i+1} a_{i+2} a_{i+3}\right)=6$ for $i=3,6$, this implies that $e\left(x_{t}, a_{1} a_{2} a_{4} a_{5}\right)=0$. Hence $e\left(x_{t}, a_{3} a_{6}\right)=2$. We know that $x_{3} a_{1} \notin E$, for otherwise $x_{1} x_{2} a_{3} a_{4} a_{5} a_{6} x_{1}=C_{6}$ and $x_{3} \ldots x_{t-1} a_{2} a_{1} x_{3}=C_{\geq 6}$. By symmetry, $e\left(x_{3}, a_{1} a_{2} a_{4} a_{5}\right)=0$. Also, $e\left(x_{3}, a_{3} a_{6}\right)=0$ because $x_{2} \rightarrow\left(L, a_{3}\right), x_{2} \rightarrow\left(L, a_{6}\right)$, and $e\left(x_{t}, a_{3} a_{6}\right)=2$. Therefore $e\left(x_{3} x_{t} a_{4} a_{5}, L\right) \leq 0+2+3+3=8$. Since $x_{2} \rightarrow\left(L, a_{3}\right)$ and $x_{3} \ldots x_{t} a_{3} x_{1}=P_{t}$, we know that $e\left(x_{3}, D\right)=e\left(x_{3}, P\right) \leq 6$ by Condition (4.2) and the maximality of k_{0}. Because $x_{1} x_{2} \rightarrow\left(L, a_{4} a_{5}\right)$, by Lemma 2.1.5 we see that $e\left(a_{4} a_{5}, P-x_{1} x_{2}\right) \leq 6$. Also, since $x_{1} x_{2} \xrightarrow{2}\left(L, a_{4} a_{5}\right)$ and $x_{3} \ldots x_{t-1}=P_{t-3}$ with $e\left(x_{t-1}, a_{4} a_{5}\right)=$

2, we have $e\left(a_{4} a_{5}, D-P\right)=0$ by Condition (4.3). Therefore $e\left(a_{4} a_{5}, D\right) \leq 6+2=8$. Clearly $e\left(x_{t}, D\right) \leq 4$ by the maximality of k_{0} and by Condition (4.2), so $e\left(x_{3} x_{t} a_{4} a_{5}, D\right) \leq$ $6+4+8=18$. Combining this with the above, we get $e\left(x_{3} x_{t} a_{4} a_{5}, D+L\right) \leq 18+8=26$, so that $e\left(x_{3} x_{t} a_{4} a_{5}, H-L\right) \geq 14 k-26 \geq 14\left(k_{0}-1\right)+2$. Hence $e\left(x_{3} x_{t} a_{4} a_{5}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$. Let $L^{\prime}=x_{1} x_{2} a_{6} a_{1} a_{2} a_{3} x_{1}$. Since $\tau\left(a_{4} a_{5}, L\right) \leq 2, \tau\left(L^{\prime}\right) \geq \tau(L)+2$. Also, $e\left(x_{t-1}, a_{4} a_{5}\right)=2$ and $x_{3} \ldots x_{t}$ is a path of order $t-2 \geq 5$. Hence by Lemma 3.0.3 we contradict either the maximality of k_{0} or Condition (4.3).

Therefore $x_{1} a_{6} \notin E$. Since $e\left(x_{1}, a_{2} a_{4} a_{6}\right)=1$, WLOG we can say $x_{1} a_{2} \in E$. Since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6, e\left(a_{6}, a_{2} a_{4}\right)=0$ and $a_{3} a_{5} \notin E$. Thus $\tau\left(a_{5} a_{6}, L\right) \leq 3$, so $x_{1} x_{2} \xrightarrow{1}$ $\left(L, a_{5} a_{6}\right)$ and hence $e\left(x_{t}, a_{5} a_{6}\right)=0$. Since $e\left(x_{1}, a_{2} a_{3}\right)=2$ and $x_{2} \xrightarrow{1}\left(L, a_{i}\right)$ for $i=2,3$, we know that $e\left(x_{t}, a_{2} a_{3}\right)=0$. Hence $e\left(x_{t}, a_{1} a_{4}\right)=2$, so since $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6$, we have $e\left(a_{3}, a_{1} a_{6}\right) \leq 1$ and $e\left(a_{2}, a_{4} a_{5}\right) \leq 1$. Since $a_{3} a_{5} \notin E$ and $a_{2} a_{6} \notin E$ from above, this implies that $\tau\left(a_{2} a_{3}, L\right) \leq 1+1=2$. Then $x_{t-1} x_{t} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$, a contradiction because $e\left(x_{1}, a_{2} a_{3}\right)>0$. Hence $x_{1} a_{3} \notin E$, and since $e\left(x_{1}, a_{1} a_{3} a_{5}\right) \geq 1$ we can say WLOG that $x_{1} a_{1} \in E$.

Case 5.2.1: $x_{1} a_{5} \in E$. Since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6, a_{3} a_{6} \notin E$ and $e\left(a_{2}, a_{4}\right)+e\left(a_{2}, a_{6}\right)+$ $e\left(a_{4}, a_{6}\right) \leq 1$. Also, $e\left(a_{1}, a_{3}\right)+e\left(a_{4}, a_{6}\right) \leq 1$ and $e\left(a_{3}, a_{5}\right)+e\left(a_{2}, a_{6}\right) \leq 1$. Suppose that $e\left(x_{t}, a_{2} a_{3} a_{4}\right) \geq 1$, and WLOG say $e\left(x_{t}, a_{3} a_{4}\right) \geq 1$. Then, since $e\left(x_{1} x_{2}, a_{5} a_{6} a_{1} a_{2}\right)=6$, we have $\tau\left(a_{3} a_{4}, L\right) \geq 4$. This implies that $e\left(a_{3}, a_{5} a_{1}\right)=2$ and $a_{4} a_{1} \in E$. Since $a_{1} a_{3} \in E$, $a_{4} a_{6} \notin E$, so $e\left(a_{4}, a_{1} a_{2}\right)=2$.

Suppose $x_{t} a_{4} \in E$. Let $L^{\prime}=x_{1} x_{2} a_{6} a_{5} a_{3} a_{1} x_{1}$ and $P^{\prime}=x_{3} \ldots x_{t-1} x_{t} a_{4} a_{2}$. Since $\tau\left(a_{2} a_{4}, L\right) \leq$ $4, \tau\left(L^{\prime}\right) \geq \tau(L)$. Therefore, by Condition (4.4) we have $r(P) \geq 4$, for otherwise $r\left(P^{\prime}\right)>r(P)$ since $a_{2} x_{t-1} \in E$. Since $x_{t} x_{t-1} a_{1} a_{2} a_{3} a_{4} x_{t}=C_{6}$, we see that $e\left(x_{1}, x_{4} x_{5}\right)=0$, because $x_{1} a_{5} x_{2} x_{3} x_{4} x_{5}$ and $x_{1} a_{5} a_{6} x_{2} x_{3} x_{4}$ are 6 -paths. Hence $e\left(x_{t}, x_{t-3} x_{t-4}\right) \geq 1$. But $x_{1} x_{2} a_{2} a_{1} a_{6} a_{5} x_{1}=$ C_{6}, and $x_{t} a_{4} x_{t-1} x_{t-2} x_{t-3} x_{t-4}$ and $x_{t} a_{4} a_{3} x_{t-1} x_{t-2} x_{t-3}$ are 6 -paths, a contradiction. Therefore $x_{t} a_{4} \notin E$, so $x_{t} a_{3} \in E$.

Let $L^{\prime}=x_{1} x_{2} a_{4} a_{5} a_{6} a_{1} x_{1}$, and $P^{\prime}=x_{3} \ldots x_{t-1} x_{t} a_{3} a_{2}$. Since $\tau\left(a_{2} a_{3}, L\right) \leq 2+2=4$, we
see that $\tau\left(L^{\prime}\right) \geq \tau(L)$. Because $x_{1} x_{2} a_{2} a_{1} a_{6} a_{5} x_{1}$ and $x_{t-1} x_{t} a_{3} a_{4} a_{1} a_{2} x_{t-1}$ are 6 -cycles, and $x_{t} a_{3} x_{t-1} x_{t-2} x_{t-3} x_{t-4}$ and $x_{1} a_{5} x_{2} x_{3} x_{4} x_{5}$ are 6-paths, we see that $x_{t} x_{t-4} \notin E$ and $x_{1} x_{5} \notin E$. Thus, since $x_{t-1} a_{2} \in E$, we know that $r\left(P^{\prime}\right) \geq r(P)$. Since $a_{2} a_{4} \in E, e\left(a_{6}, a_{2} a_{4}\right)=0$, which means $\tau\left(a_{6}, L\right)=0$ because $a_{3} a_{6} \notin E$. But then $\tau^{\prime}\left(L^{\prime}\right)=1>0=\tau^{\prime}(L)$, contradicting Condition (4.5). Hence $e\left(x_{t}, a_{2} a_{3} a_{4}\right)=0$.

Since $e\left(x_{t}, a_{5} a_{6} a_{1}\right)=2, e\left(x_{1}, a_{1} a_{5}\right)=2, e\left(x_{t-1}, L-a_{6}\right)=5$, and $e\left(x_{2}, L\right)=6$, by symmetry we can let $x_{t} a_{1} \in E$. If $x_{t} a_{6} \in E$ then $a_{1} a_{3} \notin E$, for otherwise $x_{t} \rightarrow\left(L, a_{2}\right)$. But then $e\left(x_{1} x_{t}, a_{1}\right)=2$ and $x_{2} \xrightarrow{1}\left(L, a_{1}\right)$, a contradiction. Thus $x_{t} a_{6} \notin E$, so $e\left(x_{t}, a_{1} a_{5}\right)=2$. Since $e\left(x_{1} x_{t}, a_{1} a_{5}\right)=4$ and $e\left(x_{2}, L\right)=6$, we have $\tau\left(a_{1} a_{5}, L\right)=6$. Since $e\left(a_{3}, a_{1} a_{5}\right)=2$, $e\left(a_{6}, a_{2} a_{4}\right)=0$, and thus $\tau\left(a_{6}, L\right)=0$. Then $x_{t-1} x_{t} \xrightarrow{0}\left(L, a_{5} a_{6}\right)$ and $a_{6} a_{5} x_{1} x_{2} \ldots x_{t-2}=$ P_{t} with $a_{6} x_{2} \in E$, so $r(P) \geq 4$ by Condition (4.4). Because $x_{t-1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$, and $x_{1} a_{5} x_{2} x_{3} x_{4} x_{5}$ and $x_{1} a_{5} a_{6} x_{2} x_{3} x_{4}$ are 6 -paths, we know that $e\left(x_{1}, x_{4} x_{5}\right)=0$ by the maximality of r_{0}. Since $x_{t} a_{1} x_{t-1} x_{t-2} x_{t-3} x_{t-4}$ is a 6 -path and $x_{2} \rightarrow\left(L, a_{1}\right)$, we know that $x_{t} x_{t-4} \notin E$. Therefore $x_{t} x_{t-3} \in E$.

Let $L^{\prime}=x_{t-1} a_{1} a_{2} a_{3} a_{4} a_{5} x_{t-1}$. Since $\tau\left(a_{6}, L\right)=0$ and $e\left(x_{t-1}, L-a_{6}\right)=5$, we see that $\tau\left(L^{\prime}\right)=\tau(L)+3$. Since $x_{1} \rightarrow\left(L, a_{6}\right)$ and $a_{6} x_{2} \ldots x_{t}=P_{t}$, we have $e\left(a_{6}, D\right)=e\left(a_{6}, P\right)=$ $e\left(a_{6}, P-x_{1}\right) \leq 4$ by Condition (4.2) and the maximality of k_{0}. Since $x_{t-1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$, by Condition (4.2) and the maximality of k_{0} we have $e\left(x_{t-2}, D\right)=e\left(x_{t-2}, P\right) \leq 6$. Since $x_{t} x_{t-4} \notin E$ and $e\left(x_{1}, x_{4} x_{5}\right)=0$, we have $e\left(x_{1} x_{t}, D\right)=e\left(x_{1} x_{t}, P\right) \leq 2+3=5$. Therefore, because $\tau\left(a_{6}, L\right)=0$ and $e\left(x_{1} x_{t}, L\right)=4$, we get $e\left(a_{6} x_{1} x_{t-2} x_{t}, D+L\right) \leq 6+4+12+5=27$. Hence $e\left(a_{6} x_{1} x_{t-2} x_{t}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$. Since L^{\prime} is a 6 -cycle, $L_{i}+P-x_{t-1}+a_{6}$ does not have both a 6 -cycle and a large cycle, by the maximality of k_{0}. Therefore, since $x_{2} x_{3} \ldots x_{t-3}$ is a path of order $t-4 \geq 3, e\left(x_{2}, x_{1} a_{6}\right)=2$, and $e\left(x_{t-3}, x_{t-2} x_{t}\right)=2$, we see by Lemma 3.0.4 that $L_{i}+P-x_{t-1}+a_{6}$ has a 6 -cycle C with $\tau(C) \geq \tau\left(L_{i}\right)-2$ and a path of order $t-4+4=t$. But this contradicts Condition (4.3), because $\tau\left(L^{\prime}\right)=\tau(L)+3$.

Case 5.2.2: $x_{1} a_{5} \notin E$. Since $e\left(x_{1}, L\right)=2, e\left(x_{1}, a_{2} a_{4} a_{6}\right)=1$. Suppose that $x_{1} a_{2} \in E$. Since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6, e\left(a_{4}, a_{2} a_{6}\right)=0, a_{3} a_{5} \notin E$, and $e\left(a_{1}, a_{5}\right)+e\left(a_{3}, a_{6}\right) \leq$

1. Then $\tau\left(a_{5} a_{6}, L\right) \leq 3, \tau\left(a_{3} a_{4}, L\right) \leq 3$, and $\tau\left(a_{2}, L\right) \leq 2$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=$ $e\left(x_{1} x_{2}, a_{5} a_{6} a_{1} a_{2}\right)=6$ and $e\left(x_{2}, L-a_{2}\right)=5$, this implies that $e\left(x_{t}, a_{5} a_{6} a_{3} a_{4} a_{2}\right)=0$, a contradiction because $e\left(x_{t}, L\right)=2$. Therefore $x_{1} a_{2} \notin E$, and similarly it is easy to see that $x_{1} a_{6} \notin E$. Hence $x_{1} a_{4} \in E$, and $e\left(x_{1}, a_{1} a_{4}\right)=2$.

Since $x_{1} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6$, we have $\tau\left(a_{2} a_{3}, L\right) \leq 2$ and $\tau\left(a_{5} a_{6}, L\right) \leq 3$. Since $e\left(x_{1} x_{2}, a_{1} a_{2} a_{3} a_{4}\right)=e\left(x_{1} x_{2}, a_{4} a_{5} a_{6} a_{1}\right)=6$, this implies that $e\left(x_{t}, a_{2} a_{3} a_{5} a_{6}\right)=0$. Then $e\left(x_{t}, a_{1} a_{4}\right)=2$, so $e\left(x_{1} x_{t}, a_{1} a_{4}\right)=4$. Then $\tau\left(a_{1} a_{4}, L\right)=6$, for otherwise $x_{2} \xrightarrow{1}\left(L, a_{i}\right)$ for $i=1$ or $i=4$. Since $x_{1} \nrightarrow\left(L, a_{2}\right)$ and $a_{1} a_{3} \in E$, we have $e\left(a_{3}, a_{5} a_{6}\right)=0$. Since $x_{1} \nrightarrow\left(L, a_{3}\right)$ and $a_{4} a_{2} \in E$, we have $e\left(a_{2}, a_{5} a_{6}\right)=0$. Hence $\tau\left(a_{5} a_{6}, L\right)=2$, so $x_{t-1} x_{t} \xrightarrow{2}\left(L, a_{5} a_{6}\right)$ because $e\left(x_{t-1} x_{t}, L-a_{5} a_{6}\right)=6$. Let $L^{\prime}=x_{t-1} x_{t} a_{1} a_{2} a_{3} a_{4} x_{t-1}$. Since $\tau\left(L^{\prime}\right)>\tau(L)$ and $x_{t-2} \ldots x_{2}$ is a P_{t-3} and $e\left(x_{2}, a_{5} a_{6}\right)=2$, by Condition (4.3) we must have $e\left(a_{5} a_{6}, D-P\right)=0$. By the maximality of k_{0} and Lemma 2.1.4, $e\left(a_{5} a_{6}, P-x_{t-1} x_{t}\right) \leq 6$. Thus, since $e\left(a_{5} a_{6}, x_{1}\right)=0$ and $e\left(a_{5} a_{6}, L\right)=4+\tau\left(a_{5} a_{6}, L\right) \leq 6$, we have $e\left(a_{5} a_{6}, D+L\right) \leq 8+6=14$. Since $\tau\left(L^{\prime}\right)>\tau(L)$ and $x_{t-2} \ldots x_{2} a_{5} a_{6}=P_{t-1}$, by Condition (4.3) $e\left(x_{t-2}, D-P\right)=0$. If $x_{t-2} x_{t} \in E$ and $x_{1} x_{3} \in E$, then $x_{1} x_{3} x_{2} a_{5} a_{6} a_{1} x_{1}=C_{6}$ and $x_{t} x_{t-2} x_{t-1} a_{2} a_{3} a_{4} x_{t}=C_{6}$, a contradiction. Thus $e\left(x_{1} x_{t-2}, D\right)=e\left(x_{1} x_{t-2}, P\right) \leq 4+6-1=9$ by the maximality of k_{0}. Because $x_{t-1} x_{t} \rightarrow\left(L, a_{5} a_{6}\right)$ and $x_{t-1} x_{t} \rightarrow\left(L, a_{2} a_{3}\right)$, and because $t-3 \geq 4$ and $e\left(x_{2}, L\right)=6$, we see that $e\left(x_{t-2}, a_{5} a_{6} a_{2} a_{3}\right)=0$ by the maximality of k_{0}. Hence $e\left(x_{1} x_{t-2}, L\right) \leq 2+2=4$, so $e\left(x_{1} x_{t-2}, D+L\right) \leq 9+4=13$. Therefore $e\left(x_{1} x_{t-2} a_{5} a_{6}, D+L\right) \leq 27$, so $e\left(x_{1} x_{t-2} a_{5} a_{6}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$. But $\tau\left(L^{\prime}\right) \geq \tau(L)+2, x_{1} x_{2} \ldots x_{t-2}$ is a path of order $t-2 \geq 5$, and $e\left(x_{2}, a_{5} a_{6}\right)=2$, contradicting either the maximality of k_{0} or Condition (4.3) via Lemma 3.0.3.
$\underline{\text { Case 5.3: } e\left(x_{1}, L\right)=1 . ~ H e r e ~} e\left(x_{t}, L\right)=3$, so because $e\left(x_{t}, a_{2} a_{4} a_{6}\right) \leq 1, e\left(x_{t}, a_{1} a_{3}\right) \leq 1$, and $e\left(x_{t}, a_{3} a_{5}\right) \leq 1$, we know that $e\left(x_{t}, a_{1} a_{5}\right)=2$ and $e\left(x_{t}, a_{2} a_{4} a_{6}\right)=1$. By symmetry, either $x_{t} a_{2} \in E$ or $x_{t} a_{6} \in E$. First suppose that $x_{t} a_{2} \in E$. Since $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6$, $\tau\left(a_{3}, L\right)=0$ and $e\left(a_{4}, a_{2} a_{6}\right)=0$. Then $\tau\left(a_{3} a_{4}, L\right) \leq 1$ and $\tau\left(a_{5} a_{6}, L\right) \leq 2+1=3$, so because $e\left(x_{t-1} x_{t}, a_{5} a_{6} a_{1} a_{2}\right)=e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=6$ we know that $e\left(x_{1}, a_{3} a_{4} a_{5} a_{6}\right)=0$. Because
$a_{1} a_{3} \notin E$, we have $x_{2} \xrightarrow{1}\left(L, a_{1}\right)$. Thus $x_{1} a_{1} \notin E$, for otherwise $e\left(x_{1} x_{t}, a_{1}\right)=2$. Therefore $x_{1} a_{2} \in E$, so $e\left(x_{1} x_{2}, a_{2} a_{3} a_{4} a_{5}\right)=5$. Since $x_{t} a_{1} \in E$, this implies that $\tau\left(a_{6} a_{1}, L\right) \geq 3$. Because $e\left(a_{3}, a_{1} a_{6}\right)=0$ and $a_{6} a_{4} \notin E$, we know that $e\left(a_{1}, a_{4} a_{5}\right)=2$ and $a_{2} a_{6} \in E$. But then $x_{t} \rightarrow\left(L, a_{3}\right)$, a contradiction.

Therefore $x_{t} a_{2} \notin E$, so $x_{t} a_{6} \in E$ and hence $e\left(x_{t}, a_{5} a_{6} a_{1}\right)=3$. Since $x_{t} \nrightarrow\left(L, a_{i}\right)$ for $i \neq 6$, we observe that $\tau\left(a_{3} a_{6}, L\right)=0$ and $a_{2} a_{4} \notin E$. Then $\tau\left(a_{3} a_{4}, L\right) \leq 0+1=1$, $\tau\left(a_{5} a_{6}, L\right) \leq 2+0=2$, and $\tau\left(a_{6} a_{1}, L\right) \leq 0+2=2$. Thus, since $e\left(x_{t-1} x_{t}, a_{5} a_{6} a_{1} a_{2}\right)=6$ and $e\left(x_{t-1} x_{t}, a_{1} a_{2} a_{3} a_{4}\right)=e\left(x_{t-1} x_{t}, a_{2} a_{3} a_{4} a_{5}\right)=5$, we know that $e\left(x_{1}, a_{3} a_{4} a_{5} a_{6} a_{1}\right)=0$. But then, since $\tau\left(a_{2} a_{3}, L\right) \leq 1+0=1$, we have $x_{t-1} x_{t} \xrightarrow{3}\left(L, a_{2} a_{3}\right)$ and $x_{1} a_{2} \in E$, a contradiction.

Case 6: $e\left(x_{1} x_{t}, L\right)=3$. For each $a_{i} \in L$, we have $x_{1} \nrightarrow\left(L, a_{i}\right)$ and $x_{t} \nrightarrow\left(L, a_{i}\right)$, because $e\left(x_{2} x_{t-1}, a_{i}\right)=2$. Thus $e\left(x_{1}, L\right) \leq 2$ and $e\left(x_{t}, L\right) \leq 2$, so WLOG let $e\left(x_{1}, L\right)=2$ and $e\left(x_{t}, L\right)=1$. Further, WLOG let $x_{1} a_{1} \in E$. Then $e\left(x_{1}, a_{3} a_{5}\right)=0$. Suppose that $e\left(x_{1}, a_{2} a_{6}\right)=1$, and WLOG let $x_{1} a_{2} \in E$. Then $a_{2} a_{4} \notin E, a_{3} a_{5} \notin E, a_{4} a_{6} \notin E$, and $a_{1} a_{5} \notin E$. This implies that $x_{1} x_{2} \xrightarrow{1}\left(L, a_{3} a_{4}\right)$, so $e\left(x_{t}, a_{3} a_{4}\right)=0$. By symmetry, $e\left(x_{t}, a_{5} a_{6}\right)=0$, so WLOG let $x_{t} a_{1} \in E$. But then $e\left(x_{1} x_{t}, a_{1}\right)=2$ and $x_{2} \xrightarrow{1}\left(L, a_{1}\right)$, a contradiction. Therefore $e\left(x_{1}, a_{2} a_{6}\right)=0$, so $e\left(x_{1}, a_{1} a_{4}\right)=2$. Then $a_{2} a_{6} \notin E$ and $a_{3} a_{5} \notin E$. Further, $e\left(a_{1}, a_{3}\right)+e\left(a_{2}, a_{5}\right) \leq 1$. Then $\tau\left(a_{2} a_{3}, L\right) \leq 3$, so $x_{1} x_{2} \xrightarrow{1}\left(L, a_{2} a_{3}\right)$. Hence $e\left(x_{t}, a_{2} a_{3}\right)=0$, and by symmetry $e\left(x_{t}, a_{5} a_{6}\right)=0$.

Therefore $e\left(x_{t}, a_{1} a_{4}\right)=1$, so WLOG let $x_{t} a_{1} \in E$. Since $e\left(x_{1} x_{t}, a_{1}\right)=2$ and $e\left(x_{2}, L\right)=6$, we see that $\tau\left(a_{1}, L\right)=3$. Since $a_{1} a_{3} \in E, a_{2} a_{5} \notin E$ and $a_{3} a_{6} \notin E$, and because $a_{2} a_{6} \notin E$ and $a_{3} a_{5} \notin E$, we have $\tau\left(a_{5} a_{6}, L\right) \leq 1+1=2$. Therefore $x_{1} x_{2} \xrightarrow{2}\left(L, a_{5} a_{6}\right)$. Let $L^{\prime}=$ $x_{1} x_{2} a_{1} a_{2} a_{3} a_{4} x_{1}$. Since $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right), P-x_{1} x_{2}+a_{5} a_{6}$ does not have a large cycle. Thus, because $e\left(x_{t-1}, a_{5} a_{6}\right)=2$, we have $e\left(x_{3}, a_{5} a_{6}\right)=0$. By symmetry, $e\left(x_{3}, a_{2} a_{3}\right)=0$. Since $x_{2} \rightarrow\left(L, a_{1}\right)$ and $x_{t} a_{1} \in E$, we also have $x_{3} a_{1} \notin E$. Hence $e\left(x_{3}, L\right) \leq 1$. Since $x_{2} \rightarrow\left(L, a_{1}\right)$ and $x_{1} a_{1} x_{t} \ldots x_{3}=P_{t}$, we have $e\left(x_{3}, D\right)=e\left(x_{3}, P\right) \leq 6$ by Condition (4.2). Since $\tau\left(a_{5} a_{6}, L\right) \leq 2, e\left(a_{5} a_{6}, L\right) \leq 2+4=6$. Also, since $x_{1} x_{2} \rightarrow\left(L, a_{5} a_{6}\right)$, by Lemma 2.1.4
we have $e\left(a_{5} a_{6}, P-x_{1} x_{2}\right) \leq 6$. Since $\tau\left(L^{\prime}\right)>\tau(L)$, and $x_{3} x_{4} \ldots x_{t-1}$ is a path of order $t-3$ with $e\left(x_{t-1}, a_{5} a_{6}\right)=2$, we see that $e\left(a_{5} a_{6}, D-P\right)=0$ by Condition (4.3). Then $e\left(a_{5} a_{6}, D+L\right) \leq$ $8+6=14$. Since $e\left(x_{t}, D\right) \leq 4$ and $e\left(x_{t}, L\right)=1$, we have $e\left(x_{3} x_{t} a_{5} a_{6}, D+L\right) \leq 7+5+14=26$. Then $e\left(x_{3} x_{t} a_{5} a_{6}, L_{i}\right) \geq 15$ for some $L_{i} \in \sigma-\{L\}$. Since $x_{3} \ldots x_{t}$ is a path of order $t-2 \geq 5$ and $e\left(x_{t-1}, a_{5} a_{6}\right)=2$, the conditions of Lemma 3.0.3 are satisfied. But this contradicts either the maximality of k_{0} or Condition (4.3), since $\tau\left(L^{\prime}\right) \geq \tau(L)+2$.

Chapter 5

Proof of Theorem 2

In this chapter, we prove that if G is a graph of order $n \geq 6 k+6$ and $\delta(G) \geq \frac{n}{2}$, then G contains k disjoint cycles covering all the vertices of G such that $k-1$ are 6 -cycles. The general strategy of the proof is somewhat similar to that of Theorem 1, except we will be working with a hamiltonian cycle rather than a path. Also, since we want to cover all the vertices of G we will be much more interested in $|G|$, using the following cases: $n=6 k+6$, $n=6 k+7$, and $n \geq 6 k+8$. Lemma 5.1.4 will aid the case $n \geq 6 k+8$.

5.1 Lemmas

A graph G of order n is hamiltonian if there is a cycle $v_{1} v_{2} \ldots v_{n} v_{1}$ using all the vertices of G. Such a cycle is called a hamiltonian cycle. A hamiltonian path is a path $y_{1} y_{2} \ldots y_{n}$ using all the vertices of G.

Lemma 5.1.1 (Ore's Theorem) Let G be a graph of order $n \geq 3$. If e(uv, $G) \geq n$ for each pair of nonadjacent vertices $u, v \in G$, then G is hamiltonian.

Proof: Suppose G is not hamiltonian. Among all graphs G^{\prime} of order n containing G that are not hamiltonian, let H be maximal with respect to size. Then clearly, $e(u v, H) \geq e(u v, G) \geq$ n for each pair of nonadjacent vertices $u, v \in H$. Since H is maximal, there is a hamiltonian path $x_{1} x_{2} \ldots x_{n}$ in H, and $x_{1} x_{n} \notin E$. Then $e\left(x_{1}, x_{3} x_{4} \ldots x_{n-1}\right)+e\left(x_{n}, x_{2} x_{3} \ldots x_{n-2}\right) \geq n-2$, so $e\left(x_{1}, x_{i}\right)+e\left(x_{n}, x_{i-1}\right)=2$ for some $3 \leq i \leq n-1$. But then $x_{1} x_{2} \ldots x_{i-1} x_{n} x_{n-1} \ldots x_{i} x_{1}$ is a hamiltonian cycle in H, a contradiction.

Lemma 5.1.2 Let $P=x_{1} x_{2} \ldots x_{n}$ and $Q=y_{1} y_{2} \ldots y_{m}$ be disjoint paths, $n \geq 3$. Suppose that $P+Q$ does not have a hamiltonian path starting at x_{1}. Then $e\left(x_{n} y_{1}, P\right) \leq n$, and if $e\left(x_{n} y_{1}, P\right)=n$ then $x_{1} y_{1} \in E$ and $e\left(x_{n}, x_{i-1}\right)+e\left(y_{1}, x_{i}\right)=1$ for each $i \in\{2,3, \ldots, n-1\}$.

Proof: Clearly $x_{n} y_{1} \notin E$. Also, for each $i \in\{2,3, \ldots, n-1\}, e\left(x_{n}, x_{i-1}\right)+e\left(y_{1}, x_{i}\right) \leq 1$, for otherwise $x_{1} \ldots x_{i-1} x_{n} x_{n-1} \ldots x_{i} y_{1} y_{2} \ldots y_{m}$ is a hamiltonian path. The conclusion is therefore immediate.

Lemma 5.1.3 Let $P=x_{1} x_{2} \ldots x_{n}$ and $Q=y_{1} y_{2} \ldots y_{m}$ be disjoint paths, $n \geq 4$. Suppose that $P+Q$ does not have a hamiltonian path starting at x_{1}, and that $e\left(y_{1}, x_{i} x_{i+1}\right) \leq 1$ for each $i \in\{1,2, \ldots, n-1\}$. If $e\left(x_{n} y_{1}, P\right)=n$ and $e\left(y_{1}, P\right) \geq 2$, then P has a hamiltonian path $x_{1} z_{2} \ldots z_{n}$ such that $y_{1} z_{n-1} \in E$.

Proof: Let j be maximal such that $y_{1} x_{j} \in E$. By Lemma 5.1.2, we know that $x_{1} y_{1} \in E$, so $y_{1} x_{2} \notin E$ by assumption. Therefore $3 \leq j \leq n-2$. Also by assumption we know that $y_{1} x_{j-1} \notin E$, so that $x_{n} x_{j-2} \in E$ by Lemma 5.1.2. Then $x_{1} x_{2} \ldots x_{j-2} x_{n} x_{n-1} \ldots x_{j} x_{j-1}$ is a hamiltonian path in P, and $y_{1} x_{j} \in E$.

Lemma 5.1.4 Let G be a graph of order $n \geq 11$, and suppose that $e(x y, G) \geq n$ for each pair of nonadjacent vertices x and y. Then for each $u \in G, G$ has a 6 -cycle C such that $G-C$ has a hamiltonian path starting at u.

Proof: Suppose that the lemma is not true. Let $x_{0} \in G$ be such that there does not exist a 6 -cycle C such that $G-C$ has a hamiltonian path starting at x_{0}.

Case 1: $G-x_{0}$ does not have a 6 -cycle. First suppose that $G-x_{0}$ is hamiltonian, and let $x_{1} x_{2} \ldots x_{n-1} x_{1}$ be a hamiltonian cycle in $G-x_{0}$. Let $P=x_{4} x_{5} \ldots x_{n-1}$, a path of order $n-4 \geq$ 7. By Lemma 2.1.8, e($\left.x_{1} x_{3}, P\right) \leq n-5$. Hence $x_{1} x_{3} \in E$, for otherwise x_{1} and x_{3} are nonadjacent vertices with $e\left(x_{1} x_{3}, G\right)=e\left(x_{1} x_{3}, x_{0} x_{1} x_{2} x_{3}\right)+e\left(x_{1} x_{3}, P\right) \leq 4+(n-5)=n-1$. This argument implies that $x_{i} x_{i+2} \in E$ for each $i \in\{1,2, \ldots, n-1\}, \bmod n-1$. Therefore $n \geq 13$, since $x_{1} x_{2} x_{3} x_{5} x_{7} x_{9} x_{1}$ is a 6 -cycle if $n=11$ and $x_{1} x_{2} x_{4} x_{6} x_{8} x_{10} x_{1}$ is a 6 -cycle if $n=12$. Similarly, it can be seen that for each $x_{i} \in G-x_{0}$, we have $e\left(x_{i}, x_{i+4}, x_{i+5}, \ldots, x_{i+10}\right)=0$. For example, if $x_{2} x_{6} \in E$ then $x_{2} x_{6} x_{7} x_{5} x_{4} x_{3} x_{2}$ is a 6 -cycle. Therefore, because $x_{1} x_{5} \notin E$, this implies that $e\left(x_{1} x_{5}, G-\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{9}, x_{10}, x_{11}\right\}\right) \geq n-8$. But $\left|G-\left\{x_{0}, x_{1}, \ldots, x_{5}, x_{9}, x_{10}, x_{11}\right\}\right|=$
$n-9$, so x_{1} and x_{5} have a common neighbor outside of $G-\left\{x_{0}, x_{1}, \ldots, x_{5}\right\}$. Clearly then, $G-x_{0}$ has a 6 -cycle, a contradiction.

Thus $G-x_{0}$ is not hamiltonian. Since G is hamiltonian, however, $G-x_{0}$ has a hamiltonian path $x_{1} x_{2} \ldots x_{n-1}$. Then $x_{1} x_{n-1} \notin E$, so $e\left(x_{1} x_{n-1}, G\right) \geq n$. WLOG let $e\left(x_{1}, G\right) \geq e\left(x_{n-1}, G\right)$. Since $n \geq 11, e\left(x_{1}, G-x_{0}\right) \geq 5$. Also, since $G-x_{0}$ does not have a 6 -cycle, we know that $x_{1} x_{6} \notin E$. Therefore, $x_{1} x_{i} \in E$ for some $i \geq 7$. Let j be maximal such that $x_{1} x_{j} \in E$, and let $P=x_{2} x_{3} \ldots x_{j}$. Then $e\left(x_{1}, x_{2} x_{j}\right)=2$, and since $G-x_{0}$ is not hamiltonian, we know that if $x_{1} x_{i} \in E$ then $x_{n-1} x_{i-1} \notin E$. By Lemma 2.1.9, we see that $e\left(x_{1} x_{n-1}, P\right) \leq j-1$. Then $j \leq n-3$, because if $j=n-2$ then $e\left(x_{1} x_{n-1}, G\right)=e\left(x_{1} x_{n-1}, P\right)+e\left(x_{1} x_{n-1}, x_{0}\right) \leq(n-3)+2=$ $n-1$. Hence $e\left(x_{1}, x_{j+1} \ldots x_{n-2}\right)=0$ by the maximality of j, so $e\left(x_{n-1}, x_{j+1} \ldots x_{n-2}\right) \geq$ $n-e\left(x_{1} x_{n-1}, x_{0}\right)-e\left(x_{1} x_{n-1}, P\right) \geq n-2-(j-1)=n-j-1>n-j-2$, a contradiction.

Case 2: $G-x_{0}$ has a 6 -cycle. Let C be a 6 -cycle in $G-x_{0}$, and choose C such that the length t of a longest path in $G-C$ starting at x_{0} is maximal. Under that condition, further choose C such that $\tau(C)$ is maximal. Let $P=x_{0} x_{1} \ldots x_{t}$ and $C=a_{1} a_{2} \ldots a_{6} a_{1}$. Since P is not a hamiltonian path in $G-C$ by assumption, we have $t+1<n-6$. Let $D=G-C-P$, and let $|D|=r$. Then $t=n-7-r$. By Lemma 1.4.17 we know that $e\left(u x_{t}, C\right) \leq 8$ for each $u \in D$, for otherwise $u \rightarrow\left(C, a_{i}\right)$ and $x_{t} a_{i} \in E$ for some $a_{i} \in C$, contradicting the maximality of t. Furthermore, by Lemma 1.4.18 and the maximality of $\tau(C)$ we see that if $e\left(u x_{t}, C\right)=8$ then $e(u, C) \leq 3$.

Suppose that $t=0$. Then $e\left(x_{0}, D\right)=0$ by the maximality of t. Therefore, for each $u \in D$, $e\left(u x_{0}, C\right)=e\left(u x_{0}, G\right)-e\left(u x_{0}, D\right)=n-e(u, D) \geq n-(r-1)=8$. Since $e\left(u x_{0}, C\right) \leq 8$ from above, this implies that $e\left(u x_{0}, C\right)=8$ and $e(u, D)=r-1$. Hence $D=K_{r}$, and because $n \geq 11$ and $|P|=1$, we have $r \geq 4$. Thus, for each $2 \leq s \leq 4$ and for each $x, y \in D$, there is an $x-y$ path of order s in D. Also, between any two vertices a_{i} and a_{j} in C there is an $a_{i}-a_{j}$ path of order between 2 and 4 . Therefore, for $x, y \in D$, if $x a_{i} \in E$ and $y a_{j} \in E$ and $i \neq j$, then $C+D-a_{k}$ contains a 6 -cycle for some $k \notin\{i, j\}$. For any such a_{k}, we see that $x_{0} a_{k} \notin E$ by the maximality of t. Since $e\left(x_{0} u, C\right)=8$ for each $u \in D$, this implies
that $e\left(x_{0}, C\right) \leq 5$. Because $e(u, C) \leq 3$ for each $u \in D$ by the preceding paragraph, we have $e\left(x_{0}, C\right)=5$ and $e(u, C)=3$. WLOG let $e\left(x_{0}, C-a_{6}\right)=5$. Then $u \nrightarrow\left(C, a_{i}\right)$ for each $i=1,2,3,4,5$, so $e\left(u, a_{1} a_{5}\right)=2$. Since this applies to each $u \in D$, we see that $D+a_{5} a_{6} a_{1}$ contains a 6 -cycle, contradicting the maximality of t.

Now suppose that $t=1$. If $u x_{0} \in E$ for some $u \in D$, then $e(u, G-C)=1$ by the maximality of t. Clearly $e\left(x_{1}, G-C\right)=1$ as well, so $e\left(u x_{1}, C\right) \geq n-2 \geq 9$, a contradiction. Hence $e\left(x_{0}, D\right)=0$, so $e\left(u x_{0}, C\right)=e\left(u x_{0}, G\right)-e\left(u x_{0}, G-C\right) \geq n-(r-1)-1=n-r=8$. But also $e\left(u x_{1}, C\right) \geq 8$, which contradicts either the maximality of t or the maximality of $\tau(C)$ by Lemma 3.0.1.

Now suppose that $t=2$. If $u x_{1} \in E$ for some $u \in D$, then by Lemma 1.4.19 we have $e\left(u x_{2}, C\right) \leq 6$. Also, $e\left(u, x_{0} x_{2}\right)=e\left(u x_{2}, D\right)=0$ by the maximality of t. But then $e\left(u x_{2}, G\right) \leq$ $6+2<n$, a contradiction. Therefore $e\left(x_{1}, D\right)=0$, so $e\left(u x_{1}, C\right) \geq n-3-(r-1)=7$ for each $u \in D$. Similarly, $e\left(u x_{2}, C\right) \geq 7$ for each $u \in D$. Hence by Lemma 3.0.1, for each $u \in D$ we have $e\left(u x_{2}, C\right)=7$, which implies that $e\left(u x_{2}, P\right) \geq n-(r-1)-7=n-r-6=3$. Thus, since $e\left(u, x_{1} x_{2}\right)=0$ we know that $u x_{0} \in E$ and $e(u, D)=r-1$. Then $D=K_{r}$, and by the maximality of t we see that $r=2$. Let $u, v \in D$. There are two paths $x_{0} u v$ and $x_{0} x_{1} x_{2}$ of order three starting at x_{0} with $\{u, v\}$ and $\left\{x_{1}, x_{2}\right\}$ disjoint. Since $e(v, P)=1$ and $e\left(x_{2}, D\right)=0$, we have $e\left(v x_{2}, C\right) \geq 11-4=7$. But this contradicts either the maximality of t or the maximality of $\tau(C)$ by Lemma 1.4.19.

Therefore $t \geq 3$. Let $u \in D$. By Lemma 5.1.2, we see that $e\left(u x_{t}, P\right) \leq t+1$. Then $e\left(u x_{t}, C\right) \geq n-(t+1)-(r-1)=n-t-r=7$, and from before we know that $e\left(u x_{t}, C\right) \leq$ 8. Suppose that $e\left(u x_{t}, C\right)=8$. By Lemma 3.0.1, $e\left(u x_{t-1}, C\right) \leq 6$. By Lemma 1.4.19, $e\left(x_{t-1}, D\right)=0$. Thus $e\left(u x_{t-1}, P\right) \geq n-6-(r-1)=n-r-5=t+2$. Then $e\left(u x_{t-1}, P-x_{t}\right) \geq$ $t+1$, so by Lemma 5.1.2, $P-x_{t}+u$ has a hamiltonian path starting at x_{0}. But this contradicts Lemma 1.4.19, since $e\left(u x_{t}, C\right)=8$.

So $e\left(u x_{t}, C\right)=7$ and $e\left(u x_{t}, P\right)=t+1$. By Lemma 5.1.2 we have $u x_{0} \in E$ and $e\left(x_{t}, x_{i-1}\right)+$ $e\left(u, x_{i}\right)=1$ for each $i \in\{1,2, \ldots, t-1\}$. Suppose that $e(u, P) \geq 2$. Then, by the maximality
of t and by Lemma 5.1.3, we see that P has a hamiltonian path $x_{0} z_{1} \ldots z_{t}$ such that $u z_{t-1} \in E$. Thus $u z_{t} \notin E$, so $e\left(u z_{t}, G\right) \geq n$. By Lemma 5.1.2, $e\left(u z_{t}, P\right) \leq t+1$, so $e\left(u z_{t}, C\right) \geq$ $n-(t+1)-(r-1)=7$. But this contradicts Lemma 1.4.19, because $u z_{t-1} \in E$.

Hence $e(u, P) \leq 1$, and because $u x_{0} \in E$ we have $e\left(u, P-x_{0}\right)=0$. Then $e\left(x_{t}, x_{i-1}\right)+$ $e\left(u, x_{i}\right)=1$ for each $i \in\{1,2, \ldots, t-1\}$ implies that $x_{t} x_{i} \in E$ for each $i \in\{0,1, \ldots, t-2\}$. Then for each $i \in\{0,1, \ldots, t-2\}, x_{0} \ldots x_{i} x_{t} x_{t-1} \ldots x_{i+1}$ is a path of order $t+1$ starting at x_{0}. Replacing x_{t} with x_{i+1} in the preceding two paragraphs, we see that for each $i \in\{1,2, \ldots, t\}$, that $e\left(u x_{i}, C\right)=7$ and $e\left(x_{i}, P\right)=t$. Since $\left[x_{0}, x_{1}, \ldots, x_{t}\right]=K_{t+1}$, as in the case $t=0$ we see that either $u \rightarrow\left(C, a_{i}\right)$ for some $a_{i} \in C$, or G contains a path P^{\prime} of order $\geq t+2$ starting at x_{0} and a 6-cycle C^{\prime} such that P^{\prime} and C^{\prime} are disjoint. This completes the proof.

Lemma 5.1.5 Let G be a graph, and let $C=y_{1} y_{2} \ldots y_{6} y_{1}$ be a 6 -cycle. Suppose that G and C are disjoint, and that $G+C$ is not hamiltonian. If there is a hamiltonian path in G from x_{i} to x_{j}, then $e\left(x_{i} x_{j}, C\right) \leq 6$. Further,

- If $e\left(x_{i}, C\right)=6$ then $e\left(x_{j}, C\right)=0$.
- If $e\left(x_{i}, C\right)=5$ then $e\left(x_{j}, C\right)=0$.
- If $e\left(x_{i}, C\right)=4$ then $e\left(x_{j}, C\right) \leq 1$, and if $e\left(x_{j}, C\right)=1$ then $W L O G N\left(x_{i}, C\right)=$ $\left\{y_{1}, y_{2}, y_{3}, y_{5}\right\}$ and $x_{j} y_{5} \in E$.
- If $e\left(x_{i}, C\right)=3$ then $e\left(x_{j}, C\right) \leq 3$, and if $e\left(x_{j}, C\right)=3$ then $W L O G N\left(x_{i}, C\right)=$ $N\left(x_{j}, C\right)=\left\{y_{1}, y_{3}, y_{5}\right\}$.

Proof: For each $y_{k} \in C$, there is a hamiltonian path in C from y_{k} to $y_{k \pm 1}$. Thus if $x_{i} y_{k} \in E$ then $e\left(x_{j}, y_{k-1} y_{k+1}\right)=0$. The conclusion is an easy exercise.

The next lemma is similar, so a proof is omitted.
Lemma 5.1.6 Let G be a graph, and let $L=y_{1} y_{2} \ldots y_{7} y_{1}$ be a 7 -cycle. Suppose that G and L are disjoint, and that $G+L$ is not hamiltonian. If there is a hamiltonian path in G from x_{i} to x_{j}, then $e\left(x_{i} x_{j}, L\right) \leq 7$. Further,

- If $e\left(x_{i}, L\right) \geq 6$ then $e\left(x_{j}, L\right)=0$.
- If $e\left(x_{i}, L\right)=5$ then $e\left(x_{j}, L\right) \leq 1$.
- If $e\left(x_{i}, L\right)=4$ then $e\left(x_{j}, L\right) \leq 2$.

The following two lemmas are immediate consequences of Lemmas 5.1.5 and 5.1.6.

Lemma 5.1.7 Let $C_{1}=x_{1} x_{2} \ldots x_{6} x_{1}$ and $C_{2}=y_{1} y_{2} \ldots y_{6} y_{1}$ be disjoint 6 -cycles, and suppose that $e\left(C_{1}, C_{2}\right) \geq 18$. Then $C_{1}+C_{2}$ is hamiltonian unless $e\left(C_{1}, C_{2}\right)=18$. In that case, WLOG either $N\left(u, C_{2}\right)=\left\{y_{1}, y_{3}, y_{5}\right\}$ for each $u \in C_{1}$, or $e\left(u, C_{2}\right)=6$ for each $u \in\left\{x_{1}, x_{3}, x_{5}\right\}$.

Lemma 5.1.8 Let $C_{1}=x_{1} x_{2} \ldots x_{6} x_{1}$ be a 6 -cycle and L be a 7 -cycle, with C and L disjoint. If $e(C, L) \geq 22$, then $C+L$ is hamiltonian. If $e(C, L) \geq 19$ and $C+L$ is not hamiltonian, then $W L O G e(u, L)=0$ for each $u \in\left\{x_{2}, x_{4}, x_{6}\right\}$.

Lemma 5.1.9 Let C be a 6 -cycle. If $\tau(C) \geq 7$, then for each pair of vertices $x, y \in C$, there is a hamiltonian path from x to y.

Proof: Let $C=x_{1} x_{2} \ldots x_{6} x_{1}$. Suppose there is no hamiltonian path in C from x_{1} to x_{i}. Then $i \in\{3,4,5\}$, so by symmetry we may assume that $i=3$ or $i=4$. If $i=3$, then $e\left(x_{2}, x_{6} x_{4}\right)=0$. Since $\tau(C) \geq 7$, this implies that $x_{1} x_{2} x_{5} x_{6} x_{4} x_{3}$ is a hamiltonian path, a contradiction. Hence $i=4$. Then $x_{2} x_{5} \notin E$ and $x_{3} x_{6} \notin E$, so $x_{1} x_{2} x_{6} x_{5} x_{3} x_{4}$ is a hamiltonian path, a contradiction.

Lemma 5.1.10 Let C be a 7-cycle. If $\tau(C) \geq 11$, then for each pair of vertices $x, y \in C$, there is a hamiltonian path from x to y.

Proof: Let $C=x_{1} x_{2} \ldots x_{7} x_{1}$. Suppose there is no hamiltonian path in C from x_{1} to x_{i}. Then $i \in\{3,4,5,6\}$, so by symmetry we may assume that $i=3$ or $i=4$. If $i=3$, then $e\left(x_{2}, x_{7} x_{4}\right)=0$ and $e\left(x_{2}, x_{5} x_{6}\right) \leq 1$. Since $\tau(C) \geq 11$, this implies that $x_{4} x_{7} \in E$
and $e\left(x_{2}, x_{5} x_{6}\right)=1$. WLOG let $x_{2} x_{5} \in E$. Then $x_{3} x_{4} x_{7} x_{6} x_{5} x_{2} x_{1}$ is a hamiltonian path, a contradiction. Hence $i=4$. Then $x_{3} x_{7} \notin E, x_{2} x_{5} \notin E$, and if $x_{2} x_{7} \in E$ then $e\left(x_{3}, x_{5} x_{6}\right)=$ 0 . Since $\tau(C) \geq 11$, this implies that $x_{2} x_{7} \notin E$. Then $x_{3} x_{5} \in E$ and $x_{2} x_{6} \in E$, so $x_{4} x_{5} x_{3} x_{2} x_{6} x_{7} x_{1}$ is a hamiltonian path, a contradiction.

The following results are due to Wang ([9],[10]).

Lemma 5.1.11 Let G be a graph of order $6(k+1)$ with minimum degree at least $3(k+1)$. Then G contains k-cycles and a path of order 6 , all of which are disjoint. [10]

Lemma 5.1.12 Suppose that G has a hamiltonian path and that $e(x y, G) \geq n+s$ for any two endvertices of a hamiltonian path of G, where s is nonnegative. Then for any two distinct vertices $u, v \in G, e(u v, G) \geq n+s .[9]$

Lemma 5.1.13 Suppose that $e(x y, G) \geq n$ for every two nonadjacent vertices x and y of G. Then for any two distinct vertices u and v, G has a hamiltonian path from u to v unless either $\{u, v\}$ is a vertex-cut of G or G has an independent set X with $|X| \geq n / 2$ and $\{u, v\} \subseteq G-X .[9]$

5.2 Main Proof

Let G be a graph of order $n \geq 6(k+1)$ with minimum degree $n / 2$. Suppose that G does not contain k disjoint cycles covering all the vertices of G such that $k-1$ are 6 -cycles. By Lemma 5.1.1, G is hamiltonian, so $k \geq 2$. Let $s=n-6 k$. By Lemma 5.1.11, $G \supseteq k C_{6} \cup P_{s}$. Since $n \geq 6 k+6, s \geq 6$. Let $Q_{1}, Q_{2}, \ldots, Q_{k}$ be the k disjoint cycles, let $H=\sum_{i=1}^{k} Q_{i}$, and let $D=G-H$. Then D has a hamiltonian path. Since $Q_{i}+D$ is not hamiltonian, we see by Lemma 5.1.5 that for each $i \in\{1,2, \ldots, k\}$ and for any two endvertices u and v of a hamiltonian path of D we have

$$
\begin{equation*}
e\left(u v, Q_{i}\right) \leq 6 \tag{5.1}
\end{equation*}
$$

Hence $e(u v, D) \geq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{2}\right\rceil-6 k$, so

$$
e(u v, D) \geq \begin{cases}s+1 & \text { if } s \text { is odd } \tag{5.2}\\ s & \text { if } s \text { is even }\end{cases}
$$

Therefore, by Lemma 5.1.12 we know that (5.2) holds for each pair of distinct vertices $u, v \in D$. Since $s \geq 6, D$ is hamiltonian. Choose $Q_{1}, Q_{2}, \ldots, Q_{k}$ and P_{s} such that

$$
\begin{equation*}
\sum_{i=1}^{k} \tau\left(Q_{i}\right) \text { is maximal. } \tag{5.3}
\end{equation*}
$$

Lemma 5.2.1 Let $s \geq 8$. Then D contains a 6 -cycle C and a hamiltonian path $x_{1} x_{2} \ldots x_{s-6}$ in $D-C$ such that $e\left(x_{1} x_{s-6}, H\right) \geq 1$.

Proof: \quad Since G is hamiltonian, $e(u, H) \geq 1$ for some $u \in D$. Thus if $s \geq 11$, the lemma is true by Lemma 5.1.4. Therefore, suppose that $s \leq 10$. Since D is hamiltonian, we see by (5.2) and Lemma 2.1.8 that D contains a 6 -cycle C. Choose a 6 -cycle C such that the length of a longest path P in $D-C$ is maximal, and from among all such pairs C and P choose one such that $\tau(C)$ is maximal. We note that since $s \leq 10$ and $k \geq 2$, $e(u v, H) \geq 6 k+s-2(s-1)=6 k-s+1 \geq 1$ for each $u, v \in D$, so we have only left to prove that P is a hamiltonian path in $D-C$.

If $s=8$ then $|P|=2$ by Lemma 1.4.18 and the maximality of $\tau(C)$. If $s=9$ then $e(u v, D) \geq 10$ for each $u, v \in D$, so P is hamiltonian by Lemma 1.4.17. Thus we are left with $s=10$. It is clear by Lemma 1.4.17 that $|P| \geq 2$, and then by Lemma 1.4.18 that $|P| \geq 3$. Finally, $|P|=4$ by Lemma 3.0.1.

We use three cases to complete the proof of Theorem 2.

Case 1: $s \geq 8$.
By Lemma 5.2.1, choose a 6 -cycle Q^{\prime} and vertex u from D such that $e(u, H) \geq 1$ and u is an endvertex of a hamiltonian path in $D-Q^{\prime}$. WLOG let $e\left(u, Q_{1}\right) \geq 1$, and denote Q_{1}
by Q. If possible, further choose Q^{\prime} such that

$$
\begin{equation*}
D-Q^{\prime} \text { does not have a vertex-cut of } D \text { with order } 2 . \tag{5.4}
\end{equation*}
$$

Let $D^{\prime}=D-Q^{\prime}+Q$. Since $D-Q^{\prime}$ has a hamiltonian path starting at u, and because $e(u, Q) \geq 1, D^{\prime}$ must have a hamiltonian path. Also, for each $i \in\{1,2, \ldots, k\}$ we know that $D^{\prime}+Q_{i}$ is not hamiltonian. Thus, as above we see that (5.2) holds for each pair of distinct vertices $u, v \in D^{\prime}$. Hence D^{\prime} is hamiltonian.

Claim: There are independent edges $x_{1} y_{1}$ and $x_{2} y_{2}$, with $y_{1}, y_{2} \in Q$, between Q and $D^{\prime}-Q$ such that Q has a hamiltonian path from y_{1} to y_{2}.

Proof: Suppose not. Since $D^{\prime}-Q$ has at least eight vertices and D^{\prime} is hamiltonian, there are independent edges between $D^{\prime}-Q$ and Q. Let L be a hamiltonian cycle in D^{\prime}. Then there must be an even number of edges from L between Q and $D^{\prime}-Q$, and because there are no such edges $x_{1} y_{1}$ and $x_{2} y_{2}$, there must be at least four edges from L between Q and $D^{\prime}-Q$.

Let $Q=a_{1} a_{2} \ldots a_{6} a_{1}$, and let $P=b_{1} b_{2} \ldots b_{t}, t \geq 2$, be a hamiltonian path in $D^{\prime}-Q$. Then for at least four $a_{i} \in Q$, there is an edge of L that is incident with a_{i}. WLOG let a_{1} and a_{2} be two such vertices. Since there is a hamiltonian path in Q from a_{1} to a_{2}, we have $e\left(a_{1} a_{2}, P\right)=2$, and WLOG $e\left(a_{1} a_{2}, b_{1}\right)=2$ with $a_{1} b_{1} a_{2} \subseteq L$. Since there is a hamiltonian path in Q from a_{1} to a_{6}, there can be no edge from L between Q and P that is incident with a_{6}. Similarly, there is no such edge incident with a_{3}. Then $e\left(a_{4}, P\right) \geq 1$ and $e\left(a_{5}, P\right) \geq 1$, so $e\left(a_{4} a_{5}, P\right)=e\left(a_{4} a_{5}, b_{i}\right)=2$ for some $b_{i} \in P-b_{1}$, with $a_{4} b_{i} a_{5} \subseteq L$. Since $e\left(a_{1} a_{2}, b_{1}\right)=e\left(a_{4} a_{5}, b_{i}\right)=2$, we have $e\left(a_{3} a_{6}, P\right)=0$, and hence that $t=2$ since D^{\prime} is hamiltonian.

Since (5.2) holds for D^{\prime}, we have $e\left(D^{\prime}, D^{\prime}\right) \geq 8(4)=32$. Then, because $e(Q, P)=4$ and $e(P, P)=2$, this implies that $e(Q, Q) \geq 32-2(4)-2=22$. Hence $\tau(Q) \geq 5$. But then for some $j \in\{1,2\}$ and some $l \in\{4,5\}$, there is a hamiltonian path in Q from a_{j} to a_{l}, a
contradiction.

QED

By the claim, there is no hamiltonian path in D from x_{1} to x_{2}, for otherwise $D+Q$ would be hamiltonian. Let $X=\left\{x_{1}, x_{2}\right\}$. By Lemma 5.1.13, either X is a vertex-cut of D or D has an independent set Y such that $|Y| \geq \frac{s}{2}$ and $X \subseteq D-Y$.

First suppose that X is a vertex-cut of D. If there is a component U of $D-X$ with at most $\frac{s-3}{2}$ vertices, then $|U|=1$, for otherwise there is $u_{1}, u_{2} \in U$ with $e\left(u_{1} u_{2}, D\right)=$ $e\left(u_{1} u_{2}, X\right)+e\left(u_{1} u_{2}, U\right) \leq 4+2\left(\frac{s-5}{2}\right)=s-1$, contradicting (5.2). In this case, let $U=\left\{u^{\prime}\right\}$. By (5.2), $e\left(u^{\prime} x, D\right) \geq s$ for each $x \in D-u^{\prime}$, so $e\left(u^{\prime}, x_{1} x_{2}\right)=2$ and $e(x, D) \geq s-2$. This implies that $D-u^{\prime}=K_{s-1}$. If there is no such component U, then $D-X=K_{(s-2) / 2} \cup K_{(s-2) / 2}$, and $e\left(x_{1} x_{2}, x\right)=2$ for each $x \in D-X$.

Either way we see that $D-X$ has two components, U_{1} and U_{2}, such that x_{1} and x_{2} are adjacent to each vertex in $D-X$. Further, both U_{1} and U_{2} are complete graphs. WLOG let $\left|U_{1}\right| \geq\left|U_{2}\right|$. Since $x_{1}, x_{2} \in D^{\prime}$, neither x_{1} nor x_{2} are in Q^{\prime}. Thus $Q^{\prime} \subseteq D-X$, so $\left|U_{1}\right| \geq 6$. Therefore, let $u_{1} \in U_{1}$, and let $Q^{\prime \prime}$ be a 6 -cycle in $U_{1}-u_{1}+x_{1}$ with $x_{1} \in Q^{\prime \prime}$. Then, since x_{1} and x_{2} are adjacent to each vertex in $D-X$, there is a vertex $u_{2} \in U_{2}$ such that there is a hamiltonian path in $D-Q^{\prime \prime}$ from u_{1} to u_{2}. Since $e\left(u_{1} u_{2}, D\right)=s$, we know that $e\left(u_{1} u_{2}, H\right) \geq 6 k$, and hence that $e\left(u_{1} u_{2}, Q_{i}\right) \geq 1$ for some $Q_{i} \in H$. Because U_{1} and U_{2} are complete graphs and $x_{1} \in Q^{\prime \prime}$, and because x_{2} is adjacent to every vertex in $D-X$, we see that $D-Q^{\prime \prime}$ does not have a vertex-cut of D with order 2 . But this contradicts (5.4), since $X \subseteq D-Q^{\prime}$ is a vertex-cut of D.

Therefore, D has an independent set Y such that $|Y| \geq \frac{s}{2}$ and $X \subseteq D-Y$. Since Y is independent, by (5.2) we see that $|D-Y|=|Y|=\frac{s}{2}$, and that D contains a complete bipartite subgraph with $(D-Y, Y)$ as its bipartition. Let $y \in Y$. Since $e(y, D)=\frac{s}{2}$, $e(y, H) \geq 3 k$, so $e\left(y, Q_{i}\right) \geq 3$ for some $Q_{i} \in H$. We may assume that $Q_{i}=Q$, as the only condition on Q was that $e(Q, D) \geq 1$. Let $Q=z_{1} z_{2} \ldots z_{6} z_{1}$, where $y_{1}=z_{j}$ and $y_{2}=z_{k}$. Since D contains $K_{s / 2, s / 2}$ and $X \subseteq D-Y$, there is a hamiltonian path in D from y to x_{1}
and from y to x_{2}. From before, we know that there is a hamiltonian path in Q from z_{j} to z_{k}. Since $e(y, Q) \geq 3$, there is $z_{m} \in Q$ such that $y z_{m} \in E$ and $m \in\{j, k, j-1, j+1, k-1, k+1\}$, a set of order at least four. Hence, WLOG there is a hamiltonian path in Q from z_{m} to y_{1}. But $x_{1} y_{1} \in E$ and there is a hamiltonian path in D from y to x_{1}, which means that $D+Q$ is hamiltonian, a contradiction.

Case 2: $s=6$. In this case, $n=6(k+1)$ and G contains $k+1$ disjoint 6 -cycles. Label the 6 -cycles $Q_{1}, Q_{2}, \ldots, Q_{k+1}$.

Suppose that for each pair of 6 -cycles Q_{i} and Q_{j} in G, we have $e\left(Q_{i}, Q_{j}\right)=18$. Let $Q_{1}=x_{1} x_{2} \ldots x_{6}$. By Lemma 5.1.7, WLOG we may assume that $e\left(u, Q_{2}\right)=6$ for each $u \in\left\{x_{1}, x_{3}, x_{5}\right\}$. Since $e\left(x_{2} x_{4} x_{6}, Q_{1}+Q_{2}\right) \leq 15+0=15$, we know that $e\left(x_{2} x_{4} x_{6}, G-Q_{1}-\right.$ $\left.Q_{2}\right) \geq 9 k+9-15=9(k-1)+3$. Hence $e\left(x_{2} x_{4} x_{6}, Q_{i}\right) \geq 10$ for some $Q_{i} \in G-Q_{1}-Q_{2}$. WLOG let $e\left(x_{2} x_{4} x_{6}, Q_{3}\right) \geq 10$. By Lemma 5.1.7, this implies that $e\left(x_{2} x_{4} x_{6}, Q_{3}\right)=18$. Let $Q_{2}=y_{1} y_{2} \ldots y_{6} y_{1}$ and $Q_{3}=z_{1} z_{2} \ldots z_{6} z_{1}$. Again by Lemma 5.1.7, we may assume WLOG that $e\left(u, Q_{3}\right)=6$ for each $u \in\left\{y_{1}, y_{3}, y_{5}\right\}$. But then $z_{1} y_{1} y_{2} x_{1} x_{2} z_{2} z_{1}$ is a 6 -cycle and $z_{3} z_{4} z_{5} z_{6} y_{3} y_{4} y_{5} y_{6} x_{3} x_{4} x_{5} x_{6} z_{3}$ is a 12 -cycle, so G contains $(k-1) C_{6} \cup C_{12}$, a contradiction.

Therefore $e\left(Q_{i}, Q_{j}\right) \neq 18$ for some pair of 6-cycles Q_{i} and Q_{j} in G. By Lemma 5.1.7, this implies that $e\left(Q_{i}, Q_{j}\right) \leq 17$. WLOG let $e\left(Q_{1}, Q_{2}\right) \leq 17$. Since $e\left(Q_{1}, Q_{i}\right) \leq 18$ for each $i \neq 1$, we have $e\left(Q_{1}, Q_{1}\right) \geq 18(k+1)-18(k-1)-17=19$. Thus $\tau\left(Q_{1}\right) \geq 4$, and similarly $\tau\left(Q_{2}\right) \geq 4$.

We now claim that for each 6-cycle Q_{i} such that $e\left(Q_{1}, Q_{i}\right)=18, e\left(u, Q_{i}\right)=3$ for each $u \in Q_{1}$. Suppose not. By Lemma 5.1.7, we may assume that $e\left(u, Q_{i}\right)=6$ for each $u \in$ $\left\{x_{1}, x_{3}, x_{5}\right\}$. Then for each pair of vertices $x_{j}, x_{k} \in\left\{x_{1}, x_{3}, x_{5}\right\}$, there is no hamiltonian path in Q_{1} from x_{j} to x_{k} by Lemma 5.1.5. Then $x_{2} x_{4} \notin E, x_{2} x_{6} \notin E$, and $x_{4} x_{6} \notin E$. Also, since $e\left(x_{2} x_{4} x_{6}, Q_{i}\right)=0$, for each pair of vertices $x_{j}, x_{k} \in\left\{x_{2}, x_{4}, x_{6}\right\}$ we have $e\left(x_{j} x_{k}, G-Q_{1}-Q_{i}\right) \geq$ $6(k+1)-10=6(k-1)+2$, so $e\left(x_{j} x_{k}, Q_{m}\right) \geq 7$ for some $Q_{m} \in G-Q_{1}-Q_{i}$. By Lemma 5.1.5, there is no hamiltonian path in Q_{1} from x_{j} to x_{k}. Hence $x_{1} x_{3} \notin E, x_{1} x_{5} \notin E$, and $x_{3} x_{5} \notin E$. But then $\tau\left(Q_{1}\right) \leq 3$, a contradiction. Thus the claim is true, and holds for Q_{2} as
well since $\tau\left(Q_{2}\right) \geq 4$.
Suppose that for each $i \in\{3,4, \ldots, k+1\}, e\left(Q_{1}, Q_{i}\right)=e\left(Q_{2}, Q_{i}\right)=18$. By the claim in the previous paragraph, we have $e\left(u, Q_{i}\right)=3$ for each $u \in Q_{1}+Q_{2}$ and each $i \in\{3,4, \ldots, k+1\}$. Then for each $u \in Q_{1}+Q_{2}, e\left(u, Q_{1}+Q_{2}\right) \geq 3 k+3-3(k-1)=6$. But then $Q_{1}+Q_{2}$ is hamiltonian, a contradiction. Therefore, WLOG $e\left(Q_{2}, Q_{i}\right) \leq 17$ for some $i \in\{3,4, \ldots, k+1\}$. Then $e\left(Q_{2}, Q_{1}+Q_{2}\right) \geq 18(k+1)-18(k-2)-17=37$. Similarly, $e\left(Q_{1}, Q_{1}+Q_{2}\right) \geq 36$. WLOG let

$$
\begin{equation*}
e\left(y_{1}, Q_{1}\right) \geq e\left(y_{j}, Q_{1}\right) \text { for each } y_{j} \in Q_{2} \tag{5.5}
\end{equation*}
$$

We break the remainder of the proof into cases. Note that since $\tau\left(Q_{2}\right) \leq 9$, we have $e\left(Q_{1}, Q_{2}\right) \geq 37-30=7$.

Case 2.1: $e\left(y_{1}, Q_{1}\right) \geq 5$. By Lemma 5.1.5, $e\left(y_{2} y_{6}, Q_{1}\right)=0$. Then there is no hamiltonian path in Q_{2} from y_{2} to y_{6}, for otherwise $e\left(y_{2} y_{6}, G\right) \leq 6(k-1)+10<6(k+1)$ by Lemma 5.1.5, a contradiction. This implies that $e\left(y_{1}, y_{3} y_{5}\right)=0$. Also, since $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq 7-6=1$, by Lemma 5.1 .5 we see that for some $i \in\{3,4,5\}$ there is no hamiltonian path in Q_{2} from y_{1} to y_{i}. Combining this with the fact that $e\left(y_{1}, y_{3} y_{5}\right)=0$ we get $\tau\left(Q_{2}\right) \leq 5$, so $e\left(Q_{2}, Q_{1}\right) \geq 37-22=15$. Hence $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq 9$, so by Lemma 5.1.5 we have that $e\left(y_{3}, Q_{1}\right) \geq 1$ and $e\left(y_{5}, Q_{1}\right) \geq 1$, and therefore also that there is neither a hamiltonian path in Q_{2} from y_{1} to y_{3}, nor a hamiltonian path from y_{1} to y_{5}. Thus $e\left(y_{2}, y_{4} y_{6}\right)=0$ and $y_{4} y_{6} \notin E$, so $\tau\left(Q_{2}\right)=4$ with $y_{3} y_{5} \in E$. Since $y_{3} y_{5} \in E$, there is a hamiltonian path in Q_{2} from y_{2} to y_{4}, so $e\left(y_{2} y_{4}, G-Q_{1}-Q_{2}\right) \leq 6(k-1)$. Then $e\left(y_{2} y_{4}, Q_{1}+Q_{2}\right) \geq 12$. Since $\tau\left(Q_{2}\right)=4$, $e\left(Q_{1}, Q_{2}\right) \geq 37-20=17$ and therefore $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq 11$. Thus $e\left(y_{4}, Q_{1}\right) \leq 1$ by Lemma 5.1.5. Since $e\left(y_{2}, Q_{1}\right)=0$, this implies that $e\left(y_{2} y_{4}, Q_{2}\right) \geq 12-1=11$. This is clearly impossible, which completes the case.

Case 2.2: $e\left(y_{1}, Q_{1}\right)=4$. Suppose that $e\left(y_{2} y_{6}, Q_{1}\right)=0$. Then $e\left(y_{2} y_{6}, G-Q_{1}-Q_{2}\right) \geq$ $6 k+6-10=6(k-1)+2$, so by Lemma 5.1.5 there is no hamiltonian path in Q_{2} from y_{2} to y_{6}. Thus $e\left(y_{1}, y_{3} y_{5}\right)=0$, so $\tau\left(Q_{2}\right) \leq 7$ and $e\left(Q_{1}, Q_{2}\right) \geq 11$. Then $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq 7$, so $e\left(y_{3}, Q_{1}\right) \geq 1$ and $e\left(y_{5}, Q_{1}\right) \geq 1$ by Lemma 5.1.5. If there is no hamiltonian path y_{1}
to y_{3} and no hamiltonian path from y_{1} to y_{5}, then $e\left(y_{2}, y_{4} y_{6}\right)=0$ and $y_{4} y_{6} \notin E$. Then $\tau\left(Q_{2}\right)=4$, so $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq 37-20-4=13$, contradicting Lemma 5.1.5. Otherwise, by Lemma 5.1 .5 we see that $N\left(y_{1}, Q_{1}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$, and that for some $i \in\{3,5\}$, $e\left(y_{i}, Q_{1}\right)=1$ with $y_{i} x_{5} \in E$. WLOG let $e\left(y_{3}, Q_{1}\right)=1$ with $y_{3} x_{5} \in E$. Then $e\left(y_{4} y_{5}, Q_{1}\right)=6$. It is easy to see from Lemma 5.1.5 that $e\left(y_{4}, Q_{1}\right) \leq 3$, so $e\left(y_{5}, Q_{1}\right) \geq 3$ and thus there is no hamiltonian path from y_{1} to y_{5}. Then $e\left(y_{6}, y_{2} y_{4}\right)=0$, so $\tau\left(Q_{2}\right) \leq 5$ and therefore $e\left(y_{4} y_{5}, Q_{1}\right) \geq 37-22-4-1=10$, again contradicting Lemma 5.1.5.

Therefore $e\left(y_{2} y_{6}, Q_{1}\right)>0$. WLOG let $e\left(y_{2}, Q_{1}\right)>0$. By Lemma 5.1 .5 we see that $e\left(y_{1}, x_{1} x_{2} x_{3} x_{5}\right)=4$, and $e\left(y_{2}, Q_{1}\right)=1$ with $y_{2} x_{5} \in E$. Then for each $i \in\{1,2,3\}$, there is no hamiltonian path in Q_{1} from x_{5} to x_{i}. This implies that $\tau\left(x_{6}, Q_{1}\right)=\tau\left(x_{4}, Q_{1}\right)=$ 0 , so $\tau\left(Q_{1}\right)=4$. Hence $e\left(Q_{1}, Q_{2}\right) \geq 36-20=16$. Since $e\left(y_{1} y_{2} y_{6}, Q_{1}\right) \leq 6$, we have $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq 10$. This implies that $e\left(y_{4}, Q_{1}\right)=0$ by Lemma 5.1.5. Then $e\left(y_{3} y_{5}, Q_{1}\right) \geq 10$, and since $y_{2} x_{5} \in E$ we see that $e\left(y_{5}, Q_{1}\right)=6$ and $e\left(y_{3}, x_{1} x_{2} x_{3} x_{5}\right)=4$. But then $e\left(y_{6}, Q_{1}\right)=0$, so $e\left(Q_{1}, Q_{2}\right) \leq 6+4+4+1=15<16$, a contradiction.

Case 2.3: $e\left(y_{1}, Q_{1}\right)=3$. Note that since $e\left(Q_{1}, Q_{2}\right) \geq 7$, we have $e\left(Q_{1}, Q_{2}\right) \geq 12$ by Lemma 5.1.9, for otherwise $\tau\left(Q_{1}\right) \geq 7$ and $\tau\left(Q_{2}\right) \geq 7$.

Suppose that $e\left(y_{2} y_{6}, Q_{1}\right) \leq 2$. If there is a hamiltonian path in Q_{2} from y_{2} to y_{6}, then $e\left(y_{2} y_{6}, Q_{1}+Q_{2}\right) \geq 12$, so $\tau\left(y_{2}, Q_{2}\right)=\tau\left(y_{6}, Q_{2}\right)=3$. Then for each $i \in\{2,3,4,5,6\}$, there is a hamiltonian path in Q_{2} from y_{1} to y_{i}. Since $e\left(Q_{1}, Q_{2}\right) \geq 12$, we have $e\left(y_{3} y_{4} y_{5}, Q_{1}\right) \geq$ $12-5=7$. Then WLOG $e\left(y_{1}, x_{1} x_{3} x_{5}\right)=3$ and $e\left(Q_{2}-y_{1}, x_{2} x_{4} x_{6}\right)=0$. Therefore, because $e\left(x_{1} x_{3} x_{5}, Q_{2}\right)=0$ we see that for each $x_{i}, x_{j} \in\left\{x_{1}, x_{3}, x_{5}\right\}, e\left(x_{i} x_{j}, Q_{1}+Q_{2}\right) \leq 10$. Then by Lemma 5.1.5 there is no hamiltonian path in Q_{1} from x_{i} to x_{j}, so $x_{2} x_{6} \notin E, x_{2} x_{4} \notin E$, and $x_{4} x_{6} \notin E$. Also, because $e\left(y_{1}, x_{1} x_{3} x_{5}\right)=3$ and $e\left(y_{3} y_{4} y_{5}, x_{1} x_{3} x_{5}\right) \geq 7$, we similarly see that $x_{1} x_{3} \notin E, x_{1} x_{5} \notin E$, and $x_{3} x_{5} \notin E$. But then $\tau\left(Q_{1}\right) \leq 3$, a contradiction. Thus there is no hamiltonian path in Q_{2} from y_{2} to y_{6}, so $e\left(y_{1}, y_{3} y_{5}\right)=0$. Since $e\left(y_{i}, Q_{1}\right) \leq 3$ for each $y_{i} \in Q_{2}$, and $e\left(y_{2} y_{6}, Q_{1}\right) \leq 2$, we have $e\left(Q_{2}, Q_{1}\right) \leq 14$. Then $\tau\left(Q_{2}\right) \geq 6$, so for each $y_{i} \in Q_{2}$ there is a $y_{1}-y_{i}$ hamiltonian path. As in the last paragraph we see that $\tau\left(Q_{1}\right) \leq 3$, a contradiction.

Therefore $e\left(y_{2} y_{6}, Q_{1}\right) \geq 3$, which implies that WLOG $e\left(y_{1}, x_{1} x_{3} x_{5}\right)=3$ and $e\left(y_{2} y_{6}, x_{2} x_{4} x_{6}\right)=$ 0 . Since $e\left(y_{2} y_{6}, x_{1} x_{3} x_{5}\right) \geq 3$, for each $x_{i}, x_{j} \in\left\{x_{1}, x_{3}, x_{5}\right\}$ there is no hamiltonian path in Q_{1} from x_{i} to x_{j}. Then $x_{2} x_{4} \notin E, x_{2} x_{6} \notin E$, and $x_{4} x_{6} \notin E$. Hence either $x_{1} x_{3} \in E$, $x_{1} x_{5} \in E$, or $x_{3} x_{5} \in E$, so WLOG there is a hamiltonian path in Q_{1} from x_{2} to x_{4}. Then $e\left(x_{2} x_{4}, Q_{1}+Q_{2}\right) \geq 12$, and because $\tau\left(x_{i}, Q_{1}\right) \leq 3$ for each $i \in\{2,4,6\}$, this implies that $e\left(x_{2} x_{4}, Q_{2}\right) \geq 6$. But then $e\left(x_{2} x_{4}, y_{3} y_{4} y_{5}\right) \geq 6$, so clearly $Q_{1}+Q_{2}$ is hamiltonian, a contradiction.

Case 2.4: $e\left(y_{1}, Q_{1}\right)=2$. As noted in the previous case $e\left(Q_{1}, Q_{2}\right) \geq 12$, so $e\left(y_{i}, Q_{1}\right)=2$ for each $y_{i} \in Q_{2}$. Further $e\left(Q_{2}, Q_{2}\right) \geq 37-12=25$, so $\tau\left(Q_{2}\right) \geq 7$. If $e\left(y_{1}, x_{1} x_{2}\right)=2$ then by Lemma 5.1.9 $e\left(Q_{2}-y_{1}, x_{6} x_{1} x_{2} x_{3}\right)=0$, so $e\left(Q_{2}-y_{1}, x_{4} x_{5}\right)=10$. Then $Q_{1}+Q_{2}$ is hamiltonian, a contradiction. If $e\left(y_{1}, x_{1} x_{4}\right)=2$, then similarly we have $e\left(Q_{2}-y_{1}, x_{1} x_{4}\right)=10$. But then $e\left(x_{2} x_{3}, Q_{1}+Q_{2}\right) \leq 10$, so $e\left(x_{2} x_{3}, Q_{i}\right) \geq 7$ for some $Q_{i} \in G-Q_{1}$, contradicting Lemma 5.1.5. Then WLOG $e\left(y_{1}, x_{1} x_{3}\right)=2$, and so $e\left(Q_{2}-y_{1}, x_{1} x_{3} x_{5}\right)=10$ by Lemma 5.1.9. Clearly, there is no hamiltonian path in Q_{1} from x_{1} to x_{3}, so $e\left(x_{2}, x_{4} x_{6}\right)=0$. Since $\tau\left(Q_{1}\right) \geq 6$, either $x_{1} x_{3} \in E, x_{1} x_{5} \in E$, or $x_{3} x_{5} \in E$. Therefore, WLOG there is a hamiltonian path in Q_{1} from x_{2} to x_{4}. This clearly contradicts Lemma 5.1.5, since $e\left(x_{2} x_{4}, Q_{1}\right)=0$.

Case 3: $s=7$. By (5.2), $e(u v, D) \geq 8$ for each $u, v \in D$. Hence for each $x \in D, D-x$ is hamiltonian. Let $L=a_{1} a_{2} \ldots a_{7} a_{1}$ be a hamiltonian cycle in D. WLOG let

$$
\begin{equation*}
\tau\left(a_{1}, L\right) \leq \tau\left(a_{i}, L\right) \text { for each } a_{i} \in L \tag{5.6}
\end{equation*}
$$

Suppose that $\tau(L) \geq 11$. Let L^{\prime} be a hamiltonian cycle in $D-a_{1}$. Then $\tau\left(L^{\prime}\right) \geq 7$. Since $e\left(a_{1}, L\right) \leq 6$, we have $e\left(a_{1}, H\right) \geq 3 k+4-6 \geq 1$, so $e\left(a_{1}, Q_{i}\right) \geq 1$ for some $Q_{i} \in H$. WLOG let $e\left(a_{1}, Q_{1}\right) \geq 1$. Then $Q_{1}+a_{1}$ has a hamiltonian path, and hence is hamiltonian by (5.2). This implies that $\tau\left(Q_{1}\right) \geq 7$ by (5.3). Hence we see from Lemmas 5.1.9 and 5.1.10 that there are no independent edges between Q_{1} and D. Because $Q_{1}+a_{1}$ is hamiltonian, $e\left(a_{1}, Q_{1}\right) \geq 2$, so $e\left(a_{i}, Q_{1}\right)=0$ for each $i \neq 1$. Then $e\left(D, Q_{1}\right) \leq 6$, and by Lemma 5.1.8e $\left(D, Q_{i}\right) \leq 21$ for
each $i \neq 1$. Thus $e(D, D) \geq 21 k+28-21(k-1)-6=43>42$, a contradiction. Therefore $\tau(L) \leq 10$.

Suppose that there is $Q_{i} \in H$ such that $e\left(D, Q_{i}\right) \geq 19$, and WLOG let $e\left(D, Q_{1}\right) \geq 19$. Let $Q_{1}=x_{1} x_{2} \ldots x_{6} x_{1}$. By Lemma 5.1.8, WLOG we have $e(u, D)=0$ for each $u \in\left\{x_{2}, x_{4}, x_{6}\right\}$. Then clearly, for each pair of vertices $x_{i}, x_{j} \in\left\{x_{1}, x_{3}, x_{5}\right\}$ there is no hamiltonian path in Q_{1} from x_{i} to x_{j}. Hence $x_{2} x_{4} \notin E, x_{2} x_{6} \notin E$, and $x_{4} x_{6} \notin E$. Then $e\left(x_{2} x_{4}, Q_{i}\right) \geq 7$ for some $Q_{i} \in H-Q_{1}$. Thus, if there is a hamiltonian path in Q_{1} from x_{2} to x_{4}, then $Q_{1}+Q_{i}$ has a hamiltonian cycle C such that at least two of x_{1}, x_{3}, x_{5} are consecutive on C. Since $e\left(D, x_{1} x_{3} x_{5}\right) \geq 19$, there is $u \in D$ such that $e\left(u, x_{1} x_{3} x_{5}\right)=3$. Then $Q_{1}+Q_{i}+u$ is hamiltonian, a contradiction because $D-u$ is hamiltonian.

Hence there is no hamiltonian path in Q_{1} from x_{2} to x_{4}, and similarly no such $x_{2}-x_{6}$ path nor $x_{4}-x_{6}$ path. Then $x_{1} x_{3} \notin E, x_{1} x_{5} \notin E$, and $x_{3} x_{5} \notin E$, so $\tau\left(Q_{1}\right) \leq 3$. Since $\tau(L) \leq 10$ we know that $\tau\left(a_{1}, L\right) \leq 2$ by (5.6). Let L^{\prime} be a hamiltonian cycle in $D-a_{1}$. Then $\tau\left(L^{\prime}\right) \geq \tau(L)-3$ since $\tau\left(a_{1}, L\right) \leq 2$. Because $e\left(D, x_{1} x_{3} x_{5}\right) \geq 19, e\left(a_{1}, Q_{1}\right) \geq 1$, so $Q_{1}+a_{1}$ is hamiltonian is hamiltonian by (5.1). Thus by (5.3) we see that $\tau\left(L^{\prime}\right) \leq 3$, so $\tau(L) \leq 6$ and hence $e(D, D) \leq 26$. Then by Lemma 5.1.8 we have $e(D, G) \leq 26+21 k<7(4+3 k)$, a contradiction.

So $e\left(D, Q_{i}\right) \leq 18$ for each $Q_{i} \in H$, and since $\tau(L) \leq 10$ we have $e(D, G) \leq 18 k+34$. Therefore, because $e(D, G) \geq 21 k+28$ we have $k=2, e\left(D, Q_{1}\right)=e\left(D, Q_{2}\right)=18$, and $e(D, D)=34$.

Suppose that $Q_{1}+Q_{2}$ is hamiltonian, and WLOG let $Q=x_{1} x_{2} \ldots x_{6} y_{6} y_{5} \ldots y_{1} x_{1}$ be a hamiltonian cycle in $Q_{1}+Q_{2}$. For each $u \in D$, we know that $Q_{1}+Q_{2}+u$ is not hamiltonian because $D-u$ is hamiltonian. Then for each $u \in D, e\left(u, Q_{1}\right) \leq 3$ and $e\left(u, Q_{2}\right) \leq 3$. Since $\tau(L) \leq 10$, we know that $\tau\left(a_{1}, L\right) \leq 2$ by (5.6), so $\left(a_{1}, Q_{1}\right)=e\left(a_{1}, Q_{2}\right)=3$ and $\tau\left(a_{1}, L\right)=2$. WLOG let $e\left(a_{1}, x_{1} x_{3} x_{5} y_{2} y_{4} y_{6}\right)=6$. Then for each $x \in\left\{x_{3}, x_{5}, y_{2} . y_{4}, y_{6}\right\}$, there is no hamiltonian path in $Q_{1}+Q_{2}$ from x_{1} to x. Hence $e\left(y_{1}, x_{2} x_{4} x_{6} y_{3} y_{5}\right)=0$, so $e\left(y_{1}, D\right) \geq 10-6=4$. Since $e\left(a_{1}, y_{2} y_{4} y_{6}\right)=3$ and $Q_{2}+D$ is not hamiltonian, we know that
$e\left(a_{2} a_{7}, y_{1} y_{3} y_{5}\right)=0$. Because $y_{1} a_{1} \notin E$ and $\left(y_{1}, D\right) \geq 4$, this implies that $e\left(y_{1}, a_{3} a_{4} a_{5} a_{6}\right)=$ 4. Therefore $e\left(y_{2} y_{6}, a_{2} a_{7}\right)=0$, so $e\left(a_{2} a_{7}, Q_{2}\right)=e\left(a_{2} a_{7}, y_{4}\right) \leq 2$. By symmetry in the hamiltonian cycle Q, we see that $e\left(a_{2} a_{7}, Q_{1}\right)=e\left(a_{2} a_{7}, x_{5}\right) \leq 2$. But then $e\left(a_{2} a_{7}, D\right) \geq$ $20-4=16$, a contradiction.

Therefore $Q_{1}+Q_{2}$ is not hamiltonian, so by Lemma 5.1.7e($\left.Q_{1}, Q_{2}\right) \leq 18$. Then $e\left(Q_{1}, Q_{1}\right) \geq 60-2(18)=24$, and similarly $e\left(Q_{2}, Q_{2}\right) \geq 24$. Then $\tau\left(Q_{1}\right) \geq 6$ and $\tau\left(Q_{2}\right) \geq 6$. Relabel L as $L=v_{1} v_{2} \ldots v_{7} v_{1}$, and suppose $e\left(v_{i}, Q_{1}\right)=6$ for some $v_{i} \in L$. WLOG let $e\left(v_{1}, Q_{1}\right)=6$.

Since $L+Q_{1}$ is not hamiltonian, we have $e\left(v_{2} v_{7}, Q_{1}\right)=0$. Hence $e\left(v_{3} v_{4} v_{5} v_{6}, Q_{1}\right) \geq 12$, so $e\left(v_{3} v_{4}, Q_{1}\right)=e\left(v_{5} v_{6}, Q_{1}\right)=6$ by Lemma 5.1.5. Suppose that there is no hamiltonian path in L from v_{1} to v_{3}. Then $e\left(v_{2}, v_{4} v_{7}\right)=0$ and $e\left(v_{2}, v_{5} v_{6}\right) \leq 1$, so since $\tau(L)=10$ we have $\tau\left(v_{7}, L\right) \geq 2$. Hence there is a hamiltonian path in L from v_{1} to v_{6}, so $e\left(v_{6}, Q_{1}\right)=0$. Then $e\left(v_{5}, Q_{1}\right)=6$, so there is no hamiltonian path in L from v_{1} to v_{5}. Hence $v_{4} v_{7} \notin E$ and $v_{2} v_{6} \notin E$, so since $e\left(v_{2}, v_{4} v_{7}\right)=0$ and $\tau(L)=10$ we know that $v_{2} v_{5} \in E$ and $v_{4} v_{6} \in E$. But then $v_{1} v_{7} v_{6} v_{4} v_{5} v_{2} v_{3}$ is a hamiltonian path from v_{1} to v_{3}, a contradiction.

Thus there is a hamiltonian path in L from v_{1} to v_{3}, so $e\left(v_{3}, Q_{1}\right)=0$. Then $e\left(v_{4}, Q_{1}\right)=6$, so there is no hamiltonian path from v_{1} to v_{4}. Hence $v_{2} v_{5} \notin E, v_{3} v_{7} \notin E$, and either $v_{2} v_{7} \notin E$ or $v_{3} v_{5} \notin E$. Then $v_{2} v_{6} \in E$ or $v_{4} v_{7} \in E$, so there is a hamiltonian path from v_{1} to v_{5}. Thus $e\left(v_{5}, Q_{1}\right)=0$ and $e\left(v_{6}, Q_{1}\right)=6$. Then there is no hamiltonian path from v_{1} to v_{6}, so $e\left(v_{7}, v_{2} v_{5}\right)=0$. Since $v_{2} v_{5} \notin E$ and $v_{3} v_{7} \notin E$, and because $\tau(L)=10$, this implies that $v_{3} v_{5} \in E$ and $v_{2} v_{6} \in E$. But then $v_{4} v_{5} v_{3} v_{2} v_{6} v_{7} v_{1}$ is a hamiltonian path from v_{1} to v_{4}, a contradiction.

Then there is no $v_{i} \in L$ with $e\left(v_{i}, Q_{1}\right)=6$. Since $e\left(L, Q_{1}\right)=18$, there is $v_{i}, v_{i+1} \in$ L such that $e\left(v_{i} v_{i+1}, Q_{1}\right) \geq 6$. WLOG let $e\left(v_{1} v_{2}, Q_{1}\right)=6$. By Lemma 5.1.5, we have $e\left(v_{1}, Q_{1}\right)=e\left(v_{2}, Q_{1}\right)=3$, and WLOG $e\left(v_{1} v_{2}, x_{1} x_{3} x_{5}\right)=6$. Since there is no hamiltonian path from x_{1} to x_{3} and no hamiltonian path from x_{1} to x_{5}, we know that $e\left(x_{2}, x_{4} x_{6}\right)=0$ and $x_{4} x_{6} \notin E$. Then $e\left(x_{1}, x_{3} x_{5}\right)=2$ and $x_{3} x_{5} \in E$ since $\tau\left(Q_{1}\right) \geq 6$. Then there is a hamiltonian
path in Q_{1} from x_{2} to x_{4}, so $e\left(x_{2} x_{4}, Q_{2}\right) \leq 6$ by Lemma 5.1.5. Since $e\left(x_{2}, x_{4} x_{6}\right)=0$ and $x_{4} x_{6} \notin E$, we also know that $e\left(x_{2} x_{4}, Q_{1}\right) \leq 6$. Hence $e\left(x_{2} x_{4}, D\right) \geq 20-12=8$, and because $e\left(v_{1} v_{2}, x_{2} x_{4} x_{6}\right)=0$ we have $e\left(x_{2} x_{4}, v_{3} v_{4} v_{5} v_{6} v_{7}\right) \geq 8$. Thus $e\left(x_{2} x_{4}, v_{3} v_{7}\right) \geq 1$, a contradiction because $e\left(v_{1} v_{2}, x_{1} x_{3} x_{5}\right)=6$ and $Q_{1}+Q_{2}$ is not hamiltonian.

References

[1] B. Bollobas, Extremal Graph Theory, Academic Press, London (1978).
[2] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, CRC Press, London (2011).
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[4] M. H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.
[5] H. Wang, Proof of the Erdős-Faudree Conjecture on Quadrilaterals, Graphs and Combinatorics 26 (2010), 833-877.
[6] H. Wang, An Extension of the Corradi-Hajnal Theorem, Australas. J. Comb. 54 (2012), 221-242.
[7] H. Wang, Disjoint 5-cycles in a graph, Discuss. Math. Graph Theory 32 (2012), 221-242.
[8] H. Wang, Disjoint cycles of order at least 5, Australas. J. Comb. 71(1) (2018), 54-67.
[9] H. Wang, Covering a Graph with Cycles of Length at least 4, Elec. J. Comb. 25(1) (2018), \#P1.67.
[10] H. Wang, Disjoint Hexagons in a Graph, manuscript.

Appendix A: Lemmas 1.4.6-1.4.14

Appendix A.1: Lemma 1.4.6

1. $N(u, C)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
a) $u \rightarrow\left(C, v_{2}\right)$ and $u \rightarrow\left(C, v_{3}\right)$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{6}, v_{2} v_{3}\right)=0$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{5}, v_{2} v_{3}\right)=0$.
d) If $u \nrightarrow\left(C, v_{5}\right)$ then $\tau\left(v_{6}, C\right)=0$.
e) If $u \nrightarrow\left(C, v_{6}\right)$ then $\tau\left(v_{5}, C\right)=0$.
2. $N(u, C)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{3}\right)$ and $u \rightarrow\left(C, v_{4}\right)$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{1}, v_{3} v_{4}\right)=0$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{6}, v_{3} v_{4}\right)=0$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $\tau\left(v_{1}, C\right)=0$.
e) If $u \nrightarrow\left(C, v_{1}\right)$ then $\tau\left(v_{6}, C\right)=0$.
3. $N(u, C)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{4}\right)$ and $u \rightarrow\left(C, v_{5}\right)$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{2}, v_{4} v_{5}\right)=0$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{1}, v_{4} v_{5}\right)=0$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $\tau\left(v_{2}, C\right)=0$.
e) If $u \nrightarrow\left(C, v_{2}\right)$ then $\tau\left(v_{1}, C\right)=0$.
4. $N(u, C)=\left\{v_{4}, v_{5}, v_{6}, v_{1}\right\}$.
a) $u \rightarrow\left(C, v_{5}\right)$ and $u \rightarrow\left(C, v_{6}\right)$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{3}, v_{5} v_{6}\right)=0$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{2}, v_{5} v_{6}\right)=0$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $\tau\left(v_{3}, C\right)=0$.
e) If $u \nrightarrow\left(C, v_{3}\right)$ then $\tau\left(v_{2}, C\right)=0$.
5. $N(u, C)=\left\{v_{5}, v_{6}, v_{1}, v_{2}\right\}$.
a) $u \rightarrow\left(C, v_{6}\right)$ and $u \rightarrow\left(C, v_{1}\right)$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{4}, v_{6} v_{1}\right)=0$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{3}, v_{6} v_{1}\right)=0$.
d) If $u \nrightarrow\left(C, v_{3}\right)$ then $\tau\left(v_{4}, C\right)=0$.
e) If $u \nrightarrow\left(C, v_{4}\right)$ then $\tau\left(v_{3}, C\right)=0$.
6. $N(u, C)=\left\{v_{6}, v_{1}, v_{2}, v_{3}\right\}$.
a) $u \rightarrow\left(C, v_{1}\right)$ and $u \rightarrow\left(C, v_{2}\right)$.
b) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{5}, v_{1} v_{2}\right)=0$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{4}, v_{1} v_{2}\right)=0$.
d) If $u \nrightarrow\left(C, v_{4}\right)$ then $\tau\left(v_{5}, C\right)=0$.
e) If $u \nrightarrow\left(C, v_{5}\right)$ then $\tau\left(v_{4}, C\right)=0$.

Appendix A.2: Lemma 1.4.7

1. $N(u, C)=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{2}\right), u \rightarrow\left(C, v_{4}\right)$, and $u \rightarrow\left(C, v_{6}\right)$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{6}, v_{2} v_{4}\right)=0$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{4}, v_{2} v_{6}\right)=0$.
d) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$ and $e\left(v_{2}, v_{4} v_{6}\right) \leq 1$.
2. $N(u, C)=\left\{v_{2}, v_{3}, v_{4}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{3}\right), u \rightarrow\left(C, v_{5}\right)$, and $u \rightarrow\left(C, v_{1}\right)$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{1}, v_{3} v_{5}\right)=0$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{5}, v_{3} v_{1}\right)=0$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$ and $e\left(v_{3}, v_{5} v_{1}\right) \leq 1$.
3. $N(u, C)=\left\{v_{3}, v_{4}, v_{5}, v_{1}\right\}$.
a) $u \rightarrow\left(C, v_{4}\right), u \rightarrow\left(C, v_{6}\right)$, and $u \rightarrow\left(C, v_{2}\right)$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{2}, v_{4} v_{6}\right)=0$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{6}, v_{4} v_{2}\right)=0$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$ and $e\left(v_{4}, v_{6} v_{2}\right) \leq 1$.
4. $N(u, C)=\left\{v_{4}, v_{5}, v_{6}, v_{2}\right\}$.
a) $u \rightarrow\left(C, v_{5}\right), u \rightarrow\left(C, v_{1}\right)$, and $u \rightarrow\left(C, v_{3}\right)$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{3}, v_{5} v_{1}\right)=0$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{1}, v_{5} v_{3}\right)=0$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$ and $e\left(v_{5}, v_{1} v_{3}\right) \leq 1$.
5. $N(u, C)=\left\{v_{5}, v_{6}, v_{1}, v_{3}\right\}$.
a) $u \rightarrow\left(C, v_{6}\right), u \rightarrow\left(C, v_{2}\right)$, and $u \rightarrow\left(C, v_{4}\right)$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{4}, v_{6} v_{2}\right)=0$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{2}, v_{6} v_{4}\right)=0$.
d) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$ and $e\left(v_{6}, v_{2} v_{4}\right) \leq 1$.
6. $N(u, C)=\left\{v_{6}, v_{1}, v_{2}, v_{4}\right\}$.
a) $u \rightarrow\left(C, v_{1}\right), u \rightarrow\left(C, v_{3}\right)$, and $u \rightarrow\left(C, v_{5}\right)$.
b) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{5}, v_{1} v_{3}\right)=0$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{3}, v_{1} v_{5}\right)=0$.
d) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$ and $e\left(v_{1}, v_{3} v_{5}\right) \leq 1$.

Appendix A.3: Lemma 1.4.8

In this Lemma, the cases $j=1,2,3$, are the same as $j=4,5,6$, respectively.

1. $N(u, C)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{3}\right)$ and $u \rightarrow\left(C, v_{6}\right)$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ or $u \nrightarrow\left(C, v_{5}\right)$, then $\tau\left(v_{6}, C\right)=0$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ or $u \nrightarrow\left(C, v_{4}\right)$, then $\tau\left(v_{3}, C\right)=0$.
2. $N(u, C)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{4}\right)$ and $u \rightarrow\left(C, v_{1}\right)$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ or $u \nrightarrow\left(C, v_{6}\right)$, then $\tau\left(v_{1}, C\right)=0$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ or $u \nrightarrow\left(C, v_{5}\right)$, then $\tau\left(v_{4}, C\right)=0$.
3. $N(u, C)=\left\{v_{3}, v_{4}, v_{6}, v_{1}\right\}$.
a) $u \rightarrow\left(C, v_{5}\right)$ and $u \rightarrow\left(C, v_{2}\right)$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ or $u \nrightarrow\left(C, v_{1}\right)$, then $\tau\left(v_{2}, C\right)=0$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ or $u \nrightarrow\left(C, v_{6}\right)$, then $\tau\left(v_{5}, C\right)=0$.

Appendix A.4: Lemma 1.4.9

1. $N(u, C)=\left\{v_{1}, v_{2}, v_{3}\right\}$.
a) $u \rightarrow\left(C, v_{2}\right)$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{2} v_{6} \notin E$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$.
d) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{5}, v_{2} v_{3}\right)=0$.
e) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$ and $e\left(v_{2}, v_{4} v_{6}\right) \leq 1$.
f) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{5}, v_{1} v_{2}\right)=0$.
2. $N(u, C)=\left\{v_{2}, v_{3}, v_{4}\right\}$.
a) $u \rightarrow\left(C, v_{3}\right)$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{3} v_{1} \notin E$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$.
d) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{6}, v_{3} v_{4}\right)=0$.
e) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$ and $e\left(v_{3}, v_{5} v_{1}\right) \leq 1$.
f) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{6}, v_{2} v_{3}\right)=0$.
3. $N(u, C)=\left\{v_{3}, v_{4}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{4}\right)$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{4} v_{2} \notin E$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{1}, v_{4} v_{5}\right)=0$.
e) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$ and $e\left(v_{4}, v_{6} v_{2}\right) \leq 1$.
f) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{1}, v_{3} v_{4}\right)=0$.
4. $N(u, C)=\left\{v_{4}, v_{5}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{5}\right)$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{5} v_{3} \notin E$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{2}, v_{5} v_{6}\right)=0$.
e) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$ and $e\left(v_{5}, v_{1} v_{3}\right) \leq 1$.
f) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{2}, v_{4} v_{5}\right)=0$.
5. $N(u, C)=\left\{v_{5}, v_{6}, v_{1}\right\}$.
a) $u \rightarrow\left(C, v_{6}\right)$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{6} v_{4} \notin E$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{3}, v_{6} v_{1}\right)=0$.
e) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$ and $e\left(v_{6}, v_{2} v_{4}\right) \leq 1$.
f) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{3}, v_{5} v_{6}\right)=0$.
6. $N(u, C)=\left\{v_{6}, v_{1}, v_{2}\right\}$.
a) $u \rightarrow\left(C, v_{1}\right)$.
b) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{1} v_{5} \notin E$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$.
d) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{4}, v_{1} v_{2}\right)=0$.
e) If $u \rightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$ and $e\left(v_{1}, v_{3} v_{5}\right) \leq 1$.
f) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{4}, v_{6} v_{1}\right)=0$.

Appendix A.5: Lemma 1.4.10

1. $N(u, C)=\left\{v_{1}, v_{2}, v_{4}\right\}$.
a) $u \rightarrow\left(C, v_{3}\right)$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{3} v_{6} \notin E$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{3} v_{5} \notin E$ and $e\left(v_{3}, v_{1} v_{6}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$, and either $v_{3} v_{6} \notin E$ or $v_{1} v_{5} \notin E$.
e) If $u \nrightarrow\left(C, v_{5}\right)$ then $\tau\left(v_{6}, C\right)=0$.
f) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{5}, v_{1} v_{3}\right)=0$, and either $v_{1} v_{3} \notin E$ or $v_{2} v_{5} \notin E$.
2. $N(u, C)=\left\{v_{2}, v_{3}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{4}\right)$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{4} v_{1} \notin E$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{4} v_{6} \notin E$ and $e\left(v_{4}, v_{2} v_{1}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$, and either $v_{4} v_{1} \notin E$ or $v_{2} v_{6} \notin E$.
e) If $u \nrightarrow\left(C, v_{6}\right)$ then $\tau\left(v_{1}, C\right)=0$.
f) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{6}, v_{2} v_{4}\right)=0$, and either $v_{2} v_{4} \notin E$ or $v_{3} v_{6} \notin E$.
3. $N(u, C)=\left\{v_{3}, v_{4}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{5}\right)$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{5} v_{2} \notin E$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{5} v_{1} \notin E$ and $e\left(v_{5}, v_{3} v_{2}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$, and either $v_{5} v_{2} \notin E$ or $v_{3} v_{1} \notin E$.
e) If $u \nrightarrow\left(C, v_{1}\right)$ then $\tau\left(v_{2}, C\right)=0$.
f) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{1}, v_{3} v_{5}\right)=0$, and either $v_{3} v_{5} \notin E$ or $v_{4} v_{1} \notin E$.
4. $N(u, C)=\left\{v_{4}, v_{5}, v_{1}\right\}$.
a) $u \rightarrow\left(C, v_{6}\right)$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{6} v_{3} \notin E$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{6} v_{2} \notin E$ and $e\left(v_{6}, v_{4} v_{3}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$, and either $v_{6} v_{3} \notin E$ or $v_{4} v_{2} \notin E$.
e) If $u \nrightarrow\left(C, v_{2}\right)$ then $\tau\left(v_{3}, C\right)=0$.
f) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{2}, v_{4} v_{6}\right)=0$, and either $v_{4} v_{6} \notin E$ or $v_{5} v_{2} \notin E$.
5. $N(u, C)=\left\{v_{5}, v_{6}, v_{2}\right\}$.
a) $u \rightarrow\left(C, v_{1}\right)$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{1} v_{4} \notin E$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{1} v_{3} \notin E$ and $e\left(v_{1}, v_{5} v_{4}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$, and either $v_{1} v_{4} \notin E$ or $v_{5} v_{3} \notin E$.
e) If $u \nrightarrow\left(C, v_{3}\right)$ then $\tau\left(v_{4}, C\right)=0$.
f) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{3}, v_{5} v_{1}\right)=0$, and either $v_{5} v_{1} \notin E$ or $v_{6} v_{3} \notin E$.
6. $N(u, C)=\left\{v_{6}, v_{1}, v_{3}\right\}$.
a) $u \rightarrow\left(C, v_{2}\right)$.
b) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{2} v_{5} \notin E$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{2} v_{4} \notin E$ and $e\left(v_{2}, v_{6} v_{5}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$, and either $v_{2} v_{5} \notin E$ or $v_{6} v_{4} \notin E$.
e) If $u \nrightarrow\left(C, v_{4}\right)$ then $\tau\left(v_{5}, C\right)=0$.
f) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{4}, v_{6} v_{2}\right)=0$, and either $v_{6} v_{2} \notin E$ or $v_{1} v_{4} \notin E$.

Appendix A.6: Lemma 1.4.11

In this Lemma, the cases $j=3,5$, are the same as $j=1$, and the cases $j=4,6$, are the same as $j=2$.

1. $N(u, C)=\left\{v_{1}, v_{3}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{i}\right)$ for each $i \in\{2,4,6\}$.
b) If $u \nrightarrow\left(C, v_{i}\right)$ for some $i \in\{1,3,5\}$, then $e\left(v_{2}, v_{4}\right)+e\left(v_{2}, v_{6}\right)+e\left(v_{4}, v_{6}\right) \leq 1$.
2. $N(u, C)=\left\{v_{2}, v_{4}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{i}\right)$ for each $i \in\{1,3,5\}$.
b) If $u \nrightarrow\left(C, v_{i}\right)$ for some $i \in\{2,4,6\}$, then $e\left(v_{1}, v_{3}\right)+e\left(v_{1}, v_{5}\right)+e\left(v_{3}, v_{5}\right) \leq 1$.

Appendix A.7: Lemma 1.4.12

1. $N(u, C)=\left\{v_{1}, v_{2}\right\}$.
a) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$, and either $v_{2} v_{6} \notin E$ or $v_{1} v_{4} \notin E$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$, and either $v_{1} v_{5} \notin E$ or $v_{3} v_{6} \notin E$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$, and either $v_{2} v_{4} \notin E$ or $v_{3} v_{6} \notin E$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{1} v_{5} \notin E$, and either $v_{1} v_{3} \notin E$ or $v_{2} v_{5} \notin E$.
2. $N(u, C)=\left\{v_{2}, v_{3}\right\}$.
a) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$, and either $v_{3} v_{1} \notin E$ or $v_{2} v_{5} \notin E$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$, and either $v_{2} v_{6} \notin E$ or $v_{4} v_{1} \notin E$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$, and either $v_{3} v_{5} \notin E$ or $v_{4} v_{1} \notin E$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{2} v_{6} \notin E$, and either $v_{2} v_{4} \notin E$ or $v_{3} v_{6} \notin E$.
3. $N(u, C)=\left\{v_{3}, v_{4}\right\}$.
a) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{6} \notin E$, and either $v_{4} v_{2} \notin E$ or $v_{3} v_{6} \notin E$.
b) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$, and either $v_{3} v_{1} \notin E$ or $v_{5} v_{2} \notin E$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$, and either $v_{4} v_{6} \notin E$ or $v_{5} v_{2} \notin E$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{3} v_{1} \notin E$, and either $v_{3} v_{5} \notin E$ or $v_{4} v_{1} \notin E$.
4. $N(u, C)=\left\{v_{4}, v_{5}\right\}$.
a) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{5} v_{1} \notin E$, and either $v_{5} v_{3} \notin E$ or $v_{4} v_{1} \notin E$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$, and either $v_{4} v_{2} \notin E$ or $v_{6} v_{3} \notin E$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$, and either $v_{5} v_{1} \notin E$ or $v_{6} v_{3} \notin E$.
d) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{4} v_{2} \notin E$, and either $v_{4} v_{6} \notin E$ or $v_{5} v_{2} \notin E$.
5. $N(u, C)=\left\{v_{5}, v_{6}\right\}$.
a) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{6} v_{2} \notin E$, and either $v_{6} v_{4} \notin E$ or $v_{5} v_{2} \notin E$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$, and either $v_{5} v_{3} \notin E$ or $v_{1} v_{4} \notin E$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$, and either $v_{6} v_{2} \notin E$ or $v_{1} v_{4} \notin E$.
d) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{5} v_{3} \notin E$, and either $v_{5} v_{1} \notin E$ or $v_{6} v_{3} \notin E$.
6. $N(u, C)=\left\{v_{6}, v_{1}\right\}$.
a) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{1} v_{3} \notin E$, and either $v_{1} v_{5} \notin E$ or $v_{6} v_{3} \notin E$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{4} \notin E$, and either $v_{6} v_{4} \notin E$ or $v_{2} v_{5} \notin E$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{5} \notin E$, and either $v_{1} v_{3} \notin E$ or $v_{2} v_{5} \notin E$.
d) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{6} v_{4} \notin E$, and either $v_{6} v_{2} \notin E$ or $v_{1} v_{4} \notin E$.

Appendix A.8: Lemma 1.4.13

1. $N(u, C)=\left\{v_{1}, v_{3}\right\}$.
a) $u \rightarrow\left(C, v_{2}\right)$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{2} v_{5} \notin E$, and either $v_{3} v_{5} \notin E$ or $v_{2} v_{6} \notin E$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $e\left(v_{2}, v_{4}\right)+e\left(v_{2}, v_{6}\right)+e\left(v_{4}, v_{6}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{2} v_{5} \notin E$, and either $v_{1} v_{5} \notin E$ or $v_{2} v_{4} \notin E$.
2. $N(u, C)=\left\{v_{2}, v_{4}\right\}$.
a) $u \rightarrow\left(C, v_{3}\right)$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{3} v_{6} \notin E$, and either $v_{4} v_{6} \notin E$ or $v_{3} v_{1} \notin E$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $e\left(v_{3}, v_{5}\right)+e\left(v_{3}, v_{1}\right)+e\left(v_{5}, v_{1}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{3} v_{6} \notin E$, and either $v_{2} v_{6} \notin E$ or $v_{3} v_{5} \notin E$.
3. $N(u, C)=\left\{v_{3}, v_{5}\right\}$.
a) $u \rightarrow\left(C, v_{4}\right)$.
b) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{4} v_{1} \notin E$, and either $v_{5} v_{1} \notin E$ or $v_{4} v_{2} \notin E$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $e\left(v_{4}, v_{6}\right)+e\left(v_{4}, v_{2}\right)+e\left(v_{6}, v_{2}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{4} v_{1} \notin E$, and either $v_{3} v_{1} \notin E$ or $v_{4} v_{6} \notin E$.
4. $N(u, C)=\left\{v_{4}, v_{6}\right\}$.
a) $u \rightarrow\left(C, v_{5}\right)$.
b) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{5} v_{2} \notin E$, and either $v_{6} v_{2} \notin E$ or $v_{5} v_{3} \notin E$.
c) If $u \nrightarrow\left(C, v_{2}\right)$ then $e\left(v_{5}, v_{1}\right)+e\left(v_{5}, v_{3}\right)+e\left(v_{1}, v_{3}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{5} v_{2} \notin E$, and either $v_{4} v_{2} \notin E$ or $v_{5} v_{1} \notin E$.
5. $N(u, C)=\left\{v_{5}, v_{1}\right\}$.
a) $u \rightarrow\left(C, v_{6}\right)$.
b) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{6} v_{3} \notin E$, and either $v_{1} v_{3} \notin E$ or $v_{6} v_{4} \notin E$.
c) If $u \nrightarrow\left(C, v_{3}\right)$ then $e\left(v_{6}, v_{2}\right)+e\left(v_{6}, v_{4}\right)+e\left(v_{2}, v_{4}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{6} v_{3} \notin E$, and either $v_{5} v_{3} \notin E$ or $v_{6} v_{2} \notin E$.
6. $N(u, C)=\left\{v_{6}, v_{2}\right\}$.
a) $u \rightarrow\left(C, v_{1}\right)$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{1} v_{4} \notin E$, and either $v_{2} v_{4} \notin E$ or $v_{1} v_{5} \notin E$.
c) If $u \nrightarrow\left(C, v_{4}\right)$ then $e\left(v_{1}, v_{3}\right)+e\left(v_{1}, v_{5}\right)+e\left(v_{3}, v_{5}\right) \leq 1$.
d) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{1} v_{4} \notin E$, and either $v_{6} v_{4} \notin E$ or $v_{1} v_{3} \notin E$.

Appendix A.9: Lemma 1.4.14

In this lemma, the cases $j=1,2,3$, are the same as $j=4,5,6$, respectively.

1. $N(u, C)=\left\{v_{1}, v_{4}\right\}$.
a) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{3} v_{5} \notin E, e\left(v_{3}, v_{1} v_{6}\right) \leq 1$, and either $v_{3} v_{6} \notin E$ or $v_{1} v_{5} \notin E$.
b) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{2} v_{6} \notin E, e\left(v_{2}, v_{4} v_{5}\right) \leq 1$, and either $v_{2} v_{5} \notin E$ or $v_{4} v_{6} \notin E$.
c) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{2} v_{6} \notin E, e\left(v_{6}, v_{3} v_{4}\right) \leq 1$, and either $v_{2} v_{4} \notin E$ or $v_{3} v_{6} \notin E$.
d) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{3} v_{5} \notin E, e\left(v_{5}, v_{1} v_{2}\right) \leq 1$, and either $v_{1} v_{3} \notin E$ or $v_{2} v_{5} \notin E$.
2. $N(u, C)=\left\{v_{2}, v_{5}\right\}$.
a) If $u \nrightarrow\left(C, v_{3}\right)$ then $v_{4} v_{6} \notin E, e\left(v_{4}, v_{2} v_{1}\right) \leq 1$, and either $v_{4} v_{1} \notin E$ or $v_{2} v_{6} \notin E$.
b) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{3} v_{1} \notin E, e\left(v_{3}, v_{5} v_{6}\right) \leq 1$, and either $v_{3} v_{6} \notin E$ or $v_{5} v_{1} \notin E$.
c) If $u \nrightarrow\left(C, v_{6}\right)$ then $v_{3} v_{1} \notin E, e\left(v_{1}, v_{4} v_{5}\right) \leq 1$, and either $v_{3} v_{5} \notin E$ or $v_{4} v_{1} \notin E$.
d) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{4} v_{6} \notin E, e\left(v_{6}, v_{2} v_{3}\right) \leq 1$, and either $v_{2} v_{4} \notin E$ or $v_{3} v_{6} \notin E$.
3. $N(u, C)=\left\{v_{3}, v_{6}\right\}$.
a) If $u \nrightarrow\left(C, v_{4}\right)$ then $v_{5} v_{1} \notin E, e\left(v_{5}, v_{3} v_{2}\right) \leq 1$, and either $v_{5} v_{2} \notin E$ or $v_{3} v_{1} \notin E$.
b) If $u \nrightarrow\left(C, v_{5}\right)$ then $v_{4} v_{2} \notin E, e\left(v_{4}, v_{6} v_{1}\right) \leq 1$, and either $v_{4} v_{1} \notin E$ or $v_{6} v_{2} \notin E$.
c) If $u \nrightarrow\left(C, v_{1}\right)$ then $v_{4} v_{2} \notin E, e\left(v_{2}, v_{5} v_{6}\right) \leq 1$, and either $v_{4} v_{6} \notin E$ or $v_{5} v_{2} \notin E$.
d) If $u \nrightarrow\left(C, v_{2}\right)$ then $v_{5} v_{1} \notin E, e\left(v_{1}, v_{3} v_{4}\right) \leq 1$, and either $v_{3} v_{5} \notin E$ or $v_{4} v_{1} \notin E$.

Appendix B: List of Symbols

$u v \in E$: The vertices u and v are adjacent 1
$u v \notin E$: The vertices u and v are not adjacent 1
$N(v, G)$: The neighborhood of v in $G \ldots 1$
$\operatorname{deg}_{G} v$: The degree of v in $G \ldots 1$
$\delta(G)$: Minimum degree in $G \ldots 1$
$\Delta(G)$: Maximum degree in $G \ldots 1$
K_{n} : Complete graph of order $n \ldots 2$
P_{n} : Path of order $n \ldots 2$
C_{n} : Cycle of order $n \ldots 2$
$v_{1}-v_{n}$ path: A path of order n with v_{1} and v_{n} as endvertices... 2
$v_{1} v_{2} \ldots v_{n}$: A path of order n, or the subgraph induced by $\left\{v_{1}, \ldots, v_{n}\right\} \ldots 2$ and 4
$v_{1} v_{2} \ldots v_{n} v_{1}$: A cycle of order $n \ldots 2$
$d_{G}\left(v_{1}, v_{2}\right)$: The distance in G between v_{1} and $v_{2} \ldots 2$
$K_{r, s}$: The complete bipartite graph on $r+s$ vertices... 2
$G_{1} \cup G_{2}$: The union of G_{1} and $G_{2} \ldots 2$
\bar{G} : The complement of $G \ldots 3$
$G=C_{n}: G$ is an n-cycle... 3
$G=P_{n}: G$ is a path of order $n \ldots 3$
$G=K_{n}: G$ is a complete graph of order $n \ldots 3$
WLOG: Without loss of generality. . . 3
$N\left(G_{1}, G_{2}\right)$: The set of all vertices in G_{2} that are adjacent to some vertex in $G_{1} \ldots 3$
$N\left(v_{1} v_{2} \ldots v_{n}, G\right)$: The set of all vertices in G that are adjacent to some $v_{i}, 1 \leq i \leq n \ldots 3$
$u \in G$: Vertex u is in $V(G) \ldots 3$
$u \notin G$: Vertex u is not in $V(G) \ldots 3$
$l(C)$: Length of the cycle $C \ldots 3$
$e\left(G_{1}, G_{2}\right)$: The sum of degrees in G_{2} of vertices from $G_{1} \ldots 4$
$e(v, G)$: The degree of v in $G \ldots 4$
$e\left(v_{1} \ldots v_{n}, G\right)$: The sum of degrees in G of vertices in $\left\{v_{1}, \ldots, v_{n}\right\} \ldots 4$
$G_{1}+G_{2}$: The graph induced by the vertices in $V\left(G_{1}\right) \cup V\left(G_{2}\right) \ldots 4$
$G+v$: The graph induced by the vertices in $V(G) \cup\{v\} \ldots 4$
$G_{1}-G_{2}$: The graph induced by the vertices in $V\left(G_{1}\right)-V\left(G_{2}\right) \ldots 4$
$\tau(C)$: The number of chords in $C \ldots 6$
$\tau(v, C)$: The number of chords in C that are incident with $v \ldots 6$
$u \rightarrow(C, v)$: The graph $C+u-v$ contains a 6 -cycle. . 8
$u \rightarrow C$: For each $v \in C, C+u-v$ contains a 6 -cycle... 8
$u v \rightarrow(C, x y): C+u v-x y$ contains a 6 -cycle... 8
$u v \rightarrow C$: For each $x, y \in C, C+u v-x y$ contains a 6 -cycle... 8
$u \xrightarrow{n}(C, v): C+u-v$ contains a 6 -cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)+n \ldots 19$
$r\left(y_{1}, P\right)$: The largest integer j such that $y_{1} y_{j} \in E$, where $P=y_{1} y_{2} \ldots y_{n}$ is a path of order n. . . 54
$r\left(y_{n}, P\right)$: The largest integer j such that $y_{n} y_{s-j+1} \in E$, where $P=y_{1} y_{2} \ldots y_{n}$ is a path of order $n . . .54$
$r(P)$: The maximum of $r\left(y_{1}, P\right)$ and $r\left(y_{n}, P\right)$, where $P=y_{1} \ldots y_{n} \ldots 54$
$s(P)$: The sum of $r\left(y_{1}, P\right)$ and $r\left(y_{n}, P\right)$, where $P=y_{1} \ldots y_{n} \ldots 54$
$\tau^{\prime}(C)$: The minimum among all vertices $v \in C$ of $\tau(v, C) \ldots 54$

