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Abstract

Although a variety of statistical methods are available for analyzing longitudinal data,

modeling the dynamics within a complex system remains a difficult methodological challenge.

In this thesis, we develop an Autoregressive Structural Model (ASM) to examine these factors

on depressive symptoms while accounting for temporal dependence. The ASM builds on

an autoregressive model for repeated measurements and incorporates a structural equation

model that delineates the mechanism among the factors and outcome. We elucidate the

impact of social activity, physical activity and functional health status (factors) on depressive

symptoms (outcome) in the China Health and Retirement Longitudinal Study (CHARLS), a

multi-year study of aging involving 20,000 participants 45 years of age and older. The results

from applying the ASM to the CHARLS data indicate that social and physical activity

independently and consistently mitigated depressive symptoms over the course of five years,

by mediating through functional health status.
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CHAPTER 1

Introduction

The aging population in China is growing rapidly and it is estimated that the proportion

of the population aged 60 or older will increase from 10% in 2000 to about 30% in 2050

(Banister, Bloom, & Rosenberg, 2012). As the burden of ischaemic heart disease, high sys-

tolic blood pressure and mental health disorders grows along with the economic development

in China, the nature of health problem shifts from infectious to chronic illnesses (Zhou et al.,

2019). The China Health and Retirement Longitudinal Study (CHARLS) (Zhao, Hu, Smith,

Strauss, & Yang, 2012) is an ongoing longitudinal study of Chinese adults, who are 45 years

of age or older and reside in administrative villages in rural areas and neighborhoods in ur-

ban areas across China, to assess their demographic characteristics, and socioeconomic and

health change. Approximate 20,000 respondents from 150 counties in 20 provinces partici-

pated in the baseline and follow-up surveys. It provides a high-quality public micro-database

for scientific and policy research on aging-related issues.

Late-life depression may be linked to the deterioration of many medical conditions, and

impact the quality of life (Fiske, Wetherell, & Gatz, 2009). However, it is often neglected

in the elderly (Xu et al., 2016). Social activity and physical activity may have a direct

effect on the elderly’s depressive symptoms, but the underlying mechanism by which multiple

socio-behavioral factors simultaneously affect depressive symptoms over time can be complex

(Fried et al., 2004). We and other groups have also demonstrated that the functional health

status may act as a mediator in these pathways (Fried et al., 2004; Deng & Paul, 2018);

a mediator is an intermediate factor through which another factor influences an outcome

(depressive symptoms here) (MacKinnon, 2008). However, these existing studies do not

investigate the dynamics of these interrelationships.

A variety of methods under the framework of the Structural Equation Modeling (SEM)

have been developed to model the dynamics see (Little, 2013; McArdle & Nesselroade, 2014;

Ferrer & McArdle, 2003). The standard approaches include the latent growth models, which
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use the latent variables of the intercept and slope to describe the growth trajectory of the

outcome variable (Grimm, Ram, & Estabrook, 2016), and the autoregressive models, such

as the simplex model that measures the temporal change of repeated measurements (Marsh,

1993). The autoregressive latent trajectory model developed by (Bollen & Curran, 2004)

combines the desirable features of the two approaches above to describe individual growth

trajectories while accounting for the temporal dependence, but it is still unable to account for

factors. Similarly, although the dynamic structural equation models (Asparouhov, Hamaker,

& Muthén, 2018) combines time-series models with SEM, it is designed for intensive longi-

tudinal data with a large number of time points of a single variable, and cannot account for

factors, either.

Therefore, multivariate extensions of the autoregressive models are useful for studying

multidimensional structural relationships over time. A classical model is the cross-lagged

panel model (Mayer, 1986), which estimates the regression coefficients between two repeat-

edly measured variables and their autoregressive coefficients over time. Extending this model,

the Autoregressive Mediation Model (AMM) adds a third, time-lagged variable for longitu-

dinal mediation analysis (Cole & Maxwell, 2003; MacKinnon, 2008). Using longitudinal

data to test hypotheses on mediation allows us to control for the effects from earlier time

points, hence minimizing bias in the estimated structural relationships (Selig & Preacher,

2009). However, the AMM can examine the dynamics or only one mediation relationship.

Therefore, it is desirable to develop statistical models that simultaneously assess multiple

structural relationships and mediations over time.

In this thesis, we generalize the AMM and propose the Autoregressive Structural Model

(ASM) to capture the dynamics of a complex mechanism. The dynamics are described

by an autoregressive model, and the mechanism is described by an SEM. The ASM can

be visualized as a direct acyclic graph (DAG): the variables of interest (such as factors and

outcomes) are the nodes and appear at multiple time points, and directed edges represent the

mechanistic relationships within a time point as well as autoregressive dependence between
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time points. We assume the SEM to have an identical form over time, although the coefficient

estimates may differ. We term this SEM the template, similar to the terminology used in the

temporal graphical model developed by (Koller, Friedman, & Bach, 2009). In the following

sections, the literature regarding the autoregressive model in SEM is summarized. We then

provide the mathematical details of the ASM and present a real-world application of the

ASM to fit the multivariate longitudinal data.
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CHAPTER 2

Literature review

The wide availability of models using the SEM has provided researchers with an array

of tools to analyze univariate and multivariate longitudinal data (Laursen, Little, & Card,

2011). Although carrying with the same features, these models are distinguished by explicit

and subtle differences. In this chapter, I first present the general SEM approach and then dis-

cuss several longitudinal SEM models that bring alternatives together under the framework

of the temporal relationships and autoregressive change.

2.1 Structural equation modeling

The SEM focuses on the modeling of variances and covariances of multivariate variables

(Bollen, 1989). In the SEM framework, the relationships between latent and observed vari-

ables are expressed using a measurement equation and a structural equation. Consider p

observed variables (factors and outcomes) and q latent variables. The measurement equation

can be written as

y = µ+ Λη + ε, (2.1)

where y is a random vector of the p observed variables, µ an intercept vector, Λ a p × q

factor loading matrix, η a vector of the q latent variables, and ε a random vector of residuals.

The structural equation represents the relationships among latent variables as

η = Γη + ζ, (2.2)

where Γ is a q× q coefficient matrix that indicates the structural relationships among latent

variables, and ζ also a random vector of residuals.
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We can rewrite the structural equation (Equation 2.2) as

η = (I − Γ)−1ζ,

and plug this expression in the measurement equation (Equation 2.1) to have

y = µ+ Λ(I− Γ)−1ζ + ε.

Then the covariance structure can be formulated as

Σ = E{(y − µ)(y − µ)T} = E{(Λ(I− Γ)−1ζ + ε)(Λ(I− Γ)−1ζ + ε)T}

= Λ(I− Γ)−1Ψ((I− Γ)−1)
T
ΛT + Θ.

where Ψ is the covariance matrix of the residual vector ζ, Θ is the covariance matrix of the

residual vector ε, and (I− Γ) is a nonsingular matrix. The parameter vector θ of the SEM

is then

θ = {µ,Λ,Γ,Ψ,Θ}.

2.2 The simplex model

The initial autoregressive model discussed here is the simplex model, which is utilized to

examine the stability of individual differences in longitudinal data. The general concept of the

simplex model was developed by Guttman (1954) and applied in social science. Variations of

the simplex model are formulated to allow the current variable to be expressed as a function

of the same variables measured at the previous time point. According to Jöreskog (1970),

a quasi-simplex model fits data of one observed variable measured on multiple occasions

and assumes the observations contain measurement errors. Subsequently, a stronger simplex

model with multiple observed variables at each time point was developed (Marsh, 1993).
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Under the SEM framework described in Section 2.1, the measurement model for the multi-

item simplex model can be formulated based on Equation 2.1 and expressed as

yj,t = λj,tηt + εj,t

where yj,t is the jth observed variable at time t, λs are the factor loadings, ηs are latent

variables, and εs are the measurement errors for the corresponding observed variables. Sub-

sequently, the structural model can be formulated based on Equation 2.2 and written as

Xt = πt−1Xt−1 + ζt

where Xt is used to represent ηt as a single variable structure measured at time point t

(t = 1, 2, 3 . . . , T ), πt−1 is the autoregressive coefficient that expresses the change of the

variable of interest from time t to time t− 1, ζt is random error at each time. The graphical

representation is shown in Figure 2.1. Note that the autoregressive coefficients (e.g., πs)

are named as the stability coefficients since they describe the degree to which there is a

reshuffling of individuals’ measures on that variable. A large score means that the change

in individual differences was relatively small (Selig & Preacher, 2009).

. . .X1 X2 X3 XT
π1 π2 πT1

Figure 2.1: The simplex model (t = 1, 2, 3 . . . , T ).

2.3 The Cross-lagged Panel Model

The simplex models have the limitation of only measuring one construct across time. The

cross-lagged panel model overcomes this limitation and allows us to investigate the causal

relationship between two variables over time (Mayer, 1986). Similar to the simplex model,
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the autoregressive paths describe the stability of the latent variables from one occasion to

the next. In addition, this model allows a cross-lagged influence of the other variable at

a previous time. Since the measurement model of the cross-lagged panel model is same as

the one for the simplex model, only the structural model was presented here, which can be

expressed using two equations as

Xt = π1,t−1Xt−1 + β1,t−1Zt−1 + ζX,t

and

Zt = π2,t−1Zt−1 + β2,t−1Xt−1 + ζZ,t

where Xt and Zt are two different variables in the 2 × 1 vector ηt measured at time point

t (t = 1, 2, 3 . . . , T ), π1,t−1 and π2,t−1 describe the autoregressive paths, β1,t−1 and β2,t−1

represent cross-lagged effects from a construct to another measured at a later occasion, ζX,t

and ζZ,t are random errors that are different across time. The graph is presented in Figure

2.2.

In the cross-lagged panel model, the chain of autoregressive effects knits a stable structure

for testing the cross-lagged effects. This is because the variance in Z2 that can be explained

by X1 is residual variance conditioning on previous levels of Z1. Thus, the inclusion of the

autoregressive paths is imperative in order to minimize bias in the estimation of cross-lagged

effects (Laursen et al., 2011). Covariates may also be included in cross-lagged panel models at

any time point to minimize confounding bias. However, if additional covariates are included,

the analyses become more complex and exploratory and less focused on a theoretically driven

investigation (Newsom, 2015).

2.4 The Autoregressive Mediation Model

Mediation models are utilized to describe the mechanism by which one variable (e.g., X)

has an effect on another variable (Z) through its influence on an intermediate variable (M).
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. . .

. . .

X1 X2 X3 XT

Z1 Z2 Z3 ZT

π1,1 π1,2 π1,T1

π2,T1π2,1 π2,2

β
2,1  

β 1,1
 

β
2,2  

β 1,2
 

β
2,3  

β 1,
3 

β
2,T1  

β 1,
T1

 

Figure 2.2: The cross-lagged panel model (t = 1, 2, 3 . . . , T ).

Although mediation models are often measured in a cross-sectional fashion, longitudinal

data are to be preferred for the testing of mediation hypotheses. It is suggested that if we

do not control for previous values of the variables, the mediation effects may be over- or

underestimated relative to their true values (Selig & Preacher, 2009). In order to take the

prior status of the mediation model into consideration, the Autoregressive Mediation Model

was formulated as a multivariate extension of the univariate simplex model to examine

longitudinal mediation (Cole & Maxwell, 2003; MacKinnon, 2008).

In the Autoregressive Mediation Model, three constructs (i.e., X M , and Z) are each

measured at time point t (t = 1, 2, 3 . . . , T ). The structural model can be expressed by the

following three equations:

Xt = π1,t−1Xt−1 + ζX,t

Mt = π2,t−1Mt−1 + β1,t−1Xt−1 + ζM,t

Zt = π3,t−1Zt−1 + β2,t−1Mt−1 + β3,t−2Xt−2 + ζZ,t

whereXt, Mt and Zt are three different constructs in the 3×1 vector ηt measured at time point

t (t = 1, 2, 3 . . . , T ), π1,t−1, π2,t−1 and π3,t−1 indicate the autoregressive paths, β1,t−1, β2,t−1

and β3,t−2 represent cross-lagged mediational relationships, ζX,t, ζM,t and ζZ,t are random

errors that are different for each time. Variations of the Autoregressive Mediation Model
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are available. In the model described here (see Figure 2.3), the two-lag path is specified,

such that Zt is influenced by Xt−2. This specification fits to a particular kind of mediation

hypothesis, the inclusion of alternative paths may be possible depending on the research

context (Cole & Maxwell, 2003).

. . .

. . .

. . .

X1 X2 X3 XT

M1 M2 M3 MT

Z1 Z2 Z3 ZT

π1,1 π1,2 π1,T1

π2,2π2,1 π2,T1

π3,1 π3,2 π3,T1

β
1,1  

β
2,2  

β3,1  

β
2,3  

β
1,2  

β3,2  

β
1,3  

β
3,3  

β
1,T1  

β
2,T1  

β
3,T2  

β
2,1  

Figure 2.3: The autoregressive mediation model (t = 1, 2, 3 . . . , T ).

Despite the merits of the Autoregressive Mediation Model, such a model assumes that

the mediation structure has only three unique constructs. It may be inappropriate to fit

this model to data when we examine the temporal process of a more complicated structural

mechanism delineated in certain theories. For example, the focal process of individuals is

often subject to different contextual influences in human development research. These con-

textual variables may be located at different layers of the ecological system and influence the

outcome variables directly and indirectly (Little, Bovaird, Card, et al., 2012). A structural

model depicting this phenomenon may need to build a serial mediation, in which multiple

mediators are included in a sequential manner. One may also construct a model using the

parallel mediation, which allows one set of mediational relations conditioning on another set

of mediational relations (Jones et al., 2015). Moreover, a combination of serial and parallel
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mediation may be appropriate in certain cases (Deng & Paul, 2018). In order to understand

the temporal process of different complex mechanisms other than the three-variable medi-

ation, a more general modeling approach that can fit a flexible structure into the process

may be necessary. In the following chapter, an ASM is defined to offer an alternative tool

to tackle this problem.
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CHAPTER 3

Methods

In this chapter, we describe the mathematical details of the longitudinal measurement

model and the ASM. Measurement invariance tests and covariates adjustment are discussed

sequentially. Once the ASM is formulated using the SEM, we implement the SEM inference

techniques to estimate the parameters of the model.

3.1 The longitudinal measurement model

For longitudinal data collected at T time points, the measurement equation at the tth time

point is then

yt = µt + Λtηt + εt. (3.1)

The set of measurement equations across all time points can be stacked up to have



y1

y2

...

yT


=



µ1

µ2

...

µT


+



Λ1 0 . . . 0

0 Λ2 . . . 0

...
...

. . .
...

0 0 . . . ΛT





η1

η2

...

ηT


+



ε1

ε2

...

εT


,

which we can concisely represent as

y = µ+ Λη + ε. (3.2)

3.2 The Autoregressive Structural Model (ASM)

We propose the ASM that combines the two models above to capture the structural

relationships behind longitudinal measurements. As the SEM, the ASM also contains a

measurement equation and a structural equation. The structural equation of the ASM at
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the tth time can be formulated as

ηt =
t−1∑
i=1

Πi→tηi + Btηt + ζt, (3.3)

where Πi→t is the q × q diagonal matrices containing the (higher-order) autoregressive co-

efficients from the ith time point, and Bt is the q × q coefficient matrix among the latent

variables at the tth time. Across all time points, the autoregressive structural equations can

also be stacked up and concisely written as follows:

η ≡ Γη + ζ, (3.4)

where η and ζ are both vectors of length qt, and Γ a qt × qt matrix of coefficients. We

assume the same formulation of the structural equation at all the time points, although

the coefficient estimates may be different at different time points. This identical structural

equation is the template in our ASM.

For a first-order autoregressive structural equation, we have

Π(t−1)→t =



π1,(t−1)→t 0 0 0

0 π2,(t−1)→t 0 0

...
...

. . .
...

0 0 0 πq,(t−1)→t


,

where πk,(t−1)→t, k = 1, . . . , q, is the autoregressive coefficient of the kth latent variable in

the template from the (t− 1)th to tth time.
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For an ASM of order 2, the coefficient matrix Γ is

Γ =



B1 0 0 0 . . . 0 0 0 0

Π1→2 B2 0 0 . . . 0 0 0 0

Π1→3 Π2→3 B3 0 . . . 0 0 0 0

0 Π2→4 Π3→4 B4 . . . 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 . . . Π(T−3)→(T−1) Π(T−2)→(T−1) BT−1 0

0 0 0 0 . . . 0 Π(T−2)→T Π(T−1)→T BT



.

3.3 Covariate adjustment

Demographic and socioeconomic covariates may bias parameter estimation. To control for

these confounding variable, we include these covariates and rewrite Equation 3.3 as follows:

ηt =
t−1∑
i=1

Πi→tηi + Btηt + Ctηc + ζt, (3.5)

where the vector ηc contains the time-invariant covariates and the matrix of covariate coef-

ficients Ct contains elements ck,m,t, which is the coefficient of the mth covariates affecting

the kth latent variable at the tth time.

3.4 Inference and model fit

Since the ASM can be formulated as an SEM (Equations 3.2 and 3.3, even accounting for

covariates), we can use the inference methods developed for SEMs for parameter estimation

here. Specifically, we will use the maximum likelihood method described in Chapter 4 of

(Bollen, 1989). This method minimizes the differences between the sample covariance matrix
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(denoted as S) and the estimated covariance matrix Σ̂ using a discrepancy function F (S, Σ̂).

Note that the estimation of Σ involves estimation of the parameter vector θ. To empha-

size such connection, we use the notation Σ(θ̂) in place of Σ̂, where θ̂ is the estimate of θ.

Under the assumption of multivariate normality of the observed variables, minimizing the

discrepancy function can be obtained by maximizing the likelihood:

FML(S,Σ(θ̂)) = tr(SΣ(θ̂)
−1

) + log |Σ(θ̂)| − log |S| − p, (3.6)

where tr is trace and ML stands for maximum likelihood. The estimate θ̂ is then the

maximum likelihood estimate.

To assess the model fit for the ASM, we can also use the multiple metrics designed for

SEMs (Hu & Bentler, 1999):

• The χ2 statistic: This is the minimized discrepancy in Equation 3.6 and follows a χ2

distribution with the degrees of freedom of the current model.

• The comparative fit index (CFI): It compares an invariance model to the null model

which assumes zero covariances among the observed variables and is defined as

CFI =
dnull − dspecified

dnull

,

where dnull = (χ2
null− dfnull) and dspecified = (χ2

specified− dfspecified), which are the noncen-

trality parameters, and df indicates the degrees of freedom of the model.

• The standardized root mean square residual (SRMR):

SRMR =

√√√√(

p∑
j=1

p∑
k=1

r2
jk)/e,

where rjk is the difference between the observed and estimated correlation between yj

and yk, and e = p(p+ 1)/2, with p being the number of observed variables.
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• The root mean square error of approximation (RMSEA) with its 90% confidence in-

terval (CI). The RMSEA is defined as

RMSEA =

√
(χ2

specified/dfspecified)− 1

n
.

CFI, SRMR, and RMSEA with respective values of greater than .90, less than .08, less

than .06 suggest a good model fit (Hu & Bentler, 1999). The confidence interval of RMSEA

should be below 0.06.

3.5 Longitudinal measurement invariance

A key assumption of longitudinal SEM models (such as those discussed in the Intro-

duction) is measurement invariance of the latent variables over different time points (Little,

2013); (Millsap & Cham, 2012). This assumption ensures that for any latent variable η, the

meodel measures the same effect over time. we consider three levels of invariance, namely

the configural, weak and strong invariance, which give rise to three nested ASMs (Widaman,

Ferrer, & Conger, 2010). The configural invariance requires the same structural re- lation-

ships across time, and no constraint on parameters is added to the measurement equation

(i.e., Equation 3.2). This is also our ASM without ad- ditional constraints, as we use the

same template at all time points. The weak invariance requires equality in factor loadings

over time:

Λ1 = Λ2 = · · · = ΛT . (3.7)

The strong invariance requires invariant loadings and invariant intercepts:

µ1 = µ2 = · · · = µT . (3.8)

The strong invariance ASM is therefore nested in the weak invariance ASM, which in turn is

nested in the configural invariance ASM. If the weak or strong invariance for all the elements
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is not supported by data, partial invariance may be imposed for a subset of factor loadings

or intercepts.

Testing these different levels of invariance is effectively model selection. We use the model

fit metrics described above to compare and select models. In particular, we can compute the

differences in the CFI values (denoted as ∆CFI) between two models. When ∆CFI < .01,

the two models do not differ significantly.
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CHAPTER 4

Application

4.1 The CHARLS study

The example uses the first three waves (2011, 2013 and 2015) of the CHARLS survey data

to investigate the dynamic relationships between the social activity, physical activity, and

functional health status, and their impact on depressive symptoms among Chinese adults of

45 years and older. In the 2011 national baseline study, a representative sample of 17,708

participants from 150 urban districts and rural counties in 28 provinces were recruited using

a multistage probability sampling strategy. In 2013 and 2015 follow-up studies, 18,605

and 21,095 respondents participated respectively, including follow-up respondents and newly

added ones. Only 8,959 participants responded to the physical activity survey at least once

in the three waves of measurements. We focus on these participants in our analysis here.

Among them, 4,739 (53%) are female, 7,837 (88%) are married and 5,759 (64%) reside in

rural areas. The proportion of illiterate participants is 33% and 18% in rural and urban

areas, respectively. Detailed sampling procedures and the cohort profile can be found in

(Zhao et al., 2012).

Among the variables of interest, social activity measures the frequency for engaging in

social activities (e.g., interacting with friends; going to community club; attending training

course; caring for sick or disabled adult; taking part in the community-related organization,

etc.) in the month prior to the survey. Physical activity consists of weekly durations of

vigorous activity, moderate activity and walking. The functional health status utilizes the

5-item Instrumental Activities of Daily Living (IADLs) to assess the functional limitations in

the engagement of essential skills for independent living. Depressive symptoms are measured

using eight items of the Center for Epidemiologic Studies Depression Scale (CES-D). In total,

fifteen observed variables constitute the four latent or observed variables of interest.

We consider four latent variables, one for each category, and construct an ASM of order-
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2 to examine the relationships among these variables. Our ASM will also control for the

time-invariant covariates, including sex, age, rural/urban residency (URB), marital status

(MAR), and educational attainment (EDU).

The longitudinal measurement equation yt = µt + Λtηt + εt at time t (t = 1, 2, 3) can be

expressed as follows:



y1,t

y2,t

y3,t

...

y7,t

y8,t

...

y15,t



=



µ1,t

µ2,t

µ3,t

...

µ7,t

µ8,t

...

µ15,t



+



λ1,t 0 0 0

0 λ2,t 0 0

0 0 λ3,t 0

...
...

...
...

0 0 λ7,t 0

0 0 0 λ8,t

...
...

...
...

0 0 0 λ15,t





ηSA,t

ηPA,t

ηFHS,t

ηDS,t


+



ε1,t

ε2,t

ε3,t
...

ε7,t

ε8,t
...

ε15,t



,

where y1,t is the observed variable for social activity, y2,t for physical activity, y3,t to y7,t for

functional health status, and y8,t to y15,t for depressive symptoms at wave t. In addition,

ηSA, ηPA, ηFHS and ηDS are the corresponding latent variables. The measurement equations

for three time points are stacked to form y = µ+ Λη + ε, which can be expressed as


y1

y2

y3

 =


µ1

µ2

µ3

 +


Λ1 0 0

0 Λ2 0

0 0 Λ3



η1

η2

η3

 +


ε1

ε2

ε3

 . (4.1)

When formulating the structural equation, we assume that social and physical activity

may influence functional health status and depressive symptoms, and that functional health

status may further influence depressive symptoms. We do not allow the reverse. We fur-

ther assume that the covariates may influence all four latent variables. A diagram of this
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structural equation model is depicted in Figure 4.1. Specifically,



ηSA,t

ηPA,t

ηFHS,t

ηDS,t


=



π1,(t−2)→t 0 0 0

0 π2,(t−2)→t 0 0

0 0 π3,(t−2)→t 0

0 0 0 π4,(t−2)→t





ηSA,(t−2)

ηPA,(t−2)

ηFHS,(t−2)

ηDS,(t−2)


(4.2)

+



π1,(t−1)→t 0 0 0

0 π2,(t−1)→t 0 0

0 0 π3,(t−1)→t 0

0 0 0 π4,(t−1)→t





ηSA,(t−1)

ηPA,(t−1)

ηFHS,(t−1)

ηDS,(t−1)



+



0 0 0 0

0 0 0 0

β13,t β23,t 0 0

β14,t β24,t β34,t 0





ηSA,t

ηPA,t

ηFHS,t

ηDS,t



+



c1,1,t c1,2,t c1,3,t c1,4,t c1,5,t

c2,1,t c2,2,t c2,3,t c2,4,t c2,5,t

c3,1,t c3,2,t c3,3,t c3,4,t c3,5,t

c4,1,t c4,2,t c4,3,t c4,4,t c4,5,t





ηSEX

ηAGE

ηURB

ηMAR

ηEDU


+



ζSA,t

ζPA,t

ζFHS,t

ζDS,t



In vector notation,

ηt = Π(t−2)→tη(t−2) + Π(t−1)→tη(t−1) + Btηt + Ctηc + ζt. (4.3)

This structural model implies that the information on ηSA,t and ηPA,t comes only from

the corresponding observed variables:

y1,t = µ1,t + ηSA,t, and y2,t = µ2,t + ηPA,t. (4.4)
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In other words,

λ1 = λ2 = 1, and ε1,t = ε2,t = 0. (4.5)

Figure 4.1: The graph representation the order-2 Autoregressive Structural Model for three
time points. SA = social activity; PA = physical activity; FHS = functional health status;
DS = depressive symptoms.

Similar to Section 3.5, we can further test models with different invariance constraints

on the measurement equation. In the metric invariance test, we fix the factor loadings to be

equal across three time points

Λ1 = Λ2 = Λ3. (4.6)

In the scalar invariance test, we further constrain the intercepts

µ1 = µ2 = µ3. (4.7)

The analyses were conducted using Mplus 8.0 (Muthén & Muthén, 2017) and the Mplus

codes are shown in Appendix A.
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4.2 Results

The sample means of the observed variables from the three years are presented in

Figure 4.3 and Table 4.2. Depressive symptoms showed a fluctuating pattern between 2011

and 2015, whereas average functional difficulties increased across time. Furthermore, the

means of physical activity decreased from 2011 to 2015, while the means of social activity

increased before the decline.

Table 4.1 reports the goodness-of-fit statistics for different invariance models described

in Section 3.1. The configural invariance ASM yields a good fit. The weak invariance

ASM (Λ1 = Λ2 = Λ3 does not different substantially from the configural model (∆CFI =

0.943 − 0.940 = 0.003). In the strong invariance ASM, we further constrain the intercepts

of depressive symptoms to be equal across time (µi,1 = µi,2 = µi,3, where i = 8, · · · , 15).

We do not impose the invariance constraint on the intercepts of functional health status, as

the sample mean scores of functional health status noticeably increased from 2011 to 2015.

This (partially) strong invariance model also does not differ substantially from the configural

model (∆CFI = 0.943− 0.938 = 0.005). Therefore, the final model is the (partially) strong

invariance model. We summarize the intercepts and factor loadings estimated in the final

ASM in Table 4.2.

Table 4.1: Goodness-of-fit metrics of the ASM with different levels of invariance. The factor
loadings of observed variables of functional health status and depressive symptoms were
constrained to be invariant in the weak invariance model. The intercepts of observed variables
of depressive symptoms were constrained to be invariant in the strong invariance model. df
stands for degree of freedom, CFI comparative fit index, RMSEA root mean square error of
approximation, and SRMR standardized root mean square residual.

χ2 df CFI RMSEA (CI) SRMR

Configural Invariance ASM 8748.500 1044 0.943 0.029 (0.028,0.029) 0.033

Weak Invariance ASM 9135.501 1066 0.940 0.029 (0.029,0.030) 0.034

Strong Invariance ASM 9402.683 1082 0.938 0.029 (0.029,0.030) 0.035
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We summarize the coefficient estimates in the structural model of our strong invariance

ASM in Table 4.3 and Figure 4.2. Our ASM demonstrates a recurrent mediation relationship:

social activity and physical activity independently and consistently affected depressive symp-

toms by mediating through functional health status (Table 4.3, Figure 4.2). The results show

that participants who engaged in social activity and physical activity more frequently per-

ceived lower levels of functional difficulties and fewer depressive symptoms. These structural

relationships remained in 2015 even after conditioning on the same relationships measured

in 2011 and 2013. In addition, we observe a positive relationship between physical activity

and depressive symptoms consistently in three waves. The explained variances in depressive

symptoms in the ASM gradually increased over time (wave1: R2 = 17.8%; wave2: R2 =

34.0%; and wave3: R2 = 43.2%).

Furthermore, most covariates have a significant influence on the variables in the ASM

(see Table 4.4). Specifically, female participants engaged in a lower level of physical activity

and a higher level of social activity, and reported depressive symptoms more frequently than

male counterparts did. Older participants reported less physical and social activity and

more functional difficulties, but perceived fewer depressive symptoms than younger ones did.

Urban residents showed more participation in social activity and less in physical activity, and

fewer functional difficulties and depressive symptoms than rural dwellers did. Non-married

respondents were more likely to show depressive symptoms than married ones. Last but not

least, more educated respondents reported less physical activity, more social activity, better

functional health and fewer depressive symptoms. On the other hand, the covariates do not

affect the estimates of the structural relationships.

To check whether the parameter estimates are sensible, we calculated the expected values

for functional health status and depressive symptoms in 2011, 2013 and 2015, using the esti-

mated coefficients, and compared them with the sample means (Figure 4.3). The comparison

shows that the predicted means are close to the observed mean values with minor deviances.

Our findings suggest that social activity and physical activity is simultaneously and
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consistently associated with depressive symptoms by mediating through functional health

status during the aging period. However, the concurrence of higher levels of physical activity

and elevated depressive symptoms may be explained by negative impacts of domestic and

occupational physical activity, because they are major sources of activity among Chinese

populations, especially among those with lower socioeconomic status (Chen, Stevinson, Ku,

Chang, & Chu, 2012; Deng & Paul, 2018). Our findings indicate the need for long-term

monitoring of the socio-behavioral factors for depressive symptoms among Chinese elderly.

An important implication from our analysis is that regular participation of both social and

physical activities may be beneficial for functional and mental health in elderly. Future

research may design interventions to increase the participation of social and leisure-time

physical activities among Chinese older adults. Strategies may include emphasizing the role

of senior social organizations, encouraging social interactions and improving infrastructure

for physical exercises in rural and urban communities. Since the structural relationships

we inferred here are recurrent, the interventions suggested above will be meaningful for

middle-aged and older adults for the future.
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Figure 4.2: Coefficient estimates in the structural model of our order-2 strong invariance
ASM over three time points. Black estimates are standardized β coefficients, which are
the effects among factors, and gray estimates are standardized π coefficients, which are
the autoregressive effects (see Equation 4.2). Solid lines indicate statistically significant
coefficient estimates, whereas dashed lines indicate insignificant ones. SA stands for social
activity, PA physical activity, FHS functional health status, and DS depressive symptoms.
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Table 4.2: Observed means (ȳ), estimated intercepts (µ) and factor loadings (λ) in the
measurement model of the strong invariance ASM.

Variable ȳ1 ȳ2 ȳ3 µ1 µ2 µ3 λ

Social activity

1. Social activity 1.272 1.470 1.337 -0.287 0.051 0.388 1.000

Physical activity

2. Physical activ-
ity

145.829 125.573 122.270 489.123 272.545 147.046 1.000

Functional health
status

3. Doing house-
hold chores

1.130 1.175 1.265 0.873 0.858 0.857 0.348

4. Preparing hot
meals

1.134 1.168 1.218 0.868 0.840 0.795 0.361

5. Shopping for
groceries

1.144 1.163 1.217 0.843 0.793 0.739 0.407

6. Managing
money

1.243 1.238 1.267 0.968 0.899 0.830 0.372

7. Taking medica-
tions

1.091 1.081 1.097 0.975 0.938 0.912 0.158

Depressive symp-
toms

8. Bothered by
things that usually
did not bother me

2.041 1.765 1.906 1.718 - - 0.660

9. Trouble keeping
mind on tasks

1.926 1.739 1.888 1.682 - - 0.600

10. Felt depressed 1.987 1.759 1.896 1.673 - - 0.737

11. Felt that ev-
erything was an ef-
fort

2.022 1.822 1.896 1.721 - - 0.692

12. Felt fearful 1.354 1.275 1.904 1.224 - - 0.335

13. Restless sleep 2.038 2.043 1.323 1.919 - - 0.455

14. Felt lonely 1.523 1.438 2.069 1.375 - - 0.447

15. Could not get
going

1.369 1.297 1.370 1.236 - - 0.389
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Table 4.3: Coefficient estimates (βs and πs) in the structural model of our strong invariance
ASM. 99% bootstrap confidence intervals are obtained for standardized estimates. SA stands
for social activity, PA physical activity, FHS functional health status, and DS depressive
symptoms.

Coefficient Path Estimate Standardized 99% CI p-value
Estimate for Std Est

β13,1 SA1 → FHS1 -0.064 -0.105 (-0.128, -0.081) < 0.001
β23,1 PA1 → FHS1 -0.001 -0.146 (-0.172, -0.118) < 0.001
β14,1 SA1 → DS1 -0.053 -0.085 (-0.110, -0.058) < 0.001
β24,1 PA1 → DS1 0.001 0.056 (0.034, 0.079) < 0.001
β34,1 FHS1 → DS1 0.322 0.309 (0.269, 0.349) < 0.001
β13,2 SA2 → FHS2 -0.050 -0.080 (-0.100, -0.059) < 0.001
β23,2 PA2 → FHS2 -0.001 -0.081 (-0.104, -0.058) < 0.001
β14,2 SA2 → DS2 -0.008 -0.015 (-0.039, 0.010) 0.119
β24,2 PA2 → DS2 0.001 0.098 (0.071, 0.125) < 0.001
β34,2 FHS2 → DS2 0.213 0.246 (0.205, 0.287) < 0.001
β13,3 SA3 → FHS3 -0.041 -0.054 (-0.072, -0.035) < 0.001
β23,3 PA3 → FHS3 -0.001 -0.094 (-0.116, -0.071) < 0.001
β14,3 SA3 → DS3 -0.009 -0.015 (-0.038, 0.009) 0.106
β24,3 PA3 → DS3 0.000 0.044 (0.019, 0.070) < 0.001
β34,3 FHS3 → DS3 0.190 0.227 (0.188, 0.265) < 0.001
π1,1→2 SA1 → SA2 0.362 0.332 (0.302, 0.362) < 0.001
π1,1→3 SA1 → SA3 0.216 0.203 (0.173, 0.233) < 0.001
π1,2→3 SA2 → SA3 0.313 0.321 (0.290, 0.352) < 0.001
π2,1→2 PA1 → PA2 0.304 0.331 (0.303, 0.358) < 0.001
π2,1→3 PA1 → PA3 0.180 0.202 (0.173, 0.232) < 0.001
π2,2→3 PA2 → PA3 0.320 0.329 (0.298, 0.359) < 0.001
π3,1→2 FHS1 → FHS2 0.596 0.527 (0.463, 0.591) < 0.001
π3,1→3 FHS1 → FHS3 0.309 0.233 (0.163, 0.300) < 0.001
π3,2→3 FHS2 → FHS3 0.576 0.493 (0.420, 0.563) < 0.001
π4,1→2 DS1 → DS2 0.417 0.445 (0.411, 0.477) < 0.001
π4,1→3 DS1 → DS3 0.248 0.235 (0.197, 0.271) < 0.001
π4,2→3 DS2 → DS3 0.420 0.373 (0.335, 0.412) < 0.001
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Table 4.4: Standardized coefficient estimates for the covariates in our strong invariance
ASM (denoted by c in Equation 4.2). Italic coefficients are significant. URB stands for
rural/urban, MAR marital status, and EDU educational attainment.

Covariates

SEX AGE URB MAR EDU

Social Activity

t = 1 0.041 0.046 0.077 0.005 0.133

t = 2 0.028 -0.020 0.078 0.039 0.111

t = 3 0.029 -0.043 0.025 0.024 0.088

Physical Activity

t = 1 -0.174 -0.220 -0.173 -0.038 -0.121

t = 2 -0.069 -0.180 -0.065 -0.009 -0.059

t = 3 -0.008 -0.077 -0.079 -0.022 -0.007

Functional Health Status

t = 1 0.033 0.173 -0.038 0.008 -0.108

t = 2 0.003 0.098 0.009 -0.010 -0.051

t = 3 0.030 0.066 -0.035 0.010 -0.006

Depressive Symptoms

t = 1 0.141 -0.026 -0.076 0.071 -0.082

t = 2 0.076 -0.090 -0.022 0.040 -0.029

t = 3 0.064 -0.028 -0.024 0.000 -0.027
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Figure 4.3: Comparison between observed means (ȳ) and expected values E(y) with their
99% confidence intervals of observed items of social activity, physical activity, functional
health status and depressive symptoms.
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CHAPTER 5

Discussion

In this thesis, we propose the ASM as a novel model for investigating the dynamics

of a system using multivariate longitudinal data. The ASM extends the previous work by

modeling the complex relationships within the template structure over time while account-

ing for autoregressive dependency. This model has several main features: (i) the structural

model that captures complex relationships among multiple variables and the structure can

be preserved over multiple time points; (ii) the autoregressive component that accounts for

dependency over time; (iii) accounting for covariates and thus reducing bias in parameter

estimates; and (iv) allowing for measurement invariance test under the complete model with

the three features above. Applying our ASM to the CHARLS data, we examine how complex

structural relationships evolve over time and show that social activity and physical activ-

ity are simultaneously and consistently associated with depressive symptoms by mediating

through functional health status over the course of five years.

On the other hand, our ASM has several limitations. First, we assume a multivariate

normal distribution for the observed variables and linear relationships. Alternatively, one

can consider nonparametric structural equations (Pearl, 2009) and probabilistic graphical

model (Koller et al., 2009). Second, accounting for covariates leads to many parameters to be

included in the model, which may reduce the stability in estimated parameters. Additionally,

we assume that the impact of covariates is independent of time. Allowing for time-dependent

covariates will include even more parameters. Techniques, such as the inverse probability of

treatment weights (Robins, Hernán, & Brumback, 2000), can help address the challenges of

high dimensional covariates and time-dependent confounding. Last but not least, when we

investigate a temporal mechanism with extensive repetitions of measurements, the inference

techniques of classical SEM may not be optimal to estimate a large number of parameters.

Alternative inference methods are needed to handle high-dimensional models.

In our ASM and its application, if one variable influences another, we assume that the
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impact can be measured at the same point without delay. However, some behavioral mecha-

nisms may take effect after a time lag and the optimal time for measuring the effect depends

on the underlying process (Selig & Preacher, 2009). For example, the treatment for a chronic

medical condition may take time for the condition to improve. Hence, there is considerable

interest in the timing of measurements and how the time lags impact the inference of the

structural relationships (Cole & Maxwell, 2003; Dormann & Griffin, 2015). Future work will

extend the ASM to account for such time lags. This extended model will provide additional

flexibility.
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Appendix A: Mplus code for the Autoregressive Structural Model

using the CHARLS data

Appendix A.1. The ASM - Configural invariance

TITLE:

The ASM - configural invariance

DATA:

FILE IS mydataImpNewCov.dat;

VARIABLE:

NAMES ARE ID hhID comID

SA1 IADL1T1-IADL1T5 DEP1T1-DEP1T8

SA2 IADL2T1-IADL2T5 DEP2T1-DEP2T8

SA3 IADL3T1-IADL3T5 DEP3T1-DEP3T8

SEX AGE URBAN MARRIAGE EDU

PA1 PA2 PA3;

!Note: SAiTj i=time j=indicator index

USEVARIABLES ARE

SA1 IADL1T1-IADL1T5 DEP1T1-DEP1T8

SA2 IADL2T1-IADL2T5 DEP2T1-DEP2T8

SA3 IADL3T1-IADL3T5 DEP3T1-DEP3T8

SEX AGE URBAN MARRIAGE EDU

PA1 PA2 PA3;
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ANALYSIS:

ESTIMATOR IS ML;

MODEL:

IADL1 BY IADL1T1*

IADL1T2

IADL1T3

IADL1T4

IADL1T5;

IADL2 BY IADL2T1*

IADL2T2

IADL2T3

IADL2T4

IADL2T5;

IADL3 BY IADL3T1*

IADL3T2

IADL3T3

IADL3T4

IADL3T5;

DEP1 BY DEP1T1*

DEP1T2

DEP1T3

DEP1T4
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DEP1T5

DEP1T6

DEP1T7

DEP1T8;

DEP2 BY DEP2T1*

DEP2T2

DEP2T3

DEP2T4

DEP2T5

DEP2T6

DEP2T7

DEP2T8;

DEP3 BY DEP3T1*

DEP3T2

DEP3T3

DEP3T4

DEP3T5

DEP3T6

DEP3T7

DEP3T8;

!allow correlated residuals across time for IADL

IADL1T1 with IADL2T1 IADL3T1;

IADL2T1 with IADL3T1;

IADL1T2 with IADL2T2 IADL3T2;
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IADL2T2 with IADL3T2;

IADL1T3 with IADL2T3 IADL3T3;

IADL2T3 with IADL3T3;

IADL1T4 with IADL2T4 IADL3T4;

IADL2T4 with IADL3T4;

IADL1T5 with IADL2T5 IADL3T5;

IADL2T5 with IADL3T5;

!allow correlated residuals across time for DEP

DEP1T1 with DEP2T1 DEP3T1;

DEP2T1 with DEP3T1;

DEP1T2 with DEP2T2 DEP3T2;

DEP2T2 with DEP3T2;

DEP1T3 with DEP2T3 DEP3T3;

DEP2T3 with DEP3T3;

DEP1T4 with DEP2T4 DEP3T4;

DEP2T4 with DEP3T4;

DEP1T5 with DEP2T5 DEP3T5;

DEP2T5 with DEP3T5;

DEP1T6 with DEP2T6 DEP3T6;

DEP2T6 with DEP3T6;

DEP1T7 with DEP2T7 DEP3T7;

DEP2T7 with DEP3T7;

DEP1T8 with DEP2T8 DEP3T8;

DEP2T8 with DEP3T8;

!modif indices suggest correlated residuals
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IADL1T1 with IADL1T2;

IADL2T1 with IADL2T2;

IADL3T1 with IADL3T2;

DEP1T7 with DEP1T8;

DEP2T7 with DEP2T8;

DEP3T7 with DEP3T8;

!factor variance fixed to 1 for identification

IADL1@1 IADL2@1 IADL3@1;

DEP1@1 DEP2@1 DEP3@1;

!latent factor means fixed to 0 for identification

[IADL1@0 IADL2@0 IADL3@0];

[DEP1@0 DEP2@0 DEP3@0];

!structural paths

!cross sectional structural paths

!time 1

IADL1 ON PA1;

IADL1 ON SA1;

DEP1 ON PA1;

DEP1 ON SA1;

DEP1 ON IADL1;

!time 2

IADL2 ON PA2;
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IADL2 ON SA2;

DEP2 ON PA2;

DEP2 ON SA2;

DEP2 ON IADL2;

!time 3

IADL3 ON PA3;

IADL3 ON SA3;

DEP3 ON PA3;

DEP3 ON SA3;

DEP3 ON IADL3;

!autoregression paths across time AR(2)

PA2 ON PA1;

PA3 ON PA2;

PA3 ON PA1;

SA2 ON SA1;

SA3 ON SA2;

SA3 ON SA1;

IADL2 ON IADL1;

IADL3 ON IADL2;

IADL3 ON IADL1;

DEP2 ON DEP1;

DEP3 ON DEP2;

DEP3 ON DEP1;

!covariates paths
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PA1 ON SEX AGE URBAN MARRIAGE EDU;

PA2 ON SEX AGE URBAN MARRIAGE EDU;

PA3 ON SEX AGE URBAN MARRIAGE EDU;

SA1 ON SEX AGE URBAN MARRIAGE EDU;

SA2 ON SEX AGE URBAN MARRIAGE EDU;

SA3 ON SEX AGE URBAN MARRIAGE EDU;

IADL1 ON SEX AGE URBAN MARRIAGE EDU;

IADL2 ON SEX AGE URBAN MARRIAGE EDU;

IADL3 ON SEX AGE URBAN MARRIAGE EDU;

DEP1 ON SEX AGE URBAN MARRIAGE EDU;

DEP2 ON SEX AGE URBAN MARRIAGE EDU;

DEP3 ON SEX AGE URBAN MARRIAGE EDU;

OUTPUT:

TECH1 TECH4

STANDARDIZED

MODINDICES;

Appendix A.2. The ASM - weak invariance

TITLE:

The ASM - weak (factor loading) invariance

DATA:

FILE IS mydataImpNewCov.dat;

VARIABLE:

NAMES ARE ID hhID comID
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SA1 IADL1T1-IADL1T5 DEP1T1-DEP1T8

SA2 IADL2T1-IADL2T5 DEP2T1-DEP2T8

SA3 IADL3T1-IADL3T5 DEP3T1-DEP3T8

SEX AGE URBAN MARRIAGE EDU

PA1 PA2 PA3;

!Note: SAiTj i=time j=indicator index

USEVARIABLES ARE

SA1 IADL1T1-IADL1T5 DEP1T1-DEP1T8

SA2 IADL2T1-IADL2T5 DEP2T1-DEP2T8

SA3 IADL3T1-IADL3T5 DEP3T1-DEP3T8

SEX AGE URBAN MARRIAGE EDU

PA1 PA2 PA3;

ANALYSIS:

ESTIMATOR IS ML;

MODEL:

! Label for constraints

! The loadings of indicators are same across time

IADL1 BY IADL1T1* (L7)

IADL1T2 (L8)

IADL1T3 (L9)

IADL1T4 (L10)

IADL1T5 (L11);
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IADL2 BY IADL2T1* (L7)

IADL2T2 (L8)

IADL2T3 (L9)

IADL2T4 (L10)

IADL2T5 (L11);

IADL3 BY IADL3T1* (L7)

IADL3T2 (L8)

IADL3T3 (L9)

IADL3T4 (L10)

IADL3T5 (L11);

DEP1 BY DEP1T1* (L12)

DEP1T2 (L13)

DEP1T3 (L14)

DEP1T4 (L15)

DEP1T5 (L16)

DEP1T6 (L17)

DEP1T7 (L18)

DEP1T8 (L19);

DEP2 BY DEP2T1* (L12)

DEP2T2 (L13)

DEP2T3 (L14)

DEP2T4 (L15)

DEP2T5 (L16)
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DEP2T6 (L17)

DEP2T7 (L18)

DEP2T8 (L19);

DEP3 BY DEP3T1* (L12)

DEP3T2 (L13)

DEP3T3 (L14)

DEP3T4 (L15)

DEP3T5 (L16)

DEP3T6 (L17)

DEP3T7 (L18)

DEP3T8 (L19);

!allow correlated residuals across time for IADL

IADL1T1 with IADL2T1 IADL3T1;

IADL2T1 with IADL3T1;

IADL1T2 with IADL2T2 IADL3T2;

IADL2T2 with IADL3T2;

IADL1T3 with IADL2T3 IADL3T3;

IADL2T3 with IADL3T3;

IADL1T4 with IADL2T4 IADL3T4;

IADL2T4 with IADL3T4;

IADL1T5 with IADL2T5 IADL3T5;

IADL2T5 with IADL3T5;

!allow correlated residuals across time for DEP

DEP1T1 with DEP2T1 DEP3T1;
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DEP2T1 with DEP3T1;

DEP1T2 with DEP2T2 DEP3T2;

DEP2T2 with DEP3T2;

DEP1T3 with DEP2T3 DEP3T3;

DEP2T3 with DEP3T3;

DEP1T4 with DEP2T4 DEP3T4;

DEP2T4 with DEP3T4;

DEP1T5 with DEP2T5 DEP3T5;

DEP2T5 with DEP3T5;

DEP1T6 with DEP2T6 DEP3T6;

DEP2T6 with DEP3T6;

DEP1T7 with DEP2T7 DEP3T7;

DEP2T7 with DEP3T7;

DEP1T8 with DEP2T8 DEP3T8;

DEP2T8 with DEP3T8;

!modification indices suggest correlated residuals

IADL1T1 with IADL1T2;

IADL2T1 with IADL2T2;

IADL3T1 with IADL3T2;

DEP1T7 with DEP1T8;

DEP2T7 with DEP2T8;

DEP3T7 with DEP3T8;

!factor variance fixed to 1 for identification

IADL1@1 ;

DEP1@1 ;
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!latent factor means fixed to 0 for identification

[IADL1@0 IADL2@0 IADL3@0];

[DEP1@0 DEP2@0 DEP3@0];

!structural paths

!cross sectional structural paths

!time 1

IADL1 ON PA1;

IADL1 ON SA1;

DEP1 ON PA1;

DEP1 ON SA1;

DEP1 ON IADL1;

!time 2

IADL2 ON PA2;

IADL2 ON SA2;

DEP2 ON PA2;

DEP2 ON SA2;

DEP2 ON IADL2;

!time 3

IADL3 ON PA3;

IADL3 ON SA3;

DEP3 ON PA3;

DEP3 ON SA3;

DEP3 ON IADL3;
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!autoregression paths across time AR(2)

PA2 ON PA1;

PA3 ON PA2;

PA3 ON PA1;

SA2 ON SA1;

SA3 ON SA2;

SA3 ON SA1;

IADL2 ON IADL1;

IADL3 ON IADL2;

IADL3 ON IADL1;

DEP2 ON DEP1;

DEP3 ON DEP2;

DEP3 ON DEP1;

!covariates paths

PA1 ON SEX AGE URBAN MARRIAGE EDU;

PA2 ON SEX AGE URBAN MARRIAGE EDU;

PA3 ON SEX AGE URBAN MARRIAGE EDU;

SA1 ON SEX AGE URBAN MARRIAGE EDU;

SA2 ON SEX AGE URBAN MARRIAGE EDU;

SA3 ON SEX AGE URBAN MARRIAGE EDU;

IADL1 ON SEX AGE URBAN MARRIAGE EDU;

IADL2 ON SEX AGE URBAN MARRIAGE EDU;

IADL3 ON SEX AGE URBAN MARRIAGE EDU;

DEP1 ON SEX AGE URBAN MARRIAGE EDU;

DEP2 ON SEX AGE URBAN MARRIAGE EDU;
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DEP3 ON SEX AGE URBAN MARRIAGE EDU;

OUTPUT:

TECH1 TECH4

STANDARDIZED

MODINDICES;

Appendix A.3. The ASM - strong invariance

TITLE:

The Autoregressive Structural Model - strong (intercept) invariance

DATA:

FILE IS mydataImpNewCov.dat;

VARIABLE:

NAMES ARE ID hhID comID

SA1 IADL1T1-IADL1T5 DEP1T1-DEP1T8

SA2 IADL2T1-IADL2T5 DEP2T1-DEP2T8

SA3 IADL3T1-IADL3T5 DEP3T1-DEP3T8

SEX AGE URBAN MARRIAGE EDU

PA1 PA2 PA3;

!Note: SAiTj i=time j=indicator index

USEVARIABLES ARE

SA1 IADL1T1-IADL1T5 DEP1T1-DEP1T8

SA2 IADL2T1-IADL2T5 DEP2T1-DEP2T8

SA3 IADL3T1-IADL3T5 DEP3T1-DEP3T8
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SEX AGE URBAN MARRIAGE EDU

PA1 PA2 PA3;

ANALYSIS:

ESTIMATOR IS ML;

BOOTSTRAP IS 20000;

PROCESSORS = 4;

MODEL:

! Label for constraints

! The loadings of indicators are same across time

IADL1 BY IADL1T1* (L7)

IADL1T2 (L8)

IADL1T3 (L9)

IADL1T4 (L10)

IADL1T5 (L11);

IADL2 BY IADL2T1* (L7)

IADL2T2 (L8)

IADL2T3 (L9)

IADL2T4 (L10)

IADL2T5 (L11);

IADL3 BY IADL3T1* (L7)

IADL3T2 (L8)
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IADL3T3 (L9)

IADL3T4 (L10)

IADL3T5 (L11);

DEP1 BY DEP1T1* (L12)

DEP1T2 (L13)

DEP1T3 (L14)

DEP1T4 (L15)

DEP1T5 (L16)

DEP1T6 (L17)

DEP1T7 (L18)

DEP1T8 (L19);

DEP2 BY DEP2T1* (L12)

DEP2T2 (L13)

DEP2T3 (L14)

DEP2T4 (L15)

DEP2T5 (L16)

DEP2T6 (L17)

DEP2T7 (L18)

DEP2T8 (L19);

DEP3 BY DEP3T1* (L12)

DEP3T2 (L13)

DEP3T3 (L14)

DEP3T4 (L15)

DEP3T5 (L16)
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DEP3T6 (L17)

DEP3T7 (L18)

DEP3T8 (L19);

!allow correlated residuals across time for IADL

IADL1T1 with IADL2T1 IADL3T1;

IADL2T1 with IADL3T1;

IADL1T2 with IADL2T2 IADL3T2;

IADL2T2 with IADL3T2;

IADL1T3 with IADL2T3 IADL3T3;

IADL2T3 with IADL3T3;

IADL1T4 with IADL2T4 IADL3T4;

IADL2T4 with IADL3T4;

IADL1T5 with IADL2T5 IADL3T5;

IADL2T5 with IADL3T5;

!allow correlated residuals across time for DEP

DEP1T1 with DEP2T1 DEP3T1;

DEP2T1 with DEP3T1;

DEP1T2 with DEP2T2 DEP3T2;

DEP2T2 with DEP3T2;

DEP1T3 with DEP2T3 DEP3T3;

DEP2T3 with DEP3T3;

DEP1T4 with DEP2T4 DEP3T4;

DEP2T4 with DEP3T4;

DEP1T5 with DEP2T5 DEP3T5;

DEP2T5 with DEP3T5;
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DEP1T6 with DEP2T6 DEP3T6;

DEP2T6 with DEP3T6;

DEP1T7 with DEP2T7 DEP3T7;

DEP2T7 with DEP3T7;

DEP1T8 with DEP2T8 DEP3T8;

DEP2T8 with DEP3T8;

!modif indices suggest correlated residuals

IADL1T1 with IADL1T2;

IADL2T1 with IADL2T2;

IADL3T1 with IADL3T2;

DEP1T7 with DEP1T8;

DEP2T7 with DEP2T8;

DEP3T7 with DEP3T8;

!factor variance fixed to 1 for identification

IADL1@1 ;

DEP1@1 ;

!latent factor means fixed to 0 for identification

[IADL1@0 IADL2@0 IADL3@0];

[DEP1@0 DEP2@0 DEP3@0];

!intercept constraints across time

[IADL1T1-IADL1T5] (I7-I11);

[IADL2T1-IADL2T5] (K7-K11);

[IADL3T1-IADL3T5] (P7-P11);
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[DEP1T1-DEP1T8] (I12-I19);

[DEP2T1-DEP2T8] (I12-I19);

[DEP3T1-DEP3T8] (I12-I19);

!structural paths

!cross sectional structural paths

!time 1

IADL1 ON PA1;

IADL1 ON SA1;

DEP1 ON PA1;

DEP1 ON SA1;

DEP1 ON IADL1;

!time 2

IADL2 ON PA2;

IADL2 ON SA2;

DEP2 ON PA2;

DEP2 ON SA2;

DEP2 ON IADL2;

!time 3

IADL3 ON PA3;

IADL3 ON SA3;

DEP3 ON PA3;

DEP3 ON SA3;

DEP3 ON IADL3;



53

!autoregression paths across time AR(2)

PA2 ON PA1;

PA3 ON PA2;

PA3 ON PA1;

SA2 ON SA1;

SA3 ON SA2;

SA3 ON SA1;

IADL2 ON IADL1;

IADL3 ON IADL2;

IADL3 ON IADL1;

DEP2 ON DEP1;

DEP3 ON DEP2;

DEP3 ON DEP1;

!covariates paths

PA1 ON SEX AGE URBAN MARRIAGE EDU;

PA2 ON SEX AGE URBAN MARRIAGE EDU;

PA3 ON SEX AGE URBAN MARRIAGE EDU;

SA1 ON SEX AGE URBAN MARRIAGE EDU;

SA2 ON SEX AGE URBAN MARRIAGE EDU;

SA3 ON SEX AGE URBAN MARRIAGE EDU;

IADL1 ON SEX AGE URBAN MARRIAGE EDU;

IADL2 ON SEX AGE URBAN MARRIAGE EDU;

IADL3 ON SEX AGE URBAN MARRIAGE EDU;

DEP1 ON SEX AGE URBAN MARRIAGE EDU;

DEP2 ON SEX AGE URBAN MARRIAGE EDU;

DEP3 ON SEX AGE URBAN MARRIAGE EDU;
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Model indirect:

DEP1 IND PA1;

DEP1 IND SA1;

DEP2 IND PA2;

DEP2 IND SA2;

DEP3 IND PA3;

DEP3 IND SA3;

DEP2 IND PA1;

DEP2 IND SA1;

DEP3 IND PA2;

DEP3 IND SA2;

DEP3 IND PA1;

DEP3 IND SA1;

OUTPUT:

TECH1 TECH4

STANDARDIZED

MODINDICES

CINTERVAL (BCBOOTSTRAP);


