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Abstract

We study the impact of weather disturbances on the price relationship between

spring and winter wheat in the United States. Using the USDA crop progress and

condition report as a proxy for extreme weather events, we show that weather events

significantly affect the price differences between spring and winter wheat. Estimation

results support that a lower percentage of spring wheat in good/excellent conditions

leads to a higher price spread between spring and winter wheat. The 2021 drought

alone raised the price of spring wheat by 8% above winter wheat. Further, the impact

of weather disturbances differs by the inventory level, with the impact increasing at

higher levels of ending stocks-to-use ratios. And, quantile estimation shows that the

impact of spring crop conditions on price spread is greatest when the price spread

between spring and winter wheat is low. Overall, our results show how weather

disturbances affect commodity markets beyond production.
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chapter 1

Introduction

Agricultural production is susceptible to weather disturbances. With changing cli-

mate, extreme weather events such as droughts, floods, and heat waves are predicted

to increase in frequency and intensity in the future (IPCC, 2014). Ortiz-Bobea et al.

(2021) document that anthropogenic climate change has reduced global agricultural

total factor productivity by as much as 21% since 1961. Projected warmer weather

is expected to significantly reduce crop yield and increase yield uncertainty if the

current temperature trend continues (Wang et al., 2020).

Although the relationship between crop yield and climate change has been well

established in the literature, few studies have examined how weather disturbances

are linked to crop prices. Financial theory suggests that asset prices can be viewed as

a function of public information and order flows, with the latter driven by both pub-

lic/private information and investor shocks (Fleming et al., 2006). Given the public

nature of weather information, it is expected that market participants would actively

incorporate such information into their trading strategies provided the information

is valuable. Heterogeneous interpretation of public information, as well as the arrival

of private weather information and forecasts, could change order flows, leading to

additional price volatility.

The present paper aims to examine how weather disturbances affect the pricing

relationship between different classes of wheat in the United States. Wheat is one

of the most important staple crops in the world and plays a critical role in global

food security. Despite the increase of wheat productivity due to improved manage-

ment and higher-yielding crop varieties, climate stress (heatwaves and droughts in

particular) reduced global wheat production by 5.5% in 1980-2008 (Lobell et al., 2015;

Zampieri et al., 2017). The US is a major wheat producer and has been historically

among one of the top wheat exporters. Meanwhile, wheat futures trading in the

US plays a dominant role in global wheat price discovery (Janzen and Adjemian,

2017). Understanding the impact of weather disturbances on wheat prices in the US
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is important in helping market participants, both in the US and globally, to prepare

for and mitigate the negative effects associated with those events.

Five major wheat classes are produced in the US, including hard red spring (HRS),

hard red winter (HRW), soft red winter (SRW), white wheat, and durum wheat (ERS,

2022). Out of these, HRS, HRW, and SRW are actively traded on futures markets.

Although not perfectly substitutable, different wheat classes are often blended to

achieve the desired protein level.1 The production timeline differs between spring

and winter wheat, with the former planted in the fall and harvested in the summer

the following year, while the latter is sowed in spring and harvested in late summer

or fall in the same year. HRW, grown primarily in the Great Plains, accounts for

about 40% of total US wheat production. Meanwhile, HRS (mainly in the Northern

Plains) and SRW (mainly in states along the Mississippi River and in eastern States),

account for 25% and 15% of the US production, respectively (ERS, 2022). Given the

differences in the production timeline and geographical distribution, the three major

classes of wheat are subject to different weather shocks.

Understanding the relative prices between different classes is key for millers who

wish to blend different classes of wheat to get the desired protein levels in their

product. Spring wheat, which has a higher protein content, is ideal for products like

bread, while winter wheat, which has lower protein content, is suitable for products

like pastries and cake. With the knowledge of relative prices, millers can obtain

the desired blend by blending different classes of wheat based on available protein

content and prices, allowing them to make an informed decision and capitalize on the

opportunities presented by each class. Furthermore, knowledge of the price spread

is also pivotal for exporters and traders who are involved in spread trading. Instead

of focusing on the single price alone, understanding the relative prices can enable

traders to potentially profit from the price spread between different classes of wheat.

This can also help traders to manage their risk more effectively, as they are not solely

reliant on the performance of one asset.

1The protein level of HRS wheat typically ranges between 12% and 15% protein. HRW wheat has a
protein level of 10% to 13% and SRW’s protein content ranges from 8.5% to 10.5%.
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As shown in Figure 1.1, the prices of HRS, HRW, and SRW wheat show a high

correlation and tend to move together most of the time. However, extreme weather

events, particularly droughts, have significantly impacted these relationships. For

instance, when the U.S. northern plains2 was hit by a severe drought in 2021, HRS

wheat prices rose from less than $6/bushel at the beginning of 2021 to over $9/bushel

in July 2021. The increases in HRW wheat and SRW wheat prices, by comparison,

were much milder. Nearby HRW wheat futures prices only increased from around

$6 to $6.5/bushel, and SRW wheat futures prices increased from around $6.5 to

$7/bushel during the same period.

Figure 1.1: Hard red spring (HRS), hard red winter (HRW) and soft red winter (SRW)
wheat prices (cents/bushel), 2000-2022
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Similar extreme weather events have coincided with spikes and troughs in the

price differences between different classes of wheat (e.g., the 2012 and 2017 drought

episodes). Yet, very few studies have empirically examined such linkages. When

other market fundamentals are constant, wheat price differences are determined

by their average protein contents. For example, HRS wheat is often priced higher

2The US northern plains includes regions of the western Dakotas, Montana east of the Rocky
Mountains, northeast Wyoming, and a small section of northern Nebraska, where most of the US
HRS wheat is grown.
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than HRW and SRW due to a higher protein content (Espinosa and Goodwin, 1991).

Bekkerman (2021) notes that the spread between HRS and HRW is indicative of

the market demand for higher-protein wheat relative to the baseline winter wheat.

Size of the crop, carry-in stocks, domestic use, and export of the wheat is noted as

other fundamental factors driving the price differentials between different classes of

wheat (Wilson, 1983; McNew, 1991; Yang and Leatham, 1999). Bekkerman et al. (2016)

noted that transportation costs, availability of wheat in different regions, differences

between end-users, and supply and demand factors unique to the wheat classes may

also significantly affect the spread.

We hypothesize that in addition to those commonly examined variables, weather

disturbances significantly change the relative relationship between spring and winter

wheat prices in the U.S. While weather shocks can impact wheat price movements in

a number of ways, the main channel of its effect is by changing the expected yield

and supply at harvest. Since wheat is a storable commodity, changes in expected

supply are likely to further affect the projected ending stocks-to-use ratio, a key

variable in determining commodity price levels and volatility (Wright and Williams,

1982). Meanwhile, precipitation, temperature, and heat during the growing season

affect the protein content of wheat, incurring protein premiums or discounts. Pepe

and Heiner (1975) note there is a strong inverse relation between protein content

and yield in spring wheat, while Bekkerman (2021) found that the trade-off between

protein level and yield for wheat produced in the southern U.S. is minimal. Given

the substitutability between different classes of wheat, the expected yield and protein

changes may affect the relative demand of the three main classes of wheat, which

further impacts their pricing relationships. Finally, since all weather-related variables

contain measurement errors (Fleming et al., 2006), market participants may hold

heterogeneous views about the weather shock, and their trading strategies (which

often directly affect prices) can differ substantially.

The paper contributes to the literature on the economic cost of weather shocks.

As noted earlier, most of the existing studies evaluate the relationship between agri-

cultural production and climate change/weather shocks (e.g., Kuwayama et al., 2019;

Lobell et al., 2015; Ortiz-Bobea et al., 2021; Sternberg, 2011). Still, a few studies have
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attempted to explain how weather shocks affect commodity prices. Using structural

vector autoregression (SVAR) models, Schaub and Finger (2020) show that regional

and national droughts caused substantial increases in hay prices (up to +15%) but

did not affect feed grain prices. Maystadt and Ecker (2014) note that drought caused

livestock price changes, which fueled violent conflicts in Somalia. Ubilava (2017,

2018) show that El Nino Southern Oscillation (ENSO), a much-discussed climate

anomaly, strongly affects commodity price dynamics. Quiggin (2007) estimated that

food prices in Australia increased by 4.4% in 2002-2003 and by 12% in 2005-2007 due

to drought and other severe weather events.

Previous studies on the impact of weather shocks mostly use meteorological

variables (e.g., rainfall, temperature deviations, Standard Precipitation Index, US

Drought Monitor, and ENSO), which do not necessarily depict the real scenario of

the field. In fact, Proctor et al. (2022) find that how a weather variable is measured

significantly affects the estimate of its yield impact. A similar conclusion likely

applies to the impact of weather shocks on crop prices. In the present paper, we

instead use crop ratings from the USDA Crop Progress and Condition report as

a proxy for weather shocks. The report has been used to anticipate positive or

negative anomalies in production and forecast yield as it captures weather shocks

more aligned with field conditions. (e.g., Beguería and Maneta, 2020; Irwin et al.,

2009a; Kruse and Smith, 1994; Fackler and Norwood, 1999).

Our work is also linked to the strand of literature that investigates how market

participants respond to the arrival of news. In the crop market, USDA reports,

such as the World Agricultural Supply and Demand Estimates (WASDE), are closely

monitored by market participants. Various studies have shown that market prices sig-

nificantly react to USDA reports, and they lead to better resource allocation decisions

by realigning market participants’ expectations (Adjemian, 2012). Lehecka (2014)

investigated the informational value of USDA Crop Progress and Condition report

by analyzing reactions in corn and soybean futures markets, noting that market prices

react rapidly and rationally to newly available crop condition information. Bethlem

et al. (2022) further found that a 1% increase in good and excellent condition rating
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from the Crop Progress and Condition report would reduce the soybean futures

contract prices by 0.45% the day following the report release.

The present study links the two strands of the literature, to explore how weather

disturbances in the United States have changed the price relationship between spring

and winter wheat. Our empirical analysis relies on regression models comparing

spring and winter wheat prices, using crop data from the USDA Crop Progress

and Condition report as the main indicator of weather disturbances. Estimation

results show that crop conditions significantly affect the spread between spring and

winter wheat prices, with the 2021 drought raising the price of spring wheat by

almost 8% over winter wheat. Further, the impact of weather disturbances differs

by the level of inventory, with the magnitude of the impact increasing at higher

levels of ending stocks-to-use ratios. Quantile estimation shows that the impact

of spring crop conditions on the price spread is greatest when the price spread

between spring and winter wheat is low. Our results show how weather disturbances

affect commodity markets beyond production. Such information would be useful for

commercial traders, spread traders, and hedgers in designing their portfolios and

trading outcomes. Millers, exporters, and grain merchandisers can make informed

decisions about sourcing different classes of wheat ahead of time based on the price

spreads between classes and achieve profitability.
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chapter 2

Variables and Data

We consider futures prices of hard red spring (HRS), hard red winter (HRW), and soft

red winter (SRW) wheat. HRS is traded on Minneapolis Grain Exchange (MGEX),

with the main deliverables being HRS with a protein content of 13.5%. HRW and

SRW are traded on the Kansas City Board of Trade (KCBT) and Chicago Board of

Trade (CBOT), and the main deliverables are HRW with a minimum protein content

of 11% and #2 SRW wheat (with a protein level of 8.5-10.5%), respectively. Premiums

and discounts in the cash market are offered for different protein contents or grades

of wheat. Espinosa and Goodwin (1991) estimated one additional protein percentage

would increase the price premium by approximately 5 cents per bushel or about

$1.83 per metric ton for HRW wheat. A similar assessment was done by Parcell and

Stiegert (1998), estimating the marginal value of protein to be 8.5 cents per bushel for

HRW wheat and 6 cents per bushel for dark northern spring (DNS) wheat.

The dataset consists of weekly nearby futures prices of the three wheat classes

considered from 2000/01 to 2021/22, retrieved from the Bloomberg terminal. The

expiring futures contract is rolled to the next-to-expire contract on the last day of the

month prior to contract expiration. To match the release date of the Crop Progress

and Condition report, which is released on Thursdays at 8:30 am Eastern time, we

consider closing futures prices on Thursdays. Figure 2.1 top panel plots the prices of

HRS vs. HRW wheat, while figure 2.2 top panel plots the trajectories of HRS vs. SRW

wheat prices. Summary statistics are presented in table 2.1. Prices of all three classes

of wheat tend to move in tandem, with the HRS wheat having the highest price,

followed closely by HRW and SRW. On average, HRS is priced at a 56 cents/bushel,

and 78 cents/bushel premium above HRW and SRW wheat, respectively. As noted

earlier, a large portion of the price differences can be attributed to variations in

protein levels. Other variables such as stocks, production, domestic use, and exports

may also play a significant role in the price spreads (Wilson, 1983; Wilson and Chan,

1987; McNew, 1991).
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Figure 2.1: Hard red spring (HRS) and hard red winter (HRW) wheat prices and
spread (cents/bushel), 2000-2022
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The bottom panels of figures 2.1 and 2.2 show the spread between spring and win-

ter wheat prices, computed as logarithmic price differences. The spread fluctuated

around 9% and 13%, respectively, for HRS-HRW and HRS-SRW during the sample

period. Nonetheless, there are several notable periods where spreads experienced

significant surges and dips. In particular, the spread showed sharp increases in 2008,

2012, 2017, and 2021 in both plots.

In 2008, HRS wheat prices were almost 72% higher than HRW prices and about

77% higher than SRW prices. This period coincides with rapid fluctuations in com-

modity prices and the subsequent financial crisis (Etienne et al., 2015). Although a

myriad of factors may have played a role, late-spring freeze, and heavy rain at harvest

in the U.S., along with poor weather in other major wheat-producing countries

exacerbated the price increase. Janzen et al. (2014) indicate that the heightened price

volatility around this time can largely be attributed to supply disruptions—supply
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Figure 2.2: Hard red spring (HRS) and soft red winter (SRW) wheat prices and spread
(cents/bushel), 2000-2022
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shocks accounted for 40-62 % of the rise in wheat prices, while broad-based demand

shocks only had a 9-12% price impact.

In 2012, 80% of the US agricultural land was under severe drought, during which

the prices of spring wheat surged by roughly 30% compared to HRW and SRW

wheat prices. Another spike in the price spread occurred in 2017 when extreme

heat and drought took a toll on the spring wheat crop in the Northern US. The

percentage of the crop in “good" to “excellent" conditions in North Dakota, South

Dakota, and Montana fell to 36%, 10%, and 11%, respectively, leading to expectations

of a lower HRS wheat supply. Early indications of below-average HRW protein levels

compounded this effect, resulting in spring wheat prices rising above HRW and SRW

wheat prices by almost 50%. The most recent spike occurred in 2021 when almost all

the HRS wheat-growing regions in the Northern Plains experienced a drought. Due

to the significantly lower spring wheat supply, HRW and SRW wheat prices were

almost 35% below the HRS wheat prices during the summer of 2021.
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Table 2.1: Summary statistics of variables considered in the paper, 2001-2022

Variables Mean SD Min Max

HRS Wheat Prices (cents/bu.) 618.3 220.67 286.25 1330.5
HRW Wheat Prices (cents/bu.) 561.9 201.12 275.0 1295.2
SRW Wheat Prices (cents/bu.) 540.2 183.89 242.80 1200.5
Spread: HRS-HRW (%) 9.36 9.38 -7.38 48.12

Spread: HRS-HRW (cents/bushel) 56.41 61.70 -42.75 350.25

Spread: HRS-SRW (%) 12.96 8.87 -7.89 48.18

Spread: HRS-SRW (cents/bushel) 78.16 65.93 -41.5 420.0
Spring Wheat Crop Condition (G+E %) 62.71 16.57 9 86.0
Winter Wheat Crop Condition (G+E %) 45.66 11.40 27 71.0
HRS Stocks-to-Use (%) 34.87 11.19 10.64 66.20

HRW Stocks-to-Use (%) 37.39 15.78 9.31 69.22

SRW Stocks-to-Use (%) 35.22 16.99 9.40 76.87

Speculative Pressure HRS (%) 19.56 39.41 -71.93 94.38

Speculative Pressure HRW (%) 17.69 22.62 -47.97 71.58

Speculative Pressure SRW (%) -1.43 12.86 -35.70 46.70

Canadian Wheat Export (1000MT) 18988 3846.34 1500 27000

Argentine Wheat Export (1000MT) 9493 3175.06 1500 15000

While most of the spreads are positive, reflecting the protein premium between

spring and winter wheat prices, it is interesting to note that negative spreads occurred

rather frequently during the sample period. For instance, HRS wheat prices were at

a discount relative to HRW wheat for most of 2014. Data from the USDA shows that

the HRW crop production was low in 2013 compared to historical standards,3 while

HRS crop production had been high. Emslie (2014) notes that the large Canadian

wheat production further contributed to the negative price spread. In December 2013,

estimates showed that Canadian wheat yield would surpass the previous record by

21%. Since Canadian wheat is largely equivalent to the HRS wheat in the US and

Canada is one of the world’s largest wheat exporters, the HRS wheat prices in the US

significantly dropped following the news on expected yield. Meanwhile, Argentina,

which exports a significant amount of wheat to the global market, had a poor crop.

3Winter wheat usually enters dormancy in winter, using little water or soil nutrients.
The warmer-than-usual winter in 2012 caused young winter wheat plants to
grow, but the soil was too dry to support the growth due to the drought in
the summer of 2012. See https://www.reuters.com/article/usa-wheat-drought/
warm-and-dry-a-devastating-combination-for-u-s-wheat-crop-idUSL1E8N3DLP20121204
for a detail discussion.

https://www.reuters.com/article/usa-wheat-drought/warm-and-dry-a-devastating-combination-for-u-s-wheat-crop-idUSL1E8N3DLP20121204
https://www.reuters.com/article/usa-wheat-drought/warm-and-dry-a-devastating-combination-for-u-s-wheat-crop-idUSL1E8N3DLP20121204


11

The additional demand for HRW wheat from Brazil strengthened the HRW wheat

prices in the US, further contributing to the negative HRS and HRW spread.

Previous studies note that supply shocks play a role in the price spread between

different classes of wheat (Wilson, 1983; Wilson and Chan, 1987; McNew, 1991).

To examine the supply shock caused by weather disturbances, we use the data

derived from the USDA Crop Progress and Condition report. Although weather

or meteorological data are readily available, we prefer using the Crop Progress and

Condition data because it depicts the real scenario in the field. The report provides in-

formation on the progress and qualitative condition ratings of important crops based

on extensive surveys. NASS, USDA obtains this data by the non-probability crop

progress and condition surveys, representing subjective assessments provided by the

producers and other individuals such as county extension agents, and farm service

agency staff. These individual assessments are aggregated based on the weights

derived from historical NASS acreage estimates to form the report, expressing crop

condition data as a percentage of crops in “excellent", “good", “fair", “poor", and

“very poor" conditions. These estimates thus reflect the status of different variables on

the crop, including drought, excessive moisture, frost, heat stress, insect infestation,

and diseases. However, the impact of weather disturbances such as these can be

significant and have a greater influence on changes in crop conditions, as opposed to

the more localized and manageable impact of insects and diseases.

The winter wheat report is available starting from week 14 of a calendar year

(April) and ends with the harvest season in week 27 (July).4 For Spring wheat, the

data is available from week 20 (May) and ends in week 33 (August). But, in some

years, these reports available weeks can vary according to growing conditions. Since

the report shows the state of a crop at the regional or national level, it has been

used to anticipate positive or negative anomalies in production and forecast yield

(e.g., Beguería and Maneta, 2020). Despite the widespread availability of weather

information in real-time, the weekly Crop Progress and Condition reports continue

to hold significant value as a primary source of information on crop growth and

conditions. Lehecka (2014) posits that these reports are highly sought after and are

4The report does not distinguish between HRW and SRW wheat.
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among the most frequently requested publications distributed by NASS in addition to

the monthly Crop Production and World Agricultural Supply and Demand Estimates

(WASDE) report.

Following previous studies (e.g., Bekkerman, 2021), we combine the “good” and

“excellent” ratings to indicate the proportion of wheat crops in higher quality groups

and the remaining three ratings as lower quality groups. In general, the value of

this variable is high for good crop years and low for years impacted by weather

disturbances. Bekkerman (2021) argued that higher quality ratings (based on crop

conditions) may be associated with either higher yield or higher protein. In the

case of the former for spring wheat, this suggests that its supply should increase

and prices should decrease relative to winter wheat. For the latter, spring wheat

prices may increase, given the higher protein content. Bekkerman (2021) finds that a

higher proportion of Montana wheat categorized as excellent or good by the USDA is

associated with a lower probability that elevators would offer high protein premiums

in the region.

As suggested by table 2.1, the average good plus excellent crop conditions in

spring wheat is 62.71%, whereas for winter wheat it is 45.66%. However, spring

wheat crop conditions show higher variability, with the lowest value reaching 9%

and the highest reaching 86%. Figure 2.3a shows spring wheat crop conditions

from 2017 to 2022. In the years with normal weather conditions, the good plus

excellent percentage of spring wheat is in the range of 70-80% during the harvest,

whereas in the years with significant weather disturbances (e.g., 2017 and 2021), the

percentage of crops in higher-quality conditions drops to as low as 10%. Further,

figure 2.3b shows the drought severity and coverage index developed by the US

Drought Monitor for North Dakota in the same time frame of June to September

for years from 2017 to 2022. This index converts 5 different drought levels given

by the drought monitor (abnormally dry, moderate drought, severe drought, extreme

drought, and exceptional drought) into a single value for the area, ranging from 0 (for

abnormally dry) to 500 (for exceptional drought). North Dakota is the state with one

of the highest production of HRS wheat in the US. In 2021 and 2017, the index has

risen distinctly high above other normal crop years, showing the severity of drought
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in these years. This shows a strong correspondence between the crop condition and

the severity of weather disturbances during the respective periods. In other words,

the crop condition variable we constructed should at least partially reflect weather

disturbances in the wheat market.

Figure 2.3: Spring crop condition and drought severity index

2017

2018

2019

2020

2021

2022

20

40

60

80

20

40

60

80

Jun Jul Aug Sep
Months

G
oo

d
+

Ex
ce

lle
nt

C
on

di
ti

on
(%

)

(a) Percentage of spring crop in good and
excellent conditions in selected years

2017

2018

2019

2020

2021

2022

0

100

200

300

400

0

100

200

300

400

Jun Jul Aug Sep
Months

D
ro

ug
ht

Se
ve

ri
ty

an
d

C
ov

er
ag

e
In

de
x

(b) Drought Severity and Coverage Index of
North Dakota in selected years

In addition to weather disturbances, we consider several other explanatory vari-

ables. The first is the relative scarcity of each wheat class, proxied by the projected

ending stocks-to-use ratio for the current marketing year constructed using the USDA

WASDE report. Each month, the USDA WASDE report releases annual projections

of supply and demand in the current and next marketing years for various crops,

including the three classes of wheat. The ending stocks-to-use ratio measures carry-

over stocks as a percentage of total use, showing the tightness of the current supply-

demand relationship of the wheat market. The variable has been extensively used

in previous studies to estimate the impact of market-specific shocks on the prices

of storable commodities (e.g., Serra and Gil, 2013; Etienne et al., 2018; Lawson et al.,

2021). In this study, we use monthly projections from WASDE report and interpolate

it to four weeks to match the frequency of crop condition variable. The average stock-

to-use ratios for the three different wheat classes considered here are quite similar,

34.87% for HRS, 37.39% for HRW, and 35.22% for SRW wheat.

Given the importance of international competition on US wheat prices, we also

include monthly wheat export quantities from Argentina and Canada in our analysis.
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As noted earlier, Canadian wheat is largely equivalent to the HRS wheat produced in

the US. As Canada is a large exporter of spring wheat, the export of Canadian wheat

changes the world supply of HRS wheat. Similarly, Argentine wheat is similar to

winter wheat produced in the US. Given this, Argentine wheat exports can potentially

alter the prices of winter wheat in the US market. The export data is retrieved

from the Foreign Agriculture Service of the USDA. Here also, we interpolate the

monthly export data to four weeks to match with other variable frequency. The

average monthly export quantity of Canadian wheat is close to 19 million metric tons,

whereas Argentine wheat export is around 9 million metric tons during the sample

period. As a robustness check, we also consider exports from other major exporters

(Russia, EU, Ukraine and Australia). These results are reported in the Appendix.

Speculative activity is often cited as one reason for volatile commodity prices,

especially since the commodity market “financialization" started in the mid-2000s.

While some studies find evidence that speculation affected commodity prices (e.g.,

Bohl et al., 2018; Mayer, 2012; Obadi and Korecek, 2018), most of the existing lit-

erature rejects the premise that speculation moved prices away from fundamentals

(Irwin et al., 2009b; Sanders et al., 2004; Buyuksahin and Harris, 2011). Following the

literature (Sanders et al., 2004; Lehecka, 2015), we use the percent net long positions

held by non-commercials to measure speculative activities5:

SP =
NCL − NCS

NCL + NCS + 2 × NCSP
× 100

where NCL is non-commercial long, NCS is non-commercial short and NCSP is non-

commercial spread. We calculate the speculative pressure variable for all classes of

wheat using the Commitment of Traders (COT) report from the Commodity Futures

Trading Commission (CFTC). The COT report is released each Friday, reflecting the

position of each type of trader as of the Tuesday of each week. The average percent

of net long positions held by non-commercials in the HRS and HRW wheat market

is quite similar, 19.56% for HRS and 17.69% for HRW. By contrast, the speculative

index is much lower for SRW wheat, averaging -1.43%.

5we consider alternative speculative measures, and the results are qualitatively consistent with the
ones presented in the paper
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chapter 3

Empirical Approach

We estimate the following regression to understand the effect of weather disturbances

on the price spread between spring and winter wheat:

Spread = β0 + β1CropS + β2CropW + β3SUS + β4SUW + ΓX (3.1)

where, Spread refers to the logarithmic price difference between HRS wheat relative

to HRW or SRW wheat, CropS and CropW , are the percentages of good plus excellent

crop conditions for spring and winter wheat, respectively, and SUS, SUW denote

the stock-to-use ratio of spring and winter wheat. X is a vector of control variables

including wheat exports from Argentina and Canada expressed in natural logarithm

and speculative activities in each of the wheat markets. β′s and Γ are regression

coefficients. Since the projected ending stocks may contain weather information, we

also consider models excluding the stocks-to-use ratio. To allow the crop condition

reports to have differential effects on the dependent variable depending on the un-

derlying inventory level, we further consider interaction terms between stocks-to-use

ratios and crop ratings. Year-fixed effects are included to control for other variables

that do not vary much during a given marketing years, such as the average protein

content of each class of wheat and carry-in stocks from the previous marketing year.

Also, week-fixed effects are included to control for the effects like seasonality in price

spread. As noted earlier, weekly data from 2000 to 2022 is used for the analysis.

One issue with equation (3.1) is the potential endogeneity of speculative measures

and ending stocks-to-use ratios. The CFTC COT data are released every Friday for

positions held by different types of traders as of Tuesday. Since the dependent

variable refers to price differences at market close on Thursdays, the endogeneity

issue of the speculative measure may be minimal. For the stocks-to-use ratio, we

match the WASDE release schedule so that the ratios are computed based on the

report released prior to the date used to compute the dependent variable. This also
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minimizes the overlap between the information contained in the projected stocks-to-

use ratio and the crop conditions.

Along with the mean regression, we further use quantile regressions to allow

for possible non-linear relationships between weather disturbances and price spread.

Quantile regression examines the relationship between independent variables and

a conditional quantile of a dependent variable without making any assumptions

about the conditional distribution. The approach allows us to uncover dependencies

that exist in the conditional distribution’s outer regions rather than just the mean.

Specifically, the quantile regression for τth quantile is specified as:

QSpread(τ) =β0(τ) + β1(τ)CropS + β2(τ)CropW + β3(τ)SUS,

+ β4(τ)SUW + Γ(ø)X
(3.2)

where Q(.) is the quantile function. Compared to the conventional OLS regres-

sion, quantile regression has two main advantages. First, it does not assume any

distributions for the target variable. Conventional OLS regression assumes that

the target variable is normally distributed and can provide a false interpretation

when the variables have non-normal distributions. For instance, the dependent

variable may be skewed, have heavy tails, or have outliers. Quantile regression

makes no distributional assumptions about the target variable. Instead, it estimates

the relationship between the predictor variables and different quantiles of the target

variable, allowing for a more flexible modeling of the target variable’s distribution.

Second, it is more robust to outliers. Conventional OLS regression is sensitive to

outliers in the data, which can lead to biased estimates of the model parameters. In

contrast, outliers in quantile regression only affect the estimates of the quantiles to

which they belong and not the estimates of other quantiles. This means that outliers

have less impact on the overall relationship between the predictor variables and the

target variable, making quantile regression a more robust method for modeling data

with outliers.

We estimate the models using two versions of the data. The first data set only

includes dates when the Crop Progress and Condition reports are available. As a
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robustness check, we assume the same value of crop condition till the next season

for weeks without the Crop Progress and Condition reports, since the crop condition

remains the same after harvest.
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chapter 4

Results

In this section, we first discuss the results for the main variable of interest, weather

disturbances proxied by crop condition data, and the impacts of other explanatory

variables on the price spread from OLS regression. Subsequently, we discuss the

results from the quantile regressions. All results are reported based on the dates

when Crop Progress and Condition reports are available.

4 .1 ols estimation results

Table 4.1 shows the estimation results for equation (3.1). Models (1) and (2) report

the results without considering stocks-to-use ratios, model (3) and (4) includes stocks-

to-use ratios as well, and model (5) and (6) reports the interaction terms between

crop conditions and stocks-to-use ratios. All models include year-fixed effects and

week-fixed effects. Autocorrelation-consistent standard errors are used to account for

potentially correlated errors.

Our main focus is the relationship between crop conditions and the spread be-

tween spring and wheat prices. Estimation results show that spring crop conditions

negatively affect price spread. All else equal, when the portion of spring wheat in

good or excellent condition decreases by one percentage point, the HRS-HRW spread

on average increases by 0.1338%, and the HRS-SRW spread increases by 0.1327%.

This translates to an increase in the spring wheat premium on average by approxi-

mately 0.75 cents/bushel (27 cents per metric ton) above HRW, and approximately

0.71 cents/bushel (26 cents per metric ton) above SRW at the sample mean.

The average portion of spring wheat in good or excellent condition during the

sample period is around 60%, with the highest value reaching over 85% in favorable

crop years. However, during the years impacted by severe weather disturbances,

this ratio drops to between 10% and 30%. In 2021, the crop condition was 60

percentage points lower than that of 2020, a year when the crop did not experience
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Table 4.1: Estimation results of equation (3.1), weekly data from 2001-2022

Price Spread

HRS-HRW HRS-SRW HRS-HRW HRS-SRW HRS-HRW HRS-SRW

(1) (2) (3) (4) (5) (6)

Spring Crop Condition −0.1502
∗∗∗ −0.1694

∗∗∗ −0.1338
∗∗∗ −0.1327

∗∗
0.0231 −0.1662

(0.0463) (0.0601) (0.0433) (0.0544) (0.0963) (0.1275)
Winter Crop Condition 0.2552

∗∗∗ −0.0924
∗

0.3013
∗∗∗ −0.0436 −0.1598

∗ −0.3671
∗∗∗

(0.0488) (0.0471) (0.0518) (0.0454) (0.0919) (0.0889)
HRS Stock to Use −0.1189

∗ −0.2854
∗∗∗

0.2614 −0.4536

(0.0629) (0.0651) (0.2249) (0.3163)
HRW Stock to Use −0.0847 −0.6909

∗∗∗

(0.0598) (0.1286)
SRW Stock to Use 0.0338 −0.3603

∗∗∗

(0.0543) (0.1279)
Spring crop condition*
HRS stock to use −0.0068

∗∗
0.0018

(0.0032) (0.0046)
Winter crop condition*
HRW stock to use 0.0129

∗∗∗

(0.0025)
Winter crop condition*
SRW stock to use 0.0086

∗∗∗

(0.0024)
Speculation HRS −0.0166 0.0317 −0.0265 0.0396

∗∗ −0.0321
∗

0.0363
∗∗

(0.0177) (0.0207) (0.0192) (0.0188) (0.0190) (0.0176)
Speculation HRW −0.0643

∗∗ −0.0568
∗∗ −0.0624

∗∗

(0.0267) (0.0285) (0.0274)
Speculation SRW −0.1341

∗∗ −0.1804
∗∗∗ −0.1684

∗∗∗

(0.0564) (0.0497) (0.0491)
Canadian Export −0.0972 2.3214

∗∗
0.8539 3.6052

∗∗∗
0.5528 3.4340

∗∗∗

(0.9184) (1.1235) (0.9912) (1.0795) (0.9256) (1.0922)
Argentine Export −3.5319

∗∗ −1.6729 −3.1838
∗∗ −1.5455 −2.9567

∗ −1.9129

(1.5082) (1.5792) (1.5392) (1.8690) (1.5389) (1.9430)
Constant 34.9044

∗∗
18.9134 26.7744

∗
10.0340 41.3302

∗∗
33.3652

(15.1516) (18.5540) (15.8777) (20.0399) (18.3823) (23.4274)

Observations 547 547 547 547 547 547

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the price spread between different
classes of wheat. Models 1 and 2 are results excluding stocks-to-use ratios, and models 3 and 4 are
the results with stocks-to-use ratios. Models 5 and 6 add interaction terms between crop condition
and stock-to-use ratio in the regression. All models include year-fixed effects and week-fixed effects.
Auto-correlation consistent standard errors are reported in parenthesis.
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any significant weather disturbances. This 60-percentage point reduction in crop

condition results in a price increase of HRS on average by approximately 8% above

the price of HRW and SRW. In other words, the 2021 drought increased spring

wheat prices by approximately 44 cents/bushel (around 16 dollars/ton) over winter

wheat. For comparison, the average HRS-HRW spread was 17.4% (144.75 cents/bu)

in 2021/22. Similarly, the average spread between HRS and SRW wheat was 18.18%

(156.24 cents/bu), with a low of -11.7% (-142.5 cents/bu) and a high of 30.8% (284

cents/bu).

When a higher percentage of winter wheat is in good/excellent condition, the

price of winter wheat is expected to decrease due to the likely good harvest. All

else equal, this should widen the spread between spring and winter wheat prices.

All else equal, when the portion of winter wheat in good or excellent condition

decreases by one percentage point, the HRS-HRW spread on average decreases by

0.3013%. However, its effect is not statistically significant in the case of the spread

between HRS and SRW. This result appears to be consistent with Bain and Fortenbery

(2017), who found that, unlike corn and soybeans, crop condition report for winter

wheat generally does not affect prices. Bain and Fortenbery (2017) note that one

plausible explanation is that the crop conditions reports for winter wheat combine

information from many classes of wheat, including hard red, soft red, soft white,

and hard white, each of which has distinct qualities. As a result, expectations for

average yield across all classes of wheat may conceal heterogeneity within a given

class. However, the portion of Hard Red Winter (HRW) wheat grown in the US is

larger than that of other winter wheats, the condition of the winter crop may more

accurately reflect the condition of HRW wheat than Soft Red Winter (SRW) wheat.

This could result in the winter wheat crop condition being more significant for HRW

wheat spreads, but not necessarily for SRW wheat spreads. Similarly, even though

spring crop condition also comprises different classes of wheat like HRS, durum and

white wheat, the proportion of other spring wheat production compared to HRS is

much smaller, which may have enhanced the capability of spring crop condition to

represent HRS wheat.
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A higher stock-to-use ratio implies greater supply in excess of demand and hence

should suggest lower prices. This is the case with the ending stocks-to-use ratio

of spring wheat, which negatively affects the price spread. A one percentage point

increase in the stock-to-use ratio of HRS wheat results in a 0.12% decrease in the HRS-

HRW price spread and a 0.28% decrease in the HRS-SRW spread. This result is in line

with those found by previous studies (e.g., Algieri, 2014; Wilson, 1983; Wilson and

Chan, 1987).Algieri (2014) found that 1% increase in the stocks-to-use ratio would

trigger the real price of wheat to drop by 0.9%. Wilson (1983) found a negative

relationship between the supply of HRS wheat and prices. Similarly, Wilson and

Chan (1987) noted the importance of stocks of each class of wheat in explaining the

price levels—they found HRS wheat stocks were overwhelmingly significant across

all three wheat futures markets.

We further explore whether the impact of crop conditions varies by the levels of

stocks-to-use ratios. Models (5) and (6) of table 4.1 present the estimation results

when interaction terms between crop conditions and the stocks-to-use ratio of respec-

tive wheat classes are included. For spring crop conditions, the impact on the spread

between HRS and HRW goes on increasing with the increasing stocks-to-use ratio of

HRS wheat. On the other hand, the impact on the spread between HRS and SRW

does not vary with the stocks-to-use ratio of HRS wheat. Similarly, for winter wheat

crop conditions, the interaction term is positive with the coefficients of crop condition

being negative. This also shows that the impact of winter crop conditions increases

with increasing stocks-to-use ratios. However, the magnitude of the coefficients are

small for the interaction term.

4 .2 impacts of other control variables

We also consider exports of major competitors and speculative activities as control

variables in the estimation. Most of the wheat produced in Argentina is similar in

protein levels to the hard red winter wheat produced in the US. An increased supply

of winter wheat from Argentina would depress the price of winter wheat in the

global market. On the other hand, most of the wheat produced in Canada closely
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resembles the HRS wheat in the US. Increased export of Canadian wheat leads to a

decrease in the price of spring wheat in the USA. However, the estimation results are

counter-intuitive as seen in table 4.1, with exports from Argentina having negative

coefficients and exports from Canada having positive coefficients. Also, Canadian

exports only affect the price spread between HRS and SRW. Meanwhile, Argentine

exports only affect the price spread between HRS and HRW, this may be because

the Argentine wheat resembles HRW wheat produced in the US. Other major wheat

exporting countries like Australia, EU, Russia, and Ukraine export both spring and

winter wheat and can also play a role in the price discovery of wheat traded in the

US futures market. Results including these exporting countries are reported in the

appendix.

Speculation is sometimes blamed to be responsible for increased volatility and

price changes in commodity markets. There is a long going debate in the litera-

ture on whether speculative activity affects the prices of commodities in the futures

market. Wimmer et al. (2021) suggests that the results found in previous studies

differ with the type of commodity under examination, the sample period of the

data, the measurement of the focus variables (return, volatility, or spread), and the

inclusion of other control variables. Our estimation results show that speculative

activity significantly impacts price spreads. All else equal, a one percentage point

increase in the speculative pressure in the HRS market increases its price by 0.04%

relative to SRW prices. The results on speculative activities hold across most of

the specifications considered and are consistent with some previous studies on the

speculative effect of wheat prices. For instance, Algieri (2014) found a positive

relationship between speculation and wheat futures and cash prices, with a 1%

increase of financial speculation increasing wheat prices by 0.7%. In a recent study,

Li et al. (2022) found that commodity index traders, a group of speculators, exerted

a more important role in the SRW wheat futures market than corn and soybeans,

noting that the percentage of open interest attributed to commercial traders were

significantly lower in wheat relative to the other markets.
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4 .3 quantile regression results

Figure 4.1 shows the results from quantile regressions as specified in equation 3.2

for various quantiles (τ) of price spreads. The coefficients of spring crop conditions

in the HRS-HRW spread and HRS-SRW equation is presented in the top row of the

figure, while the coefficients for winter crop conditions are plotted in the bottom

row. Results overall are consistent with the OLS results in table 4.1—increase in

good to excellent spring crop conditions negatively affect spread, while the impacts

of winter crop conditions positively affect the spread with HRW and are mostly

non-significant in the case of spread with SRW. However, considerable heterogeneity

exists at different quantiles.

As can be seen in figure 4.1a, in the case of the spread between HRS and HRW,

the magnitude of the effect for spring crop conditions declines as we move to higher

quantiles. This suggests that when the spread between spring and winter wheat

prices is narrower, the same magnitude of change in crop condition exerts a much

larger impact than when the spread is wider (i.e., at higher quantiles). When the

spread is narrow due to possibly high expected supply and consequently low spring

wheat prices, a shock to weather conditions that further improves spring crop condi-

tions may lead traders to overreact to the positive yield scenarios, further narrowing

the spring and winter price spreads. It may also be possible that when the expected

yield is high, the expectation of potentially lower protein content of spring wheat

(Pepe and Heiner, 1975; Bekkerman, 2021, e.g.,) significantly decreases spring wheat

prices relative to winter wheat. Similarly, the impact of spring crop condition in the

spread between HRS and SRW also declines to become insignificant in the higher

quantiles of price spread above 80%, as seen in figure 4.1b.

While the effect of winter crop conditions is mostly non-significant for the spread

between HRS and SRW, it is positively significant for the spread between HRS and

HRW. Also, the effect increases when the spread between HRS and HRW is in

higher quantiles. That is, when the price spread between spring and winter wheat is

large, an improvement in winter crop conditions will further widen the price spread.

Veronesi (1999) shows that people tend to overreact to the bad news in good times

and underreact to the good news in bad times. This can explain why the impact
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Figure 4.1: Coefficients of crop conditions at different quantiles of price spread
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(b) Spring crop condition, HRS-SRW spread
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(c) Winter crop condition, HRS-HRW spread
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(d) Winter crop condition, HRS-SRW spread
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Notes: for each subplot, shaded areas represent 95% confidence interval, dark black line represents
quantile estimates.

of spring crop condition ratings is higher when the price spread is lower and the

impact of winter crop condition ratings is higher when the price spread is higher.

Overreaction in the financial market happens when traders respond excessively to

the market news or events, causing the price of the asset to temporarily deviate from

their underlying fundamental values. Borgards et al. (2021) confirms this hypothesis

of overreaction in the futures market too. In the case of spring wheat, when the
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price spread is lower, the expectation of a good crop that leads to low prices can be

perceived as bad news by traders, causing them to overreact and further decrease

the prices of spring wheat, thus lowering the price spread even further. Similarly,

in the case of winter wheat, when the price spread is higher, the expectation of a

good winter crop leading to lower winter wheat prices can again be perceived as bad

news by traders, causing them to overreact and further moving the prices down, thus

widening the spread. Along with overreaction, other market phenomenons like herd

mentality and momentum trading can also contribute in moving the prices further.

Overall, quantile regression results suggest that weather information as proxied

by crop conditions has the greatest impact when the spring and winter wheat price

spread is low, or when spring wheat prices are close to winter wheat prices. Exam-

ining the data, we find that the low price spread period between spring and winter

wheat prices is typically associated with higher levels of supply of spring wheat

relative to winter wheat. This surplus of spring wheat creates an expectation of

lower protein content, which in turn reduces the protein premium received by spring

wheat and contributes to a narrower price spread. Two notable examples of low price

spread periods between spring and winter wheat prices occurred in 2006/07 and

2013/14. In 2006/07, a larger HRS wheat crop expectation put downward pressure

on spring wheat prices, resulting in a narrower price spread. Similarly, in 2013/14,

a higher world supply of spring wheat, driven in part by increased production of

Canadian HRS wheat, contributed to a lower protein premium and narrower price

spread between spring and winter wheat.
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chapter 5

Conclusions

Weather patterns play a significant role in crop production. Despite the abundant

evidence on the negative impact of weather disruptions on global crop supply, em-

pirical evidence on how these events affect crop prices remains scant. In this study,

we examine how weather disturbances affect the price spread between spring and

winter wheat in the United States. This spread is a critical factor for millers, traders,

and exporters in determining their acquisition decisions for different wheat classes,

either to blend or trade. To measure the impact of weather events, we use the

percentage of crops in good to excellent condition from the USDA Crop Progress and

Condition report as a proxy for weather events, as it provides the real field scenario

of the crop and is continuously used to anticipate positive or negative anomalies

in the crop production. Using these crop condition reports, we show that weather

disturbances, especially those associated with spring wheat, significantly affect the

price relationship between different classes of wheat.

Estimation results show that a lower percentage of spring wheat in good or ex-

cellent condition, suggesting negative weather disturbances, leads to a wider spread

between spring and winter wheat prices. In 2021 when the drought decimated much

of the spring wheat crops, the anticipated reduction in supply is estimated to have

raised the price of spring wheat by 8% above winter wheat prices. On the other

hand, weather disturbances in winter wheat appear to significantly alter the price

spread between HRS and HRW but not between HRS and SRW. This may be due

to the aggregated nature of the winter crop condition report that comprises many

different classes of wheat with unique characteristics and uses. And, as HRW is the

most widely grown type of winter wheat, the aggregated report may better reflect its

condition compared to other types of winter wheat, such as SRW.

We further show that the impact of weather disturbances varies little with the

level of inventory. The impact of crop conditions increases with the increasing levels

of stock-to-use ratios. Through quantile regressions, we evaluate the heterogeneous
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effect of crop conditions on different quantiles of price spreads. The effect of the

spring crop conditions variable is seen to be higher when the price spread between

spring and winter wheat is narrow. Whereas, for the winter wheat crop condition, its

effect grows to be higher when the price spread becomes wider.

Weather events have become increasingly volatile in recent years due to climate

change, which poses a significant threat to the price stability in commodity mar-

kets. For the different classes of wheat which are closely related and often show co-

movement in their prices, these weather disturbances can cause one class of wheat

price to deviate, leading to higher variations in the price spread. Farmers, exporters,

hedgers, commercial traders, millers, and spread traders are among the groups

vulnerable to the disruptions caused by these events.

Our results provide information for policymakers to anticipate the possible dam-

ages caused by extreme weather events and the possible need for the policies in

future to mitigate the loss. Further, despite the debate on the usefulness of crop

progress and condition report, our results show that the report is still used by the

market participants in anticipating the potential yield of the crop. For commodity

traders, with increasing variation in the price spread, a better understanding of how

weather events affect the relative price relationship between different classes of wheat

can improve their portfolio design and trading outcomes. The relative prices can be

particularly important for the traders involved in spread trading. Further, hedgers

also can use this information to decide which futures contracts to buy or sell in

order to effectively manage the price risk. Information from this study would also

benefit the milling industry as the relative price ratio affects the use of different

classes of wheat when blending for desired protein levels. As millers usually make

their sourcing decisions months ahead of the actual delivery, understanding how

weather events impact these ratios would enable millers to make informed decisions

about sourcing and pricing strategies. Both the domestic and international millers

can benefit from these findings. For exporters, relative prices can have an impact

on deciding the destination of the exports. For example, some countries are rigid in

their protein requirement in wheat, whereas others are very sensitive to the prices

regardless of protein content. In this scenario, when the price spread is larger,
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exporters can direct the higher protein wheat with higher prices to the countries

willing to pay higher prices for protein content. Meanwhile, they can direct the lower-

priced wheat to countries sensitive to price changes. These results would benefit

the overall grain merchandisers in deciding and maintaining the inventory levels in

relation to the price changes.

It is essential to recognize that, there may be other factors in addition to the

ones considered in this study that can potentially have an impact on the prices

of different classes of wheat. Given that wheat is a globally traded commodity,

different supply and demand factors around the globe can have an impact on the

price spreads between spring and winter wheat. The impact of weather disturbances

in other wheat-producing regions of the globe may also be felt in the wheat markets

of the US. Additionally, the effect of COVID-19 and the Russia-Ukraine conflict on

the global commodity market could be substantial which is not explicitly isolated

in this study. Further, the interrelationship between different commodities in their

end uses can also impact the demand for one or other commodities. For instance, a

drought in the corn-producing belt could have an impact on wheat prices. As SRW

wheat is often used as a substitute feed grain to corn, a rise in corn prices can shift the

demand for SRW wheat leading to price changes in SRW wheat. These limitations of

the current study can be extended in future works to explore the full range of factors

that could impact the prices of different classes of wheat.
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appendix a

Robustness Checks

Table a.1: Estimation results of equation (3.1) using the extended dataset, weekly
data from 2001-2022

Price Spread

HRS-HRW HRS-SRW HRS-HRW HRS-SRW HRS-HRW HRS-SRW

(1) (2) (3) (4) (5) (6)

Spring Crop Condition −0.1277
∗∗∗ −0.1402

∗∗∗ −0.1111
∗∗∗ −0.1182

∗∗∗
0.0165 −0.2376

∗∗

(0.0433) (0.0513) (0.0393) (0.0445) (0.0770) (0.0939)
Winter Crop Condition 0.0773

∗∗∗ −0.1077
∗∗∗

0.1090
∗∗∗ −0.0568

∗∗ −0.2972
∗∗∗ −0.2324

∗∗∗

(0.0225) (0.0278) (0.0238) (0.0266) (0.0575) (0.0508)
HRS Stock to Use −0.2145

∗∗∗ −0.3254
∗∗∗

0.0582 −0.6729
∗∗∗

(0.0444) (0.0447) (0.1713) (0.2254)
HRW Stock to Use 0.0333 −0.6485

∗∗∗

(0.0432) (0.1063)
SRW Stock to Use −0.0046 −0.2548

∗∗∗

(0.0424) (0.0816)
Spring crop condition*
HRS stock to use −0.0051

∗∗
0.0050

(0.0024) (0.0032)
Winter crop condition*
HRW stock to use 0.0136

∗∗∗

(0.0019)
Winter crop condition*
SRW stock to use 0.0052

∗∗∗

(0.0015)
Speculation HRS 0.0088 0.0357

∗∗∗
0.0058 0.0356

∗∗∗ −0.0056 0.0348
∗∗∗

(0.0133) (0.0133) (0.0134) (0.0120) (0.0137) (0.0120)
Speculation HRW −0.1161

∗∗∗ −0.1150
∗∗∗ −0.0954

∗∗∗

(0.0190) (0.0191) (0.0195)
Speculation SRW −0.1761

∗∗∗ −0.2107
∗∗∗ −0.2116

∗∗∗

(0.0294) (0.0266) (0.0254)
Canadian Export −0.2958 1.0704 0.9327 3.3531

∗∗∗
1.0561 3.6343

∗∗∗

(0.9580) (1.4675) (1.1109) (1.0500) (1.0278) (1.0162)
Argentine Export −0.4572 −0.7354 −0.3569 −0.2679 −1.4635

∗ −0.9259

(0.8282) (0.9147) (0.8513) (1.0441) (0.8639) (1.0484)
Constant 14.2016 17.6756 4.8803 −1.5971 28.5515

∗∗
19.0035

(11.7611) (18.0861) (13.0564) (14.6788) (13.3802) (15.7917)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the price spread between different
classes of wheat. Models 1 and 2 are results excluding stocks-to-use ratios, and models 3 and 4 are
the results with stocks-to-use ratios. Models 5 and 6 add interaction terms between crop condition
and stock-to-use ratio in the regression. All models include year-fixed effects and week-fixed effects.
Auto-correlation consistent standard errors are reported in parenthesis.
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Table a.2: Estimation results of equation (3.1) including other variables as a
robustness check

HRS-HRW HRS-SRW HRS-HRW HRS-SRW HRS-HRW HRS-SRW
(1) (2) (3) (4) (5) (6)

Spring crop condition
(Poor + Very Poor) 0.0443 0.0563 −0.0054 0.2449

(0.0509) (0.0600) (0.1683) (0.2330)
Winter crop condition
(Poor + Very Poor) −0.2878

∗∗∗
0.0440 0.1118 0.3156

∗∗∗

(0.0464) (0.0434) (0.0798) (0.0847)
Spring crop condition
(Good + Excellent) −0.1410

∗∗∗ −0.1381
∗∗

(0.0443) (0.0562)
Winter crop condition
(Good + Excellent) 0.3105

∗∗∗ −0.0920
∗

(0.0584) (0.0499)
HRS Stock to Use −0.1017 −0.3035

∗∗∗ −0.1995
∗∗ −0.2330

∗∗ −0.1415
∗∗ −0.2903

∗∗∗

(0.0624) (0.0661) (0.0898) (0.1116) (0.0691) (0.0697)
HRW Stock to Use −0.0871 0.1869

∗∗ −0.0786

(0.0593) (0.0797) (0.0649)
SRW Stock to Use 0.0270 0.1837

∗∗
0.0233

(0.0556) (0.0829) (0.0539)
Spring crop condition*
HRS stock to use 0.0037 −0.0086

(0.0067) (0.0094)
Winter crop condition*
HRW stock to use −0.0113

∗∗∗

(0.0023)
Winter crop condition*
SRW stock to use −0.0066

∗∗∗

(0.0023)
Speculation HRS −0.0174 0.0436

∗∗ −0.0263 0.0350
∗ −0.0155 0.0471

∗∗∗

(0.0183) (0.0188) (0.0188) (0.0182) (0.0195) (0.0174)
Speculation HRW −0.0588

∗∗ −0.0592
∗∗ −0.0544

∗

(0.0278) (0.0279) (0.0314)
Speculation SRW −0.1843

∗∗∗ −0.1569
∗∗∗ −0.2309

∗∗∗

(0.0504) (0.0525) (0.0571)
Canadian Export 1.1402 3.6694

∗∗∗
0.7663 3.1669

∗∗∗
5.3663 8.8262

∗∗

(0.9693) (1.1146) (0.9657) (1.1352) (4.1202) (4.4063)
Argentine Export −2.6300 −1.6506 −2.8317

∗ −1.9212 −3.2910
∗∗ −1.2491

(1.7456) (1.9215) (1.6724) (1.8836) (1.5179) (1.9323)
Russian Export −1.5365 0.2184

(1.2583) (1.2730)
Ukraine Export 1.3870 −0.0977

(0.9454) (1.1796)
EU Export −4.6649 3.4184

(3.6041) (3.8810)
Australian Export −4.9220 −5.8987

(4.2342) (4.5229)
Constant 29.0382 0.2785 26.9746 0.6870 75.0742

∗ −18.6038

(17.9887) (20.8353) (17.4534) (20.5796) (40.3694) (45.5509)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the price spread between different
classes of wheat. All models include year-fixed effects and week-fixed effects. Auto-correlation
consistent standard errors are reported in parenthesis.
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