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Abstract

The noisy replication method has been proven to be an effective approach in learning

the imbalanced binary data set in previous researches. This thesis expands its concept

and effectiveness in broader scenarios: we study with several levels of sigma noise, a

wide range of imbalanced ratios (IR), eight commonly used machine learning models,

both binary and multi-class data sets, adding both noise and anti-noise, and more

than 60 simulated and real data sets, etc. This thesis finds that the performance

of the noisy replication method is significantly improved with the increase of IR by

adding a relatively small noise for some models, KNN, Neural Network and C5.0, for

instance. Moreover, it further shows that the noisy replication method is an ideal

model-free approach in learning both the binary and the multi-class imbalanced data

sets in terms of ROC area and Kullback-Leibler distance.
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Chapter 1

Introduction

Imbalanced data, or skewed data, refers to a data set which has a dominant class

much larger than other classes in number, or a data set which has one or more

underrepresented classes [3, 4, 5]. During the past decade, there has been a significant

improvement in the machine learning, data mining, and big data area. Lots of new

methods and new applications are actively evolving at a fast pace. So is the study of

imbalanced data set. Therefore, a good algorithm dealing with the imbalanced data

set will have significant practical implications in many fields, such as finance, biology,

medicine, telecommunication [6], and even terrorist detection. For instance, artificial

intelligence scientists need to deal with the imbalanced data so as to recognize facial

expressions [7]. The online advertising company may be interested in the click through

rate in order to impress the audience [8]. In medical research, the number of patients

of a rare disease is much fewer than common patients. To predict, prevent, and cure

the disease need to face the imbalanced data issue. To solve this challenging machine

learning problem [9], we introduce a method called noisy replication.

In this thesis, we refer to the dominate class as the majority class, and the class

with the least number of observations as the minority class. Typically, for an imbal-

anced data set, the number of observations in the minority class are far smaller than

one or more other classes. For an imbalanced binary data set, it can be expressed as

T = {(xi, yi), i = 1, ..., n0 +n1} = {(xi, 0), i = 1, ..., n0}∪ {(xi, 1), i = 1, ..., n1}, where

n0 >> n1. The class whose response variable equals to 0 is the majority class, while

the class with the response variable equals to 1 is the minority class. For a data set

containing three or more classes, the majority class is the class with the largest obser-

vations, while the minority class has the least number of observations. The imbalance

ratio (IR) is defined as the the number of the majority class over the number of the

minority class. The KEEL (Knowledge Extraction based on Evolutionary Learning)
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data set classifies with two values IR = 1.5 and IR = 9.0 [10]. Therefore, we adopt

a similar principle, and any data set with IR is equal to or greater than 1.5 will be

defined as an imbalanced data set, regardless of the number of total classes.

A variety of researches have been done in learning the imbalanced data. He and

Garcia (2009) summarized many methods for learning the imbalanced data set, such

as the oversampling/undersampling method, the cost-sensitive method, the kernel-

based method, etc. [5] This thesis mainly concentrates on proving the effectiveness

of a machine learning algorithm, the noisy replication method, in predicting and

classifying the imbalanced data set with two or more classes. The basic principle of

the noisy replication method is to add a slight noise to the minority class, and to

duplicate the minority observations several times, so as to lower the skewness of the

data set and increase the success rate of prediction and classification. That means

after applying this method, the data set should be T = {(xi, yi), i = 1, ..., n0 + n1} =

{(xi, 0), i = 1, ..., n0} ∪ {(xi + εij, 1), i = 1, ..., n1 ×m}, where εij refers to the noise

added to each observation in the minority class, and it should be scaled according

to the value of that observation. If the observation value is large, then εij should

be increased, and vice versa. In addition, m refers to the number of duplications.

Consequently, the total number of observations is (n0 + n1 ×m) after applying the

noisy replication method. That means we increase the number of observations in a

reasonable way, decrease the skew of the data set, and increase the success rate to

predict the imbalanced data set.

The noisy replication method has been proved to be effective for imbalanced bi-

nary data sets. Lee (1999) first demonstrated that by adding noisy replicates to the

minority class, the prediction performance of several classification models could be

improved [11]. Lee (2000) then improved the algorithm by increasing replications of

the minority part, and adding noise to the training data set [4]. To further expand

this methodology, we tested both binary and multi-class data set with different lev-
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els of noise in eight commonly used machine learning models: K-Nearest Neighbors

(KNN), Linear Discriminant Analysis (LDA), Logistic Regression (Logistic), Support

Vector Machine (SVM), Neural Network (Neural), Näıve Bayes (NB), C5.0, and Par-

tial Least Squares Discriminant Analysis (PLS). The cross-validation method is also

applied for a more accurate result. This thesis will continue the research on noisy

replication methodology, and bring its application to a broader scope. At the end of

this thesis, we will get clearer answers to the following questions:

1. What kind of noise should be added?

2. Where should the noise be added, training data set, testing data set or both?

3. How many times should the minority classes be repeated?

4. Will anti-noise, or two-way vibration improve the performance?

5. Can this algorithm be applied to both the qualitative and the quantitative data?

6. Will this method be applied to the data set with multiple classes?

7. Will the imbalance ratio (IR) influence on the model performance?

8. How to measure and assess the performance of the algorithm, such as ROC area

and Kullback-Leibler distance? Which one is better?

9. Which model performs better with the noisy replicates?

10. How good is this method compared with other algorithms using the same real

data set?

There are six chapters in this thesis. Followed by this introduction chapter, Chap-

ter 2 introduces eight commonly used machine learning models, and the performance

metrics of the algorithm. Chapter 3 further explains the noisy replication method

with the pseudocode, and tests this method with a simulated highly imbalanced bi-

nary data set. Chapter 4 continues the testing with about fifty (50) real binary data

sets getting from the KEEL website. Chapter 5 expands the application of noisy

replication method to multi-class imbalanced data set. Both a simulated data set
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and ten (10) real data sets are tested. Chapter 6 concludes our findings and points

out the direction for future researches.
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Chapter 2

Model Selection

Two types of variables are often studied: quantitative (also called continuous or nu-

merical) data and qualitative (categorical) data. The quantitative variable measures

the quantity of an observation, such as age, weight, height, income, etc. The qual-

itative variable approximates or characterizes the attributes of an observation into

different categories, such as gender, education level, ethnicity, diagnosis result (posi-

tive or negative), etc. Both types of variables are widely used in scientific research as

well as in business survey. This thesis studies the qualitative data. Hence, a data set

could have either two classes or more than two classes (multi-class). We are interested

in predicting to which class the new observation belongs, regardless of the number of

classes in the dependent variable. Both classification methods and regression methods

will be adopted.

This chapter lays the theoretical foundation in order to address the goal of this

thesis. We first introduced eight commonly used machine learning models: 10-Nearest

Neighbors (10NN), Linear Discriminant Analysis (LDA), Logistic Regression (Logis-

tic), Support Vector Machine (SVM), Neural Network (Neural), Näıve Bayes (NB),

C5.0, and Partial Least Squares Discriminant Analysis (PLS). After that, we de-

scribed two criteria in measuring the performance of these models: the Receiver

Operating Characteristic (ROC) method and the Kullback–Leibler Distance (KL dis-

tance) method. An indispensable tool in model statistics, Cross-Validation (CV), is

also discussed in the end of this chapter.

2.1 K-Nearest Neighbors (KNN)

Given a testing observation x0, the closest K training observations near x0 are selected,

and the classification of x0 is defined by the largest probability of these K training
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observation. This is called K-nearest neighbors (KNN) method. A lower K value

corresponds to a data set which has low bias and very high variance. A higher K

value corresponds to a data set which has low variance but high bias. When K = 0,

the training error rate is 0, but the testing error rate should be higher. Therefore,

while KNN is one of the simplest classification methods, it can also make highly

accurate predictions if each class of the data set has very dissimilar feature values.

We will adopt the kknn function from the R package “kknn” [12] with K = 10.

2.2 Logistic Regression

The general linear model (GLM) could be an easy and straightforward solution of

predicting the quantitative data; however, when the response variable becomes the

qualitative data, a better classification method (classifier) should be deployed, and

logistic regression is one of the solutions. Similar to KNN, logistic regression is a

widely-used classifier. If the response variable is binary 0 or 1, the probability of

the response variable will not be below 0 or above 1, while the general linear re-

gression may generate a probability prediction below 0 or above 1, which could be

contradictory to the reality. The logistic function looks like a general linear regression

function:

log

(
p(X)

1− p(X)

)
= β0 + β1X

where X is the observation data set. p is the probability of the observed data sets,

ranging between 0 and 1. The form of the logistic function is S-shaped. Intercept and

slope could be calculated by maximum likelihood method. For a two-class or binary

qualitative response dataset with multiple predictors, the multiple logistic regression

function could be built (or multinomial logistic regression):

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp
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where Xi represents different training data sets. The logistic regression could also

be extended to data sets that contain multiple response classes. Compared with the

SVM, mentioned below, the logistic regression is more simplistic in estimating the

classification boundary [8]. The most frequently used functions in R are multinom

(from the package nnet) [13] and mlogit (from the package mlogit) [14].

2.3 Linear Discriminant Analysis (LDA)

When there are more than two (2) response classes, the linear discriminant analysis

(LDA) could serve as a more stable and popular method than the logistic regression

[1]. The linear discriminant analysis is like the principal component analysis (PCA),

but it focuses on maximizing the separability among all known classes. In this thesis,

the lda function in the R package “MASS” will be applied [15].

2.4 Support Vector Machines (SVM)

The support vector machine (SVM) is another supervised classification approach. The

main idea of SVM is to find a hyperplane, a flat subspace, to separate the training data

set into two classes. The maximal margin hyperplane has the farthest perpendicular

distance to each side of the training observations (Figure 2.1). However, there are

some circumstances where the training data set is inseparable. To solve this problem,

the support vector classifier makes some “violations” by allowing some observations

to fall into the incorrect side of the margin or even the hyperplane. To adjust the

support vector classifier, several tuning parameters are introduced. For instance, C

determines the severity of the violation; polynomial kernel of degree d and radial

kernel γ adjust the performance of the SVM, an extension of support vector classifier

accommodating a non-linear boundary between two classes.

As for multi-class data set, there are two methods: one-versus-one classification
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Figure 2.1: Maximal margin hyperplane [1]

and one-versus-all classification. To simplify this approach, this thesis adopts the svm

function in the R package “e1071” [16] in dealing with both binary and multi-class

data sets.

2.5 Neural Network

The basic idea of the neural network algorithm is to simulate human brain neuro

nodes and connections inside a computer, so as to make the computer to learn data,

and even to make decisions in a way like human beings. In this thesis, the nnet

function in the R package “nnet” will be applied [17]. By default, the number of

units in the hidden layer (size) is set as 2, and the maximum number of iterations

(maxit) is set as 200.
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2.6 Näıve Bayes

Näıve Bayes is another well-known classification method. Given the class veriable y

and the dependent feature vector xi, the Näıve Bayes rule could be expressed as

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, . . . , xn)

To compute the posterior probabilities of a discrete data set, we will use the

function naiveBayes in an R package called “e1071” [16].

2.7 C5.0

C5.0 algorithm is a widely used decision tree method in machine learning. Initially

people have ID3.0 algorithm. Based on ID3.0, C4.5 algorithm and C5.0 algorithm

were developed finally [8]. This type of decision tree model is based on entropy and

information gain. Entropy measures the impurity, and it controls where to split the

data. If Entropy = 0, all examples are the same class. If Entropy = 1, examples are

evenly split between classes. Information gain is based on entropy. The higher the

value of information gain, the better C5.0 performs. In this thesis, the C5.0 function

in the R package “C50” will be applied [18].

2.8 Partial Least Squares Discriminant Analysis (PLS-DA)

Partial least squares (PLS) is an algorithm which could be used to predict both

quantitative and qualitative variables. Classification with PLS is termed PLS-DA,

where the DA stands for discriminant analysis. PLS is also a dimension reduction

method. In this thesis, the plsda function in the R package “caret” will be applied

[19].
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Figure 2.2: A basic ROC graph [2]

2.9 Assessment Criteria

2.9.1 Receiver Operating Characteristic (ROC)

The ROC (Receiver Operating Characteristics) curve is an ideal tool for visualizing

and measuring the machine learning model results regardless of the class skew of the

data set [2, 7]. For a binary data set, there are four possible classification outcomes. If

the true class is positive and the prediction is positive, we call it true positive (TP); if

the true class is positive but the prediction is negative, we call it false negative (FN);

if the true class is negative and the prediction class is also negative, we call it true

negative (TN); if the true class is negative but the prediction class is positive, we call

that false positive (FP). The true positive rate (benefits) is defined as the number of

positives correctly classified over the number of total positive, and the false positive

rate (costs) is defined as the number of positives incorrectly classified over the number

of total negative.

The ROC curve uses the false positive rate (0 - 1) as the x-axis, and the true
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positive rate (0 - 1) as the y-axis. If a prediction has a higher true positive rate and a

lower false positive rate, its positive will be closer to (0, 1). Figure 2.2 is a brief graph

of the ROC curve. Point D is the point with the best classification results. Point A

is more conservative (less liberal) than B, since Point A has a relatively higher true

positive rate and a relatively lower false positive rate than Point B. Points laying

on the diagonal line, such as Point C, have a virtually random performance, or the

prediction is made by guessing. Point E performs even worse than random guessing,

which means the prediction is less useful.

The overall performance of an ROC curve could be measured by AUC (area under

the ROC curve). The closer the ROC curve to the Point D, the larger the AUC value,

and the better the classification model.

If there are more than two classes (multi-class) in the data set, it is hard to draw

an ROC curve, however the AUC is still measurable with some techniques, such as

the pairwise discrimination [20]. We could generate an AUC value for each pair of

classes, and average the multiple AUC values as the multi-class AUC value. This

technique is adopted in Chapter 5.

2.9.2 Kullback–Leibler Distance (KL)

The Kullback-Leibler distance, or KL divergence or KL distance, measures the “dis-

crepency” or the “distance” between two models [21]. For the discrete distribution,

the KL distance is defined as

DKL =
∑

p(xi) log
p(xi)

q(xi)

where xi are observations with class yi, p(xi) and q(xi) are discrete probability dis-

tributions. Both p(xi) and q(xi) sum up to 1. The smaller the KL distance is, the

closer two models are.
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2.10 Cross-Validation (CV)

Cross-validation is a resampling method in the statistics learning. K-fold cross-

validation means randomly dividing observations into k groups, set one group as

the validation data set, and the remaining k − 1 groups as the training data set, so

as to compute a more accurate assessment value, such as ROC and KL distance in

our case. Specifically, if k = n, the number of observations, we call it Leave-one-out

cross-validation (LOOCV). The reason to adopt the cross-validation method is to

minimize the distinction between the test error rate and the training error rate, since

a machine learning method may generate a relatively low training error rate, but it

may also generate a relatively high testing error rate.

Considering the minority class of some data sets could contain less than 10 obser-

vations, we will adopt 2-fold cross-validation for testing both binary and multi-class

data sets. We will also apply nsim = 100 times of cross-validations for each data set.
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Chapter 3

Noisy Replication for Imbalanced Binary Data Sets

The fundamental idea of the noisy replication method is to add a small amount of noise

to the minority class so that to improve the correct rate of the prediction. To testify

its effectiveness, we plan to have a pilot experiment with a simulated imbalanced

binary data set in this chapter. Details of the noisy replication with its pseudocode

are described, and outcomes are analyzed.

3.1 Binary Data Set Simulation

The simulation is a good method to preview the possible outcome intuitively. Hence,

we first simulate a binary data set with the imbalance ratio (IR) at 10.0. In the

machine learning, training data set refers to the known observations, and it is used

to teach a model (classifier) to predict the relationship between the independent

and dependent variables, or between the respondent and explanatory variables. Our

simulated training data set is defined as:

df.train =

(xi, 0), xi ∼ N


0

0

 ,

1 0

0 1


 , i = 1, ...200))

∪
(xi, 1), xi ∼ N


0.1

0.1

 ,

 1 0.5

0.5 1


 , i = 1, ...20))


where the size of the data frame is 220, among which 200 observations are in the

majority class and only 20 are in the minority class. Sometimes the majority class is

called as Class 0, and the minority class as Class 1. We also increase the skew of the

training data set by defining the mean and the covariance of the explanatory vectors

of Class 0 and Class 1 very close to each other.
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The testing data set, or the validation data set, is used to evaluate the performance

of the trained model. Our testing data set is defined as:

df.test =

(xi, 0), xi ∼ N


0

0

 ,

1 0

0 1


 , i = 1, ...200))

∪
(xi, 1), xi ∼ N


0.1

0.1

 ,

 1 0.5

0.5 1


 , i = 1, ...20))


where the size of the data frame, the majority class, and the minority class are 220,

200, and 20 respectively, the same as the training data set. The imbalance ratio (IR)

could reflect the skew of the data set, and it is defined as the number of observations

in the majority class over that of the minority class. Though the IR is a non-negative

value, to generate a simulation prototype, both the training data set and the testing

data set define the IR equals to 10.0.

3.2 Simulation Algorithm

Figure 3.1 illustrates the main idea of the noisy replication method: vibrate the du-

plicated minority class with noises in the training data set. In Figure 3.1, noisy.repl

refers to the number of replications of the minority classes, and noisy.train refers

to the number of training data sets after adding the noise, which is also called the

noisy training data set. The noise is defined as ε ∼ Nq(0, σ
2
noiseΣq), where Σq is

the diagonal variance matrix of the duplicated minority classes, and q is the size of

duplicated minority class. For instance, when noisy.repl = 1, and the size of the

minority class is 20, q = noisy.repl× 20. The noise level, σnoise (sigma.noise), is

selected from 0.1, 0.5, and 1.0. One of the objectives of this simulation is to compare

among three noise levels to evaluate which sigma.noise performs better.

In each experiment, we first simulate a training data set (the light yellow part)
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Figure 3.1: The noisy replication method explained, using ROC and sigma.noise =
0.1 as an example

and a testing data set (the orange part). Values for ROC/AUC and KL distance

are calculated as the original assessment criteria, expressed as ROC.original and

KL.original. When adding the noise to the training data set for the first time, we

can receive another group of values for ROC/AUC and KL distance. Repeating for

nsim = 100 times with different noises, we finally receive 100 ROC/AUC values and

100 KL distance values. Averaging these 100 values, and we get improved values

for ROC/AUC and KL distance with the noisy replication method. In Figure 3.1,
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ROC(noisy.repl=1; noisy.train=1) represents this improved ROC/AUC value af-

ter the applying the noise replication method. We also use 4ROC and 4KL to

express the difference in ROC value and KL distance before and after applying the

noisy replication method respectively.

When noisy.repl = 1 and noisy.train = 2, we duplicate the training data set

twice, and apply the noisy replication method to each individual training data set. Re-

peating for nsim = 100 times with different noises, we could also receive the improved

ROC/AUC values and 100 KL distance values. In Figure 3.1, ROC(noisy.repl=1;

noisy.train=2) represents another improved ROC/AUC value after the applying the

noise replication method. The maximum noisy.train is set as 100 in this simulation

experiment.

When noisy.repl = 2 and noisy.train = 1, we duplicate the minority class

twice. Therefore, the size of the training data set becomes 240. The noise will then

be added to the minority class, whose size is 40. Repeating for nsim = 100 times

with different noises, we could also receive the improved ROC/AUC values and 100

KL distance values. In Figure 3.1, ROC(noisy.repl=2; noisy.train=1) represents

another improved ROC/AUC value after the applying the noise replication method.

The maximum noisy.repl is set as 10 in this simulation experiment.

There are two types of vibration: one-side and two-side. For the one-side vibration,

a noise is simply added to the minority class. For the two-side vibration, the same

noise will be first added to the minority class and calculate the posterior probability.

Then the same noise will be deleted from the same minority class, whose posterior

probability will be calculated separately. The classifier assessment is based on the

mean of these two posterior probabilities. In Figure 3.1, the noise is represented with

a smaller box adjacent to the minority orange box. The number in the noise box

means the noise level. In this simulation experiment, both the one-side vibration and

two-side vibration, and three levels of noise are tested.
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3.3 Pseudocode

A pseudocode explaining the noisy replication method is presented in the next page,

using the simulated binary data set with IR=10.0 as an example.
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Data: models = {KNN, LD, Logistic, SVM, Neural, NB, C5.0, PLS}
sigma.noise = {0.1, 0.5, 1.0}
noisy.repl = number of minority classes replications {1 to 10}
noisy.train = number of training data sets {10, 20, 40, 60, 80,
100}
nsim = number of simulation times, defined as 100

Result: ROC/AUC and KL tables with noisy.repl = 10, noisy.train = 100,
sigma.noise = {0.1, 0.5, 1.0}, nsim = 100 times, and 10-fold CV.

1 for each model do
2 for each sigma.noise do
3 for nsim = 100 times do
4 for each k-fold cross-validation do
5 Generate ROC and KL for the original data set ;
6 for each noisy.repl do
7 Duplicate the minor class for the training data set ;
8 for each noisy.train do
9 Add noise to each minor class in the training data set

and get a new training data set ;
10 1) One-side vibration noise;
11 2) Two-side vibration noise;
12 for each model do
13 1) Calculate prediction probabilities for each

vibrated training data set with one-side vibration;
14 2) Calculate prediction probabilities for each

vibrated training data set with two-side vibration;
15 Calculate the vibrated ROC and KL based on the

average prediction probabilities ;
16 Calculate the difference between the original and

the vibrated assessments ;

17 end
18 Record the assessment difference for all replications of

the training data set ;

19 end
20 Record the assessment difference for all replications of the

minor classes ;

21 end
22 Average the difference table over k.cv = 10 ;

23 end
24 Average the difference table by nsim = 100 ;

25 end
26 Go to the next sigma.noise ;

27 end
28 Go to the next model ;
29 Generate the output assessment tables and their plots ;

30 end
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3.4 Simulation Results and Interpretations

The following tables and figures summarize outcomes of this pilot experiment. We

categorize them into four groups.

• Group 1: Table 3.1 and Figure 3.2 outline the results when noisy.repl = 1,

noisy.train = 100, nsim = 100, and vibration = one-side.

• Group 2: Table 3.2 and Figure 3.3 outline the results when noisy.repl = 1,

noisy.train = 100, nsim = 100, and vibration = two-side.

• Group 3: Table 3.3 and Figure 3.4 outline the results when noisy.repl = 3,

noisy.train = 100, nsim = 100, and vibration = one-side.

• Group 4: Table 3.4 and Figure 3.5 outline the results when noisy.repl = 3,

noisy.train = 100, nsim = 100, and vibration = two-side.

Each table has the results for eight machine learning models with three noise levels

(σnoise) respectively. ROC0 refers to the original ROC/AUC value before applying

the noisy replication method; ROC100 refers to the ROC/AUC value after adding

noise replicates with noisy.train = 100; ROC.diff is 4ROC; KL0 refers to the

original KL distance value before applying the noisy replication method; KL100

refers to the ROC/AUC value after adding noise replicates with noisy.train = 100;

KL.diff is 4KL distance.

Each figure has two subgraphs, and each subgraph has eight plots for 95% con-

fidence intervals of 4ROC and 4KL distance after applying the noisy replication

method. The x-axis is three noise levels, and the y-axis is 4ROC (ROC.diff) or

4KL distance (KL.diff). If there is no significant difference between the original

model and the basic model and the noisy replication model, then 95% confidence in-

terval will contain 4ROC = 0 or 4KL distance = 0. If the entire interval is positive
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(i.e., above 4ROC = 0 or below 4KL distance), then we can say that the noisy repli-

cation makes a statistically significant difference compared with the regular models.

The means of 4ROC or 4KL distance are joined by the solid line.

Group 1 demonstrates the following models performing better after adding noise

replicates for most noise levels: KNN, Logistic Regression, Neural Network, and C5.0

(for 4ROC); KNN, Linear Discriminant Analysis, Logistic Regression, SVM, and

Neural Network (for 4KL distance).

Group 2 demonstrates the following models performing better after adding noise

replicates for most noise levels: KNN, Neural Network, and C5.0 (for 4ROC); KNN,

Linear Discriminant Analysis, Logistic Regression, SVM, and Neural Network (for

4KL distance).

Group 3 demonstrates the following models performing better after adding noise

replicates for most noise levels: SVM, and C5.0 (for 4ROC); KNN, and Neural

Network (for 4KL distance).

Group 4 demonstrates the following models performing better after adding noise

replicates for most noise levels: SVM, Neural Network and C5.0 (for 4ROC); KNN,

Linear Discriminant Analysis, Logistic Regression, KNN, and Neural Network (for

4KL distance).

Comparing Group 1 and 3 or Group 2 and 4, we can examine which vibration

method is better: one-side or two-side. Comparing Group 1 and 2 or Group 3 and 4,

we can examine how many noisy.repl to select for the following experiment with real

data sets. To conclude, both one-side and two-side vibration have similar outcomes,

and noisy.repl = 1 is better than noisy.repl =3. Hence, we decide to use the

following parameters to test all other simulated and real data sets in this thesis: nsim

= 100, noisy.repl = 1, noisy.train = 100, sigma.noise = (0.1, 0.5, 1.0), and

vibration = two-side.
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Table 3.1: Pilot simulation summary with one-side vibration and noisy.repl = 1

Model σnoise ROC0 ROC100 ROC.diff KL0 KL100 KL.diff

KNN 0.1 0.73 0.79 0.05 10.48 4.22 -6.26
0.5 0.75 0.80 0.05 10.42 2.87 -7.55
1.0 0.72 0.76 0.04 10.48 2.82 -7.65

LDA 0.1 0.81 0.81 0.00 0.24 0.24 0.00
0.5 0.81 0.81 0.00 0.24 0.24 0.00
1.0 0.81 0.81 0.00 0.24 0.24 0.00

Logistic 0.1 0.81 0.81 0.00 0.24 0.24 0.00
0.5 0.81 0.81 0.00 0.24 0.24 0.00
1.0 0.81 0.81 0.00 0.24 0.24 0.00

SVM 0.1 0.64 0.64 0.00 0.28 0.27 -0.01
0.5 0.66 0.63 -0.03 0.27 0.27 0.00
1.0 0.65 0.62 -0.03 0.27 0.27 0.00

Neural 0.1 0.80 0.83 0.03 0.28 0.24 -0.04
0.5 0.80 0.82 0.02 0.29 0.24 -0.05
1.0 0.79 0.81 0.03 0.31 0.24 -0.07

NB 0.1 0.81 0.80 0.00 0.25 0.25 0.00
0.5 0.81 0.80 -0.01 0.25 0.24 0.00
1.0 0.82 0.79 -0.03 0.24 0.25 0.01

C5.0 0.1 0.62 0.73 0.11 0.29 0.46 0.17
0.5 0.63 0.73 0.10 0.29 0.40 0.11
1.0 0.60 0.71 0.11 0.29 0.37 0.08

PLS-DA 0.1 0.80 0.80 0.00 0.42 0.42 0.00
0.5 0.81 0.81 0.00 0.42 0.42 0.00
1.0 0.81 0.81 0.00 0.42 0.42 0.00
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Figure 3.2: Pilot simulation outcome with one-side vibration and noisy.repl = 1
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Table 3.2: Pilot simulation summary with two-side vibration and noisy.repl = 1

Model σnoise ROC0 ROC100 ROC.diff KL0 KL100 KL.diff

KNN 0.1 0.74 0.79 0.05 10.59 4.30 -6.29
0.5 0.73 0.79 0.06 10.37 2.86 -7.51
1.0 0.76 0.78 0.02 10.48 2.81 -7.67

LDA 0.1 0.80 0.80 0.00 0.24 0.24 0.00
0.5 0.82 0.82 0.00 0.24 0.24 0.00
1.0 0.82 0.82 0.00 0.24 0.24 0.00

Logistic 0.1 0.82 0.82 0.00 0.24 0.24 0.00
0.5 0.80 0.80 0.00 0.25 0.24 0.00
1.0 0.80 0.80 0.00 0.24 0.24 0.00

SVM 0.1 0.65 0.64 -0.01 0.27 0.27 0.00
0.5 0.65 0.63 -0.03 0.28 0.27 -0.01
1.0 0.66 0.62 -0.04 0.28 0.27 -0.01

Neural 0.1 0.79 0.82 0.03 0.30 0.24 -0.06
0.5 0.77 0.81 0.04 0.31 0.25 -0.06
1.0 0.79 0.81 0.03 0.30 0.24 -0.06

NB 0.1 0.81 0.81 0.00 0.24 0.24 0.00
0.5 0.81 0.79 -0.01 0.25 0.24 0.00
1.0 0.81 0.78 -0.03 0.25 0.25 0.00

C5.0 0.1 0.60 0.73 0.12 0.29 0.45 0.16
0.5 0.62 0.73 0.11 0.29 0.34 0.05
1.0 0.60 0.72 0.12 0.29 0.36 0.07

PLS-DA 0.1 0.81 0.81 0.00 0.42 0.42 0.00
0.5 0.81 0.81 0.00 0.42 0.42 0.00
1.0 0.81 0.81 0.00 0.42 0.42 0.00
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Figure 3.3: Pilot simulation outcome with two-side vibration and noisy.repl = 1
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Table 3.3: Pilot simulation summary with one-side vibration and noisy.repl = 3

Model σnoise ROC0 ROC100 ROC.diff KL0 KL100 KL.diff

KNN 0.1 0.73 0.69 -0.04 10.39 3.01 0.10
0.5 0.72 0.70 -0.02 10.43 1.98 0.50
1.0 0.73 0.70 -0.03 10.59 1.95 1.00

LDA 0.1 0.82 0.82 0.00 0.24 0.29 0.10
0.5 0.81 0.81 0.00 0.24 0.29 0.50
1.0 0.82 0.82 0.00 0.24 0.28 1.00

Logistic 0.1 0.81 0.81 0.00 0.24 0.29 0.10
0.5 0.83 0.83 0.00 0.23 0.29 0.50
1.0 0.81 0.81 0.00 0.24 0.29 1.00

SVM 0.1 0.66 0.75 0.09 0.27 0.30 0.10
0.5 0.65 0.72 0.07 0.28 0.31 0.50
1.0 0.67 0.70 0.04 0.27 0.30 1.00

Neural 0.1 0.78 0.81 0.03 0.30 0.29 0.10
0.5 0.78 0.80 0.02 0.31 0.29 0.50
1.0 0.79 0.79 0.00 0.31 0.29 1.00

NB 0.1 0.81 0.81 0.00 0.25 0.29 0.10
0.5 0.80 0.79 -0.01 0.25 0.29 0.50
1.0 0.81 0.78 -0.03 0.25 0.29 1.00

C5.0 0.1 0.62 0.76 0.14 0.29 0.70 0.10
0.5 0.61 0.75 0.14 0.29 0.66 0.50
1.0 0.62 0.73 0.11 0.29 0.74 1.00

PLS-DA 0.1 0.81 0.81 0.00 0.42 0.47 0.10
0.5 0.82 0.82 0.00 0.42 0.47 0.50
1.0 0.82 0.82 0.00 0.42 0.47 1.00
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Figure 3.4: Pilot simulation outcome with one-side vibration and noisy.repl = 3
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Table 3.4: Pilot simulation summary with two-side vibration and noisy.repl = 3

Model σnoise ROC0 ROC100 ROC.diff KL0 KL100 KL.diff

KNN 0.1 0.74 0.67 -0.07 10.59 3.13 -7.47
0.5 0.74 0.70 -0.04 10.46 1.97 -8.48
1.0 0.74 0.69 -0.05 10.49 1.95 -8.54

LDA 0.1 0.82 0.81 0.00 0.24 0.29 0.05
0.5 0.81 0.81 0.00 0.24 0.29 0.04
1.0 0.81 0.81 0.00 0.24 0.28 0.04

Logistic 0.1 0.81 0.81 0.00 0.24 0.29 0.05
0.5 0.82 0.82 0.00 0.24 0.29 0.05
1.0 0.80 0.80 0.00 0.25 0.30 0.05

SVM 0.1 0.66 0.75 0.09 0.28 0.30 0.02
0.5 0.65 0.73 0.07 0.27 0.30 0.03
1.0 0.66 0.70 0.05 0.27 0.30 0.03

Neural 0.1 0.79 0.81 0.03 0.29 0.29 0.00
0.5 0.78 0.81 0.03 0.31 0.29 -0.02
1.0 0.78 0.80 0.01 0.30 0.29 -0.01

NB 0.1 0.82 0.82 0.00 0.24 0.29 0.05
0.5 0.81 0.80 -0.01 0.25 0.29 0.04
1.0 0.81 0.78 -0.03 0.24 0.29 0.05

C5.0 0.1 0.61 0.77 0.16 0.29 0.67 0.38
0.5 0.61 0.76 0.15 0.29 0.59 0.30
1.0 0.61 0.74 0.12 0.29 0.68 0.39

PLS-DA 0.1 0.82 0.82 0.00 0.42 0.47 0.05
0.5 0.81 0.81 0.00 0.42 0.47 0.05
1.0 0.81 0.81 0.00 0.42 0.47 0.05
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Figure 3.5: Pilot simulation outcome with two-side vibration and noisy.repl = 3
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Chapter 4

Testing with Real Imbalanced Binary Data Sets

The previous chapter demonstrates the effectiveness of the noisy replication method

with a simulated binary data set with IR = 10.0. To further justify our method,

more practical validations should be conducted. Furthermore, we are also interested

in testing with different imbalance ratios, which could be another potential factor

influencing the performance of this innovative noisy replication method. In this thesis,

if a data set with a higher IR value, we suppose this data set has a relatively large

numerous class and a relatively small rare class.

In this Chapter, we will first introduce real data sets, and then display the out-

comes with figures. Meanwhile, the interpretation will be given, focusing on the

influence from the noise level, the model selection, and the imbalance ratio.

4.1 Introduction to Real Data Sets

The real data sets are from the website, “Knowledge Extraction based on Evolutionary

Learning” (KEEL) [10] and the UC Irvine Machine Learning Repository [22]. These

data sets cover a variety of areas, such as glass production, iris study, thyroid disease,

breast cancer, etc. Table 4.1 in the end of this chapter shows a brief structure of

all data sets studied in this thesis. Each record stands for a data set. Fea., Real,

Int., and Nom. represent the number of all features (instances), and the number

of Real/Integer/Nominal valued attributes respectively. Minor. is the number of

observations in the minority class. Obs. is the total number of observations in that

data set. IR is the imbalance ratio. Classes is the number of categories of the data

set. This table lists both the simulated and real data sets, as well as both the binary

and multi-class imbalanced data sets. The range of IR is relatively broad, varying

from 1.86 to 129.44. More specifically, 15 data sets have an IR smaller than 10.0; 18
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data sets have an IR between 10.0 and 30.0; 17 data sets have an IR larger than 30.0.

Since the pilot experiment is a success in validating the noisy replication method,

we will keep testing with the following parameters: nsim = 100, noisy.repl = 1,

noisy.train = 100, sigma.noise = 0.1, 0.5, or 1.0, and two-side vibration with

eight machine learning models: 10NN, KDA, Logistic, SVM, Neural Network, Näıve

Bayes, C5.0, and PLS.

4.2 Results and Interpretations

Table 4.2 summarizes 51 optimal models after adding noise replicates. For each data

set, represented by its IR, eight models are listed. The optimal noise (Opt. σnoise) is

the noise level where we receive the highest AUC value or the lowest KL distance. For

instance, for the data set with IR = 1.86, the AUC value of the 10NN model is 0.39

without applying the noisy replication method. After applying the noisy replication

method with σnoise = 1.0, the AUC value increases to 0.88, and the increase percentage

(% inc.) is 123.87%, which is the highest among three noise levels. We call σnoise =

1.0 is the optimal noise (Opt. σnoise), and the model with the optimal noise is called

the optimal model). Also in the same data set, the KL distance decreases the most

when σnoise = 0.5. Examining Table 4.2 intuitively, we can find that after applying

the noisy replication method, most models have an improvement assessed by the AUC

or KL distance. The higher the IR value is, the better the noisy replication model

performs. More analyses based on this table will be provided in the following figures.

Appendix B contains the plots for 95% confident intervals of 4ROC and 4KL

distance in binary data sets. Each graph has eight small subgraphs representing eight

machine learning models after adding noise replicates. The x-axis is the noise level,

and the y-axis is 4ROC (ROC.diff). If there is no statistically significant difference

between the original model and the basic model and the noisy replication model, then

95% confidence interval will contain 4ROC = 0. The means of 4ROC are joined
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Figure 4.1: Counts of optimal models in each binary data set

by the solid line. For instance, for the data set with IR = 1.86, all three noise levels

have a positive increase lying above the x-axis, and the higher the noise level, the

more 4ROC increases. The optimal model of this model for this particular data set

is summarized in Table 4.2. As for 4KL distance, if the 95% confidence intervals are

below the x-axis, we can tell the model has a good performance. The model with the

largest decrease in 4KL distance is the optimal model.

From both Table 4.2 and Appendix B, we can tell that most models in many data

sets perform as we expected: 4ROC above x = 0 and 4KL distance below x = 0.

However, the performance of some models may be affected by the noise level and the

imbalance ratio. In addition, for some data sets or some models, the noisy replication

method does not provide a statistically significant improvement, and even sometimes

performs slightly worse than the basic model. This happens more frequently when

IR is relatively small. We will continue our discovery in Figure 4.1, Figure 4.2, and

Figure 4.3.

Two graphs in Figure 4.1 illustrate the performance of noise levels and the increase
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Figure 4.2: 4ROC vs. IRs in eight models for binary data sets

of imbalance ratio. The x-axis represents each data set by their imbalance ratio values.

The left y-axis is the count of optimal models for each data set with different noise

levels. The right x-axis in the first graph represents the AUC value of optimal models

for each data set. The first graph is assessed by ROC, and the second is by KL

distance. The blue line plots the performance when σnoise = 0.1, the red plots when

σnoise = 0.5, and the gray plots when σnoise = 1.0. The yellow plot represents the total

number of optimal models for all data sets, and its number should be less than or
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Figure 4.2: 4ROC vs. IRs in eight models for binary data sets (cont.)

equal to eight (8), which is the number of machine learning models. The gray shaded

area illustrates the best AUC values a data set could get with noisy replicates.

From Figure 4.1, we can infer that there are some similarities between the two

graphs and the two assessments: models with σnoise = 0.5 and σnoise = 1.0 perform

better than the smaller noise level; more than half of the testing models perform

better after adding noisy replicates. Meanwhile, we can see from the yellow line that

the total counts of optimal models assessed by ROC is not as stable as those assessed

by KL distance. However, this does not mean the model itself is not good, or the
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Figure 4.2: 4ROC vs. IRs in eight models for binary data sets (cont.)

noisy replication method is not effective, since both the original and improved AUC

values are close to 1.0. Unfortunately, Figure 4.1 does not show us a statistically

significant connection between the noise level and the imbalance ratio.

Figure 4.2 is another way to illustrate the performance of noise levels and the

imbalance ratio, and they are measured by 4ROC. Figure 4.2 contains eight graphs

in three consecutive pages. Each graph represents the performance for a machine

learning model. The x-axis is the imbalance ratio for each data set and the y-axis is
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Figure 4.2: 4ROC vs. IRs in eight models for binary data sets (cont.)

the value of 4ROC (ROC.diff). Three colored dashed lines, black, red, and green,

represent the condition when σnoise = 0.1, 0.5, and 1.0 respectively.

Here is the analysis for eight machine learning models after applying the noisy

replication method. The 1st subgraph in Figure 4.2 shows that learning with KNN,

all three noise levels have a good performance, since most 4ROC are larger than 0.

We can also see a U-shaped curve above the line of 4ROC = 0, which means the

KNN with noisy replication has a better performance when IR is either relatively
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Figure 4.3: Model performance with different noise levels in binary data sets

small or relatively large. As for different noise levels, sigma.noise = 0.5 and 1.0

have a better performance when IR is less than 15.0, while all three levels perform

similarly when IR is greater than 15.0.

The 2nd subgraph in Figure 4.2 shows that learning with LDA, most 4ROC

values are greater than or close to 0. 4ROC gets a relatively large variation when

IR increases.

The 3rd subgraph in Figure 4.2 shows that learning with the logistic regression,
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Figure 4.3: Model performance with different noise levels in binary data sets (cont.)

the noisy replication model performs better than in LDA. When IR is between 3.0

and 60.0, we can see most 4ROC are greater than or close to 0.

The 4th subgraph in Figure 4.2 shows that learning with SVM, most 4ROC are

not greater than 0, which means the noisy replication method does not successfully

increase the performance.

The 5th subgraph in Figure 4.2 shows that learning with Neural Network, most

4ROC are greater than or close to 0 for all three noise levels.

The 6th subgraph in Figure 4.2 shows that learning with Näıve Bayes, we can tell

sigma.noise = 0.5 and 1.0 lines have a better performance when IR becomes larger

than 20.0, and the variation is more significant in ROC than sigma.noise = 0.1 line.

The 7th subgraph in Figure 4.2 shows that learning with C5.0, a statistically

significant improvement of 4ROC comes with the increase of IR, especially when IR

becomes larger, as most 4ROC are greater than 0.

The 8th subgraph in Figure 4.2 shows that learning with PLS, most 4ROC are

not greater than 0, which means the noisy replication method does not successfully

increase the performance.
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Figure 4.3 demonstrates the performance of eight machine learning models along

with the increase of imbalance ratio based on the ROC assessment. Each graph rep-

resents the condition under one noise level. Different colored lines represent different

models. The 1st subgraph in Figure 4.3 shows when sigma.noise = 0.1, we can tell

that most models have 4ROC greater than or close to 0. Among all eight models,

KNN and neural network perform better; C5.0 has a statistically significant increase

of AUC values along with the increase of imbalance ratio.

The 2nd subgraph in Figure 4.3 shows when sigma.noise = 0.5, most models

have an increase of 4ROC with the increase of imbalance ratio, especially for linear

discriminant analysis, neural network, and C5.0. However, 4ROC of several models

converge to 0 when IR is greater than 50.0, especially for neural network and SVM.

The 3rd subgraph in Figure 4.3 shows when sigma.noise = 1.0, we still can

observe the relationship between the model performance and the imbalance ratio: the

increase of 4ROC comes with the increase of IR. However, when IR is larger than

50, model performance may drop. Compared among three noise levels, sigma.noise

= 0.5 and 1.0 is better than sigma.noise = 0.1, due to the scale of 4ROC.
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Table 4.1: Data structure for each data set

Real Data Set Feat. Real Int. Nom. Minor. Obs. IR Classes

sim(binary) 2 2 0 0 20 220 10.00 2

breast cancer 10 0 10 0 241 698 1.90 2

glass1 9 9 0 0 76 214 1.82 2

wisconsin 9 0 9 0 77 220 1.86 2

pima 8 8 0 0 268 768 1.87 2

iris0 4 4 0 0 50 150 2.00 2

glass0 9 9 0 0 70 214 2.06 2

yeast1 8 8 0 0 429 1484 2.46 2

haberman 3 0 3 0 81 306 2.78 2

vehicle2 18 0 18 0 218 846 2.88 2

vehicle1 18 0 18 0 217 846 2.90 2

vehicle3 18 0 18 0 212 846 2.99 2

glass-0-1-2-3 vs 4-5-

6

9 9 0 0 51 214 3.20 2

vehicle0 18 0 18 0 199 846 3.25 2

new-thyroid1 5 4 1 0 35 215 5.14 2

glass6 9 9 0 0 29 214 6.38 2

yeast3 8 8 0 0 163 1484 8.10 2

page-blocks0 10 4 6 0 559 5472 8.79 2

vowel0 13 10 3 0 90 988 9.98 2

glass-0-1-6 vs 2 9 9 0 0 17 192 10.29 2

glass2 9 9 0 0 17 214 11.59 2

shuttle-c0-vs-c4 9 0 9 0 123 1829 13.87 2

yeast-1 vs 7 7 7 0 0 30 459 14.30 2

glass4 9 9 0 0 13 214 15.46 2

ecoli4 7 7 0 0 20 336 15.80 2

page-blocks-1-3 vs 4 10 4 6 0 28 472 15.86 2

abalone9-18 8 7 0 1 42 731 16.40 2

glass-0-1-6 vs 5 9 9 0 0 9 184 19.44 2

shuttle-c2-vs-c4 9 0 9 0 6 129 20.50 2

glass5 9 9 0 0 9 214 22.78 2

yeast-2 vs 8 8 8 0 0 20 482 23.10 2

yeast4 8 8 0 0 51 1484 28.10 2

yeast-1-2-8-9 vs 7 8 8 0 0 30 947 30.57 2

yeast5 8 8 0 0 44 1484 32.73 2

yeast6 8 8 0 0 35 1484 41.40 2

abalone19 8 7 0 1 32 4174 129.44 2

ecoli-0-3-4 vs 5 7 7 0 0 20 200 9.00 2

yeast-0-3-5-9 vs 7-8 8 8 0 0 50 506 9.12 2

Continued on next page
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Table 4.1 – continued from previous page

Real Data Set Feat. Real Int. Nom. Minor. Obs. IR Classes

yeast-0-2-5-7-9 vs 3-

6-8

8 8 0 0 99 1004 9.14 2

ecoli-0-6-7 vs 5 6 6 0 0 20 220 10.00 2

led7digit-0-2-4-5-6-

7-8-9 vs 1

7 7 0 0 37 443 10.97 2

glass-0-6 vs 5 9 9 0 0 9 108 11.00 2

glass-0-1-4-6 vs 2 9 9 0 0 17 205 11.06 2

ecoli-0-1-4-7 vs 5-6 6 6 0 0 25 332 12.28 2

cleveland-0 vs 4 13 13 0 0 13 173 12.31 2

dermatology-6 34 0 34 0 20 358 16.90 2

winequality-red-4 11 11 0 0 53 1599 29.17 2

poker-9 vs 7 10 0 10 0 8 244 29.50 2

abalone-3 vs 11 8 7 0 1 15 502 32.47 2

winequality-white-

9 vs 4

11 11 0 0 5 168 32.60 2

winequality-red-

8 vs 6

11 11 0 0 18 656 35.44 2

abalone-17 vs 7-8-9-

10

8 7 0 1 58 2338 39.31 2

abalone-21 vs 8 8 7 0 1 14 581 40.50 2

winequality-white-

3 vs 7

11 11 0 0 20 900 44.00 2

winequality-red-

8 vs 6-7

11 11 0 0 18 855 46.50 2

abalone-19 vs 10-11-

12-13

8 7 0 1 32 1622 49.69 2

winequality-white-3-

9 vs 5

11 11 0 0 25 1482 58.28 2

poker-8-9 vs 6 10 0 10 0 25 1485 58.40 2

shuttle-2 vs 5 9 0 9 0 49 3316 66.67 2

winequality-red-

3 vs 5

11 11 0 0 10 691 68.10 2

abalone-20 vs 8-9-10 8 7 0 1 26 1916 72.69 2

poker-8 vs 6 10 0 10 0 17 1477 85.88 2

sim(multi) 2 2 0 0 20 400 9.00 3

wine 13 13 0 0 48 178 1.48 3

hayes-roth 4 0 4 0 30 132 1.70 3

penbased 16 16 0 0 105 1100 1.10 10

new-thyroid 5 4 1 0 30 215 5.00 3

Continued on next page
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Table 4.1 – continued from previous page

Real Data Set Feat. Real Int. Nom. Minor. Obs. IR Classes

balance 4 4 0 0 49 625 5.88 3

glass 9 9 0 0 9 214 8.44 6 (7)

yeast 8 8 0 0 5 1484 92.60 10

ecoli 7 7 0 0 5 336 28.60 8

pageblocks 10 10 0 0 3 548 164.00 5

shuttle 9 0 9 0 2 2175 853.00 5 (7)
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Table 4.2: Optimal noise level for each binary data set

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

1.86 10NN 1.0 0.39 0.88 123.87% 0.5 141.68 130.72 7.74%

LDA 1.0 0.99 1.00 0.04% 1.0 0.19 0.12 33.74%

Logistic 1.0 0.99 1.00 0.17% 0.5 0.24 0.09 62.14%

SVM 1.0 0.99 0.99 0.48% 0.5 0.10 0.10 3.93%

Neural 1.0 0.98 0.99 1.27% 0.5 0.99 0.10 90.40%

NB 0.1 0.99 0.98 -0.01% 0.1 3.94 3.95 -0.41%

C5.0 1.0 0.97 0.99 2.73% 1.0 0.19 0.19 1.82%

PLS 1.0 1.00 1.00 0.03% 0.1 0.37 0.37 -0.35%

1.87 10NN 0.1 0.66 0.74 12.49% 0.1 30.24 1.83 93.94%

LDA 1.0 0.83 0.83 0.16% 0.5 0.49 0.49 0.60%

Logistic 0.5 0.83 0.83 0.20% 0.5 0.49 0.49 0.64%

SVM 0.1 0.82 0.82 -0.47% 0.1 0.50 0.50 -0.44%

Neural 0.1 0.61 0.70 14.45% 0.5 0.69 0.64 7.49%

NB 0.1 0.81 0.81 -0.31% 0.1 0.66 0.68 -3.45%

C5.0 1.0 0.74 0.70 -5.66% 0.1 0.61 7.87 -1186.00%

PLS 0.1 0.80 0.80 0.00% 0.1 0.58 0.58 -0.31%

1.90 10NN 1.0 0.45 0.91 101.30% 0.5 141.36 129.63 8.30%

LDA 1.0 0.99 0.99 0.03% 1.0 0.16 0.13 17.43%

Logistic 1.0 0.99 0.99 0.10% 0.5 0.17 0.11 33.79%

SVM 0.5 0.99 0.99 0.36% 0.1 0.11 0.11 1.27%

Neural 0.1 0.97 0.99 1.32% 0.1 1.27 0.12 90.49%

NB 0.1 0.98 0.98 -0.01% 0.1 3.78 3.80 -0.64%

C5.0 1.0 0.96 0.99 2.88% 0.5 0.21 0.40 -87.62%

PLS 0.5 0.99 0.99 0.02% 0.1 0.38 0.38 -0.32%

2.00 10NN 1.0 0.50 0.51 1.66% 1.0 153.48 150.98 1.62%

LDA 0.1 1.00 1.00 0.00% 0.1 0.00 0.00 9.52%

Logistic 0.5 1.00 1.00 0.00% 0.5 0.03 0.02 10.84%

SVM 0.1 1.00 1.00 0.00% 1.0 0.03 0.02 25.49%

Neural 0.1 1.00 1.00 0.05% 0.1 0.01 0.00 74.04%

NB 0.1 1.00 1.00 0.00% 0.5 0.00 0.00 20.00%

C5.0 0.5 0.98 1.00 1.83% 1.0 0.07 0.02 74.11%

PLS 0.1 1.00 1.00 0.00% 0.1 0.34 0.34 -0.11%

2.06 10NN 0.5 0.58 0.76 30.80% 1.0 52.92 30.58 42.21%

LDA 0.1 0.81 0.81 0.56% 1.0 0.51 0.50 1.90%

Logistic 0.5 0.81 0.81 -0.06% 0.5 1.05 0.83 21.45%

SVM 0.1 0.83 0.82 -0.57% 0.1 0.50 0.51 -1.43%

Neural 0.1 0.76 0.85 11.21% 0.5 1.87 0.47 74.71%

NB 1.0 0.77 0.79 1.89% 1.0 3.12 2.31 26.01%

C5.0 0.1 0.82 0.53 -34.98% 0.5 0.57 47.08 -8110.96%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

PLS 1.0 0.80 0.80 0.12% 0.1 0.58 0.58 0.00%

2.46 10NN 0.5 0.70 0.76 8.35% 1.0 45.15 2.83 93.74%

LDA 0.1 0.79 0.79 -0.01% 0.5 0.50 0.50 0.28%

Logistic 0.1 0.79 0.79 -0.05% 0.1 0.50 0.50 0.05%

SVM 0.1 0.78 0.77 -0.56% 0.1 0.51 0.51 -1.02%

Neural 0.1 0.79 0.80 0.70% 0.1 0.52 0.48 8.03%

NB 0.1 0.76 0.76 0.12% 0.5 3.76 3.74 0.39%

C5.0 0.1 0.72 0.54 -24.93% 0.1 0.55 57.11 -

10190.41%

PLS 0.1 0.79 0.79 -0.02% 0.1 0.56 0.57 -0.20%

2.78 10NN 1.0 0.65 0.69 5.95% 0.5 25.01 1.75 92.99%

LDA 0.1 0.67 0.67 -0.06% 0.5 0.56 0.55 1.63%

Logistic 0.1 0.67 0.67 -0.03% 1.0 0.56 0.55 1.20%

SVM 0.1 0.69 0.70 1.59% 0.1 0.56 0.55 1.09%

Neural 0.1 0.63 0.71 12.98% 0.1 0.58 0.53 8.77%

NB 0.1 0.64 0.64 0.30% 0.1 0.82 0.84 -1.90%

C5.0 0.5 0.55 0.70 28.01% 0.1 0.59 4.67 -696.06%

PLS 0.1 0.68 0.68 -0.04% 0.1 0.59 0.59 -0.06%

2.99 10NN 0.1 0.71 0.75 5.44% 0.1 55.31 19.91 64.00%

LDA 0.1 0.84 0.84 -0.98% 0.1 0.43 0.43 -0.70%

Logistic 0.1 0.85 0.84 -1.13% 0.1 0.41 0.42 -1.82%

SVM 0.1 0.83 0.83 -0.29% 0.1 0.45 0.44 0.64%

Neural 0.1 0.62 0.78 27.45% 0.5 0.61 0.53 12.23%

NB 1.0 0.70 0.72 2.48% 1.0 1.54 1.42 7.37%

C5.0 0.1 0.75 0.83 10.00% 0.1 0.63 0.64 -2.76%

PLS 0.1 0.69 0.69 -0.05% 0.1 0.58 0.58 -0.08%

3.20 10NN 1.0 0.59 0.92 55.55% 0.1 149.30 100.29 32.82%

LDA 0.5 0.97 0.97 0.51% 1.0 0.36 0.24 32.50%

Logistic 1.0 0.93 0.97 3.54% 0.1 4.09 0.24 94.11%

SVM 0.1 0.98 0.98 0.01% 0.1 0.18 0.17 2.67%

Neural 0.1 0.91 0.97 7.38% 0.1 1.22 0.19 84.78%

NB 0.1 0.95 0.95 -0.05% 0.5 1.99 1.92 3.49%

C5.0 0.5 0.92 0.96 4.45% 0.5 0.31 1.36 -341.60%

PLS 1.0 0.96 0.96 0.17% 0.1 0.40 0.40 -0.41%

3.25 10NN 0.5 0.80 0.95 19.70% 0.5 127.78 97.63 23.59%

LDA 0.1 0.99 0.99 0.15% 0.1 0.13 0.12 5.78%

Logistic 0.1 0.97 0.99 2.11% 0.5 4.61 0.12 97.33%

SVM 0.1 0.99 0.99 -0.09% 0.1 0.10 0.10 -7.59%

Neural 0.5 0.91 0.99 8.95% 0.5 0.40 0.25 36.65%

NB 0.1 0.81 0.81 -0.33% 1.0 2.37 1.85 21.98%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.1 0.96 0.97 0.65% 0.1 0.22 0.37 -64.06%

PLS 1.0 0.89 0.90 1.40% 0.1 0.50 0.50 -0.08%

5.14 10NN 1.0 0.84 0.98 16.60% 1.0 166.34 53.18 68.03%

LDA 1.0 0.99 0.99 0.10% 1.0 0.17 0.15 13.13%

Logistic 0.1 1.00 1.00 0.26% 0.1 0.76 0.04 94.83%

SVM 0.1 1.00 1.00 -0.02% 0.1 0.07 0.07 -9.44%

Neural 1.0 0.98 1.00 2.30% 0.1 0.10 0.05 53.47%

NB 1.0 0.99 1.00 0.22% 1.0 0.86 0.60 30.68%

C5.0 1.0 0.91 1.00 9.34% 1.0 0.22 0.08 63.36%

PLS 1.0 0.97 0.99 1.57% 0.1 0.40 0.40 -0.27%

6.38 10NN 1.0 0.54 0.91 68.17% 0.1 164.33 120.58 26.62%

LDA 1.0 0.95 0.97 2.18% 1.0 1.10 0.22 79.64%

Logistic 1.0 0.89 0.95 6.34% 1.0 5.79 0.29 95.07%

SVM 1.0 0.98 0.98 0.17% 0.5 0.12 0.11 8.87%

Neural 1.0 0.91 0.97 6.08% 1.0 0.87 0.13 85.26%

NB 1.0 0.89 0.93 4.51% 0.5 4.07 2.95 27.35%

C5.0 1.0 0.93 0.96 3.71% 1.0 0.18 1.77 -861.54%

PLS 0.1 0.97 0.97 0.00% 0.1 0.38 0.38 -0.12%

8.79 10NN 1.0 0.81 0.43 -47.07% 0.1 188.78 184.51 2.26%

LDA 0.1 0.92 0.92 -0.09% 0.5 0.23 0.20 14.41%

Logistic 0.1 0.94 0.93 -0.52% 0.1 0.24 0.17 27.25%

SVM 0.1 0.98 0.98 -0.11% 0.1 0.11 0.17 -48.31%

Neural 0.1 0.80 0.92 15.49% 0.1 0.20 0.35 -74.93%

NB 1.0 0.93 0.93 0.12% 0.1 2.48 2.48 -0.18%

C5.0 0.1 0.96 0.88 -7.62% 0.1 0.11 5.13 -4652.49%

PLS 0.1 0.79 0.63 -20.26% 0.1 0.45 0.45 -0.30%

9.14 10NN 1.0 0.76 0.93 22.30% 0.5 168.51 45.75 72.85%

LDA 0.5 0.94 0.94 0.01% 1.0 0.15 0.13 13.18%

Logistic 0.1 0.94 0.94 -0.03% 0.1 0.21 0.14 33.39%

SVM 0.1 0.93 0.93 -0.08% 0.1 0.12 0.12 0.15%

Neural 0.1 0.91 0.94 3.12% 0.1 0.53 0.12 76.46%

NB 0.1 0.92 0.92 0.07% 1.0 2.51 2.44 2.74%

C5.0 1.0 0.85 0.65 -23.89% 1.0 0.18 16.09 -9079.85%

PLS 0.1 0.94 0.94 -0.02% 0.1 0.40 0.40 -0.15%

9.98 10NN 0.1 0.97 0.99 1.89% 0.5 190.82 150.61 21.07%

LDA 0.1 0.97 0.97 -0.02% 1.0 0.13 0.12 6.86%

Logistic 0.1 0.99 0.99 0.44% 0.5 0.70 0.09 87.64%

SVM 0.1 1.00 1.00 0.00% 0.1 0.02 0.02 -3.60%

Neural 0.1 0.99 1.00 0.69% 0.5 0.15 0.05 67.58%

NB 1.0 0.98 0.99 1.01% 1.0 0.15 0.08 42.05%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.1 0.96 1.00 3.59% 0.1 0.10 0.05 54.04%

PLS 0.5 0.96 0.96 0.07% 0.1 0.40 0.40 -0.05%

10.00 10NN 0.5 0.74 0.79 7.07% 1.0 10.69 2.86 73.28%

LDA 1.0 0.81 0.81 0.02% 1.0 0.24 0.24 0.36%

Logistic 1.0 0.80 0.80 0.03% 1.0 0.25 0.24 1.23%

SVM 0.1 0.67 0.67 -0.03% 0.1 0.27 0.27 2.78%

Neural 0.1 0.78 0.81 3.91% 1.0 0.32 0.25 22.53%

NB 0.1 0.81 0.81 -0.14% 0.1 0.24 0.24 0.78%

C5.0 1.0 0.60 0.72 19.54% 1.0 0.29 0.33 -13.61%

PLS 1.0 0.81 0.81 0.01% 0.1 0.42 0.42 -0.02%

10.29 10NN 0.5 0.65 0.75 15.55% 1.0 105.24 32.34 69.27%

LDA 0.1 0.77 0.79 2.95% 1.0 0.35 0.31 10.39%

Logistic 0.1 0.56 0.57 1.90% 1.0 0.95 0.46 52.19%

SVM 0.1 0.73 0.70 -4.19% 0.1 0.30 0.30 -0.19%

Neural 0.1 0.65 0.69 6.00% 1.0 1.65 0.32 80.86%

NB 0.5 0.67 0.67 0.33% 1.0 2.90 1.81 37.72%

C5.0 1.0 0.51 0.56 8.94% 1.0 0.35 0.36 -3.98%

PLS 0.1 0.69 0.69 0.03% 1.0 0.44 0.44 0.10%

10.97 10NN 1.0 0.93 0.93 0.46% 1.0 165.39 157.20 4.95%

LDA 1.0 0.95 0.95 0.17% 1.0 0.13 0.13 2.70%

Logistic 1.0 0.93 0.94 1.22% 1.0 1.06 0.38 64.53%

SVM 0.1 0.93 0.93 0.00% 0.1 0.14 0.14 -0.88%

Neural 1.0 0.93 0.95 2.10% 0.1 0.70 0.15 78.14%

NB 0.1 0.95 0.95 -0.03% 0.5 0.78 0.76 3.20%

C5.0 0.1 0.92 0.70 -23.94% 0.5 0.15 11.36 -7400.57%

PLS 1.0 0.96 0.96 0.09% 0.1 0.39 0.39 -0.01%

11.00 10NN 0.1 0.89 0.93 4.23% 0.5 187.71 102.30 45.50%

LDA 0.1 0.93 0.91 -2.05% 0.5 0.48 0.30 36.52%

Logistic 1.0 0.98 1.00 1.31% 1.0 0.72 0.07 90.82%

SVM 0.1 0.97 0.98 0.25% 0.1 0.11 0.11 -2.62%

Neural 0.5 0.91 0.99 8.48% 0.1 0.16 0.08 50.89%

NB 1.0 0.85 0.92 8.57% 1.0 3.57 0.73 79.62%

C5.0 0.5 0.86 0.98 13.69% 0.5 0.17 0.11 35.58%

PLS 1.0 0.88 0.89 0.86% 0.1 0.41 0.41 0.02%

11.06 10NN 0.5 0.69 0.76 9.57% 0.5 114.18 44.84 60.73%

LDA 0.1 0.80 0.82 2.64% 0.5 0.31 0.28 7.53%

Logistic 0.5 0.57 0.58 3.02% 0.1 0.89 0.46 48.17%

SVM 0.1 0.73 0.71 -2.42% 0.1 0.29 0.29 1.09%

Neural 0.1 0.66 0.72 9.21% 0.1 2.19 0.29 86.85%

NB 0.1 0.70 0.70 0.14% 1.0 3.36 2.14 36.35%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.5 0.53 0.54 1.61% 1.0 0.35 0.35 0.40%

PLS 1.0 0.70 0.71 1.31% 1.0 0.43 0.43 0.10%

11.59 10NN 0.1 0.71 0.79 10.73% 1.0 116.11 47.61 58.99%

LDA 0.5 0.76 0.82 8.25% 0.1 0.31 0.26 13.92%

Logistic 0.5 0.59 0.61 3.19% 1.0 0.88 0.34 61.58%

SVM 0.1 0.72 0.70 -2.83% 0.1 0.28 0.28 0.78%

Neural 0.5 0.67 0.71 6.46% 1.0 1.81 0.28 84.69%

NB 0.1 0.71 0.71 0.01% 1.0 2.86 1.93 32.55%

C5.0 0.1 0.55 0.55 0.17% 1.0 0.33 1.22 -270.71%

PLS 0.5 0.71 0.72 1.39% 1.0 0.42 0.42 0.09%

12.28 10NN 0.5 0.93 0.96 3.76% 1.0 184.20 100.08 45.67%

LDA 0.5 0.94 0.94 0.24% 1.0 0.19 0.12 35.58%

Logistic 0.5 0.93 0.94 1.15% 0.5 1.61 0.12 92.33%

SVM 0.1 0.97 0.97 -0.10% 0.1 0.08 0.08 -3.12%

Neural 1.0 0.86 0.96 11.07% 0.1 0.71 0.12 83.25%

NB 1.0 0.93 0.95 2.89% 1.0 0.85 0.77 9.58%

C5.0 0.1 0.80 0.93 15.94% 1.0 0.19 2.13 -1022.82%

PLS 1.0 0.94 0.94 0.10% 0.1 0.38 0.38 -0.05%

12.62 10NN 1.0 0.60 0.72 19.00% 1.0 132.85 9.59 92.78%

LDA 1.0 0.97 0.97 0.56% 1.0 0.23 0.13 42.62%

Logistic 1.0 0.82 0.95 15.26% 1.0 10.40 0.23 97.79%

SVM 0.5 0.97 0.97 0.08% 0.5 0.14 0.14 6.05%

Neural 0.5 0.80 0.92 14.90% 1.0 0.42 0.18 57.46%

NB 0.5 0.92 0.94 2.27% 1.0 1.19 0.51 57.08%

C5.0 1.0 0.73 0.95 29.91% 1.0 0.29 0.22 23.99%

PLS 0.5 0.72 0.72 0.23% 1.0 0.42 0.41 0.15%

13.87 10NN 1.0 0.49 0.94 90.91% 0.5 214.65 213.98 0.31%

LDA 1.0 0.99 0.99 0.51% 1.0 0.22 0.08 63.39%

Logistic 1.0 1.00 1.00 0.33% 1.0 0.15 0.00 98.87%

SVM 0.1 1.00 1.00 0.00% 0.1 0.01 0.01 17.96%

Neural 0.5 0.93 1.00 7.67% 1.0 0.04 0.01 83.62%

NB 0.1 1.00 1.00 0.00% 0.1 0.11 0.09 15.10%

C5.0 0.1 1.00 1.00 0.00% 0.5 0.00 0.00 100.00%

PLS 1.0 0.99 0.99 0.07% 0.1 0.34 0.34 -0.37%

15.47 10NN 1.0 0.89 0.95 6.02% 1.0 195.33 164.20 15.94%

LDA 0.5 0.90 0.93 3.63% 1.0 0.41 0.21 47.33%

Logistic 0.5 0.87 0.92 5.60% 0.5 6.59 0.45 93.17%

SVM 0.1 0.98 0.98 -0.14% 0.1 0.11 0.11 -4.16%

Neural 0.1 0.92 0.98 6.08% 1.0 0.31 0.13 58.04%

NB 1.0 0.75 0.81 8.47% 1.0 2.47 0.64 74.02%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.1 0.76 0.91 19.78% 0.5 0.24 0.60 -153.08%

PLS 1.0 0.90 0.91 0.36% 1.0 0.38 0.38 0.05%

15.86 10NN 0.1 0.94 0.84 -11.20% 0.1 192.07 184.92 3.73%

LDA 0.1 0.96 0.96 -0.35% 1.0 0.71 0.21 69.92%

Logistic 0.5 0.93 0.98 4.69% 1.0 5.38 0.10 98.13%

SVM 0.1 0.99 0.98 -0.95% 0.1 0.10 0.11 -17.92%

Neural 0.1 0.90 0.97 7.61% 0.5 0.19 0.20 -5.42%

NB 0.1 0.95 0.95 0.02% 0.5 3.40 3.18 6.34%

C5.0 0.1 0.97 0.99 2.25% 0.1 0.05 0.07 -40.85%

PLS 0.1 0.95 0.95 -0.17% 0.1 0.37 0.37 -0.30%

16.40 10NN 0.1 0.72 0.81 13.64% 0.1 169.30 95.56 43.56%

LDA 0.1 0.95 0.94 -1.12% 0.1 0.16 0.14 13.68%

Logistic 0.1 0.94 0.94 -0.48% 0.1 0.13 0.12 7.51%

SVM 0.1 0.83 0.85 2.88% 0.1 0.17 0.17 4.14%

Neural 0.1 0.90 0.92 2.31% 1.0 0.51 0.17 66.39%

NB 0.1 0.75 0.75 0.03% 1.0 0.58 0.48 17.03%

C5.0 0.5 0.62 0.79 27.16% 0.5 0.21 2.82 -1215.04%

PLS 1.0 0.75 0.77 2.45% 1.0 0.39 0.39 0.21%

16.90 10NN 0.5 0.92 0.97 5.45% 1.0 207.16 178.14 14.01%

LDA 0.1 1.00 1.00 0.00% 0.1 0.08 0.02 74.45%

Logistic 0.5 0.98 1.00 1.91% 0.1 1.17 0.03 97.37%

SVM 0.1 1.00 1.00 0.00% 1.0 0.01 0.01 28.21%

Neural 1.0 1.00 1.00 0.30% 1.0 0.01 0.00 64.00%

NB 0.5 0.92 0.96 3.48% 0.5 36.54 22.30 38.98%

C5.0 0.5 0.98 0.99 1.39% 1.0 0.03 0.54 -1701.46%

PLS 0.1 1.00 1.00 0.00% 0.1 0.35 0.35 -0.02%

19.44 10NN 1.0 0.84 0.90 7.00% 1.0 189.46 135.57 28.45%

LDA 0.1 0.93 0.91 -2.01% 1.0 0.23 0.20 16.34%

Logistic 0.1 0.95 0.98 3.94% 0.5 3.81 0.07 98.25%

SVM 0.1 0.96 0.97 0.37% 0.1 0.13 0.12 9.80%

Neural 0.5 0.92 0.98 6.62% 0.1 0.19 0.09 54.53%

NB 1.0 0.84 0.93 10.84% 1.0 2.24 0.39 82.46%

C5.0 0.5 0.96 0.98 1.82% 1.0 0.10 0.18 -80.24%

PLS 1.0 0.91 0.91 0.59% 1.0 0.38 0.38 0.21%

20.50 10NN 1.0 0.91 0.98 7.49% 1.0 219.64 215.09 2.07%

LDA 0.1 0.99 0.99 0.17% 1.0 2.91 0.28 90.44%

Logistic 0.5 0.99 1.00 0.87% 1.0 2.22 0.02 98.96%

SVM 0.1 1.00 1.00 0.01% 0.1 0.06 0.05 3.01%

Neural 0.1 1.00 1.00 0.23% 0.1 0.00 0.00 56.24%

NB 0.5 0.95 1.00 5.71% 0.5 2.20 0.07 97.00%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.1 0.85 0.96 12.07% 1.0 0.12 0.78 -561.36%

PLS 1.0 0.94 0.94 0.49% 1.0 0.37 0.37 0.07%

22.78 10NN 0.1 0.86 0.92 7.45% 1.0 189.33 128.60 32.08%

LDA 0.1 0.93 0.91 -1.91% 0.1 0.18 0.17 4.95%

Logistic 1.0 0.95 0.99 4.02% 0.1 3.09 0.10 96.64%

SVM 0.1 0.96 0.96 0.38% 0.1 0.12 0.10 9.28%

Neural 0.1 0.94 0.99 5.45% 0.1 0.19 0.07 64.67%

NB 1.0 0.84 0.92 10.29% 0.5 2.93 0.91 69.10%

C5.0 0.5 0.95 0.98 2.37% 1.0 0.09 0.15 -57.10%

PLS 1.0 0.91 0.91 0.49% 1.0 0.37 0.37 0.14%

28.10 10NN 0.1 0.84 0.92 9.59% 1.0 193.27 59.03 69.46%

LDA 1.0 0.87 0.88 0.11% 0.5 0.12 0.11 3.46%

Logistic 1.0 0.86 0.87 0.74% 1.0 0.11 0.11 1.25%

SVM 0.1 0.84 0.85 0.77% 0.1 0.12 0.12 0.65%

Neural 0.1 0.86 0.90 5.02% 1.0 0.26 0.11 57.47%

NB 0.5 0.84 0.85 0.71% 0.1 4.81 4.83 -0.46%

C5.0 1.0 0.71 0.73 3.14% 1.0 0.13 3.61 -2598.38%

PLS 1.0 0.88 0.88 0.07% 0.1 0.36 0.36 0.00%

29.17 10NN 1.0 0.47 0.56 19.34% 0.5 164.27 9.32 94.32%

LDA 1.0 0.75 0.76 2.39% 1.0 0.15 0.14 5.04%

Logistic 1.0 0.72 0.74 3.27% 1.0 0.24 0.14 42.06%

SVM 0.1 0.67 0.70 5.03% 0.1 0.14 0.14 1.33%

Neural 0.1 0.66 0.73 10.71% 1.0 0.34 0.15 56.31%

NB 0.5 0.69 0.70 1.01% 1.0 0.63 0.53 15.91%

C5.0 0.1 0.52 0.68 32.30% 0.1 0.15 0.29 -91.59%

PLS 0.5 0.61 0.62 1.51% 1.0 0.36 0.36 0.01%

29.50 10NN 1.0 0.66 0.82 24.23% 1.0 202.87 145.85 28.11%

LDA 1.0 0.63 0.78 23.37% 1.0 0.32 0.19 41.75%

Logistic 1.0 0.63 0.81 29.69% 1.0 7.19 0.28 96.15%

SVM 0.5 0.91 0.93 1.88% 1.0 0.10 0.08 15.80%

Neural 1.0 0.60 0.80 33.15% 0.1 1.16 0.16 86.56%

NB 1.0 0.62 0.71 15.05% 0.5 1.29 0.36 72.27%

C5.0 1.0 0.57 0.79 39.31% 1.0 0.17 0.38 -131.37%

PLS 0.5 0.62 0.62 0.06% 1.0 0.36 0.36 0.34%

30.57 10NN 0.5 0.53 0.71 33.21% 1.0 174.66 22.77 86.96%

LDA 1.0 0.77 0.78 1.18% 1.0 0.12 0.12 1.90%

Logistic 1.0 0.78 0.79 1.25% 1.0 0.12 0.12 2.71%

SVM 1.0 0.68 0.70 1.85% 0.5 0.12 0.12 2.53%

Neural 0.5 0.73 0.77 5.60% 0.5 0.38 0.12 68.54%

NB 1.0 0.74 0.74 0.90% 1.0 6.45 5.88 8.97%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.5 0.52 0.70 34.77% 0.5 0.14 0.23 -60.33%

PLS 1.0 0.76 0.77 0.57% 1.0 0.36 0.36 0.01%

32.47 10NN 0.5 1.00 1.00 0.03% 1.0 221.04 220.69 0.16%

LDA 0.1 1.00 1.00 0.00% 0.5 0.00 0.00 15.77%

Logistic 0.1 1.00 1.00 0.00% 0.1 0.00 0.00 3.18%

SVM 0.1 1.00 1.00 0.00% 1.0 0.01 0.01 6.99%

Neural 0.1 1.00 1.00 0.00% 0.1 0.00 0.00 0.70%

NB 0.1 1.00 1.00 0.00% 0.5 0.01 0.00 89.28%

C5.0 1.0 1.00 0.99 -0.51% 1.0 0.03 0.11 -306.36%

PLS 0.1 1.00 1.00 0.00% 0.1 0.33 0.33 0.00%

32.60 10NN 0.5 0.64 0.81 26.50% 1.0 187.77 91.86 51.08%

LDA 0.1 0.97 0.97 -0.22% 0.5 0.12 0.11 7.91%

Logistic 1.0 0.75 0.84 11.21% 1.0 5.85 0.84 85.63%

SVM 0.5 0.94 0.93 -0.40% 0.5 0.11 0.10 8.38%

Neural 1.0 0.61 0.76 24.38% 1.0 0.46 0.14 68.46%

NB 1.0 0.75 0.80 7.84% 1.0 3.20 0.69 78.45%

C5.0 1.0 0.65 0.87 33.89% 1.0 0.17 1.52 -796.86%

PLS 0.1 0.74 0.74 -0.14% 1.0 0.36 0.36 0.03%

32.73 10NN 0.5 0.97 0.99 1.43% 1.0 210.74 180.79 14.21%

LDA 0.5 0.99 0.99 0.00% 1.0 0.06 0.06 2.31%

Logistic 1.0 0.99 0.99 0.08% 1.0 0.05 0.05 5.08%

SVM 0.1 0.98 0.98 -0.01% 0.1 0.06 0.06 -0.06%

Neural 0.5 0.98 0.99 1.39% 1.0 0.20 0.05 77.23%

NB 1.0 0.96 0.97 0.25% 0.1 2.74 2.73 0.28%

C5.0 0.5 0.94 0.95 1.04% 0.5 0.07 0.41 -511.82%

PLS 1.0 0.99 0.99 0.00% 0.1 0.35 0.35 0.00%

35.44 10NN 0.5 0.44 0.59 33.83% 0.5 176.22 11.25 93.61%

LDA 0.1 0.86 0.86 -0.02% 0.5 0.12 0.11 6.32%

Logistic 0.1 0.84 0.86 1.55% 0.5 0.15 0.11 26.42%

SVM 0.1 0.74 0.76 1.67% 0.5 0.12 0.12 1.67%

Neural 0.1 0.72 0.82 15.16% 1.0 0.65 0.12 81.26%

NB 1.0 0.72 0.77 7.14% 0.5 0.38 0.22 43.27%

C5.0 0.5 0.53 0.74 39.77% 1.0 0.13 0.18 -33.91%

PLS 1.0 0.58 0.63 8.04% 1.0 0.35 0.35 0.03%

39.31 10NN 0.1 0.80 0.92 14.86% 0.1 206.34 110.70 46.35%

LDA 0.1 0.95 0.95 -0.51% 1.0 0.13 0.08 35.19%

Logistic 0.1 0.94 0.94 0.03% 1.0 0.14 0.08 42.97%

SVM 0.1 0.82 0.84 2.76% 0.1 0.10 0.10 7.80%

Neural 0.1 0.92 0.93 1.41% 0.1 0.11 0.07 29.54%

NB 0.5 0.78 0.78 0.03% 1.0 0.60 0.51 15.71%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.1 0.60 0.81 35.20% 0.1 0.12 0.26 -129.24%

PLS 0.1 0.95 0.95 -0.04% 0.1 0.34 0.34 -0.04%

40.50 10NN 0.5 0.79 0.92 15.58% 0.1 213.88 152.28 28.80%

LDA 0.1 0.98 0.98 -0.52% 1.0 0.12 0.06 48.91%

Logistic 0.1 0.96 0.97 1.31% 0.1 0.62 0.05 92.60%

SVM 0.1 0.90 0.90 0.65% 0.5 0.06 0.06 4.74%

Neural 0.1 0.95 0.96 1.16% 0.1 0.38 0.05 85.86%

NB 0.5 0.88 0.88 0.25% 1.0 0.62 0.40 35.89%

C5.0 1.0 0.77 0.87 13.54% 1.0 0.09 0.84 -879.20%

PLS 0.1 0.98 0.98 -0.01% 0.1 0.33 0.33 -0.07%

41.40 10NN 1.0 0.88 0.93 6.14% 1.0 202.36 89.14 55.95%

LDA 0.1 0.94 0.94 -0.01% 1.0 0.08 0.07 3.17%

Logistic 0.1 0.94 0.94 0.00% 0.5 0.07 0.07 0.60%

SVM 0.1 0.85 0.85 -0.36% 0.1 0.07 0.07 -0.21%

Neural 0.5 0.89 0.94 6.20% 0.1 0.28 0.07 75.60%

NB 1.0 0.92 0.91 -0.39% 1.0 4.07 6.13 -50.42%

C5.0 0.5 0.74 0.83 11.68% 1.0 0.09 1.17 -1152.50%

PLS 1.0 0.93 0.93 0.02% 0.1 0.34 0.34 0.00%

44.00 10NN 1.0 0.51 0.86 66.62% 0.1 202.92 24.64 87.86%

LDA 1.0 0.64 0.84 31.80% 0.5 0.16 0.10 39.21%

Logistic 1.0 0.72 0.84 16.21% 0.5 0.16 0.08 48.08%

SVM 0.1 0.87 0.88 0.42% 0.5 0.07 0.07 7.50%

Neural 0.5 0.66 0.89 35.62% 0.5 0.20 0.08 61.72%

NB 0.5 0.87 0.88 1.26% 1.0 0.27 0.19 31.54%

C5.0 0.5 0.57 0.88 54.97% 0.5 0.11 0.44 -296.30%

PLS 0.5 0.58 0.59 2.36% 1.0 0.35 0.35 0.16%

46.50 10NN 1.0 0.46 0.59 28.91% 0.5 187.63 15.37 91.81%

LDA 0.1 0.79 0.79 0.08% 0.5 0.10 0.10 1.95%

Logistic 0.5 0.78 0.80 3.08% 0.5 0.13 0.10 24.36%

SVM 0.5 0.65 0.67 3.87% 0.5 0.10 0.10 1.62%

Neural 0.1 0.64 0.74 14.47% 0.5 0.56 0.10 81.91%

NB 0.5 0.66 0.70 6.16% 0.5 0.30 0.17 42.85%

C5.0 0.5 0.50 0.65 31.70% 1.0 0.10 0.16 -52.02%

PLS 1.0 0.58 0.60 4.08% 0.5 0.35 0.34 0.02%

49.69 10NN 0.1 0.44 0.77 75.49% 0.1 197.65 73.12 63.00%

LDA 0.1 0.82 0.82 0.10% 0.5 0.10 0.09 7.50%

Logistic 0.1 0.78 0.79 0.76% 0.1 0.09 0.09 1.66%

SVM 0.1 0.67 0.71 5.86% 0.1 0.10 0.09 1.39%

Neural 0.1 0.76 0.79 5.18% 1.0 0.20 0.11 43.14%

NB 0.1 0.57 0.58 0.53% 0.1 0.13 0.13 2.43%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 0.5 0.50 0.56 12.95% 1.0 0.10 0.30 -210.47%

PLS 0.1 0.83 0.83 0.01% 1.0 0.34 0.34 0.09%

58.28 10NN 0.5 0.44 0.69 55.41% 0.1 202.69 14.03 93.08%

LDA 1.0 0.69 0.80 15.90% 1.0 0.11 0.08 21.92%

Logistic 1.0 0.71 0.77 7.27% 0.5 0.15 0.08 47.17%

SVM 0.5 0.79 0.81 2.93% 0.1 0.08 0.07 7.15%

Neural 0.5 0.56 0.75 35.05% 0.5 0.28 0.08 71.63%

NB 1.0 0.77 0.80 4.08% 0.5 0.32 0.21 34.10%

C5.0 1.0 0.51 0.78 53.72% 0.5 0.09 0.21 -132.63%

PLS 1.0 0.56 0.58 1.88% 1.0 0.34 0.34 0.04%

58.40 10NN 0.5 0.40 0.71 78.54% 0.5 203.38 29.24 85.62%

LDA 1.0 0.57 0.60 6.01% 1.0 0.10 0.09 8.18%

Logistic 1.0 0.56 0.58 2.52% 1.0 0.10 0.10 4.87%

SVM 0.1 0.93 0.90 -3.22% 0.1 0.04 0.05 -6.83%

Neural 0.1 0.58 0.69 18.82% 0.5 0.42 0.08 80.16%

NB 0.1 0.57 0.57 0.20% 0.5 0.10 0.10 3.51%

C5.0 0.1 0.54 0.82 53.18% 1.0 0.09 0.11 -29.66%

PLS 0.5 0.55 0.55 0.99% 1.0 0.34 0.34 0.02%

66.67 10NN 1.0 0.66 0.99 51.17% 1.0 225.75 225.02 0.33%

LDA 1.0 1.00 1.00 0.02% 1.0 0.48 0.28 41.77%

Logistic 1.0 1.00 1.00 0.40% 1.0 0.17 0.00 98.50%

SVM 0.1 1.00 1.00 0.00% 0.1 0.00 0.00 -18.23%

Neural 0.5 0.97 1.00 3.43% 0.5 0.02 0.01 55.84%

NB 0.5 0.99 0.99 0.37% 0.1 1.56 1.62 -3.94%

C5.0 0.1 1.00 1.00 0.36% 0.1 0.00 0.00 49.35%

PLS 0.5 0.97 0.97 0.39% 0.5 0.33 0.33 0.10%

72.69 10NN 0.1 0.70 0.95 34.91% 0.1 219.05 154.61 29.42%

LDA 0.1 0.97 0.97 -0.19% 1.0 0.08 0.04 48.64%

Logistic 0.1 0.97 0.97 0.17% 0.1 0.10 0.04 61.84%

SVM 0.1 0.85 0.87 2.95% 0.1 0.06 0.05 7.65%

Neural 0.1 0.90 0.95 5.94% 0.1 0.17 0.04 77.08%

NB 0.1 0.80 0.80 0.18% 1.0 0.46 0.27 41.15%

C5.0 0.5 0.64 0.85 33.53% 1.0 0.07 0.09 -29.05%

PLS 0.1 0.97 0.97 0.00% 0.5 0.33 0.33 0.01%

85.88 10NN 0.5 0.45 0.61 36.71% 0.5 205.74 37.54 81.76%

LDA 0.5 0.60 0.60 -0.18% 1.0 0.08 0.07 7.87%

Logistic 1.0 0.60 0.61 1.04% 0.1 0.08 0.08 4.12%

SVM 0.1 0.94 0.91 -3.50% 0.1 0.04 0.04 -7.65%

Neural 0.1 0.56 0.62 11.32% 0.1 0.47 0.06 86.69%

NB 1.0 0.57 0.62 9.90% 1.0 0.09 0.08 6.37%

Continued on next page
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Table 4.2 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

C5.0 1.0 0.55 0.70 26.20% 1.0 0.06 0.16 -160.22%

PLS 1.0 0.58 0.59 1.05% 1.0 0.33 0.33 0.01%

129.44 10NN 0.1 0.41 0.66 61.08% 0.1 214.69 176.41 17.83%

LDA 0.1 0.85 0.85 0.17% 0.5 0.06 0.05 14.79%

Logistic 0.1 0.80 0.80 0.42% 0.5 0.05 0.04 20.56%

SVM 0.1 0.63 0.70 10.41% 0.1 0.04 0.04 0.72%

Neural 0.1 0.80 0.84 5.02% 0.1 0.09 0.04 56.41%

NB 1.0 0.69 0.71 2.26% 1.0 0.27 0.19 29.14%

C5.0 1.0 0.50 0.69 37.66% 1.0 0.05 0.24 -433.21%

PLS 1.0 0.72 0.77 6.70% 1.0 0.32 0.32 0.01%
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Chapter 5

Noisy Replication for Imbalanced Multi-Class Data Sets

The previous two chapters have proved that the noisy replication is an effective model-

free method in learning the imbalanced binary data, and this chapter will expand this

research on the imbalanced multi-class data set. Multi-class means there are at least

three categories of the response variable in the data set. The majority class of a

multi-class data set is the class whose number of observations is the largest compared

with other classes; the minority class is the class with the least number of observations

in that class. We can randomly pick one class as the majority class if there are two

or more classes having the same largest amount of observations, and the same rule

applied for selecting the minority class. Same as in the binary data set, the imbalance

ratio of a multi-class data set is defined as the number of observations in the majority

class over that of the minority class. Data sets listed in Table 4.1 with Classes equal

to and larger than 3 will be tested in this Chapter. The imbalance ratio of these data

sets has a huge leap, ranging from 1.5 to 853.

In this chapter, we will first adjust the noisy replication method to fit the multi-

class data set. When applying the noisy replication method to the multi-class data set,

After testing with both the simulated and real data sets, we display their outcomes,

and compare the effectiveness of different noise levels, models, and imbalance ratios.

5.1 Method Adjustment

The approach of adding noisy replicates to the multi-class data set is generally similar

to the binary data set: select the minority class, add the noise (σnoise = 0.1, 0.5,

and 1.0), apply the 2-fold cross-validation is applied, test eight models, and run the

simulation for 100 times.

Two changes are designed specifically to learn the multi-class data set. As for the
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Figure 5.1: Counts of optimal models in each multi-class data set

measurement, the AUC value is defined by the average of AUC values of all possible

pairs of two classes. For instance, in a three-class data set, there are
(
3
2

)
pairs of

combinations, and an AUC value could be calculated for each pair. Hence, the AUC

value for this three-class data set is the mean of three AUC values [20]. This method

was further explained in Chapter 2. As for some models, we also update their R

functions in learning the multi-class data set. For instance, kknn is for KNN and

multinom is for logistic regression [12, 23].

5.2 Results and Interpretations

Table 5.1 at the end of this chapter summarizes the optimal results for the noisy

replication method, and Appendix C plots the 95% confident interval of 4ROC and

4KL-distance for each data set. Several figures are plotted to help us interpret Table

5.1 and Appendix C.

Two plots in Figure 5.1 summarize the total number of optimal models for each
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Figure 5.2: 4ROC vs. IRs in eight models for multi-class data sets

data set. The blue plot represents the performance when σnoise = 0.1, the red plot

represents σnoise = 0.5, and the gray plot represents σnoise = 1.0. The yellow plot

represents the total number of optimal models for all data sets, and its number

should be less than or equal to eight (8), the number of machine learning models.

The gray shaded area illustrates the best AUC values a data set could get with noisy

replicates. The top figure is measured by ROC, while the buttom one is by KL

distance. Assessing with the ROC area, models with σnoise = 0.1 perform better than

other noise levels, while models with σnoise = 0.5 do not perform very well especially
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Figure 5.2: 4ROC vs. IRs in eight models for multi-class data sets (cont.)

when IR is relatively large. In addition, most optimal models have an AUC value

greater than 0.85. Assessing with the KL distance, models with σnoise = 0.1 perform

better when IR is relatively large, while models with σnoise = 1.0 perform better

when IR is relatively small. For both assessments, could we bring more data sets in,

a better plot about the model performance would be generated.

A series of plots in Figure 5.2 illustrate the relationship between4ROC (ROC.diff)

and IR for eight commonly used machine learning models. From these plots, we can

tell that models, such as neural network and C5.0, will have a better performance



57

Figure 5.2: 4ROC vs. IRs in eight models for multi-class data sets (cont.)

especially when the imbalance ratio of a data set is relatively small. However, we can

also observe some “failures” as well. Data sets with relatively large IR, such as IR =

164, have an unstable performance varying among models. In addition, many other

models, Logistic Regression, SVM, and Näıve Bayes, for instance, do not receive a

statistically significant increase of 4ROC with the change of IR. Nevertheless, this

does not mean the noisy replication method is not successful in learning the imbal-

anced multi-class data set. This phenomenon is because AUC values of both the

original models and the optimized models are very close to 1.0, the best AUC value
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Figure 5.2: 4ROC vs. IRs in eight models for multi-class data sets (cont.)

could be made. Consequently, there is little space to improve the prediction (Figure

5.1). If more multi-class real data sets are available, a clearer tendency between the

ROC difference and IR could be observed.

Figure 5.3 demonstrates the relationship between 4ROC (ROC.diff) and IR for

three noise levels (σnoise). When σnoise = 0.1, there is an increase of 4ROC for

most machine learning models after adding noise replicates, and among them the

neural network has an outstanding performance. We can also observe that the noisy

replication method has a better and more stable performance when IR is less than 9.
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Figure 5.3: Model performance with different noise levels in multi-class data sets
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However, when IR = 164, 4ROC drops for many models, such as SVM and KNN.

The same phenomena also happen to σnoise = 0.5 and σnoise = 1.0. The limited

number of real data sets and the sparseness of the IR could be the factors.
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Table 5.1: Optimal noise level for each multi-class data set

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

1.10 10NN 0.1 0.99 0.99 0.00% 0.5 2.77 2.03 26.71%

LDA 0.1 0.99 0.99 0.00% 0.5 0.59 0.55 6.78%

Logistic 0.1 0.99 0.99 0.00% 1.0 0.46 0.37 19.57%

SVM 0.1 1.00 1.00 0.00% 1.0 1.06 1.05 0.94%

Neural 0.1 0.68 0.97 42.65% 0.1 1.97 1.74 11.68%

NB 0.1 0.98 0.98 0.00% 0.5 1.88 1.86 1.06%

C5.0 0.1 0.96 0.98 2.08% 1.0 0.68 1.60 -135.29%

PLS 0.1 0.85 0.85 0.00% 0.1 2.17 2.17 0.00%

1.48 10NN 0.1 1.00 1.00 0.00% 1.0 0.29 0.12 58.62%

LDA 0.1 1.00 1.00 0.00% 0.5 0.08 0.05 37.50%

Logistic 0.1 0.98 0.99 1.02% 0.1 2.92 0.43 85.27%

SVM 0.1 1.00 1.00 0.00% 0.1 0.11 0.11 0.00%

Neural 0.1 0.71 1.00 40.85% 1.0 0.96 0.51 46.88%

NB 0.1 1.00 1.00 0.00% 0.1 0.12 0.13 -8.33%

C5.1 0.5 0.93 0.99 6.45% 1.0 0.41 0.55 -34.15%

PLS 1.0 0.90 0.93 3.33% 0.1 0.85 0.85 0.00%

1.70 10NN 0.1 0.76 0.76 0.00% 0.5 1.61 0.93 42.24%

LDA 0.1 0.83 0.82 -1.20% 1.0 0.83 0.78 6.02%

Logistic 0.1 0.81 0.82 1.23% 0.1 1.07 0.84 21.50%

SVM 0.1 0.87 0.87 0.00% 0.1 0.65 0.67 -3.08%

Neural 0.5 0.83 0.89 7.23% 0.5 1.18 0.66 44.07%

NB 0.1 0.87 0.87 0.00% 1.0 0.69 0.66 4.35%

C5.2 0.5 0.92 0.92 0.00% 0.5 0.48 1.15 -139.58%

PLS 0.1 0.78 0.78 0.00% 0.1 0.96 0.96 0.00%

5.00 10NN 0.1 0.97 0.99 2.06% 0.5 3.67 0.44 88.01%

LDA 1.0 0.99 1.00 1.01% 1.0 0.31 0.24 22.58%

Logistic 1.0 0.99 1.00 1.01% 1.0 1.27 0.08 93.70%

SVM 0.1 0.99 0.99 0.00% 0.1 0.15 0.14 6.67%

Neural 1.0 0.94 1.00 6.38% 1.0 0.33 0.17 48.48%

NB 0.1 1.00 1.00 0.00% 0.1 0.18 0.17 5.56%

C5.3 0.1 0.91 0.97 6.59% 1.0 0.35 2.78 -694.29%

PLS 0.1 0.89 0.89 0.00% 0.1 0.80 0.80 0.00%

5.88 10NN 0.1 0.85 0.88 3.53% 1.0 3.76 0.40 89.36%

LDA 0.1 0.94 0.94 0.00% 0.1 0.33 0.34 -3.03%

Logistic 0.1 0.96 0.96 0.00% 0.1 0.28 0.28 0.00%

SVM 0.1 0.94 0.94 0.00% 0.1 0.29 0.29 0.00%

Neural 0.1 0.95 0.97 2.11% 0.1 0.34 0.25 26.47%

NB 0.1 0.87 0.87 0.00% 0.1 0.49 0.49 0.00%

C5.4 0.5 0.74 0.81 9.46% 0.1 0.70 6.17 -781.43%

Continued on next page
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Table 5.1 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

PLS 0.1 0.91 0.90 -1.10% 0.1 0.76 0.77 -1.32%

8.44 10NN 0.1 0.86 0.87 1.16% 1.0 13.68 10.71 21.71%

LDA 0.1 0.86 0.87 1.16% 0.5 1.86 1.67 10.22%

Logistic 0.1 0.85 0.86 1.18% 0.5 17.04 7.38 56.69%

SVM 0.1 0.90 0.90 0.00% 1.0 1.23 1.19 3.25%

Neural 0.1 0.78 0.88 12.82% 1.0 1.70 0.99 41.76%

NB 0.1 0.82 0.83 1.22% 1.0 6.68 5.59 16.32%

C5.5 1.0 0.82 0.86 4.88% 1.0 1.18 20.06 -1600.00%

PLS 0.1 0.79 0.79 0.00% 0.1 1.58 1.58 0.00%

9.00 10NN 0.1 1.00 0.80 -20.00% 1.0 0.02 0.57 -2750.00%

LDA 0.1 0.82 0.82 0.00% 0.1 0.38 0.38 0.00%

Logistic 0.1 0.82 0.82 0.00% 0.1 0.38 0.38 0.00%

SVM 0.1 0.72 0.71 -1.39% 0.1 0.41 0.41 0.00%

Neural 0.1 0.81 0.81 0.00% 0.5 0.40 0.38 5.00%

NB 0.1 0.81 0.81 0.00% 0.1 0.39 0.39 0.00%

C5.6 0.1 0.72 0.75 4.17% 1.0 0.5 1.57 -214.00%

PLS 0.1 0.82 0.82 0.00% 0.1 0.74 0.74 0.00%

92.60 10NN 0.1 0.84 0.84 0.00% 1.0 17.18 16.89 1.69%

LDA 0.1 0.88 0.88 0.00% 1.0 2.07 2.03 1.93%

Logistic 0.1 0.88 0.88 0.00% 0.1 1.13 1.13 0.00%

SVM 0.1 0.84 0.84 0.00% 1.0 2.60 2.60 0.00%

Neural 0.1 0.83 0.83 0.00% 0.1 1.21 1.17 3.31%

NB 0.1 0.83 0.85 2.41% 0.1 3.29 3.11 5.47%

C5.7 1.0 0.77 0.79 2.60% 1.0 1.51 28.14 -1763.58%

PLS 0.1 0.73 0.73 0.00% 0.1 2.10 2.10 0.00%

28.60 10NN 0.1 0.93 0.93 0.00% 0.5 7.52 7.35 2.26%

LDA 0.1 0.81 0.81 0.00% 0.5 22.48 16.22 27.85%

Logistic 0.1 0.93 0.93 0.00% 0.1 1.48 1.27 14.19%

SVM 0.1 0.86 0.87 1.16% 1.0 1.58 1.56 1.27%

Neural 0.1 0.87 0.88 1.15% 0.1 0.88 0.61 30.68%

NB 0.1 0.93 0.93 0.00% 0.5 1.98 1.98 0.00%

C5.8 0.5 0.84 0.82 -2.38% 0.5 0.82 22.22 -2609.76%

PLS 0.1 0.74 0.74 0.00% 0.1 1.65 1.65 0.00%

164.00 10NN 0.1 0.91 0.88 -3.30% 0.1 3.05 3.44 -12.79%

LDA 0.1 0.95 0.93 -2.11% 0.5 1.02 0.33 67.65%

Logistic 0.1 0.89 0.91 2.25% 0.1 4.73 0.56 88.16%

SVM 0.1 0.86 0.81 -5.81% 0.1 0.37 0.35 5.41%

Neural 0.1 0.80 0.81 1.25% 0.1 0.38 0.28 26.32%

NB 0.1 0.92 0.92 0.00% 0.1 3.40 2.20 35.29%

C5.9 0.1 0.87 0.93 6.90% 0.1 0.24 2.07 -762.50%

Continued on next page
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Table 5.1 – continued from previous page

Opt. ROC/AUC % Opt. KL distance %

IR Model σnoise Orig. Noisy inc. σnoise Orig. Noisy dec.

PLS 0.1 0.62 0.60 -3.23% 0.1 1.06 1.06 0.00%

853.00 10NN 0.1 0.94 0.94 0.00% 0.1 0.38 0.38 0.00%

LDA 0.1 0.95 0.95 0.00% 1.0 0.44 0.38 13.64%

Logistic 0.1 0.96 0.97 1.04% 0.1 0.60 0.33 45.00%

SVM 0.5 0.97 0.98 1.03% 1.0 1.19 1.17 1.68%

Neural 1.0 0.75 0.97 29.33% 1.0 0.33 0.19 42.42%

NB 0.1 0.96 0.96 0.00% 0.1 0.84 0.77 8.33%

C5.10 0.5 0.90 0.88 -2.22% 0.5 0.03 0.86 -2766.67%

PLS 0.1 0.68 0.68 0.00% 0.1 1.11 1.11 0.00%
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Chapter 6

Conclusion

This thesis mainly proves the effectiveness of the noisy replication method in learning

either the imbalanced binary data set or the imbalanced multi-class data set. By

applying the noisy replication method to more than 60 simulated and real data sets,

we gained further understanding of this machine learning approach, which is a mixture

of many components. To achieve a higher AUC value or a smaller KL distance, we

need many “tuning” many factors, such as the model selected, the noise level added,

the imbalance ratio of the data set, the number of classes, the data type (quantitative

or qualitative), noise vibration direction, assessment criteria, etc. This thesis also

provides us clear clues to answer questions from the first chapter.

What kind of noise should be added? Three levels of noise are tested in this

thesis. For each individual data set, we examine the performance of each noise level by

comparing the ROC area and the KL distance between eight commonly used machine

learning models and their improved models with noisy replicates. It is certain that

adding noise could improve the prediction outcome, and by increasing the noise, the

noisy replication model could either perform better, worse, or with even no difference.

However, we still could see that σnoise = 0.5 performs better and more stable especially

when the imbalance ratio increases, and more noisy replication models will generate

a positive increase of the ROC area and a negative increase of the KL distance.

Where should the noise be added, majority class, minority class, or both? The

tradeoff between variance and bias determines how the noisy replication method is

applied. Controlling other factors, such as noise level, repeated times, etc., adding

noise to either the majority class or the minority class will lower the variance; however,

adding noise only to the majority class may further reduce the bias than only adding

noise to the minority class. We also expect to make the minimum change to the

original data set. Therefore, adding noise only to the minority class is a better idea.
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As for the multi-class data set, where the number of observations in several classes

are either small or large, adding noise only to the minority class, the class with the

least number of observations, is proved to be effective in Chapter 5. Nevertheless, the

effectiveness of adding noise to several classes with smaller number of observations is

still waiting to be tested in future research.

How many times should the minority classes be repeated? There is one factor,

noisy.train, in the pseudocode controlling the repeat times of the minority class.

In the prototype study with a simulated imbalanced data set, we did not observe

a statistically significant increase in the model performance. Hence, noisy.train is

defined as 1 for all other real data set tests. However, this does not mean the repeat

of the minority class is useless, and we need further investigation on this topic in

future research.

Will anti-noise, or two-side vibration improve the performance? This has been

discussed in Chapter 3 where the noisy replication algorithm and its pseudocode are

introduced. Traditionally, only one noise will be added to the minority class, which

is defined as one-side vibration. It has a decent performance if the minority class

adds the noise and minuses the noise (anti-noise) in a simulated binary data set in

Chapter 3. We name it as two-side vibration, and adopt it to all other real data

sets. To conclude, adding both noise and anti-noise is a successful trial in the noisy

replication method.

Can this algorithm be applied to both the qualitative data and the quantitative

data? Most data sets in this thesis consist only of quantitative data, i.e., all features

are real numbers, and the noisy replication method is an effective learning approach.

As for the qualitative data, nevertheless, the noisy replication method could not deal

with the nominal data or the integer data, since it does not make sense to “vibrate”

male or female, or yellow to red. Therefore, a mixture of the noisy replication method

and other techniques need to be applied. It is recommended to add noise only to the
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quantitative data and leave the qualitative data as it is, assuming the original machine

learning model could deal with both qualitative data and quantitative data.

Will this method be applied to the data set with multiple classes? The answer is

yes. Chapter 5 provides a prototype in testing the effectiveness of the noisy replication

method in imbalanced multi-class data sets. Many models demonstrate a statistically

significant increase in ROC or a decrease in KL distance by adding a proper noise

level in the minority class. More data sets could be tested in future research.

Will the imbalance ratio (IR) influence on the model performance? There is a

positive correlation between the 4ROC and IR for some models, such as KNN and

neural network, in the binary data set. On the one hand, it further proves the

effectiveness of the noisy replication method; on the other hand, it is not responsible

to conclude a causal relationship between them. As for the multi-class data set, due

to the limited number of real data sets, it is hard to see a strong relationship between

4ROC and IR.

How to measure and assess the performance of the algorithm, such as ROC area

and Kullback-Leibler distance? Which one is better? The performance of these two

assessment criteria is not consistent, which means an increasing (decreasing) AUC

value does not have a decreasing (increasing) KL distance counterpart. As for the

multi-class data set, multiple ROC is adopted. It is hard to conclude which one is

better than the other, and that’s the reason why we keep both measurement results

in this thesis.

Which model performs better with the noisy replicates? In this thesis, there are

eight (8) machine learning models selected in testing the performance of the noisy

replication method: KNN, LDA, Logistic, SVM, Neural Network, Näıve Bayes, C5.0,

and PLS. Generally speaking, KNN, Neural Network, Näıve Bayes, and PLS have

a better performance in terms of both the ROC area and the KL-distance measure-

ment. However, the performance of LD, Logistic Regression, and SVM do not always
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generate a desirable outcome either in the ROC area or the KL distance. This is also

applied to the multi-class data sets.

How good is the noisy replication method compared with other algorithms using

the same real data set? There are many other previous researches adopting the same

KEEL data sets as we did, providing us a good test for our results. As a result, we

could see that some of our results are better than theirs, while some are not. This

is because some papers focus on improving a certain method, such as SVM, decision

tree, etc. [24, 3]; some redesign the assessment method according to their need; some

only focus on binary data sets; some only apply their method to a limited number of

data sets. In general, the performance of the noisy replication method demonstrates

that it is a model-free regularization method in learning the imbalanced data set.

This thesis makes a great leap in learning, predicting, and classifying the imbal-

anced data set with the noisy replication method. Meanwhile, there are several topics

we are interested in the future research: Non-static imbalanced data set. What hap-

pens if the minority class changes in the real-time? More multi-class data sets. What

is the relationship between IR and model performance? Noisy replication method in

a more balanced data set. Can we apply the same methodology for other general

data sets, even though they are not imbalanced? This thesis provides some samples

in dealing with data sets with a lower IR, and future researches could study this topic

further.



68
References

[1] G. James, D. Witten, and T. Hastie, “An introduction to statistical learning:

With applications in r.,” 2014.

[2] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27,

no. 8, pp. 861–874, 2006.

[3] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel ensemble method

for classifying imbalanced data,” Pattern Recognition, vol. 48, no. 5, pp. 1623–

1637, 2015.

[4] S. S. Lee, “Noisy replication in skewed binary classification,” Computational

statistics & data analysis, vol. 34, no. 2, pp. 165–191, 2000.

[5] H. He and E. A. Garcia, “Learning from imbalanced data,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 21, no. 9, pp. 1263–1284, 2009.
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Appendices

A Sample Code

This is the sample R code based on the pilot experiment introduced in Chapter 3.

1 # import l i b r a r i e s
2 l i b r a r y (MASS)
3 l i b r a r y ( c l a s s )
4 l i b r a r y (ROCR)
5 l i b r a r y ( kknn ) # knn
6 l i b r a r y ( e1071 ) # SVM
7 l i b r a r y ( rpar t ) # Tree
8 l i b r a r y ( t r e e )
9 l i b r a r y ( klaR ) # NB

10 l i b r a r y (C50)
11 l i b r a r y ( p l s )
12 l i b r a r y ( ca r e t ) # plsda
13 l i b r a r y (mda)
14 l i b r a r y ( nnet ) # multinom
15 l i b r a r y (Rmisc ) # p lo t
16 l i b r a r y ( ggp lot2 )
17 l i b r a r y (mvtnorm)
18 l i b r a r y (pROC)
19 l i b r a r y ( v e r i f i c a t i o n )
20 l i b r a r y ( randomForest )
21 l i b r a r y ( matr ixStats )
22

23 par (mfrow=c (3 , 1 ) )
24 ptm<−proc . time ( )
25

26 # c (”knn” ,” ld ” ,” l og ” ,”svm” ,” dt ree ” ,” pt ree ” ,” neura l ” ,”nb” ,”C50” ,” fda ” ,”
p l s ” ,”mda”)

27

28 f o r ( models in c ( ” dt r ee ” , ” pt ree ” , ” neura l ” , ”nb” , ”C50” , ” fda ” , ” p l s ” , ”mda” ) )
{

29 pr in t ( models )
30

31 N<−2 # number o f v a r i a l b e s ( x )
32 sigma . no i s e<−c ( 0 . 1 , 0 . 5 , 1 . 0 ) # t e s t f o r 0 , 0 . 1 , 0 . 5 , 1 . 0
33 nsim<−100 # 3 , 100 , s imu la t i on repeat

t imes (1 , 50 , 100 , 500)
34 no i sy . r e p l<−c (1 ) # c ( 1 : 3 ) , c ( 1 : 1 0 ) r e p l i c a t i o n s

o f the ra r e par t s ( y=1)
35 no i sy . t r a i n<−c (10 ,20 ,40 ,60 ,80 ,100) # c ( 1 : 1 0 ) , c

(10 ,20 ,40 ,60 ,80 ,100) r e p l i c a t i o n s o f the t r a i n i n g data s e t
36 nnrepl<−max( no i sy . r e p l ) # number o f rows ; maximum

number in the no i sy . r e p l ; j
37 nntra in<−max( no i sy . t r a i n ) # number o f columns ; maximum

number in the no i sy . t r a i n ; i
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38 n0<−200 # number o f ”0” s in the
t r a i n i n g data s e t

39 n1<−20 # number o f ”1” s in the
t r a i n i n g data s e t

40 n2<−180
41 t r a i n . s i z e<−220 # s i z e o f the t r a i n i n g data

s e t
42 e<−0.00000001 # f o r KL d i s t ance
43 roc . d i f f . c i<−c ( ) # f o r the p l o t
44 roc . d i f f . mean<−c ( ) # f o r the p l o t
45 k l . d i f f . c i<−c ( )
46 k l . d i f f . mean<−c ( )
47 eu . d i f f . c i<−c ( )
48 eu . d i f f . mean<−c ( )
49 kValue<−10 # k f o r knn (1 ,10 )
50

51 f o r ( k in sigma . no i s e ) {
52 cat ( ”\nmodel =” , models , ” ; sigma . no i s e =” , k , ”\n” )
53

54 # eva lua t i on c r i t e r i a
55 roc . mult i<− l i s t ( )
56 r o c d i f f . mult i<− l i s t ( )
57 roc . sum<−matrix (0 , nrow=nnrepl , nco l=nntra in ) # save roc r e s u l t s f o r

each nsim ; same as roc . ave in prev ious v e r s i on s
58 r o c d i f f . sum<−matrix (0 , nrow=nnrepl , nco l=nntra in )
59 rocMean<−0
60

61 k l . mult i<− l i s t ( )
62 k l d i f f . mult i<− l i s t ( )
63 k l . sum<−matrix (0 , nrow=nnrepl , nco l=nntra in ) # save k l r e s u l t s f o r

each nsim ; same as k l . ave in prev ious v e r s i on s
64 k l d i f f . sum<−matrix (0 , nrow=nnrepl , nco l=nntra in )
65 klMean<−0
66

67 eu . mult i<− l i s t ( )
68 e u d i f f . mult i<− l i s t ( )
69 eu . sum<−matrix (0 , nrow=nnrepl , nco l=nntra in ) # save eu r e s u l t s f o r

each nsim ; same as eu . ave in prev ious v e r s i on s
70 e u d i f f . sum<−matrix (0 , nrow=nnrepl , nco l=nntra in )
71 euMean<−0
72

73 f o r ( t in 1 : nsim ) {
74 ############ Simulated data s e t s (N va r i a b l e s ) ############
75 # tra i n i n g data s e t
76 sigma0<−diag (N)
77 sigma1<−diag (N)
78 sigma1 [ lower . t r i ( sigma1 ) ]<−0 .5
79 sigma1 [ upper . t r i ( sigma1 ) ]<−0 .5
80 t r a i n0<−mvrnorm(n0 , rep (0 ,N) , sigma0 )
81 t r a i n1<−mvrnorm(n1 , rep (1 ,N) , sigma1 )
82 t r a i n2<−mvrnorm(n2 , rep (2 ,N) , sigma0 )
83 # te s t data s e t
84 t e s t 0<−mvrnorm(n0 , rep (0 ,N) , sigma0 )
85 t e s t 1<−mvrnorm(n1 , rep (1 ,N) , sigma1 )
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86 t e s t 2<−mvrnorm(n2 , rep (2 ,N) , sigma0 )
87 # data s e t s summary
88 t r a i n .X<−rbind ( t ra in0 , t ra in1 , t r a i n2 )
89 t e s t .X<−rbind ( te s t0 , t e s t1 , t e s t 2 )
90 t r a i n . y<−c ( rep (0 , n0 ) , rep (1 , n1 ) , rep (2 , n2 ) )
91 t e s t . y<−c ( rep (0 , n0 ) , rep (1 , n1 ) , rep (2 , n2 ) )
92 f a c t o r . y<−as . f a c t o r ( t r a i n . y )
93 df . t r a i n<−as . data . frame ( cbind ( t r a i n . y , t r a i n .X) )
94 df . t e s t<−as . data . frame ( cbind ( t e s t . y , t e s t .X) )
95

96 ###############################################
97 ############# Or ig ina l Assessmet ##############
98 ###############################################
99

100 i f ( models==”knn” ) {
101 ############ KKNN ############
102 y . f i t<−kknn ( f a c t o r . y˜ . , d f . t ra in , df . t e s t , k=kValue )
103 y . prob<−y . f i t $”prob”
104 } e l s e i f ( models==” ld ” ) {
105 ############ Linear Discr iminant ############
106 y . f i t<−lda ( t r a i n . y˜ . , data=df . t r a i n )
107 y . prob<−p r ed i c t ( y . f i t , d f . t e s t ) $ p o s t e r i o r
108 } e l s e i f ( models==” log ” ) {
109 ############ Log i s t i c Regres s ion ############
110 y . f i t<−multinom ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] , t r a c e=FALSE)
111 y . prob<−p r ed i c t ( y . f i t , d f . t e s t , type=”probs ” )
112 } e l s e i f ( models==”svm” ) {
113 ############ SVM ############
114 y . f i t<−svm( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] , p r obab i l i t y=TRUE)
115 y . pred<−p r ed i c t ( y . f i t , newdata=df . t e s t , p r obab i l i t y=TRUE)
116 y . prob<−a t t r ( y . pred , ” p r o b a b i l i t i e s ” )
117 } e l s e i f ( models==” dtree ” ) {
118 ############ Dec i s i on Tree ############
119 y . f i t<−t r e e ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] )
120 y . prob<−p r ed i c t ( y . f i t , d f . t e s t , type=” vec to r ” )
121 } e l s e i f ( models==” ptree ” ) {
122 ############ Prune Tree ############
123 y . auto<−rpar t ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] )
124 y . f i t<−prune (y . auto , cp=0.1)
125 y . prob<−p r ed i c t ( y . f i t , d f . t e s t )
126 } e l s e i f ( models==” f o r e s t ” ) {
127 ############ Random Forest ############
128 y . f i t<−randomForest ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] , sampsize=t r a i n

. s i z e )
129 y . prob<−p r ed i c t ( y . f i t , newdata=df . t e s t , type=”prob” )
130 } e l s e i f ( models==” neura l ” ) {
131 ############ Neural Network ############
132 y . f i t<−nnet ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] , s i z e =2,decay = 5e−4,

maxit = 200 , t r a c e=FALSE)
133 y . prob<−p r ed i c t ( y . f i t , d f . t e s t , type=”raw” )
134 } e l s e i f ( models==”nb” ) {
135 ############ Naive Bayes ############
136 y . f i t<−naiveBayes ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] )
137 y . prob=pr ed i c t ( y . f i t , d f . t e s t , type = ”raw” )



74

138 } e l s e i f ( models==”C50” ) {
139 ############ C50 ############
140 y . f i t<−C5 . 0 ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] , r u l e s=FALSE)
141 y . prob<−p r ed i c t ( y . f i t , d f . t e s t , type = ”prob” )
142 } e l s e i f ( models==” fda ” ) {
143 ############ FDA ############
144 y . f i t<−fda ( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] )
145 y . prob<−p r ed i c t ( y . f i t , d f . t e s t , type = ” po s t e r i o r ” )
146 } e l s e i f ( models==” p l s ” ) {
147 ############ PLS ############
148 y . f i t<−plsda ( df . t r a i n [ , −1 ] , f a c t o r . y )
149 y . prob<−p r ed i c t ( y . f i t , d f . t e s t [ , −1 ] , type = ”prob” ) [ , 1 : (max( df .

t e s t [ , 1 ] ) +1) , ]
150 } e l s e i f ( models==”mda” ) {
151 ############MDA############
152 y . f i t<−mda( f a c t o r . y˜ . , data=df . t r a i n [ , −1 ] )
153 y . prob<−p r ed i c t ( y . f i t , d f . t e s t , type = ” po s t e r i o r ” )
154 } e l s e {
155 stop ( ”Wrong model type ! ” )
156 qu i t ( ”no” ) # not working ?
157 }
158

159 # eva lua t i on
160 # roc
161 roc0<−mu l t i c l a s s . roc ( t e s t . y , y . prob [ , 1 ] ) $auc
162 # kl
163 l og . prob<−l og (1 / (y . prob+e ) )
164 l og . matrix<−cbind ( df . t e s t [ , 1 ] , l og . prob )
165 k l . l i s t<− l i s t ( )
166 # p − c a t e g o r i e s f o r df . t e s t [ , 1 ]
167 f o r (p in c ( 0 :max( df . t e s t [ , 1 ] ) ) ) {
168 k l . l i s t [ [ p+1] ]<−sum( log . matrix [ l og . matrix [ , 1 ] == p , ] [ , ( p+2) ] )
169 }
170 k l0<−Reduce ( ”+” , k l . l i s t )
171 # eu
172 eu0<−sum( ( t e s t . y−y . prob ) ˆ2)
173

174 rocMean<−rocMean+roc0
175 klMean<−klMean+kl0
176 euMean<−euMean+eu0
177 # pr in t ( roc0 )
178

179 ###############################################
180 ######## Vibrat ion in Test ing Data Set ########
181 ###############################################
182

183 # sto r e the r e s u l t s o f roc areas f o r each pa i r o f t r a i n i n g and
va l i d a t i o n data s e t s

184 yprob . s i n g l e<−matrix (0 , nrow=nnrepl , nco l=nntra in )
185 roc . t ab l e<−matrix (0 , nrow=nnrepl , nco l=nntra in )
186 roc . d i f f<−matrix (0 , nrow=nnrepl , nco l=nntra in )
187

188 k l . t ab l e<−matrix (0 , nrow=nnrepl , nco l=nntra in )
189 k l . d i f f<−matrix (0 , nrow=nnrepl , nco l=nntra in )
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190

191 eu . t ab l e<−matrix (0 , nrow=nnrepl , nco l=nntra in )
192 eu . d i f f<−matrix (0 , nrow=nnrepl , nco l=nntra in )
193 ############################
194 f o r ( j in 1 : nnrep l ) {
195 r a r e . s i z e<−j ∗n1
196 t o t a l . s i z e<−r a r e . s i z e+n0+n2 # s i z e o f the v ibra ted t r a i n i n g data

s e t : ( n0+j ∗n1 )
197 t r a i n1 . s t a r<−t r a i n1 [ rep ( seq l en ( nrow ( t r a i n1 ) ) , j ) , ] # dup l i c a t e

the ra r e part
198 varDiag<−diag ( co lVars ( as . matrix ( t r a i n1 . s t a r ) ) ) # sample

var iance d iagona l ( sigma q )
199 t ra inVib . y<−c ( rep (0 , n0 ) , rep (1 , r a r e . s i z e ) , rep (2 , n2 ) )
200 f ac toryVib . y<−as . f a c t o r ( t ra inVib . y )
201 yhat<−0
202 f o r ( i in 1 : nntra in ) {
203 # add no i s e to each ra r e part in the t r a i n i n g data s e t
204 no i s e<−mvrnorm( ra r e . s i z e , rep (0 ,N) , k∗diag (N) , emp i r i c a l =

TRUE) # ep s i l s o n
205 t r a i n1 . v ib<−t r a i n1 . s t a r+no i s e # v ib ra t e the ra r e part
206 t r a i n1 . an t i<−t r a i n1 . s tar−no i s e # add ant i−no i s e
207

208 # generate the t r a i n i n g data s e t with j r a r e par t s ( y=1)
209 t ra inVib .X<−rbind ( t ra in0 , t r a i n1 . vib , t r a i n2 ) # t r a i n i n g data

s e t a f t e r v i b r a t i ng the ra r e part
210 t ra inVib<−as . data . frame ( cbind ( t ra inVib . y , t ra inVib .X) )
211 t ra inAnt i .X<−rbind ( t ra in0 , t r a i n1 . ant i , t r a i n2 )
212 t ra inAnt i<−as . data . frame ( cbind ( t ra inVib . y , t ra inAnt i .X) )
213

214 # models
215 i f ( models==”knn” ) {
216 ############ kknn ############
217 y . pred no i s e<−kknn ( factoryVib . y˜ . , tra inVib , df . t e s t , k=

kValue )
218 y . prob no i s e<−y . pred no i s e $”prob”
219

220 y . pred ant i<−kknn ( factoryVib . y˜ . , t ra inAnt i , d f . t e s t , k=
kValue )

221 y . prob ant i<−y . pred ant i $”prob”
222 } e l s e i f ( models==” ld ” ) {
223 ############ lda ############
224 lda . f i t<−lda ( t ra inVib . y˜ . , data=tra inVib [ , −1 ] )
225 y . prob no i s e<−p r ed i c t ( lda . f i t , d f . t e s t ) $ p o s t e r i o r
226

227 lda . f i t<−lda ( t ra inVib . y˜ . , data=tra inAnt i [ , −1 ] )
228 y . prob ant i<−p r ed i c t ( lda . f i t , d f . t e s t ) $ p o s t e r i o r
229 } e l s e i f ( models==” log ” ) {
230 ############ Log i s t i c Regres s ion ############
231 y . f i t<−multinom ( factoryVib . y˜ . , data=tra inVib [ , −1 ] , t r a c e=

FALSE)
232 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type=”probs ” )
233

234 y . f i t<−multinom ( factoryVib . y˜ . , data=tra inAnt i [ , −1 ] , t r a c e=
FALSE)
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235 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type=”probs ” )
236 } e l s e i f ( models==”svm” ) {
237 ############ SVM ############
238 y . f i t<−svm( factoryVib . y˜ . , data=tra inVib [ , −1 ] , p r obab i l i t y=

TRUE)
239 y . pred<−p r ed i c t ( y . f i t , newdata=df . t e s t , p r obab i l i t y=TRUE)
240 y . prob no i s e<−a t t r ( y . pred , ” p r o b a b i l i t i e s ” )
241

242 y . f i t<−svm( factoryVib . y˜ . , data=tra inAnt i [ , −1 ] , p r obab i l i t y=
TRUE)

243 y . pred<−p r ed i c t ( y . f i t , newdata=df . t e s t , p r obab i l i t y=TRUE)
244 y . prob ant i<−a t t r ( y . pred , ” p r o b a b i l i t i e s ” )
245 } e l s e i f ( models==” dtree ” ) {
246 ############ Dec i s i on Tree ############
247 y . f i t<−t r e e ( fac toryVib . y˜ . , data=tra inVib [ , −1 ] )
248 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type=” vec to r ” )
249

250 y . f i t<−t r e e ( fac toryVib . y˜ . , data=tra inAnt i [ , −1 ] )
251 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type=” vec to r ” )
252 } e l s e i f ( models==” ptree ” ) {
253 ############ Prune Tree ############
254 y . auto<−rpar t ( fac toryVib . y˜ . , data=tra inVib [ , −1 ] )
255 y . f i t<−prune (y . auto , cp=0.1)
256 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t )
257

258 y . auto<−rpar t ( fac toryVib . y˜ . , data=tra inAnt i [ , −1 ] )
259 y . f i t<−prune (y . auto , cp=0.1)
260 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t )
261 } e l s e i f ( models==” f o r e s t ” ) {
262 ############ Random Forest ############
263 y . f i t<−randomForest ( fac toryVib . y˜ . , data=tra inVib [ , −1 ] ,

sampsize=t r a i n . s i z e )
264 y . prob no i s e<−p r ed i c t ( y . f i t , newdata=df . t e s t , type=”prob” )
265

266 y . f i t<−randomForest ( fac toryVib . y˜ . , data=tra inAnt i [ , −1 ] ,
sampsize=t r a i n . s i z e )

267 y . prob ant i<−p r ed i c t ( y . f i t , newdata=df . t e s t , type=”prob” )
268 } e l s e i f ( models==” neura l ” ) {
269 ############ Neural Network ############
270 y . f i t<−nnet ( fac toryVib . y˜ . , data=tra inVib [ , −1 ] , s i z e =2,decay

= 5e−4, maxit = 200 , t r a c e=FALSE)
271 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type=”raw” )
272

273 y . f i t<−nnet ( fac toryVib . y˜ . , data=tra inAnt i [ , −1 ] , s i z e =2,decay
= 5e−4, maxit = 200 , t r a c e=FALSE)

274 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type=”raw” )
275 } e l s e i f ( models==”nb” ) {
276 ############ Naive Bayes ############
277 y . f i t<−naiveBayes ( fac toryVib . y˜ . , data=tra inVib [ , −1 ] )
278 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type = ”raw” )
279

280 y . f i t<−naiveBayes ( fac toryVib . y˜ . , data=tra inAnt i [ , −1 ] )
281 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type = ”raw” )
282 } e l s e i f ( models==”C50” ) {
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283 ############ C50 ############
284 y . f i t<−C5 . 0 ( factoryVib . y˜ . , data=tra inVib [ , −1 ] , r u l e s=TRUE)
285 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type = ”prob” )
286

287 y . f i t<−C5 . 0 ( factoryVib . y˜ . , data=tra inAnt i [ , −1 ] , r u l e s=TRUE)
288 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type = ”prob” )
289 } e l s e i f ( models==” fda ” ) {
290 ############ FDA ############
291 y . f i t<−fda ( factoryVib . y˜ . , data=tra inVib [ , −1 ] )
292 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type = ” po s t e r i o r ” )
293

294 y . f i t<−fda ( factoryVib . y˜ . , data=tra inAnt i [ , −1 ] )
295 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type = ” po s t e r i o r ” )
296 } e l s e i f ( models==” p l s ” ) {
297 ############ PLS ############
298 y . f i t<−plsda ( t ra inVib [ , −1 ] , f ac toryVib . y )
299 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t [ , −1 ] , type = ”prob” )

[ , 1 : (max( df . t e s t [ , 1 ] ) +1) , ]
300

301 y . f i t<−plsda ( t ra inAnt i [ , −1 ] , f ac toryVib . y )
302 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t [ , −1 ] , type = ”prob” )

[ , 1 : (max( df . t e s t [ , 1 ] ) +1) , ]
303 } e l s e i f ( models==”mda” ) {
304 ############MDA############
305 y . f i t<−mda( factoryVib . y˜ . , data=tra inVib [ , −1 ] )
306 y . prob no i s e<−p r ed i c t ( y . f i t , d f . t e s t , type = ” po s t e r i o r ” )
307

308 y . f i t<−mda( factoryVib . y˜ . , data=tra inAnt i [ , −1 ] )
309 y . prob ant i<−p r ed i c t ( y . f i t , d f . t e s t , type = ” po s t e r i o r ” )
310 } e l s e {
311 stop ( ”Wrong model type ! P lease use lower ca s e s ” )
312 }
313

314 # pred i c t i o n p r o b a b i l i t i e s a f t e r two−s i z e v i b r a t i on
315 yhat<−yhat+((y . prob no i s e+y . prob ant i ) / 2) # accumulat ive

yhat
316

317 # assessment
318 y . prob<−yhat/ i
319 roc . t ab l e [ j , i ]<−mu l t i c l a s s . roc ( t e s t . y , y . prob [ , 1 ] ) $auc #

f i n a l roc tab le , same s i z e as roc . summary
320 roc . d i f f [ j , i ]<−roc . t ab l e [ j , i ]− roc0
321

322 #kl
323 l og . prob<−l og (1 / (y . prob+e ) )
324 l og . matrix<−cbind ( df . t e s t [ , 1 ] , l og . prob )
325 k l . l i s t<− l i s t ( )
326 # p − c a t e g o r i e s f o r df . t e s t [ , 1 ]
327 f o r (p in c ( 0 :max( df . t e s t [ , 1 ] ) ) ) {
328 k l . l i s t [ [ p+1] ]<−sum( log . matrix [ l og . matrix [ , 1 ] == p , ] [ , ( p+2)

] )
329 }
330 k l . t ab l e [ j , i ]<−Reduce ( ”+” , k l . l i s t )
331 k l . d i f f [ j , i ]<−k l . t ab l e [ j , i ]− k l0
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332

333 #eu
334 eu . t ab l e [ j , i ]<−sum( ( t e s t . y−y . prob ) ˆ2) # f i n a l eu tab le ,

same s i z e as eu . summary
335 eu . d i f f [ j , i ]<−eu . t ab l e [ j , i ]−eu0
336 }
337 p lo t ( roc . t ab l e [ j , ] )
338 ab l i n e (h = roc0 )
339

340 p lo t ( k l . t ab l e [ j , ] )
341 ab l i n e (h = kl0 )
342

343 p lo t ( eu . t ab l e [ j , ] )
344 ab l i n e (h = eu0 )
345 }
346 roc . mult i [ [ t ] ]<−roc . t ab l e
347 roc . sum<−roc . sum+roc . t ab l e
348 r o c d i f f . mult i [ [ t ] ]<−roc . d i f f
349 r o c d i f f . sum<−r o c d i f f . sum+roc . d i f f
350

351 k l . mult i [ [ t ] ]<−k l . t ab l e
352 k l . sum<−k l . sum+kl . t ab l e
353 k l d i f f . mult i [ [ t ] ]<−k l . d i f f
354 k l d i f f . sum<−k l d i f f . sum+kl . d i f f
355

356 eu . mult i [ [ t ] ]<−eu . t ab l e
357 eu . sum<−eu . sum+eu . t ab l e
358 e u d i f f . mult i [ [ t ] ]<−eu . d i f f
359 e u d i f f . sum<−e u d i f f . sum+eu . d i f f
360 }
361

362 cat ( ”\ nOr ig ina l ROC Mean =” , rocMean/nsim , ”\n” )
363

364 # roc f i n a l r e s u l t
365 roc . f i n a l<−( roc . sum/nsim ) [ no i sy . rep l , no i sy . t r a i n ]
366 pr in t ( ” roc r e s u l t s : ” )
367 pr in t ( roc . f i n a l )
368

369 # roc d i f f e r e n c e
370 r o c d i f f . f i n a l<−( r o c d i f f . sum/nsim ) [ no i sy . rep l , no i sy . t r a i n ]
371 pr in t ( ” roc d i f f e r e n c e : ” )
372 pr in t ( r o c d i f f . f i n a l )
373

374 # plo t roc d i f f e r e n c e ( no i sy . r e p l =2, nos iy . t r a i n =10)
375 roc . c i . t ab l e<−c ( )
376 f o r ( t in 1 : nsim ) {
377 roc . c i . t ab l e<−append ( roc . c i . tab le , r o c d i f f . mult i [ [ t ] ] [ nnrepl ,

nntra in ] )
378 }
379 roc . d i f f . c i<−append ( roc . d i f f . c i , ( qnorm (0 . 9 75 ) ∗ sd ( roc . c i . t ab l e ) / sq r t (

nsim ) ) ) # roc d i f f e r e n c e c i
380 roc . d i f f . mean<−append ( roc . d i f f . mean , ( r o c d i f f . sum/nsim ) [ nnrepl ,

nntra in ] ) # roc d i f f e r e n c e mean
381
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382

383 ###############################
384 cat ( ”\ nOr ig ina l KL Mean =” , klMean/nsim , ”\n” )
385

386 # kl f i n a l r e s u l t
387 k l . f i n a l<−( k l . sum/nsim ) [ no i sy . rep l , no i sy . t r a i n ]
388 pr in t ( ” k l r e s u l t s : ” )
389 pr in t ( k l . f i n a l )
390

391 # kl d i f f e r e n c e
392 k l d i f f . f i n a l<−( k l d i f f . sum/nsim ) [ no i sy . rep l , no i sy . t r a i n ]
393 pr in t ( ” k l d i f f e r e n c e : ” )
394 pr in t ( k l d i f f . f i n a l )
395

396 # plo t k l d i f f e r e n c e ( no i sy . r e p l =2, nos iy . t r a i n =10)
397 k l . c i . t ab l e<−c ( )
398 f o r ( t in 1 : nsim ) {
399 k l . c i . t ab l e<−append ( k l . c i . tab le , k l d i f f . mult i [ [ t ] ] [ nnrepl , nntra in ] )
400 }
401 k l . d i f f . c i<−append ( k l . d i f f . c i , ( qnorm (0 . 9 75 ) ∗ sd ( k l . c i . t ab l e ) / sq r t (

nsim ) ) ) # k l d i f f e r e n c e c i
402 k l . d i f f . mean<−append ( k l . d i f f . mean , ( k l d i f f . sum/nsim ) [ nnrepl , nntra in

] ) # k l d i f f e r e n c e mean
403

404 ###############################
405 cat ( ”\ nOr ig ina l EU Mean =” , euMean/nsim , ”\n” )
406

407 # eu f i n a l r e s u l t
408 eu . f i n a l<−( eu . sum/nsim ) [ no i sy . rep l , no i sy . t r a i n ]
409 pr in t ( ”eu r e s u l t s : ” )
410 pr in t ( eu . f i n a l )
411

412 # eu d i f f e r e n c e
413 e u d i f f . f i n a l<−( e u d i f f . sum/nsim ) [ no i sy . rep l , no i sy . t r a i n ]
414 pr in t ( ”eu d i f f e r e n c e : ” )
415 pr in t ( e u d i f f . f i n a l )
416

417 # plo t eu d i f f e r e n c e ( no i sy . r e p l =2, nos iy . t r a i n =10)
418 eu . c i . t ab l e<−c ( )
419 f o r ( t in 1 : nsim ) {
420 eu . c i . t ab l e<−append ( eu . c i . tab le , e u d i f f . mult i [ [ t ] ] [ nnrepl , nntra in ] )
421 }
422 eu . d i f f . c i<−append ( eu . d i f f . c i , ( qnorm (0 . 9 75 ) ∗ sd ( eu . c i . t ab l e ) / sq r t (

nsim ) ) ) # eu d i f f e r e n c e c i
423 eu . d i f f . mean<−append ( eu . d i f f . mean , ( e u d i f f . sum/nsim ) [ nnrepl , nntra in

] ) # eu d i f f e r e n c e mean
424 }
425

426 # plo t roc d i f f e r e n c e among sigma . no i s e =(0 . 1 , 0 . 5 , 1 . 0 )
427 pr in t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗” )
428 pr in t ( ”ROC d i f f mean : ” )
429 pr in t ( roc . d i f f . mean)
430 pr in t ( ”ROC d i f f CI” )
431 pr in t ( roc . d i f f . c i )
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432

433 roc . p l o t<−matrix (0 , nrow = 3 , nco l = 3)
434 colnames ( roc . p l o t )<−c ( ” no i s e ” , ”mean” , ” sd” )
435 roc . p l o t [ , 1 ]<−c ( 0 . 1 , 0 . 5 , 1 . 0 )
436 roc . p l o t [ 1 , 2 : 3 ]<−c ( roc . d i f f . mean [ 1 ] , roc . d i f f . c i [ 1 ] )
437 roc . p l o t [ 2 , 2 : 3 ]<−c ( roc . d i f f . mean [ 2 ] , roc . d i f f . c i [ 2 ] )
438 roc . p l o t [ 3 , 2 : 3 ]<−c ( roc . d i f f . mean [ 3 ] , roc . d i f f . c i [ 3 ] )
439 roc . p l o t<−data . frame ( no i s e=c ( 0 . 1 , 0 . 5 , 1 . 0 ) ,
440 mean=roc . p l o t [ , 2 ] ,
441 sd=roc . p l o t [ , 3 ] )
442 p<−ggp lot ( roc . p lot , aes ( x=noise , y=mean) , co l our=mean) +
443 geom er ro rba r ( aes ( ymin=mean−sd , ymax=mean+sd ) , width=.1) +
444 geom l i n e ( ) +
445 geom point ( ) +
446 xlab ( ” no i s e ” ) +
447 ylab ( ” roc . d i f f ” ) +
448 geom h l i n e ( y i n t e r c ep t = 0)
449

450 i f ( models==”knn” ) {
451 roc . p1<−p+g g t i t l e ( ”KNN ROC d i f f ” )
452 } e l s e i f ( models==” ld ” ) {
453 roc . p2<−p+g g t i t l e ( ”LD ROC d i f f ” )
454 } e l s e i f ( models==” log ” ) {
455 roc . p3<−p+g g t i t l e ( ”LOG ROC d i f f ” )
456 } e l s e i f ( models==”svm” ) {
457 roc . p4<−p+g g t i t l e ( ”SVM ROC d i f f ” )
458 } e l s e i f ( models==” dtree ” ) {
459 roc . p5<−p+g g t i t l e ( ”Dec i s i on Tree ROC d i f f ” )
460 } e l s e i f ( models==” ptree ” ) {
461 roc . p6<−p+g g t i t l e ( ”Prune Tree ROC d i f f ” )
462 } e l s e i f ( models==” f o r e s t ” ) {
463 roc . p7<−p+g g t i t l e ( ”Random Forest ROC d i f f ” )
464 } e l s e i f ( models==” neura l ” ) {
465 roc . p8<−p+g g t i t l e ( ”Neural Network ROC d i f f ” )
466 } e l s e i f ( models==”nb” ) {
467 roc . p9<−p+g g t i t l e ( ”Naive Bayes ROC d i f f ” )
468 } e l s e i f ( models==”C50” ) {
469 roc . p10<−p+g g t i t l e ( ”C5 . 0 ROC d i f f ” )
470 } e l s e i f ( models==” fda ” ) {
471 roc . p11<−p+g g t i t l e ( ”FDA ROC d i f f ” )
472 } e l s e i f ( models==” p l s ” ) {
473 roc . p12<−p+g g t i t l e ( ”PLSDA ROC d i f f ” )
474 } e l s e i f ( models==”mda” ) {
475 roc . p13<−p+g g t i t l e ( ”MDA ROC d i f f ” )
476 } e l s e {
477 stop ( ”Wrong model type ! ! ! ” )
478 }
479

480

481 ##############################################
482 # plo t k l d i f f e r e n c e among sigma . no i s e =(0 . 1 , 0 . 5 , 1 . 0 )
483 pr in t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗” )
484 pr in t ( ”KL d i f f mean : ” )
485 pr in t ( k l . d i f f . mean)
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486 pr in t ( ”KL d i f f CI” )
487 pr in t ( k l . d i f f . c i )
488

489 k l . p l o t<−matrix (0 , nrow = 3 , nco l = 3)
490 colnames ( k l . p l o t )<−c ( ” no i s e ” , ”mean” , ” sd” )
491 k l . p l o t [ , 1 ]<−c ( 0 . 1 , 0 . 5 , 1 . 0 )
492 k l . p l o t [ 1 , 2 : 3 ]<−c ( k l . d i f f . mean [ 1 ] , k l . d i f f . c i [ 1 ] )
493 k l . p l o t [ 2 , 2 : 3 ]<−c ( k l . d i f f . mean [ 2 ] , k l . d i f f . c i [ 2 ] )
494 k l . p l o t [ 3 , 2 : 3 ]<−c ( k l . d i f f . mean [ 3 ] , k l . d i f f . c i [ 3 ] )
495 k l . p l o t<−data . frame ( no i s e=c ( 0 . 1 , 0 . 5 , 1 . 0 ) ,
496 mean=k l . p l o t [ , 2 ] ,
497 sd=k l . p l o t [ , 3 ] )
498 p<−ggp lot ( k l . p lot , aes ( x=noise , y=mean) , co l ou r=mean) +
499 geom er ro rba r ( aes ( ymin=mean−sd , ymax=mean+sd ) , width=.1) +
500 geom l i n e ( ) +
501 geom point ( ) +
502 xlab ( ” no i s e ” ) +
503 ylab ( ” k l . d i f f ” ) +
504 geom h l i n e ( y i n t e r c ep t = 0)
505

506 i f ( models==”knn” ) {
507 k l . p1<−p+g g t i t l e ( ”KNN kl d i f f ” )
508 } e l s e i f ( models==” ld ” ) {
509 k l . p2<−p+g g t i t l e ( ”LD k l d i f f ” )
510 } e l s e i f ( models==” log ” ) {
511 k l . p3<−p+g g t i t l e ( ”LOG kl d i f f ” )
512 } e l s e i f ( models==”svm” ) {
513 k l . p4<−p+g g t i t l e ( ”SVM kl d i f f ” )
514 } e l s e i f ( models==” dtree ” ) {
515 k l . p5<−p+g g t i t l e ( ”Dec i s i on Tree k l d i f f ” )
516 } e l s e i f ( models==” ptree ” ) {
517 k l . p6<−p+g g t i t l e ( ”Prune Tree k l d i f f ” )
518 } e l s e i f ( models==” f o r e s t ” ) {
519 k l . p7<−p+g g t i t l e ( ”Random Forest k l d i f f ” )
520 } e l s e i f ( models==” neura l ” ) {
521 k l . p8<−p+g g t i t l e ( ”Neural Network k l d i f f ” )
522 } e l s e i f ( models==”nb” ) {
523 k l . p9<−p+g g t i t l e ( ”Naive Bayes k l d i f f ” )
524 } e l s e i f ( models==”C50” ) {
525 k l . p10<−p+g g t i t l e ( ”C5 . 0 k l d i f f ” )
526 } e l s e i f ( models==” fda ” ) {
527 k l . p11<−p+g g t i t l e ( ”FDA kl d i f f ” )
528 } e l s e i f ( models==” p l s ” ) {
529 k l . p12<−p+g g t i t l e ( ”PLSDA kl d i f f ” )
530 } e l s e i f ( models==”mda” ) {
531 k l . p13<−p+g g t i t l e ( ”MDA kl d i f f ” )
532 } e l s e {
533 stop ( ”Wrong model type ! ! ! ” )
534 }
535

536

537 ##############################################
538 # plo t eu d i f f e r e n c e among sigma . no i s e =(0 . 1 , 0 . 5 , 1 . 0 )
539 pr in t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗” )
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540 pr in t ( ”EU d i f f mean : ” )
541 pr in t ( eu . d i f f . mean)
542 pr in t ( ”EU d i f f CI” )
543 pr in t ( eu . d i f f . c i )
544

545 eu . p l o t<−matrix (0 , nrow = 3 , nco l = 3)
546 colnames ( eu . p l o t )<−c ( ” no i s e ” , ”mean” , ” sd” )
547 eu . p l o t [ , 1 ]<−c ( 0 . 1 , 0 . 5 , 1 . 0 )
548 eu . p l o t [ 1 , 2 : 3 ]<−c ( eu . d i f f . mean [ 1 ] , eu . d i f f . c i [ 1 ] )
549 eu . p l o t [ 2 , 2 : 3 ]<−c ( eu . d i f f . mean [ 2 ] , eu . d i f f . c i [ 2 ] )
550 eu . p l o t [ 3 , 2 : 3 ]<−c ( eu . d i f f . mean [ 3 ] , eu . d i f f . c i [ 3 ] )
551 eu . p l o t<−data . frame ( no i s e=c ( 0 . 1 , 0 . 5 , 1 . 0 ) ,
552 mean=eu . p l o t [ , 2 ] ,
553 sd=eu . p l o t [ , 3 ] )
554 p<−ggp lot ( eu . p lot , aes ( x=noise , y=mean) , co l ou r=mean) +
555 geom er ro rba r ( aes ( ymin=mean−sd , ymax=mean+sd ) , width=.1) +
556 geom l i n e ( ) +
557 geom point ( ) +
558 xlab ( ” no i s e ” ) +
559 ylab ( ”eu . d i f f ” ) +
560 geom h l i n e ( y i n t e r c ep t = 0)
561

562 i f ( models==”knn” ) {
563 eu . p1<−p+g g t i t l e ( ”KNN eu d i f f ” )
564 } e l s e i f ( models==” ld ” ) {
565 eu . p2<−p+g g t i t l e ( ”LD eu d i f f ” )
566 } e l s e i f ( models==” log ” ) {
567 eu . p3<−p+g g t i t l e ( ”LOG eu d i f f ” )
568 } e l s e i f ( models==”svm” ) {
569 eu . p4<−p+g g t i t l e ( ”SVM eu d i f f ” )
570 } e l s e i f ( models==” dtree ” ) {
571 eu . p5<−p+g g t i t l e ( ”Dec i s i on Tree eu d i f f ” )
572 } e l s e i f ( models==” ptree ” ) {
573 eu . p6<−p+g g t i t l e ( ”Prune Tree eu d i f f ” )
574 } e l s e i f ( models==” f o r e s t ” ) {
575 eu . p7<−p+g g t i t l e ( ”Random Forest eu d i f f ” )
576 } e l s e i f ( models==” neura l ” ) {
577 eu . p8<−p+g g t i t l e ( ”Neural Network eu d i f f ” )
578 } e l s e i f ( models==”nb” ) {
579 eu . p9<−p+g g t i t l e ( ”Naive Bayes eu d i f f ” )
580 } e l s e i f ( models==”C50” ) {
581 eu . p10<−p+g g t i t l e ( ”C5 . 0 eu d i f f ” )
582 } e l s e i f ( models==” fda ” ) {
583 eu . p11<−p+g g t i t l e ( ”FDA eu d i f f ” )
584 } e l s e i f ( models==” p l s ” ) {
585 eu . p12<−p+g g t i t l e ( ”PLSDA eu d i f f ” )
586 } e l s e i f ( models==”mda” ) {
587 eu . p13<−p+g g t i t l e ( ”MDA eu d i f f ” )
588 } e l s e {
589 stop ( ”Wrong model type ! ! ! ” )
590 }
591 }
592
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593 mul t ip l o t ( roc . p1 , roc . p2 , roc . p3 , roc . p4 , roc . p5 , roc . p6 , roc . p8 , roc . p9
, roc . p10 , roc . p11 , roc . p12 , roc . p13 , c o l s =6)

594 mul t ip l o t ( k l . p1 , k l . p2 , k l . p3 , k l . p4 , k l . p5 , k l . p6 , k l . p8 , k l . p9 , k l . p10
, k l . p11 , k l . p12 , k l . p13 , c o l s =6)

595 mul t ip l o t ( eu . p1 , eu . p2 , eu . p3 , eu . p4 , eu . p5 , eu . p6 , eu . p8 , eu . p9 , eu . p10
, eu . p11 , eu . p12 , eu . p13 , c o l s =6)

596

597 # running time
598 proc . time ( ) − ptm

Listing 1: R code example
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B Outcomes for Binary Data Sets

This section contains outcomes for selected binary data sets in testing the noisy
replication method. They are ordered by the imbalance ratio (IR). The first subgraph
in each figure is the 95% confident intervals of 4ROC, and the second is the 95%
confident intervals of 4KL distance after applying the noisy replication method.
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Figure 1: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 1.86
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Figure 2: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 1.87
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Figure 3: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 1.90
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Figure 4: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 2.00



89

Figure 5: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 2.06
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Figure 6: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 2.46
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Figure 7: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 2.78
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Figure 8: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 2.99
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Figure 9: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data set
with IR = 3.20
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Figure 10: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 3.25



95

Figure 11: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 5.14
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Figure 12: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 6.38
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Figure 13: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 8.79
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Figure 14: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 9.14
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Figure 15: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 9.98
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Figure 16: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 10.00



101

Figure 17: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 10.29
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Figure 18: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 10.97
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Figure 19: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 11.00
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Figure 20: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 11.06
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Figure 21: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 11.59
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Figure 22: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 12.28
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Figure 23: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 12.62
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Figure 24: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 13.87
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Figure 25: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 15.47
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Figure 26: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 15.86
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Figure 27: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 16.40
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Figure 28: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 16.90
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Figure 29: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 19.44
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Figure 30: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 20.50
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Figure 31: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 22.78
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Figure 32: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 28.10
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Figure 33: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 29.17
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Figure 34: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 29.50
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Figure 35: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 30.57
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Figure 36: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 32.73
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Figure 37: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 35.44
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Figure 38: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 39.31
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Figure 39: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 40.50
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Figure 40: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 58.28
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Figure 41: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 58.40
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Figure 42: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 66.67
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Figure 43: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 77.69
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Figure 44: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 85.88
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Figure 45: 4ROC (top) and 4KL-distance (bottom) outcomes for the binary data
set with IR = 129.44
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C Outcomes for Multi-Class Data Sets

This section contains outcomes for all multi-class data sets in testing the noisy repli-
cation method. They are ordered by the imbalance ratio (IR). The first subgraph
in each figure is the 95% confident intervals of 4ROC, and the second is the 95%
confident intervals of 4KL distance after applying the noisy replication method.

Figure 46: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 1.10
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Figure 47: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 1.48
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Figure 48: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 1.70
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Figure 49: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 5.00
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Figure 50: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 5.88
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Figure 51: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 8.44
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Figure 52: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 9.00
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Figure 53: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 28.60
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Figure 54: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 92.60
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Figure 55: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 164.00
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Figure 56: 4ROC (top) and 4KL-distance (bottom) outcomes for the multi-class
data set with IR = 853.00


	Authorization to Submit Thesis
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Model Selection
	K-Nearest Neighbors (KNN)
	Logistic Regression
	Linear Discriminant Analysis (LDA)
	Support Vector Machines (SVM)
	Neural Network
	Naïve Bayes
	C5.0
	Partial Least Squares Discriminant Analysis (PLS-DA)
	Assessment Criteria
	Receiver Operating Characteristic (ROC)
	Kullback–Leibler Distance (KL)

	Cross-Validation (CV)

	Noisy Replication for Imbalanced Binary Data Sets
	Binary Data Set Simulation
	Simulation Algorithm
	Pseudocode
	Simulation Results and Interpretations

	Testing with Real Imbalanced Binary Data Sets
	Introduction to Real Data Sets
	Results and Interpretations

	Noisy Replication for Imbalanced Multi-Class Data Sets
	Method Adjustment
	Results and Interpretations

	Conclusion
	References
	Appendices
	Sample Code
	Outcomes for Binary Data Sets
	Outcomes for Multi-Class Data Sets


