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Abstract

Evacuation planning is a fundamental part of emergency management. An effective evac-

uation plan can mitigate significant loss of life. During a disaster many factors can com-

plicate evacuation, such as traffic congestion, real-time damage to the transportation

network, changes in the safety of areas in the city, and noncompliance with established

evacuation plans. Previously, traffic in an evacuation has been managed as a routing prob-

lem from origins to destinations. This work describes an evolution-based approach to the

problem of evacuation planning using a Markov model approach. It is designed to better

adapt to unpredictable complications of disaster evacuation.

In our approach an Evolution Strategies algorithm is applied to sets of probabili-

ties describing assignment of traffic to streets in networks representing urban areas. A

mesoscopic traffic simulation is used to evaluate the fitness of each set of probabilities,

establishing a traffic assignment distribution. Fitness is evaluated by measuring the safety

of all vehicles at the end of the simulation. This method allows abstraction of individ-

ual vehicles and origin-destination pairs, allowing a more generalized solution. Sources of

danger creating the need for evacuation are also abstracted, allowing the application of

this model to arbitrary disaster events.
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Chapter 1: Introduction

Problem

Natural and man-made disasters pose serious threats to urban areas and human lives.

Possible disasters range from hurricanes to terror attacks. In preparation for and response

to these events it may be in the best interest of the population to evacuate the area.

Accordingly, evacuation planning can help mitigate loss of life. However, traffic networks

are not generally designed to handle the atypical traffic patterns that may occur during an

evacuation. Roads in the network may become congested, resulting in less-than-optimal

roadway throughput. This could lead to delayed evacuations with potentially negative

consequences.

Evacuation faces a number of potential problems. These problems include roadway

congestion, changes in traffic network topology, and moving areas of safety and danger.

Real-world examples of these problems include traffic jams, roadway blockage from debris,

vehicle accidents, and disasters that move over time, such as hurricanes, tsunamis, or po-

tentially terrorist attacks. All of these factors heavily impact the availability of evacuation

routes.

Creating an evacuation planning model that can address these problems is important

for the safety of people living in urban areas that may need to evacuate. Current ap-

proaches to evacuation planning involve high-level origin-destination (OD) based plans

that are designed for specific events [13]. While planning for disasters is important, react-

ing to unforeseen events during an evacuation is also critical.

The problems we wish to address in this work are related to evacuation planning and

constraints. Specifically, we wish to provide a model for managing evacuations in advance

of and response to arbitrary disaster events, subject to real-world constraints like roadway

capacity, traffic network topology, and changing areas of safety and danger.
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Question

In this work we investigate the effectiveness of evolution in providing traffic assignments

for vehicles in urban areas subject to evacuation. Traffic assignments are directions given

to traffic moving through the evacuation area. Our initial question is this: can evolution

effectively optimize traffic assignment as a function of safety, under significant constraints,

in real-time? Other questions arise as we describe our approach.

The constraints we wish to address in this work include changes in safety, traffic

network topology, and vehicle distribution. Therefore, the question becomes: can evolution

effectively optimize traffic assignment as a function of safety during an evacuation, while

responding to changes in safety, topology, and vehicle distribution, in real-time?.

Planning for evacuations ahead of time is important for both emergency management

personnel preparation and public knowledge. The need to plan in advance of an evacuation

modifies our research question, producing our final query:

Can evolution effectively optimize traffic assignment as a function of safety in advance

of and during an evacuation, while responding to changes in safety, topology, and vehicle

distribution?

We hypothesize that evolution can optimize traffic assignments for safety. Further, we

hypothesize that evolution can provide robust solutions which are capable of adapting

to changes in an evacuation environment. Finally, we hypothesize that if an evolutionary

approach can route traffic to safe areas, evacuation plans can be formulated from safety

functions. A safety function in this context describes a mapping of safe or dangerous areas

across the area being evacuated. Such safety functions should be able to capitalize on the

characteristics of specific disasters. For example, elevation may be used as a measure of

safety when creating a plan for tsunami or flood responses.
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Approach

We propose an evolutionary approach to the Dynamic Traffic Assignment (DTA) problem.

We argue that evolution provides the desirable characteristics of being adaptable, robust,

and the ability to carry forward important information from one population of solutions to

the next. Our proposed approach is independent of any specific traffic system or disaster

event, thereby allowing adaptation to any evacuation scenario.

The Evolutionary Algorithm (EA) we chose is an Evolution Strategies (ES) algorithm.

We evolve a cloud of probabilities that map to possible routing choices at each intersec-

tion in the evacuation zone. To evaluate the effectiveness of each set of probabilities, we

simulate traffic moving through the evacuation zone for a time, t, after which we measure

the overall safety of the vehicle population. Traffic in the simulation is routed based on

the cloud of probabilities. This method of evaluation is our fitness function.

To validate our model we use a number of small problems designed to test if certain

parameters affect evolution as predicted. These problems include simple routing tasks,

tests to check if the model splits groups based on capacity of safe areas, and a number of

tests designed to evaluate the model’s adaptability. These tests show that our model is

effective for the problems described.

Long-term Goals

The work described here is preliminary and aims to show that traffic assignments for

large evacuation scenarios in urban areas can be evolved. Another aim is to show that the

model can adapt in response to a dynamic environment. The model described here simply

produces traffic assignments; it does not describe how the traffic assignments should be

communicated to drivers, nor how vehicle location information should be communicated

to the model.

The long-term goal of this work is to provide a model for evacuation optimization,
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based on vehicle safety, for arbitrary evacuation events. The implementation should pro-

vide a clean, usable interface, mechanisms for communicating traffic assignment informa-

tion to vehicles, and integration of mechanisms that allow tracking disaster events, all in

real-time.

Overview of Thesis

This thesis demonstrates the evolution of clouds of probabilities used for traffic assignment

in urban evacuation events. It is also demonstrated that this approach can quickly adapt

to changes in traffic networks and disaster characteristics.

The contributions described in this thesis form an optimization algorithm that finds

optimal traffic assignments for evacuation areas, in response to arbitrary threats. The con-

tributions consist of: 1) a new evacuation traffic assignment model, 2) a traffic simulation,

and 3) an ES representation that leverages the simulation to optimize traffic assignment.

These contributions are tied together in the following chapters.

Chapter 2 discusses relevant literature and problem specific concepts. Chapter 3 dis-

cusses our approach, design, and implementation. Chapter 4 presents a paper on our model

accepted to The 2017 Genetic and Evolutionary Computation Conference (GECCO) in

Berlin, Germany. Chapter 5 summarizes additional work and experiments that test our

model and explore new ideas. Finally, Chapter 6 concludes the thesis and discusses areas

for future work.

Chapters 3, 4, and 5 describe specific contributions. These consist of: 1) a new approach

to evacuation planning that focuses on evolving sets of probabilities used to assign traffic

at intersections in an evacuation zone, 2) an ES algorithm representation that allows

those probabilities to be optimized, and 3) a priority-queue-based traffic simulation used

to evaluate sets of static probabilities during optimization.
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Chapter 2: Background

Problem Characteristics

During an evacuation event transportation networks can become congested. This conges-

tion results in portions of the evacuating population being unable to evacuate or reach

safety. Consequently, it should be the goal of any evacuation plan to mitigate traffic

congestion. Other issues may also arise during an evacuation, such as changes in traffic

network topology, safe zones, and non-compliance with traffic assignments by evacuees.

Yuan and Han [22] suggest that multi-objective optimization is necessary for evacuation

planning due to similar factors. Their work indicates that minimization of evacuation

time alone is insufficient because the fastest routes may not be the safest. In their work

they optimize network clearance time and space-based risk, seeking to mitigate routing

through dangerous areas for the sake of network clearance time reduction.

Previous work has focused on optimizing traffic assignment and routing for origin-

destination (OD) pairs [1], [4], [12], seeking to get people from one area to another by

assigning routes to each evacuee. This research focuses instead on routing the population

of evacuees to safe areas, defined by a safety function. The safety function represents

both the safe areas and the threat(s) driving the evacuation. This implies the model is

independent from the threat, provided a reasonable safety function can be applied. For

example, in the event of a tsunami, it may be reasonable to define safety by elevation,

but during a hurricane or terrorist attack, safety might be defined by distance from the

dangerous area. This flexibility extends to the solution space of any specific problem as

well. Evolution has the potential to find trade-offs and assignments that might be missed

by experts who may tend to focus on specific destinations or routes.

The approach taken in this research models evacuation as a dynamic problem requiring

continuous re-optimization in response to changes in the evacuation environment. Because



6

of this need to respond to an ever-changing environment, an evolutionary approach seems

fitting for evolution’s ability to adapt. Evolution can carry forward important information

from one population to the next. Some information carried forward doesn’t need to change

in response to changes in the environment, allowing the algorithm to focus on optimizing

areas where the environment has changed.

Evacuation Problems

There are a number of problems that arise during an evacuation. Issues we are concerned

with in this work include congestion, topology changes, roadway capacity, safety, and

vehicle distributions. Managing problems such as these is referred to as Dynamic Traffic

Assignment (DTA) [17]

Our model must handle several significant problems that arise during evacuations:

congestion, changes in topology, capacity constraints, moving safety/danger, and changing

vehicle distributions. These issues are described here.

Congestion is perhaps the most significant problem our work seeks to address and

solve. In an evacuation commonly used roadways and those with high capacities, such as

freeways and main thoroughfares may become congested enough to reduce throughput to

unsafe levels. Ideally, our model should compensate for congestion by assigning traffic in

a fashion that maximizes throughput of the traffic system undergoing evacuation.

Changes in topology during an evacuation are another significant issue that our work

seeks to address. Changes in topology imply that some portion of the traffic network

becomes unusable, which is modeled as the removal of a portion of the network. Such

changes can occur as a result of many different real-world events. An extreme case might

be the collapse of a bridge. Another case may be roadway blockage due to debris, or

perhaps flooding renders some number of roadways unusable.

Capacity is closely related to congestion and indicates the maximum number of vehicles

a portion in the traffic network can handle per unit time. For example, a road segment
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may have a maximum throughput of 2000 vehicles per hour. Capacity is a significant

constraint in this work and can change as a result of a number of real-world factors. For

example, a traffic accident can cause a reduction in roadway capacity, as the incapacitated

vehicles may block a lane or multiple lanes. The roadway is still usable, but accommodates

less vehicles per unit time.

Of course safety is a very important part of our model, considering traffic assignment

is optimized based on a safety function. Changing safe areas over time allows modeling of

moving disasters, such as hurricanes, tsunamis, floods, poisonous chemical clouds or spills,

and more. Our model must be able to change traffic assignments over time, accurately

and quickly, in order to manage evacuation in the case of such moving disasters.

Changes in vehicle distribution represent a very real issue that our model has to

manage. We must assume that individuals will not follow directions in some or many

cases. It is reasonable to assume that someone familiar with the area under evacuation

may rely on their experience over the assignments being provided at any given time. In

such a case our model cannot depend on predictions of vehicle distributions based on our

optimizations, but must be updated regularly with information about the current vehicle

distribution.

These constraints, combined with our evolutionary approach, indicate that the model

must be continuously re-optimized. The need to re-optimize further suggests an evolu-

tionary approach is fitting, provided our model is represented so that significant useful

information can be carried from one optimization to the next. Provided optimizations can

be carried out quickly in response to environment changes, this also suggests a real-time

model, where re-optimization begins when significant changes in the network are indicated

by real-world observations.
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Traffic Simulation

There exist a significant number of traffic simulation packages. A non-exhaustive list of

some more commonly used simulators can be found in [10]. Most existing traffic simulation

software seeks to present a view of the traffic as time progresses, providing a visual un-

derstanding of how traffic flows through certain network topologies. However, our model

needs to simulate traffic internally, without a visual representation, for the sake of wall

clock time speedups.

Passos, Rossetti, and Kokkinogenis describe a more complete picture of traffic simu-

lation software and taxonomy in [16]. In their paper, the authors break simulation mod-

els into four groups: microscopic, macroscopic, mesoscopic, and nanoscopic. Macroscopic

simulations model traffic at a high level based on network flow models, and do not treat

vehicles individually, losing what may be key information, depending on the goals of the

model. On the opposite end of the spectrum are nanoscopic simulations, which include a

high level of detail about each individual vehicle, including sensors and vision parts.

Of particular concern for our work are microscopic and mesoscopic simulations. We

compare our work to some work done using VISSIM [7], a microscopic simulation tool. Our

simulation, however, falls into the mesoscopic category. Mesoscopic models fall into a gran-

ularity between macroscopic and microscopic. They model individual vehicles, but also

provide vehicle grouping, which our model uses for speedups. Femke van Wageningen-

Kessels et al. in [21], state: “Mesoscopic models describe vehicle behavior in aggregate

terms such as in probability distributions. However, behavioral rules are defined for indi-

vidual vehicles.” In our model we use probability distributions to control traffic routing,

as opposed to describing traffic that is routed by other means.

Timing is a key consideration in traffic simulation. Some models, such as VISSIM

and SUMO [7], [11], use time-steps where each time step requires calculation of the next

simulation state. Managing these time steps leads to another taxonomy, fine vs. coarse-
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grained models. Our simulation does not fit neatly into either side of this taxonomy,

as time is managed per event. Our simulation is not concerned with traffic behaviors

which require discrete time step evaluation. However, it is required that our simulation

addresses events which happen across the whole range of simulation time, with high

precision. Therefore, our model is sometimes finely grained, when there is a lot of activity

in the traffic network, yet coarse-grained when events are spread over the total simulation

time.

Evolution Strategies

Evolutionary computation refers to a group of algorithms which draw on classical Dar-

winian evolution for inspiration. In general, a population of individuals representing pos-

sible solutions (genotypes) are maintained and evaluated using a fitness function. While

a number of Evolutionary Algorithms (EA) exist, an Evolution Strategies (ES) approach

was chosen for its compatibility with our representation.

In general EAs require a representation, variation operators, parent selection operators,

and a survivor selection operator. The representation refers to how individual solutions

are represented. Variation operators alter individuals in a unary (mutation) or n-ary

(recombination) manner. The parent selection operator is used to select which individuals

should produce offspring. Finally, survivor selection is the method by which the whole set

of children and parents compete for survival [6]. Generally, survivor selection is a function

of each individual’s fitness. The fitness of an individual is determined by a fitness function,

typically a way of measuring the effectiveness of a solution. The fitness function for any

EA or ES is problem specific.

Evolution strategies are a group of evolutionary computation algorithms that repre-

sent genotypes as a vector of real numbers [6]. Mutation is performed by adding a random

number pulled from a Gaussian distribution, with a mean of zero, to alleles in the geno-

type. Recombination is performed using discrete recombination, where a child’s alleles are
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chosen from the parents at random. There are many parent selection operators, but in the

work here we use uniform random selection for a tournament in which genotypes compete

against each other.

The variable parameters for evolution strategies represent algorithm characteristics,

as opposed to representation details. The significant variables include mutation step size,

mutation probability, recombination probability, parent and child population sizes, and

maximum number of generations.

The mutation step size is generally indicated by σ, and refers to the standard deviation

from the mean given to random values pulled from the Gaussian distribution with a mean

value of zero. In ES algorithms this value affects how much real number values are modified

in each mutation operation.

Mutation is performed on each individual selected to produce an offspring. The mu-

tation probability for an ES is used to select which allele in the genotype is mutated.

The mutation occurs when a random value from a Gaussian distribution, with mean 0

and standard deviation σ, is added to the selected allele. The recombination probability

is used to determine if recombination will be used to generate a child from two parents.

The parent and child population sizes are significant for an ES algorithm and indicated

by µ and λ respectively. It is suggested in [6] that a parent-child population ratio of 1 : 7

or 1 : 4 be used, but is not strictly required.

The maximum number of evaluations is used to end the ES algorithm. This is not

a strictly required value by any EA, and there exist a number of other methods for

terminating an EA. Alternatives include schemes that recognize convergence, reaching a

fitness threshold, population diversity reaching a lower bound, and more.

None of the parameters used for ES implementations have a clearly known way of

determining the most ideal value. The most effective value depends on the problem and

implementation, requiring experimentation to discover what works best.
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SLang - The Simulation Language

A mechanism was needed for specifying network topologies and evolution parameters.

SLang was used for this purpose. Created by Dr. Robert B. Heckendorn and Damien Ball,

SLang is a grammar that includes commands which define a traffic network topology.

SLang also provides a standard that can be used to share experiments for the sake of

generating meaningful comparisons between models.

The original SLang specification was modified for this work. The previous version was

designed for use with Ant-Colony Optimizations techniques, not ES approaches. Necessary

adjustments were made to accommodate the new optimization algorithm. The significant

commands used for this work specify the desired ES parameters, network topology, vehicle

starting locations, and the safety function.
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Chapter 3: Approach

Our approach for optimizing the safety of vehicles in a traffic network is to evolve sets

of static probabilities that can be replaced and re-optimized quickly. Our goal is to opti-

mize the probabilities representing the chance a driver is directed to take a certain route

leaving an intersection in the traffic network, for all intersections in the network. These

probabilities should be optimized in such a way that traffic is directed towards safety.

For large amounts of traffic in the system, these probabilities begin to represent traffic

distributions at each intersection. Distributing vehicles at each intersection this way al-

lows our model to interchange vehicles, which can be powerful and adaptive. Route-based

approaches are often constrained by the routes they assign and work under an assumption

that all vehicles follow the specified route. Our model can re-assign any given vehicle to

make up for non-compliance with assignments.

An Evolution Strategies (ES) algorithm was chosen to evolve probabilities. Our initial

work uses a simple ES approach, not containing measures for ensuring diversity, or multi-

objective optimization. Our goal was to first verify an ES would be effective. We want to

establish a basis for future research and refinement of this work.

Encoding the Problem

Effectively encoding the problem is fundamental to any evolution-based model. Without

an appropriate design, operators can be ineffective at producing individuals that search

the problem’s solution space. This section seeks to describe the encoding we used for our

model, and justify it.

We assign traffic using probabilities throughout a graph that represents the network

being evacuated. Nodes correspond to intersections, while edges correspond to streets.

See Figure 3.1. A vehicle makes a choice at each intersection based on the probabilities

for each possible exit from the intersection. We evaluate sets of probabilities by running
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Figure 3.1: A figure showing how our model maps to the real world.

a traffic simulation where vehicles are routed based on the probabilities. In this man-

ner we suggest that traffic distributions should correspond to the evolved probabilities.

Evacuating vehicles can then be routed to safety based on the optimized distributions.

For these reasons we represent the genome as a set of probabilities. Each node has a

subset of these probabilities that sum to 1.0. Loading the genome into a graph produces

probability-based choices for vehicles moving through the simulated network, distributing

traffic accordingly.

Mutation is relatively simple. Upon selection from the parent population a genome is

mutated by iterating over each node’s probability subset and choosing whether or not to

mutate the given node using a mutation probability. When selected, a node is mutated

by adding a normalized, random value, with standard deviation of σ, to one of the edge’s

probability values. The values are then re-normalized to sum to 1.0.

While typically not used in evolution strategies, we tested crossover to see if it reduced

optimization time. Crossover was carried out by iterating over the set of nodes in each of

two parents and randomly selecting which parent would supply that node for the child

(see Figure 3.2). Nodes, in this sense, indicate the subset of probabilities that assign traffic

at the respective intersection in the network. Crossover was performed probabilistically,

using a value defined in the set of ES parameters, Pcrossover, the probability of crossover.
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Figure 3.2: An example of how crossover works in our model.

Selecting an individual from the parent population was performed using uniform ran-

dom tournament selection. Selecting individuals tournament style helps prevent premature

convergence on local optima by promoting diversity. It also helps prevent “good” portions

of the genome from being eliminated due to “bad” portions. Tournament selection works
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by selecting n individuals from the population randomly and having them compete against

each other. The most fit individual in the tournament is selected to become a parent. In

this way, the worst (n− 1) individuals will never be selected (assuming no replacement).

Also, this allows a chance for the best individuals to not be selected as well, helping to

mitigate early dominance of the population by one individual (local optima).

The fitness function we use is relatively simple. The function is a sum of individual

safety for all vehicles in the network, at time t. Inputs to the function include the set of

all evacuating vehicles, E, and the time t. S provides the safety of a location, L. L is a

function of an agent and a time parameter.

fitness(E, t) =
1

||E||
∑
a∈E

S(L(a, t)) (3.1)

Equation 3.1 is simple, but sufficient for proof-of-concept. As stated in [22], evacuation

should be treated as a multi-objective optimization problem.

Model Design

We opted to use an object-oriented design for our model. This corresponds nicely to

a number of real-world objects we needed to represent in our model, such as vehicles,

intersections, and roads. Also, OO design lends itself nicely to our evolution strategy, as

genotypes and the population of genotypes should be self-contained with a number of

operators for each data structure.

When specifying a problem in SLang, a keyword, city is used to create a city object.

The city is defined as a graph with nodes and edges that represent intersections and

roads between them, respectively. The city also contains a set of agents, which represent

vehicles that move through the traffic network during a simulation. The city is designed

to represent the traffic network and to run simulations which operate as a function of the

sets of probabilities evolved. Figure 3.3 shows this relationship.
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Figure 3.3: A UML diagram highlighting important relationships.

The two dominant algorithms at work in our model are the Evolution Strategies (ES)

algorithm and the traffic simulation. Traffic behavior during a simulation is dependent on

a single member of the ES population, a chromosome. The simulation loads the proba-

bilities from a chromosome object into the nodes of the graph, giving probabilistic traffic

assignments for agents moving through the network.

While the population of chromosomes and the city’s simulation runs are heavily asso-

ciated, it is important to make clear that the ES and simulation algorithms are separate.

Our ES algorithm operates on the chromosomes within the population of individuals. The

ES algorithm uses the city object to evaluate the fitness of each chromosome. Therefore, if

the ES child population size parameter is set to 100, every generation of the ES algorithm

will use the city to simulate traffic 100 times.
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Model Implementation

Our implementation of the specified design was carried out using Flex and Bison to parse

SLang specifications. The ES and simulation portions were coded in C++11, chosen for

familiarity, speed, and access to the Standard Template Library (STL). One fundamental

data structure for our model is provided by the STL: the priority queue. A priority queue

operates like a normal queue, except all elements in the queue are sorted.

Nodes, edges, and agents are all specified as C++ classes, the significant members and

methods of each class are shown in Figure 3.3. More methods and fields were required for

full implementation (accessors, mutators, etc.), but are omitted here for the sake of brevity.

Nodes, edges, and agents all come together to build a city object. The city object maps a

single chromosome’s probabilities to its set of nodes, and runs a simulation. Running the

simulation produces a fitness value using Equation 3.1. The population object maintains

a set of chromosomes operated on by the ES.

Nodes

Nodes represent intersections or areas where route decisions can be made by vehicles

traversing the network. Of particular importance are the edge-probability map, node ID,

node capacity, node safety, and node wait time.

A node object contains a map of edge pointers and corresponding probabilities. When

an agent is evaluating which way to leave a node, this map object is consulted and an

edge is selected based on the corresponding probabilities. The number of edge pointer-

probability pairs in the map object is n, where n is the number of edges leading out of the

node, or, n+ 1, where the node contains a self-referential edge, allowing agents to stay in

a given node. Self-referential edges are used for ease of implementation, and to allow all

agents to remain in the priority queue during simulation, instead of moving them around

and having to manage bookkeeping for a more data structures than necessary.
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Generally, node IDs are used for specifying which nodes are connected by an edge. The

node capacity is a hard limit on the number of agents that are allowed to be in the node

at any one time. The safety of a node is dictated by the safety function being optimized

for the traffic network. A node’s wait time is the length of time added to an agent’s arrival

time when the node’s self-edge is selected by an agent. This wait time is necessary for

the simulation, but hard to model based on reality. Typically, a time equivalent to one

minute has been used. If the wait time is zero an infinite loop can be created, and if it is

too high, agents run the risk of never being able to reach their destinations.

Edges

Edges represent roads or links between intersections and carry important information that

dictates how long an agent must spend traversing an edge. The particularly important

features of an edge are the from and to nodes, the parameters for calculating edge traversal

time, and the method that performs the calculation.

Edges are uni-directional in our model. Therefore, they more closely correspond to

lanes, or sets of lanes in the same direction. This choice allows us to represent one-way

roads and disparities in directional throughputs due to inconsistencies in the number of

lanes for opposite directions on roads. Each edge holds a pointer to a node object that

the edge’s traffic comes from, and another for the node traffic is going to.

Parameters for the traversal time method are mostly static characteristics of an edge,

except the capacity value. Capacity represents the number of vehicles currently on the

edge, and directly affects the total traversal time for any new vehicles or agents moving

into the edge. Each edge also has a hard limit for the number of vehicles that it can hold:

maximum capacity.

Freeflow time, f , for an edge is the amount of time that it takes to traverse the edge

in ideal conditions. Ideal conditions usually implies the road is empty, in accordance with

Equation 3.2. This is a more generalizable parameter than some alternatives, as it captures
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distance and speed limit implicitly, by way of the classic formula time = distance
speed

. c and cmax

represent the current and maximum capacity of the edge, respectively. The parameters

b and β are tuning variables used to fit modeled data to recorded data. Observed travel

times for actual roadways can be matched to this formula by adjusting those values.

However, default values are used for cases where such data is not readily available. Those

values are 4 and 0.15, respectively.

The time() function computes the traversal time of the edge, using the values described

above and the Bureau of Public Roads formula [9]:

t = f + b

(
c

cmax

)β
(3.2)

For a node’s self-edge Equation 3.2 is not used. The wait time value specified in the

node object is used instead.

Agents

Agent objects are used to represent vehicles moving through the network. They hold

information about where they are coming from (source), going to (destination), and cur-

rent location (edge). They also hold the time at which they are set to arrive at their

next destination and a value called group size, indicating how many vehicles are moving

together.

Source and Destination are pointers to the respective nodes. Similarly, the current

edge is a pointer to the edge the agent is currently on. These pointers provide each agent

with a clear picture of where it is at, at any given time. Agents never exist on a node,

except semantically. Agents always remain on edges, and nodes have a self-edge in our

representation, to represent being at a node.

The arrival time value each agent holds represents the time it will reach the node is it

traveling towards. Semantically, this value represents the next time each agent will make



20

a decision related to routing. The arrival time of each agent is used to sort the city’s

priority queue.

Finally, the group size of an agent represents how many vehicles are in a group. For

sufficiently large groups of vehicles, they are grouped together to improve run time. It is

important to not use too large of a group size, as it runs the risk of losing accuracy.

City

The city object maintains an agent priority queue used during a simulation. The city also

maintains a set of nodes and a set of edges defined in the SLang input file, which represent

a traffic network topology. Finally, the city holds a Simulate function for evaluating the

fitness of chromosomes.

The sets of nodes and edges are generally static, but can be updated with changes in

topology, between simulations.

The agent priority queue is the data structure used to manage simulation of traffic. For

some period of time specified in SLang, the simulation method simulates traffic moving

throughout the city’s topology. Agents representing that traffic are stored in the priority

queue and sorted by their arrival times.

In general, the simulation algorithm works by dequeuing the agent with the lowest

arrival time (which is at the front of the priority queue, by definition). That agent is

understood to be arriving at its destination node, from where a computation is performed

to select the next edge the agent will travel along. The selection is a function of the portion

of the chromosome that corresponds to the node our agent has just arrived at. Next, the

agent’s new arrival time is computed with a call to the time() method of the edge selected

and adding the value returned to the agent’s previous arrival time. Finally, the agent’s

source, destination, and current edge pointers are updated, and the agent is placed back

into the priority queue. By definition, the priority queue places the agent in a location

corresponding to the new arrival time.
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It is important to understand how the simulation is terminated and that variations

occur in general flow of the simulation. First, a total simulation time value is supplied in

the SLang specification. When an agent is dequeued a check is performed to see if the

arrival time of that agent exceeds the total simulation time. If so, the simulation is ended

and fitness is calculated using Equation 3.1. Additionally, there are special cases where

agents will select an edge that is at maximum capacity. In such a case, the agent has

the corresponding node’s wait time added to its arrival time, and is placed back into the

priority queue. This effectively forces the agent to wait in place, as if at a traffic light.

Chromosome

The chromosome objects contain the probabilities that are being optimized, the fitness

value of their set of probabilities, and mutation and crossover functions. The chromosome

objects are accessed by the city object and the evolution strategies algorithm.

The chromosome objects contains its set of probabilities in a vector-of-vectors data

structure. Each sub-vector contains a set of floats that are ordered and map directly to

the edges stored in a node’s edge-probability map. Each sub-vector’s float values are also

normalized to sum to 1.0.

The fitness value stored in the chromosome is returned from the city when a simulation

is performed using the chromosome’s probability set. It is also used by the population

object to sort and select chromosomes, as part of the ES algorithm.

The mutate function is of crucial importance to the ES algorithm. Mutation is per-

formed on every child chromosome, in every generation, and is the method by which the

solution space of the evacuation traffic assignment problem is searched. The mutation

operator is designed to do uniform random selection across each “node” or sub-vector of

probabilities. For each selection, the function adds a random value, pulled from a Gaussian

distribution with a standard deviation of σ, and a mean of 0, to one of the probability

values. The sub-vector’s values are then re-normalized to one.
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The crossover function is less important than the mutation function, but helps the pop-

ulation more effectively search the solution space. The crossover function is performed by

swapping sub-vectors at the same index from two different chromsomes, using random

uniform selection of those sub-vectors. Semantically, this means that at a given intersec-

tion in the traffic network, one chromosome suggests the majority of traffic should leave

the intersection in one direction, while the other chromosome might suggest a different

direction. Because the routing is not independent of other nodes, this can help explore

new possible solutions, where mutation might not be able to explore as quickly. However,

there is also a chance of creating very poor solutions.

Population

The population object maintains the population of chromosomes, for use by the ES al-

gorithm. The object maintains its size, a multimap object of individuals, keyed by their

fitness values, a selection operator, and a cull operator.

The size value maintained by the population object is determined by the ES param-

eters, and corresponds to λ. The multimap object is used to allow easy sorting function

operations on the population. The map is sorted using C++ STL functions, by fitness

values. Sorting is only done prior to a cull operation. This allows fast culling, as opposed

to searching for the individuals that need to be removed.

The selection operator works by tournament selection. The operator takes an integer

indicating the size of the tournament, and performs the selection. The tournament selec-

tion is performed by selecting n random individuals from the population and choosing

the individual from that group that has the highest fitness.

The cull operator is straightforward - it removes the least fit individuals from the pop-

ulation. During the ES algorithm, as children are created, they are stored in a temporary

data structure, and finally added to the population. Upon insertion into the population,

they are sorted. Cull works by removing the least fit individual until the number of indi-
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viduals in the multimap is equal to λ.

Summary of Approach

We approach the evacuation optimization problem with an ES algorithm. Our ES algo-

rithm is designed to operate on sets of real numbers corresponding to probabilistic traffic

assignments in a traffic network. Each set of probabilities is evaluated using a mesoscopic

traffic simulation designed for this problem.

Each generation of the ES algorithm selects sets of probabilities from the population

and loads them into the city object, where they will serve as traffic assignments for each

intersection in the city. Then, using a set of predefined vehicles in the city, a simulation

runs, routing traffic according to those probabilities. At the end of the simulation, the

safety of each vehicle in the city is evaluated, and a fitness score is assigned using 3.1. This

sequence is performed for each set of probabilities that need to be evaluated, which are

the children, or new individuals mutated from the previous generation. Figure 3.4 and 3.5

illustrate the ES and simulation algorithms, respectively. The “FITNESS EVALUATION”

step in Figure 3.4 uses the simulation to evaluate fitness. It is important to note that the

algorithm depicted in Figure 3.4 is the classic ES algorithm, with the highlighted portion

indicating a contribution.

Each simulation continues until the time traveled by any vehicle in the network exceeds

that of the total simulation time specified in SLang. The ES algorithm continues until

either a maximum fitness value is achieved (meaning a “good” solution has been found)

or until the maximum number of generations allowed is reached.
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Figure 3.4: A UML diagram describing the Evolution Strategy used.

Figure 3.5: A UML diagram describing the traffic simulation used.
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Chapter 4: Evolving a Real-time

Evacuation for Urban Disaster

Management

The paper presented in this chapter summarizes the approach described in the previous

chapters. It continues to describe a number of experiments run using the model presented

here, which are not described anywhere else.

The paper demonstrates preliminary work in this body of research. Our model needs

to be improved upon, and the work in the paper serves to demonstrate that the model

works for difficult and large problems. The research described in the paper demonstrates

that our model is a method for adapting to changes in dynamic evacuation environments

quickly.

This paper was accepted to The Genetic and Evolutionary Computation Conference

(GECCO) 2017, under the Real-world Applications track, and nominated for Best Paper.

The paper is presented, in its entirety, below.
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abstract

In an urban disaster it is important to efficiently evacuate people to safety. We use evolu-

tion strategies and a probability model to route the population by optimizing their safety.

The algorithm is designed to use the strengths of evolutionary computing to repeatedly

optimize an evacuation under the dynamics of a disaster such as accidents blocking criti-

cal roadways, bridge collapses, debris closures, changes in safety, and people not following

evacuation directions. Our model is unconcerned with specific evacuation routes but rather

evolves a robust cloud of probabilities to represent best directions of escape. We show that

maintaining a population of diverse solutions may allow for rapid adaptation as a disaster

unfolds. The core optimization algorithm is tested using challenging test cases as well as

real-world data.
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Introduction

Natural and man-made disasters can rapidly render portions of large urban areas unsafe

for people. To save lives, emergency managers may order time sensitive evacuation from

unsafe areas. This can lead to overloading of transportation networks resulting in the

failure to evacuate all of the population from the unsafe areas and large loss of life. Even

if an evacuation is planned for long before it is needed, numerous unforeseen events may

occur during the evacuation such as accidents blocking critical roadways, bridge collapses,

debris closures, and flooding can cause evacuation failure and loss of life. Changes in safe

zones can occur as well such as failure to predict the level of storm surge in a hurricane

or wind changes in a poison gas leak. Finally, the human factor of people simply not

following evacuation instructions may also lead to the need to repeatedly re-optimize to

avoid congestion resulting in loss of life.

Unlike some previous work, we see the evacuation problem not as getting individuals

to their predefined safe destinations, nor as distributing the people across a small set

of safe destinations but rather as getting people to regions of safety indicated by the

level of safety of the nodes in the transportation network. For example, the problem may

be to get people to the half of the city that is higher ground or safety may even be

equated with elevation of each intersection above sea level. Often city emergency planners

have safety maps for various scenarios. There is also a capacity constraint on nodes so

that solution must conform to physical capacities of nodes and edges. We use both real

and test city networks. Traffic congestion is modeled using classical traffic formulas. This

problem specification is very general in that we optimize routing based on a arbitrary

safety function which can be established for each type of event and so is not necessarily

limited to disasters, although this paper focuses on evacuation planning and response.

We approach the problem of evacuation as a dynamic problem that needs to be re-

peatedly solved as a disaster unfolds to handle the unforeseen changes in the problem
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parameters. This we feel is an added strength of an evolutionary solution. A diverse pop-

ulation in nature or in silico maintains a set of contingent genes that help it adapt to

changing environments. We will attempt to exploit this.

Our solution is to treat the evacuation as a problem of optimizing the sum of the

safety of all the people at a time t. While more complex and interesting optimizations

can be done, we believe that this building block optimization is the “proof of concept”

we will base future work upon. We use an evolutionary approach in which we maintain

a population of potential solutions and evolve an evacuation plan (see details below). We

hypothesize first: that with an effective evacuation representation, we can efficiently solve

a wide variety of evacuation scenarios using an Evolution Algorithm. Second, if during the

evacuation unexpected changes in the transportation network, the safety of regions, or

the evacuee’s position occurs, the population of evacuation plans in the algorithm can be

used to more quickly compute a response to the change than if the response was evolved

from a restart of the optimization. That is, as one would expect, the population acts

as a reservoir of innovation for the adapting of an evacuation to changing conditions.

Experiments are performed on a variety of problems to test and support both hypotheses.

We proceed as follows: Section 4.2 discusses previous work, Section 4.3 discusses our

algorithm, Section 4.4 describes in detail a suite of different problems to challenge our

algorithm, and Section 4.5 presents a summary of conclusions.

Background

Evacuation planning is not a new topic. Previous work has addressed problems varying

from room or building evacuation [20], [8], to city or region evacuation [1], [2], [12]. Opti-

mizing traffic while considering the dynamics of traffic interaction (e.g. congestion [3]) is

known as Dynamic Traffic Assignment (DTA) [17]. Our approach models evacuation as

a DTA problem with the single objective of optimizing the safety of the evacuees. Some

authors consider evacuation as a multi-objective optimization problem [18], [22].
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Saadatseresht et al. optimize evacuation with respect to capacity and nearness of

safety zones, while Yuan and Han suggest that evacuation is an inherently multi-objective

optimization problem, and recommend optimizing space-based risk and travel time.

Stepanov and Smith also approach evacuation planning as a multi-objective opti-

mization problem in [19], where they use Integer Programming instead of evolution. A

route-based approach is used. This has the limitation of having to establish routes for

each individual, creating a specific solution that may be ignored.

Attempts have been made at handling roadway congestion using genetic algorithms,

as well. In Dezani et al. [4], Petri net analysis is used to evaluate fitness in a GA designed

to optimize routes for urban traffic, strictly to reduce roadway congestion in real-time.

Their approach is not multi-objective, and optimizes routes for shortest time. However,

their approach also focuses on route-based solutions for individuals, and optimizes for

minimization of travel time alone.

Our solution focuses on safety optimization, without determining routes for each trav-

eler. This provides a generalization for DTA, removing the requirement that each vehicle

follow a specific path.

Approach

We use an Evolution Strategy (ES) [5] to evolve sets of probabilities that determine the

probability pne of traffic at node n exiting on edge e with the constraint that

∑
e∈E(n)

pne ≤ 1 ∀ n (4.1)

where E(n) is the set of edges leaving node n. The amount of probability left between the

sum above and 1 is the probability of remaining at that node before trying again to leave

the node. The fixed cycle-time is specified for each node when the node is defined. This

approach does not build explicit routes but rather relies on probabilistic routing at each
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intersection to move traffic to safety. An advantage of this is that local information about

the best route to safety is stored at each intersection. The disadvantage is that in this

first implementation, the probabilities are static and only change with re-optimization.

The genome for the ES is the vector of the probabilities given by the list of pne ∀ n.

Fitness at time t is computed:

fitness(E, t) =
1

||E||
∑
a∈E

S(L(a, t)) (4.2)

where E is the set of all evacuees, t is time, S(`) is the safety of location `, and L(a, t)

is the location of agent a at time t which can be a node or edge. Because this is an

average of safeties, the fitness may make trade-offs based on level of safety across the

whole population. This is a practical consideration for the user of the application.

We chose to use an ES(µ+λ) algorithm. For many of our tests we used, µ = 100, λ =

100, and σ = 0.1 (see specific test results). Using the + operator, the child population

competes against the parent population for survival. This is performed using a simple sort

operation, followed by removal of individuals with the lowest λ fitness scores. Mutation

probability Pmutation for a selected genome is 0.5 for each real number in the genome.

Mutation happens by mutating the value by a normal distribution with σ. Unlike many

ES there is also crossover with probability Pcrossover = 0.2. Crossover is uniform crossover

respecting that all probabilities for a given node change together.

It is important to note that time appears in two contexts in this paper. First, simulation

time refers to the amount of time simulated during a fitness evaluation (the t in 4.2).

Second, the amount of real-world time it takes to run the model for a given problem,

referred to as wall-clock time.
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The SLang Language

We developed a language called SLang (Simulation Language) that can be used to specify

cities and optimizations so that tests can be easily generated, run, saved and shared. SLang

is used to specify such things as city topology, the level of safety of intersections, and

agent distribution. SLang also specifies experiment parameters for the evolution strategy

algorithm and simulation of traffic. SLang is also used to control I/O features of the code.

SLang commands are used to specify all necessary information needed by a model.

Therefore, in our model we use SLang to indicate ES parameters such as population size,

σ and the maximum number of generations. SLang is also used to specify the traffic

network data, indicating freeflow time, simulation time, and more.

Simulation

During simulation agents move through the provided topology, according to the current

set of probabilities being evaluated. Agents are stored in a priority queue, sorted by time

of next arrival at an intersection. Time progresses in steps governed solely by the next

arrival at a intersection.

The simulation operates by dequeuing an agent from the queue, checking the arrival

time of that agent compared to the current time in the simulation, selecting the next

edge that agent will take based on the probabilities for the node the agent is currently at,

calculating the traversal time of the selected edge, then re-queuing the agent. This cycle

repeats until the next agent in the priority queue has an arrival time exceeding the total

simulation time (see Figure 4.1).

We defined the travel time t between nodes using the classic Bureau of Public Roads

(BPR) formula [9]:

t = f + b

(
c

cmax

)β
(4.3)

where f is freeflow time of the edge, which is the time required to travel the edge in ideal
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Figure 4.1: A diagram of the how time progresses using a priority queue, during simulation.

conditions, typically meaning no other traffic. For our simulations all time is measured

in hours. c is the current number of evacuees on the edge, while cmax is the maximum

number of evacuees that the edge can handle per unit time (hour). This is a combination

of speed limit, number of lanes, road condition, and length of road. b and β are tuning

variables used to fit real data measured from actual roadways. For our purposes we used

the default values of b = 4.00, β = 0.15, and cmax = 1000 but is dependent on road

size, speed limit and length. Note that the formula does not include explicit distance or

speed limit values, as those values are implied by the freeflow value, f , as a result of

t = distance/speed.

Historically, in normal traffic conditions with working traffic lights, cmax must account

for total throughput per unit time. For instance, the value is reduced from 1000 by a pro-

portion equivalent to the proportion of ”green time” of the traffic light at the intersection.

Once the simulation is complete, the set of probabilities used in the simulation are

evaluated for their fitness. Fitness is a sum of the safety of all the agents (see Equation

4.2). The maximum safety for any location is 1.0. Because fitness is currently evaluated

only at the end of the simulation, fitness is a measure of safety at a specified time t.
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This fitness function was chosen to allow adaptability to any disaster since safety can

be designated by any factor. For example, a flood or tsunami event might measure safety

as both distance from the event, as well as elevation. An earthquake may quantify safety

as distance from tall structures or other hazards. Some events will use distance alone, but

other events may have more complex safety functions.

In summary, a fitness evaluation is computed as follows:

1. Initialization

The set of probabilities to be evaluated is loaded into the city topology; the city has

been defined in SLang prior to any fitness evaluations and the set of probabilities

must match that topology.

Agents are initialized in their starting locations and times; their initialization values

are specified in SLang before any fitness evaluations are made. Typically, agents are

initialized with an arrival time of zero seconds.

Finally, the current time is set to zero seconds. This value is replaced with each

next agent evaluated, and is replaced with the next agent’s arrival time.

2. Simulation

The main activity during simulation consists of popping agents from the priority

queue one at a time, evaluating their next move and arrival time at the next node,

and replacing them in the priority queue at the appropriate location. In the case

where an agent chooses to stay in a node, the agent’s next time of arrival is specified

by the node’s wait time field, and is generally fixed.

3. Fitness

The fitness of the set of probabilities is calculated when the simulation time has

expired, using Equation 4.2.
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Experiments

A series of experiments were performed to test our software and hypotheses. The tests

included validation tests to show that the code works in simple transparent problems,

dynamic tests to show that the code can use populations to adapt to changing problem

parameters such as capacity, comparison tests to compare our work to the work of

others, and scaling tests to see if the code will work for topologies and traffic found in a

real city. While we ran many tests, due to publication size, only a subset of tests is given

in this paper.

Validation Tests

To validate our model we performed a variety of simple transparent tests. First, we created

a test with a 5×5 grid, with all edge and node variables equal. Agents were initialized

to begin in the top left corner of the grid, while safety was only in the two nodes in the

bottom right of the grid (see Figure 4.2). The program quickly routed all evacuees to

safety.

To validate our model we tested that capacity and freeflow constraints effected our

results as expected. We recorded the path to safety indicated by highest probabilities

calling it the selected path. We then repeat the experiment by creating a single path

from danger to safety by reducing the freeflow time of the edges along the selected path,

while increasing freeflow along every other edge in the graph the path is easily found, as

it should be. Similarly, if we increase maximum capacity along the selected path, while

decreasing maximum capacity along all other edges, the path is again easily found.

We then constructed a maze as seen in Figure 4.3. The path indicated in the figure

was marked in one test by high capacity and marked by low freeflow time in the other

test. Notably the safety was zero except for the safe zone at the end. Both tests found

the easier routes highlighted in the figure. As the number of evacuees increases past the
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Figure 4.2: Simple 5×5 grid validation test. The heavier weight edges in the figure show
higher probabilities. The thinnest lines are generally very near zero but are just drawn to
show the topology. The numbers in the nodes are level of safety. Unless otherwise stated,
best case of several is shown.

limit of the easy path side streets become used to share the load.

Dynamic Tests

The following experiments test if our model accommodates dynamic events during an

evacuation. We hypothesize that if probability distributions are optimized in advance,

they can be used to initialize an evolution strategy (ES) to reduce optimization time,

both in real time, and number of generations without loss of accuracy. The results of these

tests demonstrate that pre-optimization leads to faster adaptability in response to real-

time events. This is a very important feature for a real-world evacuation management

system.

For these experiments we make several assumptions. First, we assume changes are not
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Figure 4.3: A cartoon of 5×5 maze test showing the route of least resistance. In this case,
these are not a probabilities but rather just an indication of where we tried to make the
roads faster or higher capacity.

significantly large. We assume an algorithm’s population will have genetic contingency

information usable for similar problems. For example, we assume that from one optimiza-

tion to the next during an evacuation, we won’t suddenly switch from West side of the

city is safe to East side is safe. In fact, in such a case where the graph characteristics

have been changed significantly, re-optimization using a previous solution may take sig-

nificantly longer than using random initialization. The events we are concerned with are

changes in topology, safety zones, capacity, and agent distribution.

To test our hypothesis, we perform two initial optimizations (case 1) we optimize

a population of solutions that are initialized with random values for the initial graph

configuration and (case 2) we optimize a population of solutions that are initialized with

random values for the graph configuration after some change in topology, safety, capacity,

or vehicle distribution has been modified. Finally, (case 3) we use the final population
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from the first optimization to initialize the starting population used to optimize the second

graph configuration. Results will be labeled 1, 2, or 3 corresponding to the three different

cases. For each test, the ES parameters were kept the same for the sake of comparison.

The parameters are ES(100 + 100), Pcrossover = 0.2, Pmutation = 0.5, σ = 0.1

Adapting to Capacity Changes

During an evacuation event a roadway may see a change in capacity as a result of becoming

partially blocked by debris, accidents in one or more lanes on a multi-lane road, or as a

result of other unpredictable events. In such a case our model must be able to quickly

adapt through re-optimization. We predict that using pre-optimized traffic probability

distributions will allow for quick adaptation. To test this prediction we run three tests.

First, we create a topology with a maximum capacity of 1000 agents per unit time for all

edges, G1. Next, we create a topology that is identical, except that maximum capacity is

lowered by 100 for each edge, G2.

We then optimize both of these graphs using our models and record the average number

of generations until maximum fitness is achieved. We also store the population of solutions

found from G1, as they will be the starting population for optimization in the next test.

For the third part of the test we re-optimize G2, starting with the solutions from G1. We

record and compare the number of generations needed to reach maximum fitness below.

The probabilities are graphical represented in Figures 4.4 and 4.5. Since the landscape

is flat and load is light, many evacuations plans are equivalent and so variation in the

probabilities occur. Solution time is shorter in case 3. Results are shown Table 4.1.

Adapting to Topology Changes

Another event that might occur during an evacuation is a change in topology, meaning

some route or partial route becomes unusable, such as a bridge collapse or a road be-

coming flooded or completely blocked by debris. It is important that our model handles
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Figure 4.4: 5×5 capacity test results for case 1.

such changes quickly. We make a similar prediction to the capacity change test as well.

Note that a change in topology is a more extreme version of a change in capacity where

maximum capacity is reduced to zero for a roadway. We again run three tests but using

the bridge topology. The first test is on G1, which represents three bridges connecting

two areas, with safety being on the side opposite where vehicles are started for these tests

(See Figure 4.6). G2 for this test is identical to G1, except with an edge on the center

”bridge” removed representing a collapse. The first two graphs are optimized from random

traffic assignment probabilities. We then use the solutions from the optimization of G1 to

optimize G2, and record the number of generations for comparison (See 4.7). Results are

shown Table 4.1. Solution quality is similar but time to solve is substantially shortened.
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Figure 4.5: 5×5 capacity test results for case 2.

Adapting to Agent Distribution Changes

In an evacuation, it is expected that individual drivers will ignore evacuation instructions

and instead upon arriving at and intersection rely on their experience driving in the area.

This is expected because people are under stress and optimal traffic assignments may

produce non-intuitive results in an attempt to balance traffic load on many streets at

once. In such cases, we must adapt and adjust based on where vehicles actually are not

where we expect them to be. This is another reason why it is crucial to continually re-

optimize to adapt to the unforeseen. We make a similar prediction here - our model will

find an optimal solution faster if initialized with a pre-computed solution for a similar

traffic distribution. Again, we use three tests. All tests use an identical topology, but G1

has traffic distributed differently than G2. The first two runs optimize for different traffic

distributions, starting with randomized traffic assignment probabilities. The third run

uses the optimized traffic assignment probabilities from the first test, but with the traffic
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Figure 4.6: The three bridge test. Probabilities for bridge intact and random initialization.

distribution of the second run. The traffic probability distributions are qualitatively not

different but the time to solve is much lower. Results are shown in Table 4.1.

Adapting to Safety Changes

During many evacuation events, the threat creating the need for evacuation is not static.

Examples include hurricanes, floods, tsunamis, poison gas. As a result of the dynamic

nature of the threat, it is imperative that our model handles changes in safe areas quickly.

We predict that our model handles changes in safety quickly, again provided the change

is not too great. Three runs are used to perform this experiment. The first and second are

again identical in topology (see Figure 4.8). In the case 3 test the safe nodes move over

one node (see Figure 4.9). The optimized traffic assignment probabilities from run one are

used to initialize the third run, which has safety in the same location as run two. Results

are shown Table 4.1. Safety was easily solve quickly. Perhaps a more difficult safety test
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Figure 4.7: The three bridge test. Probabilities for bridge destroyed and population ini-
tialized with population from previous solution.

will tease out the difference between case 1 and 3 for this problem.

Summary

In the dynamic tests we adjusted one of four attributes to represent events that can

change a transportation network in an evacuation. Graphs shown in Figure 4.11 show

that priming the population with a population that produced a successful solution for the

pre-event problem produces a solution more quickly than just starting the optimization

over. Figure 4.10 shows the quality of the answers is substantially the same. We believe

that as long as the change is modest the population contains “contingency genes” that

will help speed the adaption to the new problem. These results are encouraging, but we

are following with more focused tests in our future work.
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Figure 4.8: 5×5 safety test for case 1.

Comparison Test

Here we compare our model to the approach used by Bazzan et al. in [1]. In their paper

they seek to minimize average travel time by evolving traffic assignments through the

network, given a set of vehicles, origin/destination pairs for those vehicles, and a set of k

shortest paths. They use a classic graph from [15], (see Figure 4.12) with the freeflow times

specified. The way we model capacity is different, but comparable. We seek to compare

our results to provide some context of how our model holds up compared to other work.

In their experiment they run k origin/destination pairs, with k ranging from 2 to

16. We compare to the case where k = 4. We run our experiment with two vehicle

origin nodes, corresponding to their origins, with two safe nodes, corresponding to their

destinations. We let our model optimize for safety, and provide the results and comparison

below. Their evacuation (network clearance) time is significantly lower. We believe this is

probably due, in part, to differences vehicle scheduling and is an area for future analysis.
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Figure 4.9: 5×5 safety test for case 3.

While our model does implicitly find routes to safety, the routes found are not as fast as

those found by Bazzan et al. The average time to safety (TTS), with standard deviation

is shown in Figure 4.13.

Scaling Tests

To test the ability of our model to handle real-world urban evacuation problems, we used

traffic model data for Boise, Idaho, a city with approximately 650,000 people. Our goal

was to discover the wall-clock time it takes to optimize such a city, using our model. For

this experiment we made simple assumptions about graph properties where we didn’t

have accurate data (freeflow time, maximum capacity, etc). Our data includes 283 nodes

with 457 edges. These do not represent every road and intersection in Boise, but rather

many of the artery roads and feeders (see Figure 4.14). We believe the vast majority of

the evacuee’s time will be spent on these roads and so the test is a realistic estimation
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Table 4.1: Generations to Complete Optimizations in Dynamic Tests: Capacity, Topology,
Agents, Safety. In all cases the suffix numbers 1, 2, or 3 represent the three cases in each
of the dynamic tests. 100 runs of each case were performed. “Gens” is generations and
thours is the simulated time.

Test Avg. Gens σGens Avg. Fit σfit thours
Capacity1 47.75 5.208 1.0 0.0 1.0
Capacity2 55.1 6.64 1.0 0.0 1.0
Capacity3 4.35 2.19 1.0 0.0 1.0
Topology1 73.54 15.835 1.0 0.001 0.5
Topology2 69.92 13.9 0.998 0.009 0.5
Topology3 7.01 4.574 1.0 0.0 0.5
Agents1 77.99 9.605 0.999 0.003 0.7
Agents2 89.69 8.577 0.998 0.004 0.7
Agents3 30.5 8.325 1.0 0.0 0.7
Safety1 43.02 8.359 1.0 0 1.0
Safety2 40.855 8.2 1.0 0 1.0
Safety3 34.5 4.574 1.0 0 1.0

of evacuation time. We feel that Boise is a good representation of a real example, as it

includes a mix of urban downtown areas and suburban neighborhoods.

We ran a set of 6 experiments 10 times each, and averaged the wall-clock time each

experiment took. Each experiment used the same ES and city parameters, varying only

in the way and number vehicles were distributed. Each experiment was initialized with a

base-set of agents (representing 10 vehicles each) at each node. This base-set is used to

ensure agents begin at every node, thereby applying evolutionary pressure across the whole

genome. Not applying pressure to probabilities at each node could produce dangerous

results in a real-world application, as nodes may end up with traffic assignments that are

no better than random. Vehicle group starting locations are random in each test. Vehicles

are grouped to improve run time. Each experiment simulated one hour of traffic. The

number vehicles, number of groups, size of each group, and wall-clock run time are shown

for each experiment in Table 4.2. The experiment shows that for a real world city of over

a half-million people execution times on the order of minutes is a reasonable expectation.
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Figure 4.10: A comparison of the quality of answers for the four dynamic tests. This
indicates the answers are of comparable quality.

Conclusions

In conclusion, we have evolved static probability distributions that are shown to provide

routing to safe areas in reasonable time. Further, the solutions used are provided as ini-

tializations for evacuation parameter changes, which reduce the optimization times of the

updated scenarios. This makes an evolution based real-time continuous optimization of an

evacuation feasible. The main advantages of our proposed model includes a robust method

for adapting to the dynamic conditions of a real disaster, relatively fast computation time,

and robustness achieved through both evolution and a vehicle distribution model, instead

of a more ridged point-to-point routing for individual agents.
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(a) Capacity (b) Topology

(c) Agents (d) Safety

Figure 4.11: The speed of solution for the four dynamic tests and across cases 1, 2, and
3. Generations along X-axis and fitness along Y-axes. Values averaged over 100 runs.
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Figure 4.12: The network from Bazzan et al. 2014.

Future work includes the use of OpenStreetMap [14] for generating graphs representing

urban areas. Also, self-adaptive parameters for the ES algorithm, diversity promotion,

multi-objective optimization, and novel mutation operators.
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Figure 4.13: Performance of our algorithm on the Bazzan test averaged over 100 trials.
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Figure 4.14: The Boise Transportation Network. Notice the dense packed streets in the
downtown area. The map is of an area approximately ten miles wide.

Table 4.2: Time to solve the Boise problem. Vehicles is the number of vehicles being
evacuated. Num Groups is the number of randomly placed groups of agents in the city
above the groups that are evenly distributed across the 283 nodes of the city. Group size
is the number of individuals in each group or agent. It defines the grouping of the agents.
For timing the runs were performed using Centos Linux system running on 2.4 GHz Intel
Xeon X56xx processors.

Vehicles Num Groups Group Size Run Time (min)
2,830 0 10 3.5
2,930 10 10 3.28
3,830 10 100 3.5
12,830 100 100 4.4
102,830 100 1000 4.25
1,002,830 1000 1000 19.05
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Chapter 5: Additional Experiments

In this chapter an experiment testing the effectiveness of different population sizes used by

the Evolution Strategies (ES) algorithm is described. Next, an approach to reducing the

number of generations needed to reach an ideal fitness value is discussed. An experiment

designed to test this approach is described, as well.

Testing Population Size Parameters

In an ES algorithm, population size greatly effects running time of the algorithm. Search

and Sort algorithms are evaluated in terms of the number of elements that must be

searched or sorted. Evolutionary Algorithms (EA) use the number of evaluations, a func-

tion of the population size. For ES algorithms, it is a function of the child population

size, specifically. To improve run time for the model, it is important to find the smallest

population size that still performs effectively, under the assumption that minimizing run-

time is important for a real-time solution. The experiment here is a simple one, and seeks

to answer the question: what is the smallest effective population size for the Boise traffic

network? The question is specified for Boise because the most effective population size

will almost certainly differ from one network to another.

To answer this question, we designed an experiment which runs the same optimization

on ten different population sizes, λ = µ, ranging from ten to 100. The experiments each

run for 1000 generations. Given 1000 generations, the number of evaluations for each

experiment is equal to 1000λ+λ. The additional λ is included to represent initialization of

the population at the beginning of the ES. The wall clock running time of each experiment

ran from one hour to one day. The experiments were run 10 times each, and the results

presented here are averaged from those runs. The ES parameters used are as follows:

ES(λ+ λ), σ = 0.1, Pxover = 0.2, Pmutation = 0.5, t size = 3. The simulation time for each

fitness evaluation was set to four hours. All areas of safety are placed on the Western side
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of the Boise traffic network, while the majority of vehicles start on the Eastern side of the

network. Approximately 60,000 vehicles are simulated, beginning in the Eastern portion

of the network. Another 2,830 vehicles are included in each simulation, with 10 starting

on each node in the network, to ensure selective pressure is applied to each gene in an

individual’s genome.

The fitness at each generation is shown in Figures 5.1 and 5.2. Each graph represents

the fitness at each generation for each population size tested. It is clear that a higher

number of individuals finds a high fitness in less generations.

In [22], Yuan and Han argue that 100% network clearance is not often reached, there-

fore a 95% clearance rate is more meaningful. Figure 5.1 shows that a population of size

10 is not sufficient, reaching an average of 93.6% evacuation after 1000 generations. How-

ever, a population of 20 and greater does yield network clearances that are on average

greater than 95%. Figures 5.1 and 5.2 also indicates a trade-off between the number of

generations to run the ES algorithm for versus the population size. As the number of

individuals in the population increases, the number of generations needed to reach 95%

network clearance seems to decrease. Ideally, the model would like to reach 95% fitness in

100 generations or less. That doesn’t seem to be reasonable given the current model. How-

ever, if the population was initialized with probabilities that suggest where safety is, the

number of generations needed to reach 95% network clearance might drop significantly.

This is the topic of the next section.

Population Initialization

As mentioned in the previous section, we wish to reduce the amount of time it takes

to optimize traffic assignments for large networks. We hypothesized that initializing a

population of solutions in a way that provides them with an idea of where safety is to

begin with might reduce computation time.

There is another problem in our model that we wish to address, regarding the way
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(a) Population 10 (b) Population 20

(c) Population 30 (d) Population 40

(e) Population 50 (f) Population 60

Figure 5.1: Generations x Fitness for population sizes 10-60
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(a) Population 70 (b) Population 80

(c) Population 90 (d) Population 100

Figure 5.2: Generations x Fitness for population sizes 70-100
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evolution works with our representation. In a sufficiently large traffic network, it is fair to

assume that, for some nodes, there will be no traffic. In that case, no selective pressure is

applied to the allele in question, and can result in probabilities no better than random.

This is a problem for real-world situations. Should a vehicle find themselves in an area

with random traffic assignments, that vehicle might be directed towards danger, or get

stuck in a loop.

To mitigate this problem we decided an approach was needed to ensure that all nodes

in any network contribute to the fitness of each genotype. Our initial idea was to simply

place a vehicle at every node in each simulation, however this idea is more computationally

expensive than desirable, and could also represent congestion inaccurately. This approach

also does nothing to reduce the number of generations needed to reach an idea level of

safety. The approach described was designed to apply pressure to all nodes in a genotype,

as well as reduce computation time.

To initialize the genotypes, we place a vehicle population in sets of nodes that begin

with the safest areas in the traffic network, and work out from them incrementally. These

increments start vehicles in the network progressively further from safety, until vehicles

have been initialized at all nodes. This applies selective pressure to each node. Initial-

ization is performed as a special variant of our optimization algorithm, with the goal of

providing a population that ”knows” where safety is, in advance of any evacuation.

Our initialization algorithm is designed to find all maximum safety nodes in the traffic

network, according to some safety map. Then optimization is performed with some number

of agents in each of the nodes. The best performing individuals are saved and used as the

initial population for the next optimization. The next optimization starts agents in the

neighbors of the nodes used in the previous optimizations, moving them effectively one

node away from maximum safety. This is repeated until optimization has been performed

with agents beginning in every node. The result is a population of seeded individuals, for

which every node has contributed to the genotype’s fitness. This population can then be
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(a) Random (b) Initialized

Figure 5.3: A comparison of initialized vs. random probabilities.

used to start optimization for an evacuation event that has a similar safety function to

the one used for initialization.

We compare the results of this approach with the experiment of the previous section.

A population size of 10 was used, run for 1000 generations, and averaged over 10 runs.

The graph of fitness per generation is shown in Figure 5.3.

Unfortunately, the results of this approach were inconclusive. It is important to pres-

sure each node in the genome, however this method did not improve our results. It is worth

mentioning that while the approach does not seem to yield consistently better results, it

proved to be faster in terms of wall-clock time. This method did decrease run time by

about 20 minutes, but a larger sample size is needed to be sure of the results.

Despite inconclusive results, two facts are apparent: 1) optimization of the model is still

needed. This includes idealizing the ES parameters, perhaps evolving σ, and increasing

the parent-child population size ratio. The other apparent fact is 2) pressure needs to

be applied to each node in a traffic network solution. The real-world complexities of

evacuating a large area are significant; relying on a predictive model of human behavior

in such a case can be dangerous.

Optimization of this model will require further research. Optimizing parameters for
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the ES algorithm has the potential to significantly reduce wall-clock run times. Another

area of investigation for speedups lies in ES operators. It may be the case that search the

solution space can be done in a more effective manner.

This work has described two methods for applying pressure to each node in a traffic

network. First, a brute-force method of starting a vehicle at every node in every simu-

lation was discussed. Next, the algorithm presented in this section was discussed. The

potential approaches to applying this pressure have not been exhausted, and this remains

a fundamental area of interest for this work. Some other options include initializing the

routes using known path-finding algorithms such as Bazzan et al. in [1]. While their work

focused on using k-shortest paths, other options include Dijkstra’s Algorithm and A*.

One other significant option is to let an expert initialize the probabilities by hand, or

with computer assistance. This is a brute-force method, but seems intuitive. Experts may

still want to designate evacuation zones, allowing this model to optimize traffic assignment

for congestion mitigation and changes in the evacuation environment.
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Chapter 6: Conclusion

The work described in this thesis explores the feasibility of a real-time evacuation man-

agement system based on evolution of static traffic assignment probabilities. The specific

question this work sought to answer was Can evolution effectively optimize traffic assign-

ment as a function of safety, in advance of and during an evacuation, while responding

to changes in safety, topology, and vehicle distribution?

Evolution Strategies (ES) were found to be effective at routing traffic based on loca-

tions of safety. Experiments described in this work answer specific portions of the question

posed, while some aspects will better be answered in future works. Specifically, the ex-

periments within show that evolution strategies are well suited for the problem, given our

encoding, and the model presented is effective for preemptive evacuation planning and

responding to changes in a traffic network quickly.

The contributions presented in this work consist of 1) a new approach to the Dynamic

Traffic Assignment (DTA) problem for evacuations (evolving static probabilities), 2) an

ES algorithm and representation that allows optimization of those probabilities for vehicle

safety, and 3) a priority-queue-based traffic simulation which evaluates how well the set

of probabilities routes traffic to safety.

Future Work

Reviewers of the paper in Chapter 4 suggest applying several modifications to the approach

described within, specifically adaptive parameters for the Evolution Strategies (ES) al-

gorithm and a multi-objective optimization approach. ES algorithms often co-evolve the

mutation step size, σ along with the population of individuals being optimized. Other

ES parameters that might co-evolved include the child population size or the mutation

probability, Pm, as in Simulated Annealing. Other objectives to optimize along with safety

could be time and space. These objectives are fundamental parts of evacuation and traffic
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assignment, as it is important to achieve high network clearance times quickly, without

routing vehicles through dangerous areas, if possible.

Other future work areas include exploring ways to increase population diversity, seed-

ing algorithms, and experimentation and comparison with real-world data. There is also

room for exploring integration with other commonly used traffic simulation tools [7], [11].

Increasing population diversity would be helpful for effectively searching the solution

space. There are a number of existing techniques that can be adapted to this model and

tried. Seeding algorithms are similar to the population initialization experiment described

in Chapter 5. Such algorithms may prove useful to emergency planners who have expertise

with the network in need of evacuation, eliminating the need for this model to “learn”

what the expert already knows. Commonly used traffic simulation tools, such as VISSIM

and SUMO provide unique opportunities for this software. VISSIM can be used to evaluate

the solutions provided by the model described here, while helping to make the model more

accurate. SUMO, an open-source traffic simulation tool, could be adapted to use the traffic

simulation described in this work. SUMO integration could provide microscopic views of

traffic behavior during optimizations.

Should these areas of future exploration increase the efficacy of our model, additional

real-world applications also become areas of future work. How can this model be effectively

used in a real-world situation? Should the model be supported by smart-phones? Vehicle-

to-vehicle ad hoc networks? The “cloud”?
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