

A Secure Lightweight Voice Authentication System (VAS) for IoT

Environments

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Salahaldeen Duraibi

Major Professor: Frederick Sheldon, Ph.D.

Committee Members: Terence Soule, Ph.D.; Michael Haney, Ph.D.; Wasim Alhamdani, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2021

ii

Authorization to Submit Dissertation
This dissertation of Salahaldeen Duraibi, submitted for the degree of Doctor of Philosophy with a Major

in Computer Science and titled "A Secure Lightweight Voice Authentication System for IoT Smart

Device Users," has been reviewed in final form. Permission, as indicated by the signatures and dates

below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: _____________________________________ Date: ___________
 Frederick Sheldon, Ph.D.

Committee Members: _____________________________________ Date: ___________
 Terence Soule, Ph.D.

_____________________________________ Date: ___________
Michael Haney, Ph.D.

_____________________________________ Date: ___________
Wasim Alhamdani, Ph.D.

Department
Administrator: _____________________________________ Date: ___________
 Terence Soule, Ph.D.

iii

Abstract
The Internet of Things (IoT) provides everyday devices ways to identify and communicate with other

devices and their users. The users can be human beings or other devices. The spectrum of IoT

applications is very large and includes wearables such as body-area-network-devices and smartwatches.

Other IoT application domains include smart homes, smart cities, e-health, etc. IoT devices have the

capability for collecting information about surroundings, analyzing, and making decisions without user

intervention. Therefore, security in IoT environments is a critical requirement. Particularly,

authentication is of high interest given the potential damage that may result from unauthorized access

to such devices. This dissertation proposes a biometric based authentication model that can be used in

IoT devices. The survey of related work evaluated different biometrics used for authentication which

were compared for their suitability in such an environment. In considering the resource-constrained

nature of IoT devices, a voice biometrics is preferred compared to other biometrics, such as fingerprint,

iris scan, keystrokes, among others that would need dedicated hardware devices in such ecosystems.

In the second part of the dissertation, two separate deep learning approaches that extract and classify

voice features were studied to detect and prevent voice replay spoofing attacks. These approaches are

based on a convolutional neural network (CNN) and a deep neural network (DNN). The CNN approach

was used as a feature extractor, while the DNN approach was used as a classifier. In addition, hybrid

features that consist of Mel frequency Cepstral Coefficients (MFCC) and Constant Q Cepstral

Coefficients (CQCC) features were used to train both approaches. Compared to other state-of-the-art

voice authentication approaches, both the CNN and DNN approaches improved the state of detecting

spoof replay attacks in speaker verification. Finally, enticed by the results of the two approaches, a

voice-based authentication system that can be used in a network of IoT devices was developed.

Afterwards, the system was validated in an experiment using virtualized IoT devices. The

authentication system has shown improved relative accuracy by 15.8 percent.

iv

Acknowledgements
First and foremost, I want to thank GOD, the Almighty, for the completion of this dissertation. This

work would not have been possible without the kind support and help of many individuals. I am

extending my sincere thanks to all of them.

I would like to express my deepest gratitude to my Major Professor, Frederick T. Sheldon, for his

excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing this

research. I am extremely grateful to the rest of my committee: Prof. Terence Soule, Prof. Michael

Haney, and Prof. Wasim Alhamdani, for their encouragement and insightful comments.

Moreover, I am thankful to the Saudi Arabian Cultural Mission and Jazan University for funding my

scholarship. Finally, I am deeply grateful to the University of Idaho’s Computer Science faculty, staff

and students for how they have positively affected my studies and for providing me with an

environment that enabled me to work.

v

Dedication
I would like to dedicate this dissertation to praising GOD and asking for his peace and blessing on all

of those who contributed to completing this research and making it useful knowledge. This work is

also dedicated to:

My father, Nasser Duraibi,

My mother, Laila Althurwi,

My wife, Wejdan Althurwi,

My kids, Wassem and Wateen,

My brothers and sisters,

who have been a constant source of support and encouragement during the challenges of studying and

life. I am truly thankful for having you in my life.

vi

Table of Contents
Authorization to Submit Dissertation ... ii

Abstract ... iii

Acknowledgements ... iv

Dedication .. v

Table of Contents .. vi

List of Tables ... ix

List of Figures .. x

List of Acronyms ... xi

Chapter 1: Introduction .. 1

1.1 Preliminary Research Background ... 1

1.2 Research Motivation and Objective ... 2

1.3 Scope of the Research .. 3

1.4 Research Contribution .. 3

1.5 Author’s related publications ... 3

1.6 Dissertation organization .. 4

Chapter 2: Background and Related work .. 5

2.1 Introduction .. 5

2.2 Background .. 6

2.3 Related Work .. 8

2.4 Conventional Voice based biometric Authentication Model .. 12

2.5 Enrollment Phase .. 12

2.5.1 Sound capture ... 12

2.5.2 Pre-processing .. 12

2.5.3 Feature extraction ... 13

2.5.4 Model Training ... 14

2.6 Verification/recognition Phase ... 14

vii

2.7 Implementation of the Authentication Model .. 14

2.7.1 Open Source Software .. 14

2.7.2 Dataset .. 15

2.7.3 Pre-processing .. 15

2.7.4 Feature Extraction .. 16

2.7.5 Voice Model Training / Server Side ... 17

2.7.6 Verification ... 17

2.7.7 Result and Discussion ... 17

2.8 Chapter Summary ... 18

Chapter 3: Voice-Feature Learning Using a CNN Designed to Avoid Replay Attacks 19

3.1 Introduction .. 19

3.2 Speaker Voice Verification .. 21

3.3 Deep learning approaches in Speaker Verification Systems (SVS) 23

3.4 Feature Learning ... 24

3.5 Front-end CNN Feature Extractor Architecture ... 26

3.6 Experimental Setup and Results Validation ... 29

3.7 Chapter Summary ... 30

Chapter 4: Replay Spoof Attack Detection Using DNNs for Classification .. 31

4.1 Introduction .. 31

4.2 Modeling in Speaker Verification .. 33

4.3 Features for Replay Attack Detection .. 34

4.4 The DNN-Architecture Classifier ... 35

4.5 Experimental Evaluation and Results Validation ... 36

4.6 Chapter Summary ... 38

Chapter 5: A Security Hardened End-to-End Lightweight IoT Voice Authentication System 39

5.1 Introduction .. 39

5.2 Deep learning approaches in Biometric authentications .. 41

viii

5.3 Motivation .. 43

5.4 Proposed Voice Authentication System (VAS) .. 44

5.5 Deep Learning-Based Feature Extraction and Classifiers .. 45

5.6 Dataset .. 47

5.7 Implementation and Results ... 47

5.7.1 Pre-processing .. 48

5.7.2 CNN Architecture ... 48

5.7.3 Evaluation Result of the proposed Authentication Model .. 49

5.8 Chapter Summary ... 50

Chapter 6: Conclusion and Future Works .. 51

6.1 Conclusion .. 51

6.1.1 Summary of implementation specifics ... 52

6.1.2 Summary of data used for validation .. 53

6.2 Future IoT Authentication Research Directions ... 53

References .. 55

Appendix A - Alize code .. 66

Appendix B - CNN ... 70

Appendix C - SVM ... 73

Appendix D - DNN .. 77

Appendix E - ResNet .. 80

ix

List of Tables
Table 2. 1 Comparison of biometric system ... 9

Table 2. 2 Summary of Systems performance .. 11

Table 2. 3 Design criteria of the model .. 13

Table 3. 1 Summary of the CNN architecture and layers ... 28

Table 3. 2 Summary of dataset used in the experiment .. 29

Table 4. 1 Summary of the dataset used in the experiment .. 37

Table 4. 2 Evaluation results of the DNN based backend classifier using hybrid features 37

Table 5. 1 ASVspoof 2019 details .. 47

Table 5. 2 The CNN Network architecture... 48

x

List of Figures
Figure 2. 1. Centralized authentication architecture ... 8

Figure 2. 2. Distributed authentication architecture ... 8

Figure 2. 3. High level IoT voice authentication model. .. 12

Figure 2. 4. The processing of the Mistral software package ... 15

Figure 2. 5. Voice waves before noise reduction ... 15

Figure 2. 6. Voice waves after noise reduction .. 16

Figure 2. 7. 12 MFCCs features ... 16

Figure 2. 8. DET plots for a male only trail and female only trail ... 17

Figure 3. 1. Speaker verification systems ... 23

Figure 3. 2. Replay attack process on speaker verification systems ... 25

Figure 3. 3. Hybrid feature extraction process ... 26

Figure 3. 4 CNN architecture for my feature learning approach. ... 27

Figure 4. 1. Replay attack process on ASV systems .. 35

Figure 4. 2. Hybrid feature extraction process ... 35

Figure 5. 1. Authentication model proposed for IoT user authentication ... 44

Figure 5. 2. Original architecture of CNN as proposed in [117] .. 45

Figure 5. 3. Triplet loss of a speaker embedding training system .. 47

Figure 5. 4. Observed Mean Square Rate of the proposed authentication model 50

xi

List of Acronyms
ASV : Automatic Speaker Verification .. 6

CNN : Convolutional Neural Network ... 20

CQCC : Constant Q Cepstral Coefficients ... 20

DNNs : Deep Neural Networks .. 24

DST : Discrete Cosine Transformation .. 14

EER : Equal Error Rate .. 3

FAR : False Acceptance Rate ... 8

FP : False Positives ... 20

FRR : False Rejection Rate .. 8

GMM : Gaussian Mixture Models ... 8

HFCC : High-Frequency Cepstral Coefficients.. 25

HMM : Hidden Markov Models... 8

HTK : Hidden Markov Model Toolkit ... 14

IoT : Internet of Things .. 1

LCNN : Lite Convolutional Neural Network ... 36

LFCC : Linear Frequency Cepstral Coefficient ... 8

LLR : Log-Likelihood .. 38

M2M : Machine to Machine ... 7

MFCC : Mel-frequency Cepstral Coefficient ... 7

NIN : Network in Network ... 24

NIST : National Institute of Standards and Technology .. 15

ReLUs : Rectified Linear Units .. 29

RNN : Recurrent Neural Network .. 36

ROC : Relative Operating Characteristics .. 9

SNMs : Signal-to-Noise Masks .. 36

SVM: Support Vector Machine .. 7

UBM : Universal Background Model .. 16

VCS : Voice Control Systems .. 42

VQ : Vector Quantization ... 8

SVS : Speaker Verification Systems .. 1

VVS : Voice Verification System .. 51

VAS: Voice Authentication System…………………………………………………………………..45

1

Chapter 1: Introduction
In the beginning of the last decade, the use of smart devices grew exponentially. These devices have a

significant place in the everyday life of people. Moreover, people use their smart devices everywhere

and at any time and consider them an important part of their lives. The Internet of Things (IoT) device

users use applications on their smart phones for management and to control the IoT devices. People use

remote access control mechanisms to communicate with smart devices at a distance from their homes.

However, the verification of a user, before providing access to giving commands to devices, is an issue.

For example, smart-home IoT device companies have concentrated their efforts on offering concrete

novel authentication mechanisms for improved safety; this is because conventional authentication

mechanisms, such as password or token-based authentications, fail to suit IoT technologies [1, 2].

Therefore, researchers have started investigating biometric-based authentication for IoT technologies

[3, 4] that allow users to access their devices by face, iris, fingerprint, voice or other means of

authentication; such biometric authentication is more user-friendly in nature compared to conventional

authentication approaches. While such approaches can achieve higher accuracy in user authentication,

they are subject to a variety of spoofing attacks [5, 6] and they also raise privacy concerns [7]. Speaker

verification systems (SVSs) are vulnerable to spoofing attacks when an impersonator claims the identity

of someone other than himself. Known spoofing attacks associated with SVSs include mimicry attacks,

conversion attacks, and replay attacks. A mimicry attack is when a professional mimics the utterance

of the voice of a genuine user to gain unauthorized access. Conversion attacks happen when voice

transformation is performed on an imposter’s utterance so that it sounds more like that of a genuine

user. Finally, a replay attack is a spoof technique when pre-recorded speech is provided to speech

verification systems, with the help of record-and-play devices to impersonate a genuine user. Among

the three spoof attacks, replay attacks pose the most serious threat to SVSs.

Although advances have been made in the field of IoT authentication, more accurate and reliable

authentication solutions are necessary that consider several issues introduced by the characteristics of

IoT devices, which involve nagging pernicious security threats.

1.1 Preliminary Research Background

User authentication refers to the process in which a user submits his/her identity credential(s) (often

represented by paired username and password) to an information system to validate that the person is

who he/she claims to be. A biometric authentication system verifies the identity of a person based on

either their unique physiological traits [8, 9] or their unique behavioral biometrics [3, 4]. Such a process

remains a crucial concern with respect to an IoT-technologies context. However, the biometric

authentication mechanisms proposed for IoT technologies concede several well-known drawbacks,

2

principally led by people’s usage and behavior [5, 6]. In the literature, proposed authentication systems

seem to have been designed without considering human behavior [10]. People do not use such

authentication systems since they presume that using authentication systems may involve lots of trouble

every time they want access to their smart devices [11]. For example, users have trouble remembering

passwords; hence, they prefer to reuse the same password in multiple situations.

Moreover, most biometric authentication mechanisms proposed in the literature were designed for

traditional desktop computers, where some require costly hardware or may require IoT devices to be
powerful enough to run complex computations that such systems need to operate [12]. Accordingly,

in this research, we point out two issues: proposed authentication schemes do not take into consideration

users’ needs and behaviors regarding their involvement in the authentication process; and, the

importance of developing accurate, effective, and secure solutions that are able to run on resource-

limited IoT devices without the need for an extra piece of hardware because the solutions are already

adequately embedded.

1.2 Research Motivation and Objective

User authentication in the IoT ecosystem is problematic for some important reasons, including the

resource-limitations of IoT devices, which makes conventional authentication schemes inefficient and

unfeasible for IoT devices. In addition, the unattended nature of IoT devices has also made password-

based authentication schemes much less useful for the IoT. Another main concern is that existing

authentication schemes are easy to breach and hence cannot guarantee security. For example, if an

attacker steals the credentials of a user to gain access to a smart door lock of a house or a health-

monitoring smart device of a patient, this might be life threatening. In this light, security throughout

the process of authentication must be maintained. Biometric authentication schemes are employed for

IoT ecosystems instead of the commonly used password-based system for reasons of security and

because they do not require users to remember different passwords for multiple devices. Nevertheless,

such biometric-based approaches are prone to spoof attacks. One of the major bottlenecks for all these

systems is that the user needs to interact actively with the system. One of the key aspects of IoT systems

is that they are more human-centric in nature compared to the traditional network systems. Due to IoT’s

human-centric nature, the IoT system creates information about an individual’s behavioral patterns that

can be misused. Therefore, this research has attempted to answer the following questions:

1. Which kind of authentication mechanism is user-friendly and does not require additional

hardware to be used with IoT devices?

2. What authentication feature will be difficult for the attacker who attempts to spoof the

authentication systems?

3

3. How can the authentication scheme be deployed easily to demonstrate its usability?

1.3 Scope of the Research

The research was compelled by the following constraints:

• only considers cloud-connected IoT devices;

• develops a voice-based biometric authentication model (single-factor);

• only considers the replay spoofing attack to secure the authentication model;

• does not consider the fading nature of the voice of the speaker; and,

• uses pre-recorded “spoofed” (labeled) and “genuine” voices both in a pre-existing dataset.

1.4 Research Contribution

The main contribution of this dissertation is its novel machine learning authentication approach used

and validated in the IoT context within the scope of research explained above. To this end, we first

studied existing IoT authentication approaches from the literature and highlighted both their strengths

and weaknesses. On this basis, we were able to suggest an authentication mechanism that is more

usable, reliable and resilient to replay attacks. Our model, so called “Lightweight VAS” was developed

that improves on the identified problems.

Subsequently, we presented authentication features used for detecting replay spoofing attacks that were

realized in a practical implementation and assessed through rigorous experimentation. The experiments

were conducted using an existing dataset that contains genuine and spoofed data. Consequently, we

conducted several performance analyses and compared the results with the state-of-the-art computation

performances in the literature. An improvement in the state-of-the-art performance was obtained,

achieving 7.1 Equal Error Rate (EER), which compares to 11.3 EER in typical state-of-the-art systems.

1.5 Author’s related publications

1. Salahaldeen Duraibi, Wasim Alhamdani and Frederick T. Sheldon "A Security Hardened End-to-
End Lightweight IoT Voice Authentication System." Computers & Security; Elsevier, 2021
(Submitted at Elsevier)

2. Salahaldeen Duraibi, Wasim Alhamdani and Frederick T. Sheldon “Replay Spoof Attack Detection
using Deep Neural Networks for Classification” 2020 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA (Accepted at IEEE CSCI
conference)

3. S. Duraibi, W. Alhamdani and F. T. Sheldon, "Voice Feature Learning using Convolutional Neural
Networks Designed to Avoid Replay Attacks," 2020 IEEE Symposium Series on Computational

4

Intelligence (SSCI), Canberra, Australia, 2020, pp. 1845-1851, doi:
10.1109/SSCI47803.2020.9308489

4. Salahaldeen Duraibi, Fahad Alqahtani, Frederick T. Sheldon and Wasim Alhamdani “Suitability of
Voice Recognition within the IoT Environment” Springer Nature publisher - Advances in Security,
Networks, and Internet of Things; Security and Management research track (SAM 2020); in press
2020.

5. Salahaldeen Duraibi, Frederick T. Sheldon and Wasim Alhamdani. (2020) “Voice Biometric
Identity Authentication Model for IoT Devices”, International Journal of Security, Privacy and
Trust Management (IJSPTM), Vol. 9, No.2.

6. Salahaldeen Duraibi, Abdullah Alashjaee and Jia Song. (2019) “A Survey of Symbolic Execution
Tools”, International Journal of Computer Science and Security (IJCSS)), Vol. 13, No.6.

1.6 Dissertation organization

The remainder of the dissertation is organized as follows: Chapter 2 discusses the research background;

chapters 3 and 4 present deep learning approaches used for feature extraction and classification and

their implementations in experiments. A novel authentication scheme that detects replay spoofing

attacks is presented in Chapter 5; and, finally, Chapter 6 provides the conclusions and the suggestions

for future works.

5

Chapter 2: Background and Related work
Behavioral biometric authentication is considered a promising approach for securing the Internet of

Things (IoT) ecosystem. In this chapter, we investigated the need and suitability of employing voice

recognition systems in the user authentication for the IoT devices. We first studied the current status of

IoT authentication technologies and determined that existing authentication systems suffer from several

deficiencies. Some systems need higher computing and energy resources to perform their work, which

exacerbates the resource-constrained nature of IoT technology. Others suffer from security weaknesses.

Tools and techniques used in accomplishing voice recognition systems were reviewed, and their

appropriateness to the IoT environment are discussed. In the end, a voice recognition system is

proposed for IoT user authentication. Subsequently, the usability of the proposed system model was

investigated. Our implementation of the model shows that voice biometrics can be used remotely to

authenticate the user on his/her IoT devices.

2.1 Introduction

In general, within the context of IoT, three factors of authentication are usually employed: something

a user knows (e.g., a password); something a user has (e.g., a secure token); and something a user is

(e.g., biometric characteristics). Passwords are the most common authentication mechanism. However,

password and token-based authentications have many security issues [1, 2] and are not suitable for

smart devices because of the unattended nature of IoT smart devices. A biometric authentication system

verifies the identity of a person based on either their unique physiological traits [8, 9] or their unique

behavioral biometrics [3, 4]. Biometric authentication is more user-friendly in nature than the

approaches that rely on passwords and secure tokens. While physiological traits can achieve high

accuracy in user authentication, they are subject to a variety of attacks [5, 6] and also raise privacy

concerns [7]. Moreover, the accuracy of physiology-based mechanisms may be substantially degraded

by environmental factors, such as the viewing angle, illumination, and background noise [13, 14]. In

contrast, behavioral biometrics (i.e., key stroke, voice, or gait analysis) appear less sensitive to ambient

light or noise [15, 16]. Using biometric authentication for securing the IoT ecosystem is a promising

approach [1].

Due to the portability, stability, and privacy of the voice features, voice recognition authentication has

attracted extensive attention and application in recent years [2]. Voice recognition systems are versatile,

simple to use, and non-intrusive by nature. They are considered accurate and do not require specialized

tools; just a smartphone is enough for remote authentication for various services. Likewise, among

other biometric authentication parameters, voice is the simplest and easiest unimodal to require and use

for user authentication [8]. As a result, in recent years, voice authentication has attracted various leading

6

technology companies. For example, Google has provided Android-based Trusted Voice to allow users

to unlock their smartphones. Saypay’s mPayment consumers use a voice password to conduct

transactions [2]. In addition, Google has promoted the employment of automatic speaker recognition

for authenticating users in the IoT [9]. Regarding the nature of the IoT ecosystem, especially its mobile

remote control, the use of voice recognition for user authentication may produce an overwhelming

advantage [3]. In addition, the IoT ecosystem-related advantages of voice biometrics include small

storage, ease of transmission, and non-intrusiveness [4].

In this chapter, a voice recognition authentication system to be used in the IoT ecosystem is proposed.

The resource limitation of the IoT devices and remote access are taken into consideration. For example,

the systems use Mel-frequency Cepstral Coefficient (MFCC) to extract features and Support Vector

Machines (SVMs) for user verification which are fundamental to Remote Speaker Identification [5].

Voice features that can be extracted from acquired voice data can be of high-level or low-level

attributes. Low-level attributes, related to the vocal tract, are derived from spectral measurements, while

the high-level attributes are derived from behavioral cues, such as dialect, word usage, conversation

patterns, etc. High-level attributes are difficult to extract but are less sensitive to noise [6, 7]. For

example, Idiolectal and Prosody identify [4] high-level attributes of a speaker's voice, while Short-term

spectral identifies low-level attributes of the speech signals. The latter is the main source of

individuality in speech [3]. In addition, low-level attributes are easy to extract and are most common

when applied to user authentication systems. In this light, extraction of low-level cues is necessary for

IoT user authentication.

2.2 Background

Interconnected environments such as Machine to Machine (M2M), Machine to Individual, or Individual

to Individual are what make up the IoT ecosystem. In the IoT ecosystem smart objects can communicate

among themselves, these things can detect each other, and everything can interact with each other and

with the local environment. These interconnections are facilitated by remote sensing and tracking

capabilities, and every entity is provided with data transfer through the internet via such protocols as

Wi-Fi, ZigBee, or Bluetooth among others. In particular, organizations may need such data for business,

social, or research analytics [13]. For this reason, a vast variety of information is stored, managed, and

processed. Access to these private data needs to practice secure access control. Employing conventional

authentication mechanisms, such as passwords is reported to have fallen short for the IoT ecosystem.

Thus, biometric technology is considered a better substitute for the protection of IoT private data [14].

There are three processes in any voice authentication system. These are Voice Feature Extraction,

Speaker Modeling, and Decision Making. The feature extraction process is where the voice signals are

7

converted into a sequence of frames. Each frame is a short window of the waveform with overlapping

adjacent windows [17]. Considering the unique resource-constrained characteristics of IoT devices, our

work focused only on Short-term spectral qualities [18], as this requires less computational resources.

Additionally, the selection of appropriate feature extraction methods is crucial in this process because

of how they influence the performance of the system. The two most popular spectral-feature extraction

methods are filter bank analysis and linear predictive coding [7, 19, 20]. In filter bank analysis, the

voice signals are pass through a bank of band-pass filters that cover a range of frequencies consistent

with the transmission characteristics of the signal. The spacing of the filters can be either uniform or

non-uniform, based on the perceptual criteria, such as the Linear Frequency Cepstral Coefficient

[LFCC] or the MFCC; the latter provides a linear spacing [7, 21]. In the linear predictive coding, the

speech signal can be modeled by a linear process prediction. Signals at each time step use unique and

specific periods of preceding samples that capture the temporal evolution of the features from one

speech segment to another [7, 21].

After features of the voice are extracted. Automatic Speaker Verification (ASV) has the ability to

construct a model 𝜆𝜆𝑠𝑠 for each user where “s” is user and λ is the specific model. Such modeling depends

on, for example, whether it is used for applications that use fixed words (text-dependent), or

applications that use phonemes not seen in the enrollment data (text-independent). Speaker modeling

methods can be of two categorizes, non-parametric or parametric. The non-parametric approaches

include templates which are suitable for a text-dependent verification system [7]. The parametric

speaker modeling includes Vector Quantization (VQ), Gaussian Mixture Models (GMM), and Hidden

Markov Models (HMM). In VQ a set of representative samples of the user’s enrollment voice is

constructed by clustering the feature vectors. GMM has been proven to be very effective in the cases

of a text-independent speaker recognition [17], also referred to as a refinement of vector quantization.

HMM is suitable for text-dependent ASVs and is used for access control of personal information or

bank accounts. Among the three techniques, GMM has been proven very effective for phones, and may

be the best candidate for IoT devices [22]. There are also some other non-parametric and parametric

approaches in the literature. However, those presented in this chapter are the most common techniques

implemented in ASV systems. The final process is decision making. In this process an ‘accept’ or

‘reject’ decision is delivered based on the verification models discussed above.

To measure the effectiveness of ASVs a number of parameters were studied. These parameters include

the False Acceptance Rate (FAR) which is the number of attacks being incorrectly labelled as authentic

by the system. False Rejection Rate (FRR) refers to the number of authentic interactions being

8

incorrectly rejected as attacks. Relative Operating Characteristics (ROC) represents a compromise

between FAR and FRR because the ROC helps enable systems tp minimize both FAR and FRR [23].

2.3 Related Work

This section reviews different biometric authentication mechanisms employed in the IoT ecosystem.

Generally, there are two main types of IoT authentication methods, including centralized and

distributed architectures, as shown in Figure 2.1 and Figure 2.2, respectively. The centralized

architecture uses a centralized server to manage the credentials used in the authentication, whereas in

the distributed architecture, the authentication is accomplished point-to-point between the

communicating parties [11]. Biometric authentication is achieved based on these two architectures.

There are four basic biometric authentication performance-measuring strategies; they include accuracy,

scale, security, and privacy. Elements such as enrollment, biometric reference, comparison, networking,

and personal biometric criteria are common in biometric authentication systems. Biometric-based

authentication systems use two other factors, which are physical and behavioral [11].

Figure 2. 1. Centralized authentication architecture

Figure 2. 2. Distributed authentication architecture

The physical factors include the recognition of fingerprint, face, iris, hand geometry, and palm print,

while the behavioral factors may include, but are not limited to, voice, signature, and gait recognitions

[14]. Biometric systems have some advantages over conventional identity-based methods (password

and ID); they cannot be transferred, stolen, lost, broken, or easily guessed [15, 24]. The acceptance and

9

performance of the biometric systems are presented in Table 1. From Table 1 the voice biometric

systems are more suitable compared to others biometric systems. The voice biometric systems use voice

rather than complicated input methods, like fingerprints, that need special hardware for input.

Therefore, voice is appropriate for the IoT where convenience is important. Some researchers have

investigated and adopted voice-based biometric systems into the IoT ecosystem.

Table 2. 1 Comparison of biometric system

Factor
Type Biometric systems Weakness Strength

be
ha

vi
ou

ra
l

Voice recognition Has relatively low accuracy,
inefficiencies in certain circumstances

Needs no hardware, ease of use,
widespread usage, can be used for
remote authentication

Signature recognition Has relatively low accuracy Wide acceptance, non-rigging

Detect Behaviour Shows non-performance in certain
conditions Continuous authentication

Tough dynamics Inconsistent accuracy, lack of
efficiency under certain conditions

Continuous authentication, does not
require specific hardware

Keystroke Dynamics Inconsistent accuracy, lack of
efficiency under certain conditions

Continuous authentication, does not
require specific hardware

Ph
ys

ic
al

Fingerprint
recognition

The need for additional hardware, the
difficulty of obtaining high-quality
images, the lack of efficiency in certain
circumstances

Use and wide acceptance, low cost,
good accuracy

Face recognition The need for additional hardware, lack
of efficiency in certain circumstances

Use and wide acceptance, good
accuracy and less fraud

Iris recognition The need for additional hardware, high
cost, time-taking authentication High precision, non-rigging

Hand geometry
recognition

The need for additional hardware,
precision Easy to use, less fraud

Palm detection The need for additional hardware, high
cost Public acceptance, high precision

For example, the researchers in [25] introduced a gaze feature-based model which is secure against

iterative and side channel attacks. Likewise, in [26] the researchers used electrocardiogram for the

development of their method in which they proved the good candidacy of biometric features for

authentication of IoT devices. The results of the implementation of this scheme reveal that it has 1.41%

FAR and 81.82% TAR for 4 seconds of signal acquisition. One of the main strengths of the scheme is

that it conceals the biometric features during authentication, but the privacy preservation mechanism is

not taken into consideration. The researchers argued in [27] for the suitability of signature-based

authentication systems for the IoT device, whereby they presented three categories of a signature-based

scheme, namely, offline, online, and behavior. Some Gait recognition based authentication systems

proposed for IoT devices are also in the literature [28]. A touch screen based authentication scheme

was proposed in [29].

10

In [30], a keystroke dynamics-based authentication scheme with three steps (enrollment, classifier and

user authentication) was proposed. Similarly, in [31], a fingerprint-based authentication system was

provided. In [32], the researchers introduced an authentication and authorization scheme that uses face

recognition, which can be used for the IoT ecosystem. An iris-based authentication system used for

unlocking mobile IoT devices was proposed in [33]. To the best of our knowledge, there are only two

researchers who have adopted voice biometrics as an authentication mechanism for the IoT ecosystem.

Shin and Jun [34] implemented voice recognition technology to verify authorized users for controlling

and monitoring an automated home environment. The researchers proposed a voice recognition system

that is divided into server and device parts. The role of the server part of the system is for user

preregistration, user recognition, and control command analysis. The role of the device part is device

command reception and device control then followed by response. The type of models and techniques

employed is not discussed in this research. Likewise, the implementation of the model is not reported.

Oscar et al. [34] proposed a multimodal biometric approach for IoT, based on face and voice modalities.

The researchers designed their system to scale to the limited resources of IoT technologies. For the

voice recognition part of the system, Oscar et al. were able to extract MFCC features from the voice

with the use of Fast Fourier Transform (FFT). Considering these findings, the filter banks are

decorrelated with the application of a discrete cosine transform. However, this system does not fully

utilize voice recognition. Although it has been implemented in a case study, the results cannot be

compared to a system that fully utilizes voice recognition. Recall that the overall advantages of such

biometric-based schemes are that they cannot be lost due to their intrinsic nature (e.g., fingerprints),

they are very difficult to copy, they are hard to distribute without introducing artifacts into a copy, and

they cannot be easily guessed. Conversely, conventional password-based authentication methods suffer

from a number of drawbacks; they can be easily guessed, hacked, and/or cracked. The performance of

the reviewed biometric systems is shown in Table 2.2. As shown in the table, only a few researchers

have studied the areas related to the deployment of voice recognition systems applied to the IoT

ecosystem for access control and user authentication. Building a working voice recognition system or

integrating it to the IoT ecosystem is lacking in the literature. However, some projects conducted in the

area of voice recognition in general do exist. Some are adapted to the mobile and cloud computing

paradigms. The challenges of IoT devices’ restricted resources of computation, storage, and power

threaten the development of sophisticated authentication systems. Accordingly, a novel biometric

approach has been proposed [14, 35].

11

Table 2. 2 Summary of Systems performance

Sources Title Method FRR % FAR % ERR %

[1] Multimodal Biometrics for Enhanced IoT Security Voice & Face 81.62 N/A 8.04

[25] Gazetouchpass: Multimodal authentication using gaze and touch on mobile devices Gaze N/A N/A 0.32

[26] ECG authentication for mobile devices Keystroke 81.82 1.4 N/A

[27] Behaviour based human authentication on touch screen devices using gestures and signatures Signature 90 0 0.5

[28] Edge-centric multimodal authentication system using encrypted biometric templates Face N/A N/A 1.72%

[29] Touchalystics: On the applicability of touchscreen input as a behavioral biometric for continuous
authentication Touch dynamics N/A N/A 2-3%

[30] Two novel biometric features in keystroke dynamics authentication systems for touch screen devices Keystroke 8.40% 8.32% 8%

[31] More efficient key-hash based fingerprint remote authentication scheme using mobile device Fingerprint N/A N/A N/A

[32] Partial face detection for continuous authentication Face N/A 1% N/A

[33] Firme: Face and iris recognition for mobile engagement Face & Iris 0.25 0.8 0.40%

[34] Home IoT device certification through speaker recognition Voice N/A N/A N/A

11

12

2.4 Conventional Voice based biometric Authentication Model

A voice biometric-based IoT user authentication model is proposed as presented in Figure 2.3. The

model has two phases: the enrollment phase when the user of the smart device says his voice for

registration; and the verification phase when the system checks whether the identity claimer is the real

user by comparing the previously enrolled voice with the voice of the identity claimer. Subsequently,

if the similarity of the two voices reaches a certain predefined threshold, then access is granted to the

claimer; otherwise the claimer is rejected. The design criteria of the model is given in Table 2.3. The

following sections broadly discuss different components of the model.

Figure 2. 3. High level IoT voice authentication model.

2.5 Enrollment Phase

This phase is where the user first introduces his voice for registration. Steps taken in this phase are

discussed in the following subsection.

2.5.1 Sound capture

This step captures the sound or voice of the IoT device owner for training. This is expected to be done

by the smartphone where the owner uses the control apps of the IoT devices. The output of this step is

converted files with a suitable file format.

2.5.2 Pre-processing

In this step, the collected voice data is validated for defects. This is accomplished by decomposing the

data at different frequencies at different scales, and the resulting wavelets are checked for the existence

of any clipping. Subsequently, identified noise wavelets are removed and the noise-free data is

13

obtained. There are two known techniques for removing noise from collected sound data: with the use

of the threshold based de-noising method [18, 36], or with the use of the recursive least-squares adaptive

filtering method [37]. The first was adopted in our work for its suitability for smart devices.

Table 2. 3. Design criteria of the model

Design criteria Description
Universality A very high percentage of the population should have the characteristic. For example,

virtually everyone has recognizable fingerprints, but there are rare exceptions.
Distinctiveness No two people should have identical characteristics. For some otherwise acceptable

characteristics, identical twins share virtually the same patterns, such as facial features and
DNA, but not other features, such as fingerprints and iris patterns.

Permanence The characteristic should not change with time. For otherwise acceptable characteristics,
such as facial features and signatures, periodic re-enrollment of the individual may be
required.

Collectability Obtaining and measuring the biometric feature(s) should be easy, non-intrusive, reliable,
and robust, as well as cost-effective for the application.

Performance The system must meet a required level of accuracy, perform properly in the required range
of environments, and be cost-effective.

Circumvention The difficulty of circumventing the system must meet a required threshold. This is
particularly important in an unattended environment, where it would be easier to use such
countermeasures and a fingerprint prosthetic or a photograph of a face.

Acceptability The system must have high acceptance among all classes of users. Systems that are
uncomfortable to the user, appear threatening, require contact that raises hygienic issues, or
are non-intuitive are unlikely to be acceptable to the general population

2.5.3 Feature extraction

Voice features deemed important for the system are extracted in this step. The extraction and selection

of such feature vectors adds to the quality of the voice recognition system. Feature traits extracted from

the owner’s voice are expected to be different from that of others, must be robust related to noise and

distortion, should be easily extractable, difficult for playback attacks, and should not change with the

change of environment or health of the owner. As such, the most appropriate features used in this model

are MFCC features. The MFCC coefficient was selected for its computing simplicity, which is suitable

for the resource-constrained characteristics of the IoT ecosystem, as well as the mimicking nature of

the human auditory capability of human ears. Likewise, the MFCC divides the voice signal into frames

by subsequently applying a hamming window for every frame [34].

There are two well-known signal analysis tools that are used in existing voice recognition systems:

Discrete Cosine Transformation (DST) and the Hidden Markov Model Toolkit (HTK). Hence, these

tools take care of the details of obtaining the cepstral features of each frame.

14

2.5.4 Model Training

After extraction of the MFCC features, the voice model is trained for the IoT owner. The HMM model

was adopted for this system; the reason is that HMMs are considered very effective for phones because

the system app is used on a smartphone. Finally, the voiceprint is stored in database.

2.6 Verification/recognition Phase

Once the user enrollment phase is accomplished, the system is now expected to verify whether the

identity claimer is the owner of the IoT device. The same steps of voice data collection and feature

extraction are conducted on the claimer’s sound via the smartphone. Subsequently, the extracted MFCC

features are tested against the trained model for verification. SVMs are used in this step for training

classifiers to provide a good generalization to automatically determine the verification data from the

enrollment data. Finally, the decision is made for either rejection or acceptance. The authentication is

rejected if the claimer’s voice features fail to pass the test against the trained model.

2.7 Implementation of the Authentication Model

In this section, the proposed model is tested for its usability in the IoT ecosystem. The normal process

of voice biometric implementation usually includes the creation of models from audio data, generation

of tables, and self-authentication to the IoT manager. We, therefore, used a client-server model for the

initial implementation. A user mobile device simulates running [1] a client, where the server simulates

the IoT manager and handles the verification requests. By contrast, the IoT device receives the

command from the IoT manager and automatically responds to the command. First, the user inputs his

own voice command using the smartphone. Subsequently, the system on the server side determines

whether the connection is for enrollment or verification and accordingly performs the process in each

phase. New connections are considered first for enrollment, while returning connections are considered

for verification by the server by prompting the identity claimer with challenge words.

2.7.1 Open Source Software

To accomplish the initial test, we used a software package called Mistral/Alize. Mistral is tested by the

National Institute of Standards and Technology [NIST] and has with 0.5 error rate. Figure 2.4 shows

the process of Mistral package.

15

Figure 2. 4. The processing of the Mistral software package

2.7.2 Dataset

There are several datasets for audio dataset selection, but we selected the Massachusetts Institute of

Technology (MIT) dataset, which appears to be recent and is considered to be good for initial results.

MIT is designed for mobile environments. The dataset consists of 48 speakers including 22 female and

26 male. The dataset is used for the Universal Background Model (UBM) training.

2.7.3 Pre-processing

In this step, after the user inputs his voice using his own smartphone, the voice is validated, and noise

is removed from the voice signal. For example, Figure 2.5 shows the raw voice signal without noise

reduction, while Figure 2.6 illustrates that the noise (the silent part) is removed before it is submitted

for feature extraction. In this process, using SPro [38], which is supported in the Mistral program, frame

selection was performed by excluding silent frames longer than 100ms. In addition, if a sample is

different from 16 KHz, SPro performs re-sampling by default. Mistral needs the voice to be more

compact. The most important aspect of this process is that the voice is converted into the form of a

binary format.

Figure 2. 5. Voice waves before noise reduction

16

Figure 2. 6. Voice waves after noise reduction

2.7.4 Feature Extraction

In this step, using SPro, the feature extraction process was conducted. The voice data, pre-processed in

the preceding step, was subjected to feature extraction. Feature extraction was conducted through 12

MFCCs, as shown in Figure 2.7, and was subsequently stored in a parameter file. The 12 MFCC is

about extracting digital features that can be understood by the Alize framework. Alize framework

cannot process voice signals instead, it rather takes as input the 12 MFCC features to conduct user voice

processing.

The frontend of the system stops at this step and, according to our framework, is accomplished by the

user’s smartphone. At this point of the testing we used a virtualized Android OS to represent the mobile

part of the implementation. See Section 2.7.5 for the next step in the framework which covers training

and Section 2.7.6 which covers validation.

Figure 2. 7. 12 MFCCs features

17

2.7.5 Voice Model Training / Server Side

In the Mistral toolkit, the next step is training the model. This step controls the list of users of the smart

IoT device. Using the Train World process, we used the GMM to conduct this part of the training with

the MIT dataset for the UBM training because the procedure requires an already-trained UBM. The

remaining 12 were kept for testing. For this part of the implementation we used a virtualized Linux

server to host the Android Things operating system, which acts as the manager of the IoT devices.

2.7.6 Verification

After both parts of the model were trained, the data was compared to the world UBM model to create

verification. The tests were run twice; the first test included using enrolled speakers. The second test

did not include enrolled speakers. After the testing phase started, scores were calculated for each test

speech-segment verification based on the Mistral toolkit. By using a decision threshold-speaker model,

verification could be either be accepted or rejected. In commercial verification systems, users are

required to test and decide on the threshold. However, in our implementation we only speculated on

the possible use of the threshold.

2.7.7 Result and Discussion

We had no problem with the enrollment of the speakers in the dataset. In the first test only the intended

target speakers were used to train the UBM before they were enrolled. Figure 2.8 shows the detection

error tradeoff curve of the MIT voice dataset.

Figure 2. 8. DET plots for a male only trail and female only trail

In the future we will collect enrollment segments from many users anonymously and use different

devices in regular daily life settings for a significantly improved result; this will build a more reliable

UBM to be distributed for application. In addition, a secure remote authentication mechanism will be

18

investigated. Voiceprint security, once stored in the voice database, will be included in the future

research. The work will focus on the resource-constrained nature of the IoT technology and propose

different tools for that aspect. The robustness and resilience of the tools will be thoroughly studied

scientifically.

2.8 Chapter Summary

To prevent unauthorized users from accessing the IoT ecosystem, behavioral biometrics authentication

systems are considered the most effective. Through voice recognition, it is believed that IoT user

authentications will be more secure, accurate, and robust. Our research demonstrates that voice

biometric-based authentication models can be used in IoT ecosystems. We proposed and implemented

a model that is intended to be used by IoT technology owners to remotely and securely authenticate

themselves on smart technologies. Hence, in this chapter we proposed a text-dependent voice

recognition system. The system consists of two phases: the enrollment phase, where the user is

supposed to enroll the voice, and the verification of authentication phase, where the identity claimer is

expected to utter the voice and be subsequently compared with the enrolled one. We tested the model

for its usability and have shown a promising result. It is worth mentioning again that we did not include

any security measures in our implementation, leaving this for future work. For the sake of repeatability,

the coding of the Alize method used in this chapter is included in Appendix A.

19

Chapter 3: Voice-Feature Learning Using a CNN Designed to Avoid

Replay Attacks
Speaker verification is a promising Internet of Things (IoT) user authentication model. However,

verifying the identity of an individual using speech utterance is challenging, especially in the presence

of replay spoofing attacks, where attackers can record the speech of the user and use it for unauthorized

access. In speaker verification, the voice signature is often polluted by ambient noise. This alone

confounds the design of appropriate feature extractors that can distinguish the authentic voice signal

from that of a replay voice signal. The literature to date reflects very poor performance; notably with

state-of-the-art verification errors no less than 11.3% False Positives (FPs) from all samples. To address

this difficult gap that has, up to now, prevented speaker verification from being a satisfactory IoT

authentication alternative, we are seeking to develop an 80-90% improved approach yielding only 1-

2% FPs. To accomplish this goal, we have developed a new approach that uses MFCC and Constant Q

Cepstral Coefficients (CQCC) as input features, a Convolutional Neural Network Based (CNN-based)

frontend feature extractor, and SVM backend classifier. Using better training techniques such as batch

normalizations, we improved the precision significantly. In addition, a formulation that includes

knowledge of distinguishing genuine voice from a replay voice was implemented. The experiment was

conducted on ASVspoof 2017 datasets [68, 95] (see Section 3.6). An improvement in the state-of-the-

art performance was obtained, achieving 7.1 Equal Error Rate (EER) which compares to 11.3 EER in

typical state-of-the-art systems.

3.1 Introduction

Speaker verification systems (SVSs) are part of user authentication systems meant to verify the identity

of individuals using voice biometrics. Such systems take the voice of an unknown speaker with a

claimed identity as input to determine whether the claimed identity matches the actual voice of the

claimer [39]. SVSs rely on the recognition of specific, well-learned parameters to authenticate an

individual. SVSs analyze recorded voice to determine whether the claimer is genuine or an impostor.

In contrast to traditional object-based (non-biometric) systems that use key, smartcard, or password,

speaker verification systems remain the most resilient and robust trend of authentication [37].

However, in recent times, SVSs are reported to be vulnerable to manipulations through specialized

spoofing techniques such as impersonation, replay, voice conversion, and speech synthesis. Compared

to other spoofing attacks, replay attacks are the most straightforward to implement and are highly

effective in deceiving speaker verification systems [40].

20

Conventional speaker verification systems accomplished tasks using GMMs on MFCC feature vectors

[41]. The systems also used joint vector and intermediate vectors (i-vectors) to perform speaker-specific

representations of a speech utterance [8]. Despite being a state-of-the-art approach, the standards

showed shortcomings [17]. For instance, feature vectors suffer from the issue of precision while using

MFCC [42]. Likewise, GMM-UBM and i-vector systems have disadvantages because of their

unsupervised nature, since they are not trained objectively for speech replay detection. We opted for

enriched input data to cope with the challenges. Hence, the hybrid features of MFCC and CQCC are

employed to train the feature extractor. With the advent of deep learning in different domains, data-

driven approaches using deep learning approaches have also been used by the speaker verification

systems [43]. CNN networks have shown a promising result and substantial improvement in speech

recognition, computer vision, and related areas due to their ability to deal with real-world, noisy datasets

without the need for handcrafted features [44]. For instance, the researchers in [45] employed CNN in

SVSs. Comparing their work with traditional baseline systems, they reported an increased precision of

84%.

In this work, we consider that the voice biometrics are acquired from pre-recorded speech, by replaying

the device containing the voice, and extracting features that represent the speaker. The dynamics of the

utterances of the voice are lost. This may also happen in cases where the speaker is remotely accessing

the speaker verification system for enrollment or verification. That is, the enrollment process is

accomplished via a phone call or a recorded voice from the speaker. Therefore, discriminatory feature

extractors are required for such pre-recorded user voice utterances. In addition, identifying

characteristics of the voice that can be used for implementing the feature extractor is difficult. This is

a first of its kind, where most studies in this domain have tried to find a representation for the real voice

from the speaker; in other words, designing feature extractors for SVSs [19]. Up to now, no feature

extractor has emerged in this regard to suit SVSs. The difficulty of finding representations for speech

reflects on the classification performance of SVSs, in particular, distinguishing genuine voice and a

replay spoof attack targeting a particular person. Considering previous work conducted on large public

datasets, the researchers in [46] reported better results, achieving EER around 11.3 %.

To address the issue of obtaining a proper representation for speech with an improved classification

performance, a framework for learning the representations directly from a genuine speech using CNN

was used. A novel formulation was used that takes into consideration and incorporates techniques to

replay spoof attacks using a multi-tasking learning strategy. The model can learn voice parameters in a

recorded speech to discriminate between genuine voice and replayed voice. The model has been

evaluated to determine whether this feature representation that was extracted using the CNN network

21

can detect replay spoof attacks. SVSs usually consist of a frontend, where the voice features are

extracted, a backend where feature classifiers are used, and a decision where a probabilistic linear

discriminant analysis is used. Traditional SVSs use GMM-UMB and i-vector for frontend modeling.

The main disadvantage of these models is that they have fallen short of detecting replay attacks. The

study focuses is on the frontend, whereby the combination of two feature extractions are employed to

train a new CNN architecture. In the state-of-art systems, researchers employed CNN as backend

feature classifier; only a few have used it for feature extraction. In our work, we are targeting an end-

to-end SVS that employs CNN both in the frontend, as well as a backend classifier. An end-to-end

system treats the entire system wholly, as an adaptable black box. The process of feature extraction and

classifier training are achieved together with an objective function that is consistent with the evaluation

metric. However, in this chapter, we present our frontend implementation which achieves improved

precision in detecting replay spoof attacks. In this document, the terms ‘replay attack’ and ‘replay spoof

attack’ are used interchangeably.

To train our CNN network we first studied existing feature extractions employed in SVSs for replay

attack detection. Using single-feature extraction did not work well with replay attack detection. In that

light, we opted to combine two low-level feature extractions that included MFCC and CQCC.

Therefore, to provide superior accuracy, MFCC was used for processing the high-frequency area of the

voice utterance, while CQCC was used for processing silence or areas with low-frequency. The

selection between these two feature extractions was made since MFCC is well-known for appropriately

capturing voice features’ high frequency and that the CQCC is a multi-resolution cepstral feature. The

two features were combined as an input to the CNN network architecture implemented in the study.

The CNN architecture was implemented by TensorFlow/Keras, as reported in Section 3.5. Once the

CNN network was trained, it was employed as the frontend feature extractor. Subsequently, an SVM

classifier was trained with the same features to test the performance of the new CNN architecture and

the combination of the two feature extractions. The improvement achieved by this work is reported in

the following sections of this chapter.

3.2 Speaker Verification System

Speaker verification system (SVS) is the process of recognizing the identity of a speaker based on the

verbal utterance of the speaker. The principle behind speaker verification is that every speaker’s voice

is unique, like fingerprints, and thus can be used to authenticate the speaker. SVSs are used for speaker

authentication, surveillance, and forensics. SVSs consist of three phases, as depicted in Figure 3.1.

These include the frontend, backend, and decision phases [47]. In the frontend phase, the SVS is trained,

using the available input data to learn speaker-specific information from voice signals. In the backend

22

phase, the speaker’s voice is fed into the classifier system to produce the models. Finally, in the decision

phase, the speaker model is compared with existing models for similarity. Basically, speaker

verification systems use GMM-UBM systems to accomplish these tasks. In the process of implementing

the speaker verification system, the Universal Background Model (UBM) was created using MFCC

feature vectors. A GMM-UBM is trained on the entire pool of speakers’ voice data. Consequently, the

trained UBM model is used to calculate the speaker-specific model by adjusting it into individual

speaker’s data. The UBM is represented as 𝜆𝜆𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑤𝑤𝑖𝑖,𝑢𝑢𝑖𝑖,∑𝑖𝑖}𝐶𝐶𝑖𝑖, where 𝑤𝑤𝑖𝑖,𝑢𝑢𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 ∑𝑖𝑖 are weights,

mean, and covariance of 𝑖𝑖𝑡𝑡ℎcomponent in 𝐶𝐶 of Gaussian components, respectively. In the enrolment

phase the 𝑆𝑆 number of speakers are adapted according to the UBM created from the training data to

create speaker models {𝜆𝜆1,𝜆𝜆2,𝜆𝜆3, … , 𝜆𝜆𝑠𝑠}. The GMM is specified as,

𝑃𝑃(𝑥𝑥/𝜆𝜆) = ∑𝐶𝐶𝑐𝑐=1𝑤𝑤𝑐𝑐𝑝𝑝𝑐𝑐(𝑥𝑥)

𝑃𝑃𝑐𝑐(𝑥𝑥) is represented as,

()
()

1
() (x -)1 exp (-)

22 2

T
cx c cp xc d

c

µ µ

π

−∑−
=

∑

where 𝑑𝑑 is the dimension of the input vector 𝑥𝑥. The GMM parameters are calculated by using the

expectation maximization algorithm. In the evaluation phase, the likely ratio between the target and

background models is calculated. The i-vector uses a low dimensional feature vector containing

speaker-specific and voice variability information in a voice segment, which is the GMM super-vector

by a single variability space. It is written as,

𝑀𝑀 = µ + 𝑇𝑇𝑇𝑇,

where 𝑢𝑢 is the mean super-vector, 𝑇𝑇 is the low-rank total variability matrix, and 𝜔𝜔 is a low-rank vector,

referred to as the i-vector. The Probabilistic Linear Discriminant Analysis (PLDA) model is then

employed to generate verification scores by comparing i-vectors from the different voice utterances.

Some researchers have employed conventional systems, such as GMM-UBM and i-vectors with DNN,

for better performance and precision. These systems are usually employed in text-dependent SVSs [48,

49]. For instance, Deep Neural Network (DNN) is used for extracting frames from a speaker’s voice

and calculating the utterance-level information. Subsequently, the output of the DNN is converted to i-

vectors, and, at the backend, PLDA is used for a verification score [50, 51]. In such work, the DNN

features are either used alone or combined with the conventional features (i.e., MFCC). Features

23

extracted from DNN are employed in the posterior. These researchers use DNN to extract speaker-

specific data and apply the similarity metrics check for the verification score [45].

Figure 3. 1. Speaker verification systems

In contrast, some end-to-end usage of the DNN systems can be found in the literature [44]. In these

systems, the process of feature extraction and classifier training are accomplished in a way that is

consistent with the evaluation metric. Network in Network (NIN) layers are used to construct end-to-

end speaker verification systems and have shown considerably good performance [49, 52]. In most

cases, such systems are employed in text-independent SVS. However, the systems using DNNs have

resulted in improved performance and accuracy, but required many more training samples. That is, the

deeper the model the better the accuracy at a cost in terms of training time. Another deep learning

approach that has been employed for speaker discrimination is the use of CNNs for feature extraction.

From the resource-constrained view of IoT devices, the neural network architectures used so far for

SVS may become too big for the memory of IoT devices. They cannot handle the large amount of

training data needed to produce such precise and accurate results.

3.3 Deep learning approaches in Speaker Verification Systems (SVS)

This section discusses research that uses a DNN as the primary algorithm for the SVS. More recently,

researchers have begun investigating CNNs for speaker verification [53]. For instance, in [54], the

researchers have built a speaker recognition system that used senone probabilities computed by a CNN

and compared it favorably with an i-vector approach. Chen et al. trained a Siamese Neural Network

(SNN) to directly compare two voice segments discriminatively [55]. They relied on MFCC features.

In [46], the researchers used CNN to capture and discard speaker and non-speaker information. They

used CNNs in the training phase for creating the background model. In a quest to obtain a stand-alone

24

SVS that can be used with smart home devices, the researchers in [56] employed a small CNN that

needed limited training data. The study used transfer learning of representation, whereby first a model

was trained with a large dataset and subsequently a model was trained in another task to suit the smart

home devices that need a smaller dataset. Nagrani et al. used an end-to-end SVS that used noisy and

unconstrained data input [44]. The system involved performing active speaker verification.

Studies that used a CNN for replay attack detection include the those conducted by Huang et al. [57]

and Huang et al. [58]. The researchers used a hybrid of MFCC and CQCC features for the extraction

of speech particulars to differentiate genuine and replay voices. The study employed CNN as a classifier

in the backend of the SVS and used GMM for the frontend feature extractor. In comparison, our

approach employs CNN as a frontend feature extractor. For the detection of replay attacks, the

researchers in [59] built a frontend feature extractor using CNN. However, in contrast to our work, they

employed only CQCC features for the system. In [60], they used a DNN for a frontend feature extractor,

employing the High Frequency Cepstral Coefficients HFCC and CQCC features extraction methods

and used a Support Vector Machine (SVM) for the backend classifier.

3.4 Feature Learning

In the CNN work described here, we present the formulation of the features selected for speaker

verification and evaluate the performance of the features for training classifiers. We first noted that

conventional feature learning approaches (machine-learning approaches) directly applied for speaker

verification classification are not practical for IoT technologies. That is true because the training data

should be very small when used in the IoT context, while most feature-learning algorithms need a large

number of parameters for improved performance. In addition, genuine and recorded voice share some

properties, and we made use of this similarity for feature learning. Therefore, the system proposed in

this study, has a frontend that uses speaker independent features followed by a speaker dependent

classifier. This is necessary to leverage data from users to learn features that capture the intrinsic

properties of the user voice. Subsequently, the classifier was trained for the user using these same

features.

Compared to other deep learning methods, CNNs are a particularly suitable architecture for speaker

verification. The reason is that CNN architecture scale better than fully connected models for larger

input sizes and have a smaller number of training parameters; a desirable property for the resource-

limited nature of IoT technologies. Thus, to detect a replay attack, a thorough study of the difference

between the genuine and recorded voice is paramount. As such, we cannot reduce the voice data too

much without the risk of losing the details that enable discriminating between them (i.e.,

authentic/genuine versus spoofed). A CNN architecture was trained and subsequently the output of a

25

trained network was used to train the classifier. The idea is that genuine voice and replay voice will be

easier to separate by using CNNs for capturing the intrinsic properties of the speech. CNNs are

particularly suitable for speaker verification. By having a smaller number of trainable parameters, the

architecture used in this work has scales that are better than fully connected methods that require large

input sizes, having a smaller number of trainable parameters.

As raised previously, detecting the replay attack requires the system to identify whether the voice

segment is played live or recorded-and-replayed. Naturally, as is typical in replay attacks, the tone and

context from the voice of the speaker does not change. Hence, learning the very discriminating features

to detect the replay from the genuine voice is way too complex. However, since the replay voice uses

recording and replay devices, the replayed voice carries information about the two devices on top of

the genuine voice. This can be seen in Figure 3.2 as the difference between the genuine and the replay

voice is obvious. Replay attack detection not only needs to focus on the content of the speech, but

whether sound characteristics of the recording and replay devices exist.

It became difficult for one type of feature, such as CQCC, standard MFCC, or Long-Term Average

Spectrum (LTAS), to fit in the representation of replay spoof detection [61]. To that end, the hybrid

features of CQCC and MFCC were used as an input to the CNN extractor in our approach. Previous

studies conducted on the replay attack detection have shown promising results by employing the same

hybrid feature extraction method to train the classifiers. The hybrid features work better in determining

the differences between the genuine and replay voice [62]. Some researchers have used deep learning

for feature extraction but with different combinations of features. For instance, the hybrid features of

HFCC with CQCC was used in [60], and researchers in [59] used CQCC for the replay attack detection.

Figure 3. 2. Replay attack process on speaker verification systems

26

In the extraction of the MFCC features, as one of the best-known features of speech processing, the

power-spectrum of the framed voice signal is transformed by a filter bank of dimensionality reduction.

In speech processing, this research uses MFCC to process high-frequency regions that are most affected

by the spoofing artifacts, while CQCC is used to extract low-frequency regions that may carry minor,

yet additional information to distinguish between genuine and replayed voices. These two features are

used to exploit possible complementary characteristics in feature space. As shown in Figure 3.3, the

resulting hybrid features are used for training the CNN feature extractor. In contrast to the hybrid

features employed in [58], the research used zero-mean and unit variance normalization of 30-

dimentional MFCC and CQCC features, along with first and second derivatives. The mean and

variances were computed on the full training data. The next section provides the CNN architecture used

in the feature extraction phase.

Figure 3. 3. Hybrid feature extraction process

3.5 Front-end CNN Feature Extractor Architecture

In the pre-processing work conducted, this feature extraction process included fixing the input size of

the data to suit the Keras environment because the data had varied size. The pre-processing measures

taken in feature extraction are discussed in the experiment presented in the next Section 3.6. In the

development phase, the CNN was trained with a development set of voice using the formulation defined

below. Subsequently, the input voices’ data were projected onto the representation space learned by the

CNN for the exploitation set. A binary classifier was trained for each voice utterance. CNNs are a

suitable architecture for SVSs having a smaller number of trainable data. CNNs can scale better than

DNN models that need larger input samples. This is a desirable property for the IoT devices that suffer

from resource-limited property. CNNs are also convenient since there is no need to reduce the input

data too much, which risks losing the details that enable discrimination between replay and genuine

voices. The method is illustrated in Figure 3.4. The development subset 𝐷𝐷 was used to train the CNN.

27

The result is a function of 𝜙𝜙. As discussed in Section 3.4, 𝑋𝑋 input voice from the training subset is

projected to feature a variation of 𝜙𝜙(𝑋𝑋) ∈ 𝑅𝑅𝑚𝑚, where 𝑚𝑚 is the dimensionality of the projected feature

variation. Features learned from the development set 𝐷𝐷 are useful in the separation of genuine and

replay voices. The trained CNN was next used as a feature extractor to obtain or extract the feature

vector 𝜙𝜙(𝑋𝑋𝐸𝐸) for each voice utterance from the training set (𝛦𝛦). The new representation is then used to

train the classifier 𝑓𝑓. For a new voice utterance 𝑋𝑋𝐹𝐹 from the evaluation set 𝐹𝐹, the CNN was first used

to extract features to obtain the feature vector 𝜙𝜙(𝑋𝑋𝐹𝐹). Subsequently, this extracted feature vector was

fed into the binary classifier to obtain the final decision 𝑓𝑓(𝜙𝜙 (𝑋𝑋𝐹𝐹)).

Figure 3. 4 CNN architecture for my feature learning approach.

An architecture similar to VGG-M [62], mostly used for image classification and speech-related

application, was employed. Table 3.1 shows the details of the CNN layers. Two fully connected layers

after convolution layers were used. Softmax activation with N neurons were used. N is the number of

speakers in the development set 𝐷𝐷. Each convolution layer was followed by a pooling layer that

generated a lower resolution version of the convolution layer’s activations by taking the maximum filter

activation. This ensured some degree of shift and distortion invariance. Stride is the distance between

applications of the convolution or pooling operation. Rectified Linear Units (ReLUs) were used as the

activation function for all convolution and fully connected layers, except the last one, or the output

layer that uses Softmax. The model weight was initialized according to the work in [63]. Once the CNN

had been trained in set 𝐷𝐷, it was used for feature extraction. The model is trained with Nesterov

Momentum for 60 epochs, using a momentum rate of 0.9, and mini batches of size 100. The networks

were implemented with the libraries, TensorFlow [64] and Keras [65]. It took four hours to train on the

28

GPU Tesla C2050. With the CNNs, we were able to circumvent the necessity of strongly pre-processing

the raw audio data and thereby losing possible valuable information. The network was allowed to

choose the necessary features, especially for the verification task, from a wide range of available

possibilities. The network was trained from end-to-end, starting from spectrograms as in [64]. To

prevent over-fitting, a dropout layer between the layers was used. That is, to address the over-fitting

problem, a dropout layer is inserted into the all-connected and output layers, to randomly drop units

and their connections from the CNN network.

Table 3. 1 Summary of the CNN architecture and layers

Layer Kernel Stride Size
Convolution 1 7 × 7 1 × 1 363×190×17
Convolution 2 1 × 1 1 × 1 440×210×21
Convolution 3 3 × 3 1 × 1 440×210×36
Convolution 4 1 × 1 1 × 1 216×100×48
Local response 1 5 × 5 - -
Local response 2 5 × 5 - -
Pooling 1 - 2 × 2 363×190×10
Pooling 2 - 2 × 2 440×210×18
Pooling 3 - 2 × 2 216×100×32
Fully Connected + Dropout - - 4096
Fully Connected + Softmax - - N

Subsequently, employing the same transfer learning as in [56], the representation was obtained by

performing forward propagation. Based on the formula, after forward propagation, for the input 𝑋𝑋, the

feature extractor function 𝜙𝜙(𝑋𝑋) is the representation network at the last layer before Softmax. This

makes the features, learned for the set 𝐷𝐷 during the training of the CNN network, stand relevant for

classifier training. For training, the classifier, the training, and validation sets were used. For each

speaker utterance in 𝐸𝐸 (the training set), the trained CNN extractors were used to extract features, and

the extracted features were submitted to train the classifier 𝑓𝑓. For the classification, SVM were tested

(both linear SVMs and SVM with a RBF kernel) [66, 67].

To train the classifiers, feedforward propagation was performed until the last layer before Softmax and

thus used the activations at the layer as the feature vector for the speech. This was achieved by using a

transfer learning between sets of users. For each user, a training set consisting of genuine and replay

voices were built. The SVM was trained both in linear formulation and with the Radial Basis Function

(RBF) kernel. Likewise, for the evaluation, a disjoint set of genuine and replay voices that had not been

used for the training were used.

29

3.6 Experimental Setup and Results Validation

In the research, we used the ASVspoof 2017 dataset [68] used by previous researchers for comparison.

The dataset was created by the RedDots project [40], and consists of audio files of different speakers

and different environments. The dataset contains three sub-datasets, including training, development,

and evaluation, which contains 3014, 1710, 13306 audio files, respectively. The audio sets are tagged

as genuine or spoofed voices. The frontend feature extractor was trained and verified with these tags.

The summary of the dataset is detailed in Table 3.2. The dataset was prepared for replay spoof attack.

The replayed data was collected from a pool of volunteers with access to a diverse array of replay and

playback devices, in different session conditions. Audio signals in the dataset have a resolution of 16

bits, a sampling rate of 16 kHz, and utterance durations from 3 to 5 seconds. The size was large enough

to allow details from signals in the voice, while also small enough to enable training. While there was

no overlap in speakers between the data partitions, there was some overlap in replay configurations

between the partitions.

Table 3. 2. Summary of dataset used in the experiment

Subsets #Speakers #Genuine utterances #Spoofed utterances

Training 10 1508 1508

Development 8 760 950

Evaluation 24 1298 12008

Total 42 3566 14466

For pre-processing, the speech pad was cut to 3 seconds. Subsequently, in the feature extraction process,

a hamming window structure was used for both MFCC and CQCC framing setups. The size of the

window was set at 50ms and the step size of 25ms with a 25ms overlap. The minimum frequency was

set to 3 kHz and maximum frequency was set to 8 kHz. After the features MFCC and CQCC were

extracted, the two were combined to train the network. In the experiment, it was evident that the

employment of CNN as the feature extractor in speaker verification is more precise and outperforms

conventional systems, such as GMM-UBM and i-vector, in detecting replay attacks. As reported in a

number of research papers, employment of deep learning is advantageous. In [46], the study compares

CNN and GMM-UBM using Equal Error Rate (EER): GMM-UBM with an EER of 17.1, i-vector with

an EER 12.8, and CNN with 11.3 EER. In [55], which employed DNN for speech, feature extraction

with better performance compared to GMM-UBM and i-vector was obtained. However, our work

shows better precision and performance compared to those researches. That is, the experiment has

shown better replay spoof detection in comparison to the systems reported in the literature. Hence, with

30

the two different features used for classification, we obtained EER of 7.91% with the leaner SVM, and

7.1% using the EBF kernel.

3.7 Chapter Summary

A three-layer SVS that uses CNN, based on text-independent feature learning, has been presented. The

method does not rely on direct utterance by individuals; rather, a recorded sample speech was used for

differentiating genuine speech and forged speech. The experiment was conducted on the ASVspoof

Dataset (see Section 5) to demonstrate that this method is promising; it achieved better performance

when compared to state-of-the-art techniques presented in the replay attack challenge 2017. In the

experiment, we were able to train CNN for feature extraction and SVM for feature classification. The

results show a promising improvement. The CNN network and SVM coding employed in this chapter

can be found in Appendix B and Appendix C, respectively.

31

Chapter 4: Replay Spoof Attack Detection Using DNNs for Classification
In this chapter, we explore the use of the deep learning-based backend in speaker verification systems

(SVSs) for replay spoof detection. Automatic speaker verification (ASV) systems can be easily spoofed

by previously recorded genuine voice. To counter the issues of spoofing, detecting replay spoof attacks

play an important role. Hence, we consider the detection of replay spoof attacks the most easily

accomplished spoofing attack. In this light, we propose a Deep Neural Network-based (DNN) classifier

using a hybrid feature from MFCC and CQCC. Several experiments were conducted on the latest

version of the ASVspoof 2017 dataset. The results are compared with a baseline system that uses the

Gaussian mixture model (GMM) classifier with different features that include MFCC, CQCC, and the

hybrid features of the two. The experiment results reveal that the DNN classifier outperforms the

conventional GMM classifier. It was found that the hybrid-based features are superior to single features,

such as CQCC and MFCC, in terms of EER. In addition, as other researchers have discovered, high-

frequency regions of voice utterance convey greater discriminative information for replay attack

detection.

4.1 Introduction

The use of biometrics for human authentication has become an important part of securing applications

[69]. Although, in the last decade, the world has experienced rapid adoption and increased effectiveness

of biometrics-based authentication systems, the success of such biometric systems is not only measured

by its effectiveness, but also by the availability and affordability of the technology required to measure

the human factors it uses [70, 71]. Voice is one of the most commonly used biometrics in the market

nowadays, because it has the advantage that it can be easily captured with readily available personal

devices [18]. Hence, ASVs have gained the attention of both researchers and industry [72].

Nevertheless, ASVs are vulnerable to spoofing attacks where an impersonator claims the identity of

someone that he is not [73]. Known spooking attacks associated with ASVs include mimicry attacks,

conversion attacks, and replay attacks. A mimicry attack is when a professional imitator mimics the

utterance of the voice of a genuine user to gain unauthorized access [74]. Conversion attacks happen

when voice transformation is performed on an imposter’s utterance so that it sounds more like that of

a genuine user [75]. Finally, a replay attack is a spoof technique where pre-recorded speech is provided

to speech verification systems, with the help of record-and-play devices, to impersonate a genuine user

[73]. Among the three spoof attacks, replay attacks pose the most serious threat to ASVs [40]. The

technique does not require expertise and is difficult to detect (i.e., enjoys more than 50% success rate).

A high-quality smartphone is sufficient for someone to employ the technique effectively. As a

consequence, there is a pressing demand for robust replay attack detection methods [40, 76].

32

Some traditional replay prevention attack techniques exist, such as the use of text-prompted ASV

systems [77, 78], and the use of additional biometric modalities [79, 80], for use as a means of replay

attack prevention. In these systems, there is a tradeoff between system security and system complexity

[81]. Therefore, replay attack detection approaches have attracted researchers [82, 83]. The replay

attack detection methods are of two approaches. One approach researchers have opted for adds auxiliary

information to the utterance; for instance, researchers in [84] proposed the addition of a time stamp in

the utterance of the genuine user, thereby validating the time stamp in the replay attack. The other

approach focuses on detecting the distortion associated with the recording and replay devices that are

used to accomplish the replay attack [40]. This latter approach is where we choose to focus our attention

for the detection of replay attack.

Several researchers have worked on the detection of distortion as a countermeasure to replay attacks.

For instance, in [85], to detect the replay attack the research found that the spectral ratio, low-frequency

ratio, and modulation index carry relevant information to differentiate between the replay speech from

the genuine speech. A matching algorithm that detects the cut and paste of the voice is employed and

the detection is achieved by comparing the pitch and MFCC contours using Dynamic Time Warping

(DTW). Several replay detection solutions on text-independent ASV systems are proposed in [86].

Conventional ASV systems were employed in this research. However, in later studies it became

apparent that such systems have issues of precision and performance when detecting replay attacks. For

example, in [61], the research proved that, with the use of replay attack detection GMM-UBM-based

ASV systems, the equal error rate (EER) increased from 2.61% to 15.03% for 459 genuine male and

1.82% to 34.09% for 220 genuine female speeches. Hence, it can be concluded that GMM-UBM-based

systems are highly vulnerable to replay attacks [87]. In this light, domain research started employing

deep learning techniques to overcome the problem [88]. Neural networks for ASV systems provide

more natural solutions than conventional algorithms.

This inspired the successful application of deep learning frameworks in the ASV systems domain for

replay attack detection. For example, some of the researchers have employed conventional systems,

such as GMM-UBM and i-vectors with DNN, for better performance and precision. These systems are

usually employed in text-dependent speaker verification systems [48, 49]. For instance, DNN is used

for extracting frames from a speaker’s speech and calculating its utterance-level information.

Subsequently, the output of the DNN is converted to i-vectors, and at the backend, PLDA is used for a

verification score [50, 51]. In such work, the DNN features are either used alone or combined with the

conventional features (i.e., MFCC). Features extracted from DNN are employed in the posterior. These

researchers use DNN to extract speaker-specific data and apply the similarity metrics check for the

33

verification score [45]. However, there is always room for improvement, and such domain researchers

are still working on obtaining systems and methods with better precision and performance that use deep

learning techniques. There are several studies using the deep learning model for replay attack, and it

remains a hot area of research. Different studies using deep learning models for replay attack detection

are presented in the related work section below.

In this chapter, we propose a deep neural network-based classifier that uses hybrid features. Our

contribution is twofold. The first is at the feature selection level, where we propose a hybrid feature

that uses CQCC and MFCC to capture discriminative characteristics of both high-frequency and low-

frequency regions of speech utterance, respectively. The second is that we propose a model-level work

that contributes a DNN-based classifier that is trained to discriminate between different conditions due

to changes in playback, recording, and environmental characteristics and context.

4.2 Modeling in Speaker Verification

The conventional SVSs used GMM-UBM and i-vector as state-of-the-art approaches of modeling for

a long time. The modeling approaches rely on dimensional input features for extraction using MFCC.

Nevertheless, MFCC has shown performance degradation [89]. As a result, domain researchers have

started investigating deep learning approaches for better feature extraction [43, 45]. Deep learning

approaches have shown promising results with other verification systems using biometric trails, such

as face and signature. For instance, DNN gained momentum for use in re-identification problems in

face recognition [90] and the identification of a forged signature in signature verification systems [91].

Hence, using DNN, CNN, or Recurrent Neural Network (RNN) for feature extraction of biometric

models has become a trend [59]. Particularly, DNN and CNN approaches have become more suitable

for the extraction of speaker-specific features to detect replay spoofing attacks [55].

Several replay attack detection approaches have been proposed following the ASVspoof attack

challenge held in 2017 [68]. Lantain et al. [92] observed that the use of Inverted Mel-frequency Cepstral

Coefficients (IMFCC) for replay attack detection outperformed that of standard MFCC features. In

[60], the researchers proposed a DNN-frontend architecture, which uses HFCC in tandem with CQCC

features, for replay attack detection. They employed the ASVspoof dataset and used a SVM classifier.

Some of the research has employed the conventional systems, such as GMM-UBM and i-vectors with

DNN, for better performance and precision. These systems are usually employed in text-dependent

SVSs [48, 49]. For instance, DNN is used for extracting frames from a speaker’s speech and calculating

its utterance-level information. Subsequently, the output of the DNN is converted to i-vectors, and at

the backend, PLDA is used for a verification score [50, 51]. In such work, the DNN features are either

used alone or combined with the conventional features (i.e., MFCC). Features extracted from DNN are

34

employed in the posterior. These studies use DNN to extract speaker-specific data and apply the

similarity metrics check for a verification score [45]. In [93], the researchers used a DNN-based

classifier using features extracted from the LTAS. In the end, the proposed DNN classifier was

compared with the GMM classifier that uses MFCC and CQCC features. The result showed that the

DNN outperforms the GMM classifier.

The researchers in [59] proposed an end-to-end deep learning approach for the detection of replay spoof

attacks. The approach consists of a Lite Convolutional Neural Network (LCNN) (at the frontend) and

RNN at the backend. Observations reported in this chapter include that frequency range analysis for

replay attack detection performs better with 4-8 kHz and 6-8 kHz sub-bands, which carry the most

discriminative information segments. The researchers in [57, 58] have also employed CNN for replay

attack detection using a hybrid feature of MFCC and CQCC extractions. They used the CNN as the

classifier in the backend, while using GMM for the frontend of an automatic SVS. The researchers built

a frontend feature extractor using CNN; they used CQCC features for the system. In [94], the

researchers proposed a system with an improved spoofing detection approach. The approach uses Gated

Recurrent CNN as a deep feature extractor, which is later used as the backend classifier. They proposed

a new input feature, signal-to-noise masks (SNMs). An end-to-end system that employs CNN as feature

extractor and RNN as the classifier was proposed for spoof detection in [88].

4.3 Features for Replay Attack Detection

Detecting a replay attack requires systems to identify whether the speech segment is played live or

recorded-and-replayed. Naturally, in replay attacks, the tone and context of the speech of the speaker

does not change. As depicted in Figure 4.1, the difference between the genuine and replay speeches is

obvious. Since the replay speech uses recording and replay devices, the replay speech carries

information about the two devices on top of the genuine speech. As such, replay attack detection not

only needs to focus on the content of the speech, but also whether the sound characteristics of the

recording and replay devices exist. It became difficult for one type of feature, such as CQCC, standard

MFCC, or LTAS, to fit in the representation of replay spoof detection [61]. To that end, the hybrid

features of CQCC and MFCC were used as an input to the DNN classifier in this research. Previous

studies conducted on replay attack detection have shown promising results by employing the hybrid

feature extraction method to train the classifiers [93]. The hybrid features work better in determining

the differences between the genuine and replay speech. Some researchers have used the learning for

classifiers but with different combinations of features. For instance, the hybrid features of High-

Frequency Cepstral Coefficients (HFCC) with CQCC is used in [60], and researchers in [59] used

CQCC for replay detection.

35

Figure 4. 1. Replay attack process on ASV systems

In the extraction of the MFCC features, as one of the best-known features of speech processing, the

power-spectrum of the framed speech signal is transformed by a filter bank for dimensionality

reduction. In speech processing, this research uses MFCC to process high-frequency regions that are

most affected by the spoofing artifacts, while CQCC is used to extract low-frequency regions that may

carry minor, but additional information to distinguish between genuine and replayed speeches. These

two features are used to exploit possible complementary characteristics in feature space. As shown in

Figure 4.2, the resulting hybrid features are used for training the DNN classifier. In contrast to the

hybrid features employed in [58], our research used zero-mean and unit variance normalization 30-

dimentional MFCC and CQCC features, along with first and second derivatives. The mean and

variances were computed on the full training data.

Figure 4. 2. Hybrid feature extraction process

4.4 The DNN-Architecture Classifier

A classification model in the form of DNN is proposed. In most cases, for replay spoof attack detection,

DNN was used for feature extraction. The proposed DNN architecture was fully connected to a feed-

forward neural network. It consisted of multiple hidden layers. When using deep learning, it is

36

necessary to have enough samples to improve the performance of the deep network. There are several

problems associated with DNN. The first problem is the need for more computational capacity; this

occurs from the input of every layer and the parameters of preceding layers that change in every training

epoch. The second problem associated with DNN is over-fitting. Nevertheless, these issues can be

tackled with batch training (i.e., dividing data into groups), which helps overcome the memory

requirement. Batch normalization is also useful to accelerate the learning process and help reduce the

effect of hyper-parameters. In the end, the dropout technique solves the over-fitting problem.

Spoofing-discriminant DNNs with five hidden layers were used to distinguish the genuine from the

replay spoof speech in this experiment. Each of the layers has 2048 nodes with a sigmoid activation

function. The nodes at the output layer were K + 1 and the Softmax activation function was used in that

layer. The K + 1 output nodes correspond to one genuine speech and K spoofing attacks. Batch

normalized super vectors Fi that are composed of n hybrid features vectors were used for DNN training.

Fi = {x1, x2……, xT}

Where T is the number of hybrid features. Using TensorFlow/Keras, the DNN was built and trained.

Stochastic gradient descent methods were used, and the cross-entropy function was selected as the cost

function. The maximum training epoch was chosen as 120, while the mini-batch size was set as at 128.

By counting how many frames were similar to the genuine speech, the replay speech was detected. The

posterior obtained at the output layer of the DNN was transformed into Log-Likelihood (LLR) score

as:

LLRDNN = log p(genuine|Fi) – log p(replay|Fi)

4.5 Experimental Evaluation and Results Validation

The research used the ASVspoof 2017 dataset [68, 95] in the experiment. The dataset is produced for

spoof attacks, most of which are replay spoof attacks. The resolution of all the audio signals in the

dataset is 16 bits; the sampling rate is 16 kHz. The duration of the utterance lasts approximately 3 to 5

seconds. The summary of the dataset is depicted in Table 4.1.

37

Table 4. 1. Summary of the dataset used in the experiment

Subsets #Speakers #Genuine utterances #Spoofed utterances
Training 10 1508 1508
Development 8 760 950
Evaluation 24 1298 12008
Total 42 3566 14466

A hamming window with the size of 10 ms was used to calculate the short-time zero-crossing rate and

short-term energy. Then the threshold was set to find the silent segment and speech segment. The silent

segment was of length 512 ms, while the speech segment had a length of 1525 ms. A segment with

insufficient length was duplicated. The silent segment was represented with a MFCC feature and, after

setting at a frequency of 3-8kKz, it obtained 60*78 features. The speech segment extracts were

represented with a CQCC feature and the selected hamming window. The window size was 50ms; and

the step size was 25 ms, that is, there was a 25 ms overlap, and 48 coefficients were selected.

After CQCC and MFCC features were extracted and combined, a feature of 60 x 126 was obtained.

The feature was then used as an input to the DNN classifier. All three subsets were employed for the

model training. The result has shown that the hybrid features with the DNN classifier produced the best

performance. We used a single feature as the input to baseline GMM system and DNN system as well.

The results are shown in Table 4.2.

Table 4. 2. Evaluation results of the DNN based backend classifier using hybrid features

Systems
EER%

Dev Eval Eval + Dev

CQCC → GMM 8.18 27.79 15.54

MFCC → GMM 5.54 25.54 14.78

CQCC → DNN 10.8 23.57 10.8

MFCC → DNN 7.36 20.84 13.56

MFCC + CQCC → GMM 8.67 22.67 18.25

MFCC + CQCC → DNN 2.68 7.65 5.64

We used CQCC as input features to the DNN. The system produced excellent results with EERs of

10.8%, 23.57%, and 10.8% on the Dev, Eval, and Dev+Eval sets, respectively (third row blue).

Likewise, we used MFCC as input features to the DNN and also showed excellent ERRs of 5.54%,

25.54%, and 13.56% on the Dev, Eval, and Dev+Eval sets, respectively (row four). This shows that our

38

DNN classifier outperformed the GMM-based classifier. Using the hybrid features (MFCC+CQCC) as

input to the DNN system, the result produced ERRs of 2.68% on Dev set, 7.65% on Eval set, and 5.64%

on Dev+Eval set (last row). The result also shows the benefit of combining CQCC and MFCC features.

The overall scores indicate that the use of the Hybrid features with our DNN system outperforms the

GMM systems.

4.6 Chapter Summary

In this study, we explored the application of deep learning frameworks as a classifier for the detection

of replay spoofing attacks in automatic SVSs. The study investigated implementation of DNN at the

back of ASV systems, which is not common in the literature. The model was shown effective in the

experiment and the proposed solution outperformed existing classifications. The ASVspoof 2017

dataset was employed for the experiment where hybrid features of CQCC and MFCC extractions were

used to train the model. The hybrid features used as the input to the DNN model showed that good

discriminative characteristics were extracted from the speech utterance to differentiate between genuine

and replay speeches. The coding of the DNN architecture can be found in Appendix D.

39

Chapter 5: A Security Hardened End-to-End Lightweight IoT Voice

Authentication System
Prevalent use of smart IoT devices and systems combined with home automation demands that such

devices play their role dependably and securely from registration through to decommission (i.e., end-

to-end). Although password-based authentication systems have the advantage of great convenience,

they became exceedingly vulnerable to the point that their length requires a computer to remember.

Biometric-based authentication, especially as a second factor, is an obvious and usable tactic to

authenticate IoT devices. Herein, we present a secure voice biometric-based authentication system. The

basic motive for the proposed voice-based authentication system is to distinguish the legitimate IoT-

device user from an imposter (e.g., replay attack). Our approach uses deep learning (i.e., convolutional

neural nets [CNNs]) to achieve this objective, namely end-to-end security. We describe a method where

the final max/average pooling layer was replaced with a special pyramid-pooling layer in a residual

network architecture; this has the advantage of allowed us to relax the fixed-length input constraint and

to train the entire network with arbitrary sized voice inputs. As a result, we were able to identify the

legitimate users from their imposters. The proof-of-concept has been implemented on a mobile IoT

cloud. Control of the system resides in the cloud and the user’s smartphone has an end-user app from

which the user authenticates themselves to an Android wearable device on the other end. The accuracy

of the model has been thoroughly tested and verified repeatably. Also, these experiments demonstrate

how easily users can authenticate themselves. The CNN architecture used here was compared to I-

Vector baseline systems. The result has showed a significant 15.8% improvement over the baseline

system.

5.1 Introduction

In recent years, the Internet of Things technologies have increasingly emerged with the potential for

transforming every context of computing along with the expanding interconnection of devices via

Internet. IoT technologies are used in a range of applications that include the manufacturing industry

[96], smart cities (smart home, healthcare, smart vehicle) [97, 98], and transportation [99]. It was

reported that in 2020 nearly 38 billion devices would be connected to the Internet [100]. However, the

rising adoption of IoT technologies came with increased security and privacy concerns. IoT technology

vendors and manufacturers do not keep in mind the security aspects of their devices. In [102], Gartner

predicted that by 2020, 25% of attacks would be on IoT technologies; thus, IoT technology-using

organizations or individuals were advised to invest in securing data. In most cases, IoT technologies

contain actuators, sensors, or smartphones. Such smart devices possess the capability of sensing,

monitoring, and collecting data about the user environment. Such data may contain a user’s private or

40

confidential information. This has increased the attack surface of the IoT devices. Hence, for users to

have proper control over their devices, certain applications for smart devices are being developed to

access services offered by using IoT networks. For example, Lockitron is a smart device that can lock

and unlock doors via remote control, typically through a smartphone. Most IoT technologies can be

monitored and controlled via smart device applications [12]. For another example, Voice Control

Systems (VCS), such as Siri and Alexa, are used for giving commands to IoT devices to perform certain

activities; VCS systems are also used for managing home electrical appliances [101]. Hence, this

increases the amount of data stored in such smart devices used for controlling IoT technologies. The

huge data accumulated in such smart devices in turn brings with it adverse underlying effects, such as

the invasion of privacy and the potential misuse of information about the user [102, 103].

Users remotely access IoT devices through smart device applications to connect to nodes or sensing

elements in an unattended manner. Once connected, the user can access desired information from

specific nodes. This makes remote user authentication very critical in IoT networks; only legitimate

users should be able to access IoT nodes while using any service on his/her smart devices. Insufficient

user authentication has been raised as one of the main security issues in the IoT environment. The

increasing connectivity features of IoT devices also create another layer of security threat. For instance,

smartwatches used to have limited features, such as Bluetooth, but now almost all brands of

smartwatches have connectivity features like Wi-Fi. As more connectivity features are introduced to

wearable devices, these devices experience more attacks [104].

One of the most commonly used user authentication methods is the use of passwords due to its

simplicity. However, in this overly connected world this authentication method creates problems: in

addition to having a problem remembering the correct password for various devices and utility services,

the user is expected to have at least 19 different passwords to achieve a certain level of strong user

authentication [105]. This is the reason why most smart devices have added some kind of biometric-

based authentication. Nevertheless, even the biometric-based authentication methods have seen

spoofing attacks. For example, fingerprint-based authentication can be easily deceived by high-

resolution fingerprint images. Iris-based authentications can be attacked by using high-quality iris

images [12]. Other authentication methods currently on market include PIN, smart cards, and token-

based authentication. One common bottleneck for all of these authentication methods is that they all

need some sort of hardware. One key characteristic of IoT systems is that they are computing, and

storage compared to conventional networked systems. Using voice for command has become a popular

user authentication in the IoT environment. Even though the voice-based authentication method has the

advantage of great convenience, it is extremely vulnerable to spoofing attack due to its broadcast nature

41

[106]. This kind of attack has opened a door for perpetrators who want to compromise user information

and perform undesirable operations, which may pose serious threat to the security of IoT systems.

The spoofing attacks that make voice-based authentication vulnerable include the replay attack. In the

replay attack, an adversary tries to use the pre-recorded voice of the legitimate user to compromise the

system [73]. One approach that has been proposed to defend against such spoofing attacks is by

detecting the recorded voice from the original voice of the user. Hence, a voice-based authentication is

measured by its level of detection of the pre-recorded voice as compared to the genuine voice of the

user [40, 76]. However, the existing voice-based authentication schemes suffer from issues of precision

when detecting replay attacks. As a result, various feature extraction and classification methods are

needed to improve their level of precision. In addition, these methods also impose unacceptable risks

to privacy since a user’s voice data can be utilised to infer the user’s behavior in their daily life [81].

In this chapter, we present a secure lightweight voice authentication method based on an end-to-end

deep learning feature extraction and classification approach. Our method consists of a speaker-

independent CNN feature extraction using frontend, and feature classification using backend. For the

feature learning, speaker-independent features are learned using a subset of users, and subsequently

used to train speaker-dependent classifiers for another set of users. The adapted CNN architecture was

fed with fixed-length voice representation of 3 seconds. The experiment was conducted on the newly

released ASVspoof19 dataset that covers various kinds of spoofing attacks, such as voice conversion,

text-to-speech, and replay attacks [40]. Conversely, ASVspoof17 focused instead upon replay spoofing

attacks and countermeasures. We selected ASVspoof19 because replay spoofing attacks within a

physical access (PA) scenario are generated through carefully controlled simulations that support much

more revealing analysis than in ASVspoof17 [40]. Our main intention was to propose a secure

lightweight voice-based authentication system. Subsequently, its implementation and efficiency is

presented. Using the proposed architecture, compared to the state-of-the-art and conventional machine-

learning methods, a better performance has been obtained with the end-to-end deep learning methods.

5.2 Deep learning approaches in Biometric authentications

A number of spoofing attacks have been identified in voice authentication systems [107]. There are

four main spoofing attacks for speaker verification systems (SVSs), and they include impersonation,

replay, speech synthesis, and voice conversion. Impersonation is said to not be a serious threat for the

authentication systems. Conversely, the replay attack is the most serious among the other three attacks.

Different research has been conducted on mitigating such attacks. To enhance the security of ASV

systems against these attacks, automatic speaker verification spoofing and countermeasure (ASVspoof)

initiatives have provided a platform for researchers to follow-up, study, and compare spoofing detection

42

systems [95]. While dealing with speech synthesis and voice conversion require expertise and

specialized equipment, the replay attack does not require any expertise or specialized equipment [2].

Many researchers have proposed defense mechanisms for replay attacks [61, 82, 85].

Some researchers have employed deep learning methods as a better way of detecting replay attacks.

Lantain et al. [92] observed that the use of IMFCC for replay attack detection outperformed that of

standard MFCC features. In [60], the researchers proposed a DNN-frontend architecture, which uses

HFCC in tandem with CQCC features, for replay attack detection. They employed the ASVspoof

dataset and used a SVM classifier. Some of the research has employed the conventional systems, such

as GMM-UBM and i-vectors with DNN for better performance and precision. These systems are

usually employed in text-dependent SVSs [48, 49]. For instance, DNN is used for extracting frames

from a speaker’s speech and calculating its utterance-level information. Subsequently, the output of the

DNN is converted to i-vectors, and at the backend, PLDA is used for a verification score [50, 51]. In

such works, the DNN features were either used alone or combined with the conventional features (i.e.,

MFCC). Features extracted from DNN were employed in the posterior. These researchers used DNN

to extract speaker-specific data and applied the similarity metrics check for the verification score [45].

In [93], the researchers used a DNN-based classifier using features extracted from the LTAS. In the

end, the proposed DNN classifier was compared with the GMM classifier that uses MFCC and CQCC

features. The result showed that the DNN outperforms the GMM classifier.

 The researchers in [59] proposed an end-to-end deep learning approach for the detection of replay

spoof attacks. The approach consisted of LCNN (at the frontend) and RNN at the backend.

Observations reported in this paper included that frequency range analysis for replay attack detection

performed better with 4-8 kHz and 6-8 kHz sub-bands, which carry the most discriminative pieces of

information. The researchers in [57, 58] also employed CNN for replay attack detection using a hybrid

feature of MFCC and CQCC extractions. They used the CNN as the classifier in the backend, while

using GMM for the frontend of an automatic SVS. The researchers built a frontend feature extractor

using CNN; they used CQCC features for the system. In [94], the researchers proposed a system with

an improved spoofing detection approach. The approach uses Gated Recurrent CNN as a deep feature

extractor, which was later used as the backend classifier. They proposed a new input feature, Signal-

To-Noise Masks (SNMs). An end-to-end system that employs CNN as feature extractor and RNN as

the classifier was proposed for spoof detection in [88]. In [108], the researchers proposed a voiceprint-

based authentication system that used DNN to extract features that can be used alongside MFCC to

improve the SVSs. However, the model did not target the resilience of the system in regard to spoofing

attacks. In [109], the research investigated a voice pathology-using authentication system that also used

43

a deep learning approach. The model has been used in a mobile healthcare framework where the mobile

device is used for capturing the voice features. The voice signals are pre-processed before they are fed

in a CNN network. Using the Caffenet and VGG-16 variant of the CNN network, the result of the

experiment showed a voice pathology detection accuracy of about 97.5%.

Biometric-based authentication systems that did not use voice include, for example, the researchers in

[112] who proposed a fingerprint-using authentication system that used a deep learning LSTM that

enables IoT devices to a extract s set of stochastic features to effectively authenticate the reliability of

signals. In [110], an iris-based IoT authentication system that uses a deep learning approach was

proposed. The research compared the proposed systems to that of some existing traditional iris-based

authentication systems where the proposed systems have shown significant performance improvement.

The systems were particularly able to challenge mimicry attacks. Likewise, a selfie face and ocular

biometric-based authentication model that uses CNN networks was proposed in [111]. The CNN

architectures were used for feature extraction while SVM were used for classification. The two

biometric features were collected independently and later fused with different CNN networks, such as

VGG and InceptionNet. The model focused on performance and has not been evaluated for its

resilience. An IoT-authentication model that used gaze and touch biometrics used for mobile IoT

devices was proposed in [112]. In [113], the researchers proposed a deep learning-based authentication

model that uses LSTM of unit length 2048 with an accuracy of 99.58%. In [110], the study improved

an iris-based authentication model that uses deep learning, training the network with an augmented

database. The model achieved promising results of 98.55% for the test set Bath 800 and 99.71% for

CASIA. In addition, a CNN-based multi-class authentication model trained over 56 000 iterations,

which achieved 99.10% for detecting forgery was proposed in [114].

5.3 Motivation

Authentication systems are used for the validation of the identity of an entity based on a previously

registered password. Resilient authentication approaches tend to prevent an imposter, who uses attacks

such as a replay attack, an impersonation attack, or a key stolen attack, from accessing a system. In the

case when the system fails to identify the imposter from the genuine user, the system can be

compromised and private user data, including credentials, may be stolen. In addition, once the imposter

gains access to the system, other security threats can be launched to further ruin the system [115]. As

such, authentication is the prime security attribute for IoT devices. Since, IoT technologies can

exchange data with each other without the consent of the owner, IoT devices accumulate sensitive

private user data. Furthermore, illegal access to an IoT device may even be to life threatening; such is

the case, if the body-area network device that monitors the health of a patient is compromised, causing

44

unwanted consequences to the patient. Therefore, authentication must be the first priority when setting

up safe and reliable communication among different IoT devices. Authentication is considered as an

attractive and favorable approach for securing smart home devices [116].

5.4 Proposed Voice Authentication System (VAS)

The proposed method has three modules, which include the registration module, the verification

module, and the authentication module. In the registration module, the user starts to register himself or

herself using his/her voice. This happens via an application on the user’s smartphone. Once the system,

which resides in the cloud, receives the voice of the user, it then generates a secret key based on the

user’s identity. Next, the verification module starts by first making sure if the network, from which the

user is trying to access the IoT device, is safe. The verification module must also to verify whether the

user is a new user or a returning user. This verification is achieved based on the user voice submitted

at the registration phase. If it is a new user, the system creates a new model for this user. If the identity

claimer’s voice is that of a legitimate returning user, the user will have access to the IoT network via

the IoT gateway. In the authentication module, using the secret key generated in the registration module,

the cloud-residing council encrypts the voice using a hash function and generates a session key with

the IoT gateway, and then the encrypted voice is sent to the IoT device. The IoT device sends the

encrypted voice to the IoT gateway to send the session key back to the IoT device that the user wants

to connect to.

Figure 5. 1. Authentication model proposed for IoT user authentication

45

As shown in Figure 5.1, in the network scenario of the proposed authentication method, users can

communicate with smart devices to access services. The network scenario contains a set of constrained

devices. Each user is expected to use his smartphone to access IoT devices via an application connected

to an IoT management council that resides in the cloud. Smart devices are accessed via the IoT gateway.

5.5 Deep Learning-Based Feature Extraction and Classifiers

An end-to-end deep learning neural network was used for feature extraction and classification in the

proposed model. As a result of advances in audio devices, it has become increasingly difficult to

determine typical characteristics of a replay speech based on conventional machine-learning methods.

Thus, to detect basic characteristics in the replay speech, an end-to-end deep learning method was

employed in this model. The deep learning method used in this model was comprised of CNN used at

the frontend of the feature extraction, as well as at the backend classification of the model. In other

words, the input features were first processed with the CNN layers to extract frame-level embedding.

The CNN have residual blocks with identity mapping to facilitate the training of deep architecture. In

addition, the CNN layer used in the model processes local adjacent time and frequency domains and

repeated pooling operations are used to extract frame-level embedding. Sample architecture of the

original CNN, as introduced by LeCun et al. (1969), is shown in Figure 5.2.

Figure 5. 2. Original architecture of CNN as proposed in [117]

Two disjoint sets of users were used in the training of the feature extraction and classifier. The

development set in the dataset was used for learning the CNN based extraction, while the classifiers

were trained on the evaluation set . A function 𝜙𝜙(𝑋𝑋) takes 𝑋𝑋 user voice data of the development

 dataset as input and returns a fixed feature vector. The learned function is then used to extract

features for the voice data in the evaluation set and train a classifier for each user.

D

E

D

E

46

Usually, it is reported, that for CNN architecture the input size of the data has to be specific for training

and testing. This constraint is caused by the usage of fully connected layers at the end of the network

architecture. That is to say, the convolution and pooling layers do not ask for a fixed size of input data.

The problem between the pooling layer 2 and fully connected layer 1 is obvious in Figure 5.2. The last

pooling layer l2 is flattened to a vector dimensionality and the fully connected layer l1 uses a weight

matrix of size where is the output size of the fully connected layer. If CNN processes an

input of a certain specific size, the output of the last pooling layer l2 is expected to have a different size.

That output size will not define the product of the fully connected layer l1. Hence, spatial pyramid

pooling (SPP), as provided in [118], is used to obtain a fixed-sized representation for variable-size input

data. In the training, the CNN is initialized with random weights and the training is performed with

stochastic gradient descent to minimize the loss function. Mini batches of data are used to speed up the

training. As such, the row data as presented in the dataset is used as CNN input. The probability of

discriminative embedding and of the same speaker is modelled by their cosine Equation (1) as

provided in [51].

The triplet loss that takes in as input three samples as shown in Figure 5.3 including , , and .

That is to say, is an utterance from a specific speaker (anchor), is another utterance from the

same speaker (positive), and is an utterance from another speaker (negative). Updates are made to

seek for the cosine similarity between the anchor and the positive examples are larger than the cosine

similarity between the anchor and the negative examples. This is formally provided as

where, the cosine similarity between the anchor and the positive example for triplet , and

is the cosine similarity between the anchor and the negative example in triplet . A minimum

margin is imposed between the similarities.

K

K M+ M

ix jx

(), (1)T
i j icos x x x xj=

ax px nx
ax px

nx

 (2)
p nx x

i is sα− >

px
is a p i

nx
is a n i

α

0
 [] (3)

n pN x x
i ii

L s s α
=

∴ = − +∑

47

Figure 5. 3. Triplet loss of a speaker embedding training system

5.6 Dataset

The ASVspoof 2019 dataset was used for the experiments. The details of the dataset are given in Table

5.1. The dataset contains utterances of 107 speakers. The training set has 5400 genuine utterances and

48,600 spoofed utterances.

Table 5. 1 ASVspoof 2019 details

Sets
Total
Speakers Male Female

Development 10 4 6
Training 20 8 12
Evaluation 48 21 27

5.7 Implementation and Results

This section demonstrates the implementation of the proposed IoT authentication model using a

smartphone and a smartwatch. The management council of the application resides in the cloud. As for

the proven prototype, a local private cloud was used. The user has an application in his/her smartphone

to connect and authenticate him or herself with his/her smartwatch. The deep learning architecture was

implemented using Keras with TensorFlow, an open-source neural network library written in Python

to evaluate the results. The Keras library was selected for a number of reasons, but mainly because of

its lightweight and ease of extensibility. Furthermore, Keras can process large amounts of data. The

implementation consisted of pre-processing, creation of and training CNN feature extractor, and

training the classifier, and testing stages. The two metrics used for the evaluation include accuracy and

mean-squared error rate.

48

5.7.1 Pre-processing

In general, deep learning rarely takes raw audio signals, mainly because of the fluctuating scales in the

signals. In this pre-processing, the scale problem of the raw audio data was solved by adopting the

widely used pre-processing technique used in [119]. High-frequency signals were the centre of the pre-

processing. Likewise, the adopted pre-processing method stabilized the scale of raw audio signals. The

method is designed as , where refers to the input signal at time and

refers to the pre-emphasis coefficient, and stands for pre-emphasized signals.

5.7.2 CNN Architecture

The main target of the project was to authenticate an IoT user in a lightweight manner. In the

experiment, a user is using his smartphone to authenticate himself to his Android wearable device via

an authentication system residing in the cloud. First column of the Table 5.2 represents the

convolutional and residual network layers in the used architecture, while structure of the layers are

given the in second column and the right most column provides the size of the pooling region or strides.

Table 5. 2 The CNN Network architecture

Layers Structure Stride
Conv1 5 x 5, 32 1 x 1

Rest32 1 x 1

Conv2 5 x 5, 64 2 x 2

Rest64 3 x3

Conv3 5 x 5, 128 1 x 1

Rest128 2 x 2

Conv4 5 x 5, 256 1 x 1

Rest256 3 x 3

Conv5 5 x 5, 512 1 x 1

Rest512 2 x 2

The feature extraction happens in the user’s smartphone. The deep learning approach-based feature

extractor is used. The SPP used in this architecture where frame-level features were extracted by using

the widely used 34-layer ResNet [51]. The architecture is detailed in Table 5.2. CNN architectures are

() () () · 1p t s t s tα= − − ()s t t

α ()p t

3 3,32
3

3 3,32
× 

× × 

3 3,64
3

3 3,64
× 

× × 

3 3,128
3

3 3,128
× 

× × 

3 3,256
3

3 3,256
× 

× × 

3 3,512
3

3 3,512
× 

× × 

49

suitable for the reduction of spectral variations and modelling of spectral correlations of acoustic

features. A distance-based loss function was used to discriminate between same-speaker and different-

speaker utterance pairs. Also, at each iteration, candidate utterances were checked in the same mini

batch. It provided faster training convergence.

5.7.3 Evaluation Result of the proposed Authentication Model

Only the training set of the dataset was selected to verify the efficiency of the model. The data consisted

of 54,000 utterances with 5400 genuine utterances and 48,600 spoofed utterances. The evaluation

metrics included classification performance, because it allowed us to predict which registered speaker

corresponded to a given utterance. To evaluate the system performance, accuracy is the most important

determinant; to accurately measure the ratio between the correct number of predictions and the total

number of cases given as

where stands for True Positive and refers to True Negative predictions. False Positive and

False Negative prediction are given as and respectively. The lowest rate of 81.60% and

highest rate of 92.56% of accuracies was observed. Accuracy alone cannot typically provide enough

information to evaluate the prediction outcomes. That is to say, accuracy cannot necessarily reflect an

indicator of a high classification performance. Accuracy cannot hold as much weight when a dataset

with a huge amount of data is involved. To avoid this accuracy paradox, the loss function, or Mean

Square Error rate (MSE), was used to pair with the accuracy calculations so that we could gain more

insight into the evaluation of the model. This was treated as a regression problem with deep learning.

Because the used dataset consists continuous set of data for each user, MSE is believed to be an

appropriate metric. What the MSE achieved over the iterations is shown in Figure 5.4.

 = TP TNaccuracy
TP TN FP FN

+
+ + +

TP TN

FP FN

50

Figure 5. 4. Observed Mean Square Rate of the proposed authentication model

In addition to the authentication accuracy, the deep learning method was evaluated from different

stances. In the first stance, the architecture was evaluated on the three sets of the ASV2019 dataset:

development, training, and testing for text-independent recognition tasks. That is, the performance of a

baseline i-vector system was compared to our approach. The i-vector system uses a frontend feature

consisting of 12 MFCCs with a frame length of 30 ms that is feature is subject mean-normalized over

a sliding window of up to 3 seconds. The baseline system uses 60-dimension feature vectors, created

by Delta, and acceleration. Less frequency or unvoiced parts of the utterances are removed with energy-

based activity detection. The UBM is a 1024-component full-covariance GMM and the system uses a

400-dimension i-vector extractor. In addition, before the PLDA scoring, i-vectors get centered and

length normalized. The result is provided in terms of EER, where our system with the special pyramid

pooling achieves 15.8% relative improvement over the baseline system.

5.8 Chapter Summary

In this work, a voice biometric-based authentication system for IoT systems has been proposed. A

prototype application built on a private cloud was used for the evaluation of the system. The system

used an end-to-end deep learning approach to extract features from a user’s voice and subsequently

classify them. The proposed system used ResNet CNN architecture that removes the fixed-size

limitation, which improves the accuracy of the system in general. The CNN approach employed

achieved state-of-the-art performance on the dataset of ASVspoof 2019. The Resnet CNN architecture

coding is included in Appendix E.

51

Chapter 6: Conclusion and Future Works

6.1 Conclusion

The main objective for conducting this research was to develop a biometric-based secure lightweight

authentication system that can be used for IoT devices. To achieve this objective, three research

questions were developed and addressed throughout the process.

First, investigate a suitable biometric that can be used in IoT devices without the need for an additional

hardware. To this end, we studied different biometric authentication techniques that are described in

the literature. Accordingly, there are two main types, physical and behavioral. Physical biometrics can

include fingerprints or iris scan, while behavioral biometrics can include keystroke or voiceprint. After

comparing the various biometrics, the voiceprint was selected as the best candidate for authentication

for ease of integration into the IoT environment; voiceprint does not necessitate dedicated hardware to

be used in IoT. Consequently, the feasibility of adopting a lightweight voiceprint-based authentication

mechanism in IoT was investigated. Experiments using the traditional open-source machine-learning

tools revealed that the voice-based authentication system would be appropriate for adoption by IoT-

based systems. The results of this investigation have been published [39, 72].

Second, a well known fact is that voiceprint-based authentication suffers from spoofing, in particular

replay attacks. Therefore, to answer the second research question, a selection of features that can help

detect a replay attack was investigated. A hybrid feature that combines MCFF and CQCC was

proposed. The MFCC feature extraction is used for processing high frequency areas the speech

utterance while the CQCC feature extraction is used for processing silent areas with low frequency.

Moreover, MFCC is well-known in appropriately capturing voice features with high frequency and that

the CQCC is a multi-resolution cepstral feature. Subsequently, the CNN networks were trained with

the selected hybrid features. The CNN networks were used as the frontend together with a SVM

backend combined into our voice-verification system (VVS). By comparing the proposed solution to a

baseline (i.e., from [45]) that uses a “conventional” machine-learning frontend and backend, our results

show that the SVSs successfully improved replay attack detection. The result obtained using the linear

SVM was 7.9% and the result obtained using the kernel SVM was 7.1% as described in Section 3.6. In

another experiment, DNN networks were trained with the selected hybrid features. The DNN networks

were used as backend classifiers with GMM feature extractions. With the deep learning-based

classifier, the results show improved replay attack detection as compared to traditional machine

learning using baseline systems [45]. The results are shown in Table 4.2, with the Development dataset

52

we obtained 10.8%, with the Evaluation dataset we obtained 23.6%, and with the combination of

Development and evaluation datasets we Obtained 10.8%.

Lastly, in response to our third question, a prototype of the voiceprint-based authentication system that

can detect replay attacks was employed in an experiment to demonstrate its usability in IoT devices.

The well-known CNN model, layer 34 ResNet, was used in the prototype. The experiment included a

virtual environment that consisted of a smartphone, a smartwatch, and a cloud. The prototype was

evaluated for its accuracy and precision. The results are very promising as discussed in Section 5.7.3.

In the validation of the answers made to the three questions coined to achieve the main objective of the

study, we have used three datasets including MIT dataset, ASVspoof17 and ASVspoof19 datasets. For

example, to answer to the first question of the study that involved studying the suitability of voice based

biometric for the authentication in IoT environments, the MIT datasets have been use. The ASVspoof17

datasets have been used for the validation the CNN and DNN networks proposed for the replay attack

detection (which answers to the second questions), while the ASVspoof19 datasets have been used for

the validation of the ResNet based prototype that answers to the third question of the study.

6.1.1 Summary of implementation specifics

Throughout this work, the python program language was the main language employed for the deep

learning models for two reasons. First, was the familiarity with python. The second reason is that python

is recommended by the NIST. NIST compared various existing libraries used for speaker verification

systems (SVSs). As a result, the python (namely, Keras and Tensorflow) neural network libraries were

singled out to be of the highest integrity (i.e., estimated to have fewer errors). In addition, the most

recent studies that use deep learning models for SVSs use python. This has great advantages in terms

of reproducibility of our results. The source code of the ALIZE library, (Chapter 2) used for the

feasibility study conducted to evaluate the suitability of voice biometrics-based authentication in IoT,

is included in Appendix A for reproducibility. Likewise, the source code of the SVM machine used in

the dissertation is shown in Appendix B so that it can be replicated for further experiments. The source

code of the CNN architecture used for the data extraction in Chapter 3 is included in Appendix C for

reproducibility. The code of the DNN architecture, used for classification of features in Chapter 4, is

included in Appendix D for further examination. Finally, the source code of the Resnet architecture

used in Chapter 5 is also provided in Appendix E for reproducibility as well.

The CNN networks are used to differentiate the genuine user voice from replay voice used by attackers

to spoof the “true” identity of users. To accomplish this, CNN networks are expected to extract minor

53

discriminating characteristics that differentiate the genuine from the replayed voice. For example, the

SVS model is first trained using the hybrid features extracted from the genuine voice. Subsequently,

once the CNN frontend of the model has assimilated (i.e., trained) using features from the genuine

voice, the model can correctly detect features extracted from replay voice with high confidence of up

to 7.9% and 7.1% error rates when used with two backend classifiers, the linear SVM and EBF kernel

respectively.

6.1.2 Summary of data used for validation

Very importantly, two datasets (ASVspoof 2017, ASVspoof 2019), both meant to characterize the

pernicious replay type of spoofing attack, have been utilized to validate our proposed speaker

verification approach which was demonstrated to improve on replay attack detection with a 15.8%

Equal Error Rate (EER) .

For example, the ASVspoof 2017 dataset used in the DNN consisted of three subsets: 1) training, 2)

development, and 3) evaluation subsets. In the DNN, the development and the evaluation subsets in the

dataset were employed. The development set consisted of 760 genuine voices and 950 replay voice,

while the evaluation set consisted of 1298 genuine voices and 12008 replay voices. All the genuine and

replay voices in the two subsets were used for the model training and evaluation (i.e., testing). Hence,

the nth folder theory was not used in the experiment, because it was not applicable in the case of our

SVS.

In the cases described in Chapters 3 and 4, accuracy is measured by the true/false positive and false/true

negative rates of the replay attack detection. In Chapter 5, the accuracy is measured by the acceptance

and rejection rates within the context of user authentication as discussed in Section 5.7.3. The improved

accuracy of user authentication using our SVS provides a better approach compared to other recent

studies [45, 55]. Thus, our authentication system has shown, using the aforementioned datasets an

improved 15.8% relative accuracy.

6.2 Future IoT Authentication Research Directions

There is an abundance of security issues associated with the voice-based authentication systems such

as voice conversion and mimicry attacks that have not been taken into consideration here and that are

beyond the scope of this study. The authentication system provided in Chapter 5 has been evaluated for

its resilience against replay spoof attack and has provided an accuracy of between 81.6% and 92.6%.

Developing better defenses against other spoofing attack methods and tactics is an open area for future

research toward increasing IoT system resilience and creating generic machine learning defenses.

54

Furthermore, instantiating a real system using our proposed deep learning methods framework should

be examined as an area of active research. Given the SVSs studied and validated, we would suggest

that further development of a full-scale general-purpose IoT voice authentication system is feasible that

can serve as one factor of a multifactor IoT authentication system.

55

References

1. Olazabal, O., et al. Multimodal Biometrics for Enhanced IoT Security. in 2019 IEEE 9th Annual

Computing and Communication Workshop and Conference (CCWC). 2019. IEEE.

2. Ren, Y., et al., Replay attack detection based on distortion by loudspeaker for voice authentication.

Multimedia Tools and Applications, 2019. 78(7): p. 8383-8396.

3. Gupta, S. and S. Chatterjee, Text dependent voice based biometric authentication system using

spectrum analysis and image acquisition, in Advances in Computer Science, Engineering &

Applications. 2012, Springer. p. 61-70.

4. Kolkata, C., About Voice biometric and Speaker Recognition. 2014.

5. Thakur, A.S. and N. Sahayam, Speech recognition using euclidean distance. International Journal

of Emerging Technology and Advanced Engineering, 2013. 3(3): p. 587-590.

6. Petrovska-Delacrétaz, D., A. El Hannani, and G. Chollet, Text-independent speaker verification:

state of the art and challenges, in Progress in nonlinear speech processing. 2007, Springer. p.

135-169.

7. Rosenberg, A.E., F. Bimbot, and S. Parthasarathy, Overview of speaker recognition, in Springer

Handbook of Speech Processing. 2008, Springer. p. 725-742.

8. Nainan, S. and V. Kulkarni. Performance evaluation of text independent automatic speaker

recognition using VQ and GMM. in Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies. 2016. ACM.

9. McLaren, M., Automatic Speaker Recognition for Authenticating Users in the Internet of Things.

August 26, 2016.

10. Sharma, G. and S. Kalra, A Lightweight User Authentication Scheme for Cloud-IoT Based

Healthcare Services. Iranian Journal of Science and Technology, Transactions of Electrical

Engineering, 2019. 43(1): p. 619-636.

11. El-hajj, M., et al., A survey of internet of things (IoT) Authentication schemes. Sensors, 2019.

19(5): p. 1141.

56

12. Dhillon, P.K. and S. Kalra, A lightweight biometrics based remote user authentication scheme for

IoT services. Journal of Information Security and Applications, 2017. 34: p. 255-270.

13. Yassine, A., et al., IoT big data analytics for smart homes with fog and cloud computing. Future

Generation Computer Systems, 2019. 91: p. 563-573.

14. Ferrag, M.A., L. Maglaras, and A. Derhab, Authentication and Authorization for Mobile IoT

Devices Using Biofeatures: Recent Advances and Future Trends. Security and

Communication Networks, 2019. 2019.

15. Hamidi, H., An approach to develop the smart health using Internet of Things and authentication

based on biometric technology. Future generation computer systems, 2019. 91: p. 434-449.

16. Moussa, A.N., N. Ithnin, and A. Zainal, CFaaS: bilaterally agreed evidence collection. Journal of

Cloud Computing, 2018. 7(1): p. 1.

17. Thullier, F., B. Bouchard, and B.-A. Menelas, A Text-Independent Speaker Authentication System

for Mobile Devices. Cryptography, 2017. 1(3): p. 16.

18. Zhang, X., et al. Voice Biometric Identity Authentication System Based on Android Smart Phone.

in 2018 IEEE 4th International Conference on Computer and Communications (ICCC). 2018.

IEEE.

19. Khitrov, A. and K. Simonchik, System for text-dependent speaker recognition and method thereof.

2019, Google Patents.

20. Moussa, A.N., et al. A Consumer-Oriented Cloud Forensic Process Model. in 2019 IEEE 10th

Control and System Graduate Research Colloquium (ICSGRC). 2019. IEEE.

21. El Hannani, A., et al., Text-independent speaker verification, in Guide to Biometric Reference

Systems and Performance Evaluation. 2009, Springer. p. 167-211.

22. Rosenberg, A.E. and S. Parthasarathy. Speaker background models for connected digit password

speaker verification. in 1996 IEEE International Conference on Acoustics, Speech, and

Signal Processing Conference Proceedings. 1996. IEEE.

57

23. Oak, R., A Literature Survey on Authentication Using Behavioural Biometric Techniques, in

Intelligent Computing and Information and Communication. 2018, Springer. p. 173-181.

24. Moussa, A.N., N.B. Ithnin, and O.A. Miaikil. Conceptual forensic readiness framework for

infrastructure as a service consumers. in 2014 IEEE Conference on Systems, Process and

Control (ICSPC 2014). 2014. IEEE.

25. Khamis, M., et al. Gazetouchpass: Multimodal authentication using gaze and touch on mobile

devices. in Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors

in Computing Systems. 2016.

26. Arteaga-Falconi, J.S., H. Al Osman, and A. El Saddik, ECG authentication for mobile devices.

IEEE Transactions on Instrumentation and Measurement, 2015. 65(3): p. 591-600.

27. Shahzad, M., A.X. Liu, and A. Samuel, Behavior based human authentication on touch screen

devices using gestures and signatures. IEEE Transactions on Mobile Computing, 2016.

16(10): p. 2726-2741.

28. Ali, Z., et al., Edge-centric multimodal authentication system using encrypted biometric

templates. Future Generation Computer Systems, 2018. 85: p. 76-87.

29. Frank, M., et al., Touchalytics: On the applicability of touchscreen input as a behavioral

biometric for continuous authentication. IEEE transactions on information forensics and

security, 2012. 8(1): p. 136-148.

30. Tasia, C.J., et al., Two novel biometric features in keystroke dynamics authentication systems for

touch screen devices. Security and Communication Networks, 2014. 7(4): p. 750-758.

31. Khan, M.K., S. Kumari, and M.K. Gupta, More efficient key-hash based fingerprint remote

authentication scheme using mobile device. Computing, 2014. 96(9): p. 793-816.

32. Mahbub, U., et al. Partial face detection for continuous authentication. in 2016 IEEE

International Conference on Image Processing (ICIP). 2016. IEEE.

33. De Marsico, M., et al., Firme: Face and iris recognition for mobile engagement. Image and

Vision Computing, 2014. 32(12): p. 1161-1172.

58

34. Shin, D.-G. and M.-S. Jun. Home IoT device certification through speaker recognition. in 2015

17th International Conference on Advanced Communication Technology (ICACT). 2015.

IEEE.

35. Atwady, Y. and M. Hammoudeh. A survey on authentication techniques for the internet of things.

in Proceedings of the International Conference on Future Networks and Distributed Systems.

2017. ACM.

36. Sahoo, T.R. and S. Patra, Silence Removal and Endpoint Detection of Speech Signal for Text

Independent Speaker Identification. International Journal of Image, Graphics & Signal

Processing, 2014. 6(6).

37. Dhakal, P., et al., A Near Real-Time Automatic Speaker Recognition Architecture for Voice-Based

User Interface. Machine Learning and Knowledge Extraction, 2019. 1(1): p. 504-520.

38. Guillaume, G., SPro: speech signal processing toolkit. Software available at http://gforge. inria.

fr/projects/spro, 2004.

39. Salahaldeen Duraibi, F.T.S.a.W.A., “Voice Biometric Identity Authentication Model for IoT

Devices”,. International Journal of Security, Privacy and Trust Management (IJSPTM), ,

2020. Vol. 9, (No.2).

40. Wang, X., et al., ASVspoof 2019: a large-scale public database of synthetized, converted and

replayed speech. Comput. Speech Lang., vol. 64, 2020.

41. Reynolds, D.A., T.F. Quatieri, and R.B. Dunn, Speaker verification using adapted Gaussian

mixture models. Digital signal processing, 2000. 10(1-3): p. 19-41.

42. Lukic, Y., et al. Speaker identification and clustering using convolutional neural networks. in

2016 IEEE 26th international workshop on machine learning for signal processing (MLSP).

2016. IEEE.

43. Irum, A. and A. Salman, Speaker Verification Using Deep Neural Networks: A. International

Journal of Machine Learning and Computing, 2019. 9(1).

44. Nagrani, A., et al., Voxceleb: Large-scale speaker verification in the wild. Computer Speech &

Language, 2020. 60: p. 101027.

59

45. Dey, S., et al. Deep neural network based posteriors for text-dependent speaker verification. in

2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2016. IEEE.

46. Salehghaffari, H., Speaker verification using convolutional neural networks. arXiv preprint

arXiv:1803.05427, 2018.

47. Kanagasundaram, A., Speaker verification using I-vector features. 2014, Queensland University

of Technology.

48. Richardson, F., D. Reynolds, and N. Dehak, A unified deep neural network for speaker and

language recognition. arXiv preprint arXiv:1504.00923, 2015.

49. Snyder, D., et al. Deep neural network-based speaker embeddings for end-to-end speaker

verification. in 2016 IEEE Spoken Language Technology Workshop (SLT). 2016. IEEE.

50. Matějka, P., et al. Analysis of DNN approaches to speaker identification. in 2016 IEEE

international conference on acoustics, speech and signal processing (ICASSP). 2016. IEEE.

51. Li, C., et al., Deep speaker: an end-to-end neural speaker embedding system. arXiv preprint

arXiv:1705.02304, 2017. 650.

52. Snyder, D., et al. Deep Neural Network Embeddings for Text-Independent Speaker Verification. in

Interspeech. 2017.

53. Abdel-Hamid, O., L. Deng, and D. Yu. Exploring convolutional neural network structures and

optimization techniques for speech recognition. in Interspeech. 2013.

54. McLaren, M., et al. Application of convolutional neural networks to speaker recognition in noisy

conditions. in Fifteenth Annual Conference of the International Speech Communication

Association. 2014.

55. Chen, K. and A. Salman, Learning speaker-specific characteristics with a deep neural

architecture. IEEE Transactions on Neural Networks, 2011. 22(11): p. 1744-1756.

60

56. Wang, M., et al. Speaker recognition using convolutional neural network with minimal training

data for smart home solutions. in 2018 11th International Conference on Human System

Interaction (HSI). 2018. IEEE.

57. Huang, L., Y. Gan, and H. Ye. Audio-replay Attacks Spoofing Detection for Automatic Speaker

Verification System. in 2019 IEEE International Conference on Artificial Intelligence and

Computer Applications (ICAICA). 2019. IEEE.

58. Huang, L. and C.-M. Pun. Audio replay spoof attack detection using segment-based hybrid

feature and densenet-LSTM network. in ICASSP 2019-2019 IEEE international conference

on acoustics, speech and signal processing (ICASSP). 2019. IEEE.

59. Lavrentyeva, G., et al. Audio replay attack detection with deep learning frameworks. in

Interspeech. 2017.

60. Nagarsheth, P., et al. Replay Attack Detection Using DNN for Channel Discrimination. in

Interspeech. 2017.

61. Singh, M., J. Mishra, and D. Pati. Replay attack: Its effect on GMM-UBM based text-independent

speaker verification system. in 2016 IEEE Uttar Pradesh Section International Conference

on Electrical, Computer and Electronics Engineering (UPCON). 2016. IEEE.

62. Chatfield, K., et al., Return of the devil in the details: Delving deep into convolutional nets. arXiv

preprint arXiv:1405.3531, 2014.

63. Glorot, X. and Y. Bengio. Understanding the difficulty of training deep feedforward neural

networks. in Proceedings of the thirteenth international conference on artificial intelligence

and statistics. 2010.

64. Lee, H., et al. Unsupervised feature learning for audio classification using convolutional deep

belief networks. in Advances in neural information processing systems. 2009.

65. Dieleman, S., et al., Lasagne: first release. Zenodo: Geneva, Switzerland, 2015. 3.

66. Milton, A., S.S. Roy, and S.T. Selvi, SVM scheme for speech emotion recognition using MFCC

feature. International Journal of Computer Applications, 2013. 69(9).

61

67. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297.

68. Kinnunen, T., et al. Reddots replayed: A new replay spoofing attack corpus for text-dependent

speaker verification research. in 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). 2017. IEEE.

69. Evans, N., et al., Speaker recognition anti-spoofing, in Handbook of biometric anti-spoofing.

2014, Springer. p. 125-146.

70.Jain, A.K., R. Bolle, and S. Pankanti, Biometrics: personal identification in networked society.

Vol. 479. 2006: Springer Science & Business Media.

71. Gayathri, M., C. Malathy, and M. Prabhakaran. A Review on Various Biometric Techniques, Its

Features, Methods, Security Issues and Application Areas. in International Conference On

Computational Vision and Bio Inspired Computing. 2019. Springer.

72. Duraibi, S., F.T. Sheldon, and W. Alhamdani, "VOICE BIOMETRIC IDENTITY

AUTHENTICATION MODEL FOR IOT DEVICES" International Jouranl of security, privacy

and Turst Managemnet(IJSPTM), Vol. 9, No.2.

73. Wu, Z., et al., Spoofing and countermeasures for speaker verification: A survey. speech

communication, 2015. 66: p. 130-153.

74. Vestman, V., et al., Voice mimicry attacks assisted by automatic speaker verification. Computer

Speech & Language, 2020. 59: p. 36-54.

75. Pal, M. and G. Saha, On robustness of speech based biometric systems against voice conversion

attack. Applied Soft Computing, 2015. 30: p. 214-228.

76. Alegre, F., A. Janicki, and N. Evans. Re-assessing the threat of replay spoofing attacks against

automatic speaker verification. in 2014 International Conference of the Biometrics Special

Interest Group (BIOSIG). 2014. IEEE.

77. Hong, Q., S. Wang, and Z. Liu. A robust speaker-adaptive and text-prompted speaker verification

system. in Chinese Conference on Biometric Recognition. 2014. Springer.

62

78. De Leon, P.L., et al., Evaluation of speaker verification security and detection of HMM-based

synthetic speech. IEEE Transactions on Audio, Speech, and Language Processing, 2012.

20(8): p. 2280-2290.

79. Bredin, H., et al. Detecting replay attacks in audiovisual identity verification. in 2006 IEEE

International Conference on Acoustics Speech and Signal Processing Proceedings. 2006.

IEEE.

80. Nematollahi, M., et al. Digital speech watermarking for anti-spoofing attack in speaker

recognition. in 2014 IEEE REGION 10 SYMPOSIUM. 2014. IEEE.

81. Shang, W. and M. Stevenson, Detection of speech playback attacks using robust harmonic

trajectories. Computer Speech & Language. 65: p. 101133.

82. Rafi B, S. and S.R.M. Kodukula, Importance of analytic phase of the speech signal for detecting

Replay attacks in automatic speaker verification systems. 2019.

83. Shang, W. and M. Stevenson. A playback attack detector for speaker verification systems. in 2008

3rd International Symposium on Communications, Control and Signal Processing. 2008.

IEEE.

84. Faundez-Zanuy, M., M. Hagmüller, and G. Kubin, Speaker verification security improvement by

means of speech watermarking. Speech communication, 2006. 48(12): p. 1608-1619.

85. Villalba, J. and E. Lleida. Preventing replay attacks on speaker verification systems. in 2011

Carnahan Conference on Security Technology. 2011. IEEE.

86. Korshunov, P., et al. Overview of BTAS 2016 speaker anti-spoofing competition. in 2016 IEEE

8th international conference on biometrics theory, applications and systems (BTAS). 2016.

IEEE.

87. Shaikh, R. and M. Sasikumar, Data Classification for achieving Security in cloud computing.

Procedia computer science, 2015. 45: p. 493-498.

88. Zhang, C., C. Yu, and J.H. Hansen, An investigation of deep-learning frameworks for speaker

verification antispoofing. IEEE Journal of Selected Topics in Signal Processing, 2017. 11(4):

p. 684-694.

63

89. Xu, J., et al., Deep multi-metric learning for text-independent speaker verification.

Neurocomputing, 2020. 410: p. 394-400.

90. Ustinova, E., Y. Ganin, and V. Lempitsky. Multi-region bilinear convolutional neural networks

for person re-identification. in 2017 14th IEEE International Conference on Advanced Video

and Signal Based Surveillance (AVSS). 2017. IEEE.

91. Hafemann, L.G., R. Sabourin, and L.S. Oliveira. Writer-independent feature learning for offline

signature verification using deep convolutional neural networks. in 2016 international joint

conference on neural networks (IJCNN). 2016. IEEE.

92. Li, L., et al., A study on replay attack and anti-spoofing for automatic speaker verification. arXiv

preprint arXiv:1706.02101, 2017.

93. Bakar, B. and C. Hanilçi. An Experimental Study on Audio Replay Attack Detection Using Deep

Neural Networks. in 2018 IEEE Spoken Language Technology Workshop (SLT). 2018. IEEE.

94. Gomez-Alanis, A., et al., A gated recurrent convolutional neural network for robust spoofing

detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019.

27(12): p. 1985-1999.

95. Kinnunen, T., et al., The ASVspoof 2017 challenge: Assessing the limits of replay spoofing attack

detection. 2017. in Proc. INTERSPEECH, 2017, pp. 2– 6.

96. Dai, H.-N., et al., Big data analytics for manufacturing internet of things: opportunities,

challenges and enabling technologies. Enterprise Information Systems, 2019: p. 1-25.

97. Adhikary, T., et al. The Internet of Things (IoT) Augmentation in Healthcare: An Application

Analytics. in International Conference on Intelligent Computing and Communication

Technologies. 2019. Springer.

98. Arasteh, H., et al. Iot-based smart cities: a survey. in 2016 IEEE 16th International Conference

on Environment and Electrical Engineering (EEEIC). 2016. IEEE.

99. Chunli, L. Intelligent transportation based on the Internet of Things. in 2012 2nd International

Conference on Consumer Electronics, Communications and Networks (CECNet). 2012.

IEEE.

64

100. Zhang, Y., et al., A consistency-guaranteed approach for Internet of Things software

refactoring. International Journal of Distributed Sensor Networks, 2020. 16(1): p.

1550147720901680.

101. Lang, J.P., et al., Voice control of a media playback system. 2019, Google Patents.

102. Kagita, M.K. Security and Privacy Issues for Business Intelligence in lOT. in 2019 IEEE 12th

International Conference on Global Security, Safety and Sustainability (ICGS3). 2019. IEEE.

103. Hernández-Ramos, J.L., et al., SAFIR: Secure access framework for IoT-enabled services on

smart buildings. Journal of Computer and System Sciences, 2015. 81(8): p. 1452-1463.

104. Micro, T., Are your wearables fit to secure you? researchers outline 3 attack surfaces. 2018,

March.

105. Mail, D., Do YOU suffer from password rage? A third of people have thrown a tantrum after

forgetting login details. 2015.

106. Meng, Y., et al. Wivo: Enhancing the security of voice control system via wireless signal in iot

environment. in Proceedings of the Eighteenth ACM International Symposium on Mobile Ad

Hoc Networking and Computing. 2018.

107. Ergünay, S.K., et al. On the vulnerability of speaker verification to realistic voice spoofing. in

2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems

(BTAS). 2015. IEEE.

108. Boles, A. and P. Rad. Voice biometrics: Deep learning-based voiceprint authentication system.

in 2017 12th System of Systems Engineering Conference (SoSE). 2017. IEEE.

109. Alhussein, M. and G. Muhammad, Voice pathology detection using deep learning on mobile

healthcare framework. IEEE Access, 2018. 6: p. 41034-41041.

110. Bazrafkan, S. and P. Corcoran. Enhancing iris authentication on handheld devices using deep

learning derived segmentation techniques. in 2018 IEEE international conference on

consumer electronics (ICCE). 2018. IEEE.

65

111. Rattani, A., N. Reddy, and R. Derakhshani. Multi-biometric convolutional neural networks for

mobile user authentication. in 2018 IEEE International Symposium on Technologies for

Homeland Security (HST). 2018. IEEE.

112. Traore, I., et al. Combining mouse and keystroke dynamics biometrics for risk-based

authentication in web environments. in 2012 fourth international conference on digital home.

2012. IEEE.

113. Das, R., et al. A deep learning approach to IoT authentication. in 2018 IEEE International

Conference on Communications (ICC). 2018. IEEE.

114. Bayar, B. and M.C. Stamm. A deep learning approach to universal image manipulation

detection using a new convolutional layer. in Proceedings of the 4th ACM Workshop on

Information Hiding and Multimedia Security. 2016.

115. Nandy, T., et al., Review on security of Internet of Things authentication mechanism. IEEE

Access, 2019. 7: p. 151054-151089.

116. Hassan, W.H., Current research on Internet of Things (IoT) security: A survey. Computer

networks, 2019. 148: p. 283-294.

117. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 1998. 86(11): p. 2278-2324.

118. He, K., et al., Spatial pyramid pooling in deep convolutional networks for visual recognition.

IEEE transactions on pattern analysis and machine intelligence, 2015. 37(9): p. 1904-1916.

119. Hannun, A., et al., Deep speech: Scaling up end-to-end speech recognition. arXiv preprint

arXiv:1412.5567, 2014.

66

Appendix A - Alize code

In studying the feasibility of adopting the voice biometric based authentication system for

IoT devices described in Chapter 2, the Alize library has been used to simulate the base of

the voice verification system. The source code of the system used for the implementation

of the authentication model in IoT is as follows:
package
fr.univavignon.alize.AndroidALIZEDemo;

 import android.graphics.Color;
 import android.os.Bundle;
 import android.view.View;
 import android.widget.TextView;
 import AlizeSpkRec.AlizeException;
 import AlizeSpkRec.SimpleSpkDetSystem;
 /**
 * Activity meant to identify or verify a speaker.

 * Identify is used when the system try to recognize a
speaker in the system with the current record.

 * Verify is used when the system is listening to the
current record and determine if it's the right speaker
or not.

 *
 * @author Nicolas Duret
 */

 public class VerificationActivity extends RecordActivity
{

 private final int ERROR_COLOR = Color.RED;

 private final int SUCCESS_COLOR =
Color.rgb(0,150,0);

 private String speakerId, speakerName, activityName;
 private TextView resultText;
 private boolean identify = false;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 try {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.verification);

 speakerId =
getIntent().getStringExtra("speakerId");

 speakerName =
demoSpkRecSystem.getSpeakerName(speakerId);

 resultText = findViewById(R.id.result_text);

67

 startRecordButton =
findViewById(R.id.startBtn);

 stopRecordButton =
findViewById(R.id.stopBtn);

 timeText = findViewById(R.id.timeText);

 activityName =
getString(R.string.verification);

 String title =
getResources().getString(R.string.verify_activity_title,
speakerName);

 if (speakerName.isEmpty()) {
 identify = true;

 activityName =
getString(R.string.identify);

 title =
getResources().getString(R.string.identify_speaker);

 }
 setTitle(title);

 startRecordButton.setOnClickListener(new
View.OnClickListener() {

 @Override
 public void onClick(View view) {
 resultText.setText("");
 startRecording();
 }
 });

 stopRecordButton.setOnClickListener(new
View.OnClickListener() {

 @Override
 public void onClick(View view) {
 stopRecording();
 }
 });
 }
 catch (Throwable e) {
 e.printStackTrace();
 }
 }
 protected void afterRecordProcessing() {
 String result = "";
 resultText.setTextColor(ERROR_COLOR);
 if (recordError) {
 resultText.setText(result);

makeToast(getResources().getString(R.string.recording_no
t_completed));

68

 return;
 }
 if (identify) {
 //Try to match a speaker with the record
 try {

 //This is the other main task of speaker
recognition: compare a recording with all the speakers

 //known to the system to determine whose
voice it is (or reject it as unknown).

 SimpleSpkDetSystem.SpkRecResult
identificationResult =
demoSpkRecSystem.identifySpeaker();

 if (identificationResult.match) {

 result =
getString(R.string.identify_match_text) + "\n" +
demoSpkRecSystem.getSpeakerName(identificationResult.spe
akerId) + "\n" + getString(R.string.match_score) + "\n"
+ identificationResult.score;

resultText.setTextColor(SUCCESS_COLOR);

 }
 else {

 result =
getString(R.string.identify_no_match_text) + "\n" +
getString(R.string.match_score) + "\n" +
identificationResult.score;

resultText.setTextColor(ERROR_COLOR);

 }
 }
 catch (AlizeException e) {
 e.printStackTrace();

 result =
getString(R.string.verification_failed_not_enough_featur
es);

 } catch (Throwable e) { //TODO catch proper
exception

 e.printStackTrace();

 result =
getString(R.string.verification_failed_not_enough_featur
es);

 }
 }
 else {
 //Compare the record with the speaker model
 try {

69

 //Compare the audio signal with the
speaker model we created earlier.

 SimpleSpkDetSystem.SpkRecResult
verificationResult =
demoSpkRecSystem.verifySpeaker(speakerId);

 if (verificationResult.match) {

 result =
getString(R.string.verify_match_text) + "\n" +
getString(R.string.match_score) + "\n" +
verificationResult.score;

 resultText.setTextColor(SUCCESS_COLOR);
 }
 else {

result = getString(R.string.verify_no_match_text,
speakerName) + "\n" + getString(R.string.match_score) +
"\n" + verificationResult.score;

 resultText.setTextColor(ERROR_COLOR);
 }
 }
 catch (AlizeException e) {
 e.printStackTrace();

result =
getString(R.string.verification_failed_not_enough_featur
es);

 } catch (Throwable e) { //TODO catch proper exception
 e.printStackTrace();

result =
getString(R.string.verification_failed_not_enough_featur
es);

 }
 }
 resultText.setText(result);
 try {

 //Reset input, since we will not make any more use of
this audio signal.

 demoSpkRecSystem.resetAudio(); //Reset the audio
samples of the Alize system.

 demoSpkRecSystem.resetFeatures(); //Reset the
features of the Alize system.

 } catch (AlizeException e) { e.printStackTrace();
}}}

70

Appendix B - CNN
The Convolutional neural network (CNN) has been employed in the Chapter 3 in order to

use it as feature extraction. In this appendix the coding of the python programming used

the TensorFlow is provided.
Import OS
 from tqdm import tqdm

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from python_speech_features import mfcc, logfbank
import librosa
def plot_signals(signals):
 fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,
 sharey=True, figsize=(20,5))
 fig.suptitle('Time Series', size=16)
 i = 0
 for x in range(2):
 for y in range(5):
 axes[x,y].set_title(list(signals.keys())[i])
 axes[x,y].plot(list(signals.values())[i])
 axes[x,y].get_xaxis().set_visible(False)
 axes[x,y].get_yaxis().set_visible(False)
 i += 1
def plot_fft(fft):
 fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,
 sharey=True, figsize=(20,5))
 fig.suptitle('Fourier Transforms', size=16)
 i = 0
 for x in range(2):
 for y in range(5):
 data = list(fft.values())[i]
 Y, freq = data[0], data[1]
 axes[x,y].set_title(list(fft.keys())[i])
 axes[x,y].plot(freq, Y)
 axes[x,y].get_xaxis().set_visible(False)
 axes[x,y].get_yaxis().set_visible(False)
 i +=1
def plot_fbank(fbank):
 fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,
 sharey=True, figsize=(20,5))
 fig.suptitle('Filter Bank Coefficients', size=16)
 i = 0
 for x in range(2):

71

 for y in range(5):
 axes[x,y].set_title(list(fbank.keys())[i])
 axes[x,y].imshow(list(fbank.values())[i],
 cmap='hot', interpolation='nearest')
 axes[x,y].get_xaxis().set_visible(False)
 axes[x,y].get_yaxis().set_visible(False)
 i += 1
def plot_mfccs(mfccs):
 fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,
 sharey=True, figsize=(20,5))
 fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16)
 i = 0
 for x in range(2):
 for y in range(5):
 axes[x,y].set_title(list(mfccs.keys())[i])
 axes[x,y].imshow(list(mfccs.values())[i],
 cmap='hot', interpolation='nearest')
 axes[x,y].get_xaxis().set_visible(False)
 axes[x,y].get_yaxis().set_visible(False)
 i += 1
def envelope(y,rate,threshold):
 mask =[]
 y=pd.Series(y).apply(np.abs)

y_mean=y.rolling(window=int(rate/10),min_periods=1,center=True).m
ean()
 for mean in y_mean:
 if mean > threshold:
 mask.append(True)
 else:
 mask.append(False)
 return mask
def calc_fft(y,rate):
 n=len(y)
 freq=np.fft.rfftfreq(n,d=1/rate)
 Y=abs(np.fft.rfft(y)/n)
 return(Y,freq)
df = pd.read_csv('instruments.csv')
df.set_index('fname',inplace=True)
for i in df.index:
 rate,signal = wavfile.read('wavfiles/'+i)
 df.at[i,'length'] = signal.shape[0]/rate
classes=list(np.unique(df.label))
class_dist = df.groupby(['label'])['length'].mean()
fig,ax=plt.subplots()
ax.set_title('Class Distribution',y=1.08)

72

ax.pie(class_dist,labels=class_dist.index,autopct='%1.1f%%',shado
w=False,startangle=90)
ax.axis('equal')
plt.show()
df.reset_index(inplace=True)
signals={}
fft={}
fbank={}
mfccs={}
for c in classes:
 wav_file=df[df.label ==c].iloc[0,0]
 signal,rate=librosa.load('wavfiles/'+wav_file,sr=44100)
 mask = envelope(signal,rate,0.0005)
 signal=signal[mask]
 signals[c] = signal
 fft[c]=calc_fft(signal,rate)
 bank=logfbank(signal[:rate],rate,nfilt=16,nfft=1103).T
 fbank[c] =bank
 mel =mfcc(signal[:rate],rate,numcep = 13,nfilt=26,nfft=1103)
 mfccs[c]=mel
plot_signals(signals)
plt.show()
plot_fft(fft)
plt.show()
plot_fbank(fbank)
plt.show()
plot_mfccs(mfccs)
plt.show()
if len(os.listdir('clean')) == 0:
 for f in tqdm(df.fname):
 signal, rate=librosa.load('wavfiles/'+f,sr=16000)
 mask = envelope(signal,rate,0.0005)

wavfile.write(filename='clean/'+f,rate=rate,data=signal[mask])

73

Appendix C - SVM
The coding of the support vector machine (SVM) used for the feature classification in the

speaker verification model discussed in Chapter 3. As explained previously, python

programming language has been used in this research. Hence, the coding of the SVM

employed in Chapter 3 is as follows:
Import numpy as np

import pandas as pd
import statsmodels.api as sm
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split as tts
from sklearn.metrics import accuracy_score, recall_score,
precision_score
from sklearn.utils import shuffle
>> FEATURE SELECTION << #
def remove_correlated_features(X):
 corr_threshold = 0.9
 corr = X.corr()
 drop_columns = np.full(corr.shape[0], False, dtype=bool)
 for i in range(corr.shape[0]):
 for j in range(i + 1, corr.shape[0]):
 if corr.iloc[i, j] >= corr_threshold:
 drop_columns[j] = True
 columns_dropped = X.columns[drop_columns]
 X.drop(columns_dropped, axis=1, inplace=True)
 return columns_dropped
def remove_less_significant_features(X, Y):
 sl = 0.05
 regression_ols = None
 columns_dropped = np.array([])
 for itr in range(0, len(X.columns)):
 regression_ols = sm.OLS(Y, X).fit()
 max_col = regression_ols.pvalues.idxmax()
 max_val = regression_ols.pvalues.max()
 if max_val > sl:
 X.drop(max_col, axis='columns', inplace=True)
 columns_dropped = np.append(columns_dropped,
[max_col])
 else:
 break
 regression_ols.summary()
 return columns_dropped
##############################
>> MODEL TRAINING << #

74

def compute_cost(W, X, Y):
 # calculate hinge loss
 N = X.shape[0]
 distances = 1 - Y * (np.dot(X, W))
 distances[distances < 0] = 0 # equivalent to max(0,
distance)
 hinge_loss = regularization_strength * (np.sum(distances) /
N)
 # calculate cost
 cost = 1 / 2 * np.dot(W, W) + hinge_loss
 return cost
I haven't tested it but this same function should work for
vanilla and mini-batch gradient descent as well
def calculate_cost_gradient(W, X_batch, Y_batch):
 # if only one example is passed (eg. in case of SGD)
 if type(Y_batch) == np.float64:
 Y_batch = np.array([Y_batch])
 X_batch = np.array([X_batch]) # gives multidimensional
array
 distance = 1 - (Y_batch * np.dot(X_batch, W))
 dw = np.zeros(len(W))
 for ind, d in enumerate(distance):
 if max(0, d) == 0:
 di = W
 else:
 di = W - (regularization_strength * Y_batch[ind] *
X_batch[ind])
 dw += di
 dw = dw/len(Y_batch) # average
 return dw
def sgd(features, outputs):
 max_epochs = 5000
 weights = np.zeros(features.shape[1])
 nth = 0
 prev_cost = float("inf")
 cost_threshold = 0.01 # in percent
 # stochastic gradient descent
 for epoch in range(1, max_epochs):
 # shuffle to prevent repeating update cycles
 X, Y = shuffle(features, outputs)
 for ind, x in enumerate(X):
 ascent = calculate_cost_gradient(weights, x, Y[ind])
 weights = weights - (learning_rate * ascent)
 # convergence check on 2^nth epoch
 if epoch == 2 ** nth or epoch == max_epochs - 1:
 cost = compute_cost(weights, features, outputs)

75

 print("Epoch is: {} and Cost is: {}".format(epoch,
cost))
 # stoppage criterion
 if abs(prev_cost - cost) < cost_threshold *
prev_cost:
 return weights
 prev_cost = cost
 nth += 1
 return weights
########################
def init():
 print("reading dataset...")
 # read data in pandas (pd) data frame
 data = pd.read_csv('./data/data.csv')
 # drop last column (extra column added by pd)
 # and unnecessary first column (id)
 data.drop(data.columns[[-1, 0]], axis=1, inplace=True)
 print("applying feature engineering...")
 # convert categorical labels to numbers
 diag_map = {'M': 1.0, 'B': -1.0}
 data['diagnosis'] = data['diagnosis'].map(diag_map)
 # put features & outputs in different data frames
 Y = data.loc[:, 'diagnosis']
 X = data.iloc[:, 1:]
 # filter features
 remove_correlated_features(X)
 remove_less_significant_features(X, Y)
 # normalize data for better convergence and to prevent
overflow
 X_normalized = MinMaxScaler().fit_transform(X.values)
 X = pd.DataFrame(X_normalized)
 # insert 1 in every row for intercept b
 X.insert(loc=len(X.columns), column='intercept', value=1)
 # split data into train and test set
 print("splitting dataset into train and test sets...")
 X_train, X_test, y_train, y_test = tts(X, Y, test_size=0.2,
random_state=42)
 # train the model
 print("training started...")
 W = sgd(X_train.to_numpy(), y_train.to_numpy())
 print("training finished.")
 print("weights are: {}".format(W))
 # testing the model
 print("testing the model...")
 y_train_predicted = np.array([])
 for i in range(X_train.shape[0]):

76

 yp = np.sign(np.dot(X_train.to_numpy()[i], W))
 y_train_predicted = np.append(y_train_predicted, yp)
 y_test_predicted = np.array([])
 for i in range(X_test.shape[0]):
 yp = np.sign(np.dot(X_test.to_numpy()[i], W))
 y_test_predicted = np.append(y_test_predicted, yp)
 print("accuracy on test dataset:
{}".format(accuracy_score(y_test, y_test_predicted)))
 print("recall on test dataset:
{}".format(recall_score(y_test, y_test_predicted)))
 print("precision on test dataset:
{}".format(recall_score(y_test, y_test_predicted)))
set hyper-parameters and call init
regularization_strength = 10000
learning_rate = 0.000001
init()

77

Appendix D - DNN
The speaker verification system studied in Chapter 4, uses a deep neural network (DNN)

architecture as feature classifier. This appendix provides the python coding of the DNN

architecture used for the feature classification of the speaker verification system is as

follows:
import os, time, keras

from keras import backend, metrics, callbacks, regularizers
from keras.models import Sequential, model_from_json
from keras.layers import Dropout, Flatten, BatchNormalization
from keras.layers import Dense, Conv2D, MaxPooling2D
from keras.utils import plot_model, multi_gpu_model
import numpy as np
from sklearn.metrics import classification_report
def train(x_train, y_train, x_test, y_test, num_classes,
epochs):
 # set validation data
 val_size = int(0.1 * x_train.shape[0])
 r = np.random.randint(0, x_train.shape[0], size=val_size)
 x_val = x_train[r, :, :]
 y_val = y_train[r]
 x_train = np.delete(x_train, r, axis=0)
 y_train = np.delete(y_train, r, axis=0)
 # set x & y shapes
 x_train = x_train.reshape(x_train.shape[0],
x_train.shape[1], x_train.shape[2], 1)
 x_val = x_val.reshape(x_val.shape[0], x_val.shape[1],
x_val.shape[2], 1)
 x_test = x_test.reshape(x_test.shape[0], x_test.shape[1],
x_test.shape[2], 1)
 y_train = y_train.reshape(y_train.shape[0], 1)
 y_val = y_val.reshape(y_val.shape[0], 1)
 y_test = y_test.reshape(y_test.shape[0], 1)
 print('x_train shape:', x_train.shape)
 print('x_val shape:', x_val.shape)
 print('x_test shape:', x_test.shape)
 print('y_train shape:', y_train.shape)
 print('y_val shape:', y_val.shape)
 print('y_test shape:', y_test.shape)
 # convert class vectors to binary class matrices
 y_train = keras.utils.to_categorical(y_train, num_classes)
 y_val = keras.utils.to_categorical(y_val, num_classes)
 y_test = keras.utils.to_categorical(y_test, num_classes)
 # define the model

78

 regularizer=0.001
 dropout=0.25
 model = Sequential()
 model.add(Conv2D(16, kernel_size=(3, 3), strides=(2, 1),
activation='tanh',
kernel_regularizer=regularizers.l2(regularizer),
input_shape=(x_train.shape[1], x_train.shape[2], 1)))
 # model.add(BatchNormalization())
 model.add(MaxPooling2D(pool_size=(2, 1)))
 model.add(Dropout(dropout))
 model.add(Conv2D(32, kernel_size=(3, 3), strides=(1, 1),
activation='elu',
kernel_regularizer=regularizers.l2(regularizer)))
 # model.add(BatchNormalization())
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(dropout))
 model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1),
activation='elu',
kernel_regularizer=regularizers.l2(regularizer)))
 # model.add(BatchNormalization())
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(dropout))
 model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1),
activation='elu',
kernel_regularizer=regularizers.l2(regularizer)))
 # model.add(BatchNormalization())
 # model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(dropout))
 model.add(Flatten())
 model.add(Dense(64, activation='elu',
kernel_regularizer=regularizers.l2(regularizer)))
 model.add(Dropout(dropout))
 model.add(Dense(num_classes, activation='softmax'))
 # summarize model
 # plot_model(model, to_file='Models\\model_cnn2d.png')
 f = open('Models\\model_cnn2d.txt', 'w')
 for i in range(0, len(model.layers)):
 if i == 0:
 print(' ')
 print('{}. Layer {} with input / output shapes: {} /
{}'.format(i, model.layers[i].name, model.layers[i].input_shape,
model.layers[i].output_shape))
 f.write('{}. Layer {} with input / output shapes: {} /
{} \n'.format(i, model.layers[i].name,
model.layers[i].input_shape, model.layers[i].output_shape))
 if i == len(model.layers) - 1:

79

 print(' ')
 f.close()
 model.summary()
 # compile, fit evaluate
 try: model = multi_gpu_model(model, gpus=2,
cpu_merge=False)
 except: model = model
 model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(), metrics = ['accuracy'])
 model.fit(x_train, y_train, batch_size=192, epochs=epochs,
verbose=2, validation_data=(x_val, y_val),
callbacks=[callbacks.EarlyStopping(monitor='val_acc',
patience=20, restore_best_weights=True)])
 time.sleep(5)
 score = model.evaluate(x_test, y_test, verbose=2)
 time.sleep(5)
 # save model
 '''model_json = model.to_json()
 with open("Models\\model_cnn2d.json", "w") as json_file:
 # remark
 json_file.write(model_json)
 model.save_weights("Models\\model_cnn2d.h5")'''
 # results
 # print('Test loss: {0:.3f} and accuracy:
{1:.3f}'.format(score[0], score[1]))
 print(' ')
 return score[1]
def predict(model, x_test):
 # load
 json_file = open('model_cnn2d.json', 'r')
 model = model_from_json(json_file.read())
 json_file.close()
 model.load_weights("model_cnn2d.h5")
 prediction = model.predict(x_test, batch_size=32, verbose=0)
 print(prediction)

80

Appendix E - ResNet
Deep residual learning (Resnet) has been used in the voice biometric based authentication

model in Chapter 5. The python coding of the Resnet layer 34 architecture used in the model

is provided in this appendix. Worth mentioning is that we have used TensorFlow as the

python environment.
import tensorflow as tf

from tensorflow import keras
from keras.activations import relu
from tensorflow.keras.layers import *
from tensorflow.keras import Model
from tensorflow.keras import layers as Layers
class ResBlock(Model):
 def __init__(self, channels, stride=1):
 super(ResBlock, self).__init__(name='ResBlock')
 self.flag = (stride != 1)
 self.conv1 = Conv2D(channels, 3, stride,
padding='same')
 self.bn1 = BatchNormalization()
 self.conv2 = Conv2D(channels, 3, padding='same')
 self.bn2 = BatchNormalization()
 self.relu = ReLU()
 if self.flag:
 self.bn3 = BatchNormalization()
 self.conv3 = Conv2D(channels, 1, stride)
 def call(self, x):
 x1 = self.conv1(x)
 x1 = self.bn1(x1)
 x1 = self.relu(x1)
 x1 = self.conv2(x1)
 x1 = self.bn2(x1)
 if self.flag:
 x = self.conv3(x)
 x = self.bn3(x)
 x1 = Layers.add([x, x1])
 x1 = self.relu(x1)
 return x1
class ResNet34(Model):
 def __init__(self):
 super(ResNet34, self).__init__(name='ResNet34')
 self.conv1 = Conv2D(64, 7, 2, padding='same')
 self.bn = BatchNormalization()
 self.relu = ReLU()
 self.mp1 = MaxPooling2D(3, 2)

81

 self.conv2_1 = ResBlock(64)
 self.conv2_2 = ResBlock(64)
 self.conv2_3 = ResBlock(64)
 self.conv3_1 = ResBlock(128, 2)
 self.conv3_2 = ResBlock(128)
 self.conv3_3 = ResBlock(128)
 self.conv3_4 = ResBlock(128)
 self.conv4_1 = ResBlock(256, 2)
 self.conv4_2 = ResBlock(256)
 self.conv4_3 = ResBlock(256)
 self.conv4_4 = ResBlock(256)
 self.conv4_5 = ResBlock(256)
 self.conv4_6 = ResBlock(256)
 self.conv5_1 = ResBlock(512, 2)
 self.conv5_2 = ResBlock(512)
 self.conv5_3 = ResBlock(512)
 self.pool = GlobalAveragePooling2D()
 self.fc1 = Dense(512, activation='relu')
 self.dp1 = Dropout(0.5)
 self.fc2 = Dense(512, activation='relu')
 self.dp2 = Dropout(0.5)
 self.fc3 = Dense(64)
 def call(self, x):
 x = self.conv1(x)
 x = self.bn(x)
 x = self.relu(x)
 x = self.mp1(x)
 x = self.conv2_1(x)
 x = self.conv2_2(x)
 x = self.conv2_3(x)
 x = self.conv3_1(x)
 x = self.conv3_2(x)
 x = self.conv3_3(x)
 x = self.conv3_4(x)
 x = self.conv4_1(x)
 x = self.conv4_2(x)
 x = self.conv4_3(x)
 x = self.conv4_4(x)
 x = self.conv4_5(x)
 x = self.conv4_6(x)
 x = self.conv5_1(x)
 x = self.conv5_2(x)
 x = self.conv5_3(x)
 x = self.pool(x)
 x = self.fc1(x)
 x = self.dp1(x)

82

 x = self.fc2(x)
 x = self.dp2(x)
 x = self.fc3(x)
 return x
model = ResNet34()
model.build(input_shape=(1, 480, 480, 3))
model.summary()

	Authorization to Submit Dissertation
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1: Introduction
	1.1 Preliminary Research Background
	1.2 Research Motivation and Objective
	1.3 Scope of the Research
	1.4 Research Contribution
	1.5 Author’s related publications
	1.6 Dissertation organization

	Chapter 2: Background and Related work
	2.1 Introduction
	2.2 Background
	2.3 Related Work
	2.4 Conventional Voice based biometric Authentication Model
	2.5 Enrollment Phase
	2.5.1 Sound capture
	2.5.2 Pre-processing
	2.5.3 Feature extraction
	2.5.4 Model Training
	2.6 Verification/recognition Phase
	2.7 Implementation of the Authentication Model
	2.7.1 Open Source Software
	2.7.2 Dataset
	2.7.3 Pre-processing
	2.7.4 Feature Extraction
	2.7.5 Voice Model Training / Server Side
	2.7.6 Verification
	2.7.7 Result and Discussion
	2.8 Chapter Summary

	Chapter 3: Voice-Feature Learning Using a CNN Designed to Avoid Replay Attacks
	3.1 Introduction
	3.2 Speaker Verification System
	3.3 Deep learning approaches in Speaker Verification Systems (SVS)
	3.4 Feature Learning
	3.5 Front-end CNN Feature Extractor Architecture
	3.6 Experimental Setup and Results Validation
	3.7 Chapter Summary

	Chapter 4: Replay Spoof Attack Detection Using DNNs for Classification
	4.1 Introduction
	4.2 Modeling in Speaker Verification
	4.3 Features for Replay Attack Detection
	4.4 The DNN-Architecture Classifier
	4.5 Experimental Evaluation and Results Validation
	4.6 Chapter Summary

	Chapter 5: A Security Hardened End-to-End Lightweight IoT Voice Authentication System
	5.1 Introduction
	5.2 Deep learning approaches in Biometric authentications
	5.3 Motivation
	5.4 Proposed Voice Authentication System (VAS)
	5.5 Deep Learning-Based Feature Extraction and Classifiers
	5.6 Dataset
	5.7 Implementation and Results
	5.7.1 Pre-processing
	5.7.2 CNN Architecture
	5.7.3 Evaluation Result of the proposed Authentication Model
	5.8 Chapter Summary

	Chapter 6: Conclusion and Future Works
	6.1 Conclusion
	6.1.1 Summary of implementation specifics
	6.1.2 Summary of data used for validation
	6.2 Future IoT Authentication Research Directions
	References

	Appendix A - Alize code
	Appendix B - CNN
	Appendix C - SVM
	Appendix D - DNN
	Appendix E - ResNet

