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Abstract 
The Internet of Things (IoT) provides everyday devices ways to identify and communicate with other 

devices and their users. The users can be human beings or other devices. The spectrum of IoT 

applications is very large and includes wearables such as body-area-network-devices and smartwatches. 

Other IoT application domains include smart homes, smart cities, e-health, etc. IoT devices have the 

capability for collecting information about surroundings, analyzing, and making decisions without user 

intervention. Therefore, security in IoT environments is a critical requirement. Particularly, 

authentication is of high interest given the potential damage that may result from unauthorized access 

to such devices. This dissertation proposes a biometric based authentication model that can be used in 

IoT devices. The survey of related work evaluated different biometrics used for authentication which 

were compared for their suitability in such an environment. In considering the resource-constrained 

nature of IoT devices, a voice biometrics is preferred compared to other biometrics, such as fingerprint, 

iris scan, keystrokes, among others that would need dedicated hardware devices in such ecosystems.  

In the second part of the dissertation, two separate deep learning approaches that extract and classify 

voice features were studied to detect and prevent voice replay spoofing attacks. These approaches are 

based on a convolutional neural network (CNN) and a deep neural network (DNN). The CNN approach 

was used as a feature extractor, while the DNN approach was used as a classifier. In addition, hybrid 

features that consist of Mel frequency Cepstral Coefficients (MFCC) and Constant Q Cepstral 

Coefficients (CQCC) features were used to train both approaches. Compared to other state-of-the-art 

voice authentication approaches, both the CNN and DNN approaches improved the state of detecting 

spoof replay attacks in speaker verification. Finally, enticed by the results of the two approaches, a 

voice-based authentication system that can be used in a network of IoT devices was developed. 

Afterwards, the system was validated in an experiment using virtualized IoT devices. The 

authentication system has shown improved relative accuracy by 15.8 percent.        
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Chapter 1: Introduction 
In the beginning of the last decade, the use of smart devices grew exponentially. These devices have a 

significant place in the everyday life of people. Moreover, people use their smart devices everywhere 

and at any time and consider them an important part of their lives. The Internet of Things (IoT) device 

users use applications on their smart phones for management and to control the IoT devices. People use 

remote access control mechanisms to communicate with smart devices at a distance from their homes. 

However, the verification of a user, before providing access to giving commands to devices, is an issue. 

For example, smart-home IoT device companies have concentrated their efforts on offering concrete 

novel authentication mechanisms for improved safety; this is because conventional authentication 

mechanisms, such as password or token-based authentications, fail to suit IoT technologies [1, 2]. 

Therefore, researchers have started investigating biometric-based authentication for IoT technologies 

[3, 4] that allow users to access their devices by face, iris, fingerprint, voice or other means of 

authentication; such biometric authentication is more user-friendly in nature compared to conventional 

authentication approaches. While such approaches can achieve higher accuracy in user authentication, 

they are subject to a variety of spoofing attacks [5, 6] and they also raise privacy concerns [7]. Speaker 

verification systems (SVSs) are vulnerable to spoofing attacks when an impersonator claims the identity 

of someone other than himself. Known spoofing attacks associated with SVSs include mimicry attacks, 

conversion attacks, and replay attacks. A mimicry attack is when a professional mimics the utterance 

of the voice of a genuine user to gain unauthorized access. Conversion attacks happen when voice 

transformation is performed on an imposter’s utterance so that it sounds more like that of a genuine 

user. Finally, a replay attack is a spoof technique when pre-recorded speech is provided to speech 

verification systems, with the help of record-and-play devices to impersonate a genuine user. Among 

the three spoof attacks, replay attacks pose the most serious threat to SVSs. 

Although advances have been made in the field of IoT authentication, more accurate and reliable 

authentication solutions are necessary that consider several issues introduced by the characteristics of 

IoT devices, which involve nagging pernicious security threats.    

1.1 Preliminary Research Background 

User authentication refers to the process in which a user submits his/her identity credential(s) (often 

represented by paired username and password) to an information system to validate that the person is 

who he/she claims to be. A biometric authentication system verifies the identity of a person based on 

either their unique physiological traits [8, 9] or their unique behavioral biometrics [3, 4]. Such a process 

remains a crucial concern with respect to an IoT-technologies context.  However, the biometric 

authentication mechanisms proposed for IoT technologies concede several well-known drawbacks, 
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principally led by people’s usage and behavior [5, 6]. In the literature, proposed authentication systems 

seem to have been designed without considering human behavior [10]. People do not use such 

authentication systems since they presume that using authentication systems may involve lots of trouble 

every time they want access to their smart devices [11]. For example, users have trouble remembering 

passwords; hence, they prefer to reuse the same password in multiple situations. 

Moreover, most biometric authentication mechanisms proposed in the literature were designed for 

traditional desktop computers, where some require costly hardware or may require IoT devices to be 
powerful enough to run complex computations that such systems need to operate [12].  Accordingly, 

in this research, we point out two issues: proposed authentication schemes do not take into consideration 

users’ needs and behaviors regarding their involvement in the authentication process; and, the 

importance of developing accurate, effective, and secure solutions that are able to run on resource-

limited IoT devices without the need for an extra piece of hardware because the solutions are already 

adequately embedded.  

1.2 Research Motivation and Objective 

User authentication in the IoT ecosystem is problematic for some important reasons, including the 

resource-limitations of IoT devices, which makes conventional authentication schemes inefficient and 

unfeasible for IoT devices. In addition, the unattended nature of IoT devices has also made password-

based authentication schemes much less useful for the IoT. Another main concern is that existing 

authentication schemes are easy to breach and hence cannot guarantee security. For example, if an 

attacker steals the credentials of a user to gain access to a smart door lock of a house or a health- 

monitoring smart device of a patient, this might be life threatening. In this light, security throughout 

the process of authentication must be maintained. Biometric authentication schemes are employed for 

IoT ecosystems instead of the commonly used password-based system for reasons of security and 

because they do not require users to remember different passwords for multiple devices. Nevertheless, 

such biometric-based approaches are prone to spoof attacks. One of the major bottlenecks for all these 

systems is that the user needs to interact actively with the system. One of the key aspects of IoT systems 

is that they are more human-centric in nature compared to the traditional network systems. Due to IoT’s 

human-centric nature, the IoT system creates information about an individual’s behavioral patterns that 

can be misused. Therefore, this research has attempted to answer the following questions: 

1. Which kind of authentication mechanism is user-friendly and does not require additional 

hardware to be used with IoT devices?  

2. What authentication feature will be difficult for the attacker who attempts to spoof the 

authentication systems?  
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3. How can the authentication scheme be deployed easily to demonstrate its usability? 

1.3 Scope of the Research 

The research was compelled by the following constraints: 

• only considers cloud-connected IoT devices; 

• develops a voice-based biometric authentication model (single-factor); 

• only considers the replay spoofing attack to secure the authentication model; 

• does not consider the fading nature of the voice of the speaker; and, 

• uses pre-recorded “spoofed” (labeled) and “genuine” voices both in a pre-existing dataset. 

1.4 Research Contribution  

The main contribution of this dissertation is its novel machine learning authentication approach used 

and validated in the IoT context within the scope of research explained above. To this end, we first 

studied existing IoT authentication approaches from the literature and highlighted both their strengths 

and weaknesses. On this basis, we were able to suggest an authentication mechanism that is more 

usable, reliable and resilient to replay attacks. Our model, so called “Lightweight VAS” was developed 

that improves on the identified problems.  

Subsequently, we presented authentication features used for detecting replay spoofing attacks that were 

realized in a practical implementation and assessed through rigorous experimentation. The experiments 

were conducted using an existing dataset that contains genuine and spoofed data. Consequently, we 

conducted several performance analyses and compared the results with the state-of-the-art computation 

performances in the literature. An improvement in the state-of-the-art performance was obtained, 

achieving 7.1 Equal Error Rate (EER), which compares to 11.3 EER in typical state-of-the-art systems. 

1.5 Author’s related publications  

1. Salahaldeen Duraibi, Wasim Alhamdani and Frederick T. Sheldon "A Security Hardened End-to-
End Lightweight IoT Voice Authentication System." Computers & Security; Elsevier, 2021 
(Submitted at Elsevier) 
 

2. Salahaldeen Duraibi, Wasim Alhamdani and Frederick T. Sheldon “Replay Spoof Attack Detection 
using Deep Neural Networks for Classification” 2020 International Conference on Computational 
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA (Accepted at IEEE CSCI 
conference) 
 

3. S. Duraibi, W. Alhamdani and F. T. Sheldon, "Voice Feature Learning using Convolutional Neural 
Networks Designed to Avoid Replay Attacks," 2020 IEEE Symposium Series on Computational 
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Intelligence (SSCI), Canberra, Australia, 2020, pp. 1845-1851, doi: 
10.1109/SSCI47803.2020.9308489 
 

4. Salahaldeen Duraibi, Fahad Alqahtani, Frederick T. Sheldon and Wasim Alhamdani “Suitability of 
Voice Recognition within the IoT Environment” Springer Nature publisher - Advances in Security, 
Networks, and Internet of Things; Security and Management research track (SAM 2020); in press 
2020. 
 

5. Salahaldeen Duraibi, Frederick T. Sheldon and Wasim Alhamdani. (2020) “Voice Biometric 
Identity Authentication Model for IoT Devices”, International Journal of Security, Privacy and 
Trust Management (IJSPTM), Vol. 9, No.2. 
 

6. Salahaldeen Duraibi, Abdullah Alashjaee and Jia Song. (2019) “A Survey of Symbolic Execution 
Tools”, International Journal of Computer Science and Security (IJCSS)), Vol. 13, No.6. 

 

1.6 Dissertation organization       

The remainder of the dissertation is organized as follows: Chapter 2 discusses the research background; 

chapters 3 and 4 present deep learning approaches used for feature extraction and classification and 

their implementations in experiments. A novel authentication scheme that detects replay spoofing 

attacks is presented in Chapter 5; and, finally, Chapter 6 provides the conclusions and the suggestions 

for future works. 
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Chapter 2: Background and Related work 
Behavioral biometric authentication is considered a promising approach for securing the Internet of 

Things (IoT) ecosystem. In this chapter, we investigated the need and suitability of employing voice 

recognition systems in the user authentication for the IoT devices. We first studied the current status of 

IoT authentication technologies and determined that existing authentication systems suffer from several 

deficiencies. Some systems need higher computing and energy resources to perform their work, which 

exacerbates the resource-constrained nature of IoT technology. Others suffer from security weaknesses. 

Tools and techniques used in accomplishing voice recognition systems were reviewed, and their 

appropriateness to the IoT environment are discussed. In the end, a voice recognition system is 

proposed for IoT user authentication. Subsequently, the usability of the proposed system model was 

investigated. Our implementation of the model shows that voice biometrics can be used remotely to 

authenticate the user on his/her IoT devices.  

2.1 Introduction 

In general, within the context of IoT, three factors of authentication are usually employed: something 

a user knows (e.g., a password); something a user has (e.g., a secure token); and something a user is 

(e.g., biometric characteristics). Passwords are the most common authentication mechanism. However, 

password and token-based authentications have many security issues [1, 2] and are not suitable for 

smart devices because of the unattended nature of IoT smart devices. A biometric authentication system 

verifies the identity of a person based on either their unique physiological traits [8, 9] or their unique 

behavioral biometrics [3, 4]. Biometric authentication is more user-friendly in nature than the 

approaches that rely on passwords and secure tokens. While physiological traits can achieve high 

accuracy in user authentication, they are subject to a variety of attacks [5, 6] and also raise privacy 

concerns [7]. Moreover, the accuracy of physiology-based mechanisms may be substantially degraded 

by environmental factors, such as the viewing angle, illumination, and background noise [13, 14]. In 

contrast, behavioral biometrics (i.e., key stroke, voice, or gait analysis) appear less sensitive to ambient 

light or noise [15, 16]. Using biometric authentication for securing the IoT ecosystem is a promising 

approach [1].  

Due to the portability, stability, and privacy of the voice features, voice recognition authentication has 

attracted extensive attention and application in recent years [2]. Voice recognition systems are versatile, 

simple to use, and non-intrusive by nature. They are considered accurate and do not require specialized 

tools; just a smartphone is enough for remote authentication for various services. Likewise, among 

other biometric authentication parameters, voice is the simplest and easiest unimodal to require and use 

for user authentication [8]. As a result, in recent years, voice authentication has attracted various leading 
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technology companies. For example, Google has provided Android-based Trusted Voice to allow users 

to unlock their smartphones. Saypay’s mPayment consumers use a voice password to conduct 

transactions [2]. In addition, Google has promoted the employment of automatic speaker recognition 

for authenticating users in the IoT [9]. Regarding the nature of the IoT ecosystem, especially its mobile 

remote control, the use of voice recognition for user authentication may produce an overwhelming 

advantage [3]. In addition, the IoT ecosystem-related advantages of voice biometrics include small 

storage, ease of transmission, and non-intrusiveness [4]. 

In this chapter, a voice recognition authentication system to be used in the IoT ecosystem is proposed. 

The resource limitation of the IoT devices and remote access are taken into consideration. For example, 

the  systems use  Mel-frequency Cepstral Coefficient (MFCC) to extract features and Support Vector 

Machines (SVMs) for user verification which are fundamental to Remote Speaker Identification [5].  

Voice features that can be extracted from acquired voice data can be of high-level or low-level 

attributes. Low-level attributes, related to the vocal tract, are derived from spectral measurements, while 

the high-level attributes are derived from behavioral cues, such as dialect, word usage, conversation 

patterns, etc. High-level attributes are difficult to extract but are less sensitive to noise [6, 7]. For 

example, Idiolectal and Prosody identify [4] high-level attributes of a speaker's voice, while Short-term 

spectral identifies low-level attributes of the speech signals. The latter is the main source of 

individuality in speech [3]. In addition, low-level attributes are easy to extract and are most common 

when applied to user authentication systems. In this light, extraction of low-level cues is necessary for 

IoT user authentication.  

2.2 Background  

Interconnected environments such as Machine to Machine (M2M), Machine to Individual, or Individual 

to Individual are what make up the IoT ecosystem. In the IoT ecosystem smart objects can communicate 

among themselves, these things can detect each other, and everything can interact with each other and 

with the local environment. These interconnections are facilitated by remote sensing and tracking 

capabilities, and every entity is provided with data transfer through the internet via such protocols as 

Wi-Fi, ZigBee, or Bluetooth among others. In particular, organizations may need such data for business, 

social, or research analytics [13]. For this reason, a vast variety of information is stored, managed, and 

processed. Access to these private data needs to practice secure access control. Employing conventional 

authentication mechanisms, such as passwords is reported to have fallen short for the IoT ecosystem. 

Thus, biometric technology is considered a better substitute for the protection of IoT private data [14].  

There are three processes in any voice authentication system. These are Voice Feature Extraction, 

Speaker Modeling, and Decision Making. The feature extraction process is where the voice signals are 
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converted into a sequence of frames. Each frame is a short window of the waveform with overlapping 

adjacent windows [17]. Considering the unique resource-constrained characteristics of IoT devices, our 

work focused only on Short-term spectral qualities [18], as this requires less computational resources. 

Additionally, the selection of appropriate feature extraction methods is crucial in this process because 

of how they influence the performance of the system. The two most popular spectral-feature extraction 

methods are filter bank analysis and linear predictive coding [7, 19, 20]. In filter bank analysis, the 

voice signals are pass through a bank of band-pass filters that cover a range of frequencies consistent 

with the transmission characteristics of the signal. The spacing of the filters can be either uniform or 

non-uniform, based on the perceptual criteria, such as the Linear Frequency Cepstral Coefficient 

[LFCC] or the MFCC; the latter provides a linear spacing [7, 21].  In the linear predictive coding, the 

speech signal can be modeled by a linear process prediction. Signals at each time step use unique and 

specific periods of preceding samples that capture the temporal evolution of the features from one 

speech segment to another [7, 21].  

After features of the voice are extracted. Automatic Speaker Verification (ASV) has the ability to 

construct a model 𝜆𝜆𝑠𝑠 for each user where “s” is user and λ is the specific model. Such modeling depends 

on, for example, whether it is used for applications that use fixed words (text-dependent), or 

applications that use phonemes not seen in the enrollment data (text-independent). Speaker modeling 

methods can be of two categorizes, non-parametric or parametric. The non-parametric approaches 

include templates which are suitable for a text-dependent verification system [7]. The parametric 

speaker modeling includes Vector Quantization (VQ), Gaussian Mixture Models (GMM), and Hidden 

Markov Models (HMM). In VQ a set of representative samples of the user’s enrollment voice is 

constructed by clustering the feature vectors. GMM  has been proven to be very effective in the cases 

of a text-independent speaker recognition [17], also referred to as a refinement of vector quantization. 

HMM is suitable for text-dependent ASVs and is used for access control of personal information or 

bank accounts. Among the three techniques, GMM has been proven very effective for phones, and may 

be the best candidate for IoT devices [22]. There are also some other non-parametric and parametric 

approaches in the literature. However, those presented in this chapter are the most common techniques 

implemented in ASV systems.  The final process is decision making. In this process an ‘accept’ or 

‘reject’ decision is delivered based on the verification models discussed above.  

To measure the effectiveness of ASVs a number of parameters were studied. These parameters include 

the False Acceptance Rate (FAR) which is the number of attacks being incorrectly labelled as authentic 

by the system. False Rejection Rate (FRR) refers to the number of authentic interactions being 
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incorrectly rejected as attacks. Relative Operating Characteristics (ROC) represents a compromise 

between FAR and FRR because the ROC helps enable systems tp minimize both FAR and FRR [23]. 

2.3 Related Work 

This section reviews different biometric authentication mechanisms employed in the IoT ecosystem. 

Generally, there are two main types of IoT authentication methods, including centralized and 

distributed architectures, as shown in Figure 2.1 and Figure 2.2, respectively. The centralized 

architecture uses a centralized server to manage the credentials used in the authentication, whereas in 

the distributed architecture, the authentication is accomplished point-to-point between the 

communicating parties [11]. Biometric authentication is achieved based on these two architectures. 

There are four basic biometric authentication performance-measuring strategies; they include accuracy, 

scale, security, and privacy. Elements such as enrollment, biometric reference, comparison, networking, 

and personal biometric criteria are common in biometric authentication systems. Biometric-based 

authentication systems use two other factors, which are physical and behavioral [11].  

 

Figure 2. 1. Centralized authentication architecture 

 

Figure 2. 2. Distributed authentication architecture 

The physical factors include the recognition of fingerprint, face, iris, hand geometry, and palm print, 

while the behavioral factors may include, but are not limited to, voice, signature, and gait recognitions 

[14]. Biometric systems have some advantages over conventional identity-based methods (password 

and ID); they cannot be transferred, stolen, lost, broken, or easily guessed [15, 24]. The acceptance and 
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performance of the biometric systems are presented in Table 1. From Table 1 the voice biometric 

systems are more suitable compared to others biometric systems. The voice biometric systems use voice 

rather than complicated input methods, like fingerprints, that need special hardware for input. 

Therefore, voice is appropriate for the IoT where convenience is important. Some researchers have 

investigated and adopted voice-based biometric systems into the IoT ecosystem. 

Table 2. 1 Comparison of biometric system 

Factor 
Type Biometric systems Weakness Strength 

be
ha

vi
ou

ra
l 

Voice recognition  Has relatively low accuracy, 
inefficiencies in certain circumstances  

Needs no hardware, ease of use, 
widespread usage, can be used for 
remote authentication 

Signature recognition Has relatively low accuracy Wide acceptance, non-rigging 

Detect Behaviour Shows non-performance in certain 
conditions  Continuous authentication  

Tough dynamics  Inconsistent accuracy, lack of 
efficiency under certain conditions 

Continuous authentication, does not 
require specific hardware 

Keystroke Dynamics Inconsistent accuracy, lack of 
efficiency under certain conditions 

Continuous authentication, does not 
require specific hardware 

Ph
ys

ic
al

 

Fingerprint 
recognition  

The need for additional hardware, the 
difficulty of obtaining high-quality 
images, the lack of efficiency in certain 
circumstances 

Use and wide acceptance, low cost, 
good accuracy 

Face recognition The need for additional hardware, lack 
of efficiency in certain circumstances 

Use and wide acceptance, good 
accuracy and less fraud 

Iris recognition The need for additional hardware, high 
cost, time-taking authentication High precision, non-rigging 

Hand geometry 
recognition 

The need for additional hardware, 
precision Easy to use, less fraud 

Palm detection  The need for additional hardware, high 
cost Public acceptance, high precision 

 

For example, the researchers in [25] introduced a gaze feature-based model which is secure against 

iterative and side channel attacks. Likewise, in [26] the researchers used electrocardiogram for the 

development of their method in which they proved the good candidacy of biometric features for 

authentication of IoT devices. The results of the implementation of this scheme reveal that it has 1.41% 

FAR and 81.82% TAR for 4 seconds of signal acquisition. One of the main strengths of the scheme is 

that it conceals the biometric features during authentication, but the privacy preservation mechanism is 

not taken into consideration. The researchers argued in [27] for the suitability of signature-based 

authentication systems for the IoT device, whereby they presented three categories of a signature-based 

scheme, namely, offline, online, and behavior. Some Gait recognition based authentication systems 

proposed for IoT devices are also in the literature [28]. A touch screen based authentication scheme 

was proposed in [29].   
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In [30], a keystroke dynamics-based authentication scheme with three steps (enrollment, classifier and 

user authentication) was proposed. Similarly, in [31], a fingerprint-based authentication system was 

provided. In [32], the researchers introduced an authentication and authorization scheme that uses face 

recognition, which can be used for the IoT ecosystem. An iris-based authentication system used for 

unlocking mobile IoT devices was proposed in [33]. To the best of our knowledge, there are only two 

researchers who have adopted voice biometrics as an authentication mechanism for the IoT ecosystem. 

Shin and Jun [34] implemented voice recognition technology to verify authorized users for controlling 

and monitoring an automated home environment. The researchers proposed a voice recognition system 

that is divided into server and device parts. The role of the server part of the system is for user 

preregistration, user recognition, and control command analysis. The role of the device part is device 

command reception and device control then followed by response. The type of models and techniques 

employed is not discussed in this research. Likewise, the implementation of the model is not reported.  

Oscar et al. [34] proposed a multimodal biometric approach for IoT, based on face and voice modalities. 

The researchers designed their system to scale to the limited resources of IoT technologies. For the 

voice recognition part of the system, Oscar et al. were able to extract MFCC features from the voice 

with the use of Fast Fourier Transform (FFT). Considering these findings, the filter banks are 

decorrelated with the application of a discrete cosine transform.  However, this system does not fully 

utilize voice recognition. Although it has been implemented in a case study, the results cannot be 

compared to a system that fully utilizes voice recognition. Recall that the overall advantages of such 

biometric-based schemes are that they cannot be lost due to their intrinsic nature (e.g., fingerprints), 

they are very difficult to copy, they are hard to distribute without introducing artifacts into a copy, and 

they cannot be easily guessed. Conversely, conventional password-based authentication methods suffer 

from a number of drawbacks; they can be easily guessed, hacked, and/or cracked. The performance of 

the reviewed biometric systems is shown in Table 2.2.  As shown in the table, only a few researchers 

have studied the areas related to the deployment of voice recognition systems applied to the IoT 

ecosystem for access control and user authentication. Building a working voice recognition system or 

integrating it to the IoT ecosystem is lacking in the literature. However, some projects conducted in the 

area of voice recognition in general do exist. Some are adapted to the mobile and cloud computing 

paradigms. The challenges of IoT devices’ restricted resources of computation, storage, and power 

threaten the development of sophisticated authentication systems. Accordingly, a novel biometric 

approach has been proposed [14, 35]. 
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Table 2. 2 Summary of Systems performance 

 

Sources Title Method FRR % FAR % ERR % 

[1] Multimodal Biometrics for Enhanced IoT Security Voice & Face 81.62 N/A 8.04 

[25] Gazetouchpass: Multimodal authentication using gaze and touch on mobile devices Gaze N/A N/A 0.32 

[26] ECG authentication for mobile devices Keystroke 81.82 1.4 N/A 

[27] Behaviour based human authentication on touch screen devices using gestures and signatures Signature 90 0 0.5 

[28] Edge-centric multimodal authentication system using encrypted biometric templates Face N/A N/A 1.72% 

[29] Touchalystics: On the applicability of touchscreen input as a behavioral biometric for continuous 
authentication Touch dynamics N/A N/A 2-3% 

[30] Two novel biometric features in keystroke dynamics authentication systems for touch screen devices Keystroke 8.40% 8.32% 8% 

[31] More efficient key-hash based fingerprint remote authentication scheme using mobile device Fingerprint N/A N/A N/A 

[32] Partial face detection for continuous authentication Face N/A 1% N/A 

[33] Firme: Face and iris recognition for mobile engagement Face & Iris 0.25 0.8 0.40% 

[34] Home IoT device certification through speaker recognition Voice N/A N/A N/A 

11 
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2.4 Conventional Voice based biometric Authentication Model 

A voice biometric-based IoT user authentication model is proposed as presented in Figure 2.3. The 

model has two phases: the enrollment phase when the user of the smart device says his voice for 

registration; and the verification phase when the system checks whether the identity claimer is the real 

user by comparing the previously enrolled voice with the voice of the identity claimer. Subsequently, 

if the similarity of the two voices reaches a certain predefined threshold, then access is granted to the 

claimer; otherwise the claimer is rejected. The design criteria of the model is given in Table 2.3.  The 

following sections broadly discuss different components of the model. 

Figure 2. 3. High level IoT voice authentication model. 

2.5 Enrollment Phase 

This phase is where the user first introduces his voice for registration. Steps taken in this phase are 

discussed in the following subsection.   

2.5.1 Sound capture 

This step captures the sound or voice of the IoT device owner for training. This is expected to be done 

by the smartphone where the owner uses the control apps of the IoT devices. The output of this step is 

converted files with a suitable file format. 

2.5.2 Pre-processing  

In this step, the collected voice data is validated for defects. This is accomplished by decomposing the 

data at different frequencies at different scales, and the resulting wavelets are checked for the existence 

of any clipping. Subsequently, identified noise wavelets are removed and the noise-free data is 
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obtained. There are two known techniques for removing noise from collected sound data: with the use 

of the threshold based de-noising method [18, 36], or with the use of the recursive least-squares adaptive 

filtering method [37]. The first was adopted in our work for its suitability for smart devices. 

Table 2. 3. Design criteria of the model 

Design criteria  Description  
Universality A very high percentage of the population should have the characteristic. For example, 

virtually everyone has recognizable fingerprints, but there are rare exceptions. 
Distinctiveness No two people should have identical characteristics. For some otherwise acceptable 

characteristics, identical twins share virtually the same patterns, such as facial features and 
DNA, but not other features, such as fingerprints and iris patterns. 

Permanence The characteristic should not change with time. For otherwise acceptable characteristics, 
such as facial features and signatures, periodic re-enrollment of the individual may be 
required. 

Collectability Obtaining and measuring the biometric feature(s) should be easy, non-intrusive, reliable, 
and robust, as well as cost-effective for the application. 

Performance The system must meet a required level of accuracy, perform properly in the required range 
of environments, and be cost-effective. 

Circumvention The difficulty of circumventing the system must meet a required threshold. This is 
particularly important in an unattended environment, where it would be easier to use such 
countermeasures and a fingerprint prosthetic or a photograph of a face. 

Acceptability The system must have high acceptance among all classes of users. Systems that are 
uncomfortable to the user, appear threatening, require contact that raises hygienic issues, or 
are non-intuitive are unlikely to be acceptable to the general population 

 

2.5.3 Feature extraction  

Voice features deemed important for the system are extracted in this step. The extraction and selection 

of such feature vectors adds to the quality of the voice recognition system. Feature traits extracted from 

the owner’s voice are expected to be different from that of others, must be robust related to noise and 

distortion, should be easily extractable, difficult for playback attacks, and should not change with the 

change of environment or health of the owner. As such, the most appropriate features used in this model 

are MFCC features. The MFCC coefficient was selected for its computing simplicity, which is suitable 

for the resource-constrained characteristics of the IoT ecosystem, as well as the mimicking nature of 

the human auditory capability of human ears. Likewise, the MFCC divides the voice signal into frames 

by subsequently applying a hamming window for every frame [34].  

There are two well-known signal analysis tools that are used in existing voice recognition systems: 

Discrete Cosine Transformation (DST) and the Hidden Markov Model Toolkit (HTK). Hence, these 

tools take care of the details of obtaining the cepstral features of each frame.  
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2.5.4 Model Training 

After extraction of the MFCC features, the voice model is trained for the IoT owner. The HMM model 

was adopted for this system; the reason is that HMMs are considered very effective for phones because 

the system app is used on a smartphone. Finally, the voiceprint is stored in database. 

2.6 Verification/recognition Phase 

Once the user enrollment phase is accomplished, the system is now expected to verify whether the 

identity claimer is the owner of the IoT device. The same steps of voice data collection and feature 

extraction are conducted on the claimer’s sound via the smartphone. Subsequently, the extracted MFCC 

features are tested against the trained model for verification.  SVMs are used in this step for training 

classifiers to provide a good generalization to automatically determine the verification data from the 

enrollment data. Finally, the decision is made for either rejection or acceptance. The authentication is 

rejected if the claimer’s voice features fail to pass the test against the trained model. 

2.7 Implementation of the Authentication Model 

In this section, the proposed model is tested for its usability in the IoT ecosystem. The normal process 

of voice biometric implementation usually includes the creation of models from audio data, generation 

of tables, and self-authentication to the IoT manager. We, therefore, used a client-server model for the 

initial implementation. A user mobile device simulates running [1] a client, where the server simulates 

the IoT manager and handles the verification requests. By contrast, the IoT device receives the 

command from the IoT manager and automatically responds to the command. First, the user inputs his 

own voice command using the smartphone.  Subsequently, the system on the server side determines 

whether the connection is for enrollment or verification and accordingly performs the process in each 

phase. New connections are considered first for enrollment, while returning connections are considered 

for verification by the server by prompting the identity claimer with challenge words.  

2.7.1 Open Source Software 

To accomplish the initial test, we used a software package called Mistral/Alize. Mistral is tested by the 

National Institute of Standards and Technology [NIST] and has with 0.5 error rate. Figure 2.4 shows 

the process of Mistral package.  
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Figure 2. 4. The processing of the Mistral software package 

2.7.2 Dataset 

There are several datasets for audio dataset selection, but we selected the Massachusetts Institute of 

Technology (MIT) dataset, which appears to be recent and is considered to be good for initial results. 

MIT is designed for mobile environments. The dataset consists of 48 speakers including 22 female and 

26 male. The dataset is used for the Universal Background Model (UBM) training.  

2.7.3 Pre-processing  

In this step, after the user inputs his voice using his own smartphone, the voice is validated, and noise 

is removed from the voice signal. For example, Figure 2.5 shows the raw voice signal without noise 

reduction, while Figure 2.6 illustrates that the noise (the silent part) is removed before it is submitted 

for feature extraction. In this process, using SPro [38], which is supported in the Mistral program, frame 

selection was performed by excluding silent frames longer than 100ms. In addition, if a sample is 

different from 16 KHz, SPro performs re-sampling by default. Mistral needs the voice to be more 

compact. The most important aspect of this process is that the voice is converted into the form of a 

binary format. 

 

Figure 2. 5. Voice waves before noise reduction 
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Figure 2. 6. Voice waves after noise reduction 

2.7.4 Feature Extraction 

In this step, using SPro, the feature extraction process was conducted. The voice data, pre-processed in 

the preceding step, was subjected to feature extraction. Feature extraction was conducted through 12 

MFCCs, as shown in Figure 2.7, and was subsequently stored in a parameter file. The 12 MFCC is 

about extracting digital features that can be understood by the Alize framework. Alize framework 

cannot process voice signals instead, it rather takes as input the 12 MFCC features to conduct user voice 

processing. 

The frontend of the system stops at this step and, according to our framework, is accomplished by the 

user’s smartphone. At this point of the testing we used a virtualized Android OS to represent the mobile 

part of the implementation. See Section 2.7.5 for the next step in the framework which covers training 

and Section 2.7.6 which covers validation.  

 

Figure 2. 7. 12 MFCCs features 
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2.7.5 Voice Model Training / Server Side 

In the Mistral toolkit, the next step is training the model. This step controls the list of users of the smart 

IoT device. Using the Train World process, we used the GMM to conduct this part of the training with 

the MIT dataset for the UBM training because the procedure requires an already-trained UBM. The 

remaining 12 were kept for testing. For this part of the implementation we used a virtualized Linux 

server to host the Android Things operating system, which acts as the manager of the IoT devices.   

2.7.6 Verification 

After both parts of the model were trained, the data was compared to the world UBM model to create 

verification. The tests were run twice; the first test included using enrolled speakers. The second test 

did not include enrolled speakers. After the testing phase started, scores were calculated for each test 

speech-segment verification based on the Mistral toolkit. By using a decision threshold-speaker model, 

verification could be either be accepted or rejected. In commercial verification systems, users are 

required to test and decide on the threshold. However, in our implementation we only speculated on 

the possible use of the threshold.  

2.7.7  Result and Discussion  

We had no problem with the enrollment of the speakers in the dataset. In the first test only the intended 

target speakers were used to train the UBM before they were enrolled.  Figure 2.8 shows the detection 

error tradeoff curve of the MIT voice dataset.  

 

Figure 2. 8. DET plots for a male only trail and female only trail 

In the future we will collect enrollment segments from many users anonymously and use different 

devices in regular daily life settings for a significantly improved result; this will build a more reliable 

UBM to be distributed for application. In addition, a secure remote authentication mechanism will be 
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investigated. Voiceprint security, once stored in the voice database, will be included in the future 

research. The work will focus on the resource-constrained nature of the IoT technology and propose 

different tools for that aspect. The robustness and resilience of the tools will be thoroughly studied 

scientifically.  

2.8 Chapter Summary 

To prevent unauthorized users from accessing the IoT ecosystem, behavioral biometrics authentication 

systems are considered the most effective. Through voice recognition, it is believed that IoT user 

authentications will be more secure, accurate, and robust. Our research demonstrates that voice 

biometric-based authentication models can be used in IoT ecosystems. We proposed and implemented 

a model that is intended to be used by IoT technology owners to remotely and securely authenticate 

themselves on smart technologies. Hence, in this chapter we proposed a text-dependent voice 

recognition system. The system consists of two phases: the enrollment phase, where the user is 

supposed to enroll the voice, and the verification of authentication phase, where the identity claimer is 

expected to utter the voice and be subsequently compared with the enrolled one. We tested the model 

for its usability and have shown a promising result. It is worth mentioning again that we did not include 

any security measures in our implementation, leaving this for future work. For the sake of repeatability, 

the coding of the Alize method used in this chapter is included in Appendix A. 
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Chapter 3: Voice-Feature Learning Using a CNN Designed to Avoid 

Replay Attacks 
Speaker verification is a promising Internet of Things (IoT) user authentication model. However, 

verifying the identity of an individual using speech utterance is challenging, especially in the presence 

of replay spoofing attacks, where attackers can record the speech of the user and use it for unauthorized 

access. In speaker verification, the voice signature is often polluted by ambient noise. This alone 

confounds the design of appropriate feature extractors that can distinguish the authentic voice signal 

from that of a replay voice signal. The literature to date reflects very poor performance; notably with 

state-of-the-art verification errors no less than 11.3% False Positives (FPs) from all samples. To address 

this difficult gap that has, up to now, prevented speaker verification from being a satisfactory IoT 

authentication alternative, we are seeking to develop an 80-90% improved approach yielding only 1-

2% FPs. To accomplish this goal, we have developed a new approach that uses MFCC and Constant Q 

Cepstral Coefficients (CQCC) as input features, a Convolutional Neural Network Based (CNN-based) 

frontend feature extractor, and SVM backend classifier. Using better training techniques such as batch 

normalizations, we improved the precision significantly. In addition, a formulation that includes 

knowledge of distinguishing genuine voice from a replay voice was implemented. The experiment was 

conducted on ASVspoof 2017 datasets [68, 95] (see Section 3.6). An improvement in the state-of-the-

art performance was obtained, achieving 7.1 Equal Error Rate (EER) which compares to 11.3 EER in 

typical state-of-the-art systems. 

3.1 Introduction 

Speaker verification systems (SVSs) are part of user authentication systems meant to verify the identity 

of individuals using voice biometrics.  Such systems take the voice of an unknown speaker with a 

claimed identity as input to determine whether the claimed identity matches the actual voice of the 

claimer [39]. SVSs rely on the recognition of specific, well-learned parameters to authenticate an 

individual. SVSs analyze recorded voice to determine whether the claimer is genuine or an impostor.  

In contrast to traditional object-based (non-biometric) systems that use key, smartcard, or password, 

speaker verification  systems remain the most resilient and robust trend of authentication [37]. 

However, in recent times, SVSs are reported to be vulnerable to manipulations through specialized 

spoofing techniques such as impersonation, replay, voice conversion, and speech synthesis. Compared 

to other spoofing attacks, replay attacks are the most straightforward to implement and are highly 

effective in deceiving speaker verification  systems [40]. 
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Conventional speaker verification  systems accomplished tasks using GMMs on MFCC feature vectors 

[41]. The systems also used joint vector and intermediate vectors (i-vectors) to perform speaker-specific 

representations of a speech utterance [8]. Despite being a state-of-the-art approach, the standards 

showed shortcomings [17]. For instance, feature vectors suffer from the issue of precision while using 

MFCC [42]. Likewise, GMM-UBM and i-vector systems have disadvantages because of their 

unsupervised nature, since they are not trained objectively for speech replay detection. We opted for 

enriched input data to cope with the challenges. Hence, the hybrid features of MFCC and CQCC are 

employed to train the feature extractor. With the advent of deep learning in different domains, data-

driven approaches using deep learning approaches have also been used by the speaker verification  

systems [43]. CNN networks have shown a promising result and substantial improvement in speech 

recognition, computer vision, and related areas due to their ability to deal with real-world, noisy datasets 

without the need for handcrafted features [44]. For instance, the researchers in [45] employed CNN in 

SVSs. Comparing their work with traditional baseline systems, they reported an increased precision of 

84%.  

In this work, we consider that the voice biometrics are acquired from pre-recorded speech, by replaying 

the device containing the voice, and extracting features that represent the speaker. The dynamics of the 

utterances of the voice  are lost. This may also happen in cases where the speaker is remotely accessing 

the speaker verification  system for enrollment or verification. That is, the enrollment process is 

accomplished via a phone call or a recorded voice from the speaker. Therefore, discriminatory feature 

extractors are required for such pre-recorded user voice utterances. In addition, identifying 

characteristics of the voice that can be used for implementing the feature extractor is difficult. This is 

a first of its kind, where most studies in this domain have tried to find a representation for the real voice 

from the speaker; in other words, designing feature extractors for SVSs  [19]. Up to now, no feature 

extractor has emerged in this regard to suit SVSs. The difficulty of finding representations for speech 

reflects on the classification performance of SVSs, in particular, distinguishing genuine voice and a 

replay spoof attack targeting a particular person. Considering previous work conducted on large public 

datasets, the researchers in [46] reported better results, achieving EER around 11.3 %. 

To address the issue of obtaining a proper representation for speech with an improved classification 

performance, a framework for learning the representations directly from a genuine speech using CNN 

was used. A novel formulation was used that takes into consideration and incorporates techniques to 

replay spoof attacks using a multi-tasking learning strategy. The model can learn voice parameters in a 

recorded speech to discriminate between genuine voice and replayed voice. The model has been 

evaluated to determine whether this feature representation that was extracted using the CNN network 
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can detect replay spoof attacks. SVSs usually consist of a frontend, where the voice features are 

extracted, a backend where feature classifiers are used, and a decision where a probabilistic linear 

discriminant analysis is used. Traditional SVSs use GMM-UMB and i-vector for frontend modeling. 

The main disadvantage of these models is that they have fallen short of detecting replay attacks. The 

study focuses is on the frontend, whereby the combination of two feature extractions are employed to 

train a new CNN architecture. In the state-of-art systems, researchers employed CNN as backend 

feature classifier; only a few have used it for feature extraction. In our work, we are targeting an end-

to-end SVS that employs CNN both in the frontend, as well as a backend classifier. An end-to-end 

system treats the entire system wholly, as an adaptable black box. The process of feature extraction and 

classifier training are achieved together with an objective function that is consistent with the evaluation 

metric. However, in this chapter, we present our frontend implementation which achieves improved 

precision in detecting replay spoof attacks. In this document, the terms ‘replay attack’ and ‘replay spoof 

attack’ are used interchangeably.   

To train our CNN network we first studied existing feature extractions employed in SVSs for replay 

attack detection. Using single-feature extraction did not work well with replay attack detection. In that 

light, we opted to combine two low-level feature extractions that included MFCC and CQCC. 

Therefore, to provide superior accuracy, MFCC was used for processing the high-frequency area of the 

voice utterance, while CQCC was used for processing silence or areas with low-frequency. The 

selection between these two feature extractions was made since MFCC is well-known for appropriately 

capturing voice features’ high frequency and that the CQCC is a multi-resolution cepstral feature. The 

two features were combined as an input to the CNN network architecture implemented in the study. 

The CNN architecture was implemented by TensorFlow/Keras, as reported in Section 3.5.  Once the 

CNN network was trained, it was employed as the frontend feature extractor. Subsequently, an SVM 

classifier was trained with the same features to test the performance of the new CNN architecture and 

the combination of the two feature extractions. The improvement achieved by this work is reported in 

the following sections of this chapter.                

3.2 Speaker Verification System 

Speaker verification system (SVS) is the process of recognizing the identity of a speaker based on the 

verbal utterance of the speaker. The principle behind speaker verification is that every speaker’s voice 

is unique, like fingerprints, and thus can be used to authenticate the speaker. SVSs are used for speaker 

authentication, surveillance, and forensics. SVSs consist of three phases, as depicted in Figure 3.1. 

These include the frontend, backend, and decision phases [47]. In the frontend phase, the SVS is trained, 

using the available input data to learn speaker-specific information from voice signals. In the backend 
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phase, the speaker’s voice is fed into the classifier system to produce the models. Finally, in the decision 

phase, the speaker model is compared with existing models for similarity. Basically, speaker 

verification systems use GMM-UBM systems to accomplish these tasks. In the process of implementing 

the speaker verification  system, the Universal Background Model (UBM) was created using MFCC 

feature vectors. A GMM-UBM is trained on the entire pool of speakers’ voice data. Consequently, the 

trained UBM model is used to calculate the speaker-specific model by adjusting it into individual 

speaker’s data. The UBM is represented as 𝜆𝜆𝑢𝑢𝑢𝑢𝑢𝑢 =  {𝑤𝑤𝑖𝑖,𝑢𝑢𝑖𝑖,∑𝑖𝑖}𝐶𝐶𝑖𝑖, where 𝑤𝑤𝑖𝑖,𝑢𝑢𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 ∑𝑖𝑖  are weights, 

mean, and covariance of  𝑖𝑖𝑡𝑡ℎcomponent in 𝐶𝐶 of Gaussian components, respectively.  In the enrolment 

phase the 𝑆𝑆 number of speakers are adapted according to the UBM created from the training data to 

create speaker models {𝜆𝜆1,𝜆𝜆2,𝜆𝜆3, … , 𝜆𝜆𝑠𝑠}. The GMM is specified as,  

𝑃𝑃(𝑥𝑥/𝜆𝜆)  =  ∑𝐶𝐶𝑐𝑐=1𝑤𝑤𝑐𝑐𝑝𝑝𝑐𝑐(𝑥𝑥) 

𝑃𝑃𝑐𝑐(𝑥𝑥) is represented as,  
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where 𝑑𝑑 is the dimension of the input vector 𝑥𝑥. The GMM parameters are calculated by using the 

expectation maximization algorithm. In the evaluation phase, the likely ratio between the target and 

background models is calculated. The i-vector uses a low dimensional feature vector containing 

speaker-specific and voice variability information in a voice segment, which is the GMM super-vector 

by a single variability space. It is written as,  

𝑀𝑀 =  µ +  𝑇𝑇𝑇𝑇, 

where 𝑢𝑢 is the mean super-vector, 𝑇𝑇 is the low-rank total variability matrix, and 𝜔𝜔  is a low-rank vector, 

referred to as the i-vector.  The Probabilistic Linear Discriminant Analysis (PLDA) model is then 

employed to generate verification scores by comparing i-vectors from the different voice utterances. 

Some researchers have employed conventional systems, such as GMM-UBM and i-vectors with DNN, 

for better performance and precision. These systems are usually employed in text-dependent SVSs [48, 

49]. For instance, Deep Neural Network (DNN) is used for extracting frames from a speaker’s voice 

and calculating the utterance-level information. Subsequently, the output of the DNN is converted to i-

vectors, and, at the backend, PLDA is used for a verification score [50, 51]. In such work, the DNN 

features are either used alone or combined with the conventional features (i.e., MFCC). Features 
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extracted from DNN are employed in the posterior. These researchers use DNN to extract speaker-

specific data and apply the similarity metrics check for the verification score [45].  

 

Figure 3. 1. Speaker verification systems 

In contrast, some end-to-end usage of the DNN systems can be found in the literature [44]. In these 

systems, the process of feature extraction and classifier training are accomplished in a way that is 

consistent with the evaluation metric. Network in Network (NIN) layers are used to construct end-to-

end speaker verification  systems and have shown considerably good performance [49, 52]. In most 

cases, such systems are employed in text-independent SVS. However, the systems using DNNs have 

resulted in improved performance and accuracy, but required many more training samples. That is, the 

deeper the model the better the accuracy at a cost in terms of training time. Another deep learning 

approach that has been employed for speaker discrimination is the use of CNNs for feature extraction. 

From the resource-constrained view of IoT devices, the neural network architectures used so far for 

SVS may become too big for the memory of IoT devices. They cannot handle the large amount of 

training data needed to produce such precise and accurate results.  

3.3 Deep learning approaches in Speaker Verification Systems (SVS) 

This section discusses research that uses a DNN as the primary algorithm for the SVS. More recently, 

researchers have begun investigating CNNs for speaker verification  [53]. For instance, in [54], the 

researchers have built a speaker recognition system that used senone probabilities computed by a CNN 

and compared it favorably with an i-vector approach. Chen et al. trained a Siamese Neural  Network 

(SNN)  to directly compare two voice segments discriminatively [55]. They relied on MFCC features. 

In [46], the researchers used CNN to capture and discard speaker and non-speaker information. They 

used CNNs in the training phase for creating the background model. In a quest to obtain a stand-alone 
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SVS that can be used with smart home devices, the researchers in [56] employed a small CNN that 

needed limited training data. The study used transfer learning of representation, whereby first a model 

was trained with a large dataset and subsequently a model was trained in another task to suit the smart 

home devices that need a smaller dataset. Nagrani et al. used an end-to-end SVS that used noisy and 

unconstrained data input [44]. The system involved performing active speaker verification.  

Studies that used a CNN for replay attack detection include the those conducted by Huang et al. [57] 

and Huang et al. [58]. The researchers used a hybrid of MFCC and CQCC features for the extraction 

of speech particulars to differentiate genuine and replay voices. The study employed CNN as a classifier 

in the backend of the SVS and used GMM for the frontend feature extractor. In comparison, our 

approach employs CNN as a frontend feature extractor. For the detection of replay attacks, the 

researchers in [59] built a frontend feature extractor using CNN. However, in contrast to our work, they 

employed only CQCC features for the system. In [60], they used a  DNN for a frontend feature extractor, 

employing the High Frequency Cepstral Coefficients HFCC and CQCC features extraction methods 

and used a Support Vector Machine (SVM) for the backend classifier. 

3.4 Feature Learning 

In the CNN work described here, we present the formulation of the features selected for speaker 

verification and evaluate the performance of the features for training classifiers. We first noted that 

conventional feature learning approaches (machine-learning approaches) directly applied for speaker 

verification classification are not practical for IoT technologies. That is true because the training data 

should be very small when used in the IoT context, while most feature-learning algorithms need a large 

number of parameters for improved performance. In addition, genuine and recorded voice share some 

properties, and we made use of this similarity for feature learning. Therefore, the system proposed in 

this study, has a frontend that uses speaker independent features followed by a speaker dependent 

classifier. This is necessary to leverage data from users to learn features that capture the intrinsic 

properties of the user voice. Subsequently, the classifier was trained for the user using these same 

features.  

Compared to other deep learning methods, CNNs are a particularly suitable architecture for speaker 

verification. The reason is that CNN architecture scale better than fully connected models for larger 

input sizes and have a smaller number of training parameters; a desirable property for the resource-

limited nature of IoT technologies. Thus, to detect a replay attack, a thorough study of the difference 

between the genuine and recorded voice is paramount. As such, we cannot reduce the voice data too 

much without the risk of losing the details that enable discriminating between them (i.e., 

authentic/genuine versus spoofed).  A CNN architecture was trained and subsequently the output of a 
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trained network was used to train the classifier. The idea is that genuine voice and replay voice will be 

easier to separate by using CNNs for capturing the intrinsic properties of the speech. CNNs are 

particularly suitable for speaker verification. By having a smaller number of trainable parameters, the 

architecture used in this work has scales that are better than fully connected methods that require large 

input sizes, having a smaller number of trainable parameters.  

As raised previously, detecting the replay attack requires the system to identify whether the voice 

segment is played live or recorded-and-replayed. Naturally, as is typical in replay attacks, the tone and 

context from the voice of the speaker does not change. Hence, learning the very discriminating features 

to detect the replay from the genuine voice is way too complex.  However, since the replay voice uses 

recording and replay devices, the replayed voice carries information about the two devices on top of 

the genuine voice. This can be seen in Figure 3.2 as the difference between the genuine and the replay 

voice is obvious. Replay attack detection not only needs to focus on the content of the speech, but 

whether sound characteristics of the recording and replay devices exist.  

It became difficult for one type of feature, such as CQCC, standard MFCC, or Long-Term Average 

Spectrum (LTAS), to fit in the representation of replay spoof detection [61]. To that end, the hybrid 

features of CQCC and MFCC were used as an input to the CNN extractor in our approach. Previous 

studies conducted on the replay attack detection have shown promising results by employing the same 

hybrid feature extraction method to train the classifiers. The hybrid features work better in determining 

the differences between the genuine and replay voice [62]. Some researchers have used deep learning 

for feature extraction but with different combinations of features. For instance, the hybrid features of 

HFCC with CQCC was used in [60], and researchers in [59] used CQCC for the replay attack detection. 

 

Figure 3. 2. Replay attack process on speaker verification systems 
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In the extraction of the MFCC features, as one of the best-known features of speech processing, the 

power-spectrum of the framed voice signal is transformed by a filter bank of dimensionality reduction. 

In speech processing, this research uses MFCC to process high-frequency regions that are most affected 

by the spoofing artifacts, while CQCC is used to extract low-frequency regions that may carry minor, 

yet additional information to distinguish between genuine and replayed voices. These two features are 

used to exploit possible complementary characteristics in feature space. As shown in Figure 3.3, the 

resulting hybrid features are used for training the CNN feature extractor. In contrast to the hybrid 

features employed in [58], the research used zero-mean and unit variance normalization of 30-

dimentional MFCC and CQCC features, along with first and second derivatives. The mean and 

variances were computed on the full training data. The next section provides the CNN architecture used 

in the feature extraction phase.   

 

Figure 3. 3. Hybrid feature extraction process 

3.5 Front-end CNN Feature Extractor Architecture 

In the pre-processing work conducted, this feature extraction process included fixing the input size of 

the data to suit the Keras environment because the data had varied size. The pre-processing measures 

taken in feature extraction are discussed in the experiment presented in the next Section 3.6. In the 

development phase, the CNN was trained with a development set of voice using the formulation defined 

below. Subsequently, the input voices’ data were projected onto the representation space learned by the 

CNN for the exploitation set. A binary classifier was trained for each voice utterance. CNNs are a 

suitable architecture for SVSs having a smaller number of trainable data. CNNs can scale better than 

DNN models that need larger input samples. This is a desirable property for the IoT devices that suffer 

from resource-limited property. CNNs are also convenient since there is no need to reduce the input 

data too much, which risks losing the details that enable discrimination between replay and genuine 

voices. The method is illustrated in Figure 3.4. The development subset 𝐷𝐷 was used to train the CNN. 
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The result is a function of 𝜙𝜙. As discussed in Section 3.4, 𝑋𝑋 input voice from the training subset is 

projected to feature a variation of 𝜙𝜙(𝑋𝑋) ∈ 𝑅𝑅𝑚𝑚, where 𝑚𝑚 is the dimensionality of the projected feature 

variation. Features learned from the development set 𝐷𝐷 are useful in the separation of genuine and 

replay voices. The trained CNN was next used as a feature extractor to obtain or extract the feature 

vector 𝜙𝜙(𝑋𝑋𝐸𝐸) for each voice utterance from the training set (𝛦𝛦). The new representation is then used to 

train the classifier 𝑓𝑓. For a new voice utterance 𝑋𝑋𝐹𝐹 from the evaluation set 𝐹𝐹, the CNN was first used 

to extract features to obtain the feature vector 𝜙𝜙(𝑋𝑋𝐹𝐹). Subsequently, this extracted feature vector was 

fed into the binary classifier to obtain the final decision 𝑓𝑓(𝜙𝜙 (𝑋𝑋𝐹𝐹)).   

 

Figure 3. 4 CNN architecture for my feature learning approach. 

An architecture similar to VGG-M [62], mostly used for image classification and speech-related 

application, was employed. Table 3.1 shows the details of the CNN layers. Two fully connected layers 

after convolution layers were used. Softmax activation with N neurons were used. N is the number of 

speakers in the development set 𝐷𝐷. Each convolution layer was followed by a pooling layer that 

generated a lower resolution version of the convolution layer’s activations by taking the maximum filter 

activation. This ensured some degree of shift and distortion invariance. Stride is the distance between 

applications of the convolution or pooling operation. Rectified Linear Units (ReLUs) were used as the 

activation function for all convolution and fully connected layers, except the last one, or the output 

layer that uses Softmax. The model weight was initialized according to the work in [63]. Once the CNN 

had been trained in set 𝐷𝐷, it was used for feature extraction. The model is trained with Nesterov 

Momentum for 60 epochs, using a momentum rate of 0.9, and mini batches of size 100. The networks 

were implemented with the libraries, TensorFlow [64] and Keras [65]. It took four hours to train on the 
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GPU Tesla C2050. With the CNNs, we were able to circumvent the necessity of strongly pre-processing 

the raw audio data and thereby losing possible valuable information.  The network was allowed to 

choose the necessary features, especially for the verification task, from a wide range of available 

possibilities. The network was trained from end-to-end, starting from spectrograms as in [64]. To 

prevent over-fitting, a dropout layer between the layers was used. That is, to address the over-fitting 

problem, a dropout layer is inserted into the all-connected and output layers, to randomly drop units 

and their connections from the CNN network. 

Table 3. 1 Summary of the CNN architecture and layers 

Layer Kernel Stride Size 
Convolution 1 7 × 7 1 × 1 363×190×17 
Convolution 2 1 × 1 1 × 1 440×210×21 
Convolution 3 3 × 3 1 × 1 440×210×36 
Convolution 4 1 × 1 1 × 1 216×100×48 
Local response 1 5 × 5 - - 
Local response 2 5 × 5 - - 
Pooling 1 - 2 × 2 363×190×10 
Pooling 2 - 2 × 2 440×210×18 
Pooling 3 - 2 × 2 216×100×32 
Fully Connected + Dropout - - 4096 
Fully Connected + Softmax - - N 

 

Subsequently, employing the same transfer learning as in [56], the representation was obtained by 

performing forward propagation. Based on the formula, after forward propagation,  for the input 𝑋𝑋, the 

feature extractor function 𝜙𝜙(𝑋𝑋) is the representation network at the last layer before Softmax. This 

makes the features, learned for the set 𝐷𝐷 during the training of the CNN network, stand relevant for 

classifier training. For training, the classifier, the training, and validation sets were used. For each 

speaker utterance in 𝐸𝐸 (the training set), the trained CNN extractors were used to extract features, and 

the extracted features were submitted to train the classifier 𝑓𝑓. For the classification, SVM were tested 

(both linear SVMs and SVM with a RBF kernel) [66, 67]. 

To train the classifiers, feedforward propagation was performed until the last layer before Softmax and 

thus used the activations at the layer as the feature vector for the speech. This was achieved by using a 

transfer learning between sets of users. For each user, a training set consisting of genuine and replay 

voices were built. The SVM was trained both in linear formulation and with the Radial Basis Function 

(RBF) kernel. Likewise, for the evaluation, a disjoint set of genuine and replay voices that had not been 

used for the training were used.    
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3.6 Experimental Setup and Results Validation 

In the research, we used the ASVspoof 2017 dataset [68] used by previous researchers for comparison. 

The dataset was created by the RedDots project [40], and consists of audio files of different speakers 

and different environments. The dataset contains three sub-datasets, including training, development, 

and evaluation, which contains 3014, 1710, 13306 audio files, respectively. The audio sets are tagged 

as genuine or spoofed voices. The frontend feature extractor was trained and verified with these tags. 

The summary of the dataset is detailed in Table 3.2.  The dataset was prepared for replay spoof attack. 

The replayed data was collected from a pool of volunteers with access to a diverse array of replay and 

playback devices, in different session conditions. Audio signals in the dataset have a resolution of 16 

bits, a sampling rate of 16 kHz, and utterance durations from 3 to 5 seconds.  The size was large enough 

to allow details from signals in the voice, while also small enough to enable training. While there was 

no overlap in speakers between the data partitions, there was some overlap in replay configurations 

between the partitions.  

Table 3. 2. Summary of dataset used in the experiment 

Subsets #Speakers #Genuine utterances #Spoofed utterances 

Training 10 1508 1508 

Development 8 760 950 

Evaluation 24 1298 12008 

Total 42 3566 14466 

 

For pre-processing, the speech pad was cut to 3 seconds. Subsequently, in the feature extraction process, 

a hamming window structure was used for both MFCC and CQCC framing setups. The size of the 

window was set at 50ms and the step size of 25ms with a 25ms overlap. The minimum frequency was 

set to 3 kHz and maximum frequency was set to 8 kHz. After the features MFCC and CQCC were 

extracted, the two were combined to train the network. In the experiment, it was evident that the 

employment of CNN as the feature extractor in speaker verification  is more precise and outperforms 

conventional systems, such as GMM-UBM and i-vector, in detecting replay attacks. As reported in a 

number of research papers, employment of deep learning is advantageous. In [46], the study compares 

CNN and GMM-UBM using Equal Error Rate (EER): GMM-UBM with an EER of 17.1, i-vector with 

an EER 12.8, and CNN with 11.3 EER. In [55], which employed DNN for speech, feature extraction 

with better performance compared to GMM-UBM and i-vector was obtained. However, our work 

shows better precision and performance compared to those researches. That is, the experiment has 

shown better replay spoof detection in comparison to the systems reported in the literature. Hence, with 
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the two different features used for classification, we obtained EER of 7.91% with the leaner SVM, and 

7.1% using the EBF kernel.  

3.7 Chapter Summary  

A three-layer SVS that uses CNN, based on text-independent feature learning, has been presented. The 

method does not rely on direct utterance by individuals; rather, a recorded sample speech was used for 

differentiating genuine speech and forged speech. The experiment was conducted on the ASVspoof 

Dataset (see Section 5) to demonstrate that this method is promising; it achieved better performance 

when compared to state-of-the-art techniques presented in the replay attack challenge 2017.  In the 

experiment, we were able to train CNN for feature extraction and SVM for feature classification. The 

results show a promising improvement. The CNN network and SVM coding employed in this chapter 

can be found in Appendix B and Appendix C, respectively.  
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Chapter 4: Replay Spoof Attack Detection Using DNNs for Classification 
In this chapter, we explore the use of the deep learning-based backend in speaker verification systems 

(SVSs) for replay spoof detection. Automatic speaker verification (ASV) systems can be easily spoofed 

by previously recorded genuine voice.  To counter the issues of spoofing, detecting replay spoof attacks 

play an important role. Hence, we consider the detection of replay spoof attacks the most easily 

accomplished spoofing attack. In this light, we propose a Deep Neural Network-based (DNN) classifier 

using a hybrid feature from MFCC and CQCC. Several experiments were conducted on the latest 

version of the ASVspoof 2017 dataset. The results are compared with a baseline system that uses the 

Gaussian mixture model (GMM) classifier with different features that include MFCC, CQCC, and the 

hybrid features of the two. The experiment results reveal that the DNN classifier outperforms the 

conventional GMM classifier. It was found that the hybrid-based features are superior to single features, 

such as CQCC and MFCC, in terms of EER. In addition, as other researchers have discovered, high-

frequency regions of voice utterance convey greater discriminative information for replay attack 

detection. 

4.1 Introduction 

The use of biometrics for human authentication has become an important part of securing applications 

[69]. Although, in the last decade, the world has experienced rapid adoption and increased effectiveness 

of biometrics-based authentication systems, the success of such biometric systems is not only measured 

by its effectiveness, but also by the availability and affordability of the technology required to measure 

the human factors it uses [70, 71]. Voice is one of the most commonly used biometrics in the market 

nowadays, because it has the advantage that it can be easily captured with readily available personal 

devices [18]. Hence, ASVs have gained the attention of both researchers and industry [72]. 

Nevertheless, ASVs are vulnerable to spoofing attacks where an impersonator claims the identity of 

someone that he is not [73]. Known spooking attacks associated with ASVs include mimicry attacks, 

conversion attacks, and replay attacks. A mimicry attack is when a professional imitator mimics the 

utterance of the voice of a genuine user to gain unauthorized access [74]. Conversion attacks happen 

when voice transformation is performed on an imposter’s utterance so that it sounds more like that of 

a genuine user [75]. Finally, a replay attack is a spoof technique where pre-recorded speech is provided 

to speech verification systems, with the help of record-and-play devices, to impersonate a genuine user 

[73]. Among the three spoof attacks, replay attacks pose the most serious threat to ASVs [40]. The 

technique does not require expertise and is difficult to detect (i.e., enjoys more than 50% success rate). 

A high-quality smartphone is sufficient for someone to employ the technique effectively. As a 

consequence, there is a pressing demand for robust replay attack detection methods [40, 76].  
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Some traditional replay prevention attack techniques exist, such as the use of text-prompted ASV 

systems [77, 78], and the use of additional biometric modalities [79, 80], for use  as a means of replay 

attack prevention. In these systems, there is a tradeoff between system security and system complexity 

[81]. Therefore, replay attack detection approaches have attracted researchers [82, 83]. The replay 

attack detection methods are of two approaches. One approach researchers have opted for adds auxiliary 

information to the utterance; for instance, researchers in [84] proposed the addition of a time stamp in 

the utterance of the genuine user, thereby validating the time stamp in the replay attack. The other 

approach focuses on detecting the distortion associated with the recording and replay devices that are 

used to accomplish the replay attack [40]. This latter approach is where we choose to focus our attention 

for the detection of replay attack.   

Several researchers have worked on the detection of distortion as a countermeasure to replay attacks. 

For instance, in [85], to detect the replay attack the research found that the spectral ratio, low-frequency 

ratio, and modulation index carry relevant information to differentiate between the replay speech from 

the genuine speech. A matching algorithm that detects the cut and paste of the voice is employed and 

the detection is achieved by comparing the pitch and MFCC contours using Dynamic Time Warping 

(DTW). Several replay detection solutions on text-independent ASV systems are proposed in [86]. 

Conventional ASV systems were employed in this research. However, in later studies it became 

apparent that such systems have issues of precision and performance when detecting replay attacks. For 

example, in [61],  the research proved that, with the use of replay attack detection GMM-UBM-based 

ASV systems, the equal error rate (EER) increased from 2.61% to 15.03% for 459 genuine male  and 

1.82% to 34.09% for 220 genuine female speeches. Hence, it can be concluded that GMM-UBM-based 

systems are highly vulnerable to replay attacks [87]. In this light, domain research started employing 

deep learning techniques to overcome the problem [88]. Neural networks for ASV systems provide 

more natural solutions than conventional algorithms.  

This inspired the successful application of deep learning frameworks in the ASV systems domain for 

replay attack detection. For example, some of the researchers have employed conventional systems, 

such as GMM-UBM and i-vectors with DNN, for better performance and precision. These systems are 

usually employed in text-dependent speaker verification  systems [48, 49]. For instance, DNN is used 

for extracting frames from a speaker’s speech and calculating its utterance-level information. 

Subsequently, the output of the DNN is converted to i-vectors, and at the backend, PLDA is used for a 

verification score [50, 51]. In such work, the DNN features are either used alone or combined with the 

conventional features (i.e., MFCC). Features extracted from DNN are employed in the posterior. These 

researchers use DNN to extract speaker-specific data and apply the similarity metrics check for the 
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verification score [45]. However, there is always room for improvement, and such domain researchers 

are still working on obtaining systems and methods with better precision and performance that use deep 

learning techniques. There are several studies using the deep learning model for replay attack, and it 

remains a hot area of research. Different studies using deep learning models for replay attack detection 

are presented in the related work section below.   

In this chapter, we propose a deep neural network-based classifier that uses hybrid features. Our 

contribution is twofold. The first is at the feature selection level, where we propose a hybrid feature 

that uses CQCC and MFCC to capture discriminative characteristics of both high-frequency and low- 

frequency regions of speech utterance, respectively. The second is that we propose a model-level work 

that contributes a DNN-based classifier that is trained to discriminate between different conditions due 

to changes in playback, recording, and environmental characteristics and context.  

4.2 Modeling in Speaker Verification  

The conventional SVSs used GMM-UBM and i-vector as state-of-the-art approaches of modeling for 

a long time. The modeling approaches rely on dimensional input features for extraction using MFCC. 

Nevertheless, MFCC has shown performance degradation [89]. As a result, domain researchers have 

started investigating deep learning approaches for better feature extraction [43, 45]. Deep learning 

approaches have shown promising results with other verification systems using biometric trails, such 

as face and signature. For instance, DNN gained momentum for use in re-identification problems in 

face recognition [90] and the identification of a forged signature in signature verification systems [91]. 

Hence, using DNN, CNN, or Recurrent Neural Network (RNN) for feature extraction of biometric 

models has become a trend [59]. Particularly, DNN and CNN approaches have become more suitable 

for the extraction of speaker-specific features to detect replay spoofing attacks [55].  

Several replay attack detection approaches have been proposed following the ASVspoof attack 

challenge held in 2017 [68]. Lantain et al. [92] observed that the use of Inverted Mel-frequency Cepstral 

Coefficients (IMFCC) for replay attack detection outperformed that of standard MFCC features.  In 

[60], the researchers proposed a DNN-frontend architecture, which uses HFCC in tandem with CQCC 

features, for replay attack detection. They employed the ASVspoof dataset and used a SVM classifier. 

Some of the research has employed the conventional systems, such as GMM-UBM and i-vectors with 

DNN, for better performance and precision. These systems are usually employed in text-dependent 

SVSs [48, 49]. For instance, DNN is used for extracting frames from a speaker’s speech and calculating 

its utterance-level information. Subsequently, the output of the DNN is converted to i-vectors, and at 

the backend, PLDA is used for a verification score [50, 51]. In such work, the DNN features are either 

used alone or combined with the conventional features (i.e., MFCC). Features extracted from DNN are 
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employed in the posterior. These studies use DNN to extract speaker-specific data and apply the 

similarity metrics check for a verification score [45]. In [93],  the researchers used a DNN-based 

classifier using features extracted from the LTAS. In the end, the proposed DNN classifier was 

compared with the GMM classifier that uses MFCC and CQCC features. The result showed that the 

DNN outperforms the GMM classifier.    

The researchers in [59] proposed an end-to-end deep learning approach for the detection of replay spoof 

attacks. The approach consists of a Lite Convolutional Neural Network (LCNN) (at the frontend) and 

RNN at the backend. Observations reported in this chapter include that frequency range analysis for 

replay attack detection performs better with 4-8 kHz and 6-8 kHz sub-bands, which carry the most 

discriminative information segments. The researchers in [57, 58] have also employed CNN for replay 

attack detection using a hybrid feature of MFCC and CQCC extractions. They used the CNN as the 

classifier in the backend, while using GMM for the frontend of an automatic SVS. The researchers built 

a frontend feature extractor using CNN; they used CQCC features for the system. In [94], the 

researchers proposed a system with an improved spoofing detection approach. The approach uses Gated 

Recurrent CNN as a deep feature extractor, which is later used as the backend classifier. They proposed 

a new input feature, signal-to-noise masks (SNMs). An end-to-end system that employs CNN as feature 

extractor and RNN as the classifier was proposed for spoof detection in [88]. 

4.3 Features for Replay Attack Detection 

Detecting a replay attack requires systems to identify whether the speech segment is played live or 

recorded-and-replayed. Naturally, in replay attacks, the tone and context of the speech of the speaker 

does not change. As depicted in Figure 4.1, the difference between the genuine and replay speeches is 

obvious. Since the replay speech uses recording and replay devices, the replay speech carries 

information about the two devices on top of the genuine speech. As such, replay attack detection not 

only needs to focus on the content of the speech, but also whether the sound characteristics of the 

recording and replay devices exist. It became difficult for one type of feature, such as CQCC, standard 

MFCC, or LTAS, to fit in the representation of replay spoof detection [61]. To that end, the hybrid 

features of CQCC and MFCC were used as an input to the DNN classifier in this research. Previous 

studies conducted on replay attack detection have shown promising results by employing the hybrid 

feature extraction method to train the classifiers [93]. The hybrid features work better in determining 

the differences between the genuine and replay speech. Some researchers have used the learning for 

classifiers but with different combinations of features. For instance, the hybrid features of High-

Frequency Cepstral Coefficients (HFCC) with CQCC is used in [60], and researchers in [59] used 

CQCC for replay detection.  
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Figure 4. 1. Replay attack process on ASV systems 

In the extraction of the MFCC features, as one of the best-known features of speech processing, the 

power-spectrum of the framed speech signal is transformed by a filter bank for dimensionality 

reduction. In speech processing, this research uses MFCC to process high-frequency regions that are 

most affected by the spoofing artifacts, while CQCC is used to extract low-frequency regions that may 

carry minor, but additional information to distinguish between genuine and replayed speeches. These 

two features are used to exploit possible complementary characteristics in feature space. As shown in 

Figure 4.2, the resulting hybrid features are used for training the DNN classifier. In contrast to the 

hybrid features employed in [58], our research used zero-mean and unit variance normalization 30-

dimentional MFCC and CQCC features, along with first and second derivatives. The mean and 

variances were computed on the full training data.  

  

Figure 4. 2. Hybrid feature extraction process 

4.4 The DNN-Architecture Classifier 

A classification model in the form of DNN is proposed. In most cases, for replay spoof attack detection, 

DNN was used for feature extraction. The proposed DNN architecture was fully connected to a feed-

forward neural network. It consisted of multiple hidden layers. When using deep learning, it is 
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necessary to have enough samples to improve the performance of the deep network. There are several 

problems associated with DNN. The first problem is the need for more computational capacity; this 

occurs from the input of every layer and the parameters of preceding layers that change in every training 

epoch. The second problem associated with DNN is over-fitting.  Nevertheless, these issues can be 

tackled with batch training (i.e., dividing data into groups), which helps overcome the memory 

requirement. Batch normalization is also useful to accelerate the learning process and help reduce the 

effect of hyper-parameters. In the end, the dropout technique solves the over-fitting problem.  

Spoofing-discriminant DNNs with five hidden layers were used to distinguish the genuine from the 

replay spoof speech in this experiment. Each of the layers has 2048 nodes with a sigmoid activation 

function. The nodes at the output layer were K + 1 and the Softmax activation function was used in that 

layer. The K + 1 output nodes correspond to one genuine speech and K spoofing attacks. Batch 

normalized super vectors Fi that are composed of n hybrid features vectors were used for DNN training.  

Fi = {x1, x2……, xT} 

Where T is the number of hybrid features. Using TensorFlow/Keras, the DNN was built and trained. 

Stochastic gradient descent methods were used, and the cross-entropy function was selected as the cost 

function. The maximum training epoch was chosen as 120, while the mini-batch size was set as at 128. 

By counting how many frames were similar to the genuine speech, the replay speech was detected. The 

posterior obtained at the output layer of the DNN was transformed into Log-Likelihood (LLR) score 

as: 

LLRDNN = log p(genuine|Fi) – log p(replay|Fi) 

4.5 Experimental Evaluation and Results Validation 

The research used the ASVspoof 2017 dataset [68, 95] in the experiment. The dataset is produced for 

spoof attacks, most of which are replay spoof attacks. The resolution of all the audio signals in the 

dataset is 16 bits; the sampling rate is 16 kHz. The duration of the utterance lasts approximately 3 to 5 

seconds. The summary of the dataset is depicted in Table 4.1.  
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Table 4. 1. Summary of the dataset used in the experiment 

Subsets #Speakers #Genuine utterances #Spoofed utterances 
Training 10 1508 1508 
Development 8 760 950 
Evaluation 24 1298 12008 
Total 42 3566 14466 

     

A hamming window with the size of 10 ms was used to calculate the short-time zero-crossing rate and 

short-term energy. Then the threshold was set to find the silent segment and speech segment. The silent 

segment was of length 512 ms, while the speech segment had a length of 1525 ms. A segment with 

insufficient length was duplicated. The silent segment was represented with a MFCC feature and, after 

setting at a frequency of 3-8kKz, it obtained 60*78 features. The speech segment extracts were 

represented with a CQCC feature and the selected hamming window. The window size was 50ms; and 

the step size was 25 ms, that is, there was a 25 ms overlap, and 48 coefficients were selected.   

After CQCC and MFCC features were extracted and combined, a feature of 60 x 126 was obtained. 

The feature was then used as an input to the DNN classifier. All three subsets were employed for the 

model training. The result has shown that the hybrid features with the DNN classifier produced the best 

performance. We used a single feature as the input to baseline GMM system and DNN system as well. 

The results are shown in Table 4.2. 

Table 4. 2. Evaluation results of the DNN based backend classifier using hybrid features 

Systems 
EER% 

Dev Eval Eval + Dev 

CQCC → GMM 8.18 27.79 15.54 

MFCC → GMM 5.54 25.54 14.78 

CQCC → DNN 10.8 23.57 10.8 

MFCC → DNN 7.36 20.84 13.56 

MFCC + CQCC → GMM 8.67 22.67 18.25 

MFCC + CQCC → DNN 2.68 7.65 5.64 

    

We used CQCC as input features to the DNN. The system produced excellent results with EERs of 

10.8%, 23.57%, and 10.8% on the Dev, Eval, and Dev+Eval sets, respectively (third row blue). 

Likewise, we used MFCC as input features to the DNN and also showed excellent ERRs of 5.54%, 

25.54%, and 13.56% on the Dev, Eval, and Dev+Eval sets, respectively (row four). This shows that our 
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DNN classifier outperformed the GMM-based classifier. Using the hybrid features (MFCC+CQCC) as 

input to the DNN system, the result produced ERRs of 2.68% on Dev set, 7.65% on Eval set, and 5.64% 

on Dev+Eval set (last row). The result also shows the benefit of combining CQCC and MFCC features. 

The overall scores indicate that the use of the Hybrid features with our DNN system outperforms the 

GMM systems. 

4.6 Chapter Summary 

In this study, we explored the application of deep learning frameworks as a classifier for the detection 

of replay spoofing attacks in automatic SVSs. The study investigated implementation of DNN at the 

back of ASV systems, which is not common in the literature. The model was shown effective in the 

experiment and the proposed solution outperformed existing classifications. The ASVspoof 2017 

dataset was employed for the experiment where hybrid features of CQCC and MFCC extractions were 

used to train the model. The hybrid features used as the input to the DNN model showed that good 

discriminative characteristics were extracted from the speech utterance to differentiate between genuine 

and replay speeches. The coding of the DNN architecture can be found in Appendix D.   

 



39 
 

Chapter 5: A Security Hardened End-to-End Lightweight IoT Voice 

Authentication System 
Prevalent use of smart IoT devices and systems combined with home automation demands that such 

devices play their role dependably and securely from registration through to decommission (i.e., end-

to-end). Although password-based authentication systems have the advantage of great convenience, 

they became exceedingly vulnerable to the point that their length requires a computer to remember. 

Biometric-based authentication, especially as a second factor, is an obvious and usable tactic to 

authenticate IoT devices. Herein, we present a secure voice biometric-based authentication system. The 

basic motive for the proposed voice-based authentication system is to distinguish the legitimate IoT-

device user from an imposter (e.g., replay attack). Our approach uses deep learning (i.e., convolutional 

neural nets [CNNs]) to achieve this objective, namely end-to-end security. We describe a method where 

the final max/average pooling layer was replaced with a special pyramid-pooling layer in a residual 

network architecture; this has the advantage of allowed us to relax the fixed-length input constraint and 

to train the entire network with arbitrary sized voice inputs. As a result, we were able to identify the 

legitimate users from their imposters. The proof-of-concept has been implemented on a mobile IoT 

cloud. Control of the system resides in the cloud and the user’s smartphone has an end-user app from 

which the user authenticates themselves to an Android wearable device on the other end. The accuracy 

of the model has been thoroughly tested and verified repeatably. Also, these experiments demonstrate 

how easily users can authenticate themselves. The CNN architecture used here was compared to I-

Vector baseline systems. The result has showed a significant 15.8% improvement over the baseline 

system. 

5.1 Introduction 

In recent years, the Internet of Things technologies have increasingly emerged with the potential for 

transforming every context of computing along with the expanding interconnection of devices via 

Internet. IoT technologies are used in a range of applications that include the manufacturing industry 

[96], smart cities (smart home, healthcare, smart vehicle) [97, 98], and transportation [99]. It was 

reported that in 2020 nearly 38 billion devices would be connected to the Internet [100]. However, the 

rising adoption of IoT technologies came with increased security and privacy concerns.  IoT technology 

vendors and manufacturers do not keep in mind the security aspects of their devices. In [102], Gartner 

predicted that by 2020, 25% of attacks would be on IoT technologies; thus, IoT technology-using 

organizations or individuals were advised to invest in securing data. In most cases, IoT technologies 

contain actuators, sensors, or smartphones.  Such smart devices possess the capability of sensing, 

monitoring, and collecting data about the user environment. Such data may contain a user’s private or 
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confidential information. This has increased the attack surface of the IoT devices. Hence, for users to 

have proper control over their devices, certain applications for smart devices are being developed to 

access services offered by using IoT networks. For example, Lockitron is a smart device that can lock 

and unlock doors via remote control, typically through a smartphone. Most IoT technologies can be 

monitored and controlled via smart device applications [12]. For another example, Voice Control 

Systems (VCS), such as Siri and Alexa, are used for giving commands to IoT devices to perform certain 

activities; VCS systems are also used for managing home electrical appliances [101]. Hence, this 

increases the amount of data stored in such smart devices used for controlling IoT technologies. The 

huge data accumulated in such smart devices in turn brings with it adverse underlying effects, such as 

the invasion of privacy and the potential misuse of information about the user [102, 103].  

Users remotely access IoT devices through smart device applications to connect to nodes or sensing 

elements in an unattended manner. Once connected, the user can access desired information from 

specific nodes. This makes remote user authentication very critical in IoT networks; only legitimate 

users should be able to access IoT nodes while using any service on his/her smart devices. Insufficient 

user authentication has been raised as one of the main security issues in the IoT environment. The 

increasing connectivity features of IoT devices also create another layer of security threat. For instance, 

smartwatches used to have limited features, such as Bluetooth, but now almost all brands of 

smartwatches have connectivity features like Wi-Fi. As more connectivity features are introduced to 

wearable devices, these devices experience more attacks [104].  

One of the most commonly used user authentication methods is the use of passwords due to its 

simplicity. However, in this overly connected world this authentication method creates problems: in 

addition to having a problem remembering the correct password for various devices and utility services, 

the user is expected to have at least 19 different passwords to achieve a certain level of strong user 

authentication [105]. This is the reason why most smart devices have added some kind of biometric- 

based authentication. Nevertheless, even the biometric-based authentication methods have seen 

spoofing attacks. For example, fingerprint-based authentication can be easily deceived by high- 

resolution fingerprint images. Iris-based authentications can be attacked by using high-quality iris 

images [12]. Other authentication methods currently on market include PIN, smart cards, and token-

based authentication. One common bottleneck for all of these authentication methods is that they all 

need some sort of hardware. One key characteristic of IoT systems is that they are computing, and 

storage compared to conventional networked systems. Using voice for command has become a popular 

user authentication in the IoT environment. Even though the voice-based authentication method has the 

advantage of great convenience, it is extremely vulnerable to spoofing attack due to its broadcast nature 
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[106]. This kind of attack has opened a door for perpetrators who want to compromise user information 

and perform undesirable operations, which may pose serious threat to the security of IoT systems.  

The spoofing attacks that make voice-based authentication vulnerable include the replay attack. In the 

replay attack, an adversary tries to use the pre-recorded voice of the legitimate user to compromise the 

system [73]. One approach that has been proposed to defend against such spoofing attacks is by 

detecting the recorded voice from the original voice of the user. Hence, a voice-based authentication is 

measured by its level of detection of the pre-recorded voice as compared to the genuine voice of the 

user [40, 76]. However, the existing voice-based authentication schemes suffer from issues of precision 

when detecting replay attacks. As a result, various feature extraction and classification methods are 

needed to improve their level of precision. In addition, these methods also impose unacceptable risks 

to privacy since a user’s voice data can be utilised to infer the user’s behavior in their daily life [81].   

In this chapter, we present a secure lightweight voice authentication method based on an end-to-end 

deep learning feature extraction and classification approach. Our method consists of a speaker- 

independent CNN feature extraction using frontend, and feature classification using backend. For the 

feature learning, speaker-independent features are learned using a subset of users, and subsequently 

used to train speaker-dependent classifiers for another set of users. The adapted CNN architecture was 

fed with fixed-length voice representation of 3 seconds. The experiment was conducted on the newly 

released ASVspoof19 dataset that covers various kinds of spoofing attacks, such as voice conversion, 

text-to-speech, and replay attacks [40]. Conversely, ASVspoof17 focused instead upon replay spoofing 

attacks and countermeasures. We selected ASVspoof19 because replay spoofing attacks within a 

physical access (PA) scenario are generated through carefully controlled simulations that support much 

more revealing analysis than in ASVspoof17 [40]. Our main intention was to propose a secure 

lightweight voice-based authentication system. Subsequently, its implementation and efficiency is 

presented. Using the proposed architecture, compared to the state-of-the-art and conventional machine-

learning methods, a better performance has been obtained with the end-to-end deep learning methods.  

5.2 Deep learning approaches in Biometric authentications 

A number of spoofing attacks have been identified in voice authentication systems [107]. There are 

four main spoofing attacks for speaker verification systems (SVSs), and they include impersonation, 

replay, speech synthesis, and voice conversion.  Impersonation is said to not be a serious threat for the 

authentication systems. Conversely, the replay attack is the most serious among the other three attacks. 

Different research has been conducted on mitigating such attacks. To enhance the security of ASV 

systems against these attacks, automatic speaker verification spoofing and countermeasure (ASVspoof) 

initiatives have provided a platform for researchers to follow-up, study, and compare spoofing detection 
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systems [95]. While dealing with speech synthesis and voice conversion require expertise and 

specialized equipment, the replay attack does not require any expertise or specialized equipment [2]. 

Many researchers have proposed defense mechanisms for replay attacks [61, 82, 85].  

Some researchers have employed deep learning methods as a better way of detecting replay attacks. 

Lantain et al. [92] observed that the use of IMFCC for replay attack detection outperformed that of 

standard MFCC features.  In [60], the researchers proposed a DNN-frontend architecture, which uses 

HFCC in tandem with CQCC features, for replay attack detection. They employed the ASVspoof 

dataset and used a SVM classifier. Some of the research has employed the conventional systems, such 

as GMM-UBM and i-vectors with DNN for better performance and precision. These systems are 

usually employed in text-dependent SVSs [48, 49]. For instance, DNN is used for extracting frames 

from a speaker’s speech and calculating its utterance-level information. Subsequently, the output of the 

DNN is converted to i-vectors, and at the backend, PLDA is used for a verification score [50, 51]. In 

such works, the DNN features were either used alone or combined with the conventional features (i.e., 

MFCC). Features extracted from DNN were employed in the posterior. These researchers used DNN 

to extract speaker-specific data and applied the similarity metrics check for the verification score [45]. 

In [93],  the researchers used a DNN-based classifier using features extracted from the LTAS. In the 

end, the proposed DNN classifier was compared with the GMM classifier that uses MFCC and CQCC 

features. The result showed that the DNN outperforms the GMM classifier.   

 The researchers in [59] proposed an end-to-end deep learning approach for the detection of replay 

spoof attacks. The approach consisted of LCNN (at the frontend) and RNN at the backend. 

Observations reported in this paper included that frequency range analysis for replay attack detection 

performed better with 4-8 kHz and 6-8 kHz sub-bands, which carry the most discriminative pieces of 

information. The researchers in [57, 58] also employed CNN for replay attack detection using a hybrid 

feature of MFCC and CQCC extractions. They used the CNN as the classifier in the backend, while 

using GMM for the frontend of an automatic SVS. The researchers built a frontend feature extractor 

using CNN; they used CQCC features for the system. In [94], the researchers proposed a system with 

an improved spoofing detection approach. The approach uses Gated Recurrent CNN as a deep feature 

extractor, which was later used as the backend classifier. They proposed a new input feature, Signal-

To-Noise Masks (SNMs). An end-to-end system that employs CNN as feature extractor and RNN as 

the classifier was proposed for spoof detection in [88]. In [108], the researchers proposed a voiceprint-

based authentication system that used DNN to extract features that can be used alongside MFCC to 

improve the SVSs. However, the model did not target the resilience of the system in regard to spoofing 

attacks. In [109], the research investigated a voice pathology-using authentication system that also used 
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a deep learning approach. The model has been used in a mobile healthcare framework where the mobile 

device is used for capturing the voice features. The voice signals are pre-processed before they are fed 

in a CNN network. Using the Caffenet and VGG-16 variant of the CNN network, the result of the 

experiment showed a voice pathology detection accuracy of about 97.5%.        

Biometric-based authentication systems that did not use voice include, for example, the researchers in 

[112] who proposed a fingerprint-using authentication system that used a deep learning LSTM that 

enables IoT devices to a extract s set of stochastic features to effectively authenticate the reliability of 

signals. In [110], an iris-based IoT authentication system that uses a deep learning approach was 

proposed. The research compared the proposed systems to that of some existing traditional iris-based 

authentication systems where the proposed systems have shown significant performance improvement. 

The systems were particularly able to challenge mimicry attacks. Likewise, a selfie face and ocular 

biometric-based authentication model that uses CNN networks was proposed in [111]. The CNN 

architectures were used for feature extraction while SVM were used for classification. The two 

biometric features were collected independently and later fused with different CNN networks, such as 

VGG and InceptionNet. The model focused on performance and has not been evaluated for its 

resilience. An IoT-authentication model that used gaze and touch biometrics used for mobile IoT 

devices was proposed in [112]. In [113], the researchers proposed a deep learning-based authentication 

model that uses LSTM  of unit length 2048 with an accuracy of 99.58%. In [110], the study improved 

an iris-based authentication model that uses deep learning, training the network with an augmented 

database. The model achieved promising results of 98.55% for the test set Bath 800 and 99.71% for 

CASIA. In addition, a CNN-based multi-class authentication model trained over 56 000 iterations, 

which achieved 99.10% for detecting forgery was proposed in [114].  

5.3 Motivation  

Authentication systems are used for the validation of the identity of an entity based on a previously 

registered password. Resilient authentication approaches tend to prevent an imposter, who uses attacks 

such as a replay attack, an impersonation attack, or a key stolen attack, from accessing a system. In the 

case when the system fails to identify the imposter from the genuine user, the system can be 

compromised and private user data, including credentials, may be stolen. In addition, once the imposter 

gains access to the system, other security threats can be launched to further ruin the system [115]. As 

such, authentication is the prime security attribute for IoT devices. Since, IoT technologies can 

exchange data with each other without the consent of the owner, IoT devices accumulate sensitive 

private user data. Furthermore, illegal access to an IoT device may even be to life threatening; such is 

the case, if the body-area network device that monitors the health of a patient is compromised, causing 
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unwanted consequences to the patient. Therefore, authentication must be the first priority when setting 

up safe and reliable communication among different IoT devices. Authentication is considered as an 

attractive and favorable approach for securing smart home devices [116].       

5.4 Proposed Voice Authentication System (VAS)  

The proposed method has three modules, which include the registration module, the verification 

module, and the authentication module. In the registration module, the user starts to register himself or 

herself using his/her voice. This happens via an application on the user’s smartphone. Once the system, 

which resides in the cloud, receives the voice of the user, it then generates a secret key based on the 

user’s identity. Next, the verification module starts by first making sure if the network, from which the 

user is trying to access the IoT device, is safe. The verification module must also to verify whether the 

user is a new user or a returning user. This verification is achieved based on the user voice submitted 

at the registration phase. If it is a new user, the system creates a new model for this user. If the identity 

claimer’s voice is that of a legitimate returning user, the user will have access to the IoT network via 

the IoT gateway. In the authentication module, using the secret key generated in the registration module, 

the cloud-residing council encrypts the voice using a hash function and generates a session key with 

the IoT gateway, and then the encrypted voice is sent to the IoT device. The IoT device sends the 

encrypted voice to the IoT gateway to send the session key back to the IoT device that the user wants 

to connect to.   

 
  

Figure 5. 1. Authentication model proposed for IoT user authentication 
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As shown in Figure 5.1, in the network scenario of the proposed authentication method, users can 

communicate with smart devices to access services. The network scenario contains a set of constrained 

devices. Each user is expected to use his smartphone to access IoT devices via an application connected 

to an IoT management council that resides in the cloud. Smart devices are accessed via the IoT gateway. 

5.5 Deep Learning-Based Feature Extraction and Classifiers    

An end-to-end deep learning neural network was used for feature extraction and classification in the 

proposed model. As a result of advances in audio devices, it has become increasingly difficult to 

determine typical characteristics of a replay speech based on conventional machine-learning methods. 

Thus, to detect basic characteristics in the replay speech, an end-to-end deep learning method was 

employed in this model. The deep learning method used in this model was comprised of CNN used at 

the frontend of the feature extraction, as well as at the backend classification of the model. In other 

words, the input features were first processed with the CNN layers to extract frame-level embedding. 

The CNN have residual blocks with identity mapping to facilitate the training of deep architecture. In 

addition, the CNN layer used in the model processes local adjacent time and frequency domains and 

repeated pooling operations are used to extract frame-level embedding. Sample architecture of the 

original CNN, as introduced by LeCun et al. (1969), is shown in Figure 5.2.  

 

 
 

Figure 5. 2. Original architecture of CNN as proposed in [117] 

Two disjoint sets of users were used in the training of the feature extraction and classifier. The 

development  set in the dataset was used for learning the CNN based extraction, while the classifiers 

were trained on the evaluation set  .  A function  𝜙𝜙(𝑋𝑋)  takes  𝑋𝑋 user voice data of the development 

 dataset as input and returns a fixed feature vector. The learned function is then used to extract 

features for the voice data in the evaluation set  and train a classifier for each user.  
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Usually, it is reported, that for CNN architecture the input size of the data has to be specific for training 

and testing. This constraint is caused by the usage of fully connected layers at the end of the network 

architecture. That is to say, the convolution and pooling layers do not ask for a fixed size of input data. 

The problem between the pooling layer 2 and fully connected layer 1 is obvious in Figure 5.2. The last 

pooling layer l2 is flattened to a vector dimensionality  and the fully connected layer l1 uses a weight 

matrix of size where is the output size of the fully connected layer. If CNN processes an 

input of a certain specific size, the output of the last pooling layer l2 is expected to have a different size. 

That output size will not define the product of the fully connected layer l1. Hence, spatial pyramid 

pooling (SPP), as provided in [118], is used to obtain a fixed-sized representation for variable-size input 

data. In the training, the CNN is initialized with random weights and the training is performed with 

stochastic gradient descent to minimize the loss function. Mini batches of data are used to speed up the 

training. As such, the row data as presented in the dataset is used as CNN input. The probability of 

discriminative embedding  and  of the same speaker is modelled by their cosine Equation (1) as 

provided in  [51]. 

 

   

 

The triplet loss that takes in as input three samples as shown in Figure 5.3 including , , and . 

That is to say,  is an utterance from a specific speaker (anchor),  is another utterance from the 

same speaker (positive), and  is an utterance from another speaker (negative). Updates are made to 

seek for the cosine similarity between the anchor and the positive examples are larger than the cosine 

similarity between the anchor and the negative examples. This is formally provided as 

 

 

  

where,  the cosine similarity between the anchor  and the positive example  for triplet , and 

is the cosine similarity between the anchor and the negative example  in triplet . A minimum 

margin  is imposed between the similarities.  
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Figure 5. 3. Triplet loss of a speaker embedding training system 

5.6 Dataset  

The ASVspoof 2019 dataset was used for the experiments. The details of the dataset are given in Table 

5.1. The dataset contains utterances of 107 speakers.  The training set has 5400 genuine utterances and 

48,600 spoofed utterances. 

 
Table 5. 1 ASVspoof 2019 details 

Sets 
Total 
Speakers Male Female 

Development  10 4 6 
Training  20 8 12 
Evaluation 48 21 27 

 

5.7 Implementation and Results       

This section demonstrates the implementation of the proposed IoT authentication model using a 

smartphone and a smartwatch. The management council of the application resides in the cloud. As for 

the proven prototype, a local private cloud was used. The user has an application in his/her smartphone 

to connect and authenticate him or herself with his/her smartwatch. The deep learning architecture was 

implemented using Keras with TensorFlow, an open-source neural network library written in Python 

to evaluate the results. The Keras library was selected for a number of reasons, but mainly because of 

its lightweight and ease of extensibility. Furthermore, Keras can process large amounts of data. The 

implementation consisted of pre-processing, creation of and training CNN feature extractor, and 

training the classifier, and testing stages. The two metrics used for the evaluation include accuracy and 

mean-squared error rate. 
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5.7.1 Pre-processing  

In general, deep learning rarely takes raw audio signals, mainly because of the fluctuating scales in the 

signals. In this pre-processing, the scale problem of the raw audio data was solved by adopting the 

widely used pre-processing technique used in [119]. High-frequency signals were the centre of the pre-

processing. Likewise, the adopted pre-processing method stabilized the scale of raw audio signals. The 

method is designed as , where   refers to the input signal at time  and

refers to the pre-emphasis coefficient, and  stands for pre-emphasized signals.  

5.7.2 CNN Architecture  

The main target of the project was to authenticate an IoT user in a lightweight manner. In the 

experiment, a user is using his smartphone to authenticate himself to his Android wearable device via 

an authentication system residing in the cloud. First column of the Table 5.2 represents the 

convolutional and residual network layers in the used architecture, while structure of the layers are 

given the in second column and the right most column provides the size of the pooling region or strides.     

 
Table 5. 2 The CNN Network architecture 

Layers Structure  Stride 
Conv1    5 x 5, 32 1 x 1 

Rest32  1 x 1 

Conv2    5 x 5, 64 2 x 2 

Rest64  3 x3 

Conv3   5 x 5, 128 1 x 1 

Rest128  2 x 2 

Conv4   5 x 5, 256 1 x 1 

Rest256  3 x 3 

Conv5   5 x 5, 512 1 x 1 

Rest512  2 x 2 

 
The feature extraction happens in the user’s smartphone. The deep learning approach-based feature 

extractor is used. The SPP used in this architecture where frame-level features were extracted by using 

the widely used 34-layer ResNet [51]. The architecture is detailed in Table 5.2. CNN architectures are 

( ) ( ) ( )  · 1p t s t s tα= − − ( )s t t

α ( )p t
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suitable for the reduction of spectral variations and modelling of spectral correlations of acoustic 

features. A distance-based loss function was used to discriminate between same-speaker and different-

speaker utterance pairs. Also, at each iteration, candidate utterances were checked in the same mini 

batch. It provided faster training convergence.      

5.7.3 Evaluation Result of the proposed Authentication Model 

Only the training set of the dataset was selected to verify the efficiency of the model. The data consisted 

of 54,000 utterances with 5400 genuine utterances and 48,600 spoofed utterances. The evaluation 

metrics included classification performance, because it allowed us to predict which registered speaker 

corresponded to a given utterance. To evaluate the system performance, accuracy is the most important 

determinant; to accurately measure the ratio between the correct number of predictions and the total 

number of cases given as  

 

 

 

where  stands for True Positive and  refers to True Negative predictions. False Positive and 

False Negative prediction are given as  and  respectively. The lowest rate of 81.60% and 

highest rate of 92.56% of accuracies was observed. Accuracy alone cannot typically provide enough 

information to evaluate the prediction outcomes. That is to say, accuracy cannot necessarily reflect an 

indicator of a high classification performance. Accuracy cannot hold as much weight when a dataset 

with a huge amount of data is involved. To avoid this accuracy paradox, the loss function, or Mean 

Square Error rate (MSE), was used to pair with the accuracy calculations so that we could gain more 

insight into the evaluation of the model. This was treated as a regression problem with deep learning. 

Because the used dataset consists continuous set of data for each user, MSE is believed to be an 

appropriate metric. What the MSE achieved over the iterations is shown in Figure 5.4.  
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Figure 5. 4. Observed Mean Square Rate of the proposed authentication model 

In addition to the authentication accuracy, the deep learning method was evaluated from different 

stances. In the first stance, the architecture was evaluated on the three sets of the ASV2019 dataset: 

development, training, and testing for text-independent recognition tasks. That is, the performance of a 

baseline i-vector system was compared to our approach. The i-vector system uses a frontend feature 

consisting of 12 MFCCs with a frame length of 30 ms that is feature is subject mean-normalized over 

a sliding window of up to 3 seconds. The baseline system uses 60-dimension feature vectors, created 

by Delta, and acceleration. Less frequency or unvoiced parts of the utterances are removed with energy-

based activity detection. The UBM is a 1024-component full-covariance GMM and the system uses a 

400-dimension i-vector extractor. In addition, before the PLDA scoring, i-vectors get centered and 

length normalized. The result is provided in terms of EER, where our system with the special pyramid 

pooling achieves 15.8% relative improvement over the baseline system.  

5.8 Chapter Summary 

In this work, a voice biometric-based authentication system for IoT systems has been proposed. A 

prototype application built on a private cloud was used for the evaluation of the system. The system 

used an end-to-end deep learning approach to extract features from a user’s voice and subsequently 

classify them. The proposed system used ResNet CNN architecture that removes the fixed-size 

limitation, which improves the accuracy of the system in general. The CNN approach employed 

achieved state-of-the-art performance on the dataset of ASVspoof 2019.   The Resnet CNN architecture 

coding is included in Appendix E. 
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Chapter 6: Conclusion and Future Works 

6.1 Conclusion  

The main objective for conducting this research was to develop a biometric-based secure lightweight 

authentication system that can be used for IoT devices. To achieve this objective, three research 

questions were developed and addressed throughout the process.  

First, investigate a suitable biometric that can be used in IoT devices without the need for an additional 

hardware. To this end, we studied different biometric authentication techniques that are described in 

the literature. Accordingly, there are two main types, physical and behavioral. Physical biometrics can 

include fingerprints or iris scan, while behavioral biometrics can include keystroke or voiceprint. After 

comparing the various biometrics, the voiceprint was selected as the best candidate for authentication 

for ease of integration into the IoT environment; voiceprint does not necessitate dedicated hardware to 

be used in IoT. Consequently, the feasibility of adopting a lightweight voiceprint-based authentication 

mechanism in IoT was investigated. Experiments using the traditional open-source machine-learning 

tools revealed that the voice-based authentication system would be appropriate for adoption by IoT-

based systems. The results of this investigation have been published [39, 72].  

Second, a well known fact is that voiceprint-based authentication suffers from spoofing, in particular 

replay attacks. Therefore, to answer the second research question, a selection of features that can help 

detect a replay attack was investigated. A hybrid feature that combines MCFF and CQCC was 

proposed. The MFCC feature extraction is used for processing high frequency areas the speech 

utterance while the CQCC feature extraction is used for processing silent areas with low frequency. 

Moreover, MFCC is well-known in appropriately capturing voice features with high frequency and that 

the CQCC is a multi-resolution cepstral feature. Subsequently, the CNN networks were trained with 

the selected hybrid features. The CNN networks were used as the frontend together with a SVM 

backend combined into our voice-verification system (VVS). By comparing the proposed solution to a 

baseline (i.e., from [45]) that uses a “conventional” machine-learning frontend and backend, our results 

show that the SVSs successfully improved replay attack detection. The result obtained using the linear 

SVM was 7.9% and the result obtained using the kernel SVM was 7.1% as described in Section 3.6.  In 

another experiment, DNN networks were trained with the selected hybrid features. The DNN networks 

were used as backend classifiers with GMM feature extractions. With the deep learning-based 

classifier, the results show improved replay attack detection as compared to traditional machine 

learning using baseline systems [45]. The results are shown in Table 4.2, with the Development dataset 
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we obtained 10.8%, with the Evaluation dataset we obtained 23.6%, and with the combination of 

Development and evaluation datasets we Obtained 10.8%.   

Lastly, in response to our third question, a prototype of the voiceprint-based authentication system that 

can detect replay attacks was employed in an experiment to demonstrate its usability in IoT devices. 

The well-known CNN model, layer 34 ResNet, was used in the prototype. The experiment included a 

virtual environment that consisted of a smartphone, a smartwatch, and a cloud. The prototype was 

evaluated for its accuracy and precision. The results are very promising as discussed in Section 5.7.3.  

In the validation of the answers made to the three questions coined to achieve the main objective of the 

study, we have used three datasets including MIT dataset, ASVspoof17 and ASVspoof19 datasets. For 

example, to answer to the first question of the study that involved studying the suitability of voice based 

biometric for the authentication in IoT environments, the MIT datasets have been use. The ASVspoof17 

datasets have been used for the validation the CNN and DNN networks proposed for the replay attack 

detection (which answers to the second questions), while the ASVspoof19 datasets have been used for 

the validation of the ResNet based prototype that answers to the third question of the study.   

6.1.1 Summary of implementation specifics 

Throughout this work, the python program language was the main language employed for the deep 

learning models for two reasons. First, was the familiarity with python. The second reason is that python 

is recommended by the NIST. NIST compared various existing libraries used for speaker verification 

systems (SVSs). As a result, the python (namely, Keras and Tensorflow) neural network libraries were 

singled out to be of the highest integrity (i.e., estimated to have fewer errors). In addition, the most 

recent studies that use deep learning models for SVSs use python. This has great advantages in terms 

of reproducibility of our results. The source code of the ALIZE library, (Chapter 2) used for the 

feasibility study conducted to evaluate the suitability of voice biometrics-based authentication in IoT, 

is included in Appendix A for reproducibility. Likewise, the source code of the SVM machine used in 

the dissertation is shown in Appendix B so that it can be replicated for further experiments. The source 

code of the CNN architecture used for the data extraction in Chapter 3 is included in Appendix C for 

reproducibility. The code of the DNN architecture, used for classification of features in Chapter 4, is 

included in Appendix D for further examination. Finally, the source code of the Resnet architecture 

used in Chapter 5 is also provided in Appendix E for reproducibility as well. 

The CNN networks are used to differentiate the genuine user voice from replay voice used by attackers 

to spoof the “true” identity of users. To accomplish this, CNN networks are expected to extract minor 
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discriminating characteristics that differentiate the genuine from the replayed voice. For example, the 

SVS model is first trained using the hybrid features extracted from the genuine voice. Subsequently, 

once the CNN frontend of the model has assimilated (i.e., trained) using features from the genuine 

voice, the model can correctly detect features extracted from replay voice with high confidence of up 

to 7.9% and 7.1%  error rates when used with two backend classifiers, the linear SVM and EBF kernel 

respectively.   

6.1.2 Summary of data used for validation 

Very importantly, two datasets (ASVspoof 2017, ASVspoof 2019), both meant to characterize the 

pernicious replay type of spoofing attack, have been utilized to validate our proposed speaker 

verification approach which was demonstrated to improve on replay attack detection with a 15.8% 

Equal Error Rate (EER) . 

For example, the ASVspoof 2017 dataset used in the DNN consisted of three subsets: 1) training, 2) 

development, and 3) evaluation subsets. In the DNN, the development and the evaluation subsets in the 

dataset were employed. The development set consisted of 760 genuine voices and 950 replay voice, 

while the evaluation set consisted of 1298 genuine voices and 12008 replay voices. All the genuine and 

replay voices in the two subsets were used for the model training and evaluation (i.e., testing). Hence, 

the nth folder theory was not used in the experiment, because it was not applicable in the case of our 

SVS.  

In the cases described in Chapters 3 and 4, accuracy is measured by the true/false positive and false/true 

negative rates of the replay attack detection. In Chapter 5, the accuracy is measured by the acceptance 

and rejection rates within the context of user authentication as discussed in Section 5.7.3.  The improved 

accuracy of user authentication using our SVS provides a better approach compared to other recent 

studies [45, 55]. Thus, our authentication system has shown, using the aforementioned datasets an 

improved 15.8% relative accuracy. 

6.2 Future IoT Authentication Research Directions 

There is an abundance of security issues associated with the voice-based authentication systems such 

as voice conversion and mimicry attacks that have not been taken into consideration here and that are 

beyond the scope of this study. The authentication system provided in Chapter 5 has been evaluated for 

its resilience against replay spoof attack and has provided an accuracy of between 81.6% and 92.6%.  

Developing better defenses against other spoofing attack methods and tactics is an open area for future 

research toward increasing IoT system resilience and creating generic machine learning defenses.  
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Furthermore, instantiating a real system using our proposed deep learning methods framework should 

be examined as an area of active research.   Given the SVSs studied and validated, we would suggest 

that further development of a full-scale general-purpose IoT voice authentication system is feasible that 

can serve as one factor of a multifactor IoT authentication system.  
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Appendix A - Alize code 

In studying the feasibility of adopting the voice biometric based authentication system for 

IoT devices described in Chapter 2, the Alize library has been used to simulate the base of 

the voice verification system. The source code of the system used for the implementation 

of the authentication model in IoT is as follows:  
package  
fr.univavignon.alize.AndroidALIZEDemo; 

 import android.graphics.Color; 
 import android.os.Bundle; 
 import android.view.View; 
 import android.widget.TextView; 
 import AlizeSpkRec.AlizeException; 
 import AlizeSpkRec.SimpleSpkDetSystem; 
 /** 
  * Activity meant to identify or verify a speaker. 

  * Identify is used when the system try to recognize a 
speaker in the system with the current record. 

 
 * Verify is used when the system is listening to the 
current record and determine if it's the right speaker 
or not. 

  * 
  * @author Nicolas Duret 
  */ 

 public class VerificationActivity extends RecordActivity 
{ 

     private final int ERROR_COLOR = Color.RED; 

     private final int SUCCESS_COLOR = 
Color.rgb(0,150,0); 

     private String speakerId, speakerName, activityName; 
     private TextView resultText; 
     private boolean identify = false; 
     @Override 
     public void onCreate(Bundle savedInstanceState) { 
         try { 
             super.onCreate(savedInstanceState); 
             setContentView(R.layout.verification); 

             speakerId = 
getIntent().getStringExtra("speakerId"); 

             speakerName = 
demoSpkRecSystem.getSpeakerName(speakerId); 

             resultText = findViewById(R.id.result_text); 
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             startRecordButton = 
findViewById(R.id.startBtn); 

             stopRecordButton = 
findViewById(R.id.stopBtn); 

             timeText = findViewById(R.id.timeText); 

             activityName = 
getString(R.string.verification); 

 
            String title = 
getResources().getString(R.string.verify_activity_title, 
speakerName); 

             if (speakerName.isEmpty()) { 
                 identify = true; 

                 activityName = 
getString(R.string.identify); 

                 title = 
getResources().getString(R.string.identify_speaker); 

             } 
             setTitle(title); 

             startRecordButton.setOnClickListener(new 
View.OnClickListener() { 

                 @Override 
                 public void onClick(View view) { 
                     resultText.setText(""); 
                     startRecording(); 
                 } 
             }); 

             stopRecordButton.setOnClickListener(new 
View.OnClickListener() { 

                 @Override 
                 public void onClick(View view) { 
                     stopRecording(); 
                 } 
             }); 
         } 
         catch (Throwable e) { 
             e.printStackTrace(); 
         } 
     } 
     protected void afterRecordProcessing() { 
         String result = ""; 
         resultText.setTextColor(ERROR_COLOR); 
         if (recordError) { 
             resultText.setText(result); 

 
            
makeToast(getResources().getString(R.string.recording_no
t_completed)); 
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             return; 
         } 
         if (identify) { 
             //Try to match a speaker with the record 
             try { 

                 //This is the other main task of speaker 
recognition: compare a recording with all the speakers 

                 //known to the system to determine whose 
voice it is (or reject it as unknown). 

 
                SimpleSpkDetSystem.SpkRecResult 
identificationResult = 
demoSpkRecSystem.identifySpeaker(); 

                 if (identificationResult.match) { 

 

                    result = 
getString(R.string.identify_match_text) + "\n" + 
demoSpkRecSystem.getSpeakerName(identificationResult.spe
akerId) + "\n" + getString(R.string.match_score) + "\n" 
+ identificationResult.score; 

                     
resultText.setTextColor(SUCCESS_COLOR); 

                 } 
                 else { 

 

                    result = 
getString(R.string.identify_no_match_text) + "\n" + 
getString(R.string.match_score) + "\n" + 
identificationResult.score; 

                     
resultText.setTextColor(ERROR_COLOR); 

                 } 
             } 
             catch (AlizeException e) { 
                 e.printStackTrace(); 

 
                result = 
getString(R.string.verification_failed_not_enough_featur
es); 

             } catch (Throwable e) { //TODO catch proper 
exception 

                 e.printStackTrace(); 

 
                result = 
getString(R.string.verification_failed_not_enough_featur
es); 

             } 
         } 
         else { 
             //Compare the record with the speaker model 
             try { 
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                 //Compare the audio signal with the 
speaker model we created earlier. 

 
                SimpleSpkDetSystem.SpkRecResult 
verificationResult = 
demoSpkRecSystem.verifySpeaker(speakerId); 

                 if (verificationResult.match) { 

 

                    result = 
getString(R.string.verify_match_text) + "\n" + 
getString(R.string.match_score) + "\n" + 
verificationResult.score; 

 resultText.setTextColor(SUCCESS_COLOR); 
 } 
 else { 

 
result = getString(R.string.verify_no_match_text, 
speakerName) + "\n" + getString(R.string.match_score) + 
"\n" + verificationResult.score; 

 resultText.setTextColor(ERROR_COLOR); 
 } 
 } 
 catch (AlizeException e) { 
 e.printStackTrace(); 

 
result = 
getString(R.string.verification_failed_not_enough_featur
es); 

 } catch (Throwable e) { //TODO catch proper exception 
 e.printStackTrace(); 

 
result = 
getString(R.string.verification_failed_not_enough_featur
es); 

 } 
 } 
 resultText.setText(result); 
 try { 

 //Reset input, since we will not make any more use of 
this audio signal. 

 demoSpkRecSystem.resetAudio();       //Reset the audio 
samples of the Alize system. 

 demoSpkRecSystem.resetFeatures();    //Reset the 
features of the Alize system. 

 } catch (AlizeException e) { e.printStackTrace();  
}}} 
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Appendix B - CNN 
The Convolutional neural network (CNN) has been employed in the Chapter 3 in order to 

use it as feature extraction. In this appendix the coding of the python programming used 

the TensorFlow is provided.  
Import OS 
  from tqdm import tqdm  

import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
from scipy.io import wavfile  
from python_speech_features import mfcc, logfbank  
import librosa  
def plot_signals(signals):  
    fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,  
                             sharey=True, figsize=(20,5))  
    fig.suptitle('Time Series', size=16)  
    i = 0  
    for x in range(2):  
        for y in range(5):  
            axes[x,y].set_title(list(signals.keys())[i])  
            axes[x,y].plot(list(signals.values())[i])  
            axes[x,y].get_xaxis().set_visible(False)  
            axes[x,y].get_yaxis().set_visible(False)  
            i += 1  
def plot_fft(fft):  
    fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,  
                             sharey=True, figsize=(20,5))  
    fig.suptitle('Fourier Transforms', size=16)  
    i = 0  
    for x in range(2):  
        for y in range(5):  
            data = list(fft.values())[i]  
            Y, freq = data[0], data[1]  
            axes[x,y].set_title(list(fft.keys())[i])  
            axes[x,y].plot(freq, Y)  
            axes[x,y].get_xaxis().set_visible(False)  
            axes[x,y].get_yaxis().set_visible(False)  
            i +=1  
def plot_fbank(fbank):  
    fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,  
                             sharey=True, figsize=(20,5))  
    fig.suptitle('Filter Bank Coefficients', size=16)  
    i = 0  
    for x in range(2): 
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        for y in range(5):  
            axes[x,y].set_title(list(fbank.keys())[i])  
            axes[x,y].imshow(list(fbank.values())[i],  
                    cmap='hot', interpolation='nearest')  
            axes[x,y].get_xaxis().set_visible(False)  
            axes[x,y].get_yaxis().set_visible(False)  
            i += 1  
def plot_mfccs(mfccs):  
    fig, axes = plt.subplots(nrows=2, ncols=5, sharex=False,  
                             sharey=True, figsize=(20,5))  
    fig.suptitle('Mel Frequency Cepstrum Coefficients', size=16)  
    i = 0  
    for x in range(2):  
        for y in range(5):  
            axes[x,y].set_title(list(mfccs.keys())[i])  
            axes[x,y].imshow(list(mfccs.values())[i],  
                    cmap='hot', interpolation='nearest')  
            axes[x,y].get_xaxis().set_visible(False)  
            axes[x,y].get_yaxis().set_visible(False)  
            i += 1  
def envelope(y,rate,threshold):  
    mask =[]  
    y=pd.Series(y).apply(np.abs)  
    
y_mean=y.rolling(window=int(rate/10),min_periods=1,center=True).m
ean()  
    for mean in y_mean:  
        if mean > threshold:  
            mask.append(True)  
        else:  
            mask.append(False)  
    return mask  
def calc_fft(y,rate):  
    n=len(y)  
    freq=np.fft.rfftfreq(n,d=1/rate)  
    Y=abs(np.fft.rfft(y)/n)  
    return(Y,freq)  
df = pd.read_csv('instruments.csv')  
df.set_index('fname',inplace=True)  
for i in df.index:  
    rate,signal = wavfile.read('wavfiles/'+i)  
    df.at[i,'length'] = signal.shape[0]/rate  
classes=list(np.unique(df.label))  
class_dist = df.groupby(['label'])['length'].mean()  
fig,ax=plt.subplots()  
ax.set_title('Class Distribution',y=1.08) 
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ax.pie(class_dist,labels=class_dist.index,autopct='%1.1f%%',shado
w=False,startangle=90)  
ax.axis('equal')  
plt.show()  
df.reset_index(inplace=True)  
signals={}  
fft={}  
fbank={}  
mfccs={}  
for c in classes:  
    wav_file=df[df.label ==c].iloc[0,0]  
    signal,rate=librosa.load('wavfiles/'+wav_file,sr=44100)  
    mask = envelope(signal,rate,0.0005)  
    signal=signal[mask]  
    signals[c] = signal  
    fft[c]=calc_fft(signal,rate)  
    bank=logfbank(signal[:rate],rate,nfilt=16,nfft=1103).T  
    fbank[c] =bank  
    mel =mfcc(signal[:rate],rate,numcep = 13,nfilt=26,nfft=1103)  
    mfccs[c]=mel  
plot_signals(signals)  
plt.show()  
plot_fft(fft)  
plt.show()  
plot_fbank(fbank)  
plt.show()  
plot_mfccs(mfccs)  
plt.show()  
if len(os.listdir('clean')) == 0:  
    for f in tqdm(df.fname):  
        signal, rate=librosa.load('wavfiles/'+f,sr=16000)  
        mask = envelope(signal,rate,0.0005)  
        
wavfile.write(filename='clean/'+f,rate=rate,data=signal[mask]) 
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Appendix C - SVM 
The coding of the support vector machine (SVM) used for the feature classification in the 

speaker verification model discussed in Chapter 3. As explained previously, python 

programming language has been used in this research. Hence, the coding of the SVM 

employed in Chapter 3 is as follows:  
Import  numpy as np 
 

import pandas as pd  
import statsmodels.api as sm  
from sklearn.preprocessing import MinMaxScaler  
from sklearn.model_selection import train_test_split as tts  
from sklearn.metrics import accuracy_score, recall_score, 
precision_score  
from sklearn.utils import shuffle  
# >> FEATURE SELECTION << #  
def remove_correlated_features(X):  
    corr_threshold = 0.9  
    corr = X.corr()  
    drop_columns = np.full(corr.shape[0], False, dtype=bool)  
    for i in range(corr.shape[0]):  
        for j in range(i + 1, corr.shape[0]):  
            if corr.iloc[i, j] >= corr_threshold:  
                drop_columns[j] = True  
    columns_dropped = X.columns[drop_columns]  
    X.drop(columns_dropped, axis=1, inplace=True)  
    return columns_dropped  
def remove_less_significant_features(X, Y):  
    sl = 0.05  
    regression_ols = None  
    columns_dropped = np.array([])  
    for itr in range(0, len(X.columns)):  
        regression_ols = sm.OLS(Y, X).fit()  
        max_col = regression_ols.pvalues.idxmax()  
        max_val = regression_ols.pvalues.max()  
        if max_val > sl:  
            X.drop(max_col, axis='columns', inplace=True)  
            columns_dropped = np.append(columns_dropped, 
[max_col])  
        else:  
            break  
    regression_ols.summary()  
    return columns_dropped  
##############################  
# >> MODEL TRAINING << # 
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def compute_cost(W, X, Y):  
    # calculate hinge loss  
    N = X.shape[0]  
    distances = 1 - Y * (np.dot(X, W))  
    distances[distances < 0] = 0  # equivalent to max(0, 
distance)  
    hinge_loss = regularization_strength * (np.sum(distances) / 
N)  
    # calculate cost  
    cost = 1 / 2 * np.dot(W, W) + hinge_loss  
    return cost  
# I haven't tested it but this same function should work for  
# vanilla and mini-batch gradient descent as well  
def calculate_cost_gradient(W, X_batch, Y_batch):  
    # if only one example is passed (eg. in case of SGD)  
    if type(Y_batch) == np.float64:  
        Y_batch = np.array([Y_batch])  
        X_batch = np.array([X_batch])  # gives multidimensional 
array  
    distance = 1 - (Y_batch * np.dot(X_batch, W))  
    dw = np.zeros(len(W))  
    for ind, d in enumerate(distance):  
        if max(0, d) == 0:  
            di = W  
        else:  
            di = W - (regularization_strength * Y_batch[ind] * 
X_batch[ind])  
        dw += di  
    dw = dw/len(Y_batch)  # average  
    return dw  
def sgd(features, outputs):  
    max_epochs = 5000  
    weights = np.zeros(features.shape[1])  
    nth = 0  
    prev_cost = float("inf")  
    cost_threshold = 0.01  # in percent  
    # stochastic gradient descent  
    for epoch in range(1, max_epochs):  
        # shuffle to prevent repeating update cycles  
        X, Y = shuffle(features, outputs)  
        for ind, x in enumerate(X):  
            ascent = calculate_cost_gradient(weights, x, Y[ind])  
            weights = weights - (learning_rate * ascent)  
        # convergence check on 2^nth epoch  
        if epoch == 2 ** nth or epoch == max_epochs - 1:  
            cost = compute_cost(weights, features, outputs) 
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            print("Epoch is: {} and Cost is: {}".format(epoch, 
cost))  
            # stoppage criterion  
            if abs(prev_cost - cost) < cost_threshold * 
prev_cost:  
                return weights  
            prev_cost = cost  
            nth += 1  
    return weights  
########################  
def init():  
    print("reading dataset...")  
    # read data in pandas (pd) data frame  
    data = pd.read_csv('./data/data.csv')  
    # drop last column (extra column added by pd)  
    # and unnecessary first column (id)  
    data.drop(data.columns[[-1, 0]], axis=1, inplace=True)  
    print("applying feature engineering...")  
    # convert categorical labels to numbers  
    diag_map = {'M': 1.0, 'B': -1.0}  
    data['diagnosis'] = data['diagnosis'].map(diag_map)  
    # put features & outputs in different data frames  
    Y = data.loc[:, 'diagnosis']  
    X = data.iloc[:, 1:]  
    # filter features  
    remove_correlated_features(X)  
    remove_less_significant_features(X, Y)  
    # normalize data for better convergence and to prevent 
overflow  
    X_normalized = MinMaxScaler().fit_transform(X.values)  
    X = pd.DataFrame(X_normalized)  
    # insert 1 in every row for intercept b  
    X.insert(loc=len(X.columns), column='intercept', value=1)  
    # split data into train and test set  
    print("splitting dataset into train and test sets...")  
    X_train, X_test, y_train, y_test = tts(X, Y, test_size=0.2, 
random_state=42)  
    # train the model  
    print("training started...")  
    W = sgd(X_train.to_numpy(), y_train.to_numpy())  
    print("training finished.")  
    print("weights are: {}".format(W))  
    # testing the model  
    print("testing the model...")  
    y_train_predicted = np.array([])  
    for i in range(X_train.shape[0]): 
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        yp = np.sign(np.dot(X_train.to_numpy()[i], W))  
        y_train_predicted = np.append(y_train_predicted, yp)  
    y_test_predicted = np.array([])  
    for i in range(X_test.shape[0]):  
        yp = np.sign(np.dot(X_test.to_numpy()[i], W))  
        y_test_predicted = np.append(y_test_predicted, yp)  
    print("accuracy on test dataset: 
{}".format(accuracy_score(y_test, y_test_predicted)))  
    print("recall on test dataset: 
{}".format(recall_score(y_test, y_test_predicted)))  
    print("precision on test dataset: 
{}".format(recall_score(y_test, y_test_predicted)))  
# set hyper-parameters and call init  
regularization_strength = 10000  
learning_rate = 0.000001  
init() 
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Appendix D - DNN 
The speaker verification system studied in Chapter 4, uses a deep neural network (DNN) 

architecture as feature classifier. This appendix provides the python coding of the DNN 

architecture used for the feature classification of the speaker verification system is as 

follows: 
import os, time, keras 
 

from keras import backend, metrics, callbacks, regularizers  
from keras.models import Sequential, model_from_json  
from keras.layers import Dropout, Flatten, BatchNormalization  
from keras.layers import Dense, Conv2D, MaxPooling2D  
from keras.utils import plot_model, multi_gpu_model  
import numpy as np  
from sklearn.metrics import classification_report  
def train(x_train, y_train, x_test, y_test, num_classes, 
epochs):  
    # set validation data  
    val_size = int(0.1 * x_train.shape[0])  
    r = np.random.randint(0, x_train.shape[0], size=val_size)  
    x_val = x_train[r, :, :]  
    y_val = y_train[r]  
    x_train = np.delete(x_train, r, axis=0)  
    y_train = np.delete(y_train, r, axis=0)  
    # set x & y shapes  
    x_train = x_train.reshape(x_train.shape[0], 
x_train.shape[1], x_train.shape[2], 1)  
    x_val = x_val.reshape(x_val.shape[0], x_val.shape[1], 
x_val.shape[2], 1)  
    x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 
x_test.shape[2], 1)  
    y_train = y_train.reshape(y_train.shape[0], 1)  
    y_val = y_val.reshape(y_val.shape[0], 1)  
    y_test = y_test.reshape(y_test.shape[0], 1)  
    print('x_train shape:', x_train.shape)  
    print('x_val shape:', x_val.shape)  
    print('x_test shape:', x_test.shape)  
    print('y_train shape:', y_train.shape)  
    print('y_val shape:', y_val.shape)  
    print('y_test shape:', y_test.shape)  
    # convert class vectors to binary class matrices  
    y_train = keras.utils.to_categorical(y_train, num_classes)  
    y_val = keras.utils.to_categorical(y_val, num_classes)  
    y_test = keras.utils.to_categorical(y_test, num_classes)  
    # define the model 
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    regularizer=0.001  
    dropout=0.25  
    model = Sequential()  
    model.add(Conv2D(16, kernel_size=(3, 3), strides=(2, 1), 
activation='tanh', 
kernel_regularizer=regularizers.l2(regularizer), 
input_shape=(x_train.shape[1], x_train.shape[2], 1)))  
    # model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 1)))  
    model.add(Dropout(dropout))  
    model.add(Conv2D(32, kernel_size=(3, 3), strides=(1, 1), 
activation='elu', 
kernel_regularizer=regularizers.l2(regularizer)))  
    # model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    model.add(Dropout(dropout))  
    model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1), 
activation='elu', 
kernel_regularizer=regularizers.l2(regularizer)))  
    # model.add(BatchNormalization())  
    model.add(MaxPooling2D(pool_size=(2, 2)))  
    model.add(Dropout(dropout))  
    model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1), 
activation='elu', 
kernel_regularizer=regularizers.l2(regularizer)))  
    # model.add(BatchNormalization())  
    # model.add(MaxPooling2D(pool_size=(2, 2)))  
    model.add(Dropout(dropout))  
    model.add(Flatten())  
    model.add(Dense(64, activation='elu', 
kernel_regularizer=regularizers.l2(regularizer)))  
    model.add(Dropout(dropout))  
    model.add(Dense(num_classes, activation='softmax'))  
    # summarize model  
    # plot_model(model, to_file='Models\\model_cnn2d.png')  
    f = open('Models\\model_cnn2d.txt', 'w')  
    for i in range(0, len(model.layers)):  
        if i == 0:  
            print(' ')  
        print('{}. Layer {} with input / output shapes: {} / 
{}'.format(i, model.layers[i].name, model.layers[i].input_shape, 
model.layers[i].output_shape))  
        f.write('{}. Layer {} with input / output shapes: {} / 
{} \n'.format(i, model.layers[i].name, 
model.layers[i].input_shape, model.layers[i].output_shape))  
        if i == len(model.layers) - 1: 
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            print(' ')  
    f.close()  
    model.summary()  
    # compile, fit evaluate  
    try:    model = multi_gpu_model(model, gpus=2, 
cpu_merge=False)  
    except: model = model  
    model.compile(loss=keras.losses.categorical_crossentropy, 
optimizer=keras.optimizers.Adam(), metrics = ['accuracy'])  
    model.fit(x_train, y_train, batch_size=192, epochs=epochs, 
verbose=2, validation_data=(x_val, y_val), 
callbacks=[callbacks.EarlyStopping(monitor='val_acc', 
patience=20, restore_best_weights=True)])  
    time.sleep(5)  
    score = model.evaluate(x_test, y_test, verbose=2)  
    time.sleep(5)  
    # save model  
    '''model_json = model.to_json()  
    with open("Models\\model_cnn2d.json", "w") as json_file:  
        # remark  
        json_file.write(model_json)  
    model.save_weights("Models\\model_cnn2d.h5")'''  
    # results  
    # print('Test loss: {0:.3f} and accuracy: 
{1:.3f}'.format(score[0], score[1]))  
    print(' ')  
    return score[1]  
def predict(model, x_test):  
    # load  
    json_file = open('model_cnn2d.json', 'r')  
    model = model_from_json(json_file.read())  
    json_file.close()  
    model.load_weights("model_cnn2d.h5")  
    prediction = model.predict(x_test, batch_size=32, verbose=0)  
    print(prediction) 
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Appendix E - ResNet 
Deep residual learning (Resnet) has been used in the voice biometric based authentication 

model in Chapter 5. The python coding of the Resnet layer 34 architecture used in the model 

is provided in this appendix. Worth mentioning is that we have used TensorFlow as the 

python environment.    
import tensorflow as tf 
 

from tensorflow import keras  
from keras.activations import relu  
from tensorflow.keras.layers import *  
from tensorflow.keras import Model  
from tensorflow.keras import layers as Layers  
class ResBlock(Model):  
    def __init__(self, channels, stride=1):  
        super(ResBlock, self).__init__(name='ResBlock')  
        self.flag = (stride != 1)  
        self.conv1 = Conv2D(channels, 3, stride, 
padding='same')  
        self.bn1 = BatchNormalization()  
        self.conv2 = Conv2D(channels, 3, padding='same')  
        self.bn2 = BatchNormalization()  
        self.relu = ReLU()  
        if self.flag:  
            self.bn3 = BatchNormalization()  
            self.conv3 = Conv2D(channels, 1, stride)  
    def call(self, x):  
        x1 = self.conv1(x)  
        x1 = self.bn1(x1)  
        x1 = self.relu(x1)  
        x1 = self.conv2(x1)  
        x1 = self.bn2(x1)  
        if self.flag:  
            x = self.conv3(x)  
            x = self.bn3(x)  
        x1 = Layers.add([x, x1])  
        x1 = self.relu(x1)  
        return x1  
class ResNet34(Model):  
    def __init__(self):  
        super(ResNet34, self).__init__(name='ResNet34')  
        self.conv1 = Conv2D(64, 7, 2, padding='same')  
        self.bn = BatchNormalization()  
        self.relu = ReLU()  
        self.mp1 = MaxPooling2D(3, 2) 
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        self.conv2_1 = ResBlock(64)  
        self.conv2_2 = ResBlock(64)  
        self.conv2_3 = ResBlock(64)  
        self.conv3_1 = ResBlock(128, 2)  
        self.conv3_2 = ResBlock(128)  
        self.conv3_3 = ResBlock(128)  
        self.conv3_4 = ResBlock(128)  
        self.conv4_1 = ResBlock(256, 2)  
        self.conv4_2 = ResBlock(256)  
        self.conv4_3 = ResBlock(256)  
        self.conv4_4 = ResBlock(256)  
        self.conv4_5 = ResBlock(256)  
        self.conv4_6 = ResBlock(256)  
        self.conv5_1 = ResBlock(512, 2)  
        self.conv5_2 = ResBlock(512)  
        self.conv5_3 = ResBlock(512)  
        self.pool = GlobalAveragePooling2D()  
        self.fc1 = Dense(512, activation='relu')  
        self.dp1 = Dropout(0.5)  
        self.fc2 = Dense(512, activation='relu')  
        self.dp2 = Dropout(0.5)  
        self.fc3 = Dense(64)  
    def call(self, x):  
        x = self.conv1(x)  
        x = self.bn(x)  
        x = self.relu(x)  
        x = self.mp1(x)  
        x = self.conv2_1(x)  
        x = self.conv2_2(x)  
        x = self.conv2_3(x)  
        x = self.conv3_1(x)  
        x = self.conv3_2(x)  
        x = self.conv3_3(x)  
        x = self.conv3_4(x)  
        x = self.conv4_1(x)  
        x = self.conv4_2(x)  
        x = self.conv4_3(x)  
        x = self.conv4_4(x)  
        x = self.conv4_5(x)  
        x = self.conv4_6(x)  
        x = self.conv5_1(x)  
        x = self.conv5_2(x)  
        x = self.conv5_3(x)  
        x = self.pool(x)  
        x = self.fc1(x)  
        x = self.dp1(x) 
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        x = self.fc2(x)  
        x = self.dp2(x)  
        x = self.fc3(x)  
        return x  
model = ResNet34()  
model.build(input_shape=(1, 480, 480, 3))  
model.summary() 
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