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Abstract 

A massive number of images and videos are captured by mobile phone cameras every day. 

Thus, the built-in cameras become essential in almost all produced mobile phones and devices. To 

compete, device manufacturers improve image sensors’ performance in camera modules and optimize 

it for high frame rate, better image quality, low power consumption, low cost, and added features. 

Solid-state image sensor is the core of today’s camera systems. Two well-known technologies 

exist for image sensors, which are the charge-coupled devices (CCD) and complementary metal-

oxide-semiconductor (CMOS) image sensors (CIS). CCD was the dominant and mature technology 

for a long time until CIS appears in the early 1990s to solve CCD drawbacks. CIS has several crucial 

advantages over CCD, including integrating peripheral circuits on the same chip, minimizing overall 

system size, and forming a camera system-on-chip (SOC). Besides other advantages, just these 

advantages of CIS have qualified it to be integrated with the modern mobile phone systems.  

Typically, the built-in camera module’s power consumption specification is crucial for 

mobile devices’ overall battery life. Besides low-power consumption, image sensors in these camera 

modules require high-resolution and high-quality image reproduction capabilities to provide a 

competitive edge for the manufacturers to dominate in the marketplace. Today, CIS is the technology 

of choice due to its low-power consumption, high resolution, and increased integration capabilities. 

One of the essential blocks in the CIS that affects its speed, power consumption, image quality, and 

resolution at the same time is the analog-to-digital converter (ADC). Thus, optimizing and improving 

the performance of integrated ADCs is crucial for CIS performance. Many ADC types have been 

used in CIS. One of the most efficient types is the integrating (ramp) type ADCs, as they are small, 

easy to integrate, consume minimal power, and fulfill high-resolution requirements easily while 

providing low-noise operation. However, they suffer from the conversion speed problem when bit 

resolution is increased. Many solutions were proposed to improve the conversion speed of ramp 

ADCs in CISs while maintaining acceptable bit resolution and, consequently, reproduced image 

resolution and quality at the same time.  

In this research, two speedup techniques (SuPTs) are proposed to improve the conversion 

speed of ramp-type ADCs integrated with a CIS column-parallel architecture (CPA). They are the 

single-slope look-ahead ramp (SSLAR) and accelerated single-slope look-ahead ramp (ASSLAR) 

ADCs. Measurements of the SSLAR SuPT in a 200 × 150 pixel CIS chip showed that a 6x frame rate 

increase could be achieved while reducing power consumption 13% without compromising image 

quality. The ASSLAR SuPT, on the other hand, improved the performance of the SSLAR and the 

well-know accelerated ramp (AR) SuPT by enhancing the speedup ratio (SuPR) by 20% on average 
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while keeping the structural similarity of the reproduced image not affected by the proposed 

algorithm and structural similarity index of over 98%.  

These new CIS SuPTs have some inherent settings that control speed-up ratio (SuPR) and 

ADC bit-resolution. As a result, power consumption, frame rate, and image quality of the CIS can 

intelligently be controlled and optimized. This intelligent control requires predicting the content and 

complexity of captured scenes without requiring complex computational resources. To do this, a new 

image quality (IQ) metric, called conversion complexity metric (CCM), was developed to simply and 

quantitatively measure complexity for any scene captured by CIS or a still image stored on a medium. 

It provides an index number for smart adjustment of the performance parameters of CIS electronics, 

including on-chip ADCs. The CCM was proven to be bounded, monotonic, 99% linear, and 316% 

sensitive. It is a computationally efficient single-image quality metric that no other metrics could 

provide for CIS to intelligently adjust and optimize on-chip analog and digital signal processing 

operations. The new CCM can also be used for comparing different SuPT for different ramp ADCs 

used in CIS CPAs.  

A new image quality and complexity comparison methodology is also proposed based on the 

CCM index and existing image quality metric, known as structural similarity metric (SSIM). This 

new methodology is proposed to set up a fair comparison between different SuPTs. Each SuPT has its 

controlling parameters (CPs) to adjust SuPR while trading off some CIS performance parameters, 

such as reproduced image quality of which, if not considered during the comparison procedure, it may 

result in a misleading performance advantage. Using the proposed comparison methodology 

guarantees that a fair comparison and judgment of different SuPTs is possible. A case study was 

developed to apply this new comparison methodology to compare the new ASSLAR and the existing 

AR SuPTs. This case study resulted in a process to hybridize these two powerful SuPTs to get 

superior performance. It was found that for the highly complex images with a CCM index of 0.5 or 

lower, the AR SuPT has to be used. For less complex images with a CCM value of 0.5 or more, it is 

beneficial to use the proposed ASSLAR SuPT to provide 20% or more SuPR compared with AR 

SuPT in CIS CPA. 
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Statement of Contributions 

This research resulted in advancements in the field of CMOS image sensors. Speed up 

techniques for ramp ADC are proposed and implemented. They are the single-slope look-ahead ramp 

ADC and accelerated single-slope look-ahead ramp ADC technologies. Measurements of the SSLAR 

ADC in a 200x150 pixel CIS showed that a 6x frame rate increase could be achieved while reducing 

power consumption 13% without compromising image quality. The study and the implementation of 

ASSLAR showed that the ASSLAR improved the performance of the well-known AR SuPT by 

enhancing the speedup ratio (SuPR) by 20% on average for less complex images while keeping the 

structural similarity not affected and the SSIM is over 98% [1]. 

A new reference-free image conversion complexity metric was developed and tested using 

hundreds of reference and standard database images. The new metric has proven to be bounded, 

monotonic, achieves 99% linearity, and 316% sensitivity. It provides a computationally efficient 

single-image quality metric that no other metrics provide for CIS to intelligently adjust and optimize 

on-chip analog and digital signal processing operations [2] [3]. 

A new comparison methodology is proposed based on the CCM index in addition to the 

SSIM index. This new methodology is proposed to set up a fair comparison and judgment between 

different SuPTs. A comparison between the ASSLAR and the AR SuPTs is chosen as a case study 

that proposes the hybridization of these two powerful SuPTs to get a superior performance based on 

the input image CCM index [4] [5]. 

 



1 

 

Chapter 1: Introduction  

CMOS image sensors (CISs) became the dominant image sensor technology through the last 

several decades. This dominance resulted from its high integration compatibility, low power 

consumption, and low cost of manufacturing. In contrast to charge-coupled device (CCD) imagers, 

CIS did not require dedicated manufacturing processes. They follow the mainstream CMOS 

manufacturing process used today’s advanced analog, digital, and mixed-signal integrated circuits 

(ICs). Indeed, CIS can easily be integrated with analog and digital electronics and result in a complete 

camera system integrated on a single IC, hence cost, interfacing problems, and power consumption 

can be reduced dramatically [6].  

Historically, CMOS fabrication technology has grown faster than any technology man developed. 

Integrated transistors became smaller, faster, and cheaper over the past 50 years, which allowed 

integration of more and more components on-chip leading to building a high-performance system on 

chip ICs. As they became smaller, faster, and cheaper, the demand for portable battery-powered 

systems increased with the condition of keeping the cost down. Optimization techniques aim to 

improve speed, performance, and power consumption, especially for these portable devices and their 

subsystems. Mobile phones and hand-held multimedia systems have been the dominant driving force 

behind these developments and related markets.  

Today, almost all mobile phones, tablets, and multimedia devices have a built-in camera, 

which plays an essential role in overall device power consumption, performance, and cost. Low-cost 

image sensors consuming low-power with highly integrated functionality are needed for these 

portable devices. So, minimizing power consumption while keeping acceptable imager performance 

is one of the fundamental challenge image sensors, and camera sub-systems face since the beginning. 

Portable devices put a limit on the physical size and weight of the power source. Therefore, 

limited battery capacity mandates low-power designs, not only image sensor level but also on the 

system level. A typical CCD image sensor dissipating 3 watts (W) of power will run less than an hour 

on a 1.2V battery with 2000mAh capacity, while a low-power CIS consuming 30µW will run nine 

years on the same battery. 

CIS consists of different blocks, including a 2-dimensional (2D) array of photosensitive 

elements (pixels), pixel amplifiers, analog signal processors (ASP), and ADCs. Typically, the 

performance of the integrated ADC determines the overall performance of a CIS. The ADC 

conversion speed should accommodate the camera system’s target frame rate while consuming 

minimum power. ADC is the most power-consuming block on the analog signal chain (ASC) of the 

CIS. Therefore, performance optimization and smart tradeoffs among image quality, speed, and 
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power consumption of integrated ADCs in CIS need to be considered carefully to meet the system, 

performance, and market requirements. 

Many speed-up techniques (SuPTs) have been developed to enhance the analog-to-digital 

conversion speed of integrated ADCs in CIS. However, as the high-performance CIS demand 

becomes significant, the speed-up ratio (SuPR) of the existing SuPTs should be improved either by 

developing new SuPTs or enhancing the existing ones, or even hybridizing some of them to obtain 

better SuPR and, consequently, better performance for the CIS. 

Speed-up, most of the times, is achieved at the expense of the image quality, power 

consumption, size, and/or design complexity. Except for image quality, power, size, and design could 

easily be evaluated objectively. However, no objective image quality metric exists to allow a fair 

comparison and assessment between all existing speed-up techniques. This metric has to be reference-

free (an independent metric that does not require reference image to compare), bounded to have 

maximum and minimum index values (i.e., between 0 and 1), sensitive to changes on processed 

images, and have a monotonic response. This metric is necessary for the intelligent adaptation of 

image sensor electronics, setting up some parameters to optimize ADC speed (as a result, power) 

while trading image quality after assessing image conversion complexity before the conversion 

occurs. 

There is a competition between all available CIS SuPTs, and each is trying to prove its 

superiority over the other. To prove this, they may use a simple image that would require a less 

complex conversion process. This would blur the real advantage or disadvantage of the competing 

techniques. Thus it is necessary to use objective and fair comparison methodology to avoid this issue. 

This methodology should consider the conversion complexity of the input image, quality of the 

reproduced output image, and the common controlling parameters (CPs) of the SuPT to set up a rule 

set that every competitor follows to prove their performance SuPT. 

Motivation and Goals 

This research’s primary focus is to develop a high-speed CIS that adopts integrating (ramp) 

type ADC to take advantage of its design simplicity, low-power consumption, and small silicon 

footprint and mitigate its main drawback of slow conversion speed. Besides, as outlined in the 

previous section, a new reference-free image quality metric is developed to adapt CIS electronics 

intelligently for changing scene and imaging conditions, optimizing speed, power, and image quality. 

Finally, since there are many SuPT for ramp ADC integrated with CIS CPA, it is challenging to 

compare them as each SuPT uses different types of images, and it has many CPs that can be adjusted 

to prove that their performance is the best. A comparison methodology is required to set up a rule of 

thumb for the SuPTs to allow objective comparison of their performance. 
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Hence, this research has three main goals. The first goal is to design a new speedup technique 

for ramp ADC used in CIS to allow faster conversion speed and minimize power consumption and 

maintain a high quality of processed image using this technique. The second goal includes developing 

an objective reference-free image quality metric to assess the processed images’ conversion 

complexity by different ADC SuPTs to use it for intelligent adjustment of the circuit parameters. The 

final goal is to produce a comparison methodology to compare the speed and power performance of 

different SuPTs, including the proposed new technique. 

Applications 

The smartphone market is growing and has a tremendous driving force behind global 

business developments. This industry worth billions of dollars and increasing every year. Vendors are 

trying to improve their product by offering high-performance smartphones with the most extended 

battery life and high-quality sub-systems such as microphones, speakers, projection capable modules, 

and multiple camera modules. Among them, camera modules‘ capabilities are among the most 

important features that customers are always searching for. Also, camera performance affects the 

overall performance and battery life of smartphones. When the camera consumes more power, battery 

life will be shorter than competitor products. In addition, the camera may consume less power but 

produces low image quality or slow response for high speed moving objects. This research targets 

improvement of the camera sensor and its electronics such that it produces high-quality and 

responsive images with low power consumption.  

Organization of the thesis 

Chapter 1 introduces the research motivation, goals, and applications. It also summarizes the 

research contributions and the organization of this thesis.  

Chapter 2 gives a general background on CMOS active pixel sensor (APS) imagers. First, 

general information on CMOS image sensors (CIS) is provided. Second, a brief historical background 

on CMOS image sensors is presented, followed by a comparison of CMOS APS and CCD 

technologies and trends. Third, CMOS image sensor architectures, functional sub-blocks, and design 

requirements are discussed. 

Chapter 3 explains a new speed-up technique used to enhance column ramp ADC‘s CIS 

speed to improve the overall frame rate. It starts with an illustration of a quick background about 

current speed-up techniques. Then, it shows the operation of the new speedup technique, the single-

slope look-ahead ramp (SSLAR) ADC. Measurement results are also presented in this chapter.  

Chapter 4 discusses the new image quality (IQ) metric, called conversion complexity metric 

(CCM), used for comparing different speedup techniques to offer a reference for fair assessment 
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between processed images by any speedup techniques. This chapter started with a background of 

image quality metrics and how they can be categorized from different perspectives. Then, it shows 

how this image quality metric can be calculated with a numerical example and equations. After that, 

the discussion of how to find and calculate and test its extreme limits is illustrated. Finally, testing the 

new image quality metric is shown on different standard and commercial databases with different 

image resolutions and sizes to generalize it.  

Chapter 5 illustrates the development of the accelerated single-slope look-ahead ramp 

(ASSLAR) ADC SuPT and its design concept, control parameters (CPs), and optimization of CPs to 

allow maximum performance with minimum IQ degradation. After that, the new comparison 

methodology is discussed in detail and applied to a case study to compare the ASSALR and AR 

SuPTs. This chapter concludes with an important conclusion of the hybridization of powerful 

techniques based on the input image CCM index. 

Chapter 6 summarizes the significant accomplishments and contributions achieved in this 

research and presents ideas for future research. 
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Chapter 2: CMOS Image Sensors (CIS) 

CMOS images sensors (CISs) are widely used today in almost every camera system. The 

camera system is built by integrating three main blocks; optics, image sensors, and digital signal 

processors. This thesis is concerned with the image sensor block. This investigation starts with a 

historical and technological literature survey. It includes the charge-coupled device (CCD) history, 

complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) basics and sub-system 

components, and a study of the latest developments for improving the performance of CIS. 

Introduction 

The image sensor is the next block of the imager system that comes after the optics block. It 

translates collected photons by imager optics to an electrical signal. The solid-state image sensor 

consists of several blocks that handle signals through different stages until delivered to the digital 

signal processing (DSP) block. The solid-state image sensor signal chain’s front end includes micro-

lens that direct and focus incident photons to the image sensor’s photosensitive area to increase 

quantum efficiency. For color images, color filters are added between micro-lens and photosensitive 

areas to filter the incident light (photons) according to their wavelengths to separate different colors’ 

intensities. The photosensitive material absorbs photons and allows free carrier (electron or hole) 

generation resulting in ideally one electron-hole pair per absorbed photon with higher released energy 

than the bandgap of the substrate semiconductor. The electron-hole pair is separated and converted 

into an electrical signal. The electrical signal is buffered, locally amplified, sampled, and held before 

it goes through an analog to digital converter whose output is passed to DSP; the last block of an 

image sensor system that regenerates the scene image digital form. 

A brief technological and historical background on CMOS image sensors emphasizing active 

pixel sensor (APS) technologies is presented in this chapter. First, a brief history of CCD is reviewed. 

Second, the basics of CMOS image sensors is explained. Third, current state-of-the-art speed-up 

techniques for ramp ADCs used in CIS are presented. Finally, a summary of the chapter is given.  

Charge-Coupled Device (CCD) 

The charge-coupled device (CCD) was the technology of choice for a very long time since it 

was invented in 1969 at Bell Labs by Boyle and Smith [7]. CCDs are highly sensitive photon 

detectors that consist of an array of a large number of pixels, which are the photosensitive part of 

CCDs. When photons incident on pixels, it converts photons to one or more electrons, which are 

proportional to the number of incident photons representing the current scene of an image. Hence, 

each pixel holds an amount of charge that represents the number of collected photons. These charges 
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need to move out of pixels to allow pixels to detect a new image frame. CCD is clocked out such that 

charges in pixels are transferred from one pixel to adjacent pixel until all charges are transferred to 

the output stage. Originally, CCDs are an analog shift register used to transfer charges from the image 

sensor to output stages. An increased number of transfers require CCDs to utilize a manufacturing 

process that allows perfect charge transfer. CCD evolved and flourished due to its high sensitivity, 

high quantum efficiency, and large format. Its high sensitivity results from its high quantum 

efficiency on the order of 40%, low noise output amplifier, and high fidelity of readout [8]. Modern 

CCDs had a high fill factor of 80% - 100%. Many research efforts have been dedicated to improving 

the CCD performance because it was very promising at that time of invention. As a result, CCDs 

accomplished low readout noise, excellent photo-responsivity, high dynamic range, minimum pixel 

dark current, and high quantum efficiency. 

CCD requires near-perfect charge transfer from pixel to pixel. This results in, however, 

difficulty in reproducibility in large CCD arrays. They cannot be integrated with on-chip electronics, 

spectral responsivity cannot be extended through using different materials, and the readout rate is 

limited. The charge transfer operation needs a high voltage supply, which is not suitable for standard 

low power and low voltage applications. Although CCD has many advantages like high dynamic 

range and high responsivity, mentioned issues prevent the integration of on-chip supplementary 

circuits like timing generators, analog to digital converters (ADCs), clock drivers, and signal 

processing. These circuits are usually built off-chip, resulting in high power consumption and 

consuming significant supply current used to drive output pad capacitors. 

Due to CCDs’ disadvantages, CMOS APS replaced CCD as APS preserve CCD’s high 

performance and eliminate the need for perfect charge transfer. Fossum in [8] proposed that APS will 

replace CCD and become the next successor. In the next Section, the CMOS APS and its main 

components are explored. 

CMOS Image Sensor (CIS) 

A brief history of complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) is 

reviewed in this section. Then, CMOS pixels and its different types and their main ideas are explored. 

Finally, the rest of the CIS sub-systems are illustrated. 

CMOS History in a Glance 

Historically, metal oxide semiconductor (MOS) image sensors were invented before CCDs 

and CMOS APS around the 1960s. At that time, some research groups worldwide were able to build 

the first solid-state image sensor. Weckler in 1967 [9] described a technique for operating a 
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photodiode (PD) p-n junction in the integration mode of photon flux and then charging the p-n 

junction in reverse bias voltage and discharge it in two different illumination conditions; zero-incident 

illumination and under illumination. He concluded that the discharging rate is independent of the p-n 

junction area in case of no illumination. In contrast, in the case of illumination, the charge’s decay 

rate depends on light intensity. This means that the MOS structure can easily be integrated for image 

sensor arrays. Besides, sensitivity can be controlled electronically. In 1968, a PD array of 100 X 100 

was reported by Dyck and Weckler [10], and it was working in photon flux integration mode. In the 

same year, Noble [11] proposed some configurations of self-scanned silicon image detector arrays 

and their circuitries to construct 2D images. In addition, he discussed how to reduce dark current by 

burying a PD below the semiconductor surface, as well as using regular unburied PDs. He used MOS 

source follower in the pixel for the first time to buffer the readout signal. Early MOS devices were 

suffering from fixed pattern noise (FPN) because of variation between pixels. FPN was explored by 

Fry et al. in 1970 [12]. In the same year, 1970, CCD was first introduced [7] with low FPN and small 

pixel size, and that is why it was adopted for decades earlier until the rebirth of CIS in the 1990s. 

CIS had been adopted again to solve CCDs‘ problems. Many types of research have been 

focused on CMOS image sensors because it was very promising and advancements in fabrication 

processes at the time helped for its development and improvement rapidly. It was developed to 

overcome CCDs‘ main problems and, most importantly, commercialize it in a cost-efficient manner 

to the masses. The CIS’s ability to integrate on-chip supplementary circuits eliminates many issues 

that CCDs have. Integration minimizes interface problems and minimizes driving current consumed 

by output pads and hence minimizes overall power consumption. In addition, low voltage supply can 

be used in CIS as now there are no capacitors exist to transfer pixel charges. CIS allows low noise 

performance, no lag, no smear, better blooming control, simple clocking, and monolithic integration. 

Finally, pixels can be accessed randomly since the output of pixels do not need to shift sequentially. 

CMOS Image Sensors System 

Generally, CIS consists of pixels array, row and column decoders, analog signal processor(s), 

and analog to digital converter(s), as shown in Figure 2.1. The pixel array is the photon sensitive part 

of CIS. When photons of light incident on the pixel array, it generates electron-hole pairs as long as 

https://ieeexplore.ieee.org/author/37329137900
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photon energy is greater than the semiconductor material’s energy gap. Generated electron-hole pairs 

pass through a chain of several steps before an image is captured. Figure 2.2 illustrates the journey of 

photons through CIS until it becomes a video streaming. Negatively charged electrons and positively 

charged holes are willing to recombine unless they are separated, i.e., by using an electric field. These 

charges can be stored in a capacitor and converted to a voltage, or they could be quantified as current 

according to pixel structure. The readout stage comes after the conversion of charge to voltage or 

current. Each pixel signal is read out according to CIS structure (pixel by pixel or row by row, etc.). 

The analog signal is buffered and processed by ASP(s) then converted to a digital signal by ADC(s). 

Finally, the digital signal is processed through digital signal processing (DSP) to an image that is 

displayed on the screen.  

Architectures of CMOS Image Sensors  

CIS components can be arranged in many ways to fulfill specific requirements. There are four 

main types of CIS architectures; (1) column-parallel architecture (CPA), (2) column-series 

 

Figure 2.1. Functional blocks in a CMOS image sensor (CIS). 

 

Figure 2.2. Photon’s path through CIS 
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architecture (CSA), (3) pixel-parallel architecture (PPA), (4) pixel-series architecture (PSA). These 

four types will be illustrated in the following sub-sections. 

Column-Parallel Architecture (CPA) 

Figure 2.3 shows CIS with CPA. It has a single ASP and single ADC per each column. 

Signals from rows are sampled on column ASP(s) and digitized by column ADC(s) in parallel and 

readout from columns in the digital domain. As only one ASP and ADC process whole column data 

in parallel, ADC should have high conversion speed. CPA has a relatively low fill factor as it has a 

number of ASPs and ADCs equal to the number of columns, which consumes extra area. Some other 

CPAs may split ASP and ADC into more than a single ASP and ADC per column to relax the speed 

limit but at the fill factor expense. 

Column-Series Architecture (CSA) 

CSA consists of a single ADC per chip and single ASP per column, as shown in Figure 2.4. 

Row(s) of pixels are sampled on column (or global) ASP(s) and digitized by global ADC(s) in series. 

ADC of CSA should have a very high conversion speed as it converts all columns in series. CSA has 
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Figure 2.3. Column-parallel architecture (CPA). 
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a better fill factor than CPA because of the single ADC per chip saves more area for sensing 

elements. 

Pixel-Series Architecture (PSA) 

Figure 2.5 shows PSA; it has only a single ASP and ADC per chip. Individual pixel is 

selected in series and read through global ASP and global ADC. This architecture has the best fill 

factor because most of the area is dedicated to sensing elements. However, ADC should fulfill the 

extremely high-speed requirement to maintain a reasonable frame rate.  
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Pixel-Parallel Architecture (PPA) 

PPA is depicted in Figure 2.6. each pixel has its ASP and ADC. Individual pixel is sampled 

in parallel and read through pixel ASP(s) and pixel ADC(s). this architecture has the worst fill factor 

while it releases the speed limit requirement for ADC.  

CMOS Pixel Technologies 

CIS pixels have three basic approaches; PD-type passive pixel, PD-type active pixel, and 

photogate-type active pixel [6]. The main difference between active and passive pixels is that active 

pixels have an amplifier at each pixel for buffering and driving the output signal to busses. In 

contrast, passive pixel connects the PD output directly to the output bus. 

Passive CMOS Pixels 

The PD passive CMOS pixel consists of a PD and access switch. Figure 2.7 illustrates the 

basic structure of a CMOS passive pixel and column charge amplifier. Passive CMOS pixel was 

proposed by Weckler in 1967 [9], [10]. The PD is connected to the column bus when the access 

switch is turned on, and the voltage of the column bus is kept constant thanks to the column charge 

amplifier, which helps to reduce thermal noise. The PD voltage is reset to column bus voltage when 

PD is accessed; then, the PD charge is converted to a voltage by charge column amplifier. The 

simplicity of passive CMOS pixel results in a very high fill factor, allowing very small pixel size. 

Passive CMOS pixel has only one transistor. However, another transistor could be added to allow X 
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and Y addresses. Because of the large fill factor of passive CMOS pixel, quantum efficiency could be 

relatively high. 

Passive CMOS pixels suffer from several issues like readout noise, FPN, and scalability. The 

readout noise of passive CMOS pixel is in the range of hundred(s) of electrons r.m.s. But for CCDs, it 

is less than a few electrons r.m.s. Also, the column amplifier causes a large FPN. The passive CMOS 

pixel cannot be scaled easily to a large array format or faster readout rate, and this is due to the large 

column bus capacitance the result from connecting more pixels to it. Large capacitance results in 

higher power consumption and higher readout noise. 

CMOS Active Pixel Sensor (APS) Technologies 

Active pixel sensors (APS) are proposed [11] [13] [14] [15] to solve issues with passive 

CMOS pixel. Each APS has, typically, a source follower amplifier to buffer the photon detector 

signal. The pixel source follower is turned on only during the readout of the pixel. So, active pixels 

have relatively low power consumption. There are two main types of active pixel sensors; photodiode 

(PD) type CMOS APS and photogate (PG) type CMOS APS 

Photodiode (PD) Type CMOS APS 

Figure 2.8 illustrates a schematic diagram of a typical photodiode (PD) type APS that uses 

three transistors (3T). It consists of reset transistor (M1), pixel source follower (M2), and row select 

transistor (M3). It has high quantum efficiency due to there is no polysilicon overlap.  

At the starting of integration time, M1 is switched on to set the reset voltage (VR) of PD. The 

depletion region capacitance holds the reset voltage of PD, which increases the negative built-in 

electric field from N to P region. M1 is switched off during integration time, causing PD to float 

 

Figure 2.7. Passive CMOS pixel schematic and column amplifier. 
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while exposing to light. Hence, excess electron-hole pairs are photo-generated, and the electric field 

drives electrons to P-region and holes to N-regions (the charge separation function). These drifted 

charges start to discharge the PD capacitance during integration time with a rate proportional to the 

amount of charge generated by light, corresponding to light intensity level. M2 is dedicated to the 

buffering function and to drive the capacitive column. It isolates PD from readout electronics and 

enables the non-destructive readout process. M3 is a select transistor that connects the selected row to 

the column bus. This basic operation is followed by all CMOS APS, even though it may differ in the 

number of transistors or schematic to enhance performance. 

Figure 2.9 shows the cross-section of APS PD. For standard CMOS process. Extended field 

oxide (FOX) is formed around n+ regions causing dark current due stress centers [16]. In addition, 

there are two other sources of dark current, which are surface defects and surface recombination 

centers. These two dark current sources absorb any photo-generated charges near to surface like 

short-wavelength photons corresponding to the blue/ultraviolet (UV) spectrum. The structure shown 

in Figure 2.9 has poor blue/UV response due to the high dark current near-surface. 

The solution of the blue/UV response problem related to surface defects is depicted in Figure 

2.10. PD is buried under a thin surface p+ region. This structure is called a buried photodiode or 

pinned photodiode (PPD), and it needs a special process for manufacturing. This thin layer doping 

concentration should be well controlled to form potential well of PD correctly [17] to allow complete 

charge transfer from PD to floating diffusion (FD) through the transfer gate (TX). FD and TX are 

added for low noise readout operation. This structure is working as follows. First, FD is reset to reset 

 

Figure 2.8. schematic diagram of a typical photodiode  
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voltage, and this level is read out at the starting of integration time. Then, TX is switched on to 

transfer charges from PD to FD. After that, FD is readout again after integration time, and this level 

represents a signal level. The difference between these readout values after and before transferring 

charges is the absolute signal, proportional to the light level. This readout operation is called 

correlated double sampling (CDS). CDS suppress 1/f noise from the in-pixel source follower, thermal 

noise caused by pixel reset, and fixed pattern noise due to pixel-to-pixel variation in pixel transistors.  

  

Figure 2.9. Cross sectional view of photodiode in 3T CMOS APS Pixel  

 

Figure 2.10. Cross sectional view of a buried (pinned) photodiode (PPD) in CMOS APS pixel 
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Photogate (PG) Type CMOS APS 

Photogate (PG) type active pixel sensor was first introduced in 1993 at JPL [13] [14] [15]. 

Figure 2.11 illustrates a cross-section of the PG type active pixel sensor. It consists of PG, transfer 

gate (TX), and floating diffusion in addition to the 3T like PD. Low noise charge collection of CCDs 

technology was inspiring for proposing a PG type active pixel sensor. In Figure 2.11, if a positive 

voltage is applied to the PG terminal, the depletion region is formed as P-substrate's holes are repelled 

away from the surface. The depletion region collects photo-generated electrons due to incident 

photons, while holes flow to the ground because of the applied electric field across the depletion 

region. The surface of silicon collects the generated charges like in PD. Still, for PG, this surface has 

better quality than in PD, which results in low surface dark current and no stress-related dark current 

in PG. Therefore, the PG dark current is shallow, and surface effects can be reduced using buried PG. 

In Figure 2.11, the RST transistor sets FD to a reset level, which is read first. Then, TX is 

pulsed, allowing charge under PG to transfer to FD, and the FD level is reread after transferring is 

completed. The readout signal difference after and before charge transfer during the integration 

period is the readout signal, and this is the correlated double sampling process. The PG type active 

pixel sensor is typically larger than PD because of the extra components 

 

Figure 2.11. Cross sectional view of a photogate (PG) type CMOS APS pixel. 
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Analog Signal Processor (APS) 

For the passive pixel sensor, a charge integration amplifier is used for the readout signal, 

while for the active pixel sensor, sample and hold circuits are used. The readout process is completed 

when the analog signal is stored in sample and hold capacitors. The programmable gain amplifier 

typically follows the sample and hold circuit. ASP performs correlated double sampling (CDS) to 

suppress FPN, reset noise, and 1/f noise. ASP can also perform some other functions like level 

shifting, offset cancellation, delta-double sampling, etc. The analog output signal from ASP is fed to 

the analog-to-digital converter (ADC) for converting to a digital signal. 

Analog-to-Digital Converter (ADC) 

Depending on imager architecture, the analog signal can be converted to digital form at 

different levels. It can be converted in pixel, column, or global level. However, on-chip A-to-D 

conversion is recommended because digital signals have better noise immunity than analog signals; 

also, the system's total cost will decrease as a result of more components integrated with one chip. In 

addition, the integration of ADC(s) minimizes power consumption of CIS as there is no need for the 

powerful amplifier that will drive analog output pads or off-chip capacitive loads. However, ADC(s) 

should be optimized for minimum power consumption minimum silicon footprint for CMOS imager’s 

better performance. At the same time, ADC(s) must have the capability of supporting video rates with 

at least 8-bit resolution and high frame rate. Integral nonlinearity (INL) and differential nonlinearity 

(DNL) should be minimized to reduce image quality degradation. To avoid the switching noise 

coupling of ADC(s) to the pixel array or analog components, ADC(s) must be well isolated from the 

pixel array and analog components.  

There are many ways to implement ADC(s) in CMOS imagers. It can be a single ADC with very high 

speed for the whole imager running in a serial fashion or multiple ADCs with lower speed running in 

parallel; this depends on imager architecture and how different blocks are arranged. As the number of 

parallel running ADCs increased, the speed limit for them can be relaxed, and the power consumption 

limit. ADC speed limit, size, and power consumption are the key points for choosing ADC type for 

CMOS imagers; for example, successive approximation register (SAR) ADC has a higher speed and 

less power consumption than ramp ADC; however, it needs a large area that is not fit into CMOS 

imager. Table 2.1 shows a comparison of different ADC types that are available for CMOS image 

sensors. Flash ADC is the fastest type at all and provides high bandwidth. However, it suffers from 

the most important needed features; high power consumption and large die size in addition to high 

cost. So, flash ADC is not suitable for CMOS image sensors. Sigma- Delta ADC provides high 
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resolution and high bandwidth, but it needs an external track and hold circuit and has a limited 

sampling rate. 

Additionally, Sigma- delta ADC typically consumes more than10 mW of power, which means that it 

will increase total chip power consumption if used for each CMOS image sensor columns. This is the 

same reason why pipeline ADC is not used for CMOS image sensors, although it has a high 

throughput rate and digital error correction and on-chip self-calibration. Ramp or integrating ADCs 

fulfill the most requirements of CMOS image sensors. It has high resolution and low power 

consumption in addition to excellent noise suppression and a small silicon footprint due to its 

simplicity; however, it suffers from low conversion speed. It needs 2N clocks to convert an analog 

signal. Speed enhancement of ramp ADCs becomes a hot topic of research that will be reviewed in 

the next section. 

Table 2.1. Comparison of ADC topologies for CMOS image sensors 

ADC 

Type 
Resolution Power 

Energy/sa

mple 

Clock 

cycle 
Speed Pros/Cons 

Flash 8-bit >50mW ~50nJ/S 1 
10Msps -

1Gsps 

+Extremely Fast 

+High Input Bandwidth 

-Highest Power Consumption 

-Large Die Area 

-Expensive 

SAR 8-16 bit ~100µW ~100pJ/S N 
75Ksps -

2Msps 

+High Resolution And 

Accuracy 

+Low Power Consumption  

+Few External Components 

-Low Input Bandwidth 

-Limit Sampling Rate 

-Input Voltage Must Remain 

Constant During Conversion 

Ramp >14 bit ~1mW ~10nJ/S 2N <100Ksps  

+High Resolution 

+Low Supply Current 

+Excellent Noise Rejection 

-Low Speed 

Sigma-

Delta 
>14 bit >10mW ~5nJ/S <2N >200Ksps 

+High Resolution 

+ High Input Bandwidth 

+Digital On-Chip Filtering 

-External T/H 

-Limited Sampling Rate 

Pipeline  10-14 bit >10mW 10nJ/S N+1 
10Msps -

100Msps 

+High throughput rate  

+digital error correction and 

on-chip self-calibration 

-typically requires 50% duty 

cycle 

-requires minimum clock 

frequency 

 



18 

 

Speed-Up Techniques for CIS Integrating Type ADCs 

The demand for high-frame-rate CMOS image sensors is steadily increasing. Column-parallel 

integrating (single-slope ramp, SSR) type ADCs were widely used in CMOS image sensors because 

they can be implemented with a small area, low noise, and high energy efficiency. However, 

conventional SSR ADCs have a speed limitation, which has led to various architectural 

improvements. In the following sub-sections, different methods of improving these limitations are 

presented. These improvements can be divided into three main categories; single-step sampling, 

multi-step sampling, and hybrid single-slope ramp ADCs. 

Single-Step Sampling Ramp ADCs 

Clock Frequency Increase for Single-Slope Single-Ramp ADC 

In 2006, a research group in Japan [18] [19] [20] proposed CIS that has a single master clock 

operating at 74.25MHz and an ADC clock of 297MHz generated by an on-chip phase-locked loop 

(PLL) from the master clock. ADC clock was used for generating single-slope ramp signal using a 

high-speed digital-to-analog converter (DAC) driving column SSR ADCs and was also used for low 

voltage differential signal (LVDS) interface, as shown in Figure 2.12 [18]. This high-speed clock 

(297MHz) is also used to minimize the double digital sampling period of digital double-sampling 

(digital CDS) and analog CDS. Also, a high-speed clock and CDS help to achieve 150MHz of data 

rate with 12-bit resolution. Frame rate can increased up to 180 frames/second (fps) with maximum 

600 MHz data rate but in the expense of resolution that drops to 10b.This design achieved readout 

 

 

(a) (b) 

Figure 2.12. (a) Column-inline dual CDS architecture as presented in [18] that uses shigh speed SSR and its 

(b) timing diagram. 
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random noise of 4.8 e-
rms for 60 fps and 12-bit resolution and this readout noise increases to 5.2 e-

rms if 

the frame rate increased to maximum of 180 fps as the noise increased for voltage supply. 

In 2011, Toyama et al. [21] presented high image quality 34.8 Gb/s CIS, which realized 17.7 

M pixels with 12-bit resolution at 120 fps and 75 dB dynamic range, as shown in Figure 2.13. They 

have two solutions for the speed issue of conventional single slop ADC; the first one utilizes hybrid 

column counters that allow rapid A/D conversion with minimum power consumption. The second 

solution is a Scalable Low Voltage Signaling interface with Embedded Clock (SLVS-EC), which 

results in 2.376 Gb/s/channel. 

Dual-Slope Single-Ramp ADCs 

As shown in Figure 2.14, the double-slop technique is proposed by Oh-Bong et al. [22] [23] 

to enhance the resolution of images with low luminance conditions and improve dynamic range. 

Three analog ramp generators with programmable step size multiplexed into odd and even sub banks 

of comparators for individual ADC gain control for red, green, and blue pixels arranged in Bayer 

pattern, as illustrated in Figure 2.14. (a). This technique utilizes gamma characteristics to give higher 

resolution and better dynamic range. It differentiates between high and low illumination levels of the 

pixel. The high illumination pixel output is limited by shot noise, and low-resolution conversion is 

sufficient, while in low light condition, pixel noise is dominated by the quantization noise of ADC 

and needs high-resolution conversion for better image quality. Hence, a double slope exploits this 

characteristic and implemented such that its slop is shallow in case of low pixel output values to 

 

 

(a) (b) 

Figure 2.13. (a) Block diagram of this SS-ADC architecture as presented in [21] that uses high speed 

SSR and its (b) timing diagram 
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provide high resolution. On the other hand, its slope is steeper when the signal level is strong enough 

with low resolution to provide a high dynamic range. 

Accelerated Ramp (AR) ADC 

In 2005, Otaka et al. [24] and Snoeij et al. [25] proposed enhancement of ramp ADC 

conversion speed using accelerated ramp based on the photon shot noise limit of an image signal as 

depicted in Figure 2.15. (a). The photon shot noise dominates when the signal level increase. For 

large input signals, if ADC steps are increased linearly, its performance is higher than needed, ie. 

ADC quantization steps can be increased, as shown in Figure 2.15. (b) without affecting the overall 

signal to noise ratio. Otaka defined an image signal's shot noise as the square root of this signal and 

related ADC ramp steps to photon shot noise rather than linear steps. Accelerated ramp step size 

should increase to decrease the overall number of required steps and perform conversion faster. Otaka 

also introduced another parameter called shot noise margin and defined it as the accelerated ramp step 

  

(a) (b) 

Figure 2.14. (a) Block diagram of dual slope ADC as presented in [22] and its (b) conversion cycle 

 
 

(a) (b) 

Figure 2.15. (a) shot noise limit as in [24] (b) Increased ADC quantization steps as in [25] 
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size ratio to signal shot noise. The recommended shot noise margin is 1/2 to reduce the possible 

appearance of contours effectively.  

In 2013, a differential ramp generator for SSR ADC with an accelerated ramp was proposed 

[26], as illustrated in Figure 2.16 (a). The main idea is built in the same theory of photon shot noise 

limitation and implement an on-chip continuous-time ramp generator to replace discrete-time 

implementation to minimize glitch noise resulted from discrete-time ramp high-speed clocking. 

Figure 2.16 (b) illustrates a real-time calibration sampling and timing scheme for a 14-bit accelerated 

ramp generator for column-parallel CIS introduced by Bergey [27]. The ramp generator creates 

multiple slope ramp that allows ADC resolution scaling for a given shot noise limit. Hence, tradeoffs 

between frame rate, resolution, and power dissipation can be made easily without a redesign 

depending on the application. 

Simultaneous Multiple-Slope Ramp (SMSR)ADC  

Simultaneous multiple-slope ramp (SMSR) ADC was first proposed by Lindgren [28], as 

illustrated in Figure 2.17 (a). It achieves almost twice the speed of conventional ADC by adding small 

extra circuitry. This type of ADC uses the same circuitry as conventional single-slope ADC except 

that it has two different phases of conversion; comparison phase and slope phase. During the slope 

phase, many slopes are used in parallel, such that each slope covers a section of the total signal swing. 

The additional circuits over conventional single-slope ADC are some control circuits and analog 

multiplexers added at comparator input. The available slopes are applied to an analog multiplexer 

allowing each column to choose the appropriate slope to connect with. 

A comparison phase is the start of the conversion process. All slopes are first set to an initial 

value and applied to multiplexers, as illustrated in Figure 2.17 (b). After that, the column 

multiplexer’s output is scanned and compared to the column input signal. The comparator output of 

 

 

(a) (b) 

Figure 2.16. (a) Differential Ramp Generator as in [26] (b) Real-Time Calibration Scheme as in [27] 
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each corresponding slope is stored in a register in each column. The stored comparator output will be 

used in the next slope phase. For the slope phase, the actual slope operation is performed, and the 

global counter output is fed to the slope generator and columns. Once the output of the comparator is 

changed, the counter value is latched. The combination of the stored threshold value and latched 

counter value results in the digital result. 

Dual-Gain Single-Slope Ramp ADCs 

Figure 2.18 (a) illustrates a new proposed gain adaptive column ADC based on single-slop 

ramp ADC. It was presented in [29] to fulfill the high frame rate requirements and high dynamic 

range of CIS. It applied two slope references of different gain instead of the programmable gain 

amplifier, as shown in Figure 2.18 (b). Pixel output levels of each column are responsible for 

switching between the two slope references. This technique adds a small area and power consumption 

without adding any noise source. It can also suppress the nonlinearity of the sensor due to real-time 

gain correction and small FPN without any necessary calibration. That paper achieved 480 fps input-

referred dark random noise of 140 µVrms with 923mV for input-referred full-scale readout. 

 

 

(a) (b) 

Figure 2.17. (a) Block Diagram of the SMSR Architecture (b) Slopes of SMSR Architecture [28] 

 

 

(a) (b) 

Figure 2.18. (a) Gain Adaptive Column ADC (b) Concept of A/D operation with two slope 

references as in [29]. 



23 

 

Single-Slope Ramp (SSR) ADCs with Dual-Gain Amplifier 

Single-slope ramp (SSR) ADC with dual-gain (SSDG) amplifier idea was proposed in [30] to 

speed-up the conventional SSR ADC and widen the dynamic range without increasing in power 

consumption in CIS CPA. The block diagram of the SSDG ADC is illustrated in Figure 2.19 (a), and 

the timing chart is shown in Figure 2.19 (b). A column amplifier gain is set to high gain (4X) if the 

pixel signal level is below a threshold level (approximately 1/4 of pixel signal value) in order to 

minimize random noise (RN). After that, the column amplifier gain is set to low gain (1X) if the pixel 

signal level exceeds that threshold to prevent exceeding the amplifier output range. In that case, the 

dynamic range is wider than SSR as an RN is suppressed, and the signal level is kept the same. This 

work achieved 5 fps for full pixel readout, 24fps at 8k4k, and 48fps at 4k2k. The chip power 

consumption was 1.97W at 5 fps full-pixel readout and 12-bit resolution, while the dynamic range 

was 6 dB wider than SSR ADC and had a value of 66.7 dB 

Differential-Ramp Single-Slope (DRSS) ADC  

Differential-ramp single slop (DRSS) ADC was introduced in [31]. This ADC consists of 

four main circuits: pre-comparator, main comparator, course-fine time to digital converter (TDC), and 

low pass filtered offset. The DRSS scheme and its timing diagram are shown in Figure 2.20. The 

differential ramp SS ADC is based on the capacitor trans-impedance amplifier (CTIA) with a two-

step coarse fine conversion scheme. At the end of each line, the coarse comparator completes 1-bit 

coarse quantization. This scheme helped reduce the counter frequency to 70MHz instead of 500MHz 

that cannot be fulfilled by that technology achieving 2X faster conversion speed and better ADC 

noise performance with reduced power and the chip area. 

 

 

(a) (b) 

Figure 2.19. (a) The block diagram of the SSDG (b) The Timing chart of the SSDG as in [30]. 
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Time-Stretched Single-Slope Ramp (TS-SSR) ADC 

A new technique was presented in 2019 by Injun et al. [32] called time-stretched single-slope 

ramp (TS-SSR) ADC. The block diagram and the timing scheme is illustrated in Figure 2.21. It 

achieved 500 fps, 1095e- random noise, and 76 mW power consumption. It is proposed a column-

parallel time stretcher that expands SS ADC's time residue to 16 times and reduces the conversion 

cycle of SS ADC 80 cycles for 10-bit resolution. This allowed using the clock with a lower 

frequency, which leads to reducing power consumption significantly. This architecture uses a single 

ramp generator for SS ADC so. It cannot degrade noise performance and gain the function of SS 

ADC. 

 

 

(a) (b) 

Figure 2.20. (a) The block diagram of the DRSS (b) The Timing chart of the DRSS as in [31]. 

  

(a) (b) 

Figure 2.21. (a) The block diagram of the TS-SSR (b) The Timing chart of the TS-SSR as in [32]. 
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Two-Step Sampling Ramp ADCs 

The second category of ramp ADCs converts analog signal using two steps or phases; coarse 

and fine phases. According to a different setting in each technique, the switching from the coarse 

phase to the fine phase occurred. 

Two-Steps Single-Slope Ramp (2S-SSR) ADC 

Lee, in [33], [34] presented CIS CPA integrated two-step single-slope ramp (2S-SSR) ADC 

to enhance the sampling rate in order to increase the speed of SSR ADC. This scheme is divided into 

two steps; m-bit coarse SS ADC and n-bit fine SS ADC as shown in Figure 2.22. The first step has 2m 

steps to scan full range and quantizing m-most significant bits (MSBs) while the fine ramp steps are 

2n to quantize n-LSBs. However, the fine steps ranged only within coarse steps with the same slope 

and smaller steps sizes. This makes the required number of clocks for a sample is (2m+2n) instead of 

(2n+m) for conventional SS ADC. In addition, this work introduces a solution of missing codes 

between coarse steps of ADC by doubling the fine range to cover the boundary between coarse steps. 

As a result, speed-up the conventional SS ADC by factor of 10 in addition to theoretical maximum 

frame rate of 1000 fps but power consumption increases of 25%. 

Multiple-Ramp Single-Slope (MRSS) ADC 

The development of the latter idea was proposed in [35] by Snoeij. Multiple ramp single-

slope ADC idea is introduced to solve the speed problem of SS ADC by trading power consumption 

and speed and keep the advantages of SS ADC like simplicity. The column circuit consists of one 

comparator that can connect to multiple ramp voltages simultaneously, as shown in Figure 2.23. The 

conversion process is divided into coarse and fine phases. For the coarse phase, the first ramp is 

 
 

(a) (b) 

Figure 2.22. (a) The block diagram of the 2S-SSR (b) The Timing chart of the 2S-SSR as in [33]. 
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connected to all comparators. Coarse conversion is performed to provide an initial coarse estimation 

(p-bit) of input signal level during the fine phase. All ramps with the same slope are scanning a 

specific range of coarse ramp concurrently, and each ramp is connected to appropriate comparator 

according to coarse phase results. This technique reveals a reduction in conversion time to 3.3Xwith 

an increase of frame rate 2.8X, and power consumption is increased by 24%. 

Multiple-Ramp Multiple-Slope (MRMS) ADC 

The same author of MRSS developed the latter technique to be multiple ramp multiple slope 

ADC [36], which achieved a 25% faster speed with the same power consumption. In this work, the 

photon shot noise amplitude-dependent nature of imager signals is exploited to exhibit a companding 

characteristic. Figure 2.24 illustrates the block diagram and the timing scheme of the MRMS. As 

MRMS is MRSS-based, it follows the same operation theory except for the fine ramp signals; instead 

of the same slope for each ramp, the shot-noise-based accelerated ramp is used to speed up MRSS the 

same power consumption. 

  

(a) (b) 

Figure 2.23. (a) The block diagram of the MRSS (b) The Timing chart of the MRSS as in [35]. 

  

(a) (b) 

Figure 2.24. (a) The block diagram of the MRMS (b) The Timing chart of the MRMS as in [36]. 
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Hybrid Sampling Ramp ADCs 

The last category of ADCs is hybrid sampling and operation ADC techniques. It tries to take 

advantage of the high conversion speed of ADCs like successive-approximation register (SAR) or 

flash type ADCs and the advantage of simplicity and area efficiency of SSR ADC. However, these 

techniques are successful, somehow trade the gained advantages with other requirements. 

Hybrid SS-ADC/ SAR type 

The combination of SS-ADC with SAR ADC was first reported in [37], as shown in Figure 

2.25. 11-bit, two steps, CPA ADC, was realized in that work. 3-bit SS-ADC realized the 11-bit 

Digital output as MSB and 8-bit SAR as the rest of the digital word. It is claimed that power 

consumption is reduced compared to SSR ADC. The chip area was reduced compared to 11-bit SAR 

ADC as an 8-bit resolution relaxed the capacitor array matching and eliminated the need for any 

calibration to guarantee the monolithic quantization response. However, in order to achieve high 

resolution, a lot of accurate reference voltages are required because reference voltages of lower bit 

conversion depend on upper bit reference voltages. 

Another hybridization between SS-ADC and SAR ADC is presented in [38]. This technique 

realizes 12-bit hybrid SS/SAR ADC with less power consumption by sharing analog circuits between 

SS and SAR ADC. 6-bit SAR-based MSB conversion is followed by a 6-bit SS-based LSB 

conversion of the residue to achieve a 12-bit final output word, as illustrated in Figure 2.26. However, 

hybrid multi-step SS /SAR converters are more complex due to additional circuitry involved in 

residue extraction and resampling. 

 

 

(a) (b) 

Figure 2.25. (a) The block diagram of the SS-ADC/SAR (b) The Timing chart of the SS-ADC/SAR 

as in [37]. 
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Hybrid Single-Slope Time to Digital Conversion (TDC) and Flash Type ADC 

CPA TDC Flash-type ADC is combined with SS-ADC in [39]; it solves the problem of 

multiphase clock period of flash TDC without using a delay-locked loop. Figure 2.27 (a) illustrates 

the system-level concept of the interpolation method with gain calibration. Figure 2.27 (b) shows the 

principle of flash TDC-interpolated SS ADCs and calibration proposal. This technique uses open-loop 

delay elements for clock generation to gain calibration using per column digital multiplication 

operation. The correction scheme is applied after each conversion to save less than 5% of ramp time. 

Conclusion  

This chapter started with a quick revision of CCD history and how it was very dominant and 

mature for years in the industry. Then, how CIS emerged and how it was very promising at that time 

is also explained the reasons that forced researchers to spend more time to explore and develop it until 

it dominates in the industry today are illustrated. CIS system level and different architectures were 

explained, showing the advantages and disadvantages of each architecture. Each block of the system 

 

 

(a) (b) 

Figure 2.26. (a) The block diagram of the SS-ADC/SAR (b) The Timing chart of the SS-ADC/SAR 

as in [38]. 

  

(a) (b) 

Figure 2.27. (a) System-level concept of the interpolation method with gain calibration (b) The 

Principle of Flash TDC-Interpolated SS ADCs and calibration as in [39]. 
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was explored to understand each block's function and how it affects the overall function of CIS. A 

literature survey of speed-up techniques was performed, revealing the amount of research done to 

speed up SSR ADC as the only drawback is the conversion speed. The next section will illustrate the 

new speed-up technique for CPA CIS called single-slop look-ahead ramp ADC.  
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Chapter 3: Single Slop Look-Ahead Ramp (SSLAR) Analog to Digital 

Converter (ADC) 

"Single-Slope Look-Ahead Ramp ADC for CMOS Image Sensors." IEEE Transactions on Circuits 

and Systems I: Regular Papers, Early Access, 2020, pp. 1-10. 

Integrating (ramp) type analog-to-digital converters (ADC) used in column-parallel CMOS 

image sensors trade conversion speed with size, power, and circuit complexity to achieve optimal 

performance. A new integrating (ramp) type ADC architecture called single-slope look-ahead ramp 

(SSLAR) ADC is introduced in this chapter. It utilizes a statistical approach and code-prediction 

methods to improve the standard single-slope ramp (SSR) ADC conversion speed. It is shown that 

SSLAR ADC reduces power consumption while achieving an increased frame rate. This is achieved 

by the SSLAR algorithm optimized for column-parallel CMOS active pixel sensor (APS) imager 

architecture. The characterization result of a 10-bit SSLAR ADC designed in a 0.5µm CMOS (2P3M) 

process and integrated with a column-parallel CMOS image sensor with 200 × 150 array with 15µm 

pixels is presented. Measurements showed that a six times (6x) frame rate increase could be achieved 

while reducing power consumption by 13% with minimal impact on image quality.  

Introduction 

The CMOS image sensor is the technology of choice due to its advantages over the charge-

coupled device (CCD) in today’s still image and video capturing consumer devices [8] Particularly, 

CMOS APS imagers have two main image readout architectures that provide these advantages [40]. 

Column series architecture (CSA) is used in most low-resolution, high-volume, and highly 

commoditized CIS based camera systems. The high-resolution, high-speed CMOS image sensors take 

advantage of the second architecture called column-parallel architecture (CPA). CPA utilizes column 

level low-speed, low-noise, analog domain signal processing, and digitizing circuits. Correlated 

double sampling (CDS), analog noise cancellation, sampling, amplification, level shifting, and 

dynamic range adjustment are typical operations performed on pixel signals in column analog signal 

processors (CASP) before ADC digitizes them. 

Historically, four types of ADCs have been used in CPAs without degrading the competitive 

advantage of CMOS APS imagers. They are successive approximation register (SAR), [14] [41] [42], 

integrating [43] [44] [45] [46], sigma-delta [47] [48] [49] [50] [51], and cyclic or algorithmic type 

ADCs, [52] [53] [54] [55] [56] [57] [58] [59] [60], Integrating type ADCs are also known as single-

slope or multiple-slope ramp (SSR or MSR) ADCs. Among these ADC topologies, the most 

noteworthy one for CPA is the SSR ADC [22] [23] [24] [27] [26] [35] [36] due to its advantages on 
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multiple fronts, including ease of integration, smaller silicon footprint, low-power consumption, low-

voltage operation, high bit resolution, low-noise operation, and low design complexity. However, 

they suffer from conversion speed, especially when bit resolution is increased to 10-bit or more.  

In the past, many solutions have been proposed to overcome the resolution and speed issues 

of SSR ADCs used in CIS CPAs, [22] [23] [24] [27] [26] [35] [36]. These solutions can be 

categorized into four different techniques; double-slope ramp (DSR) [22] [23], accelerated ramp (AR) 

[19] [27] [26], multiple-ramp single-slope (MRSS) [35], and multiple-ramp multiple-slope (MRMS) 

[36]. These solutions reduce conversion time by using added global or column level circuits and 

architecture design techniques. All existing solutions perform analog-to-digital conversion blindly 

scanning all possible codes between 0 and (2n-1) using n-bit digital counter and ramp generator. 

Indeed, this is the main reason why there is a tradeoff between speed and resolution. On the other 

hand, if the code distribution of the sampled pixel signals (or row histogram in CPA) is known, some 

code ranges can be skipped on analog (ramp) and digital domains (counter) resulting in improved 

conversion speed and reduced power consumption, [61] [62]. In this chapter, implementation details 

and measurement results of a new method to predict code distribution, and a ramp ADC algorithm to 

accelerate analog-to-digital conversion operation for column-parallel CMOS image sensors is 

presented. Both were implemented on hardware achieving code range look-up, jump, and fallback 

operations on analog and digital domains, and used for developing the proposed single-slope look-

ahead ramp (SSLAR) ADC. 10-bit SSLAR ADC is integrated with a column-parallel CMOS APS 

image sensor having a 200 × 150 array of 15µm × 15µm three-transistor (3T) APS pixels. Design is 

fabricated in a standard 0.5µm, 2P3M CMOS process and measurement results are presented  

This chapter is organized as follows. First, the operational principle of the SSLAR ADC 

algorithm is provided. Then, the implementation and operational limitations of the SSLAR ADC 

algorithm are described. The Circuit level implementation of the SSLAR ADC algorithm and 

integration of the design on a CMOS image sensor are presented afterward. The measurement 

techniques, metrics to quantify the image quality performance of SSLAR ADC, and the measurement 

results are presented before the discussion and conclusion. 

SSLAR ADC Operation Principle 

Focal plane imaging systems compose of optics focusing scene images on its field-of-view 

(FOV) onto image capturing arrays of photosensitive elements confined in pixels. Today’s 

mainstream imaging devices use a so-called electronic rolling shutter operation that allows capturing 

and processing two-dimensional (2D) scene images sequentially. Typically, this is done row-by-row 

and by using fixed integration times. Analog pixel signals on the addressed row are sampled and hold 
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for further processing on CASPs. Typically, reference (reset) and light-induced signal voltages of 

each pixel on the addressed row are sampled and processed in CASP. These pixel signals are 

subtracted (correlated double sampling-CDS), noise-shaped, level-shifted, and, most of the time, 

amplified in the analog domain by the CASP circuits. In CPA architectures, they are digitized by an 

ADC placed alongside CASP circuits on each column. Digitized pixel signals are sequentially sent to 

digital signal processing (DSP) circuits for further processing.  

A Block diagram of a CMOS CPA image sensor composing of SSR ADC is shown in Figure 

3.1. Each column ADC has a low-speed comparator and n-bit transparent latch following the CASP 

circuits. Effective pixel voltage (Vin[i]) is processed and held at a comparator’s input. The other input 

of it is connected to a global ramp generator, Vramp. The comparator drives transparent latches, which 

pass digital inputs when its control input is high and holds the last digital inputs when it is low. 

Digital inputs of the latches are connected to the n-bit global counter. After comparator inputs are 

settled, the global ramp generator and counter are activated, generating analog and digital ramps. 

When comparator output changes its state from logic 1 to 0 due to Vramp>Vin[i], latches on column i 

holds the last counter bits digitizing the input voltage, Vin[i]. Since each column might have a 

different input voltage, the ramp signals have to scan full analog and digital ranges blindly. This blind 

ramping operation is depicted in Figure 3.2(b) for row[j] shown in Figure 3.1. Code distribution of 

 

Figure 3.1. Building blocks of a CMOS APS image sensor with CPA and integrated single-slope ramp ADC. 
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row[j] signals (row histogram) is shown in Figure 3.2(a) over the 8-bit code range of the ADC. The 

vertical axis in Figure 3.2(a) represents the number of columns that have the particular ADC code. 

For example, none of the columns have codes between 0 and 48, 62 and 90, and 220 and 255 for this 

particular row of pixels. This is a typical occurrence for captured images that row analog signals do 

not exist in all code ranges of digitizing column-parallel ADCs. Another example, For example, if 

row#2 of the image in Figure 3.1 is digitized, it can be found that 90% of the digital outputs are 

between 64 and 71, and the rest is some individual codes outside this majority code range that can be 

skipped. Thus, scanning code ranges between 0 and 63, and 72 and 255 is a wasteful operation for 

column-parallel SSR ADC. Indeed, suppose the distribution of the ADC codes of the sampled column 

signals is predicted. In that case, digitization of entire row signals can be accelerated while reducing 

power consumption and conversion time, as seen in Figure 3.2(c). However, this requires a code look-

ahead scheme for forecasting when to perform ramp, jump, and fallback operations for digital counter 

and analog ramp generators [63] with controlled steps and thresholds. This is exactly what the 

proposed single-slope look-ahead ramp (SSLAR) ADC algorithm does. It considers the general nature 

of the everyday scenes that are captured by an image sensor, concluding that spatial variation and 

distribution of row of pixel signals might have localized distributions on digital code domain, 

allowing code skipping during digitization and resulting in opportunities to the speed-up conversion 

process and to reduce power consumption. Best images that have this condition are the ones in which 

all row pixel signals are accumulated in very small code ranges, allowing few clock cycles to be used 

for completing analog-to-digital conversion using the look-ahead ADC algorithm. Row #2 of the 

 

 

Figure 3.2. ADC operation of a captured image by a CPA CIS; a) 8-bit code distribution of pixel signals on 

row[j] on Figure 3.1, b) blind A-to-D conversion of pixel signals on row[j], c) ideal look-ahead ramp ADC 

operation of row[j]. 
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image in Figure 3.1, for example, requires less than 16 clock cycles for ideal look-ahead analog-to-

digital conversion resulting in more than sixteen times (16x) speed and/or power improvement 

opportunity. On the other hand, in worst cases, codes are uniformly distributed, resulting in full 

scanning of all codes using 256 clock cycles. Thus, the ideal look-ahead conversion would result in a 

“blind” conversion for the worst case as it will scan all codes without performing any jumping 

processes. As a result, ideally, digitization of an array of pixel signals using the proposed SSLAR 

ADC algorithm results in always faster than a blind one [61]. The next section reviews how would the 

proposed look-ahead ADC behaves under non-ideal conditions.  

SSLAR ADC Algorithm 

As mentioned earlier, if the digital code distribution of input analog voltages is known, ramp 

ADC operation can be modified and accelerated. A code look-ahead or prediction can be made 

instantaneously for an ideal case. However, in reality, this prediction requires a computation time in 

the form of a number of clock cycles, which can be defined as (h). Indeed, h-clock cycles have to be 

used when a look-ahead operation is performed.  

Another deviation from the ideal look-ahead operation is related to how to quantify if there is 

(or is not) enough number of columns fell in the look-ahead code range. A look-ahead range and a 

threshold have to be used in real implementation to make a judgment resulting in code jump or 

fallback operations. Thus, the code look-ahead range (both in analog and digital domains) has to be 

set reasonably such that the number of columns falling in this range (z) has to be counted and 

compared against a threshold level (s). In the SSLAR algorithm, step size (k) is the code look-ahead 

range, and jump threshold (s) is the maximum allowed number of columns to approve the look-ahead 

process.  

A Block diagram of the SSLAR ADC architecture for column-parallel CMOS image sensors 

is shown in Figure 3.3. Comparing with a typical SSR ADC shown in Figure 3.1, SSLAR ADC has 

one extra block called predictor on each column. The global ramp generator and counters were 

modified [63], and extra two blocks, event detector, and a global look-ahead controller (LAC) were 

added to implement the SSLAR ADC algorithm [62]. Modified global ramp generator and counter 

could be able to jump k-step and k/2-code (i.e., least significant bit, LSB) ahead from their current, 

voltage, or code level, respectively. They also accommodate the fallback of k-step and k/2-code if the 

LAC block does not approve jump operation. The predictors’ function is to generate a signal 
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collectively, informing the block about the number of column comparators that changed their state 

during look-ahead operation. Using these extra blocks and operation principles, the SSLAR ADC 

algorithm could be  

implemented following the steps given in Table 3.1. After a row of pixel signals sampled on m-

number of CASPs, and global ramp and counter circuits are reset, the analog-to-digital conversion 

starts with k look-ahead steps. Before the look-ahead operation, LAC initializes the event detector and 

asserts a jump signal. Before the ramp voltage is increased, the counter code is incremented (k/2)-

LSB and let column latches to pass this level first. Only k/2 LSB is assigned for the counter, as this 

value is the best digital representation of columns in the code range if a jump is approved. Next, ramp 

voltage is increased k-LSB equivalent voltage given with equation (3-1) 

𝛥𝑉𝑟𝑎𝑚𝑝 = 𝑘 ⋅ (
𝑉ℎ𝑖𝑔ℎ − 𝑉𝑙𝑜𝑤

2𝑛
) (3-1) 

Right after ramp and counter signals settled on their jump levels, the event detector will 

process the column predictor outputs quantifying the number of comparators that changed states due 

to jump performed by the ramp generator. Simultaneously, column latches will lock on the counter’s 

current output if its control input from the comparator is changed. At this point, LAC receives 

information (z) from column predictors, which are proportional to the number of column comparators 

that have changed their state, and compares this number with the jump threshold (s). If z is smaller 

than s, then LAC will approve jump, incrementing the counter by another k/2-LSB. This means that 

there might be a number of columns (z) exist that their sampled pixel voltages fall in between the k-

LSB look-ahead range, but they are less than the threshold (s). Hence, the SSLAR algorithm blindly 

 
 

Figure 3.3. Block diagram of SSLAR ADC integrated in CMOS APS imager. 
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quantizes these z numbers of column voltages uniformly with value equals to the previous code plus 

k/2-LSB or the mid-code value of (Cout+k/2) where Cout is the last counter output. This is registered as 

a quantization error or noise during the conversion. The worst-case occurs when all columns in every 

k-step range have the same voltages and are located at the far end of the look-ahead range. So, the 

total quantization error per row due to the proposed look-ahead algorithm is given by equation (3-2).  

𝐸𝑟𝑜𝑤 =
𝑘

2
×∑𝑧𝑗

𝑚
𝑘

𝑗=1

 (3-2) 

where m is the number of columns, suppose the z is larger than or equal to s. In that case, LAC will 

disapprove jump operation because many columns exist in the look-ahead range, and assigning mid-

code for all pixels will result in a large quantization error. Thus, it will force the ramp to fallback k-

step and counter to fallback k/2-LSB. It then asks the ramp generator and counters to increment one 

LSB at a time for k-steps during the next k clock cycles.  

Table 3.1. Single-Slope Look-Ahead Ramp (SSLAR) ADC Algorithm 

Step  Operation 

1  Sample a row of pixel signals on column ASP circuits 

2  Reset global ramp generator and n-bit counter 

3  Initialize column predictors for possible jump operation 

4  Increment global counter (k/2)-LSB 

5  Increase ramp voltage k-LSB equivalent analog level 

6  Check column predictors 

7  Are there enough column comparators changing their outputs in k-LSB 

code range? 

 A: If YES: Fallback k-LSB on ramp voltage and (k/2)-LSB on counter 

output. Ramp and count 1-LSB at a time for k-LSB, then go to Step 8. 

 B: If NO: Do not change analog ramp voltage, increment counter (k/2)-LSB 

step more, go to Step 8 

8  Have you reached 2n-1 bit range?  

 If NO, go to Step 3,  

 If YES, go to Step 9 

9  Have you read all m rows?  

 If NO, increment row address, go to Step 1,   

 If YES, end of frame. 
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The two cases that a jump is approved and denied by LAC are depicted in Figure 3.4. When a 

jump is approved, (k-h) number of clock cycles are saved. If a jump is denied, h clock cycles would 

be lost. In the worst case, the proposed algorithm will slow down the conversion operation. In the best 

case, all column voltages will be in one k-step range of the SSLAR ADC. Indeed, this case could be 

observed for the first few rows seen in Figure 3.1. The worst case is observed when more than s 

number of pixel signals exist on every k-step range of the SSLAR ADC. This is the case when the 

sampled image has pixel values covering the full ADC range and s<k. Thus, the best and the worst 

conversion time of SSLAR ADC can be calculated with equations (3-3) and (3-4), respectively. 

𝑇𝑆𝑆𝐿𝐴𝑅,𝐵𝑒𝑠𝑡 = (
2𝑛

𝑘
⋅ ℎ + 𝑘) ⋅ 𝑇𝑐𝑙𝑘 (3-3) 

𝑇𝑆𝑆𝐿𝐴𝑅,𝑊𝑜𝑟𝑠𝑡 = (
2𝑛

𝑘
) ⋅ (ℎ+ 𝑘) ⋅ 𝑇𝑐𝑙𝑘 (3-4) 

For all cases, standard SSR ADC has the same conversion time of 2n clock cycles. To 

quantify the speed-up ratio (Rsup) with the new ADC algorithm, the SSR ADC conversion time is 

normalized with the conversion time of the SSLAR ADC for best and worst cases given with 

equation (3-5). 

 

(a)      (b) 

Figure 3.4. Timing diagram of LAC, counter and ramp generator blocks of SSLAR ADC a) jump is approved b) 

jump is denied [56] 
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𝑅𝑠𝑢𝑝 =
𝑇𝑆𝑆𝑅
𝑇𝑆𝑆𝐿𝐴𝑅

= {
(

𝑘

ℎ+ 𝑘2 ⋅ 2−𝑛
) 𝐵𝑒𝑠𝑡

(
𝑘

𝑘 + ℎ
) 𝑊𝑜𝑟𝑠𝑡

 (3-5) 

The average speed-up ratio, where half of the pixel signals have the worst case pattern, and 

the half has the best case, is plotted in Figure 3.5 for 10-bit SSLAR ADC for different h and k values. 

h is the cost of look-ahead operation and could be 1, 2, or 3 clock cycles. For this particular case, the 

SSLAR algorithm could result in at least six times (6x) speed improvement. 

One important feature of the SSLAR algorithm is that it works like a regular SSR ADC when 

k and s are set to 1-LSB. In this case, however, SSLAR ADC works slower than SSR ADC, as seen in 

Figure 3.5. This feature allows us to evaluate the SSLAR ADC algorithm on the same focal plane and 

quantify speed-up ratio and noise level or image quality (IQ) degradation.  

SSLAR ADC and Image Sensor Design 

Column Analog Signal Processor (ASP) Circuits  

Analog signal processor (ASP) circuits from the pixel photodiode (PD) node to digital 

outputs are shown in Figure 3.6. 3T CMOS APS pixel composes of reset (M1), select (M3), and 

source follower (M2) transistors. Column ASP comprises a programmable charge amplifier (A1) that 

performs CDS and sample-and-hold (S/H) circuit composed of a switch and C1 capacitor. The bottom 

plate of C1 is connected to the global ramp signal (VRAMP). Amplified pixel voltage (ΔVsh) is sampled 

and held at the ADC comparator’s input with respect to the clamp voltage, VCM, as in (3-6). 

 

Figure 3.5. Average speed-up ratio of SSLAR ADC 
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∆𝑉𝑠ℎ = 𝑉𝐶𝑀 − 𝐴𝑆𝐹 ∙ (
𝐶𝑠
𝐶𝑓
) ∙ (𝑉𝑃𝐷,𝑟𝑠𝑡 − 𝑉𝑃𝐷,𝑠𝑖𝑔) (3-6) 

where ASF is the gain of pixel source follower, VPD,rst is PD reset, and VPD,sig is PD signal voltages. ADC 

comparator is formed by two inverting amplifiers (A2, A3), offset nulling capacitors (C2, C3), and 

switches (S1, S2). The column predictor composes of a single capacitor, CP. It is connected between 

the output of the comparator and the global event detector bus (VPRED). The comparator output is 

connected to 10 transparent data latches. Latches pass the global counter signals when the comparator 

output is low and hold last known inputs when it is high. The timing diagram of the readout chain is 

shown in Figure 3.7. 

The global binary-weighted ramp is directly coupled to the column ASP through the S/H 

capacitor, C1. A voltage buffer was not used to drive the ramp generator voltage for saving power. 

Indeed, ramp drivers are one of the main power consumers in a typical SSR ADC used in a CIS due 

to their large parasitic loads (Ct). This capacitor is proportional to the number of columns (m) and the 

effective column S/H capacitor’s size. Assuming the first comparator amplifier (A2) input 

capacitance is much smaller than its nulling capacitor, C2, the ramp step size can be found by using 

equation (3-7). 

 ΔVRAMP =
𝐶𝑢 ⋅ (𝑉REF_HI − 𝑉REF_LO)

(2𝑛 − 1) ⋅ 𝐶𝑢 ⋅ (1 +
𝐶2
𝐶1
) + 𝑚 ⋅ 𝐶2

 (3-7) 

 

 Figure 3.6. Column ASP and ADC circuits of the SSLAR imager. 
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where Cu is the unit capacitor used in the ramp generator. In this design, ΔVREF=2.5V, Cu=50fF, 

C1=520fF, C2=260fF, n=10, and m=200 are used. Thus, the minimum ramp step was 0.97mV with a 

10-bit resolution and 1V ADC input range.  

Global SSLAR ADC Blocks 

The global section of the SSLAR ADC composes of three blocks; SSLAR controller 

(CONT), event detector (ED), and ramp-count generator (RCG), as shown in Figure 3.8. . CONT 

block implements the SSLAR algorithm using feedback from ED. It also generates control and clock 

signals (C0, C1, C2, Lclk) for the RCG block. Look-ahead threshold (s) was implemented in the 

analog domain using two bias voltages to the ED while the look-ahead step size (k) is applied 

digitally. 10-bit SSLAR ADC was designed with 7-bit look-ahead step size control (N[0:6]). 

 

Figure 3.7. Timing diagram and associated node signals of the ASC and ADC 

 

Figure 3.8. Global SSLAR ADC blocks. 
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Event Detector Design 

ED block composes of a high-speed open-loop comparator and a CMOS switch, as shown in 

Figure 3.9. It is connected to column predictor capacitors and generates the jump signal after the look 

signal is asserted by CONT. When the look signal is high, the predictor bus (VPRED) is set to VER1, and 

the analog ramp signal is frozen while the ramp counter increments 1 or k/2-LSBs. During this time, 

none of the column comparator outputs changes its state. When the look signal is asserted low, the 

analog ramp signal rises 1 or k-step equivalent voltage causing z number of comparators to change 

their state from low to high. As a result, predictor bus voltage increases as given in (3-8). 

ΔVPRED =
𝑧 ⋅ 𝐶𝑃 ⋅ 𝑉AA

(𝑚 − 𝑧) ⋅ 𝐶𝑃 + 𝐶𝑊
 (3-8) 

where CW is the parasitic capacitance on the predictor’s bus. If ΔVPRED is larger than the (VER2-VER1) 

difference, then the event detector pulls jump signal high confirming that the number of columns in 

the k range is less than s and lets the CONT block know that the jump operation can be approved. For 

a given s, event reference voltages have to be adjusted as given in (3-9). 

𝑉ER2 = 𝑉ER1 +
𝑠 ⋅ 𝐶𝑃 ⋅ 𝑉AA

(𝑚 − 𝑠) ⋅ 𝐶𝑃 + 𝐶𝑊
 (3-9) 

In this design m=200, VAA=3.3V, Cp=50fF, and CW=400fF. For example, s=2 results in an 

event detector bias difference of 32mV, defining the required accuracy of the ED comparator. 

SSLAR Controller Design 

The SSLAR controller unit is the central part of the SSLAR ADC. It generates unique control 

signals for ED and RCG blocks implementing the SSLAR ADC algorithm. The internal making of 

the controller unit is shown in Figure 3.10. The finite state machine (FSM), shown in Figure 3.11, 

 

Figure 3.9. Event detector circuits. 
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implements the algorithm while 7-bit synchronous counter and digital comparators are used when 

jump operation is not approved, incrementing the analog and digital ramp 1-LSB at a time. 

The controller FSM has six (6) states to generate five control signals, as listed on the table in 

Figure 3.11. Some of the signals are used directly by the ED and RCG units, while others are used 

internally. Four inputs define the state of FSM. These signals are; jump signal from the event detector, 

done signal from the internal counter, MCLK signal for the master clock, and RST signal for reset. 

The FSM changes its state at the rising edge of the MCLK signal conditionally or unconditionally. 

Unconditional state changes only exist from states S4 to S5 and from S2 to S3. Other state transitions 

depend on the jump, done, and RST inputs. If the RST is high, the state machine goes to state S0 and 

waits until the RST signal is cleared. Done signal is generated in the CONT unit by 7-bit synchronous 

counter and comparators. The operation of the counter/comparator combination is enabled by the 

 

Figure 3.10. Block diagram of SSLAR ADC controller unit  

 

Figure 3.11. Finite state machine diagram and the state assigned outputs of the SSLAR controller unit. 
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FSM through a counter enable signal (C_en). If C_en=1, then the counter starts counting while the 

comparator is checking whether the counter value (SC[6:0]) is equal to the look-ahead step (N[6:0]) 

or k. If they are equal, it asserts done signal to high for FSM to take action. If the done signal is high, 

then the counter enables the signal is de-asserted (C_en=0), changing the FSM state from S5 to S3. 

When C_en=0, the synchronous counter is reset to 0 and waits for C_en to be high again. 

SSLAR Ramp-Counter Generator Design 

The Block diagram of the RCG unit is shown in Figure 3.12. It generates an analog ramp 

signal (VRAMP) and 10-bit digital counter outputs (Cnt[0:9]). The unit composes of two multiplexers; 

one carry look-ahead (CLA) full-adder, one full adder latches (FAL), two CLA subtractors, and one 

binary weighted charge scaling ramp generator. Look-ahead, jump, and fallback operations are 

controlled by adequately timing the blocks without requiring clocked synchronous counters in the 

RCG unit. The only clocked unit is the 10-bit FAL, whose clock (Lclk) is generated in the CONT unit 

asynchronously. 10-bit inputs (W0[9:0]) to CLA full-adder are provided by the 4:1 multiplexer unit. 

Other inputs (W2[9:0]) come from the 10-bit latch outputs, which change state at the rising edge of 

Lclk.  

Depending on FSM’s state in the CONT unit, one of four words is passed to the CLA unit 

through a 4-to-1 multiplexer using inputs C1 and C0. As a result, CLA full-adder works like a 10-bit 

counter (W1[9:0]) without requiring a clock signal. It either stops counting for “11” control inputs or 

increments one LSB at a time for “10”, or counts k-by-k (N[6:0]=k) for “01”.  

 

Figure 3.12. Block diagram of SSLAR ADC ramp-count generator unit  
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Carry look-ahead type adders were used for reducing glitches at the counter outputs, which 

was used directly by the binary-weighted ramp generator (BRG) block. CLA subtractor #1 subtracts 1 

from the CLA full adder block outputs (W1[9:0]). This allows digital bits used by BRG to be between 

0 and 1023 for 10-bit. 2-to-1 multiplexer passes a half-step programming word or zero (0) to the 

subtractor #2. This way, half and full step counter increment operations of the algorithm are 

implemented. 

Operation Modes 

SSLAR ADC can work as a standard SSR ADC when the jump signal is driven externally 

and by setting both k and s to 1-LSB (SSR-mode). In this mode, ADC resolution can be reduced from 

10-bits to 9, 8, or down to 2-bits by changing k to 2, 4, 8, or 128 LSB, respectively. Thus, SSLAR 

ADC architecture allows resolution change on the fly achieving high or low-resolution acquisition of 

predefined regions or rows of the pixel array, further improving frame rate as needed. 

SSLAR ADC could be clocked to run at the same frame rate as it is in SSR mode by setting k 

and s and driving the jump signal from the ED block instead of externally. In this mode, acceleration 

would be achieved, and rows can be converter faster depending on the sampled row’s code 

distribution and k and s values. If the same frame rate as in SSR-mode is needed or a fixed frame rate 

is set (i.e., 5 frames per second, fps), part of the analog and support electronics could be shut down 

(SSLAR-mode-0) during the saved periods reducing the power consumption. If a high frame rate is 

needed, these blocks left running and saved time periods could be used to increase the frame rate of 

the imager (SSLAR-mode-1). In later mode, the frame rate is increased with the expense of the overall 

power consumption.  

The SSLAR based CMOS image sensor was designed with multiple levels of power-saving 

possibilities. Analog biasing signals were generated using on-chip current and voltage mode digital-

to-analog converters (DAC), and a bandgap reference circuit is integrated. Power to these analog and 

mixed-signal blocks can be turned on or off through internal program registers accessed and set 

through a scan chain when a global power-down pin is asserted.  

Measurement Results 

The SSLAR ADC based CMOS image sensor was designed and fabricated in a 0.5µm, 2P3M 

CMOS process. Standard 3T CMOS APS pixel with a 15µm × 15µm pixel size was integrated with a 

200 × 150 pixel array and 3.9mm × 4.1mm total die size. The micrograph of the fabricated chip is 

shown in Figure 3.13. Analog and digital power domains were separated in the chip but fed from a 

single 3.3V single supply on the PCB, allowing measurement of power consumption on each domain. 
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The SSLAR imager’s several characteristics were measured using a custom-designed FPGA 

test board and program, as shown in Figure 3.13. An FPGA generated timing and control signals, and 

frames were transferred to a PC through a USB2 port. The master clock frequency for FPGA was 

20MHz, while the ADC clock rate was set internally 4x smaller or to 5MHz to allow controlling 

signals to overlap correctly. Internal program registers of the imager are controlled through the user 

interface program running on the PC. The program in real-time analyzes captured images. Most 

measurements were performed in an isolated environment while a scene (a one-dollar US bill) is 

flood illuminated or a uniform light source/projector is used (Davidson TV Optoliner K-1000V). 

Captured images in SSR-mode and SSLAR-mode-1 are shown in Figure 3.14 for different k 

and s settings, which results in different frame rates, as shown in Figure 3.15. The imager captures 

3.65 fps in SSR-mode and up to 22.5 fps in SSLAR-mode-1 for k=64, s=32. Reduced integration time 

for high-frame rates is compensated by increasing the scene’s illumination level; that average of 

captured images was set at about half-full scale level of 412-LSB. As shown in Figure 3.15, the frame 

rate could be increased more than six times (6x) by changing k and s. Measurements showed that an 

optimum k and s setting exists for higher frame rates in SSLAR-mode1 for the captured scene of 

Figure 3.14. 

Full-chip power consumption of the imager running in SSR-mode and different settings in 

other SSLAR modes were measured as shown in Figure 3.16 Imager consumes 8.4mW full-chip 

power in SSR-mode, while this can be 4.6mW or 47% lower in SSLAR-mode-0 with s between 2 and  

  

Figure 3.13. Die micrograph and test board of the CIS with 10-bit SSLAR ADC.  
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(a)                                                                                       (b) 
 

  

(c)                                                                                        (d) 
 

Figure 3.14. Images captured at different operation modes: (a) SSR at 3.65fps (b) SSLAR (mode1): k=16, s=32 

at 16.5fps, (c) SSLAR (mode1): k=32, s=32 at 20.7fps (d) SSLAR (mode1): k=64, s=32 at 22.5fps. 
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Figure 3.15. Measured frame rate versus threshold (s) for different step (k) sizes in SSR-mode and SSLAR-mode-

1 operations. 

 

Figure 3.16. Measured full-chip power consumption of SSLAR image sensor in SSR and SSLAR modes and 

achieved frame rates.  
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32 and k=32 settings with which frame rate was fixed at 3.65 fps. In SSLAR-mode-1, power 

consumption tends to increase about 20% while the frame rates more than triples (3x) and ultimately 

drop below the SSR-mode level, achieving more than six times (6x) rate increase and more than 10% 

power reduction. What is more significant about this measurement is that the imager’s power 

consumption is maintained at SSR-mode ranges while the frame rate is doubled or tripled for 

optimum step and threshold values. This shows that the proposed SSLAR algorithm not only 

improves the frame rate but also reduces the power consumption by skipping code ranges. 

The ultimate goal of any mobile phone built-in cameras is to provide clear and intelligent 

information to the human visual system (HVS), which is very good at detecting any artifact produced 

by the imaging electronics or algorithms used in the video acquisition path. Thus, it is necessary to 

subjectively quantify if the SSLAR algorithm introduces perceivable artifacts on the captured images. 

This image quality (IQ) measure or metric has to be bounded, subjective, and ideally does not require 

multiple images to do the assessment. Today, the most commonly used IQ metrics for this purpose 

are the mean squared error (MSE) and peak signal to noise ratio (PSNR) for assessing picture 

quality/distortion for additive noise, even though they are known to be uncorrelated with the 

perceived quality by HVS. However, it was also reported that complicated IQ metrics based on 

human perception gain no clear advantage over simple mathematical measures such as PSNR [64]. 

Thus, MSE and PSNR were used for quantifying image distortion caused by the SSLAR algorithm. 

Technically, MSE and PSNR measure image difference and fidelity, i.e., how closely an 

image resembles a reference image. Thus, it is necessary to capture two frames to calculate them. The 

MSE can be calculated by (3-10). 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ (𝑥𝑛𝑒𝑤(𝑚, 𝑛) − 𝑥𝑟𝑒𝑓(𝑚, 𝑛))

2
𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (3-10) 

where M and N are the pixel array dimensions, xref(m,n) is the reference frame, while xnew(m,n) is the 

new frame with added noise. In this case, the reference frame is the image captured when the imager 

is working in SSR-mode, and the new frame is the one captured in SSLAR-mode-0 or SSLAR-mode-1. 

Since the SSLAR imager could change the mode of operation seamlessly, it is possible to capture two 

consecutive frames in SSR and SSLAR modes. One difficulty is that the integration times will be 

different because the frame rates of SSLAR modes are much faster than that of the SSR mode for 

given threshold and step values. This is avoided by calculating the frame average at specific 

illumination levels (i.e., 412 LSB) for SSR-mode and increasing the illumination level until the frame 

average for SSLAR modes becomes the same with better than 0.5 LSB accuracy. Another issue is the 
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inherent temporal noise that varies from frame to frame for the SSR and SSLAR modes. This is 

reduced by averaging several consecutive images to generate reference and SSLAR frames to 

calculate MSE. 

Figure 3.17 illustrates measured MSE versus frame rates for both SSR-mode and SSLAR-

mode-1 as LSB and percentage error when scene illumination was adjusted, and frame averages were 

412LSB. k and s were the same data points as in Fig 15, and the image under test was the images in 

Fig. 14. Percent error was calculated using MSE in LSB and normalizing it with a full SSLAR ADC 

resolution-scale of 1024 LSB. As shown, SSLAR-mode-1 introduces less than 0.7% or less than 7LSB 

error on a 200 × 150 pixel array with a 6X frame rate increase. The step size and the threshold are the 

key parameters for determining how the SSLAR speeds up and the output image quality. Choosing 

and optimizing these parameters depends on the maximum allowed MSE and the required speedup 

ratio. So, there is a trade-off between these parameters. 

PSNR is also determined in decibel by using measured MSE data and by (3-11). 

𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔10 (
𝐼2

𝑀𝑆𝐸
) (3-11) 

 

Figure 3.17. Measured MSE versus frame rate in SSR and SSLAR modes. 
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where I is the maximum value that a pixel could take (i.e., 1023 for 10-bit and 255 for an 8-bit 

image), measured PSNR versus frame rates for SSR, and SSLAR modes are shown in Figure 3.18, 

PSNR decreases as the frame rate increases. 

Other pixel-based metrics were also used during measurements [65] [66] [67]. However, it 

was found that although some of these metrics can predict subjective ratings quite successfully for a 

given compression technique or type of distortion, they are not reliable in this case as they are not 

fulfilling the IQ metric requirements. 

Conclusion 

Although many ADC algorithms exist addressing speed issues of SSR ADC in CMOS image 

sensors, the proposed SSLAR ADC algorithm outperforms them on many fronts. Mainly, the 

proposed SSLAR algorithm provides speed improvement up to six times (6x) of a regular SSR ADC 

operation while reducing overall power consumption (12% to 47%) of the imager with minimal 

degrading image quality (MSE<0.7%). MSE image quality metric is used to assess the output image’s 

degradation as it is the most commonly used metric. However, developing a new image quality metric 

will help the SSLAR algorithm to optimize its parameters like s and k for captured scenes. SSLAR 

algorithm also allows seamless mode change providing low (SSR mode) and high resolution (SSLAR 

modes) image capturing capabilities of regions or rows. The proposed ramp ADC algorithm achieves 

these advantages by opportunistically looking ahead on code ranges during ramp operation, predicting 

a number of pixels in the range, and skipping or scanning the range during ADC operation while 

maintaining high-resolution. To show these capabilities, a CMOS APS imager was designed in a 

 

Figure 3.18. Measured PSNR versus frame rate in SSR and SSLAR modes. 
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0.5µm CMOS (2P3M) process. 10-bit SSLAR ADC was designed and integrated with column-

parallel architecture along with 15µm × 15µm 3T APS image sensor pixels in a 200 × 150 array. 
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Chapter 4: Conversion Complexity Metric (CCM) for CIS 

"A New blind image conversion complexity metric for intelligent CMOS image sensors." 

Forthcoming in IET Image Processing Journal, 2020. 

Many algorithms have been developed for complementary metal-oxide-semiconductor 

(CMOS) image sensors to speed-up analog-to-digital (A-to-D) conversion of captured images. 

However, there is no objective blind-image quality metric to compare and quantify the quality and 

effectiveness of these speed-up algorithms. In this work, I developed a blind -image quality and 

complexity metric for this purpose. The proposed metric relies on counting the successive zeros in a 

code histogram (CH). The proposed metric is called the conversion complexity metric (CCM). The 

CCM is designed to quantify how complex and to predict how much time and power-consuming a 

captured image is for A-to-D conversion, mainly by integrating (ramp) type analog to digital 

converter (ADC) used in column-parallel architectures (CPA) of a CMOS image sensor (CIS). The 

proposed metric, CCM, is tested for linearity, monotonicity, and sensitivity to many types of 

introduced distortion. The CCM is compared with other no-reference and full-reference image 

quality and complexity metrics. It accomplished, for brightness, change distortion, 99% linearity, 

and 316 % sensitivity, providing a computationally efficient blind-image quality metric that no other 

metrics provide for CIS to adjust and optimize on-chip analog and digital signal processing 

intelligently.  

Introduction 

Today, a massive number of people carry mobile phones that have built-in cameras. Millions 

of images are captured every minute by these cameras, and this number is increasing yearly [68]. 

Hence, the image sensor and camera markets are huge and very competitive. Cameras are expected 

to capture high-quality and high-resolution images while intelligently minimizing power 

consumption, especially in battery-powered mobile devices and in future internet of things (IoT) 

devices. Besides, cameras should respond and dynamically adapt to different scene conditions 

providing a wide dynamic range operation capability. Nowadays, mainly CISs are at the core of 

these cameras, in which their performance determines the quality and the value of them. CIS 

captures images in the analog domain in the form of voltage, current, or charge and perform some 

analog signal processing (ASP) before converting them into the digital domain by on-chip ADCs for 

further digital image processing. All on-chip analog or digital signal processing and conversion 

operations have to be optimized for low-power and high-speed performance. Many algorithms were 

proposed to speed up these operations [69] [61] [36] [34]. However, there is no objective image 
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quality (IQ) metric to compare the effectiveness or quality of these algorithms proposed and used. 

The IQ metric should consider the complexity of the images captured and the difficulty of analog 

and digital processing and conversion and provide intelligent information to processing and 

conversion algorithms to optimize conversion quality, speed, and power consumption of the image 

sensor in both analog and digital domains. It should also be computationally fast and straightforward 

to be implemented and should not require large analog or digital storage capacity (i.e., two frames 

digital memory). 

Image capture, conversion, and processing techniques introduce undesirable effects to digital 

images, causing a loss of quality and important information. These may occur during any stage(s) of 

image reproduction processes like image capture, conversion, processing, compression, 

transmission, storage, or retrieval. Hence, assessing image properties (mainly IQ) becomes 

paramount to be able to judge the effects of the aforementioned processes. Fundamentally, there are 

two methods [70] available to evaluate and to compare image quality, which are; subjective methods 

[71] [66] and objective methods [72] [73]. The subjective methods are built on human perception 

quantifying image properties with a scale based on a human observer’s judgment, while the 

objective methods are based on obvious numerical and mathematical calculations of image 

parameters. Both of these IQ assessment methods are trying to correlate the index assessed by the 

human visual system (HVS) to an index obtained from mathematical calculations. Until today, over 

100 metrics have been developed in both methods to assess IQ, as summarized by Pedersen [74] and 

Marius [75]. These metrics’ common purpose is to quantify the distortion that may occur, IQ 

monitoring, process optimization, benchmark production, and problem area identification [76]. Some 

IQ metrics are designed for colored images, while others are for greyscale images. There are many 

ways to classify these metrics based on the way and purpose that they have been developed. 

Researchers have classified IQ metrics in different ways [76] Avcibas [66] classified IQ 

metrics into six groups according to the information that image carries: (1) pixel difference-based 

distortion measure like mean-square error (MSE), (2) correlation-based measure, (3) edge-based 

measure such as edge position displacement and its consistency for different resolution levels, (4) 

spectral distance-based measure, (5) context-based measure, and (6) HVS-based measure which are 

either dependent on (dis)similarity criteria used in image-based browsing functions. Callet and Barba 

[77] categorized IQ metrics into two different groups. The first group is IQ metrics, which utilize the 

HVS model as a low-level perception like masking effect and sub-band decomposition to compute a 

distortion map. The second metric group uses little information from the HVS model to represent 

errors and form a prior knowledge for introduced distortions. Chandler and Hemami [78] classified 
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IQ metrics into three categories. First, metrics that can be obtained mathematically that is, depend on 

distortion intensity. Second, near-threshold psychophysics-based metrics in which the visual 

detectability of distortion is considered. Third, overarching principles-based metrics that extract 

information or structure. Wang and Bovik [79] divided IQ metrics into three groups. The first group 

is based on the use of a reference image, which is: no-reference, full-reference, and reduced-

reference based IQ metrics. Further, Thung and Raveendran [80] sub-divided full-reference IQ 

metrics into three groups as mathematical, HVS-based, and other. The second group is based on the 

coverage of the IQ metrics as application-specific or general-purpose. Third, how the IQ metric is 

structured either bottom-up or top-down. These three groups and their IQ metrics use the original 

image, a distortion process, and HVS knowledge. Pedersen and Hardeberg [76] had also proposed to 

divide IQ metrics into four groups. First is mathematically based metrics that use distortion intensity 

such as MSE and peak signal-to-noise ratio (PSNR). Second is low-level metrics that depend on 

distortion recognition using contrast sensitivity functions (CSFs), which is used in spatial-CIELAB 

(S-CIELAB), [81]. The third is high-level metrics such as structural similarity metric (SSIM) [82], 

which depends on structural content or the visual image fidelity (VIF) [83]. This group of metrics 

depends on the statistical properties of the captured scenes. Forth are other metrics that mix two or 

more strategies of the above groups such as visual signal-to-noise ratio (VSNR) [78] which 

considers both low- and mid-level scene properties and utilizes mathematical models to get the IQ 

metric score in the final stage. 

In summary, IQ metrics are classified in literature based on the fundamental answers to the 

following questions: Does the given metric require single (no-reference) or multiple images (full- or 

reduced-reference) to compare with? Is the metric objective or subjective? If it is subjective, does the 

metric provide a low or high target perception level? If it is objective, what is the image information 

(pixel, row, edge, window, etc.) used by the metric? Choosing an IQ metric will be a simple task if 

all these questions are answered fully. However, each application has its unique requirements that 

none of the existing IQ metrics may fulfill all.  

The metric should be reference independent (single-image), objective, and use image 

information row-by-row for intelligent CIS operations. The metric index should also be bounded 

(i.e., between 0 and 1) and computationally simple to implement on-chip intelligent operations and 

learn to adjust CIS electronics' analog and digital characteristics. 

IQ Metric for CIS Electronics 

The classifications mentioned in the previous section are based on an area of applications 

and points of view of the importance of specific requirements. Among all IQ metrics mentioned in 
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[76], except for several of them that will be investigated in the following sub-sections, none of the 

metrics can be used for quantifying the performance requirements of image processing electronics to 

convert an image from the analog to the digital domain. The IQ metrics MSE [67], SSIM [82], 

histogram flatness measure (HFM) [84], histogram spread (HS) [84], blind/reference-less image 

spatial quality evaluator (BRISQUE) [85], natural image quality evaluator (NIQE) [86] and 

perception-based image quality evaluator (PIQUE) [87] are checked if they are suitable for 

intelligent and evaluation of CIS. 

Mean Square Error (MSE) 

MSE is one of the oldest and most widely used IQ metrics [79] because of its computational 

simplicity, ease of analytical tractability, clear physical meaning, and it is mathematically convenient 

in the context of optimization [82]. Its index is calculated by adding and averaging the squared 

difference between the original and processed image element values [76]. Thus, MSE is an objective 

IQ metric that needs two images (reference and processed) and uses pixel information for 

calculations. However, MSE has a drawback that it is not correlated to perceived images by HVS 

[78] [79] [88] [64]. Indeed, some images that have the same MSE perceived very differently from 

each other, as outlined in [82] and in [79]. Furthermore, MSE does not satisfy the aforementioned 

metric requirements for intelligent CIS as it needs two images to quantify IQ, and its index is not 

bounded a frame-based. 

Structural Similarity Metric (SSIM) 

SSIM is one of the most popular IQ metrics due to the drawbacks of MSE [82]. It is built on 

the universal IQ metric (UIQ) index [89] and takes into account the HVS model to overcome issues 

MSE possesses [70]. It quantifies IQ using a combination of luminance, contrast, and structure 

comparisons of the original and processed images [90]. These comparisons are performed for local 

image windows, and then the SSIM metric is calculated as the mean of all these local windows. The 

SSIM index is bounded between zero and one. It is a symmetric metric and has a unique maximum. 

However, the SSIM index cannot be used for intelligent CIS because it needs a reference image and 

uses the window of pixels for calculations. It is more suitable for human perception assessment of 

still image frames not for local assessments (i.e., row-based) to assist intelligent image capture and 

digitization processes in CIS. 

Histogram Flatness Measure (HFM) and Histogram Spread (HS) 

IQ metrics that use histogram distribution like HFM and HS [84] have the potential to be 

used in the intelligent CIS. They quantify the contrast level of images using full-frame image 

histograms, which makes these metric references independent, or single image metrics. The HFM 
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index is calculated as the ratio between the geometric mean and the arithmetic mean of image 

histogram intensities. Hence, its index is bounded between 0 and 1 because the geometric mean 

always less than or equal to the arithmetic mean of the same data set. As a result, HFM has a low 

index value for low contrast images that has a narrow and peaky histogram and vice versa. HS is 

also a single image metric that uses the histogram of the full image frame. Its index is calculated by 

determining the ratio of the quartile distance (the difference between the 3rd quartile and the 1st 

quartile of a cumulative histogram) to the full range of the image histogram. Thus, the HS index is 

bounded between 0 to 0.5 for uniformly distributed images and 0 to 1.0 for binary images. The HS 

index is low for narrow and peaky image histograms, which has low contrast images, and vice versa. 

Although the HFM and the HS are image reference independent and objective metrics that use image 

histogram information, they are not fully suitable for the intelligent CIS. They depend on whole 

frame histograms and computationally expensive. 

Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE) 

Anish Mittal has proposed the BRISQUE metric [85] for the blind IQ assessment of natural 

scenes based on statistics and training models. It is designed to quantify a lack of naturalness of an 

image due to any distortion that may present in it. The BRISQUE generates an index value by a 

model called support vector regression (SVR), which is trained on an image database with 

Differential Mean Opinion Score (DMOS) values. Images in this database have well-known 

distortions for natural images, and hence the BRISQUE index is limited to evaluating IQ for the 

same type of distortions only. Hence, it cannot compute specific distortion features like blurring and 

blocking. Although the BRISQUE is a single image metric, it is an unbounded metric, and its index 

computational complexity makes it unsuitable for CIS intelligent electronics. 

Natural Image Quality Evaluator (NIQE) 

NIQE was proposed by Mittal [86] to solve issues surrounding BRISQUE. It uses a model 

that is not trained on human-rated distorted images or even exposed to any distorted image. Thus, it 

is considered a completely blind metric. NIQE model uses measurable deviations from natural image 

regularities. This model is built on quality-aware collections derived from statistical features of a 

simple and successful space domain Natural Scene Statistic (NSS) model. These statistical features 

are based on undistorted and natural images. NIQE is developed by fitting quality-aware features to 

a multivariate Gaussian (MVG) model and measure the distance between this MVG model and the 

NSS feature extracted from the test image. This measured distance has no limit, so NIQE is an 

unbounded metric. Despite NIQE being a no-reference metric, it is not applicable for CIS intelligent 
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electronics because it is unbounded and derived from a distortion-aware training model that does not 

consider how images will be processed through CIS electronics. 

Perception-based Image Quality Evaluator (PIQUE) 

Venkatanath proposed PIQUE [87] to quantify the distortion of an image without the need 

for any training data, so it is an opinion-unaware metric. PIQUE predicts image quality based on 

extracting image local features that help to create a fine-grained block-level distortion map. This 

approach does not need any statistical learning data for IQ assessment, but it is based on a test image 

local block/patch level characteristic. Each local block level has a size of n × n. PIQUE methodology 

classifies the given block into a distorted or not distorted block and assigns a score for each block 

where it then calculates the PIQUE overall score. Thus, PIQUE is an unbounded metric designed for 

specific applications like feature point extraction, object detection, and compression, not for CIS 

intelligent electronics. 

In summary, none of the existing IQ metrics are suitable for assessing captured image 

quality or complexity to assist the intelligent operation of CIS. A new metric is proposed to close 

this gap. It is a histogram-based, no-reference, an objective metric that is called Conversion 

Complexity Metric based on a successive zeros histogram, as explained in the next section. 

Conversion Complexity Metric (CCM) 

Since there is no clear definition for what “image complexity” is [91], quantifying it is not 

an easy undertaking [92]. Thus, I defined image complexity from an A-to-D conversion complexity 

point of view considering how difficult it is (simple/complex timing, low/high power consumption, 

low/high speed, small/large silicon footprint, etc.) for image sensor electronics to convert a captured 

image from analog to digital domain. This is very critical to judge and compare between different 

analog and digital processing algorithms and choose which algorithm is better for specific 

applications to intelligently maximize or predict the performance and efficiency of sensor 

electronics. As mentioned before, it is necessary for the metric to be reference independent (single 

image), objective, bounded, and row-by-row based. I will start by illustrating the electronic system 

requirements and describing the new philosophy of the proposed metric afterward where some 

examples and discussion will follow. 

IQ and Image Complexity Metric Requirements 

After a CIS captures a scene image, it passes through a long chain of electronics, including 

ASP(s), ADC(s), and finally, a digital signal processor (DSP). These blocks are integrated into 

different orders, forms, and shapes by different CIS architectures. Four fundamental architectures 
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can be constructed; column-parallel architecture, column-series architecture (CSA), pixel-parallel 

architecture (PPA), and pixel-series architecture (PSA). The captured image data in the form of 

voltage, current, or charge can be converted and processed in digital form in different stages and 

locations of these architectures. It may be processed and converted in each pixel in parallel in PPA, 

or out of the pixels sequentially in PSA, or row-by-row sequentially in CSA, or row-by-row in 

parallel in CPA [40]. Today, CPAs are widely used in CIS to satisfy the high frame rate market-

driven requirements, large pixel arrays, smaller pixels, and low-power consumption. Integrating 

(ramp) ADC topologies are the best fit for CPAs as they provide the best monotonic, low-noise, and 

power-efficient conversion capabilities with smaller silicon footprints [36] [18] [93]. 

Intelligent image sensor operation requires an image complexity metric that relates captured 

or incoming image pixel, row, or frame information to readout electronics’ performance parameters 

in the sensor architecture. I proposed a metric that is designed for the most commonly used CIS 

architecture, the CPA. In CPA, the image is processed row-by-row, and each column has its own or 

shared ASP and ADC. The row decoder selects one row at a time, and analog signals from this 

selected row of pixels are transferred to column ASPs for pre-processing in the analog domain. 

Then, these signals are transferred to ADCs, and finally, digitized pixel data is transferred to DSP or 

stored in memory for further digital processing. Each column level circuits read the next row of pixel 

data in a pipelined fashion. The selected row is reset before the next row is accessed, allowing 

rolling-shutter frame integration operation. 

CIS readout electronics’ performance efficiency in different image sensor architectures is 

affected by the complexity of the scene image. For example, in CSA, if an image has well-

distributed grey levels or a wide histogram (I consider them a complex image), its ASP stage 

consumes more power than when the image or row has a narrow code distribution or a peaky 

histogram (I consider them less complex). For the same scenario, ADCs in CPA work more power 

efficiently for non-complex images than complex ones. Digital power consumed during the data 

transfer period from ADC to DSP in both architectures would be lower for non-complex images. 

Suppose a metric is available for a row or full-frame image complexity. In that case, it will be easy 

to gear up and down the biasing conditions in ASPs, or ADCs, or regulation efficiencies in on-chip 

voltage regulators, or other parts of the readout chain that could be tuned for optimum and uniform 

performance of the CIS. One such example is shown in Figure 4.1, where a multi-mode ramp ADC 

[1] is used in a CIS with CPA, and full-chip power consumption was measured from the imager in 

[1] at 20 frames per second (FPS) for 1 minute, capturing the same scene images. Mode-1 is the 

standard ADC mode where the ADC works normally without any speedup process, so it has the 
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maximum power consumption as it works for the longest time. On the other hand, different speedup 

techniques can be applied to minimize the ADC conversion time, resulting in minimizing the power 

consumption by shutting down or idling circuit blocks during the saved times. Modes 2 and 3 

represent the power consumption after applying two of these speedup techniques. However, mode-3 

is a higher speedup mode than mode-2 and shorter ADC period. Thus, the power consumption of 

mode-3 is lower than mode-2. This speedup comes at the expense of image quality. Thus, based on 

the new CCM index, the speedup mode can be determined intelligently. As the scene content and 

complexity change from frame to frame, the power consumption of the CIS can be reduced up to 

10%. 

The CCM Algorithm  

Images stored in digital mediums consist of a two-dimensional (2D) array of rows and 

columns with specific digital numbers representing the intensity of the scene pixels captured by 

image sensors that have ADCs with a resolution of n-bits. Thus, each pixel holds a digital number or 

code in the range between 0 and (2𝑛 − 1) if binary representation is used. However, in a typical 

scene image, not all codes appear in each row or frame, which could be seen in the histogram 

distribution of codes, as shown in Figure 4.2. The evaluation of these CHs would reveal the 

 

Figure 4.1. Measured full-chip power consumption of a CIS with CPA and integrated ramp-ADC in [35] for 

different modes.(a) mode-1 for normal ADC operation (b) mode-2 is medium ADC speedup operation (c) 

mode-3 is the maximum ADC speedup operation. 
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fundamental characteristics of images, rows, or columns, i.e., whether the selected row is bright, 

dark, or well-distributed. 

CH is constructed by counting the number of pixels in the selected region (row(s), 

column(s), sub- or full-area(s) of image) that have the same code values and assigning this number 

as a hit for the given code. For example, a dark region will have a CH that has all the hits appear in 

lower code ranges, and the rest of the range will have no hits (zero), and vice versa for bright 

regions, as seen in Figure 4.2. If the number of pixels (N) in the selected region is less than the code 

range or resolution of the image (2𝑛 − 1), then some number of zero hits will appear in the CH of 

the selected region. Depending on the distribution of the code hits in the histogram, the number of 

successive zero code hits will vary. For example, all pixels will have a 0 code as a binary number if 

the image is completely dark, and as a result, code zero (0) will be repeated for N number of hits. 

The rest of the codes (2𝑛) will have zero hits or will have one 2𝑛 number of successive zeros in the 

CH. This is the same for a wholly saturated or bright image that the last code number (2𝑛 − 1) will 

have N number of hits and the rest of the codes (2𝑛) will have zero hits resulting in one 2𝑛 number 

of successive zeros in the CH. While on the other hand, for the graded greyscale region, code hits are 

well distributed, minimizing the number of successive zeros. The proposed metric is based on the 

number of successive zeros in a CH for the image row region.  

As the number of successive zeros in the CH of a row increases, the analog signals become 

easier and faster to be converted into the digital domain by row-level ADCs in CIS CPA. That is 

because if a code histogram has a large number of successive zeros, the ADC can skip scanning all 

 

 

 

Centre-distributed Mostly bright row 

  

Mostly dark row 
Well-distributed (Full 

grey) 

Figure 4.2. Code histograms of different type of rows of an image. 
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codes that do not appear in the CH and save the conversion time for these absent codes resulting in 

faster operation and lower power consumption [1]. The opposite is true if there are few or no zeros 

appear in the CH, which means the pixel values are well distributed in this row, and ADCs will 

consume more power to convert the analog content of the rows into the digital domain. Indeed, a 

metric based on the successive zeros in CHs will provide valuable information not only for the 

electronics but also for assessing the complexity of the images’ regions (row, column, area, of the 

full image). Based on these understandings, I call the new metric the Conversion Complexity Metric 

because it relies on the successive zeros in the CHs of a given region of the image. 

Because CCM is a histogram-based metric, it does not need any reference image and uses 

simple mathematical processes to count the number of successive zeros in the CH and calculate the 

average image conversion complexity. Although it was developed for assessing the complexity of 

captured image rows in CMOS CPA imagers, it can also be used as a metric to quantify the quality 

or complexity of any regions (i.e., sub-image area, full image, row(s), column(s)) of a single image. 

Its index does not depend on human evaluation and uncertainty. As presented in the next sections, 

the CCM index is bounded between zero (0) and one (1) and inversely proportional to the image 

conversion complexity, i.e., uniformly distributed CH of a row have minimal CCM index (difficult 

to convert) and ideally have an index of zero. In contrast, very dark or very bright (easy to convert) 

rows have a CCM index of near unity.  

The CCM index value of an image row is calculated as follows:  

1- Start reading rows from the image or pixel array (i=1), 

2- Read row(i) from image sensor array or image file, 

a. Construct CH of a row(i), 

b. Construct successive zero histogram (SZH) from the CH of the row(i), 

c. Calculate CCMrow(i) index for row(i) using equation (4-1), 

d. Increment row address (i=i+1), 

3- Go to step-1 until all rows (i=nrow+1) are read, otherwise go to step-4, 

4- Calculate CCMimage index for the whole image using equation (4-2) 

5- Calculate the final CCM index by using the mapping function (F) in equations (4-3) and 

(4-8). 

𝐶𝐶𝑀𝑟𝑜𝑤(𝑖) =

∑
𝑗
𝑍𝑗

2𝑛

𝑗=1

2𝑛
 

(4-1) 
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𝐶𝐶𝑀𝑖𝑚𝑎𝑔𝑒 =
∑ 𝐶𝐶𝑀𝑟𝑜𝑤(𝑖)
𝑛𝑟𝑜𝑤
𝑖=1

𝑛𝑟𝑜𝑤
 (4-2) 

𝐶𝐶𝑀 = 𝐹{𝐶𝐶𝑀𝑖𝑚𝑎𝑔𝑒} =
𝐶𝐶𝑀𝑖𝑚𝑎𝑔𝑒 − 𝐶𝐶𝑀𝑚𝑖𝑛

𝐶𝐶𝑀𝑚𝑎𝑥 − 𝐶𝐶𝑀𝑚𝑖𝑛
 (4-3) 

where j is the index of SZH representing the number of successive zeros (j≠0), Zj represents the 

repetition of the successive zeros of the (j) number. n is the ADC resolution, and nrow is the total 

number of rows of an image. CCMmin and CCMmax are the minimum and maximum theoretical limits 

of the CCM index, respectively, and they are derived in the following sub-section. 

Figure 4.3 illustrates a simple example of how CCM works and its index is calculated. 

Assume a row of an image (row(i)) that has 16 columns (ncol=16) with 4-bits resolution (n=4). Thus, 

the code range is between 0 and 15. Figure 4.3.a shows three rows of such data, of which values lie 

in the code range 0 to (2𝑛 − 1). Figure 4.3.b shows the CH and SZH of each row. For example, in 

the row(i); 6 columns (or pixels) have a binary code of 2, 4 pixels have a code of 7, 3 pixels have a 

 

(a) 

Row # Code Histogram Successive Zeros Histogram 

Row(i) 

 

  

Row(i+1) 

  

Row(i+2) 

  

(b) 

Figure 4.3. CCM index calculation example (a) sample of row image data (b) code histogram and 

successive zero histogram of the rows’ example 
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code of 4, 2 pixels have a code of 0, and 1 pixel has code of 14. So, except for these five codes, the 

rest of the code did not appear in a row(i). The CH for the row(i) could be constructed using these 

values, as shown in Figure 4.3.b. Using the CH, SZH for the row(i) can be constructed by counting 

the successive zeros (j) of the CH. For example, there are six (6) successive zeros exist one (1) time 

between codes 7 and 14 in CH, two(2) successive zeros appear one (1) time between codes 4 and 7 

in CH, and a single (1) zero exists three(3) times as seen in the CH of row(i). Thus, the Zj becomes 

{3,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0} for j between 1 and 16. Then, the CCMrow (i) index for the row(i) is 

calculated from equation (4-1) as;  

𝐶𝐶𝑀𝑟𝑜𝑤(𝑖) =

1
3 +

2
1 +

6
1

24
= 0.52 

(4-4) 

Finally, if I have the data for the rest of the image rows, the average of all rows (CCMimage) 

will be calculated according to equation (4-3) for the entire image. The CCMrow index of 0.52 for 

row(i) indicates that this row has a moderate conversion complexity as it contains a relatively large 

number of successive zeros and the small number of single and double successive zeros. A row 

becomes complex for processing and conversion electronics if all grey level codes appear in its CH, 

as in row(i+1) in Figure 4.3, which gives the CCM index value of 0.125. It becomes less complex if 

all pixels have the same value, as in row(i+2) in Figure 4.3, which increases the number of 

successive zeros and results in a larger CCM index value of 0.875. 

The simple example in Figure 4.3 shows the proposed algorithm to calculate the CCM index 

value and how to apply it for given image data. However, the theoretical limits of the proposed 

metric need to be well understood, derived and calculated to make sure its value is bounded. 

Besides, different combinations of the number of columns (ncol) and the bit resolution (n) of the 

images or ADCs should be considered to create more generic image quality and complexity metrics. 

This is explained in the next sub-section, which results in a mapping function. 

Theoretical Limits of The CCM Index 

The CH distribution of natural images is relatively random, as some of them may be dark 

themed images while others may be brighter or well distributed. Because of this variability, 

theoretical limits should be established, and a mapping function is defined to keep the index values 

bounded. Moreover, to generalize the CCM as an image quality and complexity metric, the 

relationship between the number of image elements and the bit resolution (n) of the ADCs in image 

sensors should be considered. Image elements could be selected as a sub-array of pixels, or in this 

case, the number of columns (ncol) of image pixels of the selected row sampled in the column 

electronics of CPA CISs 
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If the number of columns (ncol) (or number of pixels in the full or sub-array of an image) is 

less than the code range (2𝑛), not all codes will appear in CHs. As a result, at least (2𝑛 − 𝑛𝑐𝑜𝑙) 

number of extra zeros will appear in row CH. Using these extra zeros during the calculation of the 

CCM index may result in saturation. They are considered and counted because, fortunately, these 

extra zeros help ADCs to convert these signals faster. The CCM upper and lower limits for this case 

will be investigated first. 

The upper theoretical limit of the CCM index (ideally 1) for (ncol < 2𝑛) occurs when all 

column data in the selected row are zero (i.e., totally dark row of an image). In this case, only one 

code appears in the CH at code index 0. The number of occurrences or hits of code 0 equals the 

number of columns (ncol), and the rest of the histogram indices will have zero hits, as shown in 

Figure 4.4.a The number of successive zeros (j) in this case is equal to (2𝑛 − 1) and appear one time 

(Zj=1) as illustrated in the SZH in Figure 4.4.b. So, the maximum CCM index value can be 

calculated using equation (4-1) as; 

𝐶𝐶𝑀𝑚𝑎𝑥 =

(2𝑛 − 1)
1
2𝑛

= 1 −
1

2𝑛
 

(4-5) 

The lower theoretical limit of the CCM (ideally 0) can be calculated for (ncol < 2𝑛) when a 

CH is well distributed, as in Figure 4.4.c. In this case, each code will appear only one time in the 

 

(a) 

 

(c) 

 

(b) 
 

(d) 

  

(e) (f) 

Figure 4.4. Theoretical limit cases for CCM index calculation (a) CH for upper theoretical limits for ncol < 

or ≥ 2n (b) SZH of CH upper limit for ncol < or ≥ 2n (c) CH for lower theoretical limits for ncol < 2n (d) SZH 

of CH lower limit for ncol < 2n (e) CH for lower theoretical limits for ncol ≥ 2n (f) SZH of lower limit for ncol 

≥ 2n  
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CH. However, because ncol is less than code range (2𝑛), there will be extra zeros between CH 

indices. In the worst-case these extra successive zeros (j) can be calculated as; 

𝑗 =
2𝑛

𝑛𝑐𝑜𝑙
− 1 (4-6) 

and the (j) number will be repeated for ncol times so, Zj=ncol. The SZH is obtained from row CH as 

illustrated in Figure 4.4.d, and the theoretical lower limit of the CCM index is calculated using 

equation (4-1), as: 

𝐶𝐶𝑀𝑚𝑖𝑛 =

𝑗
𝑍𝑗

2𝑛
=

2𝑛

𝑛𝑐𝑜𝑙
− 1

2𝑛 ∙ 𝑛𝑐𝑜𝑙
=
2𝑛 − 𝑛𝑐𝑜𝑙

2𝑛 ∙ 𝑛𝑐𝑜𝑙
2  

(4-7) 

There is another case that needs to be investigated; that is when the number of columns (ncol) 

is larger than or equal to the code range (2𝑛) for the n-bits resolution of the ADC. The upper 

theoretical CCM limit when (ncol ≥ 2𝑛) is the same as the case when (ncol < 2𝑛), as explained before 

and as shown in Figure 4.4.a and 4.b. It happened when all the columns in a row have zero values, 

and it is calculated from equation (4-5) as well. For the lower theoretical limit when (ncol ≥ 2𝑛), in 

the worst case, all codes in the CH have at least one or repeated number of hits (R= ncol /2𝑛) as 

shown in Figure 4.4.e. Thus, no successive zeros appear in the CH (j=0), and as a result, the 

successive zero histogram has no hits, as shown in Figure 4.4.f. In this case, the lower theoretical 

limit CCMmin will be zero (0).  

Table 4.1 summarizes the upper and the lower theoretical limits of the CCM index values for 

all cases of ncol and the code range (2𝑛) of the image or ADC. It is found that the maximum CCM 

value depends on the ADC resolution (n) only and is independent of ncol, while the minimum CCM 

value depends on both the ADC resolution and ncol. Besides, the minimum and maximum CCM 

values are independent of ncol when (ncol ≥ 2𝑛). These maximum and minimum theoretical limits are 

calculated for CCM “values” of (1) and (0), respectively. However, as stated before, the higher CCM 

Table 4.1. Summary of CCM index upper and lower limits. 

CCM ncol < (2𝑛) ncol ≥ (2𝑛) 

CCMmax (ideally =1) 

 
1 −

1

2𝑛
 1 −

1

2𝑛
 

CCMmin (ideally =0) 

 

2𝑛 − 𝑛𝑐𝑜𝑙

2𝑛 ∙ 𝑛𝑐𝑜𝑙
2  

0 
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index means that the image is less complex, and the lower CCM index means a higher complex 

image. 

CCM Mapping Function for Bounded Index Values 

All possible combinations of ncol between 21 and 216 and resolution (n) between 1 and 16 

were tested to find the minimum and maximum ranges of the CCM to verify theoretical limits. It was 

found that upper theoretical limit CCM (which ideally should equal 1) changes between 0.5 and 

0.999984 when resolution varies from 1 bit to 16 bits, respectively. It is independent of ncol, as 

expected. The minimum theoretical limit (which ideally should equal to 0) varies between 0.125 (for 

n= ncol =2) and 4.65x10-10 (for n=16, ncol =32768) if ncol < 2𝑛and always zero if ncol ≥ 2𝑛as expected. 

Indeed, these checks show that a correction/ mapping function is needed to map the calculated CCM 

index values to the theoretical limits and bound the metric index between 0 and 1. 

Using CCMmax and CCMmin from Table 4.1 and the linear mapping function in equation 

(4-3), the un-mapped CCM index in equation (4-2) can be mapped as illustrated in equation (4-8): 

𝐶𝐶𝑀 =

{
 
 

 
 
2𝑛(𝐶𝐶𝑀𝑖𝑚𝑎𝑔𝑒 ∙ 𝑛𝑐𝑜𝑙

2 − 1) + 𝑛𝑐𝑜𝑙

2𝑛(  𝑛𝑐𝑜𝑙
2 − 1) + 𝑛𝑐𝑜𝑙(1 − 𝑛𝑐𝑜𝑙)

𝑛𝑐𝑜𝑙 < 2
𝑛

2𝑛 ∙ 𝐶𝐶𝑀𝑖𝑚𝑎𝑔𝑒

2𝑛 − 1
𝑛𝑐𝑜𝑙 ≥ 2

𝑛

 (4-8) 

Evaluation of CCM 

The first and essential feature that needs to be checked and evaluated is testing the 

theoretical limits and ensuring that the CCM index follows these limits as designed. Also, the 

derived mapping function in equation (4-8) needs to be verified. After that, the CCM index will be 

calculated for the standard images and other images with different resolutions and dimensions. CCM 

index will be compared with the available blind and objective metrics using the same images. 

Finally, the verification of linearity, sensitivity, and monotonicity of the CCM will be determined by 

changing an image parameter and compared with other metrics to check if it is a valid metric for 

CIS. 

Evaluation of Theoretical Limits of CCM 

Two types of images were synthesized to test the theoretical upper and lower limits of the 

CCM for cases when ncol < 2𝑛 and for ncol ≥ 2𝑛 as shown in Figure 4.5.  

When ncol < 2𝑛, the upper limit is hit when all columns have zero or the maximum ADC 

resolution value, so the upper limit image for the first case will be synthesized as a whole black or 

white image. Figure 4.5. .a shows an example of the synthesized test image for the lower theoretical 
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limit when ncol < 2𝑛 (n=8 and ncol =128). In the synthesized image, only 128 codes out of 256 total 

codes will appear gradually in the available 128 columns, and the rest of the codes will not appear in 

the image, so these codes will be the zeros that appear in between codes as (j) value in the row 

histogram in Figure 4.4.c. Note that although the image in Figure 4.5. .a looks very simple and 

uniform, it is challenging for CPA ADC to convert this well-distributed image because it will scan 

all codes from zero to the maximum ADC resolution, and it will consume more power and time. 

For the second case, when ncol ≥ 2𝑛, the upper limit remains the same as the first case. All 

pixels hold zero or the maximum ADC resolution value, and the synthesized images will be a whole 

black or white image, respectively. For the lower limit, a test image is synthesized such that all 

available codes appear in columns. If there are any extra columns, it will hold zero value, or it may 

hold any random values because the CCM index does not care about the repetition of codes; it takes 

care of the number of successive zeros between codes in the CH. By synthesizing a test image that 

way, all row histograms were filled up with codes, and there are no available zeros between the 

codes to count, which is the most challenging case for ADC that hits the theoretical lower limit. 

Figure 4.5. .b illustrates a synthesized image as an example for ncol =512 and n=8. 

The synthesized images have two main parameters to create; the number of columns and bit 

depth or, in other words, resolution. To study the upper and lower limits of CCM and how general is 

it for all cases, I scanned the number of ADC resolution bits from 1 bit to 16 bits and the number of 

columns from 2 to 65536 simultaneously. The mapped outputs for all these combinations were as 

exactly as expected. The CCM is zero for the lower theoretical limit and one for the upper limit for 

all cases. Please note that the CCM index is inversely proportional to image conversion complexity. 

  

(a) (b) 

Figure 4.5. Sample of synthesized images for testing lower limits of CCM index for (a) ncol< (2n) (b) ncol ≥ 

(2n). 
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Hence, the CCM is bounded between zero and one, and it will never exceed these theoretical limits. 

Besides, the mapping function is verified and working correctly. 

The CCM Index for The Standard Images 

The CCM metric is measured for different groups of images with different sizes and 

resolutions. Standard images like Lena, Barbra, Baboon, and Peppers (shown in Figure 4.6) were the 

first group tested. This group was 512 × 512 pixels in size with an 8-bits resolution. Because no IQ 

metric has the same purpose as CCM, HFM and HS have been selected to evaluate these images too 

because these two metrics are the nearest metrics that use histograms for calculating the contrast of 

an image, and they are blind metrics. So, any change in these images’ histograms should appear in 

these metrics’ indices. MSE and SSIM are not used in this test as they need a reference image to 

compare with. They will be used for the next test as a reference for comparing images and 

comparing metrics. Table 4.2 summarizes the simulated metrics values for the first group of standard 

images. The Lena image is the most complex image for the ADC to convert while the Baboon is the 

easiest image relative to this group from CCM’s point of view. This group has a CCM index less 

than 0.5, which means that they all have a high conversion complexity, and that makes sense 

according to their well-distributed histogram shape that makes the conversion of these images hard 

and complex.  

The standard deviations between all images are calculated for CCM, HS, and HFM to check 

how these metrics deviate with respect to each other for different images. It is found that CCM and 

HS have almost the same standard deviation, while HFM has a different value, which is expected. 

    

 
0                                                      255 

 
0                                                      255 

 
0                                                      255 

 
0                                                   255 

(a) (b) (c) (d) 

Figure 4.6. 8-bits standard images under test and the corresponding full frame CH (a) Lena (b) Barbra (c) 

Baboon (d) Peppers. 
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The creator of HS and HFM [84] concluded that HS is more meaningful than HFM for contrast 

detection as it takes into consideration both histogram counts and histogram bins. Because HS and 

CCM have the same standard deviation between the same group of images using the same kind of 

image information, CH, the CCM index can be trusted as it follows the same HS context. So, CCM 

can track any changes in an image histogram correctly. 

The second selected group for the test was 1920 × 1200 pixels with 16-bits resolution 

images, as illustrated in Figure 4.7. CCM, HS, and HFM are calculated for these images as well. The 

summary of these calculations is shown in Table 4.3. Note that images (d) and (e) have less 

conversion complexity (higher CCM index) for ADC as they are mostly bright or dark images, 

respectively. While on the other hand, images (a) and (b) look very well distributed images; thus, 

they are more complex to be converted with the lower CCM index. Looking at image (a), the CH is 

very well distributed, and most of the codes appeared on it. So, this image is very complex to be 

converted by CPA ADC as it will count all codes starting from 0 to 65535 for every row, which 

makes the conversion of this image consume more power and time than images like (d) or (e). The 

later images have somewhat narrow CH in which not all the codes appeared, and successive zeros 

will exist instead, so CPA ADC can jump over empty (successive zeros) codes to save power and 

     

     
0                                           65535 0                                         65535 0                                         65535 0                                        65535 0                                       65535 

(a) (b) (c) (d) (e) 

Figure 4.7. 16-bits images under test and the corresponding full frame CH  

 

Table 4.2. Summary of standard images evaluation for different IQ metrics  

Image HFM HS CCM 

Lena 0.622 0.297 0.239 

Peppers 0.756 0.375 0.260 

Barbra 0.560 0.277 0.313 

Baboon 0.484 0.254 0.352 

Standard Deviation 0.099 0.045 0.044 
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time of conversion, which proves the theory of successive zeros make an image easier to be 

converted. 

Monotonicity, Sensitivity and Linearity Evaluation 

After calculating some IQ metrics for different images, it is very important to calculate the 

IQ metrics for an image after adding several kinds of distortions and check if these IQ metrics are 

responsive to the added distortions and also to see if they respond in a monotonic fashion or not. Not 

only monotonicity needs to be checked, but also the sensitivity of a metric is important too. 

Sensitivity is calculated to see how much IQ metrics could change corresponding to the amount of 

linearly introduced distortion to an image. In addition to sensitivity, linearity is also a parameter that 

should be verified to check how linear the IQ metric is with respect to the linear change in distortion. 

Many image distortion types can be used in MATLAB [94] to add distortions to an image, 

namely, the blurring filter effect, Gaussian white noise, salt and peppers noise, and multiplicative 

noise. Also, brightness change is an important effect of the new metric that was added to these 

distortions.  

All of these distortion types can be controlled by a specific parameter related to each of 

them. For example, the variance parameter is used to control the blurring filter and multiplicative 

noise, while the noise density parameter is used in the salt and peppers noise type. Gaussian white 

noise is controlled using the variance and mean parameters. To be able to control Gaussian white 

noise, I fixed one parameter while changing the other one linearly. A fixed number was added to all 

the image pixels for brightness change and increased this number linearly. The scanning parameter is 

changed 64 times linearly, adding more distortion to the image linearly. IQ metrics are calculated 

with respect to this linear distortion change. The 8-bits 512 × 512 pixels Lena image was chosen to 

be the image under this distortion test. The combination of distortion types and scanning of each 

distortion parameters created 384 distorted views of the Lena image. Figure 4.8 shows the original 

Lena image and a sample from each type of distortions that were introduced to the Lena image. 

Table 4.3. Summary of 16-bits images evaluation for different IQ metrics  

Image HFM HS CCM 

a 0.8165 0.4470 0.0128 

b 0.5368 0.2705 0.1557 

c 0.6688 0.4019 0.3056 

d 0.1076 0.0549 0.6649 

e 0.4812 0.1764 0.7868 
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The CCM, HS, HFM, BRISQUE, NIQE, PIQUE, SSIM, and MSE are calculated for the 

Lena image after applying and linearly scanning the aforementioned types of distortions. All these 

metrics are checked for monotonicity with respect to the distortion increase. Table 4.4 summarizes 

the monotonicity features for these metrics. It is found that CCM and MSE are monotonic for all 

kinds of distortions. HS, PIQUE, and SSIM are monotonic for most distortion types, while HFM, 

BRISQUE, and NIQE are non-monotonic for almost every distortion type. 

These IQ metrics’ sensitivity is calculated as the percentage of the difference between the 

metric values, which corresponds to the maximum and minimum change of the added distortion 

divided by the original metric value. Table 4.5 summarizes the sensitivity values for all metrics with 

respect to added distortions. The table is divided into two groups; bounded metrics and unbounded 

metrics. The bounded group is for those bounded metrics between zero and one, while another group 

has no limit. This table is split that way to be able to perform a fair comparison. CCM has the 

highest sensitivity for all types of distortions except for Gaussian white noise with the fixed mean 

and changing variance; it comes in the second position after SSIM. For the unbounded group, MSE 

comes as the highest sensitive unbounded metric for every distortion change.  

For linearity calculations, the R-square value correlates each metric dataset output to the 

linearly changed distortion and figuring out how linear the metric corresponds to linear distortion 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.8. Samples of different types of distortions (a) Original (b) Brightness change (c) Blur distortion 

(d) Gaussian noise distortion (e) Salt and peppers distortion (f) Multiplicative noise distortion 
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change. Table 4.6 summarizes all R-squared values for all metrics for added distortions. CCM has 

the maximum linearity value of 99% for the first three distortion types, while MSE has the 

maximum linearity for the other three types. 

CCM Evaluation for brightness change 

The CCM theory is based on counting the number of successive zeros in a row histogram. 

When an image becomes darker or brighter, it becomes less complex for the ADC to convert as a 

result of increasing the number of successive zeros (see Figure 4.2). Brightness is the most important 

image parameter that is used to verify the new theory. The 8-bits 512 × 512 pixels Lena image was 

selected to perform this test because of being the most difficult image of the selected standard 

Table 4.4. Monotonicity summary of all IQ metrics  

Distortion type CCM HFM HS BRISQUE NIQE PIQUE SSIM MSE 

Brightness increase yes no yes no no yes yes yes 

Bluer filter yes no yes no no yes yes yes 

Gaussian white noise with mean 

change and fixed variance 
yes no yes no no no no yes 

Gaussian white noise with fixed 

mean and variance change 
yes no yes yes no yes yes yes 

Salt and pepper noise yes yes yes no yes no yes yes 

Multiplicative noise yes no no no no yes yes yes 

 

Table 4.5. Summary of metrics sensitivities to different distortion types  

Distortion type 
Bounded metrics Un-Bounded metrics 

CCM HFM HS SSIM MSE BRISQUE NIQE PIQUE 

Brightness increase 316% 61% 100% 65% 169375% 339% 175% 441% 

bluer filter 100% 12% 32% 47% 15789% 589% 48% 441% 

Gaussian white noise 

with mean change 

and fixed variance 

1026% 99% 100% 19% 4119% 9% 3% 15% 

Gaussian white noise 

with fixed mean and 

variance change 

74% 28% 26% 81% 5486% 60% 155% 101% 

Salt and pepper noise 339% 60% 230% 100% 6345% 32% 
5272

% 
154% 

Multiplicative noise 55% 30% 7% 50% 6131% 154% 101% 165% 
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images. Figure 4.9 illustrates the original Lena image, and its brightness is increased linearly by 

adding 40 to 240 digital values to each pixel in images in Figure 4.9.b to f, respectively. The 

brightness increase is performed by simply adding a specific digital number to all pixels, which, as a 

result, makes the histogram shift to the maximum value according to the added number. This process 

will introduce extra zeros in the lower code range of the row histogram and cause many high 

illumination pixels to saturate at the row histogram’s maximum value. 

Table 4.7 summarizes measurements of CCM, HS, HFM, BRISQUE, NIQE, PIQUE, SSIM, 

and MSE corresponding to the brightness increase of the Lena image. It is obvious that CCM has the 

highest sensitivity to the brightness increase. CCM changes 316% when brightness increases while 

no other bounded metric exceeds 100% change for the same brightness change. These results are 

plotted in Figure 4.10. CCM has a relatively small response to small value brightness increases; then, 

it increases linearly as brightness increases further, which is the typical case for MSE and SSIM with 

different rates. The rest of the metrics have a non-monotonic and non-linear response to the 

brightness increase. 

Table 4.6. Summary of R-squared values for all metrics  

Distortion type CCM HFM HS BRISQUE NIQE PIQUE SSIM MSE 

Brightness 

increase 
99% 55% 85% 90% 82% 86% 98% 98% 

Bluer filter 99% 11% 99% 43% 15% 29% 73% 99% 

Gaussian white 

noise with mean 

change and fixed 

variance 

99% 92% 86% 47% 0% 92% 78% 98% 

Gaussian white 

noise with fixed 

mean and 

variance change 

83% 69% 99% 78% 89% 62% 73% 100% 

Salt and pepper 

noise 
59% 63% 86% 0% 55% 45% 46% 100% 

Multiplicative 

noise 
87% 82% 92% 45% 86% 83% 89% 100% 
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Conclusion 

A new metric, CCM, is designed for the assessment of images before processing by 

intelligent CPA ADC electronics. The CCM index is an important parameter for intelligent 

electronics to obtain optimum performance, such as maximizing speed and minimizing the power 

consumption with the minimum image distortion. The CCM is designed to be bounded between zero 

and one. These limits are designed and tested for all possible cases of image resolution and image 

dimensions. Additionally, a mapping function is created to correct the CCM index for specific cases. 

The mapped output is tested as well, resulting in a successful output as expected for all limits. It 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.9. Brightness increasing of Lena image from +40 to +200 (a) Original (b) +40 (c) +80 (d) +120(e) 

+160 (f) +200 

Table 4.7. Metrics measuring values due to brightness change for Lena image 

Metric type Metric Original +40 +80 +120 +160 +200 %sensitivity 

bounded 

CCM 0.2388 0.2516 0.3793 0.5216 0.6773 0.9036 316% 

HFM 0.6226 0.8649 0.8019 0.6812 0.4268 0.1225 61% 

HS 0.2969 0.2969 0.2969 0.2930 0.1367 0 100% 

SSIM 1 0.8980 0.7672 0.6328 0.5009 0.3709 65% 

Un-bounded 

MSE 0 1598.49 6117.30 12812.52 19611.28 26242.6 169375% 

BRISQUE 10.1529 10.0255 29.9918 29.0638 34.7735 51.715 339% 

NIQE 4.5957 4.6040 4.6502 5.2153 7.1910 10.146 175% 

PIQUE 18.4942 18.5423 22.9832 30.7049 42.2203 62.356 441% 
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gives zero for the lower limit and one for the upper limit images. The CCM is an independent matric 

that does not need any reference image to compare with. This independence makes CCM suitable for 

analog processing electronics. The CCM uses a simple calculation method based on a histogram of a 

row that allows fast processing and minimizes hardware implementation complexity. Finally, it is 

not for human perception as a very simple and uniform image is very challenging for analog 

electronics to process and consume more power and time.  

CCM is tested in different ways. First, the theoretical mapped output is tested using 

synthesized images to reach the maximum and minimum limits according to the successive zeros 

theory. Second, CCM is calculated for different standard 8-bits greyscale images resulting in the 

same behavior as HS, the metric that uses the histogram for calculating image contrast. Third, CCM 

is calculated for 16-bits images to verify how general it is. This test results in a very well understood 

result that the most bright or dark images have less conversion complexity than the well-distributed 

images in the same group. Forth, six types of distortion are introduced linearly to an image, and 

CCM and other IQ metrics are calculated for these types of distortion. Monotonicity, sensitivity, and 

linearity are investigated for all available IQ metrics. The CCM results in a monotonic behavior to 

linearly scanned distortion with linearity of 99% and 316% sensitivity to brightness change. The 

CCM index is tested for greyscale images, however, for colored images, the CCM index can be 

calculated for each color channel, and the weighted combination of them can be used to calculate the 

global CCM index for the colored images. 

 

Figure 4.10. Plotting IQ metric versus brightness change (unbounded metrics are normalized to be from 0 

to 1)  
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Chapter 5: Accelerated Single Slop Look-Ahead Ramp (ASSLAR) ADC 

and CCM Comparison Methodology 

"A Simple Image Quality and Complexity Metric for Smart Image Sensor Evaluation." 

Forthcoming in IEEE Access Journal, 2020. 

Many speedup techniques (SuPT) were developed to enhance the conversion speed of the 

ramp-type ADCs used in the CMOS image sensors. These techniques trade the speed with other 

parameters such as image quality, hardware complexity, and silicon area. The accelerated ramp (AR) 

SuPT was proposed based on the shot-noise limitation, and it achieved a constant and high speedup 

ratio (SuPR) within the allowed image degradation that cannot be observed by a human. Another 

SuPT was introduced and implemented in chapter 3, showing excellent performance in terms of the 

SuPR and power consumption saving, which is the SSLAR. The SSLAR has an interesting property 

that allows its conversion algorithm to exploit any opportunity to increase the SuPR based on image 

code distribution, so it is called opportunistic SuPT. In this chapter, the hybridization of these two 

powerful SuPTs is proposed to take the advantages of both and overcome their disadvantages. The 

proposed SuPT is called accelerated SSLAR (ASSLAR). The ASSLAR is tested for a commonly 

used image database from Caltech [95]. The ASSLAR showed promising results; it achieved an 

average of 20% SuPR enhancement over the AR SuPT for less complex images keeping the image 

quality unaffected. The ASSLAR investigation and comparison were performed using a new 

comparison methodology presented in this chapter. The proposed comparison methodology is a 

generic method that can be applied to compare any SuPTs based on the CCM and the SSIM indexes. 

The case study of this methodology was about comparing AR and ASSLR SuPTs, and it is presented 

at the end of this chapter.  

Introduction  

The SSLAR speedup technique (SuPT) was proven to enhance the speedup ratio (SuPR) of 

the SSR ADC [1]. However, the SSLAR SuPT needs some improvements in terms of the output 

image quality. Also, any chance to increase its SuPR should be explored. In this chapter, a new SuPT 

is proposed to increase the SuPR of the SSLAR by hybridizing the SSLAR with the accelerated ramp 

(AR) SuPT [24] [36] to develop what is called accelerated SSLAR (ASSLAR). The evaluation of the 

effectiveness and the comparison of the ASSLAR with other SuPTs is performed using a proposed 

comparison methodology based on the CCM index accompanied by the SSIM index. This general 

methodology is proposed for a fair comparison between any SuPTs that are used for speeding up the 

standard SSR ADC. 
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The Accelerated Ramp (AR) Speedup Technique 

The Accelerated Ramp (AR) Concept  

Figure 5.1 illustrates the relationship between light intensity and the CIS output signal response and 

different kinds of noises. Two types of noise exist; the constant noise and the photon shot noise. The 

constant noises include the thermal noise and flicker (1/f) noise that form a noise floor [36]. On the 

other hand, the photon shot noise is not constant and directly proportional to the square root of the 

sensor signal. The constant noise dominates if the output signal is small, while the photon shot noise 

dominates when the output signal level increases. The ADCs were designed such that their 

quantization noise does not exceed the constant noise floor. However, for higher output signal levels, 

where the shot noise dominates, the ADC’s performance is higher than needed, i.e., ADC 

quantization steps can be increased without affecting the overall signal to noise ratio (SNR). The 

ramp ADC steps should be related to photon shot noise rather than linear steps, and it should always 

be less than the overall noise limit shown in Figure 5.1. The AR was proposed in [24] and [36] to 

enhance ramp ADC conversion speed using accelerated ramp based on the photon shot noise limit of 

a sensor signal. The AR step size was increased to reduce the overall number of required steps and 

perform the A-to-D conversion faster, as shown in Figure 5.1. The shot noise margin (SNM) is defined 

as the ratio of the accelerated ramp step size to signal shot noise and can be calculated from [24]:  

𝑆𝑁𝑀𝑠ℎ𝑜𝑡 =
𝑊𝑠ℎ𝑜𝑡

𝐷𝑠ℎ𝑜𝑡
 (5-1) 

where Wshot is the maximum step size of the accelerated ramp, and Dshot is the shot-noise limit. The 

recommended shot noise margin is 1/2 to reduce contours’ possible appearance on the reproduce 

 

Figure 5.1. Conceptual logarithmic plot of the sensor’s response to light and corresponding noise sources. 
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image [24]. If the SNM is increased, which means the accelerated ramp step size is increased, the AR 

ADC becomes faster, and the output image quality becomes worse because the ramp steps sizes 

become closer to the shot-noise limit, or it may exceed it. The inverse is correct, if the noise margin 

becomes smaller, the conversion process will be slower, but the output image quality will be better. 

So, there is a tradeoff between image quality and conversion speed.  

The Controlling Parameters (CPs) of Accelerated Ramp (AR) SuPT 

The AR technique has a fixed SuPR as the total number of required steps is fixed for the 

specific image or ADC resolution. For example, for the 8-bit images and SNM of 1/2, it will need 61 

steps instead of 256 steps required by standard single slope ramp (SSR) ADC. Thus, the AR SuPR of 

8-bit images is 4.19. Also, for the 12-bits images and noise margin is 1/2, it will need 606 steps 

instead of 4095, or it will have a SuPR of 6.70 more than the SSR ADC. For an 8-bits image, if the 

SNM increased to 1.0 and 2.0, the SuPR will jump to 8 and 14.2, respectively. The only control 

parameter (CP) that seems to control the SuPR of the AR is the SNM parameter. However, the 

authors of the AR strongly recommended keeping it at most 1/2 to avoid any output image distortion. 

So, the AR relatively has no CPs to control its SuPR. It depends only on the image or ADC resolution 

and provides a constant SuPR for specific image resolution. 

Advantages and Disadvantages of the Accelerated Ramp (AR) SuPT 

The AR SuPT is a technique that exploits the shot-noise limit to increase the conversion 

speed of the SSR in image sensors. It has a relatively fixed SuPR for each image resolution regardless 

of the current scene/image’s conversion complexity. The SuPR comes at the expense of the output 

image quality. However, its SuPR can be increased more based on the conversion complexity of the 

scene itself or the input image; i.e., if the input image is less complex to convert, it should be 

converted faster and vise versa. So, this feature should be added to the AR SuPT to enhance its SuPR. 

The AR SuPT needs some improvements to reach the optimum operating condition to get the 

maximum SuPR and the minimum image quality (IQ) degradation. 

The SSLAR Technique 

As illustrated in chapter 3, the SSLAR ADC is an opportunistic SuPT that was introduced to 

speed up the SSR ADC, [1] [61] [62]. The main idea behind it is to look into a code range (defined as 

to look ahead step size, k) before converting that range (t to t+k). If no signal exists in the range, then 

the ADC’s ramp signal jumps k step, skips scanning the range (t to t+k), and looks ahead to the next 

code range (t+k to t+2k). If, on the other hand, h number (defined as the threshold) or more signals 

exist in the look-ahead code range (t to t+k), ADC’s ramp signal scans the core range using the 

regular ramping step size of 1. If less than h number of signals exist in the range, all signals in the 
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range will be considered having middle code value of the look-ahead range (t+k/2), and conversion 

continues without scanning the range (known as jump). As a result, when a jump occurs during A-to-

D conversion, the pixels in the k-range will incur a k/2-LSB error in the SSLAR SuPT. This process is 

repeated until the ramp reaches the 2n value, where n is the image resolution.  

The Controlling Parameters (CP) of SSLAR SuPT 

The step size (k) and the threshold (h) are the main CPs for the SSLAR. The threshold is 

defined as the maximum allowed number of codes that can make the ramp skip during the jump 

process, while the step size is a predefined parameter that is used in the acceleration process. Both 

CPs are used to control the tradeoff between the SuPR and the output image quality. As the threshold 

and the step size increase, the conversion speed increases, and the output image quality degrades. 

However, this relationship is not linear; if the threshold and/or the step size increased further, the 

SuPR would saturate, or it may decrease [1] [61], [62]. So, there are optimum settings for these 

parameters to reach the maximum SuPR.  

Advantages and Disadvantages of the SSLAR SuPT 

The SSLAR SuPT is a technique for exploiting any chance to increase the conversion speed 

based on the image/scene nature. So, if the scene is not complex in terms of details and code 

distribution, SSLAR SuPT can convert images faster than if it is a complex scene with many details 

and uniform code distributions. It trades image quality (IQ) for extra speedup and reduced power 

consumption. However, the SSLAR has one issue regarding the output IQ: it does not consider the 

shot-noise limit. If the step size is set too large, the ramp will exceed the shot-noise limit, especially 

when the signal level is still small. Figure 5.2 shows an example of an 8-bits resolution ADC to 

illustrate this issue. In this figure, the X-axis is the number of required steps for an ADC to finish the 

conversion, while the Y-axis is the bit resolution of an image. The SSLAR ramp is plotted for the step 

sizes of 1, 2, 3, 4, 5, 10, and 16. As the step size increases, the SSLAR finished the conversion faster. 

However, the SSLAR linear ramps may exceed the shot-noise limit. The shot noise limit is plotted in 

this graph as well to show the maximum allowed step size. It is found that for the SSLAR’s step size 

equal to or larger than 5, its ramp always exceeds the shot-noise limit, which may affect the quality of 

the produced image negatively. For the step size less than 5, the SSLAR ramp exceeds the limit only 

when the signal level is small. 
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Proposed Accelerated SSLAR Technique 

The AR and SSLAR SuPTs are to enhance SSR ADC speed. Each has its advantages and 

disadvantages. I propose to hybridize these techniques to develop the accelerated-SSLAR ADC to 

take the advantages of both and overcome their disadvantages.  

The ASSLAR concept 

The ASSLAR SuPT hybridizes the properties of the SSLAR and AR SuPTs, maintaining the 

benefits of both techniques while achieving faster conversion speed and the best image quality than 

both. In SSLAR SuPT, two ramps exist; the main ramp has a step size larger than 1, and the fall-back 

ramp, which is used when the jump is declined and increases linearly by the step size of 1. The 

proposed ASSLAR SuPT will replace the main and the fall-back ramps of the SSLAR SuPT with two 

accelerated ramps that follow the same theory as the AR SuPT. By doing this, the SSLAR SuPR will 

be increased because the accelerated ramp is faster than the linear ramp as it follows the shot-noise 

limit. The AR technique always blindly (regardless of the processed image complexity) follows the 

shot-noise limit by a SNM of 1/2, which means that its value is always below half of the shot-noise 

limit. However, the opportunistic property of the SSLAR SuPT should be exploited based on the 

image complexity. So, the proposed ASSLAR SuPT will have the chance to exceed the SNM limit for 

the accelerated ramps to find any opportunity to speed up the conversion process without degrading 

image quality. 

  

Figure 5.2. The SSLAR ramps of different step sizes compared with the shot noise limit. 
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The Controlling Parameters (CP) of ASSLAR SuPT 

Since the ASSLAR SuPT has two different accelerated ramps, each ramp will have its own 

SNM. The main ramp SNM parameter (M-SNM) is the first CP of the ASSLAR SuPT. The second 

CP is the fall-back SNM parameter (FB-SNM) that controls the fallback ramp acceleration of the 

ASSLAR SuPT. Combining these two important CPs will result in different options that will be 

chosen to get the maximum SuPR with the minimum IQ degradation. As the ASSLAR SuPT is built 

on the SSLAR SuPT, it is expected that there is (are) some common CP(s) between them like the 

threshold or the step size. However, the ASSLAR SuPT is based on the AR SuPT that has a fixed step 

size limited by the shot-noise limit so, the ASSLAR SuPT does not have the step size as a CP, but it 

has only the threshold parameter as a CP similar to the SSLAR SuPT. Another parameter may affect 

the overall SuPR of the ASSLAR, which is the fall-back cost or penalty. When the SSLAR falls back, 

it incurs 2 extra clock cycles as a cost of jump failure, which causes a delay of conversion cycles. In 

the ASSLAR SuPT, the clock frequency is increased to minimize the delay resulting from falling 

back. Thus, the ASSLAR SuPT has four CPs which are: M-SNM, FB-SNM, threshold, and fall-back 

cost. These parameters will be investigated to choose the optimum settings for the ASSLAR SuPT.  

The ASSLAR Simulation Results 

The ASSLAR SuPT is modeled and simulated using the Matlab software. The selected test 

images were a group of 52, 8-bits, grey-scale images from the Caltech image database [95] that cover 

almost the maximum range of CCM index from 0 to 1. When an image is processed, the CCM and the 

SuPR index are calculated, then the SSIM index of the processed image versus the original image is 

determined. Different combinations of M-SNM and FB-SNM are assigned with the values 1, 2, 4, and 

6 for both of them to investigate the effect of these two parameters on the output SuPR and SSIM. 

This process is repeated for the fall-back cost value of 0.5, 1, and 2 clock cycles to check the effect of 

increasing the clock frequency of the SSLAR. The different cases of these combinations are 

illustrated case by case. 

The FB-SNM is the first CP to investigate. All other parameters are fixed, and the FB-SNM 

is assigned to the fixed values of 1, 2, 4, and 6. Figure 5.3 is just an example to show the relationship 

between the FB-SNM and SuPR. The M-SNM for the data in Figure 5.3 is 1, and the cost is 2. In this 

figure, it can be observed that the SuPR always increases when the CCM index increases, i.e., when 

the images become less complex. This is an expected response for the ASSLAR SuPT as its SuPR 

depends on the input image’s complexity because this is one of the inherent characteristics of the 
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SSLAR SuPT. Simulations also showed that the SuPR increases with increased FB-SNM, as 

expected. That is one of the AR SuPT’s features that the ASSLAR SuPT inherited. 

Figure 5.4 shows the SSIM for the same conditions and data set, as in Figure 5.3. The SSIM 

index is used to quantify the similarity between the original image and the processed image. As the 

SuPR increased, the SSIM index or similarity between the original and processed images is 

decreased. For this example, due to the increase of FB-SNM, SuPR increased from 1.87 to 2.99 (an 

average 59.8% increase), while SSIM is decreased from 0.997 to 0.959 (a reduction of only 3.9%). 

 

Figure 5.3. The ASSLAR SuPR vs. CCM index for different FB-SNM  

 

Figure 5.4. The ASSLAR SSIM vs. CCM index for different FB-SNM 
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This suggests that the ASSLAR SuPT increases the SuPR and keeps the IQ not degraded 

dramatically. The effect of the SuPTs on IQ will be investigated in detail in the following section.  

The second parameter that is investigated is M-SNM CP of the ASSLAR SuPT. Following 

the same procedures as FB-SNM, all other CPs are fixed, and the M-SNM is assigned to 1, 2, 4, and 6 

to investigate its effect on the SuPR and the SSIM index. The other CPs are assigned for this 

simulation are; FB-SNM = 4 and the cost = 2. Figure 5.5 illustrates the simulation results of the data 

set showing the SuPR of the ASSLAR SuPT for different M-SNM. The SuPR curves are shifted up 

with increased M-SNM values showing the relation between SuPR and M-SNM parameters. Also, for 

the same M-SNM, the SuPR is increasing with the CCM index, which means it follows the CCM 

theory that states, “if an image is less complex, it will be easy and fast to be converted” as in the 

SSLAR/ASSLAR SuPT. 

Figure 5.6 illustrates the SSIM index of the processed images for different M-SNM values. It 

is clear that the processed image’s IQ becomes worse as the M-SNM increased or, in other words, as 

the SuPR increased. The SuPR is enhanced on average by 169%, while the SSIM decreased on 

average by 4.3% only.  

The last CP that will be investigated is the fall back cost. In the SSLAR SuPT, the cost is the 

number of the clock cycles that the SSLAR SuPT will incur if a jump is declined and ramp fall back 

will occur. It was assigned as 2 clock cycles in the existing SSLAR SuPT. Figure 5.7 shows the 

enhancement in the SuPR if the cost is reduced to 1.0 or 1/2 clock cycles. This figure’s data is the 

 

Figure 5.5. The ASSLAR SuPR vs. CCM index for different M-SNM 
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average of SuPR of all combinations of M-SNM and FB-SNM for the values 1, 2, 4, and 6. The SuPR 

will be enhanced by 22.9% if the cost CP is assigned to 1/2 clock cycle instead of 2 clock cycles.  

ASSLAR Performance Optimization. 

Figure 5.8 (a) and (b) illustrates a general view of the average SuPR of the ASSLAR SuPT 

versus different values of M-SNM and FB-SNM CPs, respectively. As discussed before, as the SNM 

is increased, the SuPR has increased accordingly, and the resulting IQ is degraded as well. The 

average SuPR can be increased from 3 up to almost 7 times, according to the SNM CP settings.  

 

Figure 5.6. The ASSLAR SSIM vs. CCM index for different M-SNM 

 

Figure 5.7. The ASSLAR SuPR vs. average fallback cost for all available combination of SNM CPs. 
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Figure 5.9 (a) and (b) show an average SSIM degradation versus different values of M-SNM 

and FB-SNM CPs, respectively. The SSIM drops from 98% to 92% for the ASSLAR SNM CPs 

between 1 and 6. So, there is a tradeoff between the SuPR and IQ of the images, as reflected by the 

SSIM. The optimum settings of the SNM CPs should be determined to achieve a maximum SuPR and 

a maximum SSIM index (minimum IQ degradation) at the same time. Table 5.1 shows the ASSLAR 

operating modes and the corresponding CPs, and average SuPR, SuPR standard deviation, average 

  

(a) (b) 

Figure 5.8. The ASSLAR generic SuPR vs. CCM index for different M-SNM and FB-SNM. 

  

(a) (b) 

 

Figure 5.9. The ASSLAR generic SSIM vs. CCM index for different M-SNM and FB-SNM. 
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SSIM, and SSIM standard deviation for all of the images under test. Each mode is an indication of a 

specific M-SNM and FB-SNM as a combination. For example, mode-9 means the M-SNM is 4, and 

the FB-SNM is 1. Figure 5.10 is a plot of the data in Table 5.1. It is clear that the SuPR is increasing 

as the SNM CPs increase with different rates in both main and fall back ramps. The standard 

deviation of the average value of the SuPR is plotted to show how these data are deviating around the 

average value. Following the same fashion, the average SSIM index and its standard deviation are 

plotted for the corresponding SuPR. As observed before, the SSIM decreases while the SuPR 

increases. The optimum SuPR and SSIM can be determined from this data, such that the maximum 

SuPR is obtained for the minimum image distortion (maximum SSIM). Looking at Figure 5.10 or 

Table 5.1 and starting with the highest SSIM index that exceeds 97%, eight modes can be identified; 

modes 1, 2, 3, 5, 6, 9, 10, and 13. By looking at the corresponding SuPR of these 8 modes, some of 

them could be excluded due to their lower SuPR like modes 1, 2, 3, 5, and 9. So, three CPs modes 

could be selected to be the optimum modes for the ASSLAR, which are modes 6, 10, and 13. These 

Table 5.1. The SNM settings for different operation modes of ASSLAR and resulting average SuPR, and SSIM 

values for the Caltech database images. 

Operation 

Modes 

M-

SNM 

FB-

SNM 
SuPR 

SuPR Standard 

Deviation 

SSIM 

index 

SSIM Standard 

Deviation 

1 1 1 2.23 0.4064 99.7% 0.0009 

2 1 2 3.02 0.4869 99.2% 0.0030 

3 1 4 3.69 0.4625 98.0% 0.0054 

4 1 6 3.98 0.4686 95.9% 0.0132 

5 2 1 2.79 0.4836 99.5% 0.0019 

6 2 2 4.10 0.6418 98.6% 0.0043 

7 2 4 5.44 0.7323 96.3% 0.0103 

8 2 6 6.02 0.7489 94.5% 0.0208 

9 4 1 3.60 0.5636 99.1% 0.0034 

10 4 2 5.52 0.7685 97.5% 0.0084 

11 4 4 8.03 1.0665 94.3% 0.0147 

12 4 6 9.22 1.1531 91.6% 0.0243 

13 6 1 3.97 0.7600 98.7% 0.0059 

14 6 2 6.38 1.2317 96.9% 0.0111 

15 6 4 9.15 1.4687 93.0% 0.0205 

16 6 6 11.29 2.4845 88.8% 0.0326 
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modes have an average SuPR almost equal to or larger than 4 times faster than the standard SSR 

while keeping the SSIM index larger than 97%. Comparing modes 6 and 13, both have almost the 

same average SSIM index, but mode 6 has a higher average SuPR. So, mode 13 can be excluded from 

this selection process, leaving modes 6 and 10.  

Among selected modes, the mode that will result in an image that the distortion is not 

noticeable will yield the optimum ASSLAR CPs. Figure 5.11 shows an example of a visual image 

comparison. A random image is selected from the Caltech database and processed by the nominated 

two CPs modes. The output (processed) images are shown in Figure 5.11. Mode-6 resulted in SSIM 

of 98.5% and SuPR of 5.27, while mode-10 results in SuPR of 7, but it has a lower SSIM index of 

95.7%. The lower SSIM index effect can be easily recognized on the processed image as in Figure 

5.11(c) on which contours between different areas in the image with varying levels of illumination 

can be easily observable. Thus, mode-10 cannot be chosen even it provides higher SuPR that mode-6, 

as image distortion is so clear and visible. Therefore, one can conclude that the mode-6 achieves 

optimum performance for ASSLAR SuPT that maximizes the SuPR 4 times on average and 

maximizes the SSIM index (minimize the IQ degradation) up to 98% on average.  

 

Figure 5.10. ASSLAR modes versus SuPR and SSIM for selecting optimum CP of M-SNM and FB-SNM.  
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After determining the optimum modes for the ASSLAR, it is the time for comparison with 

other SuPTs. In the following sub-section, a new general comparison methodology is presented and 

applied to the ASSLAR and AR technique based on the CCM and SSIM metrics. 

Proposed Methodology to Compare SuPTs using CCM 

The proposed ASSLAR SuPT is a promising technique that takes advantage of two powerful 

SuPTs; opportunistic SSLAR and shot noise limited AR. However, because many CPs control the 

 

(a) Original input image 

 

(b) Mode-6 output image 

 

(c) Mode-10 output image 

 

Figure 5.11. Optimum ASSLAR modes comparison (a) the original input image (b) mode-6 output image, 

SSIM=98.5% and SuPR=5.27 (c) mode-10 output image, SSIM=95.7% and SuPR=7.0.  
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SuPR, a methodology has to be defined to compare and evaluate different SuPTs fairly, including the 

ASSLAR, SSLAR, and the AR SuPTs. 

The CCM index was designed to evaluate ADC SuPTs used in CPA CISs. Some SuPTs may 

be claimed to be the best. However, less complex scenes might be used to prove that claim. It is 

common practice to show the original and processed image side by side and let the readers figure out 

where the differences are. It may also be claimed that the SuPT does not affect IQ. Thus, it is 

imperative to have a quantitative metric to tell the reader, “how much does the proposed SuPT 

degrade the IQ?” and “what is the complexity of the original image or scene to start with?” The role 

of comparison methodology described in the next section that uses the proposed CCM index becomes 

significant to answer these pressing questions quantitatively. 

The Comparison Method 

Most new ADC SuPTs used in image capturing systems have some controlling parameters (CPs) 

to adjust performance parameters such as speed, power, resolution, or quality using quantization step 

size, number of steps, threshold, etc. These CPs may be common between different SuPTs or unique 

due to the addition of elements on a common topology. Here, only the CPs that affect relative SuPR of 

an A-to-D technique in CPA CIS is considered. 

The CCM index will be the reference parameter throughout the comparison of the SuPTs as it is 

a blind metric quantifying how complex an image is without requiring a reference image. Besides, the 

SSIM index [82] will be used to compare the original image and the processed image because it is a 

full reference metric that requires the original image to indicate how similar the processed image is. 

Using the CCM and SSIM together for the SuPR and similarity will lead to a clear picture of how 

effective the new SuPT is in terms of speed improvement and output IQ, which could be related 

easily to power consumption and other performance parameters of a CIS. 

The comparison methodology is as follows: 

1- Choose a group of test images such that it covers most of the CCM index range from 0 (most 

complex) to 1 (least complex). 

2- Check for the CP(s) of each SuPT and find the common CP(s) (if any). 

3- Start with the SuPT, which has the least number of CP(s). 

4- Scan the CP(s) resulting in minimum to maximum SuPR and find the SuPR, CCM, and SSIM 

index values for each corresponding CP(s) for each image. 
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5- If there is (are) common CP(s) among SuPTs, scan the common CP(s) of the other SuPT and find 

the CP(s) value(s) that gives the same CCM index value and find the corresponding SuPR and 

SSIM index value for each image. 

6- If there is (are) not common CP(s) between the SuPTs, scan the combination of the CP(s) that 

gives the same CCM index value and find the corresponding SuPR and SSIM index value for 

each image. 

7- Compare the SuPR of each SuPT for each image with the same CCM index and common CP(s) 

(if any). 

8- Use the corresponding SSIM index to evaluate the processed images’ similarity using original 

images for each SuPT. 

We chose two SuPTs used in CPA CIS as a case study to show how the proposed 

methodology can compare different SuPTs fairly. 

Case study: ASSLAR and AR Comparison  

The comparison methodology is applied step by step as follows: 

1- A group of 52, 8-bits, grey-scale images was chosen from the Caltech image database [95]. The 

CCM index of each image was calculated and found that they are in the CCM index range 

between 0.2 and 0.7. 

2- SNM is set to 1/2 for AR, thus; 

a- the CP of the AR SuPT is “none,” 

b- no common CPs exist among the two SuPT when SNM is set to 1/2. 

3- The AR SuPT is processed first. 

4- The AR SuPT is applied to each image, and the corresponding SuPR, CCM, and SSIM are 

recorded 

5- No common CPs exist among the two SuPT when SNM is set to 1/2 for AR SuPT. M-SNM and 

N-SNM CPs for ASSLAR are set to the optimum value (mode-6), as described in the previous 

section. The fall back penalty is set to 0.5 clock cycles. 

6- The only CP for the ASSLAR SuPT is the threshold. So, the threshold from 1 to 100 was scanned 

for each image to find which threshold will give the same CCM index value as the AR SuPT. 

Once this threshold is found, the corresponding SuPR, CCM, and SSIM were recorded for the 

ASSLAR SuPT. 

7-  The SuPR of both SuPTs were compared for each image using CCM. 

8- The similarity of the output images was compared to the original image for both SuPTs using the 

recorded SSIM index. 
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The results of comparing these two SuPTs are illustrated in the following sub-section. 

The CCM Comparison Methodology Results 

Figure 5.12 shows the resulting SuPR of both AR and ASSLAR SuPTs. The AR SuPT resulted in a 

constant SuPR as expected and equal to 4.19 with respect to the original SSR ADC. This is because 

the AR SuPT does not have any CPs (except for the SNM) to vary, and its SuPR depends on the bit 

resolution of the image, which is a fixed parameter (8-bit) for the test images. This means that the AR 

SuPT is not affected by the image conversion complexity as it has a fixed number of steps ( 61 for an 

8-bit image) to finish the conversion cycle. On the other hand, the SuPR of the proposed ASSLAR 

SuPT comes higher than that of the AR SuPT when the CCM index is larger than 0.5; in other words, 

when the images become less complex. This is the expected behavior of the ASSLAR SuPT because 

it cares about the image conversion complexity, and its conversion speed is increased when the 

processed image becomes less complex.  

The ASSLAR SuPR in Figure 5.12 is based on mode-6, which is the optimum CP mode that is 

determined in the ASSLAR. The average ASSLAR SuPR for this group of the image is 4 times faster 

than the SSR. As shown in Figure 5.12, SuPR can reach almost 6X if the images are very simple, i.e., 

higher CCM index value. The average ASSLAR enhancement of the SuPR is about 20% for the 

images with the CCM index larger than 0.5. SuPR of the ASSLAR increases as the image conversion 

 

Figure 5.12. AR and ASSLAR SuPRs’ comparison using the CCM comparison methodology.  
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complexity decreases (or the CCM index increases), which are expected, as less complex images 

create opportunities for SuPTs such as SSLAR to take advantage of without degrading IQ.  

The SSIM index plot versus the CCM index of the test images for the AR and ASSLAR SuPTs is 

shown in Figure 5.13. The average value of the SSIM index for the AR SuPT is 98.6%, and it is the 

same for the ASSLAR SuPT using mode-6 settings. An average 20% increase in the SuPR for simple 

images using the ASSLAR SuPT almost did not decrease the SSIM index of the processed images.  

Figure 5.14 plots the same data in Figure 5.10 after adding the AR SuPR and the corresponding 

SSIM to see the complete picture. As illustrated for the AR SuPT, its SuPR is always constant as long 

as the SNM = 0.5 to keep the SSIM is in the range of 98%. The optimum mode for the ASSLAR 

SuPT is mode-6, which gives the same average SuPR and SSIM as the AR. However, by looking at 

the standard deviation of the ASSLAR SuPR, it is found that SuPR can be higher than AR, and the 

SSIM can slightly be lower than the AR’s SSIM. This possibility occurs only when the CCM index is 

larger than 0.5, because, as stated before, the ASSLAR SuPR increases when the image becomes less 

complex. The CCM index plays an important role in choosing which SuPT is to be used. So, for the 

highly complex images with a low CCM index, the AR dominates and has higher SuPR than the 

ASSLAR. However, if the image becomes less complex with a high CCM index, the ASSLAR 

becomes faster than the AR SuPT with the same SSIM index, and the IQ will not be affected. The 

 

Figure 5.13. The resulting SSIM index versus the CCM index of the test images for AR and ASSLAR 

techniques after using the proposed CCM comparison methodology.  
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resulting SuPR of this hybridization will always lead to equal or greater than the AR SuPT, resulting 

in the same IQ. 

Figure 5.15, Figure 5.16, and Figure 5.17 show samples of low complexity images processed 

by the AR and ASSLAR SuPT. The AR SuPT was run using SNM = 0.5, 1, and 2 to see the effect of 

exceeding SNM for the AR. As can be seen in Figure 5.15 (c) and (d) through Figure 5.17, the IQ 

degradation is so clear and visible with a lower SSIM index, which means that SNM= 1 and 2 cannot 

be used in the AR SuPT to increase the SuPR. On the other hand, in Figure 5.15 (e) through Figure 

5.17, the output image of the proposed ASSLAR SuPT resulted in almost the same SSIM as the AR 

technique but higher SuPR, as it is running at mode-6, which has the M-SNM = FB-SNM = 2. 

Conclusion 

The ASSLAR ADC was built on two powerful SuPTs (SSLAR and AR) to take the 

advantages of both and overcome their disadvantages. The ASSLAR depends on the main 

opportunistic property of the SSLAR SuPT to increase the SuPR based on the image complexity. The 

ASSLAR also inherits how the main ramp is accelerated in the AR SuPT and replaces the main and 

fallback ramps of the SSLAR with it. The opportunistic property of the SSLAR allowed the ASSLAR 

to exceed the shot-noise margin (SNM) and search for any chance to increase the SuPR based on the 

complexity of the input image. The CCM index was used as the metric to figure out which SuPT 

 

Figure 5.14. The AR and ASSLAR SuPT comparison. 
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should be used based on the image conversion complexity. The ASSLAR SuPT was simulated and 

compared based on the newly proposed comparison method that is built on the CCM and the SSIM 

indexes. This general method is applied to the AR and the ASSLAR SuPT as a case study. The 

comparison methodology resulted in proposing the conditions when using the AR or the ASSLAR. 

The ASSLAR showed a noticeable SuPR enhancement when the input image is less complex when 

the CCM index is more than 0.5, while the ASSLAR is better for the higher complex image with the 

index of 0.5 or less. 
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(a) The original image 
(b) AR. SuPT, SuPR=4.19,  

SSIM=98.3%, SNM=0.5 

  

(c) AR. SuPT, SuPR=8,  

SSIM=95.5%, SNM=1 

(d) AR. SuPT, SuPR=14.2,  

SSIM=96.3%, SNM=2 

  

(e) ASSLAR. SuPT, SuPR=4.7,  

SSIM=98.1%, Mode-6 

(f) ASSLAR. SuPT, SuPR=6.13,  

SSIM=98.0%, Mode-10 

Figure 5.15. Samples of processed images using AR and ASSLAR SuPTs and its SuPRs and SSIM indexes. 

(a) The original image (b) The AR with the recommended SNM=0.5 (c) The AR with SNM=1 (d) The AR 

with SNM=2 (e) The ASSLAR with mode-6 (f) The ASSLAR with mode-10. 
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(a) The original image 
(b) AR. SuPT, SuPR=4.19,  

SSIM=98.3%, SNM=0.5 

  

(c) AR. SuPT, SuPR=8,  

SSIM=94.8%, SNM=1 

(d) AR. SuPT, SuPR=14.2,  

SSIM=88.7%, SNM=2 

  

(e) ASSLAR. SuPT, SuPR=4.95,  

SSIM=98.1%, Mode-6 

(f) ASSLAR. SuPT, SuPR=6.55,  

SSIM=96.7%, Mode-10 

Figure 5.16. Samples of processed images using AR and ASSLAR SuPTs and its SuPRs and SSIM indexes. 

(a) The original image (b) The AR with the recommended SNM=0.5 (c) The AR with SNM=1 (d) The AR 

with SNM=2 (e) The ASSLAR with mode-6 (f) The ASSLAR with mode-10. 
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(a) The original image 
(b) AR. SuPT, SuPR=4.19,  

SSIM=98.7%, SNM=0.5 

  

(c) AR. SuPT, SuPR=8,  

SSIM=96%, SNM=1 

(d) AR. SuPT, SuPR=14.2,  

SSIM=91.6%, SNM=2 

  

(e) ASSLAR. SuPT, SuPR=5.34,  

SSIM=98.5%, Mode-6 

(f) ASSLAR. SuPT, SuPR=6.9,  

SSIM=97.5%, Mode-10 

Figure 5.17. Samples of processed images using AR and ASSLAR SuPTs and its SuPRs and SSIM indexes. 

(a) The original image (b) The AR with the recommended SNM=0.5 (c) The AR with SNM=1 (d) The AR 

with SNM=2 (e) The ASSLAR with mode-6 (f) The ASSLAR with mode-10. 
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Chapter 6: Contributions and Future Work  

In this chapter, the main contribution and possible future research and development directions 

and works are outlined.  

Main Contributions 

This research resulted in advancements in the field of CMOS image sensors. Speed up 

techniques for integrating (ramp) type ADC for CIS with CPA are proposed and implemented. The 

new ADC topologies are called the single-slope look-ahead ramp (SSLAR) ADC and accelerated 

single-slope look-ahead ramp (ASSLAR) ADC. Measurements of the SSLAR ADC in a 200 × 150 

pixel CIS showed that six times (6x) frame rate improvement could be achieved while reducing 

power consumption by 13% without compromising image quality. The modification and development 

of the ASSLAR are performed by combining the SSLAR and accelerated ramp (AR) speed-up 

techniques (SuPT) to further improve SSLAR ADC performance. It is shown that the ASSLAR SuPT 

can achieve an additional 20% speed improvement comparing with the AR for the same image quality 

(with SSIM index over 98%) and less complex images (with CCM index of 0.5 or more). 

A new reference-free image quality (IQ) and complexity metric, called conversion 

complexity metric (CCM), was proposed, developed, and tested using hundreds of reference and 

standard database images. The new metric has proven to be bounded, monotonic, and achieves 99% 

linearity and 316% sensitivity. It provides a computationally efficient single-image quality metric that 

no other metrics provide for CIS to intelligently adjust and optimize on-chip analog and digital signal 

processing operations.  

Using the new and existing IQ metrics, a new performance comparison methodology was 

proposed to set a fair comparison between the different SuPTs used in CIS to enhance the conversion 

speed of integrating (ramp) type ADCs. This methodology was used to compare the AR and 

ASSLAR SuPTs in a case study. This study resulted in developing a hybrid accelerated ramp ADC 

technique in which the AR for the more complex images (with CCM index 0.5 or less) while the 

ASSLAR for the less complex images (with CCM index 0.5 or more) to end up with a high-

performance SuPT without affecting the output image quality. 

The Future Work 

This research’s outcomes open new research topics to expand the scope and efficiency of 

several fields, including, but not limited to, hardware-software co-design, power-efficient CIS design, 

image and video processing, data-driven intelligent electronics, integrated power management, and 

smart imaging systems. For example, the new CCM index levels the field of algorithmic efficiency of 
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different techniques (i.e., quantization, compression, conversion, etc.) without requiring a reference 

image providing image quality and complexity index of any image, still or moving. A simple 

calculation method of the CCM index gives it an advantage over other techniques. This simplicity 

makes it a perfect candidate to be integrated with video systems to assess the imaging and scene 

complexities to intelligently adjust system or circuit level performance (i.e., power, resolution, speed, 

resource allocation, etc.) parameters. Artificial intelligent (AI) driven next-generation systems to 

require and find many applications of using simple image/scene/video quality and complexity metrics 

such as the CCM.  

The proposed CCM index can also find many communication and compression applications 

where image quality has to be assessed with and without an original image to adjust system 

parameters such as compression ratio, modulation bandwidth, etc.  

In the image processing field, standard images have been used for many years. As shown in 

our research, these images have very balanced CCM index values that make them suitable for such 

research that no other IQ indexes provide. The question of “why everybody used LENA or BABOON 

or BARBARA images in their image processing research?” can easily be answered by looking at their 

CCMS indexes. It is basically because the CCM is a reference-free IQ and complexity metric and 

provides a direct assessment of them. Such an IQ metric has many exciting applications in the field of 

image processing. 

The proposed CCM index also levels the field for a fair comparison of different image or 

signal processing techniques that no other metric could provide. This is shown in one case study in 

the field of SuPTs for CIS ADCs in this research. The presented and future CCM base assessment 

methodologies make the picture clear for researchers to choose the right technique for the specific 

application they are investigating. Thus, the CCM index has the potential to becomes a new industry 

standard IQ metric for researchers to discover how to create or choose an image to be a standard 

image for the image/signal/video processing and CIS research fields.  

The ASSLAR SuPT was proven to be better over the existing AR SuPTs by using the 

proposed fair comparison methodology. It is shown theoretically using many images and through 

simulations. However, it needs to be implemented in silicon for final verification that is left as future 

work. In this effort, an efficient way to calculate the CCM index in silicon should be developed and 

integrated with the new ASSLAR based CIS chip to support the smart decision to improve power 

consumption. This implementation will include the ASSLAR technique as the main SuPT for the 
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ramp ADC, and it will be switched to the AR SuPT by overriding the ASSLAR CPs to set it to the 

same CPs of the AR SuPT. This overriding will be built on the CCM index of the input image. 

The new SuPR comparison methodology proposed for CIS should be applied to most or all 

the existing SuPT to show how effective they are. By doing this, some SuPTs which are thought to be 

the best may lose value while other SuPT may appear better than it was perceived before. Also, new 

SuPTs will emerge based on this fair comparison methodology. This requires comprehensive research 

in this area. 

Finally, the CCM index is designed for smart CIS. It should be implemented on any CIS to 

support it to set up its own CPs to control its SuPR intelligently and the output image quality. This 

intelligent control will offer power consumption saving, faster conversion speed, and maintaining the 

IQ not affected. The input image conversion complexity will figure out the optimum CPs that will 

maximize the SuPR and minimize the IQ distortion intelligentially. How will all be achieved and 

implemented require further research and left as future work. 
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Appendix A – Some Codes Subroutines  

The SSLAR Subroutine 

for tresh=1:last_tresh 
for step=1:last_step  
    num=0;     
    for (row=1:nrow) % rows scan loop 
       njump(row)=0; % number of ADC code steps per row>>>>>             
       ramp=0;       % ramp reset each row 
       while (ramp<adc)  %ramp from 0 to 255 
                num=0; 
                for col=1:ncol    %column scan  
                    if (pic(row,col)>=ramp & pic(row,col)<(ramp+step) & 

step>1)  
                        num=num+1;   
                    end; 
                end; 

  
                if (num>0) % some number of pixels in step range 
                    if(num<=tresh) %jump approved if true 
                        for col=1:ncol                %column loop 
                            if(pic(row,col)>=ramp & 

pic(row,col)<(ramp+step))   
                                %picnew(row,col)=ramp+h;  
                                picnew(row,col)=ramp+floor((step)*0.5);  
                                %picnew(row,col)=ramp+ceil((step)*0.5);  
                            end; 
                        end; 
                        njump(row)=njump(row)+1; 
                    else % num>tresh and jump is not aproved, cost has to 

be paid 
                        njump(row)=njump(row)+cost+step;                  
                    end; 
                else     
                  njump(row)=njump(row)+1;   
                end; 
                % increment the ramp   
                ramp=ramp+step; 
        end; 
    end; 

     
%-------------finding speedup------------------- 
total_save =sum(njump);                                      
SSLAR_SUP(step,tresh,file_no) = nrow*adc/total_save; 
        end; 
    end; 

  



108 

 

The ASSLAR Subroutine 

for tresh=1:last_tresh 
num=0;     
    for (row=1:nrow) % rows scan loop 
       njump(row)=0; % number of ADC code steps per row 
       ramp=0;       % ramp reset each row 
       while (ramp<adc)  %ramp from 0 to 255 
          % -choose step size based on ramp value 
            if (ramp==0) step=1; h=1;                                                          
            elseif (ramp>=1 & ramp<=adc-1)  
                step= round((sqrt(ramp)*M)); % use round if N<=2 
                h=step/2; 
            end; 

                             
                num=0; 
                % check if number of columns having value btw ramp and 

ramp+step-1 
            for col=1:ncol    %column scan  
                if (pic(row,col)>=ramp & pic(row,col)<(ramp+step) & 

step>1)  
                    num=num+1;   
                end; 
            end; 
            if (num>0) % some number of pixels in step range 
                if(num<=tresh) %jump approved if true 
                    for col=1:ncol                %column loop 
                        if(pic(row,col)>=ramp & pic(row,col)<(ramp+step))   
                            picnew(row,col)=ramp+h;  
                        end; 
                    end; 
                    njump(row)=njump(row)+1; 
                else % num>tresh and jump is not aproved, cost has to be 

paid 
                    fbstep=0; 
                    ramp2=0; 
                    while (ramp2<step) 
                        if (ramp2==0) step2=1; h2=1; 
                        elseif (ramp2>=1 & ramp2<=step) 
                            step2= round((sqrt(ramp2)*N)); % use round if 

M<=2 
                            h2=step2/2; 
                        end; 
                        for col=1:ncol                %column loop 
                            if(pic(row,col)>=(ramp+ramp2) & 

pic(row,col)<(ramp+ramp2+step2)) 
                                picnew(row,col)=(ramp+ramp2)+h2;  
                            end; 
                        end; 
                        fbstep=fbstep+1; 
                        ramp2=ramp2+step2; 
                        stepout2(ramp2+1)=step2; 
                    end; 
                    njump(row)=njump(row)+cost+fbstep; 
                    %ramp=ramp-step; 
                end; 
            else     
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                njump(row)=njump(row)+1;   
            end;   
            ramp=ramp+step; 
        end;    
    end; 
%-------------finding speedup------------------- 
total_save =sum(njump);                                       
ASSLAR_SUP(file_no,tresh) = nrow*adc/total_save; 
end; 

  



110 

 

The AR Subroutine 

    for (row=1:nrow) % rows scan loop 
       njump(row)=0; % number of ADC code steps per row 
       ramp=0;       % ramp reset each row 
       while (ramp<adc)  %ramp from 0 to 255 
                % -choose step size based on ramp value 
            if (ramp==0                    ) step=1;    end; 
            if (ramp>=1 & ramp<=adc-1) step= round((sqrt(ramp)*0.5)); end; 
            for col=1:ncol                %column loop 
                if(pic(row,col)>=ramp & pic(row,col)<(ramp+step))   
                 picnew(row,col)=ramp;  
                end; 
            end; 
            stepout(ramp+1)=step; 
            njump(row)=njump(row)+1; 
            ramp=ramp+step;   % increment the ramp  
        end;  
    end; 
total_save =sum(njump);                                       
ACC_SUP(file_no) = nrow*adc/total_save; 
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The CCM Subroutine 

row_hist=zeros(nrow,adc);       % row histogram array 
img_hist=double(zeros(1,adc));  % image histogram array 
zero_hist=zeros(nrow,adc);      % Zeros histogram array/row 
img_zero_hist=zeros(1,adc);     % Zeros histogram array/image 
cx_row=zeros(nrow,adc); 
for row=1:nrow 
% find row histogram and whole image histogram 
        for col=1:ncol 
             indx=double(pic1(row,col)+1); %+1 to avoid error of Matlab as 

no 0 index  
             % find row histogram 
             row_hist(row,indx)=row_hist(row,indx)+1;                     
             % find picture histogram 
             img_hist(1,indx)=img_hist(1,indx)+1; 
        end;                       

                 
% find zeros-band histogram 
        i=1; 
        while i<=adc  
            if row_hist(row,i)==0 
                indx=1; % (reset index) but, Matlab has not (0,0) location 

this will be corrected later 
                while (row_hist(row,i)==0)                
                    indx=indx+1; 
                    i=i+1;                  
                    if i>adc break; end; 
                end;              
                zero_hist(row,indx)=zero_hist(row,indx)+1;             
                img_zero_hist(1,indx)=img_zero_hist(1,indx)+1;            
            end;             
            i=i+1; 
        end;          
% shifting histogram to correct range from (0,0) to (nrow,ADC-1)     
        for indx=1:adc-1 
            zero_hist_f(row,indx)=zero_hist(row, indx+1); 
            img_zero_hist_f(1,indx)=img_zero_hist(1,indx+1); 
        end; 

         
% calculating complexity  
            for indx=1:adc-1 
                if zero_hist_f(row, indx)~=0 
                   cx_row(row,indx)=(indx/zero_hist_f(row, indx)); 
                end;             
            end;    
            cx_img(file_no)=(sum(sum(cx_row)))/(nrow*adc); %use if 

scanning for threshold required  
end;   
% % Mapping function  
            if adc<=ncol                
               ACC_CCM(file_no)=(adc*cx_img(file_no))/(adc-1);  
            else              
               ACC_CCM(file_no)=(adc*((cx_img(file_no)*ncol^2)-

1)+ncol)/(adc*(ncol^2-1)+ncol*(1-ncol)); 
            end; 


