
On-line, On-board, Evolutionary Learning from Demonstration in Autonomous, Mobile

Robots

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Nathaniel Ebel

May 2014

Major Professor: Terence Soule, Ph.D.

ii

Authorization to Submit Thesis

This thesis of Nathaniel Ebel, submitted for the degree of Master of Science with a

major in Computer Science and titled “On-line, On-board, Evolutionary Learning from

Demonstration in Autonomous, Mobile Robots,” has been reviewed in final form.

Permission, as indicated by the signatures and dates given below, is now granted to

submit final copies to the College of Graduate Studies for approval.

Major Professor Date
Terence Soule, Ph.D.

Committee
Members Date

Robert Heckendorn, Ph.D.

Date
Barrie Robison, Ph.D.

Department
Administrator Date

Gregory Donohoe, Ph.D.

Discipline’s
College Dean Date

Larry Stauffer, Ph.D.

Final Approval and Acceptance by the College of Graduate Studies

Date
Jie Chen,, Ph.D.

iii

Abstract

The ability to easily train, and interact with robotic agents has been the focus of a great

deal of research within the fields of Artificial Intelligence and Machine Learning. Learn-

ing from Demonstration (LfD) is a common approach for teaching robotic agents new

behaviors because it requires little specialized knowledge of robotic hardware or of com-

puter programming. Evolutionary learning techniques have also commonly been applied

to robotic learning tasks, but the two techniques have rarely been used together due to

the computational requirements of running an evolutionary process on-line, and on-board

a robot during the LfD process. This thesis presents an on-line, on-board, evolutionary

learning from demonstration protocol that enables autonomous robotic agents to learn

how to complete a path following task. In addition, the robots are capable of recording

their GPS location during autonomous operation which has a wide variety of practical

applications from autonomous trail mapping, to marking objects of interest in disaster

response applications.

iv

Acknowledgements

I would like to thank Dr. Soule for all the guidance and advice throughout my time

in the graduate program at the University of Idaho and for acting as my Major Professor.

I want to thank Dr. Soule and Dr. Heckendorn for inviting me into the research lab,

and supporting our work with their time and expertise.

I thank Dr. Heckendorn for acting as a committee member and for always bringing

an interesting perspective and a wealth of knowledge to our work.

I would like to say thank you to Dr. Robison for agreeing to serve as the outside

member of my committee and for providing an interesting outside perspective to the

work.

I want to thank Travis DeVault, Juan Marulanda, and Jayandra Pokharel for all of

the assistance, advice, friendship, and laughs during my time in the program. Enjoying

the people you work with is priceless. I also want to thank Juan again for going out of

his way to talk with me about my research interests on my first day of classes and for

pointing me in the direction of Dr. Soule and Dr.

Heckendorn.

I would like to thank my family for always being supportive, encouraging me to apply

for grad school, and for helping teach me how to enjoy learning.

Last, but not least, I want to thank my wife for postponing her dream of going to

grad school and for always supporting me in everything I do.

v

Table of Contents

Authorization to Submit Thesis . ii

Abstract . iii

Acknowledgements . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1

2 Background . 4

2.1 Evolutionary Computation . 4

2.1.1 Representation . 4

2.1.2 Selection . 5

2.1.3 Population Structure . 5

2.1.4 Reproduction . 6

2.1.5 Different Flavors of Evolutionary Computation 6

2.2 Evolutionary Robotics . 7

2.2.1 Classification . 7

2.2.2 When . 8

2.2.3 Where . 9

2.2.4 How . 9

2.3 Robotic Learning . 10

2.3.1 Types of Learning . 10

2.4 Review of Related Work . 11

2.4.1 Encapsulated Approaches . 11

2.4.2 Distributed Approaches . 20

2.4.3 Hybrid approaches . 28

2.4.4 Summary . 31

vi

3 A Training Set Protocol for On-Line, On-Board Evolutionary Learn-

ing from Demonstration . 33

3.1 Abstract . 33

3.2 Introduction . 33

3.3 Related Work . 35

3.3.1 Embodied Evolution of Robot Controllers 36

3.3.2 Learning From Demonstration . 37

3.4 Overview of on-line, on-board, evolutionary Learning from Demonstration

system . 38

3.4.1 Robot . 38

3.4.2 Road Library . 40

3.4.3 Image Processing . 41

3.4.4 Neural Network Controller . 42

3.4.5 Evolutionary Algorithm . 43

3.4.6 Training Process . 45

3.4.7 Autonomous Operation . 45

3.5 Experimental Design . 46

3.5.1 What was tested . 46

3.5.2 Testing procedure . 47

3.5.3 Experimental Conditions . 48

3.6 Results . 49

3.7 Conclusions . 51

4 Real World Applications of On-Line, On-Board Evolutionary Learn-

ing from Demonstration . 53

4.1 Abstract . 53

4.2 Introduction . 53

4.3 Methods . 55

vii

4.3.1 Robotic Platforms . 55

4.3.2 Procedure Overview . 57

4.3.3 Road Library Construction . 57

4.3.4 Evolutionary Learning from Demonstration 57

4.3.5 Neural Network Controller . 60

4.3.6 Genetic Algorithm . 60

4.3.7 Testing . 62

4.4 Results . 62

4.5 Proof of Concept Test on Long Trail . 66

4.6 Conclusions . 68

5 Technical Challenges . 69

5.1 Robot Vision Processing . 69

5.1.1 Challenges to Robotic Vision Systems 69

5.1.2 Initial Image Processing System 70

5.1.3 Revised Approach . 75

5.1.4 Additional Work . 77

5.2 Locational Awareness and Mapping . 78

6 Conclusions . 80

7 Future Work . 82

References . 84

viii

List of Tables

3.1 Summary of the evolutionary algorithm parameters. 44

3.2 Results of testing evolved controllers on 45 and 90 degree corners. Three

tests were conducted for each corner, per test. The data shows that as

the size of the initial training set increases, so does the total number of

corners successfully navigated. 49

3.3 The average and best fitness of each round of training. The data shows

an improvement in fitness (through minimization) in both the average and

best cases as the number of training cases gathered before evolution begins

increased. 50

4.1 Summary of the genetic algorithm parameters. 61

4.2 Results of testing in the urban environment show the robot was capable

of navigating 87 percent of the total length of the path on average. . . . 63

4.3 Results of testing in the park environment show the robot was capable of

navigating 94 percent of the total length of the path on average. 64

ix

List of Figures

3.1 Image of the used robot platorm. The smartphone can both receive wire-

less commands from a remote phone via Bluetooth, and send commands to

an Arduino type microcontroller also using Bluetooth. The microcontroller

interprets received commands, and can forward movement commands to

the robot’s motors. Sensing, processing, and on-board evolution/learning

is done within the robot smartphone. 39

3.2 This image depicts each hardware component of the robot, and how it

communicates with other components in the system. 40

3.3 Processed image colored to indicated output value. Green areas represent

high road probability values, and red represents very low probabilities. The

area outside of the path is nearly all red, while the path area generally has

high values. 41

3.4 This image shows the architecture of the neural network used to control

the robot. Inputs are taken from a processed image, fed through the neural

network, and the output node with the highest activation value determines

the action the robot will take. 43

3.5 The training track for these experiments. The track consists of one 45◦

left corner, one 45◦ right corner, and three straight sections. Training is

always started from the same end of the track, and the robot is always

trained to drive to the opposite end of the track. It is then turned around

and driven back along the track. This process is continued until evolution

is complete. 46

x

3.6 Figure 3.6a shows the 45◦ testing track. This track is designed to test the

robot’s ability to navigate the same type of corner that it was trained on.

Figure 3.6b shows the 90◦ testing track. This track is designed to test the

robot’s ability to generalize its learned knowledge of how to complete a

45◦ corner to the completion of something it was not trained to navigate. 47

4.1 The robot platforms used for these experiments. 56

4.2 This is the urban environment path used in these experiments. The robot

was trained on the brick path, and attempted to navigate around the full

path without driving off onto the surrounding concrete. This path was

challenging due to the reflective concrete surface, differences in lighting

that occurred around the path, and the sharp corners. 58

4.3 This is the park environment path used in these experiments. The robot

was trained to navigate the bark path and to avoid driving off into the

surrounding grass. This path was challenging due to a nonuniform path

surface composed of lightly colored bark, and darkly colored mud. The

path also changed widths and in some places has a less clearly defined edge. 59

4.4 This image shows the GPS locations of a robot during autonomous oper-

ation on the park path. It’s clear that the points are following the general

shape and length of the path, although they are not located directly on the

path in this image. This offset difference is due to a difference in the map

projection used when visualizing the data, and is not due to any inherent

defect in the mapping system. More points are located near the beginning

of the path (the left side in the image) since over multiple trials the robot

generally spends more total time near the beginning as it starts to fail

nearer to the end of the path. 65

xi

4.5 This image shows the GPS locations of a robot during autonomous opera-

tion on a long gravel path within a park environment. The robot was able

to navigate a distance of .25 miles with a total of two human interventions.

Both of these interventions simply required placing the robot back in the

middle of the path. It’s likely the robot lost the path in these situations

because the area was extremely shaded, with edges that varied greatly

from what it had been originally trained on. 67

5.1 These images show the results from image processing after a single example

has been added to the road library, and after several examples of the path

have been added to the library. With a larger number of examples in the

color library, the classification of road and non-road is much more accurate. 74

5.2 These images demonstrate how the back projection calculation classifies

an image. Figure 5.2a is the image that will be processed using backpro-

jection. The red square located within the hand represents the area from

which the sample histogram was taken. This is the region that the other

pixels will be compared to during the back projection calculation. Figure

5.2b is the image generated from performing a back projection calculation

on the input image to the left, using the region taken from the hand as

the sample color distribution. The processed image represents the proba-

bility of each pixel belonging to the same color distribution as the sample

region. In this example, it serves to classify areas that have the same color

distribution as the hand in the input image. 76

xii

5.3 Images showing GPS data collected during autonomous operation in dif-

ferent environments. The data collected from the urban environment has

little resemblance to the actual path that was traversed, while data from

the park closely resembles the path that was followed. This difference is

due to limitations in GPS technology. In the urban environment there was

significant tree canopy overhead and there were buildings on either side of

the path. Both of these can limit the accuracy of GPS. The robot is also

never in one position for longer than a second which reduces the fine grain

accuracy of the recorded position. 79

1

Chapter 1: Introduction

In recent years, there has been an increase in interest in the field of evolutionary robotics.

This research focuses on applying evolutionary methods and algorithms towards the

creation of robotic controllers [14]. Robots that can evolve and adapt autonomously are

desired because of the difficulty in hand coding or simulating controllers that can handle

complex and dynamic environments [37]. If a robotic agent can continuously adapt and

evolve in real time then it is capable of operating within a variety of environments without

needing to modify its controller. Examples of such environments include natural disaster

areas and extraterrestrial landscapes, both of which are prime candidates for utilizing

autonomous mobile robots [8, 61].

Much of the work in evolutionary robotics has focused on optimizing a controller to

allow a single robot to complete a given task. The most common approach is off-line

evolution in which the robotic agent is evolved and evaluated in simulation, and the best

individual solution is transferred to a physical robot [32]. While this approach works well

for some problems, it has several important limitations. Firstly, controllers evolved off-

line cannot adapt to dynamic environments. Secondly, it is difficult to simulate real world

environments, particularly when dealing with inputs such as lighting, texture, and sound

[14]. Because of this, controllers created during simulation are susceptible to decreases

in effectiveness once transferred to the real world [11, 35]. To create controllers that

perform well in real-world environments it’s necessary for controllers to be tested in the

physical world during embodied trials.

Embodied trials refers to the testing of an individual’s fitness on a physical robot

in the real world so real inputs are received. This approach gives more accurate fitness

evaluations, but evolution is still done off-line on a remote machine [45]. This means

that evolution is dependent on some third party system and the physical agent is not

truly autonomous. Embodied trials allow a robot to adapt to its environment as it

operates, but the robot must wait for evolution to take place on the external machine. If

2

this process has a large enough latency, the robot’s environment could potentially have

significantly changed, causing the new controller to be ineffective. Off-board evolution

with embodied trials is also dependent on the connection of a robot to the machine

carrying out the evolutionary process. If this connection is broken, the robot can no

longer evolve, potentially leaving the robot with an ineffective controller. This drawback

limits the effectiveness of the embodied, off-board approach in real world applications

and leads to a need for robots that can continuously evolve in real time in real world

environments.

Modern approaches for evolutionary robotics are moving towards fully embodied evo-

lution where both fitness trials and evolution are done on-board the physical robot [18].

In this type of system, the robot is continually evolving and testing its fitness with real-

world inputs using only the hardware available on the robot itself. This gives the robot

a level of automation and adaptability not possible with off-line, off-board approaches.

Learning from demonstration (LfD) is a robotic training method in which a robotic

agent learns from observing demonstrated behaviors. The robot is able to learn to repli-

cate observed behavior to operate autonomously and perform a desired task. Because

demonstrating an action or behavior to a robot typically takes no special knowledge

of programming or robotic hardware, LfD is a promising approach for increasing the

adoption and effectiveness of human-robot interactions.

This thesis presents an on-line, on-board evolutionary Learning from Demonstration

system that can be implemented on a low-cost, but computationally powerful, mobile

robotic platform. This allows a human operator with no specialized knowledge of pro-

gramming or robotic hardware to train a mobile robot to complete some given task. The

robot learns by observing the actions demonstrated by a human operator and then evolv-

ing a neurocontroller to replicate this behavior. This system has been tested and shown

to be capable of training a mobile robot to complete path following tasks in both indoor

and outdoor environments. In conjunction with development of the on-line, on-board evo-

3

lutionary LfD system, work was done to develop robotic vision systems to increase the

image processing capabilities of the robotic platform and to develop a method of track-

ing the robots position during autonomous operation. This additional work increases the

utility of real world applications of the proposed robotic system.

The rest of this document is organized as follows: Chapter 2 gives an extensive back-

ground section for evolutionary computation, evolutionary robotics, and learning from

demonstration, Chapters 3 and 4 were both written as stand alone papers and describe

two sets of experiments using the proposed on-line, on-board evolutionary Learning from

Demonstration system, Chapter 5 describes some of the technical challenges that were

addressed during the course of this work, Chapter 6 gives conclusions drawn from this

work, and Chapter 7 describes several avenues for future work.

4

Chapter 2: Background

2.1 Evolutionary Computation

Evolutionary computation is a sub field of computer science in which the fundamental

principle of biological evolution, survival of the fittest, is applied to a wide range of

optimization and design problems in a variety of fields including satellite beam design

[33], molecular sequence alignment [43, 62], and control of competitive video game agents

[21]. A great deal of research has been devoted to evolutionary computation, much of

which focuses on how to emulate evolution to solve a particular problem. This typically

involves answering several questions related to algorithm design [24]:

• How should genetic material be organized?

• How will selection take place?

• How will populations be structured?

• What will reproductive constraints look like?

• Where and how will mutations occur?

2.1.1 Representation

How an individual should be represented is often one of the most difficult considerations

when designing an evolutionary algorithm. It is often referred to as the “Representation

Problem” and can have a great impact on the fitness on an individual. A potential

solution to a given problem is the phenotype of an individual while its genetic encoding

is its genotype [20]. It’s important to choose a representation that can allow good alleles,

pieces of genetic code, to stick together [24]. Within evolutionary robotics, a common

genotype representation is to treat the weights of an artificial neural network (ANN) as

individual genes within the genotype encoding.

5

2.1.2 Selection

Parent selection works to improve the fitness of a population by choosing individuals

with high fitness to pass on their genetic information to new generations [20]. This is

typically a stochastic process in which the probability of being selected for reproduction is

proportional to an individual’s fitness leading to a greater chance of highly fit individuals

reproducing. Tournament selection is one approach in which a set of random individuals

are selected, and the most fit of those individuals is chosen to reproduce [24]. While

the goal of selection is to improve the fitness of the population, the most fit individual

isn’t always chosen. The small chance for a poorly fit individual to reproduce allows an

algorithm to avoid getting stuck in a local optimum. Retaining diversity in the population

can lead to better exploration of the search space and may lead to a better performing

algorithm.

2.1.3 Population Structure

The population of an evolutionary algorithm is a collection of genotypes representing

possible solutions to a particular problem. Evolution works at the population level where

individual genotypes don’t change or evolve, but the population’s overall fitness can

increase through reproduction [20]. Defining the population for an algorithm is usually

as simple as defining the population size. The size of every generation’s population will

typically remain constant but can change with each new generation. The size of the

population must be 1 or larger, but the efficiency of the evolutionary process should be

considered when choosing how large the population should be. Larger populations mean

more individuals must be evaluated and the time between generations will increase which

may decrease the effectiveness of the algorithm.

6

2.1.4 Reproduction

Reproduction allows for new generations of individuals to be created and improve the

population [20]. Genetic information is taken from a single or multiple parent individuals

to create a new offspring individual. The exchange of genetic information takes place

during crossover between parents. This can take the form of one point, two point, or

uniform crossover [19].

• One point - picks a point in the genotype and all genes after this point are swapped

between genotypes

• Two point - picks two points, and the genes in between them are exchanged.

• Uniform - All genes have a probability of being exchanged between parents

Once crossover has been applied and new individuals have been created mutation can

occur to introduce new genetic material into the genotype. Mutation typically has a

constant probability to modify each individual gene in the genotype.

2.1.5 Different Flavors of Evolutionary Computation

Implementations of evolutionary approaches can be grouped into several main subtypes:

• Evolutionary Algorithms (EAs)

– Genetic Algorithms (GAs)

– Evolutionary Programming (EP)

– Evolution Strategies (ES)

• Genetic Programming (GP)

Evolutionary algorithms work to optimize the parameters for a problem while genetic

programming focuses on building descriptions of objects that carry out computations

7

[19]. GAs, EP, and ES all work to optimize parameters, but go about it in different

ways. GAs are the most common type of evolutionary algorithm and represent geno-

types as strings of varying lengths and/or types. EP works to evolve adaptive behaviors

by modifying parameters of some fixed control structure. ES are usually applied to opti-

mization problems and have an emphasis on using mutation to create new genotypes [20].

Genetic programming has two key distinctions from the previously described algorithms.

The goal of GP is to evolve a description of some object or controller than can carry

out a task rather than optimising a given control structure as in EAs [20, 19]. GP also

usually represents its solutions as trees rather than strings.

2.2 Evolutionary Robotics

These key concepts of evolutionary computation play an integral role within evolutionary

robotics. Population structure and the method reproduction are particularly important

when evolving robotic controllers on-line and on-board. In [10] its stated that because of

limited processing power in mobile robots, highly efficient evolutionary algorithms with

small population sizes are needed to be effective at evolving robotic controllers. With

the steady increase of general processing power, and the rapid increase in prevalence of

powerful smartphone and tablet devices, processing power isn’t nearly as limited as it

used to be. However, carefully designing efficient algorithms with appropriate population

sizes can significantly increase the performance of on-line on-board evolution, and it may

still be necessary to utilize simple algorithms with small population size depending on

the robotic platform used.

2.2.1 Classification

To effectively discuss different implementations of evolutionary robotics it is helpful to

make use of a general classification scheme. Several classification systems have been

8

proposed in previous works [59, 19]. In [59], a classification of evolutionary robotics

was described in which the embodiedness of a robot was the crucial classifier. This

classification was expanded in [19] and classified embodied evolution based on where the

evolutionary processes take place. In this system it is assumed that the robot is embodied

because it will operate in the real world, and therefore removes non-embodied evolution

from the classification all together.

Along with a new method of classification, [19] presents a vocabulary with which to

effectively describe evolutionary robotics. The term “embodied” refers to the physical

testing of fitness within a real-world, physical robot. The rest of the vocabulary focuses

on the when, where, and how of the evolutionary process.

1. “off-line” (evolution occurs before run time)

2. “on-line” (evolution occurs during run time)

3. “off-board” or “extrinsic” (evolution not performed on the robot)

4. “on-board” or “intrinsic” (evolution is performed on the robot)

5. “encapsulated” or “centralised” (evolutionary process is restricted to a single robot)

6. “distributed” (evolution is performed across multiple robots)

2.2.2 When

When evolution occurs has a large impact on how the robot can evolve. If evolution

stops when the robot is deployed then it’s using off-line evolution and it can no longer

adapt to its environment [19]. This requires the robot’s controller to be effective for a

particular task at the moment of deployment. On-line evolution allows the evolutionary

process to continue for as long as the robot is operational.

9

2.2.3 Where

Evolution can take place both on-board (intrinsic) or off-board (extrinsic) the robot. In

the on-board case, evolutionary operators such as crossover and mutation are applied

within the robot itself. This contrasts with the off-board approach in which evolution

is controlled by a remote machine that performs the evolutionary operations, and loads

newly created genetic information onto the robot. Historically, the off-board approach

has been much more common due to the limited processing power of robotic hardware.

2.2.4 How

The “How” in [19]’s classification refers to how evolution is managed for either a single or

multiple robots. In an “encapsulated” or “centralised” approach a single robot undergoes

self contained evolution. The robot maintains a population of genotypes and uses a

time sharing system to take turns activating and evaluating individual genotypes for

evaluation. The overall fitness of a robot is the average fitness of each individual in the

on-board population. The “distributed” approach uses a group of robots to emulate real

world evolution. Each robot contains one genotype and is controlled by the associated

phenotype. Robots can share genetic information by broadcasting genetic information to

nearby robots, and can then use this shared information to reproduce. In this case, each

robot will have its own fitness taken from its single on-board individual, but the overall

fitness of the population is still calculated as the average of each individual in the total,

distributed population.

With this classification it’s possible to clearly define different approaches for evolving

robotic controllers. It’s with this classification system and vocabulary that the rest of

this paper will be described with a focus on on-line, on-board evolutionary approaches.

10

2.3 Robotic Learning

The ability to learn new behaviors is very desirable in autonomous robots as it allows a

single robot to be applied to a variety of situations and environments. This has several

key benefits:

1. Development time and money are saved when a robot needs to be deployed in a

new domain

2. If a robot’s objectives change during operation, its controller doesn’t have to be

modified

These benefits allow robots to work in a variety of environments towards the completion

of tasks with varying complexity. This flexibility eliminates the need for custom develop-

ment on a per-task basic which saves money, and can save crucial time in time sensitive

situations such as natural disaster response.

2.3.1 Types of Learning

Robotic learning can be generalized into two broad categories: unsupervised and super-

vised. Unsupervised learning includes forms of learning where no external mechanism

is giving feedback to the learning system. An example of this is principal component

analysis where similar data is clustered without an external input as to how the data

is related. In evolutionary robotics, unsupervised learning takes place when a robot is

responsible for calculating its own fitness as a measurement of its performance at a given

task. Supervised learning systems generally involve an external source providing exam-

ples of desired behavior to the robot, and the robot learning to mimic, and generalize

those behaviors. Back propagation to train a neural network is an example of supervised

learning. As a part of this thesis, another form of supervised learning was used: Learning

from Demonstration.

11

Learning from Demonstration

Learning from Demonstration involves the demonstration of desired behaviors to a robotic

agent so that agent can then learn what actions to take given a particular set of inputs.

This is similar to how people often learn a new task from someone who is more experienced

and can show the novice how to react in a given situation. Learning from Demonstration

has been successfully applied to autonomous robots in a variety of fields ranging from

the learning of soccer behaviors [55], to the training of a large autonomous vehicle to

drive through outdoor terrain [46]. Chapter 3 presents an evolutionary learning from

demonstration system for autonomous mobile robots.

2.4 Review of Related Work

2.4.1 Encapsulated Approaches

Encapsulated evolution is the most common approach for on-line, on-board evolution.

In this system each robot runs its own evolutionary algorithm on-board, maintaining

a population of potential controllers, and testing each of those controllers on-line in a

time sharing system. The performance of the robot is then calculated as the average

performance of each controller in the population as the performance of one controller can

impact the performance of another.

(1+1) ON-LINE

One of the first methods of encapsulated evolution is (1+1) ON-LINE which is based on

the (1+1) evolutionary algorithm and was proposed in [10]. In this system a population

of size 1 is kept to maintain the “champion” individual. The champion is the genotype

with the highest fitness so far. In each generation, a single offspring is generated by

applying a mutation operator to the champion. This individual is then tested on-line

12

by activating it as the robot’s controller and letting it control the robot during some

test task. After a maximum number of time steps, Tmax, if the fitness of the current

controlling genotype is greater than that of the champion, the champion is replaced. It’s

through this process that the overall performance of the robot is increased.

During evolution, mutation occurs with a set probability, Pmutation, and a mutation

step size of σ. To balance the “exploration” and the “exploitation” of the algorithm this

σ value can change during runtime to change between global and local search. When a

new genotype causes an increase in performance the step value is decreased to exploit

the local search space of the individual. Once improvement from a local search slows,

the step size is increased again to perform a more global search and break away from a

potential local minima.

One challenge with on-line, on-board evolution is the effect that a previous genotype

can have on the fitness of its successor. Because genotypes are continuously generated,

activated, and tested, a new controller has to take over in the same state the previous

one left the robot in. If the the previous controller had a poor fitness it may have left

the robot in a particularly difficult situation that places the next activated controller at

a disadvantage. This could punish an otherwise fit individual and lead to throwing away

a useful genotype. To reduce the effect of a previous controller on a newly activated one,

the idea of a “recovery time” has been successfully applied in [10, 19]. The recovery time

is a set period of time right after a controller is activated in which fitness is not tested.

This allows the new controller time to gain control of the robot and move it out of any

low fitness state. After the recovery time is up, fitness testing begins. This process serves

to more fairly evaluate controllers against one another.

Fitness evaluations in the real world are inherently noisy for a variety of reasons in-

cluding complex lighting and sounds, shadow, texture, and imperfect sensing equipment.

These factors, coupled with controllers that can be impacted by their predecessors, make

it important to question whether a particular “champion” individual is really a strong

13

solution or if it got lucky during its evaluation. To verify that a champion controller is, in

fact, a strong solution reevaluation is commonly applied [10, 19]. With some probability,

Preevaluate, the champion will be activated and retested. If the new fitness value is poor,

it will be replaced by an individual from the “hall of fame” which is a list of previously

well performing individuals.

(µ + 1) ON-LINE

The (1+1)ON-LINE algorithm was extended to (µ+ 1) ON-LINE in [10]. This approach

was refined and presented further in [19, 26]. The (µ + 1) ON-LINE approach is based

on classic (µ + 1) evolution strategies because of their proven success as numerical op-

timisation tools. Rather then a population size of 1 as in (1 + 1) ON-LINE, (µ + 1)

ON-LINE maintains a population size of µ and either generates a single, new individual

or reevaluates an existing individual at each time step.

(µ+1) ON-LINE attempts to handle noisy fitness calculations be reevaluating individ-

uals in the population with a probability, Preevaluate. This ensures that an individual’s

high fitness wasn’t a result of luck. Binary tournament selection is used to choose an

individual for revaluation, and its fitness is updated using an exponential moving av-

erage. This process works to increase the overall fitness of the population by ensuring

individuals perform well within a broad range of operating states.

If an individual is not being reevaluated, then a new individual is generated using

binary tournament parent selection, an averaging crossover, and a mutation step. In [26],

it was found that the standard evolution strategies approach of self-adapting σ (muta-

tion step) values produced better results when compared against both a low(0.2) and a

high(0.8) fixed value. Once a new individual is generated, it undergoes the same recovery

period that was used in (1+1) ON-LINE, reducing the effect the previous controller has

on the fitness of the new individual. When the recovery period is over, the individual’s

fitness is tested and calculated. If the new individual’s fitness is greater than the worst

14

individual in the population, the new individual will replace the old one in an effort to

increase the overall performance of the population. The process of replacing old individ-

uals with new ones comes with the risk of a new, high performing, individual being lucky

in its testing conditions and replacing a generally more fit existing individual. That is

why reevaluation is a key component in (µ+ 1) ON-LINE.

The effectiveness of (µ+ 1) ON-LINE at generating robotic controllers, and the effect

of different algorithmic parameters on performance was tested in [10, 19, 26]. Testing was

done using simulated e-puck robots within the Webotsa simulation environment. Tests

showed the algorithm was successful at evolving robotic controllers, and that σ (mutation

size) was the most influential parameter on performance. Large population sizes and high

reevaluation rates lead to an overall decrease in performance with the smallest tested

values of 6 and 0.2 respectively producing the best results. It was also noted that fitness

evaluation time was the second most influential parameter and longer evaluation times

lead to more stable populations which are desirable because of the inherent time sharing

aspect of embodied, encapsulated approaches.

(1 + 1) ON-LINE with Restart

The (1+1) ON-LINE approach uses an adaptive σ value to balance between global and

local search. This allows the algorithm to explore the global space while exploiting good

solutions. The work in [41] points out that while exploring the global space, (1+1) ON-

LINE only explores regions with higher fitness than the current champion. Because of

this, the probability of finding a more fit global optima is decreased. A more preferable

search behavior would be to explore a less fit region that slowly leads to a global optimum

through local search.

Rather than modify the mutation step size to adjust this search behavior, [41] pro-

posed the (1+1)-Restart-Online algorithm in which the algorithm’s search is sometimes

aWebots http://www.cyberbotics.com

15

restarted from a random individual in order to more fully explore the search space.

The algorithm restarts when the search has “stalled” which is decided by the number

of times an individual has been reevaluated. For the experiments presented in [41], a

Reevaluationmax threshold of seven was set. When the number of reevaluations reaches

Reevaluationmax the current champion is saved to the Hall-of-Fame and new random

champion and challenger genotypes are created to restart the search.

The performance of (1+1) ON-LINE and (1+1)-Restart-Online was compared by

examining the Hall-of-Fames generated during simulated experimentation. It was deter-

mined that including restart in the algorithm increased the speed at which fit individuals

were found, and more of the global search space was explored.

(µ + 1) ON-LINE with Racing

One of the key limiting factors in on-line, on-board evolution is the small number of

phenotype evaluations that occur within a reasonable time for real world robotics. In

[27], this limitation was addressed by applying racing to the (µ + 1) ON-LINE algorithm.

Racing is a process in which models are discarded as soon as they are determined to be

a poor choice. When applied to the (1+1) ON-LINE algorithm it means discarding an

individual if its intermediate fitness indicates it will not be a highly performing individual

with the goal of maximizing the time spent evaluating more promising individuals.

To apply racing effectively, two criteria must be met: intermediate fitness must be

calculable, and intermediate fitness must be comparable to final fitness. Intermediate

results are often generated by evaluating the current fitness at an intermediate time and

then averaging that fitness over the time steps that have elapsed. This allows it to be

compared to the final fitness of the population.

In (µ + 1) ON-LINE with Racing, at an intermediate time between T0 and Tmax,

fitness is calculated. If the intermediate fitness suggests the individual will turn out worse

than the current worst in the population, it’s considered a waste of time to continue

16

evaluation. To determine if an individual is likely to be worse than the worst in the

current population, the following version of the Hoeffding inequality is used:

1. Fchallenger ≥ Fworst − 2ξ(t)

with ξ(t) calculated as:

2. ξ(t) =
√

(Fa−Fb)2 log(2/α)
βt

• Fa = the best individual

• Fb = the worst individual

• α = the significance level

• β = parameter to tune comparison strictness

With these equations is is more likely that an individual will continue to be evaluated

early in the evaluation process, and the chance to continue evaluation decreases over

time.

The effectiveness of adding racing to the (µ + 1) ON-LINE approach was tested using

several experimental problems. It was shown that (µ + 1) ON-LINE with Racing signif-

icantly increased performance for all tasks. This was true regardless of the parameters

used in the Hoeffding equations. The results suggest that racing can be an effective way

of increasing the overall performance of a population of robot controllers.

Controlling evaluation of (µ + 1) ON-LINE

(1+1) ON-LINE, (µ + 1) ON-LINE, and their variants have shown success in evolving

controllers during on-line operation. However, these approaches still use a number of

pre-tuned parameters. For best performance it is desirable to allow parameters to be

tuned during on-line operation so controllers may adapt to the current environment and

task. The length of evaluation time has a significant impact on the performance of each

17

of the encapsulated approaches described previously. [6] examines an adaptive approach

to tuning evaluation time.

Parameter modifications fall into one of two categories: Parameter Tuning, and Pa-

rameter Control. Parameter Tuning is the choosing of parameter values before operation

by testing different values and choosing the best one. Parameter Control allows the evo-

lutionary process to modify parameter values. There are several methods of Parameter

Control including: deterministic, adaptive, and self-adaptive control. The work in [6] uses

an adaptive control approach in which the max evaluation time (Tmax) is modified based

upon the performance of the evolutionary algorithm. Two different adaptive control

methods were tested: Roulette Wheel Selection (RWS), and Heuristics-Rule (H-Rule).

The RWS method uses a range from 1 to 1000 as acceptable values for Tmax. This

range is initially split into equal regions, and then a region is randomly selected. From

the selected interval, a Tmax value is selected from a uniform distribution. When an

individual is evaluated, if its fitness is greater than the last individual’s fitness the selected

interval’s selection weight is increased by 1, otherwise if the fitness is less than the previous

individual’s the weight is decreased. An interval’s selection weight can never be less than

1, so it always has some chance of being selected. This process leads to Tmax intervals of

high performing individuals being selected more often.

The H-Rule method modifies Tmax if 3 individual evaluations in a row have not lead

to an increase in performance. If no increase occurs, the algorithm randomly adds or

subtracts one third of the current Tmax.

These two Parameter Control methods were used to control the Tmax parameter of

the (µ + 1) ON-LINE with Racing. Experiments show that these adaptive approaches

work well enough to eliminate the need to pre-tune the Tmax parameter. The Parameter

Control methods have average fitness similar to that of pre-tuned parameter values.

The RWS method performs as well as the best pre-tuned parameter values, and performs

slightly better in dynamic tasks in which the goal changes during operation. Performance

18

of the H-Rule method is slightly less than the best pre-tuned values, but does outperform

pre-tuned parameters in dynamic tasks. The RWS method was also applied to the racing

parameters of α and β to allow for dynamic control of the Racing algorithm. This removes

the need to pre-define these parameters as well.

Early Example of Evolution in a Real Robot

In [23], Floreano and Mondada demonstrated an on-board approach to the evolution of

neural controllers for autonomous agents. A key point was to demonstrate that perform-

ing evolution in real hardware is possible using modern hardware.

They employed a standard genetic algorithm using fitness scaling, roulette wheel par-

ent selection, a standard mutation operator, and one-point crossover. Evolution main-

tained a population size of 80 individuals, ran for 100 generations, and each evolved

controller was tested for 80 actions before fitness was assigned. Fitness was calculated as

a function of the average wheel speed, the difference between the wheel speeds, and the

activation level of the closest distance sensor. The controlling neural network included a

single input layer of eight sensor nodes, and two output nodes to control the robot’s two

motors. The robotic platform used was the Khepra because of its small size and simple,

uniform design.

The Khepra was evolved to perform an obstacle avoidance task. Results showed that

evolution was capable of producing controllers to complete the task in less then the allot-

ted 100 generations. Typically, optimal behaviors were present after 50 generations. It

was noted that several emergent behaviors were present including the regulation of speed

and driving in the forward direction. This showed evolution was capable of producing

complex solutions to a simple problem.

19

rtNEAT

rtNeat was introduced in [50] as a real time variation of NeuroEvolution of Augmenting

topologies (NEAT). rtNEAT was originally used to evolve virtual agents within a game

developed as part of the NeuroEvolving Robotic Operatives (NERO) project. It was

applied to robotics in [45] as a means of evolving robotic controllers, and was compared

to odNEAT, a distributed variation of NEAT.

To run NEAT in real time, individuals must be generated and replaced continuously

rather then at the end of a generation. This ensures that observed behaviors don’t suffer

from large, sudden changes. Because individuals in the population may have different

network topologies, the term species is used to describe groups of individuals with the

same topology. During each time step the algorithm performs the following actions:

1. Remove the matured individual from the population that has the lowest adjusted

fitness

2. Re-estimate the adjusted fitness for each species in the population

3. Select a parent species to create a new offspring

4. Adjust compatibility threshold and reassign all individuals to a species. This en-

sures there are never too many or too few species.

5. Place the new individual in control with the environment

rtNEAT was tested in [45] on a group aggregation task. The experiment consisted

of 30 trials using groups of 5 robots (simulated e-pucks). Two changes were made to

rtNEAT for the purpose of these experiments so the results could be compared to those

of odNEAT (described in 2.4.2). First, the compatibility threshold was static throughout

the lifetime of the algorithm. Secondly, rather than creating an offspring at set time

intervals, offspring were created when a robot’s virtual energy level reached zero. A

20

population size of 200 individuals was maintained and distributed over the five robots so

that each robot maintained an on-board population of 40 individuals. Results of testing

showed that rtNEAT could produce effective controllers for the task of group aggregation.

The average evolution time was 4.44 ± 3.27 simulated hours. This was faster than the

6.22± 5.55 simulated hours that odNEAT took to evolve a solution.

2.4.2 Distributed Approaches

Distributed evolution spreads the evolutionary process throughout a group of robots

each of which typically has a single genotype stored in its memory. Since each robot

represents an individual genotype, the group of robots as a whole constitute the evolu-

tionary population. Evolutionary operations such as reproduction occur through robot

interactions in which genetic information is passed between robots. This closely imitates

real world group interaction and reproduction. Distributed evolution produces individual

genotypes, but the overall fitness is dependent on the fitness of the population as a whole.

Because there are multiple robots working independently, evolution occurs concurrently,

and may lead to a wider exploration of the potential solution space.

Early work of Watson et. al

The work of Watson et. al in [22, 60, 59] laid the groundwork for much of the subse-

quent embodied evolution research. They worked to solve several of the key problems

in evolutionary robotics through a distributed, embodied approach. Firstly, by using an

embodied approach with real world fitness evaluations, the sim-to-reality gap was elim-

inated. Secondly, by distributing evolution across a population of robots, the lengthy

evaluation time of time-sharing systems was avoided.

The distributed approach stored a single genotype in each individual robot. The

robots operated autonomously maintaining a virtual energy level that represents a robot’s

21

fitness. As robot performance increases, so does its energy level, and when a robot

attempts to reproduce its energy level is decreased. A unique feature of this approach

to fitness evaluation is that the energy level was not reset when a new genotype became

active, so the energy level was a reflection of the performance of all genotypes that had

been active within an individual robot.

No individual learning occurs within a robot, so improvements in the population

must come from robot interactions and reproduction. A probabilistic implementation

of the Microbial GA was used evolve the population of robots. The Probabilistic Gene

Transfer Algorithm (PGTA) is a probabilistic variant of the Microbial GA in which 2

individuals are selected and genes from the less fit individual are replaced by genes from

the more fit individual to effectively create an offspring. In PGTA, a gene from an

individual is mutated and broadcast over local communication probabilistically at a rate

proportional to the individual’s current energy level. If the broadcasted gene is received

by another robot, it may probabilistically be accepted into its genotype at a rate inversely

proportional to is energy level. Through this process, highly fit individuals attempt to

spread their genes while resisting the incorporation of new genes from other individuals.

This evolutionary approach was implemented and tested on actual robotic hardware

using evolved neural networks to control the group of 8 robots towards the completion

of a simple phototaxis task. Results showed that the distributed, embodied approach

outperformed hand coded controllers, and demonstrated the first distributed, embodied

evolutionary approach.

PEGA

Like the previously described work of Watson et. al [22, 60, 59], [42] demonstrated a dis-

tributed, embodied approach referred to as the Physically Embedded Genetic Algorithm

(PEGA). It was quite similar to previous approaches, but it transferred a genotype as

well as its fitness to other individuals.

22

PEGA utilized a (1+1) population structure in each individual robot within the

population. A currently active genotype was kept and used to control the behavior of

the robot, while a “champion” genotype was kept and used to revert to when the active

genotype’s fitness was worse than that of the champion. For the experiments done in

[42] two physical robots were used with a communication range of one meter.

During operation, each robot would execute behaviors based on their currently active

genotype and evaluate its fitness for a fixed amount of time. After the allotted time was

up, the robots would move within communication range of one another to exchange their

current genotype and associated fitness.

When information was exchanged, crossover or mutation were probabilistically ap-

plied to the received genotypes. Crossover occurred in two situations. First, if a received

genotype was more fit than the robot’s active genotype half of the active genotype was

replaced with the corresponding half from the received genotype. Second, if the received

genotype was less fit than the active genotype, but the robot’s champion genotype had

a better fitness, then there was a 30% chance that a random bit of the active genome

would be replaced by the corresponding bit from the champion. The other 70% of the

time no crossover was applied, and instead mutation was probabilistically applied to the

active genome based on its fitness.

The PEGA approach was tested on several tasks including phototaxis, obstacle avoid-

ance, and robot seeking. Experiments were done to evolve controllers that could solve a

single task and could solve multiple tasks based on the current environment.

The results of experimentation showed that PEGA was capable of evolving controllers

to solve the simple test tasks, and that more complex controllers could also be evolved

to solve multiple tasks. It was noted that fitness increased as the length of evaluation

time increased indicating that longer evolution time may lead to higher performing pop-

ulations.

23

Embodied Distributed Evolutionary Algorithm (EDEA)

The Embodied Distributed Evolutionary Algorithm (EDEA) was presented in [32]. It is

similar in theory to the approach taken in [22, 60, 59] but the actual implementation is

quite different.

EDEA distributes its population across a group of robots so each robot contains a

single genotype. Adaptation occurs through robot-to-robot interactions. In the presented

work, each robot in the population was part of a connected network and could contact any

robot within the population at any time. When potential mating partners are contacted

a single individual must be selected to reproduce with. Robots in the mating process take

on either a select role when initiating reproduction, or an eager role when accepting a

reproduction request. A mating partner is selected using a binary tournament selection,

and a weighted probabilistic decision (using the fitness of each individual and a selection

coefficient) is made as to whether or not the process should continue. If reproduction

continues, crossover and mutation are applied to create a new individual which replaces

the genotype of the initiating robot.

When a new individual is activated, the robot begins carrying out the actions defined

by the controlling genome. Fitness is calculated for the robot, but it cannot reproduce

until a recovery time period has elapsed. This allows the new controller to adapt to

its environment and to limit the effect the previous controller has on the fitness of the

current one. After the recovery period is over, the robot can interact and reproduce with

other robots in the population.

EDEA was tested in simulation on a number of test problems including phototaxis,

fast forward, and collective patrolling, and the results of testing were compared to the

performance of the encapsulated µ+ 1 ON-LINE algorithm on the same problems. The

two algorithms were both found to be capable of solving the given tasks, and neither

significantly outperformed the other, although EDEA was found to be less sensitive to

24

changes in control parameters.

EVAG

In [29], an on-board, distributed algorithm based on the Evolvable Agent model (EvAg) [38]

was presented. EvAg works to distribute computation over a number of processors as in

the case of distributed on-board evolution.

Each robot in the population maintains a (1+1) population structure consisting of

the best individual found so far, the “champion”, and the individual currently being

evaluated. Genetic information can be shared between robots within a local area using a

newscast gossiping protocol to maintain network connections between robots. Along with

the standard (1+1) population, each robot also maintains a cache of recently received

genomes that are used for for parent selection during reproduction. Periodically, the

robots take one genome from its local cache and contacts the robot from which the

genome was created. These robots then exchange their cache information. Through this

process genetic information is shared between all the robots in the population and leads

to high performing solutions being present in the caches of multiple robots within the

population.

The presented implementation used evolutionary operators similar to the µ+ 1 ON-

LINE algorithm allowing performance between the two methods to be compared more

accurately. During parent selection, parents are chosen using a binary tournament selec-

tion from the union of the local population and the cache of received genomes. Because

the caches of robots are shared between robots, this selection is equivalent to selecting a

random genome from the total population of solutions in all robots.

The EvAg approach was tested on an obstacle avoidance task, and its performance

was compared to that of µ + 1 ON-LINE, and to a panmictic version of EvAg where

the robot network is fully connected. Comparing the panmictic and newscast variants

of EvAg was done to determine the affect on performance of maintaining a peer-to-

25

peer network between all robots. This is an important factor to the scalability of the

newscast EvAg approach because in the real world fully connected networks are difficult

or impossible to maintain. The performance of each approach was tested in simulation.

Results showed that for a small population size of 4, the encapsulated and distributed

approaches were not significantly different, but as the number of robots increased from

4 to 400 EvAg began to significantly outperform µ + 1 ON-LINE. Stability of found

solutions also increased as the number of robots increased.

The difference in performance between the newscast vs panmictic variants of the dis-

tributed algorithm became significant when the number of robots was set at 400 with

the panmictic algorithm performing better. The cause of this difference was not deter-

mined, although it was hypothesized that the additional tuning parameters present in

the newscast variant could contribute to the difference.

Overall it was determined that the distributed EvAg approach was effective in evolv-

ing controllers to solve the test task. Performance and stability of solutions increased

as the size of the population increased indicating the the parallel nature of distributed

evolution is able to effectively take advantage of increased population sizes.

odNEAT

The work in [45] presented the On-line Distributed Neuroevolution of Augmenting Topolo-

gies (odNEAT) approach for distributed, embodied robotic evolution. Rather than simply

evolving weights for a controlling neural network, as is the common practice in evolution-

ary robotics, odNEAT is based on the NEAT method of neuroevolution which evolves

both weights and the topology of the network itself. odNEAT is similar to the Real Time

Neuroevolution of Augmenting Topologies (rtNEAT) [50] approach described in Section

2.4.1.

The population of odNEAT is distributed across a group of robots with each robot

maintaining a list of genomes consisting of the robot’s previous genotype, its current

26

genotype, and all genotypes received from other robots in the population. The popula-

tion is grouped using the niching scheme of NEAT, but rather than a global innovation

number, a timestamp is used as the distinguishing feature to enable a decentralised geno-

type chronology. This niching scheme groups individuals into different species based on

their topologies. If the topologies are the same, individuals belong to the same species.

This allows evolution to occur while changing the structure of the evolved networks. Each

individual also maintains a list of recent poor solutions, referred to as the taboo list, so

that received genomes aren’t brought back into the population once they are thrown out.

As each robot operates, it maintains both a virtual energy level and a fitness value.

The energy level is a measure of the current robot controller’s performance. Because

performance evaluations in the real world are inherently noisy, the fitness of a genotype

is considered as the average of the energy level sampled at regular intervals. When the

energy level reaches zero, an intra-agent reproduction occurs. First, a random species

is chosen from the robot’s local population. Second, two parents are chosen from the

selected species using a binary tournament selection. Third, crossover and mutation

are applied to generate a new genome. This genome is then activated and allowed to

operate during a recovery (or maturation) period allowing the robot to test its fitness

and spread its genetic information before possibly being removed from the population.

During operation each robot probabilistically broadcasts its active genotype to its local

neighbors with a probability of being accepted defined as:

P (event) = F̄k

F̄total

with F̄k defined as the average fitness of the local species k from which the current

genotype belongs, and F̄total defined as the average fitness of all local species. When this

type of inter-species reproduction event occurs, the received genotype is first checked

against the list of poor solutions to make sure it hasn’t already been discarded. The

genotype will also not be added to the local solutions list if it already exists in the local

list, or if it lowers the combined fitness of the local population. Through this migration

27

of genetic information, each population within a robot may closely resemble the total

population of all robots, but it wont contain all information.

odNEAT was tested in simulation on a group aggregation task. Experiments were run

with different population sizes to test the scalability of the approach. With a population

of 5 robots, odNEAT was able to successfully evolve controllers to solve the test task,

and performance increased with populations of 10 and 15. Performance remained steady

with populations of 20, 25, and 30, but solution stability increased as the population

size continued to increase. Testing was done to determine which parts of the algorithm

contributed most to the overall performance, and it was found that the local population

was the most important component, followed by the taboo list. All parts were found to

be significant to performance.

Evolution of collective behavior using micro-robots

A distributed evolutionary algorithm operating in real-world micro robots was presented

in [34]. This work focused on the stability in evolving collective behaviors in on-line, on-

board evolutionary approaches. Robot behavior is controlled by a finite automata, and

evolved using genetic programming. This approach was used to evolve obstacle avoidance

behaviors so the stability of generated solutions could be tested. The experiments were

carried out with Jasmine IIIp micro robots with a bi-directional communication range of

2-10cm. This allowed the robots to pass genetic information between one another when

they were in close proximity.

The controlling automata was represented using a string genotype with evolutionary

operators being applied to the generated phenotype string. A set of 10 predefined mu-

tations were available and were grouped into 5 categories: toggle inactive transitions,

remove a state, add a state, change a condition, change a state. Mutations were designed

to be complete and to only cause small changes at a time. When needed, a random mu-

tation was chosen. During crossover, the two selected parents simply copied the genotype

28

with better fitness to generate an offspring. A more complex crossover operator was not

used due to limited RAM memory on the micro robots. A fitness function was designed

to keep the robots moving, but to avoid obstacles. Every 30 seconds the current fitness

was halved to limit the affect of previous behaviors on the current fitness.

Six, 25 minute experiments were performed using 20 micro robots for each experi-

ment. Every 15 seconds mutation was performed, and when robots became close enough

to communicate with one another crossover was applied. These experiments generated

several types of behaviors. A large number of robots were clustered and stuck in the cor-

ners of the testing arena. Some robots generated wall following behaviors in an attempt

to avoid all collisions. Of the robots that did not become clustered in corners, about 33%

showed a behavior similar to collision avoidance. It was suggested that limitations in the

presented approach including poor cluster communication abilities, robots getting caught

on connectors, and anomalies in sensor data may have decreased the overall fitness of

the approach. It was concluded that developed behaviors could be preserved, but was

noted that it is difficult to perform enough real world experiments to be significantly

significant.

2.4.3 Hybrid approaches

Situated and Embodied Evolution

In [57] a hybrid approach was presented combining elements of both encapsulated and

distributed evolution. The proposed method can be described as an island model in which

evolution occurs within an individual robot and genetic information is passed between

robots.

Within each robot a genetic algorithm is run on a sub population of individuals

specific to that robot. This group of genotypes is referred to as the “gene pool.” During

each generation, a new individual is created by selecting two parents from the gene pool

29

through roulette wheel selection, and then applying single point crossover and mutation.

This new individual is then added to the “gene queue” where it waits to be activated and

evaluated. Genotypes received from other robots are also placed into the gene queue so

they may be reevaluated and spread through the population. Individuals are dequeued

from the the gene queue, made active within the robot, and then assigned fitness. That

individual is then placed into the gene pool if the maximum pool size has not been

reached. If the maximum gene pool size has been reached, an individual is only added if

its fitness is better than that of the least fit individual currently stored in the gene pool.

While evolution is taking place, genetic information is asynchronously transferred to

other robots. The genotype to be transferred is selected from the gene pool using roulette

wheel selection. At every time step there is a chance to send the genotype to another

robot based on the fitness of the selected individual.

This approach was tested using six Khepera mini robots each controlled by a simple

two layer neural network. The task they attempted so solve was one of collision avoidance

and the fitness function rewarded individuals for not hitting walls or other robots while

continuing to move. Four separate experiments were run. Three were done with robot

sub population sizes of 1, 5, and 10 with genetic information being transferred. The

fourth experiment used a robot sub population of size 5 but no genetic information was

transferred. This was used as a benchmark with which to compare the effect of gene

transfer between robots.

The best performing approach was the sub population of size 5 with genetic infor-

mation being passed between robots. In general, all the trials that used gene transfer

outperformed the trial without it. It was also noted that the optimal sub population size

could be dependent on the number of robots and the particular task.

30

Kubic

A hybrid model was presented in [36] and was tested with two Khepera robots on the

task of collision avoidance of both static and dynamic obstacles. Each robot consisted of

N/2 individual chromosomes which encoded a simple controlling neural network.

The two robots each had a specific role of either the sender or the receiver. The sender

would periodically broadcast 1/4 of its best individuals to the receiver. The receiver would

then incorporate these individuals into its population during reproduction.

A new generation was created by taking 1/2 of the chromosomes from an existing

robot and then generating the other 1/2 through crossover and mutation. In the case

of the sender robot the highest performing 1/2 of chromosomes are passed to the next

generation. The receiver bot passes 1/4 of its best individuals and the 1/4 of individuals

received from the sender robot. In this manner, high performing individuals are preserved

within the population of solutions. The fitness function worked to maximize a robot’s

average speed while minimizing the time spent turning and the time spent near other

objects. This generates collision avoidance behaviors.

Experiments were run with population sizes of 12, 20, and 40 individual chromosomes.

Each experiment consisted of five runs that evaluated highest and average fitness for each

robot role. An individual run consisted of 20 generations of evolution.

It was concluded that using a hybrid evolutionary approach allows evolution of an

acceptable controller to happen quickly using small robot group (2) and population sizes

(10-20). Evolution times varied from two to many hours dependent on population size.

It was noted that several limitations may have negatively influenced performance. First,

it was possible for less fit individuals to be sent from the sender robot to the receiver

thereby possibly lowering the fitness of the receiver. Secondly, communication between

the robots wasn’t very reliable with data loss rates of 5-15%. Thirdly, there is a lag time

between sending, receiving, and testing individuals that may limit the evolution process.

31

Hybrid EVAG

The work in [29] also presented a hybrid approach based on the Evolvable Agent model

(EvAg). In the hybrid version, rather than a 1+1 population structure a µ + 1 population

is maintained on board each robot. If µ = 1, then the hybrid approach operates as the

basic distributed EVAG, but if µ > 1, and the list of received genomes isn’t used, then

hybrid EVAG operates as the (µ + 1) ON-LINE approach. All other characteristics of the

hybrid EVAG approach are the same as the distributed version and are fully described

in Section 2.4.2.

The performance was tested in simulation using e-pucks and compared against the

performance of (µ + 1) ON-LINE and distributed EVAG. Performance was found to

be better than (µ + 1) ON-LINE. The hybrid approach was consistently the highest

performing approach, but it did not significantly outperform the distributed EVAG for

any robot population size. Similarly to the distributed EVAG approach, stability for the

hybrid EVAG increased as the number of robots increased.

2.4.4 Summary

An important aspect of evolutionary robotics focuses on evolving controllers for robotic

agents. On-line evolution takes place during the operation time of the robot. On-board

evolution takes place within the physical hardware of the robot. When evolution oc-

curs on-line and on-board it allows the robot to adapt in real time to changes in the

environment or task. On-line, on-board evolution can be done within a single robot, or

can be carried out over a population of robots using a distributed evolutionary model.

Considerable research on on-line, on-board evolution has been done, but typically has

been carried out in simulation, or on real robots with limited processing power, leading

to limited evolutionary models. Thus, there is a need for robotic hardware with greater

computational power that can run full scale evolutionary models on-line, and on-board,

32

rather than in simulation.

33

Chapter 3: A Training Set Protocol for On-Line, On-Board

Evolutionary Learning from Demonstration

3.1 Abstract

In Learning from Demonstration (LfD) a trainer demonstrates desired behaviors to a

robotic agent. LfD is useful for allowing non-programmers to train robots. However, it

has rarely been used with evolutionary learning techniques because of the computational

requirements of running an evolutionary process on-board a robot and on-line, i.e. in

parallel with the demonstration process. We present an on-line, on-board evolutionary

LfD system capable of evolving robotic neurocontrollers on a low cost robotic platform.

This system was proven capable of evolving controllers capable of following a colored

path.

A feature of on-line LfD that may have significant implications for the implemen-

tation of evolutionary approaches is that the training set of desired behaviors is built

incrementally over the course of multiple behavior demonstrations. If the initial training

set lacks important cases, evolution may discard solutions that will eventually be useful

and become stuck on local optima. An untested question for on-line, on-board evolution-

ary LfD is how large should training sets be before evolution begins? Thus, in addition

to demonstrating a practical implementation of on-line, on-board evolutionary LfD, our

results suggest that it can be beneficial to begin evolution with a small initial training

set.

3.2 Introduction

For humans to regularly, easily, and reliably work cooperatively beside robots, it is nec-

essary that robots quickly adapt to changes in problem, environment, or goals. Without

this, humans quickly become frustrated with robots whose behaviors are overly simple,

34

brittle, or unable to adapt to change. This frustration will severely limit humans will-

ingness to interact closely with robotic systems.

Learning from Demonstration (LfD) a is a common and proven approach for allowing

non-programmers to easily train robots. In LfD a human trainer demonstrates desired

behavior and the agent records that behavior to build a training set that it learns from.

LfD allows a human trainer to quickly build a training set for a particular task simply

by repeatedly demonstrating the task and does not require any programming skills or

specialized robotics knowledge. Because of this, LfD shows great potential as a means

of training robots for a variety of unique tasks without specialized knowledge of robotic

hardware or software.

Evolutionary robotics refers to the evolution of robotic controllers. Robots that evolve

during runtime and within their own hardware are said to be evolving on-line and on-

board. Evolutionary approaches can allow robots to adapt to tasks or environments

during runtime operation, and are particularly desirable in complex and dynamic envi-

ronments where manually designing controllers ahead of time is not a viable option.

While both LfD and evolutionary approaches have been effective with previous robotic

systems, the two approaches have rarely been used together. The first goal of this paper

is to demonstrate an on-line, on-board evolutionary LfD system that can be run on an

affordable robotic platform. As a test problem, the robot evolved an on-board population

of neurocontrollers to follow a distinctly colored path. The evolution is executed on-line

while the trainer drives the robot on the path, giving the robot training cases. Our

results confirm that the robot can conduct training and evolution simultaneously, and

that a few minutes of training is sufficient to both build a reasonably sized training set

and evolve reasonably successful solutions.

However, a critical feature of LfD is that the training set is built incrementally -

aAlso known as learning by demonstration and closely related to imitation learning and apprenticeship
learning.

35

each new behavior demonstration adds to the training set. Given the time required for

a human to demonstrate a task, there is often time to run several generations of an evo-

lutionary algorithm in the background between observations of demonstrated behaviors.

For example, in the current application an average of three generations of the GA can be

completed between demonstrations. Thus, for maximum efficiency learning needs to be

done, or at least initiated, on-line, i.e. during the demonstration period. Other research

has shown that incremental fitness functions can be beneficial if they are designed to

guide the evolutionary process. However, in LfD applications, the training set is likely

to be built in an ad hoc function.

Thus, a critical question to the implementation of on-line, on-board evolutionary LfD

algorithms is how the ad hoc, incremental construction of a training set influences the

evolutionary process. In particular, there is a risk that an initial training set containing

only a few demonstrated behaviors will drive evolution to a local optima. The second

goal of this research is to examine whether delaying the evolutionary learning process

until some minimum training set size has been reached is beneficial. Our results suggest

that delaying the evolutionary process until a number of training examples have been

generated is important to successful evolution, and that partially overlapping the col-

lection of training data and evolution does reduce the total time required to evolve a

solution, while still leading to successful solutions.

3.3 Related Work

In this section we review recent work in evolving robot neurocontrollers that motivates

our push to on-board on-line evolution. We then discuss the previous work in Learning

from Demonstration as a method for training robots by demonstrating desired behaviors.

36

3.3.1 Embodied Evolution of Robot Controllers

Research into evolutionary robotics has focused on optimizing robotic controllers during

off-line evolution, in which the robotic agent is evolved in simulation, and the best solution

is transferred to a physical robot when evolution is completed [32]. This approach works

well for some problems, but has several important drawbacks. Because evolution takes

place in simulation, evolved controllers are adapted to a simulated environment rather

than the real world and therefore often suffer from decreases in performance [14, 35].

Furthermore, exploring in isolated hostile environments such a off-world or in mines or

caves might best be done by distributed on-board systems where distribution of learning

assets is critical to team survival. To create controllers that perform well in dynamic

real-world environments, evolution must be embodied within the robotic hardware and

take place during real-time operation.

Watson et al performed some of the earliest research using a distributed, on-board

evolutionary algorithm to evolve neural networks [59, 22] to perform a phototaxis task.

A typical experiment used eight robots, each controlled by a microcontroller. The robots

used a simple neural network, whose weights were allowed to evolve, for guidance. The

robotic agents exchanged individual genes, i.e. weights, rather than entire genomes. They

found that over 140 minutes of training the agents evolved solutions that performed better

than hand coded solutions.

Considerable research has been done using s-bots as part of the swarmbots project in

Europe [17]. This research has included the evolution of neural networks for phototaxis

and hole-avoidance [15]. Most of the evolution was actually done in simulation, but the

evolved networks were tested successfully in physical robots.

More recently Eiben and Haasdijk et al. have performed a number of experiments

with on-board, distributed evolution, although mostly using the Player/Stage system b

bPlayer/Stage system http://www.playerstage.sourceforge.net/

37

as a simulation environment [27, 29, 32, 28] rather than true physical robots. They used

a number of different problems including maximizing straight-line movement in a simple

maze, phototaxis, and collective patrolling. They found that increases in the number of

robots (e.g. from 4 to 16) significantly increased the benefits of distributed evolution,

and that further improvements were observed when even larger numbers of robots were

used [29].

Capi and Toda demonstrated true on-board, on-line evolution of neural controllers

for robot navigation using a custom built robot [14]. Similarly to the approach proposed

in this work, their system partitioned collected images into regions that were used as

inputs to the evolving neural controller (see Section 3.4.3 and Section 5.1). Using this

system their robot learned to successfully navigate in indoor environments.

Although there has been considerable interest in on-line, on-board evolution, most

of the research has actually been done in simulation. Thus, an important aspect of this

research is demonstrating true on-line, on-board evolution using physical and affordable

robots.

3.3.2 Learning From Demonstration

In general, Learning from Demonstration is any approach to machine learning in which

a robot or other computerized agent learns a task by observing behaviors demonstrated

by a teacher, most often a human [5, 44]. LfD has been applied to a wide range of tasks

with significant success, including learning gestures and movement sequences [3, 7, 12],

facial expressions [9], and communication [4]. Most important to this research, it has

been used with significant success for mobile robot navigation [13, 39, 47, 46, 54]).

There are also a few cases where LfD has been successfully combined with Evolution-

ary Computation (EC). Suwimonteerabuth and Chongstitvatana used on-line training

to evolve a robot controlled by a finite state machine to remain on floors of a particu-

38

lar color [56]. Aler, Garcia, and Valls used evolutionary techniques and demonstrations

of correct behavior to incrementally correct a team of simulated robosoccer players [1].

Similarly, Sullivan and Luke used a LfD system to train agents within the RoboCup com-

petition [55]. We have demonstrated that our robots can learn both object following [49]

and path following [16] tasks from demonstration.

In addition, research shows that the degree of correspondence between the teacher

and the learner can significantly influence the speed and effectiveness of LfD, and that

remote control and teleoperation (in which the trainer uses the robot’s “senses”, e.g. the

robot’s camera) are some of the most effective approaches [5]. Thus, in this research a

remote control (a second smartphone) is used to control the robot during learning from

demonstration (see Section 4.3.4).

3.4 Overview of on-line, on-board, evolutionary Learning from

Demonstration system

The system presented here combines Learning from Demonstration (LfD) with a genetic

algorithm for the training of mobile robots. The robots observe demonstrated behaviors

to build a training set of inputs and their corresponding desired actions. A genetic al-

gorithm then evolves a population of potential neural network controllers that work to

replicate the demonstrated behaviors. When evolution is finished, the evolved controller

that best replicates the demonstrated behaviors is made activate and autonomously con-

trollers the robot.

3.4.1 Robot

The robot used in these experiments was designed and built at the University of Idaho

following Commodity Off The Shelf (COTS) design principles [48]. The robot consists

of three basic components: an Android smart phone, an Arduino microcontroller, and

39

Figure 3.1: Image of the used robot platorm. The smartphone can both receive wireless
commands from a remote phone via Bluetooth, and send commands to an Arduino type
microcontroller also using Bluetooth. The microcontroller interprets received commands,
and can forward movement commands to the robot’s motors. Sensing, processing, and
on-board evolution/learning is done within the robot smartphone.

a robot platform. The smart phone used in these experiments was the HTC Nexus

One, which has a 1GHz Qualcomm Snapdragon processor, with 512 MB of RAM, and

a Qualcomm Adreno 200 GPU. The smart phone sends commands via Bluetooth to the

Arduino microcontroller, which in turn drives the motors on the robotic platform, a

Rover 5 Tank chassisc, which is a small (24.5cm by 22.5cm by 7.4cm), tracked vehicle

controlled by two DC motors and is capable of running continuously for several hours

while carrying the microcontroller and smart phone. The complete robot is shown in

Figure 3.1, and a diagram of the robot’s communication flow is showing in Figure 3.2. A

second smart phone runs a remote control app that is used to allow a user to control the

robot for learning from demonstration via a second Bluetooth connection.

cRover 5 Tank chassis http://www.dfrobot.com

40

Figure 3.2: This image depicts each hardware component of the robot, and how it com-
municates with other components in the system.

3.4.2 Road Library

The first step in this system is to build a library of safe road examples stored as a list

of color histograms. This library is constructed at the beginning of training by giving

the robot ten drive commands on the training track. It is assumed that during this

library building step, everything directly in front of the robot is safe road, so histograms

are constructed from a small sub image taken from the bottom center of the camera

image. Each histogram is saved to the road library so it can be used during training and

autonomous operation. The road library in these experiments was limited to a size of

ten.

41

Figure 3.3: Processed image colored to indicated output value. Green areas represent
high road probability values, and red represents very low probabilities. The area outside
of the path is nearly all red, while the path area generally has high values.

3.4.3 Image Processing

To generate inputs for the controlling neural network, images from the smartphone’s

camera are taken and processed. Processing an image produces 40 real values between

0.0 and 1.0 that represent an image sub region’s probability of being a known, safe road

type.

Image processing is done in several steps. To start, an image is taken from the camera

and split into 40 uniform sub regions. A color histogram is then calculated for each sub

region. Using this histogram, a back projection calculation is done for each histogram in

the road library.

The back projection calculation determines the probability that the color distribution

of a pixel from an input histogram matches the color distribution of some comparison

histogram. In this case, the input histogram belongs to the sub region, and the com-

parison histograms are taken from the road library. The resulting probability is then

assigned to the corresponding pixel in an output image.

The resulting image from each of these back projection calculations is averaged, and

the highest average value is assigned as the probability for a sub region of belonging to a

safe, known road type from the road library. Figure 3.3 shows a processed image colored

42

to represent the processed output values. Once all 40 sub regions have been assigned a

value, those 40 values are used as inputs for the controlling neural network.

3.4.4 Neural Network Controller

This section describes the architecture of the neural network used to control the robot.

Note that for these experiments, because the focus of the research is on the evolutionary

LfD system and not neural network design, the NN architecture is fixed. However, there

is no reason that the network architecture couldn’t be evolved as well, using NEAT [52],

HyperNEAT [51], or a similar algorithm, as long as the number of input and output

nodes remained fixed.

In this work, input nodes are given the values resulting from image processing, and

the robot’s actions are determined by the neural network’s output node with the highest

activation level. This is a common approach to evolving NN controllers for autonomous

robots [14]. In cases of a tie on the output nodes, no command is sent to the robot.

However, as the outputs of the nodes are real values, this is an extremely unlikely event,

which never occurred during the experiments.

The neural network has forty input nodes, one for each sub region in a processed

image. It has a single hidden layer consisting of five nodes, and an output layer with

three nodes, which correspond to the actions: left, right, and forward. Each node uses

a sigmoid activation function. In total, the network has 223 weights between nodes(40

input nodes to 5 hidden nodes = 200, 5 hidden nodes to 3 output nodes = 15, and 8 bias

nodes). The 223 weights of a controlling network are evolved during the training process

as described in Sections 3.4.5 and 4.3.4.

43

Figure 3.4: This image shows the architecture of the neural network used to control the
robot. Inputs are taken from a processed image, fed through the neural network, and the
output node with the highest activation value determines the action the robot will take.

3.4.5 Evolutionary Algorithm

An important goal of this project is to test the feasibility of using smart phones for

on-line, on-board, evolutionary learning from demonstration. For these initial investi-

gations, we intentionally chose to use a simple, but general, evolutionary model. We

used a standard generational genetic algorithm (GA) to evolve neural network weights.

Individuals are represented as an array of 223 real valued weights; one for each weight

in the neural network. Initially the weights were randomly set in the range -1.0 to 1.0.

Each individual’s fitness was initially assigned to 0.0, and is only calculated with the

construction of the next generation, meaning that the first generation uses a random

selection.

Two individuals are selected as parents using tournament selection of size three. A

single offspring is produced and undergoes crossover and mutation before being added to

the next generation’s population. Uniform crossover was used, and mutation was applied

at a rate of 0.2 with the mutation amount uniformly distributed between -0.1 to 0.1. The

44

Population size 40
Generations 100

Mutation rate .2
Crossover rate 100% Uniform,

50% chance to exchange weights
Selection method Tournament(size 3)

Rounds of Training 5 for each experimental condition

Table 3.1: Summary of the evolutionary algorithm parameters.

parameters of the evolutionary algorithm are summarized in Table 3.1.

Fitness was determined by comparing the trained action given for a set of road prob-

abilities to the output action generated by each individual network given the same road

probabilities. The training cases are divided into category based expected actions (Left,

Right, Forward). The network can earn an equal amount of fitness for getting all the

cases in a category correct, regardless of the number of cases within the category. The

fitness was calculated this way because during training, there were generally ten forward

commands to every one turn command given. The algorithm for the fitness function can

be seen in 1.

Algorithm 1 Genetic Algorithm Fitness Function

for each network in population do
fitness = 0
for each training case do

actualResults = network result from running training case
expectedResults = results from training case
winningValue = actualResults at the position of the expectedResults winner
difference1 = winningValue - actualResults at first position other than winner
difference2 = winningValue - actualResults at second position other than winner
for each difference do

if difference ≥ threshold then
fitness += 0.5 / number of training cases in that catagory

else
fitness += 0.5 * (difference / threshold) / number of training cases in that catagory

end if
end for

end for
fitness = 1 - fitness / 3

end for

45

Assigned fitness is scaled based on the difference between the highest activated output

value and the sum of the remaining output values. A threshold of 0.4 was used to

determine whether full fitness was assigned for getting a test case correct. This value

was chosen arbitrarily because it was in the middle of the possible range of threshold

values, and its effect was not tested. When the correct action is chosen, if the difference

between the highest output value and the sum of the remaining values is greater than

0.4 then full fitness will be assigned to that training case. Otherwise, positive fitness is

still assigned, but it will be scaled down based on how much below the 0.4 threshold the

difference is. This process rewards network that have some sense of “confidence” about

their chosen actions.

3.4.6 Training Process

During human demonstration, a human drives the robot, following a path defined by

colored felt on a different colored background. The human uses a remote control with

discrete forward, left, and right actions. While the human is driving, a training set of

demonstrated behavior is constructed. Each training case in the training set consists of

40 processed image probabilities, and the corresponding demonstrated behavior (forward,

left, or right).

While the human operator is demonstrating behavior, the evolutionary algorithm is

evolving individuals to best replicate the behavior contained within the current train-

ing set. Training continues until 100 generations of the genetic algorithm have been

completed, at which point the most fit individual is made active as the robot’s controller.

3.4.7 Autonomous Operation

During autonomous operation the robot uses the best evolved neural network for nav-

igation control. Input images are continuously compared against the road library to

46

Figure 3.5: The training track for these experiments. The track consists of one 45◦ left
corner, one 45◦ right corner, and three straight sections. Training is always started from
the same end of the track, and the robot is always trained to drive to the opposite end
of the track. It is then turned around and driven back along the track. This process is
continued until evolution is complete.

generate road probability values as inputs for the neural network which then returns its

trained action.

3.5 Experimental Design

This section describes the experiments performed to determine the effectiveness of the

proposed on-line, on-board, evolutionary Learning from Demonstration system.

3.5.1 What was tested

To measure the performance of the evolved neural network, the robot’s ability to navigate

a path with different corner types is measured. This measure was also used to test the

generality of the approach as the robot is trained on only a two corner types(left 45◦,

right 45◦), but tested with four corner types. The four test corners were used: left 45◦,

right 45◦, left 90◦, and right 90◦. Figures 3.5 and 3.6 show the training and test tracks

respectively. Each trained NN was tested on each corner three times, so the highest

47

(a) Testing track 1. (b) Testing track 2.

Figure 3.6: Figure 3.6a shows the 45◦ testing track. This track is designed to test the
robot’s ability to navigate the same type of corner that it was trained on. Figure 3.6b
shows the 90◦ testing track. This track is designed to test the robot’s ability to generalize
its learned knowledge of how to complete a 45◦ corner to the completion of something it
was not trained to navigate.

performance possible for each NN is 12.

3.5.2 Testing procedure

Each experiment was conducted as follows:

1. Build road library

2. Construct initial training set (see Section 3.5.3)

3. Demonstrate how to drive on the training track until 100 generations have been

evolved

4. Place the robot in autonomous mode

5. Allow the robot to autonomously navigate both of the testing tracks three times in

each direction, recording how many times it successfully navigated each corner.

48

3.5.3 Experimental Conditions

To test the effect on performance of the size of the initial training set, four initial starting

conditions were tested:

1. 1 Training Case - Evolution begins as soon as the first training case (the first

demonstration) is received. Evolution and demonstrations continue, in parallel,

until all 100 generations are complete.

2. 1 of Each Training Case - Evolution begins as soon as one training case for each

action (left, right, and forward) is collected. In this condition, one example of each

behavior was demonstrated to the robot immediately and then it was driven on the

training track normally to generate additional training cases during evolution.

3. 3 of Each Training Case - Evolution begins as soon as three training cases of each

action (left, right, and forward) are collected. In this condition, three examples

of each behavior were demonstrated to the robot immediately and then it was

driven on the training track normally to generate additional training cases during

evolution.

4. Offline - Evolution begins after all of the training cases have been collected. Thirty

five training cases were used, as this is the average number of training cases that

were collected in the ‘1 of each’ case.

Note that in the first three test conditions evolution is happening in parallel with

the demonstrations. So, the set of training cases (demonstrated input-behavior pairs)

increases throughout the evolutionary process. The goal is to determine whether having

a small initial training set hinders the evolutionary process.

49

Training 45◦ Left 45◦ Right 90◦ Left 90◦ Right Total Out
of 12

1 Training

1 3 0 2 0 5
2 2 2 2 0 6
3 2 2 3 1 8
4 2 3 3 1 9
5 3 2 3 0 8
Total 12

15
(80%) 9

15
(60%) 13

15
(87%) 2

15
(13%) 36

60
(60%)

1 of Each

1 0 3 1 3 7
2 3 3 2 3 11
3 2 3 0 1 6
4 2 3 1 2 8
5 2 2 3 2 9
Total 9/15

(60%)
14/15
(93%)

7/15
(47%)

11/15
(73%)

41/60
(68%)

3 of Each

1 3 2 3 0 8
2 3 1 3 1 8
3 2 2 2 3 9
4 3 2 3 0 8
5 2 3 1 2 8
Total 13/15

(87%)
10 (67%) 12 (80%) 6 (40%) 41/60

(68%)

Offline

1 2 3 3 3 11
2 1 3 1 3 8
3 3 2 3 1 9
4 0 3 2 3 8
5 2 3 2 0 7
Total 8 (53%) 14/15

(93%)
11/15
(73%)

10 (67%) 43/60
(72%)

Table 3.2: Results of testing evolved controllers on 45 and 90 degree corners. Three tests
were conducted for each corner, per test. The data shows that as the size of the initial
training set increases, so does the total number of corners successfully navigated.

3.6 Results

Table 3.2 shows the number of successes (for each of the four test corners) for each evolved

ANN. First, and perhaps most importantly, the results show that the ANNs learned to

successfully navigate corners, including sharper corners than were in the training data,

at least 60% of the time. This demonstrates that evolutionary learning from demon-

50

Training Avg Best

1 Training Case

1 0.66 0.64
2 0.43 0.39
3 0.25 0.18
4 0.41 0.36
5 0.27 0.2

Average 0.4 0.35

1 of Each

1 0.06 0.05
2 0.04 0.03
3 0.02 0.01
4 0.16 0.13
5 0.19 0.13

Average 0.09 0.07

3 of Each

1 0.18 0.18
2 0.21 0.19
3 0.13 0.11
4 0.07 0.05
5 0.12 0.1

Average 0.14 0.13

Offline

1 0.02 0.04
2 0.01 0.01
3 0.07 0.09
4 0.0 0.0
5 0.0 0.0

Average .03 .02

Table 3.3: The average and best fitness of each round of training. The data shows an
improvement in fitness (through minimization) in both the average and best cases as the
number of training cases gathered before evolution begins increased.

stration in a real world application is feasible. The training process is simple, requiring

no knowledge of software and taking less than 5 minutes to train a robot for this simple

problem. This method of learning was capable of producing robotic controllers capable of

navigating the same type of corners it was trained on (45◦) 77% of the time after only 100

generations. The robot was able to navigate 90◦ corners, which it wasn’t trained for, 60%

of the time in the ‘1 of each’ and ‘3 of each’ training sets, showing some generalization of

evolved behaviors. It is very likely that with more sophisticated evolutionary techniques,

more generations, or more training cases, much better results could be achieved.

51

Second, our results show an increase in performance when evolution is started with

more than a single training case. Both the ‘1 of each’ and ‘3 of each’ cases performed

better than starting evolution on the first demonstration. Notably, the ‘1 training case’

condition performed extremely poorly on the right 90◦ corner (Table 3.2). For our training

track the robot often did not reach the first right hand corner until significantly into the

training process, e.g. after 50 or more of the 100 generations had been completed. Thus,

for over half of the evolutionary process there was no training case that required a right

turn. This is a likely explanation for why it performs so poorly on the right 90◦ corner.

However, the results also don’t show a difference in performance between the ‘1 of each’

and ‘3 of each’ conditions suggesting that simply having a single example of each type

of action when evolution starts is sufficient to improve performance of the evolutionary

algorithm. Finally, the off-line evolution data shows the best overall performance. This

isn’t surprising as it suggests that having all of your training examples at the start of

evolution is the best way to evolve a controller that can replicate the demonstrated

behaviors.

Table 3.3 shows the best and average fitness for each of the trials and conditions. With

the exception of the ‘1 training case data’, the fitness tends to be better than the actual

test performance. This suggests that these cases could be over-fitting the training data.

Thus, a possible advantage of on-line training is that it reduces the risk of over-fitting

by continually adding new training cases.

3.7 Conclusions

Our results show that on-line, on-board evolutionary Learning from Demonstration, im-

plemented on low cost, but computationally powerful robots, is a practical approach to

training robotic agents. Using this approach we were able to train robots to complete a

simple path following task. The results show that evolutionary LfD performed on-line, i.e.

52

evolution occurs in parallel with the demonstration process, performs comparably, but

slightly worse than, off-line evolutionary LfD in which evolution is delayed until after all

of the demonstrations are complete. However, the results also suggest that this difference

can be minimized by “seeding” the training set with a small number of demonstrations

before initiating evolution, and that the on-line approach may reduce over-fitting by

continually expanding the training set with new examples, which, for more complicated

problems, is likely to lead to better performance in the on-line case. The major advan-

tage of the on-line approach is that it reduces the total time for the learning process by

parallelizing demonstrations and learning.

53

Chapter 4: Real World Applications of On-Line, On-Board

Evolutionary Learning from Demonstration

4.1 Abstract

Learning from Demonstration (LfD) is a useful approach for teaching robotic agents

new behaviors because it requires little specialized knowledge of robotic hardware or

of computer programming. Evolutionary learning techniques have also commonly been

applied to robotic learning tasks, but the two techniques have rarely been used together

due to the computational requirements of running an evolutionary process on-line, and

on-board a robot during the LfD process. This work presents an on-line, on-board,

evolutionary learning from demonstration protocol that enables two different low-cost

robotic platforms to learn to follow two distinct path types. In addition, the robots are

capable of recording their GPS location during autonomous operation which has a wide

variety of practical applications such as autonomous trail mapping, and marking objects

of interest in a natural disaster response application.

4.2 Introduction

Systems allowing human/robot interactions have increased over the years but these aren’t

always simple to design or use. For truly effective human/robot interaction, robots must

be easy to train and must be general enough to be applied to a wide variety of tasks

without needing to be reprogrammed. Without these requirements being met, humans

will likely choose not to use robotic agents deeming them too cumbersome to use or too

limited in their abilities.

Evolutionary robotics is a field of research focused on applying evolutionary learning

within robotic agents in order to generate robots that can successfully complete a variety

of complex tasks. The ability of evolutionary approaches to find effective solutions makes

54

this approach very general and can allow a single robotic controller to complete different

tasks through constant adaptation. Evolutionary learning is particularly well suited to

tasks and environments that are dynamic or are too complex to be simulated accurately.

In these cases, the power of evolution to adapt to new environments and new tasks allows

a single robotic agent to be used in a variety of situations without needed to be redesigned

or reprogrammed, just retrained. This is a great benefit for tasks such as natural disaster

response where an autonomous robot could largely benefit the relief effort, but where time

does not permit custom development of a new robotic controller.

Learning from demonstration (LfD), also known as Learning from Imitation, is an

approach to robotic learning in which a robotic agent learns new behaviors by observing

actions demonstrated by a trainer. This trainer generally has special domain knowledge

about the task being demonstrated, but doesn’t need to know anything about the internal

workings of the robotic controller or hardware. The trainer simply performs desired

actions, and the robot records those actions, along with the corresponding inputs, to

build a training set of desired behaviors. The robot then learns to replicate the behaviors

present in the training set. The method the robot uses to learn behaviors can vary, but

does not matter to the demonstrator. Because of the simplicity of the demonstration

process, a human trainer can quickly build a training set of desired behaviors. The

approach is also general enough that it has been applied to a variety of tasks such as robot

navigation [13, 39, 47, 46, 54] learning facial expressions [9], and robot soccer [53, 25, 55].

By combining the ability of evolutionary approaches to find solutions to complex

problems, and the simplicity of training agents with LfD, a powerful, yet simple, evolu-

tionary LfD system can be created. This approach was taken be Sullivan and Luke to

train robotic soccer players for the RoboCup competition [55]. Evolutionary LfD works

to solve the problems in human/robot interactions by making a simple and flexible sys-

tem that can be applied to a variety of tasks without specialized knowledge or robotic

hardware or software.

55

This chapter presents an on-line, on-board evolutionary LfD system capable of train-

ing a mobile robot to follow paths. Two different mobile robot platforms are used to test

the training system’s ability to teach the robot to follow two distinct paths: an urban en-

vironment brick path, and a tree bark path within a park. The percent of the total path

distance traveled for each path was recorded. In addition to learning to autonomously

follow a path, the robots are capable of storing their GPS position which allows them to

build a map of their traversed path.

4.3 Methods

The following sections describe the robots, training system, and experimental procedure

used in these experiments.

4.3.1 Robotic Platforms

Two robots were used in these experiments. Both robots were designed and built at

the University of Idaho using Commodity Off The Shelf (COTS) design principles [48].

Each robot is comprised of three components: an Android smart phone, an Arduino-

type microcontroller, and a robot platform. The phone performs all data processing and

decision making, and then sends action commands to the Arduino board, which signals

the robot platform to carry out the specified action. The robot platform also serves to

carry the smart phone and microcontroller so all sensing and processing is done on the

robot itself. The smartphone used in these experiments was the Samsung Galaxy Nexus

which has a 1.2 GHz dual-core ARM Cortex-A9 processor, 1 GB of ram, a 307 MHz

PowerVR SGX540 GPU, and a 5 MP camera. The two different platforms are described

below in Sections 4.3.1 and 4.3.1.

56

(a) Rover 5 Platform (b) Rock Crawler Platform

Figure 4.1: The robot platforms used for these experiments.

Rover

The first platform is the Rover 5 Tank chassisa, which is a small (24.5cm by 22.5cm by

7.4cm), tracked vehicle controlled by two DC motors and is capable of running continu-

ously for 3-5 hours while carrying the microcontroller and smart phone. This platform

is shown in Figure 4.1a

Rock Crawler

The second platform is a remote control rock crawler platformb. It measures 31.4cm by

17.5cm by 14cm, is controlled by a dc motor for power/movement, and a servo motor

for steering, and has a steering angle of 40-50 degrees. It is capable of operating for

3-5 hours while carrying the smartphone and microcontroller. This platform is shown in

Figure 4.1b.

aRover 5 Tank chassis http://www.dfrobot.com
bRC Rock Crawler Platform http://www.nitrorcx.com

57

4.3.2 Procedure Overview

These experiments were each broken into three distinct phases: initial road library con-

struction, evolution during demonstration, and testing. An initial road library construc-

tion step told the robot which type of road to recognize. During the demonstration phase

a human operator demonstrated behaviors to the robot which evolves a population of

neurocontrollers to replicate the demonstrated behaviors. In the testing phase, the best

neurocontroller was used to autonomously drive the robot, and its ability to follow the

trained road type was tested. More detail is given for each phase below.

4.3.3 Road Library Construction

The first phase in each experiment was to build a library of safe road examples stored

as a list of color histograms. This library was constructed by giving the robot ten

drive commands on the current path making sure to give commands that take the robot

through portions of the path with different surface or lighting conditions. It is assumed

that during this library building phase, everything directly in front of the robot is safe

road, so the color histograms are constructed from a small sub image taken from the

bottom center of the camera image. Each histogram is saved to the road library so it

can be used during training and autonomous operation. This process isn’t considered to

be a form of “machine learning;” it simply remembers the examples of safe road that it

is shown.

4.3.4 Evolutionary Learning from Demonstration

The robot learns by observing demonstrations from a human operator, and then evolving

a controller to best replicate those demonstrated behaviors.

58

Figure 4.2: This is the urban environment path used in these experiments. The robot
was trained on the brick path, and attempted to navigate around the full path without
driving off onto the surrounding concrete. This path was challenging due to the reflective
concrete surface, differences in lighting that occurred around the path, and the sharp
corners.

Training Process

During human demonstration, a human drives the robot on path in an outdoor environ-

ment. For these experiments, two different path were used: a brick path surrounded by

concrete, and a bark path surrounded by grass (see Figures 4.2 and 4.3). The human

uses a remote control with discrete forward, left, and right actions. While the human

is driving, a training set of demonstrated behaviors is constructed. A demonstrated be-

havior is stored in the training set as a training case. Each training case consists of 40

processed image values, obtained as output from image processing (described in Section

4.3.4), and the corresponding demonstrated behavior.

While the human operator is demonstrating the desired driving behavior, a genetic

algorithm is evolving individuals to best replicate the behavior contained within the

current training set. Training starts after 3 demonstrations of each behavior have been

added to the initial training set, and continues until 200 generations of the algorithm have

been completed, at which point the most fit individual is made the robot’s controller for

testing.

59

Figure 4.3: This is the park environment path used in these experiments. The robot was
trained to navigate the bark path and to avoid driving off into the surrounding grass.
This path was challenging due to a nonuniform path surface composed of lightly colored
bark, and darkly colored mud. The path also changed widths and in some places has a
less clearly defined edge.

Image Processing

To generate input values for the controlling neural network and training cases, images

from the smartphone’s camera are taken and processed. Processing an image divides the

image into 40 sub regions and produces 40 real values between 0.0 and 1.0 that represent

each sub region’s probability of being a known, safe road type.

Image processing is done in several steps. First, an image is taken from the camera and

split into a 5×8 grid of 40 uniform sub regions. Second, a color histogram is calculated

for each sub region in the image. Third, using each created histogram, a back projection

calculation is done for each histogram in the road library. The back projection calculation

determines the probability that the color distribution of a pixel from an input histogram

matches the color distribution of a comparison histogram taken during the road library

construction phase. In this case, the input histogram belongs to the image sub region, and

the comparison histograms are taken from the road library. The probabilities calculated

during the back projection are assigned to a grey-scale image of the same size as the

60

input histogram, where each pixel represents the probability for the corresponding pixel

in the input image.

The output image from each back projection calculation is then split into 40 sub

regions. Each sub region is assigned the average pixel value from that sub region. The

highest average value is assigned as the probability of a sub region belonging to a safe,

known road type from the road library. Once all 40 sub regions have been assigned a

value, those 40 values are used as inputs to the controlling neural network or as part of

a training case.

4.3.5 Neural Network Controller

The robot is controlled by a simple neural network with a fixed topology. The network

has forty input nodes, one for each sub region in a processed image, 5 hidden layer

nodes, an output layer with three nodes corresponding to the robot’s available actions:

left, right, and forward, and 8 bias nodes. Each node uses a sigmoid activation function.

In total, the network has 223 weights between nodes (40 input nodes to 5 hidden nodes

= 200, 5 hidden nodes to 3 output nodes = 15, and 8 bias nodes).

Input nodes are given the values produced during image processing, and each robot

action is determined by the neural network’s output node with the highest activation

level. If more than one output node has the same activation level, no command is sent

to the robot. However, because the output values of the nodes are real values, this is an

unlikely event.

4.3.6 Genetic Algorithm

To evolve neural network weights, a standard generational genetic algorithm was used.

Individuals are represented as an array of 223 real valued weights; one for each weight in

the neural network. Weights were initially set in the range -1.0 to 1.0. An individual’s

61

Population size 40
Generations 200

Mutation rate .2
Crossover rate 100% Uniform,

50% chance to exchange weights
Selection method Tournament(size 3)

Table 4.1: Summary of the genetic algorithm parameters.

initial fitness was set to 0, and is only recalculated during the construction of each new

generation. This results in the first generation using a random selection.

Two individuals are selected as parents using tournament selection of size three. A

single offspring individual is produced via crossover and mutation operations before being

added to the next generation’s population. Uniform crossover was used, and mutation

was applied at a rate of 0.2 with the mutation size uniformly distributed between -0.1 to

0.1. The parameters of the evolutionary algorithm are summarized in Table 4.1.

Fitness was determined by comparing the human’s demonstrated action given for a

processed image to the output action generated by each individual network given the

same processed image as input. The training cases are divided into categories based

on their expected actions (left, right, forward), and the fitness reward for getting an

instance correct (eg. a left action correct) was normalized by the number of actions in

that category. An individual network can earn an equal amount of fitness for getting all

the cases in a category correct, regardless of the number of cases within the category.

Fitness was calculated this way because during training, there were generally ten forward

commands to every one turn command given. Normalization ensures that an individual

must do equally well at performing all demonstrated behavior types, and can’t just focus

on replicating the action that was most often demonstrated.

Assigned fitness was scaled based on the difference between the highest output value

and the sum of the remaining output values. An arbitrarily chosen threshold of 0.4 was

used to determine whether full fitness was assigned for getting a test case correct. When

62

the correct action was chosen, if the difference between the highest output value and the

sum of the remaining values is greater than 0.4 then full fitness will be assigned to that

training case. Otherwise, positive fitness was still assigned, but it was scaled down based

on how much below the 0.4 threshold the difference is. This process rewards networks

that have some sense of “confidence” about their chosen actions.

4.3.7 Testing

To test each trained controller, the robot was placed on a path at the same starting

location each time. It was then allowed to operate autonomously in an attempt to follow

the path. The percent of the total path distance that the robot traveled was recorded.

If the robot’s body went totally off the track but was still following parallel to the path

or immediately drove back on to the path it was allowed to continue. If the robot left

the path, and started driving away from the path it was considered a failure. Testing

was done in two different environments using a different robot platform for each one.

The tracked rover platform was used when testing on an urban environment path (see

Figure 4.2), and the rock crawler platform was used when testing on a path in a park

environment (see Figure 4.3).

While the robot is operating autonomously during testing, it is also recording its GPS

location and saving it to a locally stored output file, or to a remotely hosted GIS server

if it has a current network connection.

4.4 Results

The results of testing on both paths are presented in Tables 4.2 and 4.3. The trained

robot was able to successfully navigate an average of 87% of the total urban path, and

an average of 94% of the full park path distance. The trained controllers tend to be

very successful (90%+ completion) or fairly unsuccessful (eg. Park Training 3 and Park

63

Test Percent Driven

Training 1

1 100
2 50
3 100
4 100
5 100
6 100

Average 92

Training 2

1 100
2 100
3 100
4 86
5 86
6 100

Average 95

Training 3

1 100
2 79
3 100
4 100
5 86
6 100

Average 94

Training 4

1 50
2 21
3 64
4 57
5 50
6 71

Average 52

Training 5

1 100
2 21
3 100
4 100
5 100
6 100

Average 87

Total Average 87

Table 4.2: Results of testing in the urban environment show the robot was capable of
navigating 87 percent of the total length of the path on average.

64

Test Percent Driven

Training 1

1 50
2 67
3 100
4 67
5 75
6 75

Average 72

Training 2

1 100
2 100
3 100
4 100
5 100
6 100

Average 100

Training 3

1 33
2 33
3 50
4 50
5 33
6 67

Average 44

Training 4

1 100
2 100
3 100
4 100
5 100
6 100

Average 100

Training 5

1 100
2 100
3 100
4 67
5 100
6 100

Average 94

Total Average 94

Table 4.3: Results of testing in the park environment show the robot was capable of
navigating 94 percent of the total length of the path on average.

65

Figure 4.4: This image shows the GPS locations of a robot during autonomous operation
on the park path. It’s clear that the points are following the general shape and length of
the path, although they are not located directly on the path in this image. This offset
difference is due to a difference in the map projection used when visualizing the data,
and is not due to any inherent defect in the mapping system. More points are located
near the beginning of the path (the left side in the image) since over multiple trials the
robot generally spends more total time near the beginning as it starts to fail nearer to
the end of the path.

Training 4) which shows that this training method was capable of producing successful

controllers. Less successful controllers could stem from poor human demonstration, or

they were, more likely, from limitations in the robotic vision system and changes in

lighting during the training and testing phases. In particular, if human demonstration

took place in brightly lit conditions, and testing took place during cloudy conditions,

performance may lessen due to changes in what is perceived as safe road. These results

show that on-line, on-board evolutionary Learning from Demonstration is an effective

method of training robots to complete path following tasks. The method proposed in

this work is general enough to successfully train robots in two distinctly different outdoor

environments with two different robotic platforms.

In addition, the robot was capable of recording its current GPS position during au-

tonomous operation enabling the mapping of its operational location (see Figure 4.4).

66

4.5 Proof of Concept Test on Long Trail

As part of testing the presented training method in outdoor environments, a proof of

concept experiment was run to examine whether the robot was capable of autonomously

navigating an outdoor trail for a much longer distance than anything done in the con-

trolled experiments presented previously.

This experiment was carried out using the wheeled rock crawler platform. The path

used for training was a dark gravel path with a variety of different materials on either

side including, grass, trees, dirt, and bark. The goal of the experiment was to see how

far the robot could navigate without human intervention.

The evolutionary parameters were kept the same as in the previous outdoor experi-

ments. Evolution didn’t start until 3 of each training case where given to the robot. The

single difference in training parameters was that a road library of size 30 was used rather

than of size 10. This larger library was used in order to account for the larger variability

in trail conditions the robot was likely to encounter over the larger distance. In partic-

ular, the robot was given 10 examples of trail that was in shade to help it recognize the

shaded regions on the trail.

When training was complete, the robot was placed in the center of the gravel path

facing south, and was allowed to autonomously navigate the path. It traveled a total of

.25 miles with a total of two human interventions. It traveled approximately half of this

distance without any intervention, and then experienced two regions of path that were

highly shaded with very different bordering materials than what it was trained with.

The robot was able to successfully navigate through several other regions of shade or

unfamiliar surrounding materials, and it was likely a combination of difficult features

that led to the robots driving off the path in these two regions. The robot was able to

record its GPS position during operation and produce accurate location data that could

be used to map the navigated path (see Figure 4.5).

67

Figure 4.5: This image shows the GPS locations of a robot during autonomous operation
on a long gravel path within a park environment. The robot was able to navigate a
distance of .25 miles with a total of two human interventions. Both of these interventions
simply required placing the robot back in the middle of the path. It’s likely the robot
lost the path in these situations because the area was extremely shaded, with edges that
varied greatly from what it had been originally trained on.

This test shows that the presented approach is capable of working in a much less con-

trolled testing environment, and that it can produce controllers general enough to handle

some variation in conditions between training and autonomous operation. The trained

controller can still face difficulties when environmental conditions are very different than

what it saw during demonstration. This test also demonstrated that the mapping of

68

navigated trails can be done on a larger scale and still produce accurate position data.

4.6 Conclusions

The results show that on-line, on-board evolutionary Learning from Demonstration is a

practical approach to training robotic agents. The same algorithm was capable of training

robots to complete two different outdoor path following tasks using two different robotic

platforms. The results show that this method was capable of producing controllers that

could consistently navigate over 87% of the total distance of each path type. In addition to

navigating outdoor paths, the robot was capable of mapping its location during operation,

which increases the utility of an easily trainable, and inexpensive, autonomous mobile

robot.

69

Chapter 5: Technical Challenges

Through this work, several interesting technical challenges arose. Overcoming these

challenges was crucial to the continuation of the research.

5.1 Robot Vision Processing

The work presented in this thesis relied on image processing systems that took input

images from a smartphone camera and produced output values for a controlling neural

network. These output values represented the probability that an input sub region was a

safe, known road type. While this type of system is simple in concept, the implementation

of any robotic vision system, is challenging for a number of reasons.

5.1.1 Challenges to Robotic Vision Systems

Robotic vision systems that relay on camera input are a common occurrence in robotics

research [58, 2, 31]. These systems typically take some camera input, and generate output

values for a robotic controller. A common method of processing is the use of image color

to classify image regions. This can be a simple approach in theory, but in practice there

are a number of challenges to account for.

Variations in Lighting

The human eye perceives the color of an object as generally being the same regardless

of the current illumination conditions [40]. A camera does not operate this way how-

ever. The same object in two different images can appear to have very different color if

the illumination was different when the images were taken. Additionally, many digital

cameras have built in color correction, white balancing, and contrast correction. All of

these factors can produce images that may look quite different that what the human eye

perceives [30].

70

These differences pose a significant problem for robotic vision systems that rely on

images to classify features as road and non-road. The same colored path may appear

very differently to a camera under different lighting conditions, when the camera is held

at a different angle, or when different automatic corrections where applied by the camera

hardware. This makes classifying that path difficult, and is something that should be

accounted for when implementing a camera based vision system.

Blurring of the Camera Image

Another challenge to image processing for mobile robots, is the blurring of camera im-

ages while the robot is moving during operation. If the robot is moving fast enough,

an input image can be very blurred, making it nearly impossible to accurately detect

features. However, even small amounts of blurring can negatively impact how features

are recognized by changing the perceived color of an object in the image.

Camera Quality

The quality of the camera must be considered when analyzing a robotic vision system.

Modern cameras range greatly in quality and features. The same image processing system

could perform differently using different cameras due to changes in image size, the auto

corrections performed or camera focus. Additionally, if a system is meant to process

images in real time, a larger, higher quality image might not necessarily be better due to

a larger number of pixels to process which takes additional computation time.

5.1.2 Initial Image Processing System

For the work presented here, an image processing system was used that took images

from a smartphone camera, classified regions of the image as road or non-road, and

produced output values for a controlling neural network. This was modeled after the

71

approach taken in [58] and used pixel color as the distinguishing feature for classifying

image regions.

Road Library

To classify image regions, a library of known road types is generated at the start of

the robotic training process (Algorithm 2 describes the library creation process). When

images are processed during operation, this library is used to classify input regions and

produce output values. The library is created under the assumption that whatever is

visible in the image, directly in front of the robot, at the time the library is being built,

is an acceptable road type. To enforce this assumption the library is built by sampling

image data only from a small 50px × 50px region located at the bottom center of the

input image (see Figure 5.1a). This size was chosen because it was small enough that

when the robot turned, the region didn’t leave the road. When image data was taken

from the input region, normalized histograms for the red(R), green(G), blue(B), hue(H),

and saturation(S) components of the region were used to build a single road model

representing an example of a known road type. During initial testing, using features from

both the RGB and HSV color space seemed to improve the performance of recognizing

road from non-road regions. Normalized histograms were created using the OpenCVa

functions calcHist, and normalize.

When each road model is created, it can be stored either as a new example of an

existing road type, or as the first example of an entirely new type of road. For example,

several models in a row could be considered “shaded path.” The robot could then move

from the shade into a well lit area and the next model would be the first example of

“brightly lit path.”

The determination of whether a new model belongs to an existing road type, or is

a new type of road was made by a measuring the correlation between the new model,

ahttp://opencv.org/

72

and the models present in the existing road types. Two models’ similarity was defined

as the average correlation between the RGBHS components of each model. Correlations

were calculated with the OpenCV function compareHist where an output value of 1.0

means the two histograms are positively correlated, a 0 means no correlation, and -1.0 is

a negative correlation between the two histograms. A similarity threshold 0.75 was used

to classify two models as similar or not. If the best correlation between the new model,

and all existing models, was less than 0.75, the new model was used as an example of a

new road type. If the best correlation between the new model, and a model present in

an existing road type, was higher than 0.75 the new model was added as a new example

of the existing road type.

Only ten unique road types, and ten examples of each road type, could be present

in the road library for a total of 100 models. This restriction was set so the number

of stored models would have an upper bound, and could not grow indefinitely during

operation. This maximum value had to be considered in two situations:

1. The newly created model is an example of a new road type, but the maximum

number of road types has already been reached

2. The newly created model is a new example of an existing road type, but the max-

imum number of examples has already been reached

In the first situation, the least used road type is removed from the road library, and the

new road example is added. In the second situation, the least used model of the road

type is replaced by the new model. The least used is determined by taking the minimum

selection frequency of either a road type or road type model as follows:

• Least Used Road Type: Total selections of all examples
Sumof all region comparisons

• Least Used Road Type Model: Total selections of example
Region comparisons

73

A road type example is selected when it is the most similar model to an input region,

and a road type is selected when one if its example models is the most similar model to

an input region. Through this process, new types of road can be learned and recognized,

while older examples of road may be discarded. This assumes that the robot’s current

environment is more relevant to its operation than older environmental conditions.

Algorithm 2 Road Library Creation

generate new road model

{Find best matching model}
for all roadTypes ∈ roadLibrary do

for all model ∈ roadType do
correlation = compareHistograms(newModel,model)
if correlation > bestCorrelation then

bestCorrelation = correlation
bestRoadType = roadType

end if
end for

end for

{Update or add to the road model list}
if bestCorrelation > similarityThreshold then

if max number of example already reached then
remove least used model

end if
add new model to matching road type

else
if max number of road types already reached then

remove least used road type
end if
add new road type using new model

end if

Run-time Image Processing

While the robot is operating autonomously, images are processed to produce inputs for

the controlling neural network. An image is taken from the camera, split into sub regions,

and each sub region is compared to the road library. Every region is assigned a value

based on its highest correlation with a model in the road library. The resulting values are

then sent to the neural network as inputs. Algorithm 3 describes the image processing

procedure.

74

Algorithm 3 Image Processing

for subregion ∈ Image do
for all roadTypes ∈ roadLibrary do

for all model ∈ roadType do
correlation = compareHistograms(subregion,model)
if correlation > bestCorrelation then

bestCorrelation = correlation
end if

end for
end for
outputV alues.add(bestCorrelation)

end for

(a) Single example in the road library. (b) Five examples in the road library.

Figure 5.1: These images show the results from image processing after a single example
has been added to the road library, and after several examples of the path have been added
to the library. With a larger number of examples in the color library, the classification
of road and non-road is much more accurate.

75

5.1.3 Revised Approach

A revised approach to image processing was developed to simplify processing and increase

performance. The new approach differed from the initial approach in several key ways.

First, the road library was built during a specific vision step prior to any learning phase.

Because of this, the construction of the library was simplified to store a list of road

models, rather than grouping the models by similarity. Algorithm 4 describes the revised

library creation process. A road model was also simplified to be a single color histogram

containing red, green, and blue channels of the input image, rather than several individual

histograms as in the initial version.

The largest change in the revised approach was the way in which road models were

compared. Rather than using the average correlation from all separate histograms, the

single 3D histograms were used with the input image in a back projection calculation

using the OpenCV function calcBackProject. The back projection operation creates a

new image where each pixel represents the probability of the same pixel in the input

image belonging to the color distribution found in the road model. To generate output

values, each sub region in the results back projection image was averaged to generate the

average probability of that region belonging to a known road type. Theses probabilities

were then given as inputs to the robot’s controller.

Algorithm 4 Revised Road Library Creation

N = desired road library size
for i = 1 to N do

generate road model
add new model to road library

end for

Native Processing

Each of the previously described image processing methods were implemented entirely

in Java using the OpenCV4Android SDK. The Java only portion of the SDK provides

76

(a) Input image (b) Processed image.

Figure 5.2: These images demonstrate how the back projection calculation classifies an
image. Figure 5.2a is the image that will be processed using backprojection. The red
square located within the hand represents the area from which the sample histogram
was taken. This is the region that the other pixels will be compared to during the
back projection calculation. Figure 5.2b is the image generated from performing a back
projection calculation on the input image to the left, using the region taken from the
hand as the sample color distribution. The processed image represents the probability of
each pixel belonging to the same color distribution as the sample region. In this example,
it serves to classify areas that have the same color distribution as the hand in the input
image.

Algorithm 5 Revised Image Processing

for all subregions ∈ Image do
for all model ∈ roadLibrary do

calculate back projection using subregion and model
probability = average value of back projected subregion
if probability > highestProbablilty then

highestProbablity = probability
end if

end for
subregion output = highestProbability

end for

77

all the functionality necessary for the work described previously, but does not provide

the performance of the native C++ implementation of OpenCV. In order to increase the

efficiency of image processing, the revised back projection processing method was also

implemented in C++ and called from the Android application using the Java Native

Interface (JNI). By calling the native C++ OpenCV functions, performance increased

by approximately 22% over the Java implementation of the algorithm.

5.1.4 Additional Work

During the development of each image processing system, work was done to expand the

features available for image classification. Specifically, different color spaces, and the use

of image texture were examined.

The work presented here has all used some combination of RGB color channels for

image processing, but the same processing techniques could work for different color spaces

as well such as HSV or YCbCr. HSV is commonly used in computer vision application

because it separates color and intensity information making it more robust to lighting

changes. Some work was done to incorporate HSV into the current image processing

algorithm, but to make comparisons across experiments easier, the common RGB color

space was primarily used.

Texture

Texture can be useful measure with which to distinguish features from one another. An

example where texture could be useful is a path of short, trimmed grass that runs through

a field of much taller grass. The color of each section of grass is likely to be quite similar,

but the texture of the grass would likely be quite different.

Work was done to capture differences in textures within an image in hopes of using it

as an additional classifier for a robotic vision system. Texture of an image was calculated

78

using Local Binary Patterns (LBP). The resulting texture images were then used to build

histograms that were compared using a correlation measure to one another to determine

how similar they were to a road library of texture images. This process worked, but the

accuracy was not as high as that of color features. This is an avenue for future work.

The use of a texture feature with a color feature could have a significant impact on the

performance of an image processing system.

5.2 Locational Awareness and Mapping

While the goal of this research is to present a training method for autonomous mobile

robots, any real world application of such a robot requires the ability to track where a

robot is and has been. If a robot breaks down, gets lost, or needs to be picked up for

any reason, it will be necessary to know where that robot is. In addition, recording the

mobile robot’s position can have useful applications such as autonomous trail mapping.

As part of this thesis work, an autonomous mapping module was developed for the

robot. This module allows the robot to track its GPS position and save those positions

to a csv output file. In addition, if the robot has a network connection, the GPS data

can be sent to an ArcGIS feature serviceb hosted in the cloud at ArcGIS.com c.

bArcGIS feature service: http://resources.arcgis.com/en/help/main/10.1/index.html#//

0154000002w8000000
cArcGIS.com: http://www.arcgis.com/features/

79

(a) GPS data collected during autonomous op-
eration in an urban environment.

(b) GPS data collected duing autonomous op-
eration in an open, park environment.

Figure 5.3: Images showing GPS data collected during autonomous operation in different
environments. The data collected from the urban environment has little resemblance to
the actual path that was traversed, while data from the park closely resembles the path
that was followed. This difference is due to limitations in GPS technology. In the urban
environment there was significant tree canopy overhead and there were buildings on either
side of the path. Both of these can limit the accuracy of GPS. The robot is also never
in one position for longer than a second which reduces the fine grain accuracy of the
recorded position.

80

Chapter 6: Conclusions

This research has demonstrated an on-line, on-board evolutionary Learning from Demon-

stration system that is capable of training autonomous mobile robots to navigate both

indoor and outdoor paths. This is an important contribution for two key reasons.

The first key contribution is that the work presented here is done entirely in real time,

on-board real robotic hardware that is much less expensive, and much more computa-

tionally powerful than traditional research robots. This contrasts with the vast majority

of evolutionary robotics research, which is typically performed in simulated environments

to avoid the difficulties and time constraints of evolving in real world robotic hardware.

The second key contribution is the successful combination of Learning from Demonstra-

tion with evolutionary learning techniques. This combination of approaches hasn’t been

commonly used, but this research has shown it to be an effective way to train robots.

To improve the performance of the evolutionary LfD system, considerable research

was done into different methods of image processing for robotic vision. Several methods

were developed and to classify robotic input images as road or non-road regions. This

type of classification was the basis for creating behavior training sets and autonomous

operation based on camera input. It was found that the performance of the vision system

was crucial to the overall performance of evolved neurocontrollers. Therefore, it was very

important to continue improving the image processing system through the course of this

research.

In addition to the development of image processing systems, a mapping module was

created that could be run on the robot during autonomous operation to enable the

mapping of the robot’s operational behavior. The ability to track and store its location

immediately allows the robot to autonomously map trails or paths that it has been

trained to drive, and could have more significant impact in other practical applications

such as search and rescue.

All these contributions together lay the groundwork for developing an easy to train,

81

adaptable, affordable, autonomous robot. This type of robot could be applied to a variety

of tasks and environments such as extraterrestrial exploration or search and rescue and

would have the potential to save time, money, and lives depending on the application.

82

Chapter 7: Future Work

There are several directions for future work that can build off of what is presented here, all

of which could add to the effectiveness of the evolutionary Learning from Demonstration

system, and to the usefulness of the robotic agents used.

The neural networks used to control the robot were quite simple, and all that was

evolved were the weights. The architecture of the network itself was fixed throughout

evolution. Using a more complex representation, such as NEAT, that allows the architec-

ture of the network to evolve could increase the performance of the system, particularly

if a more challenging test problem is used. Another change to the controlling neural

network could be to make it a recurrent network, and give it some basic memory of its

previous actions. This might allow the robot to avoid getting stuck in situations where

the current image input alone is not enough to indicate the correct action to take.

Modifying the way outputs are determine from using discrete left, right, forward

actions based on the highest output activation to using a continuous vector based motion

based on the combined values of the output nodes would allow the robots to make more

fine-grained actions that would be better suited to path following tasks. The ability

to continue training a robot after evolution is finished would be a good step towards

making this type of system even more flexible. If training could continue after observing

the robot’s performance in autonomous mode, it would allow the retraining of problem

behaviors, or could allow for incremental training of complicated tasks. Additionally, the

ability to continue training could be combined with some sense of the robot “needing

help” when it’s unsure of what to do, and could allow for more robust behaviors to be

developed.

Further refinements of the current vision system could also improve the performance

of the evolutionary LfD system. Possible improvements include:

1. Using an additional road library to recognize a second color or road type could

83

allow for more complex behavior to be trained

2. The use of a more illumination invariant color space such as HSV could reduce the

impact of changes in lighting conditions

3. Implementing some type of illumination correction to match the current environ-

ment to the illumination that the library was trained on would reduce the impact

of lighting changes

4. Implementing all image processing code in C++ and/or making use of the GPU to

carry out image processing calculations could lead to large decreases in processing

time

A useful improvement to the mapping module could be to make use of geofencing

to limit the operational area of the robot when in autonomous mode. By defining a

geographic area that the robot is constrained to ahead of time, the mapping module

could track its current location against the geofence and potentially stop operation if

it leaves the area, or it could simple be trained to turn around when the robot drives

outside the geofence. This type of behavior would be very useful in practical applications

where the safety of the robot is important.

84

Bibliography

[1] Ricardo Aler, Oscar Garcia, and José Maŕıa Valls. Correcting and improving imita-

tion models of humans for robosoccer agents. In Evolutionary Computation, 2005.

The 2005 IEEE Congress on, volume 3, pages 2402–2409. IEEE, 2005.

[2] JMA Alvarez, Theo Gevers, and Antonio M López. Vision-based road detection

using road models. In Image Processing (ICIP), 2009 16th IEEE International

Conference on, pages 2073–2076. IEEE, 2009.

[3] Ramesh Amit and Maja Matari. Learning movement sequences from demonstration.

In Development and Learning, 2002. Proceedings. The 2nd International Conference

on, pages 203–208. IEEE, 2002.

[4] Pierre Andry, Philippe Gaussier, Sorin Moga, Jean-Paul Banquet, and Jacqueline

Nadel. Learning and communication via imitation: An autonomous robot perspec-

tive. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transac-

tions on, 31(5):431–442, 2001.

[5] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of

robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469–

483, 2009.

[6] Atta-ul-Qayyum Arif, Dimitar G Nedev, and Evert Haasdijk. Controlling evalua-

tion duration in on-line, on-board evolutionary robotics. In Evolving and Adaptive

Intelligent Systems (EAIS), 2013 IEEE Conference on, pages 84–90. IEEE, 2013.

[7] Andrea Bauer, Dirk Wollherr, and Martin Buss. Human–robot collaboration: a

survey. International Journal of Humanoid Robotics, 5(01):47–66, 2008.

[8] Andreas Birk and Stefano Carpin. Rescue roboticsa crucial milestone on the road

to autonomous systems. Advanced Robotics, 20(5):595–605, 2006.

85

[9] Cynthia Breazeal, Daphna Buchsbaum, Jesse Gray, David Gatenby, and Bruce

Blumberg. Learning from and about others: Towards using imitation to bootstrap

the social understanding of others by robots. Artificial Life, 11(1-2):31–62, 2005.

[10] Nicolas Bredeche, Evert Haasdijk, and AE Eiben. On-line, on-board evolution of

robot controllers. In Artifical Evolution, pages 110–121. Springer, 2010.

[11] Rodney A Brooks. Artifical life and real robots. In Toward a practice of autonomous

systems: Proc. of the 1st Europ. Conf. on Artificial Life, page 3, 1992.

[12] Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G Caldwell, and Aude G

Billard. Learning and reproduction of gestures by imitation. Robotics & Automation

Magazine, IEEE, 17(2):44–54, 2010.

[13] Sylvain Calinon, Eric L Sauser, AG Billard, and DG Caldwell. A learning by imita-

tion model handling multiple constraints and motion alternatives. In Intl Conf. on

Cognitive Systems (CogSys), 2010.

[14] Genci Capi and Hideki Toda. Evolution of neural controllers for robot navigation

in human environments. Journal of Computer Science, 6(8):837, 2010.

[15] Anders Lyhne Christensen and Marco Dorigo. Evolving an integrated phototaxis and

hole-avoidance behavior for a swarm-bot. In Proceedings of the 10th International

Conference on the Simulation and Synthesis of Living Systems (Alife X), pages 248–

254. Citeseer, 2006.

[16] Travis DeVault, Nathaniel Ebel, Juan Marulanda, Jayandra Pokharel, Terence

Soule, and Robert B. Heckendorn. Neuroevolution of a trail following robotic con-

troller for an autonomous cotsbot. In Submission, 2014.

[17] Marco Dorigo. Swarm-bot: An experiment in swarm robotics. In Swarm Intelligence

Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pages 192–200. IEEE, 2005.

86

[18] AE Eiben, Nicolas Bredeche, Mark Hoogendoorn, Juergen Stradner, Jon Timmis,

Andy Tyrrell, and Alan Winfield. The triangle of life. In Advances in Artificial Life,

ECAL, volume 12, pages 1056–1063, 2013.

[19] AE Eiben, Evert Haasdijk, Nicolas Bredeche, et al. Embodied, on-line, on-board

evolution for autonomous robotics. Symbiotic Multi-Robot Organisms: Reliability,

Adaptability, Evolution., 7:361–382, 2010.

[20] Agoston E Eiben and James E Smith. Introduction to evolutionary computing

(natural computing series). 2008.

[21] Anna Isabel Esparcia-Alczar, A Martnez-Garca, Antonio Mora, JJ Merelo, and

Pablo Garćıa-Sánchez. Controlling bots in a first person shooter game using ge-

netic algorithms. In Evolutionary Computation (CEC), 2010 IEEE Congress on,

pages 1–8. IEEE, 2010.

[22] Sevan G Ficici, Richard A Watson, and Jordan B Pollack. Embodied evolution: A

response to challenges in evolutionary robotics. In Proceedings of the eighth European

workshop on learning robots, pages 14–22. Citeseer, 1999.

[23] Dario Floreano, Francesco Mondada, et al. Automatic creation of an autonomous

agent: Genetic evolution of a neural-network driven robot. From animals to animats,

3:421–430, 1994.

[24] James A Foster. Evolutionary computation. Nature Reviews Genetics, 2(6):428–436,

2001.

[25] Daniel H Grollman and Odest Chadwicke Jenkins. Learning robot soccer skills

from demonstration. In Development and Learning, 2007. ICDL 2007. IEEE 6th

International Conference on, pages 276–281. IEEE, 2007.

87

[26] E. Haasdijk, A.E. Eiben, and G. Karafotias. On-line evolution of robot controllers

by an encapsulated evolution strategy. In Evolutionary Computation (CEC), 2010

IEEE Congress on, pages 1–7, 2010.

[27] Evert Haasdijk, Arif Atta-ul Qayyum, and Agoston Endre Eiben. Racing to improve

on-line, on-board evolutionary robotics. In Proceedings of the 13th annual conference

on Genetic and evolutionary computation, pages 187–194. ACM, 2011.

[28] Evert Haasdijk, AE Eiben, and Giorgos Karafotias. On-line evolution of robot

controllers by an encapsulated evolution strategy. In Evolutionary Computation

(CEC), 2010 IEEE Congress on, pages 1–7. IEEE, 2010.

[29] Robert-Jan Huijsman, Evert Haasdijk, and AE Eiben. An on-line on-board dis-

tributed algorithm for evolutionary robotics. In Artificial Evolution, pages 73–84.

Springer, 2012.

[30] Jun Jianga, Yonghui Zhaob, and Shen-ge Wangb. Color correction of smartphone

photos with prior knowledge. In Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, volume 8302, page 10, 2012.

[31] Ming-Yi Ju and Ji-Rong Lee. Vision-based mobile robot navigation using active

learning concept. In Advanced Robotics and Intelligent Systems (ARIS), 2013 In-

ternational Conference on, pages 122–129. IEEE, 2013.

[32] Giorgos Karafotias, Evert Haasdijk, Ágoston E Eiben, Evert Haasdijk, A Eiben,

A Winfield, Evert Haasdijk, A Rusu, A Eiben, A Eiben, et al. An algorithm for

distributed on-line, on-board evolutionary robotics. In GECCO, pages 171–178,

2011.

88

[33] AJ Keane. The design of a satellite beam with enhanced vibration performance using

genetic algorithm techniques. The Journal of the Acoustical Society of America,

99(4):2599–2603, 1996.

[34] L König, Kristof Jebens, Serge Kernbach, and Paul Levi. Stability of on-line and

on-board evolving of adaptive collective behavior. In European Robotics Symposium

2008, pages 293–302. Springer, 2008.

[35] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. Crossing the reality

gap in evolutionary robotics by promoting transferable controllers. In Proceedings of

the 12th annual conference on Genetic and evolutionary computation, pages 119–126.

ACM, 2010.

[36] Aleš Kubık. Distributed genetic algorithm: A case-study of evolution by direct

exchange of chromosomes. Computing and Informatics, 23:575–596, 2004.

[37] Aleš Kub́ık. Distributed genetic algorithm: a case-study of evolution by direct

exchange of chromosomes. Computing and informatics, 22(6):575–596, 2012.

[38] Juan Luis Jiménez Laredo, AE Eiben, Maarten van Steen, and Juan Julián Merelo.

Evag: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and

Evolvable Machines, 11(2):227–246, 2010.

[39] Sean Luke and Vittorio Amos Ziparo. Learn to behave! rapid training of behavior

automata. In and Learning Agents Workshop at AAMAS 2010. Citeseer, 2010.

[40] Laurence T Maloney and Brian A Wandell. Color constancy: a method for recovering

surface spectral reflectance. JOSA A, 3(1):29–33, 1986.

[41] Jean-Marc Montanier and Nicolas Bredeche. Embedded evolutionary robotics:

The (1+ 1)-restart-online adaptation algorithm. In New Horizons in Evolutionary

Robotics, pages 155–169. Springer, 2011.

89

[42] Ulrich Nehmzow. Physically embedded genetic algorithm learning in multi-robot

scenarios: The pega algorithm. 2002.

[43] Cédric Notredame and Desmond G Higgins. Saga: sequence alignment by genetic

algorithm. Nucleic acids research, 24(8):1515–1524, 1996.

[44] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor

learning by imitation. Philosophical Transactions of the Royal Society of London.

Series B: Biological Sciences, 358(1431):537–547, 2003.

[45] Fernando Silva, Paulo Urbano, Sancho Oliveira, and Anders Lyhne Christensen.

odneat: An algorithm for distributed online, onboard evolution of robot behaviours.

In Artificial Life, volume 13, pages 251–258, 2012.

[46] David Silver, J Andrew Bagnell, and Anthony Stentz. Applied imitation learning for

autonomous navigation in complex natural terrain. In Field and Service Robotics,

pages 249–259. Springer, 2010.

[47] David Silver, J Andrew Bagnell, and Anthony Stentz. Perceptual interpretation for

autonomous navigation through dynamic imitation learning. In Robotics Research,

pages 433–449. Springer, 2011.

[48] Terence Soule and Robert B Heckendorn. Cotsbots: computationally powerful, low-

cost robots for computer science curriculums. Journal of Computing Sciences in

Colleges, 27(1):180–187, 2011.

[49] Terence Soule and Robert B Heckendorn. A practical platform for on-line genetic

programming for robotics. In Genetic Programming Theory and Practice X, pages

15–29. Springer, 2013.

90

[50] Kenneth O Stanley, Bobby D Bryant, and Risto Miikkulainen. Evolving neural

network agents in the nero video game. Proceedings of the IEEE, pages 182–189,

2005.

[51] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based

encoding for evolving large-scale neural networks. Artificial Life, 15(2):185–212,

2009.

[52] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

[53] Peter Stone, Richard S Sutton, and Gregory Kuhlmann. Reinforcement learning for

robocup soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[54] Keith Sullivan and Sean Luke. Multiagent supervised training with agent hierarchies

and manual behavior decomposition. In Proceedings of Agents Learning Interactively

from Human Teachers Workshop, 2011.

[55] Keith Sullivan and Sean Luke. Real-time training of team soccer behaviors. In

RoboCup 2012: Robot Soccer World Cup XVI, pages 356–367. Springer, 2013.

[56] Dejvuth Suwimonteerabuth and Prabhas Chongstitvatana. Online robot learning by

reward and punishment for a mobile robot. In Intelligent Robots and Systems, 2002.

IEEE/RSJ International Conference on, volume 1, pages 921–926. IEEE, 2002.

[57] Yukiya Usui Takaya and Takaya Arita. Situated and embodied evolution in collective

evolutionary robotics. In In Proc. of the 8th International Symposium on Artificial

Life and Robotics. Citeseer, 2003.

[58] Ceryen Tan, Tsai Hong, Tommy Chang, and Michael Shneier. Color model-based

real-time learning for road following. In Intelligent Transportation Systems Confer-

ence, 2006. ITSC’06. IEEE, pages 939–944. IEEE, 2006.

91

[59] Richard A Watson, Sevan G Ficici, and Jordan B Pollack. Embodied evolution:

Distributing an evolutionary algorithm in a population of robots. Robotics and

Autonomous Systems, 39(1):1–18, 2002.

[60] Richard A Watson, SG Ficiei, and Jordan B Pollack. Embodied evolution: Em-

bodying an evolutionary algorithm in a population of robots. In Evolutionary Com-

putation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 1. IEEE,

1999.

[61] Mark Yim, Kimon Roufas, David Duff, Ying Zhang, Craig Eldershaw, and Sam

Homans. Modular reconfigurable robots in space applications. Autonomous Robots,

14(2-3):225–237, 2003.

[62] Ching Zhang and Andrew KC Wong. Toward efficient multiple molecular sequence

alignment: a system of genetic algorithm and dynamic programming. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(6):918–932, 1997.

