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Abstract

Recent advances in DNA sequencing have led to a boom in microbiome analyses to deter-

mine community composition. Fitting such community composition data to mathematical

models allows for the estimation of interspecies interactions within a microbial community.

In this thesis, we explore the extent to which noise inherent to time-series microbiome data

interferes with the inference of interspecies interactions. We first create a small synthetic

test community with structure mimicking real microbial communities based on the general-

ized Lotka-Volterra (gLV) model, incorporating differing levels of two types of noise, process

and measurement noise. We then establish a method of parameter estimation for both the

gLV and multivariate autoregressive (MAR) models, and apply the method to our synthetic

dataset with varying levels of noise. We find that interspecies interactions can be well esti-

mated even with moderate levels of process noise, but even modest amounts of measurement

noise lead to poor estimates of interactions.
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CHAPTER 1

Introduction

Recently, advances in 16s rRNA sequencing (RNA-Seq) have dramatically changed the way

microbial communities are analyzed [1, 2, 3]. Reductions in cost and more efficient methods

of sequencing have made it possible to take frequent microbial samples, creating long time-

series datasets, for example those found in Koenig et al. [4] and David et al. [5]. These long-

term datasets can provide insight into the ways microbiomes change over time [6, 7]. With a

greater understanding of shifting microbial populations comes valuable understanding of how

a microbiome can be influenced by outside factors, such as foreign bacteria or antibiotics. A

more precise knowledge of the impact these outside factors can have on the human microbiota

can inform medical decision-making and opens the door to treatment plans personalized to

an individual’s internal communities. Similar techniques might be applied to assessing or

protecting the health of ecological microbiomes, such as those found in soil or large bodies

of water [8, 9, 10].

A specific form of analysis that has become more tenable with higher resolution microbial

read count data is interaction inference. Pairwise species interactions are estimated to gain

an understanding of the overall community structure. A robust body of literature already

exists seeking to meaningfully quantify microbial interactions in these newer, denser sets of

read count data [11, 12, 13, 14].

The aim of this thesis is to quantify how noise interferes with microbial population in-

ference. Chapter 2 begins with a brief overview of previous literature. We then define the

models we will use for simulation and estimation, the generalized Lotka-Volterra (gLV) and

multivariate autoregressive (MAR) models. Chapter 3 explains the methods used for pa-

rameter estimation. This chapter also examines the results of the model fitting experiments.

The final chapter discusses the model fitting, and draws conclusions from the results.
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CHAPTER 2

Simulation methods

2.1 Related work

The rapid advancement in high-throughput sequencing techniques has been accompanied by

the development of a large number of methods to infer community interactions, some entirely

novel and others adapted from related fields [15, 16, 17]. A common approach is to model

time-series microbiome count data using a generalized Lotka-Volterra (gLV) model. Model

parameters representing pairwise species interactions are then estimated by one of several

different methods. Among the earliest of the gLV-based approaches is the Stein et al. [18]

method, which incorporates Tikhonov regularization into the parameter estimation process.

LIMITS (Learning Interactions from Microbial Time Series) [19] is another early gLV-based

method, which estimates interaction parameters of a discrete gLV model through linear

regression and bootstrapping. The algorithm favors sparse interaction matrices and is used

by the authors to identify “keystone species” which drive community interactions.

MDSINE (Microbial Dynamical Systems Inference Engine) presents a packaged pipeline

for modeling microbiome time series [12]. The algorithm estimates interaction parameters

of a transformed linear version of the gLV model. Several different methods are explored

for regularization of the estimated parameters, including MLCRR (Maximum-Likelihood

Constrained Ridge Regression), BAPCS (Bayesian Adaptive Penalized Counts Splines), BAL

(Bayesian Adaptive Lasso), and BVS (Bayesian Variable Selection).

MetaMIS (Metagenomic Microbial Interaction Simulator) infers interactions using a method

based on partial least squares regression [20]. MetaMIS uses abundance-ranking based on

average levels of OTUs to generate several interaction networks. Generated networks differ

in the cutoff abundance for inclusion of rare OTUs.

SgLV-EKF (Stochastic gLV with extended Kalman filter) infers interactions for a stochas-

tic version of the gLV model [21]. The authors argue that previous methods only address
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measurement noise in microbiome data, while ignoring the inherent noise (process noise) of

the underlying system. Fitting a stochastic gLV model and using the extended Kalman filter

in estimation are presented as a way to account for both measurement and process noise.

Gao et al. [22] present a method to estimate interaction parameters of a gLV model

through forward stepwise regression. Overfitting is handled with a penalty term based on

the Bayesian Information Criterion (BIC). Bootstrap aggregation is used to stabilize the

stepwise regression.

IMPARO (Inferring Microbial interactions through Parameter Optimisation) finds gLV

interaction terms through matrix optimisation [23]. The authors emphasize the value of

non-unique solutions in microbial modeling.

The gLV model has seen prominent use in inferring microbial interactions. Outside of

gLV-based methods, there have also been a range of other approaches taken. One of the first

attempts at inferring interactions was SparCC (Sparse Corollations for Compositional Data)

[24]. SparCC infers species correlation using estimated species variances. Correlation for a

large system is found by iteratively calculating and removing the most strongly correlated

species pairs.

The RMN (Rule-based Microbial Network) algorithm infers interactions through fitting

a nonlinear regulatory OTU-triplet (NRO) model [25]. OTU triplets include a pivotal OTU,

one of its competitors, and one of its cooperators. Reliability of OTU triplets is assessed

with a lack-of-fit function.

ESABO (Entropy Shifts of Abundance vectors under Boolean Operations) detects com-

petitive and synergistic links between pairs of microbial species using binarized abundance

data [26]. The method compares shuffled and unshuffled species pairs to determine losses

and gains in entropy, determining whether two species interact in a competitive or synergistic

way.

MDeep (Microbiome-based Deep-learning) infers microbiome structure using a deep-

learning-based method [27]. The authors use phylogenetic clustering as a prior to inform



4

better predictions.

This body of work shows a wide range of approaches and innovations in microbial com-

munity analysis. Absent from the current literature is an understanding of how severely

noise in time-series data may affect analysis results. This study aims to fill that gap by

applying common methods of analysis to a synthetic system with a “known” solution.

2.2 Background

We start by defining the gLV model, which takes the form

dXi

dt
= aiXi

(
1− Xi

Ki

)
+
∑
j 6=i

bi,jXiXj. (2.1)

Here, Xi is the abundance of species i, ai and Ki are its intrinsic growth rate and carrying

capacity respectively, and bi,j is the effect of species j on the growth rate of species i. The

fact that interspecies interactions are presented entirely by one parameter in the gLV model

makes comparing the strength of different interactions very straightforward.

When estimating parameters in Chapter 3, we will largely focus on the parameters de-

scribing interactions between species, bi,j in Equation (2.1). In particular, we would like to

assess the accuracy of estimated parameters compared to the “true” parameters describing

a system. To this end, we would like to create a synthetic dataset representing a small

microbial time series. Such a dataset—where we know the underlying parameters and what

the time series should look like—will allow us to more easily find the conditions under which

our methods of estimation succeed and fail. The method can be scaled up to examine larger

systems in future studies.

The interactions of the gLV model can be represented by an SxS matrix β with entries

bi,j, where S is the number of species in the system. The 9x9 β matrix used to create our

three-species synthetic dataset is seen in Table 2.1. Values were chosen through trial-and-

error to specifically produce a system where each species oscillates before settling into a
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steady-state value. The accuracy of inferred parameters relies on observing changes in each

species’ abundance relative to one another, so a certain amount of change in abundance is

preferable to species which remain always at a steady state. Additional parameters such

as initial conditions and intrinsic growth rates may be found in Table 2.1. The population

dynamics of the three species in the synthetic microbiome can be seen as both absolute and

relative abundance in Figure 2.1.

In addition to the gLV model, we will also examine another model common in fitting

population dynamics: the multivariate autoregressive (MAR) model [28, 29, 30]. Here we

will focus on the one-step-ahead version of the MAR (MAR(1)), where terms at the current

time step depend only on terms at the time step immediately preceding them. The MAR(1)

can be written as

Xi(t+ 1) = µi +
S∑

j=1

di,jXj(t) (2.2)

where Xi(t) is the abundance of species i at time t, µi is the intrinsic growth rate of species

i, and di,j is the effect of species j on the growth of species i. Of particular interest is

the MAR(1)’s application to stability analysis, where model parameters may be used to

assess how a community responds to stimuli which push the system away from stationarity

[31]. Community restabilization and response to outside stimuli are topics of great interest

in microbial community studies. The potential application to community stability analysis

motivates the choice of the MAR(1) model.

2.2.1 Process noise: stochastic differential equations

Equation (2.1) can be used to produce stable synthetic time-series data in which species

neither go extinct (or nearly extinct) nor do they diverge towards infinity. However, the

synthetic data generated up to this point are completely deterministic. Microbiome read

count data is inherently noisy for numerous reasons, and we want to reflect these multiple
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Parameter Value
X1(0) 500
X2(0) 400
X3(0) 270
a1 6
a2 4
a3 2
K1 120
K2 150
K3 135
b1,2 0.15
b1,3 -0.2
b2,1 -0.01
b2,3 0.05
b3,1 0.1
b3,2 -0.1

Table 2.1: Table of parameters used to generate the basic three-species simulated
system.
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Figure 2.1: Plots showing population counts over time for absolute (left) and
relative (right) abundance. Absolute abundance is a plot of the actual observed counts
for each species, while relative abundance is the abundance of each species relative to one
another at each time point.



7

sources of noise in our synthetic datasets. To do so, we will employ methods to include both

process noise and measurement noise in our simulated datasets.

We first modify the system to include process noise, which describes how random varia-

tions in the underlying processes that influence population sizes affect observed trajectories.

Stochasticity of this nature can be included in many different ways, depending on assump-

tions of its source (e.g., demographic, environmental). As a simple way of modifying Equation

(2.1) to include environmental variability, we introduce the stochastic differential equations

dXi(t) =

(
aiXi(t)

(
1− Xi(t)

Ki

)
+
∑
j 6=i

bi,jXi(t)Xj(t)

)
dt+ σiXi(t)dWi(t), (2.3)

where σi determines the magnitude of the process noise, and dWi(t) is standard Brownian

motion N(0,
√
dt) [32]. We simulate sample paths of Equations (2.3) using the pomp and

simulate functions in the R package POMP [33, 34].

2.2.2 Measurement noise: error from sampling

Measurement noise is introduced to read count data during data collection. At each time

point, there is a true abundance of each species in a system. In our synthetic datasets this is

found by simulating Equations (2.3). In biological datasets, a number of reads which subsets

the total population is taken at each time point, which may skew the actual population

values. To include measurement noise in our simulated data in a manner that is similar to

the natural measurement process, we model the counts of each species as a multinomially-

distributed draw from the true population abundances. For each time point, the observed

number of reads of each species (Xi) is given by

(x1, x2, ..., xS) ∼Mult (V ; p1, p2, ..., pS)

pi =
x̂1∑n
i=1 x̂i

(2.4)
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Figure 2.2: Deterministic and stochastic series of relative abundance counts. The
plots show the same relative abundance data as in Figure 2.1, with the inclusion of process
noise (left) and measurement noise (right).

where x̂i is the absolute abundance of species i after the inclusion of process error, and V is

the total number of reads sampled. As V increases, we expect the spread of total reads to

more accurately reflect the actual distribution of species and decreasing overall noise from

the measurement process.

In this section, we applied established methods of ecological modeling to create a small

synthetic microbial system. Going forward, we will now apply different methods of analysis to

this synthetic system under a variety of circumstances (e.g. varied noise levels) to investigate

the limits of the analysis methods.
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CHAPTER 3

Parameter Estimation Methods

3.1 Model comparison

3.1.1 Relating gLV and MAR parameters

Like the gLV model, information about the strength of pairwise interactions in the MAR

model is limited to a single parameter. The parameters di,j from Equations 2.2 are equivalent

to the gLV model’s bi,j. A comparison of inferred parameters of the two models could provide

valuable insight into the performance of both models. However, the models assume different

functional forms, preventing a direct comparison of interaction parameters. To relate the

gLV and MAR interaction parameters, we must assume the gLV is at a steady state and

find a linearized, discretized version of the model at its endemic equilibrium, producing a

MAR(1) model. We start the transformation by writing the gLV model in Equation (2.1) as

dXi

dt
= aiXi +

S∑
j=1

bi,jXiXj (3.1)

where bi,i = −ai/Ki. To linearize (3.1), we first find the Jacobian matrix (J) with entries

Ji,j = bi,jXi

Ji,i = ai + 2bi,iXi +
∑
j 6=i

bi,jXj.
(3.2)

With J evaluated at the steady state X̄, this leads to the linear system of differential equa-

tions

d∆X

dt
= J |X̄∆X. (3.3)

Discretizing system (3.3) with time step h gives the difference equation

∆X(t+ h)−∆X(t)

h
= J |X̄∆X(t) (3.4)
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which can be rearranged to the form

X(t+ h) = X(t) + hJ |X̄∆X(t). (3.5)

Note that Equation (3.5) is itself a MAR(1) model. Matching coefficients in Equations (3.5)

to their counterparts in Equations (2.2) yields

µi = 0

di,j = hbi,jX̄i, i 6= j

di,j = 1 + h
(
ai + 2bi,jX̄j

)
, i = j.

(3.6)

Thus, at steady state (or in stationarity) Equations (3.6) relate the parameters of a gLV

model describing the abundance of species i to those of a MAR model describing the change

in species i over discrete time. Note that we cannot directly obtain unique gLV parameters

given MAR parameters, but the converse is possible. In particular, the pairwise interaction

terms di,j where i 6= j give the per capita force of interaction of species j on the growth of

species i while the pairwise interaction terms bi,j give the per capita force of interaction per

species i of species j on the growth of species i.

3.1.2 The relative abundance case

Following the methods in section 3.1.1, the interaction parameters bi,j of the gLV model can

be related to the interaction parameters di,j of the MAR model, but are scaled by the mean

absolute abundances of each species. Repeating the same process as in section 3.1.1 for the
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relative abundance equation gives

µi = h

(
aix̄i +N

S∑
j=1

bi,jx̄ix̄j

)

di,j = Nhbi,jx̄j, i 6= j

di,j = h (ai +Nbi,jx̄i) + 1, i = j

(3.7)

where N is the total abundance, and x̄i =
X̄i

N
. Because this analysis assumes that the

population is near its endemic equilibrium, N is approximately constant and only has a

scaling effect on the relations. Therefore, with relative abundance data, relative interaction

rates can be estimated. The pairwise interaction terms di,j with relative abundance data

give the per capita force of interaction of species j on species i times the total population

size, which is typically an unknown parameter.

3.1.3 Background on regularization

The process of fitting a model to read count data is typically complicated by the overabun-

dance of parameters relative to measurements. Specifically, the number of parameters will

be on the order of the square of the number of species. In such an underdetermined system,

the model is highly prone to overfitting. An overfit model can fail to capture the underlying

structure of a system by being too greatly influenced by the single realization from which

the model parameters are estimated. To counteract overfitting, we employ regularization.

Regularization reduces model overfitting by penalizing model complexity. One of the most

common forms of regularization is ridge regression, which reduces unwarranted complexity by

penalizing the l2 norm of the estimated parameters [35]. In particular, the best fit parameters

with ridge regression solve the equation

b̂ = argminb(||y − xb||22 + λ||b||22) (3.8)
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where x is a vector of predictor variables, y is a response matrix, ||.||22 denotes taking the l2

norm, and λ ∈ [0,∞] determines the strength of regularization. Ridge regression decreases

the magnitude of estimated parameters, but will not reduce any parameters to zero. An

over-parameterized model will be more complex than necessary, and may over-describe the

data.

To reduce the number of parameters, we consider a second type of regularization: LASSO

regression. Similar to ridge regression, the Least Absolute Shrinkage and Selection Operator

(LASSO) also penalizes overly complex solutions, but uses the l1 norm ||.||1 as the penalty

in place of the l2 norm, to impose feature selection in estimation [36]. The interactions of

different communities may be more accurately captured with ridge or LASSO regression.

Instead of choosing one form of regularization, both types of regularization can be blended

in elastic-net regularization.

3.1.4 Application of the elastic net

The elastic net finds the best fit parameters b̂ as

b̂ = argminb(||y − xb||22 + λ[α||b||22 + (1− α)||b||1]) (3.9)

where x is the observed data, λ controls the strength of regularization (λ = 0 being equivalent

to the case with no regularization), and α ∈ [0, 1] controls the strength of ridge versus

LASSO regression, with α = 1 corresponding to pure ridge regression and α = 0 using only

the LASSO [37].

Elastic-net regression can improve the fit of a model, but only with appropriate values

for α and λ. To find the optimal α and λ, we employ K-fold cross validation with 10 folds.

In K-fold cross validation, the data are first split into K groups of equal size. For each subset

(fold) of data, a model is trained on all the data outside the group. Each model is then

tested against the remaining data, and the mean square error (MSE) is recorded. The values
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for α and λ that minimize the MSE are then selected.

To perform cross validation and parameter estimation for the synthetic data, we use the

R package glmnet [38]. For each species in a system, we perform a grid search of α and

λ values using cv.glmnet. The search returns the value of α which minimizes the mean

cross-validated error of the system. This value of α, the time-series data, and a sequence of

associated λ values are passed to the function glmnet, which returns estimates for interspecies

interactions bi,j and intrinsic growth rates ai.

With the default settings, the functions cv.glmnet and glmnet choose a sequence of

log-spaced λ values based on the provided data. From this sequence, both functions choose

an optimal value of λ based on the amount of deviance explained by a specific fit. If the

deviance explained reaches a certain threshold or does not drastically change between two

values of λ, glmnet determines that it has reached an acceptable value of λ. We found that,

in relation to the three-species system described by the parameters given in Tables 2.1, the

default thresholds for deviance explained often led to glmnet picking the smallest generated

λ. In cases where the smallest λ was selected, rerunning the same scenario while supplying

smaller λ values to glmnet resulted in smaller values of λ being selected. This suggests that

the sequence of λ values generated by glmnet does not cover a wide enough range for our

purposes. To address this, we ran glmnet with a self-supplied sequence of 100 log-spaced λ

values, starting with the largest λ generated by glmnet and ending at 10−5.
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3.1.5 Results of Estimation with the gLV Model

We estimated interaction parameters using two types of synthetic data and two underlying

models. The two types of synthetic data examined are the same system with read counts

given as absolute and relative abundance. The two underlying models that the synthetic

data were compared to the gLV (Equation 2.1) and the MAR(1) (Equation 2.2) models as

described in Chapter 2. Time-point density, level of process error and level of measurement

error were all adjusted separately between runs of the models. Process error was varied with

the value of σi in Equation (2.3), while measurement error ξ = 1
V

was varied by changing

the total number of sampled reads V , as in Section 2.2.2. The values used fell in the

ranges 0 < σi < 5 and 103 < V < 107. To show that comparable levels of noise were being

contributed to the synthetic data by both process and measurement error, 30 simulations

were run for each combined level of noise. MSE between the noiseless system and simulated

noisy systems were then found for each species. The average MSE for all three species was

recorded at each level. Figure 3.1 shows that the ranges of V and σi result in similar MSEs

from process and measurement noise.

gLV-based Estimation with Absolute Abundance Data

We applied the gLV-based method of estimation in Section 3.1 to the simulated three-species

system first described in Section 2.2. The accuracy of estimates of bi,j depends critically on

the noise in the data. Low levels of both process and measurement error are required for

accurate inference. The number of measurement samples required depends on the research

question at hand and the percent error tolerated in estimates. Specifically, if parameters

need to be estimated to within 25% of their true value, then our three-species community

requires at least 5× 106 measurement samples at each time point and a process error of less

than 0.3. If only order of magnitude estimates are required (within 100% error), then this

relaxes to 1× 106 measurement samples, and any level of process error in the range tested.
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Process Error had a much less pronounced effect on the accuracy of estimated interaction

parameters. While there was a slight increase in median percent error as process error

increased, the effect was small. The estimated β matrix had the correct signs for every bi,j

at lower error levels, but consistently had 2− 3 mismatched signs in interspecies interaction

terms when ξ was above 10−4.

To assess the accuracy of the inferred temporal dynamics, we used the estimated β ma-

trices to reconstruct time-series of microbial abundances and compared them to the original

synthetic data. Time-series were reconstructed using inferred interaction parameters in two

ways. The first was to numerically solve Eqn. (2.1) using inferred parameters starting at

the true initial values (long-range prediction). The second way was as one-step-ahead pre-

diction—that is, given the abundance of species X at time t − 1, predict the abundance at

time t using Eqn. (2.1) (short-range prediction).

Estimated time-series were compared to simulated time-series using mean squared error

(MSE), calculated as ∑T
i=1(xi − x̂i)2

T
(3.10)

where xi is the simulated abundance for species x at time i, x̂i is the estimated abundance

of species x at the same time point, and T is the total number of time points in the series.

In cases where simulated data included only one type of error, long-range prediction showed

that MSE increased with the level of error in the data (Figure 3.3). This was true for both

process and measurement error. The median MSE in simulated time-series with process

error increased as σi increased (Figure 3.3 Panel A). The opposite was true for measurement

samples, where median and variance increased as the number of samples decreased (Figure

3.3 Panel B). MSE variance at high sampling rates or low process error were similar in

magnitude (∼10−2), but at higher levels of noise simulated data with process error had

considerably more variance in MSE (105 with process error versus 104 with measurement

error). Across all predictions, the MSE for reconstructions of species X1 were higher than

species X2 and X3, possibly owing to the overall higher species counts for species X1.
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Figure 3.2: Median error in estimated bi,j for systems with varying levels of noise.
The figure shows the percent error between values of bi,j used to simulate time-series abun-
dance data and estimations of each bi,j found using the gLV model. The simulation was run
at each level of process and measurement error 10 times.
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Figure 3.3: Mean-square error in estimated time-series derived from data with
only one type of error. Parameters were estimated by using the gLV method on simulated
time-series data. For this particular test, data were simulated with only process (a) or
measurement (b) error.
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In applying long-range prediction to simulated data with both process and measurement

error, reconstructions were only accurate at low levels of both error types. For example,

species X required at least 2 × 105 measurement samples at each time point and σi < 2 to

consistently produce estimates with MSE below 40. As process error increased, the estimated

time series had qualitatively similar trajectories, but tended to drift away from the true mean

(Figure 3.4). High measurement error caused estimates to lose information about dynamics,

but were more likely to stay close to the true mean. However, high measurement error also

occasionally caused the reconstructed time series to fail completely (black points in Figure

3.5), and not converge to a steady state, thus giving MSE values in the range of 1020. High

levels of both process and measurement error pushed estimated time-series away from the

true mean and failed to capture information about dynamics.

gLV-based Estimation with Relative Abundance Data

Interaction parameters estimated from relative abundance time series data were evaluated in

the same way as absolute abundance estimates. When fitting relative abundance data with

a gLV model, parameter estimates were poor (Figure 3.6), although the signs of estimated

parameters were correct across all noise levels. Regardless of noise level, estimated parame-

ters had error levels greater than 4, 000%. In each case, three parameters were considerably

more accurate in their estimates than the other parameters, with a percent error on the

order of 100. These considerably-more-accurate estimated parameters may be a result of the

identifiability of relative abundance gLV model, which implies that interaction parameters

can only be estimated relative to each other [39]. When only one type of noise was present,

time-series reconstructions from gLV-based relative abundance data were accurate at low

noise levels, and lost accuracy with increased noise (Fig. 3.7). In the presence of only pro-

cess error, reconstructions averaged low levels of MSE at all noise levels. High-MSE outliers

were more likely in runs at higher levels of process noise, particularly for species X1. Mea-

surement noise had consistently accurate estimates when ξ < 10−5. Between 10−5 and 10−4,



20

Species X1

4

MSE = 51  MSE = 616  

1

10−6

MSE = 34  

10−4

MSE = 366  

Species X2

4

MSE = 6  MSE = 141  

1

10−6

   
   

   
   

   
 P

ro
ce

ss
 E

rr
or

MSE = 30  

10−4

MSE = 21  

Species X3

4

MSE = 14  MSE = 91  

1

10−6

MSE = 5  

10−4

MSE = 77  

          Measurement Error

● ● ●Noiseless Simulation Simulation With Noise Estimated Time−Series

Figure 3.4: Comparison of time-series reconstructed from gLV-estimated param-
eters. For each species, four sample paths are presented with high and low levels of process
and measurement error.



21

1

2

3

4

5

Species X1

P
ro

ce
ss

 E
rr

or

10−7 10−6 10−5 10−4 10−3

(a)

1

2

3

4

5

Species X2

P
ro

ce
ss

 E
rr

or

10−7 10−6 10−5 10−4 10−3

1

2

3

4

5

Species X3

Measurement Error

P
ro

ce
ss

 E
rr

or

10−7 10−6 10−5 10−4 10−3

1

2

3

4

5

Species X1

10−7 10−6 10−5 10−4 10−3

(b)

1

2

3

4

5

Species X2

10−7 10−6 10−5 10−4 10−3

1

2

3

4

5

Species X3

Measurement Error

10−7 10−6 10−5 10−4 10−3
0.05

0.2

0.75

3

10

45

170

650

2600

10000

MSE

Figure 3.5: Comparison of reconstructed time-series with differing numbers of
time points; gLV model. Each heatmap shows the MSE for reconstructions of each
species at varying levels of process and measurement error. Column (a) was estimated from
a time-series with observations taken every 0.001 steps, while (b) has observations every 0.01
steps.



22

there is a sharp spike in MSE, followed by leveling off again. This seems to be indicative of

the model failing to handle larger values of ξ, which can also be seen in the reconstructed

time-series themselves (Fig. 3.8). Indeed, Fig. 3.8 the reconstructed time-series show that

in cases where ξ = 10−4, reconstructed time-series level off at the mean almost immediately,

accounting for the relatively low MSE. Reconstructions were much more accurate at lower

values of ξ, where they were able to follow the trajectory of their respective species fairly

closely regardless of process noise level. These reconstructions, however, consistently trailed

off rather than finding the equilibrium.

3.1.6 Results of Estimation with the MAR Model

MAR-based Estimation with Absolute Abundance Data

Parameters estimated using the statistical MAR model followed similar trends to those

estimated with the gLV model, with some notable exceptions. The MAR model seemed

unable to estimate self-interaction terms regardless of error rates (Fig. 3.10). However,

estimated self-interaction terms were consistent, with variance between runs often in the

range of 0.001-0.1. Off-diagonal parameter estimates had higher percent error than those

found with the gLV model. Estimated self-interaction terms consistently had the wrong sign,

while estimated interspecies interactions had generally correct signs. When ξ was greater

than 10−4. Overall, parameter estimates from both models were more resilient to increases

in noise from process error than measurement error.

Similarly to the gLV estimates, we also evaluated MAR-estimated parameters through the

comparison of reconstructed time-series (Fig. 3.11; Fig. 3.12). When the initial time-series

had high levels of either process or measurement noise (σi > 4; ξ > 10−4), MAR-estimated

time-series were roughly as accurate as gLV-estimated time-series. When time-series were

reconstructed from parameters estimated from noiseless data, MSE fell in the range of 10-50,

roughly ten units higher than noiseless estimates from the gLV model.
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Figure 3.6: Median error in estimated bi,j for relative abundance systems with
varying levels of noise. The figure shows the percent error between values of bi,j used to
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Figure 3.7: Mean-square error in estimated relative abundance time-series derived
from data with only one type of error. Parameters were estimated by using the gLV
method on simulated time-series data. For this particular test, data were simulated with
only process (a) or measurement (b) error.
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Figure 3.8: Comparison of relative abundance time series reconstructed from gLV-
estimated parameters. For each species, four sample paths are presented with high and
low levels of process and measurement error.
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Figure 3.9: Comparison of reconstructed time-series with differing numbers of
time points; relative abundance gLV model. Each heatmap shows the MSE for recon-
structions of each species at varying levels of process and measurement error. Column (a)
was estimated from a time-series with observations taken every 0.001 steps, while (b) has
observations every 0.01 steps.
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Unlike the gLV-estimated time series, MAR time series exhibited a small, consistent dip

in MSE before steadily rising alongside increasing noise in the initial data. This appears

to be a consequence of assuming noise in the data when noise levels are in fact very low

(σi < 1; ξ < 10−6). Further, while Fig. 3.11 seems to show a large dip in MSE, this is

mostly a consequence of logarithmic scaling. At the low end of noise values, all but one

reconstructed MAR species trajectory had a median MSE value less than 10. The odd

trajectory out, species X1 with only process error, had a low-noise median of 22.3. None of

the reconstructed trajectories produced MSEs above 70 with σi and ξ in the above-specified

range.

Time-series constructed from estimated MAR parameters were also less resilient to reduc-

tions in time point density than their gLV-based counterparts (Fig. 3.13). MAR parameters

returned MSE levels on par with gLV parameters at high time-point density (step size 0.001

over a period of 0.3 units of time for a total of 300 points). When time point density was

reduce to a step size of 0.01 (30 total points), however, no constructed MAR time-series had

a MSE lower than 600%, regardless of noise in the system.

MAR-based Estimation with Relative Abundance Data

Similarly to the absolute abundance case, interaction parameters estimated using the MAR

model with relative abundance data yielded values for bi,j with high levels of MSE (Fig.

3.14). The average percent error in estimated interaction parameters was over 100% for off-

diagonal terms, and over 500% for values of bi,i. Estimated self-interaction terms consistently

had the wrong sign, while interspecies interaction terms had the correct signs at all noise

levels.

When only one type of noise was present, time series reconstructions were fairly accurate

(MSE < 1.25× 10−4) when process error σi was less than 3 or measurement error ξ was less

than 10−5 (Fig. 3.15. MAR-based estimates of relative abundance time series data did not

produce the same spike in MSE at intermediate noise levels that was seen in MAR-based
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Figure 3.10: Median error in estimated bi,j for systems with varying levels of
noise. The figure shows the percent error between values of bi,j used to simulate time-series
abundance data and estimations of each bi,j found using the MAR model. The simulation
was run at each level of process and measurement error 10 times.
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Figure 3.11: Mean-square error in estimated time-series derived from data with
only one type of error. Parameters were estimated by using the MAR method on simu-
lated time-series data. For this particular test, data were simulated with only process (a) or
measurement (b) error.
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Figure 3.12: Comparison of time-series reconstructed from estimated parameters
and simulated time-series with varying levels of error. For each species, four sample
paths are presented with high and low levels of process and measurement error.
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Figure 3.13: Comparison of reconstructed time-series with differing numbers of
time points. Each heatmap shows the MSE for reconstructions of each species at varying
levels of process and measurement error. Column (a) was estimated from a time-series with
observations taken every 0.001 steps, while (b) has observations every 0.01 steps.
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estimates of absolute abundance data (Fig. 3.11).

Similarly to reconstructions of time-series from relative abundance gLV data, reconstruc-

tions from MAR relative abundance data were not resilient to larger values of ξ (Fig. 3.16).

When ξ = 10−4, reconstructions leveled off at the mean almost immediately. Process noise

had a much smaller impact on reconstructions, which closely followed the species’ actual

paths and consistently leveled off at the mean. When the number of time points was re-

duced, MSE in time-series reconstructions increased significantly.
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Figure 3.14: Median error in estimated bi,j for systems with varying levels of noise;
relative abundance case. The figure shows the percent error between values of bi,j used
to simulate time-series relative abundance data and estimations of each bi,j found using the
MAR model. The simulation was run at each level of process and measurement error 10
times.
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Figure 3.15: Mean-square error in estimated time-series derived from data with
only one type of error; relative abundance case. Parameters were estimated by using
the MAR method on simulated time series data. For this particular test, data were simulated
with only process (a) or measurement (b) error.
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Figure 3.16: Comparison of time-series reconstructed from MAR-estimated pa-
rameters and simulated time-series with varying levels of error, relative abun-
dance case. For each species, four sample paths are presented with high and low levels of
process and measurement error.
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Figure 3.17: Comparison of reconstructed time-series with differing numbers of
time points, using MAR-estimated parameters and relative abundance data.
Each heatmap shows the MSE for reconstructions of each species at varying levels of process
and measurement error. Column (a) was estimated from a time-series with observations
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CHAPTER 4

Discussion

Our synthetic time-series read count data were developed by assuming underlying interac-

tions meant to mimic the community and error structure of real microbiomes. The gLV

model was chosen because it describes direct interactions between species and has been a

commonly used model to describe microbial communities [4, 5, 40]. If species i negatively

affects the growth of species j, it is because species i has some direct negative impact on

species j, for example as a predator-prey relation. However, it is not always the case that

all microbial interactions are direct in nature. Some microbial species may interact through

competition for a resource, or by consuming substances excreted by other species in the sys-

tem (e.g., cross-feeding) [41]. The gLV model may not be capable of emulating some types

of interactions within microbial communities [42]. The strengths of the gLV framework in

modeling interspecies interactions are the simplicity of the interaction terms and linearity

with respect to a focal species. These properties combined make the gLV model a powerful

tool for efficiently fitting large systems and facilitating easy interpretation of results.

We found that parameters estimated using the gLV model were consistently more ac-

curate than those estimated with the MAR model. Because the underlying synthetic data

was generated using the gLV model, it is expected that gLV-estimated parameters would be

more accurate. The accuracy of reconstructed time-series from estimated interaction param-

eters was most affected by the level of measurement error in the data. This discrepancy in

accuracy of estimates brings up an interesting point about the purpose of estimating a com-

munity: Is it more important to know the “true” underlying parameters, or is it enough to

find any set of parameters which adequately describes the system? If the goal is the accurate

estimation of the nature of interactions, then the MAR method of estimation appears insuf-

ficient. In cases where the interest lies in examining the trajectories of species abundance,

an inaccurate set of interaction parameters which describes a similar system may be enough,

particularly given the opportunities for analysis afforded by MAR modeling. Of particular
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note, Ives et al. [31] showed that MAR parameters describing species interactions for pop-

ulation abundances taken on a log scale can be used to assess an ecological community’s

resilience to perturbations, and its ability to return to stationarity after such a perturbation.

It is not unexpected that the parameter estimation methods presented here struggle

with large amounts of measurement error, as one-step ahead fitting with linear regression

assumes that the noise is purely from process error. Models exist to account for both process

and measurement error [43]. If data quality and quantity are sufficient, these so-called

state-space models can be fit using the Kalman filter; however, fitting such models can be

computationally expensive for large systems.

Another limitation which has become apparent when estimating parameters is the need

for the simulated data to fall in a specific numeric range relative to the equilibrium. When

the initial conditions were too close to the steady state, there wasn’t enough movement in

species’ abundance to accurately estimate parameters, and estimated trajectories were flat.

In contrast, if the initial conditions were too far from the steady state, the elastic net would

overfit the data. Relative stationarity is already a requirement for comparing gLV- and

MAR-estimated parameters for population dynamics, but this reinforces the importance of

data being near an equilibrium.

In our work, we calculated mean squared error by comparing the entire reconstructed

time series to the synthetic data. Alternatively, we could have calculated the mean squared

error by comparing an estimate for the data at time t + 1 given synthetic data at time t to

the synthetic data at time t + 1 for the entire time series. These two methods are different

because in the latter case, process error is not allowed to propagate over time. If interest lies

in the immediate future (e.g., predicting one time point ahead), then short-term prediction

may provide a high level of accuracy. However, short-term prediction will retain error from

the original dataset, which will lead to greater inaccuracies the farther out the predictions

go. Long-term prediction may be less accurate on a point-by-point basis, but may be more

successful at predicting trends in the behavior of species trajectories.
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While our examination of only one small synthetic system is in some ways limiting, it

allowed us to more thoroughly understand how different discrepancies in data affect results.

For example, species X1 covers a greater range of abundances than species’ X2 or X3, and in

the noiseless case hits the highest absolute abundance of the three species. Species X1 also

had higher levels of mean squared error. We may expect a similar trend in larger systems.

As the body of research surrounding microbiomes continues to grow, it becomes more

vital to understand the limitations of the methods used to quantify them. Here, we see

that models commonly used to assess microbial interactions can describe systems with a

high degree of accuracy, but struggle under certain conditions. Specifically, we see that both

the gLV and MAR fitting routines become less accurate in cases with even moderate levels

of measurement noise, or when time points become sparse. These are both shortcomings

that can be addressed at the data collection stage with more frequent sampling, or in the

analysis stage by choosing models which are better suited to handling measurement error.

As long as researchers recognize how even moderate decreases in data resolution can impact

the accuracy of their results, they can take steps to account for these shortcomings, or be

mindful of the potential error in their results.

The purpose of this study was to shed light on the accuracy of one-step-ahead fitting

for estimating parameters of gLV-based microbiome data. A valuable next step will be

examination of a wider range of simulated datasets with more variation in community size,

length and number of time steps, and so on. With a more thorough understanding of when

and how parameter estimation for microbiomes succeeds and fails, previous microbiome

studies can be reexamined with a more precise understanding of accuracy. The structure of

future microbiome studies can also be informed by a knowledge of the circumstances under

which accurate results can be obtained.
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