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Abstract

In my thesis I have tried to answer the following questions: What effects do different

patterns and amounts of light exposure have on Physarum fungitaxis and morphogen-

esis? Are the dynamics of Physarum and yeast interaction modulated by light? Can

we characterize the Physarum light response and its interactions with a red yeast such

that we can input a sequence of light into Physarum’s environment such that we can

increase or decrease the rate at which it consumes a red yeast (we have not genotyped

this micro-organism). Physarum morphogenesis and fungitaxis(how it interacts with a

red yeast) were measured using several week-long image sequences taken with flatbed

scanners. These images were segmented using the semi-supervised iterative pipeline

of U-Net and Ilastik. These semantic (as in we defined elements of the image that

should be labelled by the network) segmentations were used to measure the mass and

morphology of yeast, oats, and Physarum in all images. With these measurements, we

analyzed the interactions shared between Physarum and red yeast. We find that these

interactions occur at specific spatial scales. Running our data through the FNN-LSTM

autoencoder help us to better understand the dynamics of these interactions. We find

that Physarum and yeast interactions are succesional. Physarum maintains yeast as a

periodic food source by depositing a nutritive slime trail after it consumes most of the

yeast. With these observations we moved on to the other component of our research

program, how Physarum morphogenesis is influenced by light exposure. To answer

this question we trained a triplet loss embedding (a supervised clustering algorithm

that works on user defined/semantic labels). We were unable to generate satisfactory

clusters with this embeddinga/clustering algorithm. Individual plasmodia clustered

with each other in temporally coherent sequences within the latent space. Instead of

constructing a latent space with which we could understand photomorphogenesis and

photomovement we found a pathological feature of the Triplet embedding algorithm.

With this failure in mind we tried to construct a morphospace of Physarum morpho-

genesis. With this morphometric approach we were unable to find evidence that

photoexposure itself shapes Physarum morphogenesis over the course of a week. This

observation in some ways contradicts the existing literature in which Physarum avoids
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blue light(Whiting et al., 2014) and the peristaltic pumping that drives Physarum move-

ment is disrupted by light exposure(Block and Wohlfarth-Bottermann, 1981). It is

possible that Physarum habituates to the regime of light exposure and loses sensitivity

during the course of an experiment. To investigate this hypothesis, we propose new

experiments to better understand the temporal dynamics of photoavoidance (how

Physarum avoids a particular region of light) in contrast to photomorphogenesis where

its whole environment is illuminated. With these new observations, we may be able

to better understand Physarum photoavoidance and its relationship with fungitaxis.

We may also be able to characterize a decay in the Physarum photoavoidance response

that would in itself be an important result.
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chapter 1

Introduction

In the research described here, I attempt to characterize the fungitaxis and photo-

morphogenesis behaviors of the acellular slime mold Physarum polycephalum. We

assumed that these behaviours would be manifest through morphogenesis compa-

rably across Physarum of differing nutritional states and stress loads. If the Physarum

growth response to light differs between plasmodia (a single Physarum is called a

plasmodia) of differing hunger levels, then we unlikely to find a robust link between

light exposure regimes and programs of morphogenesis. On the other hand, fun-

gitaxis may be directly observed in the images. Quantifying how fungitaxis and

photoavoidance behaviours manifest across different nutritional-ecological and light-

exposure regimes might reveal some aspect of the biophysical computation performed

by Physarum to plan future growth. To measure these behaviors and their putative

interactions, I constructed an experimental and analysis pipeline. First images were

semantically segmented using U-Net (Ronneberger et al., 2015). Information was

extracted from the U-Net semantic segmentations using the Python image analysis

stack (Numpy, Skimage, and scipy) and ImageJ scripting. With this analytical stack I

attempted to characterize Physarum’s response to fungi (fungitaxis) as well as light

(photomorphogenesis). We attempted to correlate the light exposure regime (e.g

portion of the time light is turned on) to Physarum morphogenesis. Others have shown

that light exposure modulates the frequency of the peristaltic contractions that drive

Physarum morphogenesis over shorter time scales(Block and Wohlfarth-Bottermann,

1981),(Durham, 1976). We reason that if these changes in peristalsis persist for days

and weeks, they will manifest themselves as different morphogenic programs because

peristaltic pumping drives Physarum morphogenesis at fine temporal scales. Previ-

ously, changes in peristalsis have been observed across hours and minutes.(Block and

Wohlfarth-Bottermann, 1981),(Durham, 1976)

Across our experiments we wanted to test the hypothesis that Physarum translates

a sequence of light into a morphogenic program. To this end an experimental appara-
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U-Net segmentation is to measure
Physarum morphogenesis and 
Fungitaxis.(a)

Measurements are 
used to test 
hypotheses about 
Physarum
Photomorphogenesis.(c)

Measurements are 
used to test 
hypotheses about 
Physarum fungitaxis.(b)

F igure 1 .1 : A graphical abstract with cartoons of segmentation (a), measurement
of Physarum yeast ecological interactions (b) and a triplet loss embedding space of
Physarum morphogenesis (c). morphogenesis
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tus was built to expose Physarum to light and measure any response that this exposure

may elicit. An LED installed atop the Physarum enclosure, is randomly turned on or

off for five minute intervals. Images are also acquired at five minute intervals. By

choosing low or high threshold values for this light switch we create high or low

light regimes for Physarum. Across these regimes we may measure light exposure as

a sequence of binary elements (for example: On, Off, On, On, On). Each of these

elements corresponds to an image of Physarum in its experimental enclosure. This

random approach to light exposure was chosen over others for several reasons. It

was believed that any correlation discovered between Physarum morphogenesis and

a random light sequence would be more easily adapted to any control algorithm

that we ended up developing. It was believed that random light would allow us

to get a fuller accounting of Physarum morphogenesis. In any future experiments it

would be interesting to study the effects that a periodic light stimulus might have on

Physarum morphogenesis. Illumination and darkness could be cycled between over

a period of hours or days. Dynamics of plasmodial photomorphogenesis could be

quantified across time in relationship to dark-light and light-dark transitions. With

our random light program it is less obvious as to how easily tested hypotheses about

light exposures over a period of times correlation with Physarum morphogenesis

might be made. With these images and light measurements we tried to correlate

random light exposure sequences to Physarum morphogenesis. Ultimately we were

unable to identify any consistent Physarum morphogenic light response. In each of

the plates in which Physarum was grown, a ring of oats was placed along the margin;

an oat was placed at each hour notch on the face of a clock. The oat at 6 o’clock

was replaced with an oat colonized by a red yeast. Physarum was placed in the

center. While oats are a food source for both Physarum and the red yeast, there

is no reason to think they will inhibit fungitaxis or confound our measurements

of Physarum yeast interactions. The oats are small in size and do not isolate the

organisms from each other. Like whale fall in the deep ocean, oats support a web

of interspecies ecological interactions. It is also the case that our spatiotemporal

measurements of Physarum yeast interactions may be carried out in such a way that

regions around oats are not measured. With these measurements we can assess



4

the putative effects of light exposure on Physarum red yeast interactions. Varying

patterns and exposure times of blue light may effect patterns of Physarum morpho-

genesis, these changes in morphogenesis may have downstream effects on patterns of

slime sheath deposition and, yeast predation. Across experiments, the light exposure

regime was varied (as in light exposure per interval was more or less likely), these

experiments and their timelapse/timeseries of corresponding image light status pairs

were processed through a computational analysis pipeline (described in greater detail

below). With the products of this pipeline we pursued the ambitious goal of charac-

terizing Physarum photomorphogogenesis and fungitaxis with the hope that we could

test hypotheses about the relationship between photomorphogenesis and Physarum-

yeast ecology using neural networks. Across our attempts to characterize Physarum-

yeast ecology and its light response we drew heavily on literature that described

Physarum behavioral ecology, photomorphogenesis / photo chemistry, as well as the

literature on neural networks. Experiments were undertaken and data collected with

the overarching goal of creating a training corpus to train these neural networks.

A further (very ambitious!) ambition was to create a means to influence Physarum

fungitaxis with some sort of PID controller conditioned on a photomorphogenesis

embedding space. Obviously this goal was not met, but mentioning this should

provide some context as to why we ran so many experiments with a particular

configuration of Physarum, red yeast, and oats. This also explains the bifurcated

structure of the thesis with one analysis section focused on the analysis of Physarum

red yeast interactions and another detailing our attempts to characterize Physarum

light response. If we were to have succeeded we would have demonstrated that we

had created a robust and meaningful embedding of Physarum photomorphogenesis.

Germane background to these two analysis sections is provide in an overview of

Physarum biology as well as the computational methods we used to processs and

analyze the image data we generated. The introduction continues with an overview

of the neural networks we attempt to characterize Physarum photomorphogenesis

and red yeast interactions. Neural networks have recently become popular for mor-

phometric analysis. Networks have been used to characterize how the fine grain

structure of neurons correlate with broader neuron function and how patterns of
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spatial gene expression exist in the murine brain (which sorts of genes have the same

spatial patterns of expression). (French), (Schubert et al., 2019). These networks

learn to semantically cluster the data-label pairs they are trained with. In French

et al. images of gene expression in the murine brain are clustered with genes with

similar spatial patterns of expression clustered together in the embedding space. This

clustering gives us some idea of the relationships that the gene labels share as per

their spatial expression in the murine brain. In Schubert et al. Electron microscopy

(EM) cuboids are embedded based on the type of neuron they belong too. The

clusters generated by the embedding neatly separate EM cuboid subsections based

upon the functional type of neuron (the label class) they belong to. With this sort

of metric embedding technique the authors are able to demonstrate that neuronal

morphologies differ across scales (EM cuboids up to whole neurons). I hoped to use

similar methods to correlate specific regimes of illumination to different patterns of

Physarum morphogenesis. As Physarum migrates across its environment, it changes

shape as it looks for and harvests food(Oettmeier et al., 2018). As certain types of

EM cuboids are associated with kinds of neurons are certain Physarum morphogenic

motifs associated with a particular recent light regimes? How might different light

regimes correlate with the frequency and timing of morphological transitions? I

wanted to identify (with triplet loss in addition to other methods) biological pro-

cesses that may be involved with these transitions. The ways these morphologies

(encoded as images) might cluster in a photomorphogenesis space (labels from our

measurements of light exposure) would shed light on the processes that drive the

dynamics of Physarum morphogenesis.(Oettmeier et al., 2018), (Ray et al., 2019), (Alim,

2018) We also use Neural networks to characterize the interactions that Physarum

and a red yeast share. Using the FNN-LSTM architecture developed by William

Gilpin we try to learn the strange attrator dynamics of Physarum - yeast predator

prey interactions (Gilpin, 2020). With the aforementioned neural networks we can

test hypotheses about complex biological questions. With the triplet loss clustering

we can characterize how sequences of light exposure (across time) correlate with

Physarum morphogenesis. Training the the FNN-LSTM we can get a sense of the

spatiotemporal dynamics of Physarum - yeast interactions. To our knowledge we are
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the first to characterize Physarum fungitaxis and attempt to characterize Physarum

morphogenesis over a longer (over the coures of a week) time horizon. This has

implications that may be better understood after reading a summary of the research

done on Physarum morphogenesis and ecology as described below. The Thesis is

structured in five sections; the biology of Physarum morphogenesis is described, an

overview of the neural networks we used as well as other implemented computational

techniques is given, experimental design is described, and our results are presented.
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chapter 2

Physarum Biology

2 .1 physarum fluid flow

Physarum, in contrast to neural organisms, does not have a specific region from

which control emanates. (Alim, 2018) No one has identified the biochemical pro-

cesses/biological structures that drive Physarum’s interaction with its environment

as the brain and nervous system do in neural organisms, we do not know how

Physarum modifies the dynamics of fluid flow within its vasculature. Karen Alim,

in her foundational paper, shows that, across short time scales (tens of minutes),

Physarum morphogenesis is shaped by the fluid flow within its vascular network as

bioelectric signals that propogate through our nervous systemm shape our movement

on the scale of tens of minutes.(Alim, 2018) The approximate orientation of the fluid

flow in the endoplasm (approximates the cytoplasm of a bacteria) is organized in

a peristaltic wave. This flow directs growth in Physarum. (Alim, 2018) In the case

of Physarum a peristaltic wave is generated in a tube of actin, containing endoplasm

that undergoes radially symmetric contraction and expansion; moving fluid down the

actin lined tube. As the dynamics of cytoplasm flow change Physarum morphology

changes in kind. This is a result of differential diffusion of nutrients and organelles

contained in the endoplasm (These nutrients and organelles can be used to create

more actin lined tubules). Peristaltic contractions are organized by biochemical signals

present in the endoplasm. The signal(s) modulate(s) the rate of contraction across the

vascular network. Others have demonstrated that the vasculature can be arranged

in such a way that a logical statement can be evaluated from information contained

within the cytosol. (Whiting et al., 2014), (Tsuda et al., 2004). As the cytosol flows

through the vasculature it gives rise to a wide range of computations as documented

by Whiting et al. (Whiting et al., 2014). In the aforementioned paper, plasmodial

vasculature was grown so its constituent tubules were organized into a logic gate.

Each node of the gate was grown on an oat on agar atop a heating element. Heat is
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an attractive stimulus to Physarum. By heating certain nodes in these vascular circuits

the authors were able to approximate OR, AND, NOT, XOR, Half Adder, and Full

Adder gates. By using biosensors, the oscillatory electric activity (actin contractions)

of the connected protoplasmic tubes was measured and decoded. The Physarum

OR and NOT gates were able to provide an accurate output 90% of the time. The

other gates provided a correct output 60-70% of the time. As the vascular extent of

the gates grew their accuracy decreased. This paper demonstrates that fluid flows

of the Physarum protoplasm can approximate logic gates. This provides evidence

of Physarum’s computational capacities derived from its fluid flow. The physical

mechanisms of how Physarum uses fluid flow to grow and make the complex decisions

documented by Whiting et al. can be measured as they have been done by Alim.

The biochemical processes that shape endoplasmic flow and, over longer periods,

morphogenesis are unknown. Ray et al document how these unknown biochemicals

are transferred across the plasmodia as Physarum makes a choice.

2 .2 physarum taxis

Physarum taxis Building on Dr. Alims’ work, others have measured the peristaltic

contractions of Physarum’s vasculature and used these observations to approximate

information flow in the cytosol. Ray et al. hypothesize that some signal in the cyto-

plasm elicits a morphogenic response/ performs a computation (Ray et al., 2019). By

measuring peristaltic tubule contractions, Ray et al identify how Physarum organizes

fluid flow so that it can make a binary nutritional choice.(Ray et al., 2019) In experi-

ments by Ray et al, a plasmodial tubule is grown between two nutritionally distinct

food sources. Ray et al hypothesize that a solute contained within Physarum cytoplasm

contains some sort of signal that Physarum uses to coordinate contraction across its

vasculature. The dynamics of information transfer across the tubule are measured

by calculating the rates of contraction across the length of the tube over time. Rates

of contraction across the tubule are lower nearer to the higher quality food source

and higher near to the low-quality food source. Ray et al conclude that a signal is

propagated from the end of the tube with a low-quality food source to the end of the
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tube with a high-quality food source.(Ray et al., 2019) The fluid flow carries a signal

that over some time horizon organizes Physarum taxis to the food source. Physarum

distributes biological signals within its body to direct fluid flow. Physarum may also

leave behind signals in the environment as discussed in the next paragraph. Work in

Dr. Dussotours group has also shown that Physarum can perform embodied computa-

tion. Physarum can change its environment to more efficiently avoid negative stimuli

and forage for food (Boussard et al., 2019).Physarum, while migrating, deposits a slime

sheath.(Reid et al., 2012) This slime sheath, like many other cues in the environment

(incline, light, heat, nutrition source, and micro-organisms) are processed by Physarum

so that it can avoid them or move toward them. These stimuli direct Physarum

migration and more generally morphogenesis (Vogel et al., 2016). In Reid et al. (Reid

et al., 2012) Physarum were placed in an agar plate in which a food source was blocked

by an obstacle (a plastic block around a portion of an oat). In one condition the agar

was coated with slime-sheath, in the other condition the agar was untreated. Across

these two conditions, the time taken to reach the food source was measured. The

Physarum placed on a plate coated in slime-sheath took longer to navigate to the food

than its counterpart in the untreated environment, in a coated environment the slime-

sheath was a useless signal. On the other hand by avoiding the slime-sheath, Physarum

was able to navigate to food more efficiently. By modifying its environment Physarum

can better undertake complex tasks such as foraging. This observation clearly shows

that biochemical signals in the environment interact with fluid flow to shape Physarum

morphogenesis. While the aforementioned papers described the phenomenology of

Physarum morphogenesis other papers have suggestions as to the identities of the

biological processes that organize Physarum morphogenesis. A paper describing the

ultrastructure (electron microscopy images) of the Physarum plasmodia suggests some

of the possible identities of the biological signals within the cytoplasmic flow that

shape morphogenesis and aid in decision making as per Ray et al. The EM data

depicts clusters of organelles inside the endoplasm. (Rhea, 1966) These organelles in-

clude the endoplasmic reticulum and mitochondria. In one micrograph, mitochondria

are clustered at the edge of an extending plasmodial pseudopod (tip of a Physarum

tubule). Perhaps these mitochondria are involved in shaping actin dynamics that
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drive Physarum morphogenesis (laying new railroad track for the plasmodial express).

How are the mitochondria supplied with energy? Some portion of the dynamics

that drive Physarum morphogenic behavior are probably visible in the succession of

morphologies that Physarum transitions through as it interacts with its environment

and consumes and spends nutrients. These mitochondrial clusters might be explained

by morphological features of the pseudopod or might be associated with regions of

low flow. In light of (Ray et al., 2019), a story could be told where mitochondria

are being diffused from a region of low nutrition to a region with higher nutrition

via fluid flow as per (Alim, 2018). As Physarum migrates across its environment it

is lead by a region of actin synthesis/with less vascular structure; this is called a

growth front. A stationary or vascularized plasmodia might have a more complex

vascular morphology, whereas a migratory plasmodia has a less articulated vascular

structure with a more promminent growth front. These differences in flow may also

correlate with compositional differences in the cytoplasmic solute. As with multiagent

swarms, different Physarum morphotypes (migratory and sedentary) have different

multi-agent interaction types (Carrillo-Zapata et al., 2019). While unsimilar at first

glance multiagent swarms and Physarum share some similarities. Summary statistics

that describe the change in morphology over time are used to gain insight into the

behaviour of the emergent interactions between agents in the swarm. These sorts

of morphological summary statistics allow the swarm researchers to characterize the

ways in which the different parameters they plug into the programs organize swarm

growth. Like the aforementioned swarm researchers, we think of light exposure

regime (how much light has the Physarum been exposed to in the last hour) as a

parameter. We would like to characterize how different amounts and types(where

type is the random number generator that decides whether light is turned on or off)

of light exposure shape Physarum growth over time. We think of Physarum morpho-

genesis as a program that has light arguement that can be modified; we attempt

to characterize how changing this light variable affects the output of the Physarum

morphogenic program. Varying the amount of light exposure over the course of an

hour in our experimental system might be compared to changing the rate at which

signals diffuse in a multiagent swarm (the rate at which agents are able to communi-
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cate with each other). By modifying how signals spread in a multiagent swarm you

substantially alter their morphogenic behaviour. In Physarum these different types

of agents could be thought of as regions of the plasmodia in which the cytosol has

varying concentrations of organelle solute in the cytoplasm as per Rhea et al. Regions

with less mitochondria may be less dynamic than their mitochondria rich neighbours.

Mitochondria in this case could be thought of as sources of energy; as different

portions of the Physarum vein network interact with each other concentrations of

organelles and nutrients (including mitochondria) are moved around the plasmodia.

This differential diffusion of organelles and nutrients organizes morphogenesis in

Physarum as per Ray et al(Ray et al., 2019). It would be very exciting if this sort

of morphospace schema could be shown to be ueful in describing morphogenesis

and the putative (as described above) processes that drive it. It would suggest that

the rationale of multiagent swarms could be extended to other biological systems.

How do diffuse biochemical and biophysical gradients produce a complex suite of

behaviors in Physarum? Researchers of swarm/collective intelligence are interested in

Physarum’s ability to meet environmental challenges without any visible centralized

computation. (Carrillo-Zapata et al., 2019) These similarities might suggest that by

modifying biological substrates of computation with a stimulus such as light you

might be able to consistently control some facet of Physarum morphogensis (in the

context of multi-agent swarms you would change parameters governing growth).

This of course, would not be true if light effected Physarum morphogenesis by killing

off mitochondria; past a certain point the stimulus would have a different effect on

Physarum morphogenesis. We hypothesize that light exposure per hour is some sort

of paramater that can tune aspects of the program of Physarum morphogenesis with

out changing it.

2 .3 physarum interaction with microorganisms

Physarum interaction with microorganisms With regards to the behavioral ecology of

Physarum, we test hypotheses about the ways in which Physarum may interact with

other micro-organisms. We hypothesize that a red yeast eats the Physarum slime



12

sheath. In a more natural ecology, this sort of public good dynamic is common.

Bacteria (In our case a protist Physarum) produce metabolites that invite other micro-

organisms to grow near them. (Nadell et al., 2016),(Nadell et al., 2008) Physarum

have been documented living in and under rotting logs; rich ecosystems; hotbeds of

public good productio and consumption. Interrogating how Physarum interacts with

a red yeast may help us contextualize many observations made about (fungi)taxis

behavior in the lab. Working with image data we may characterize the spatiotemporal

dynamics of an interspecies interaction. In our analysis we borrow heavily from the

lexicon and methodology of ecology. Our experimental system is fertile for ecologists

who would like to understand patchy unmixed interactions more generally. In many

cases the dynamics of studied ecological systems work themselves out over times

scales on the order of years, or occur on the spatial scale of biofilms. Physarum and

yeast provide a toy ecology that has dynamics that work themselves out over the

course of a week or so and can be observed without a microscope. It is also the case

that Physarum and the order Mxyomycetes play an important role in the ecosystems

that they inhabit (as microvores) yet observations about their behavioral ecology are

few and far between.(Ing, 1994) Even in the existing Physarum fungivory literature,

the spatiotemporal dynamics of Physarum – microorganism interactions have not

been addressed in great detail. Fungivorous and bacterivorous behavior has been

observed across the class Mycetozoa (including Physarum). (Chapman and Coote,

1983), (Cohen, 1939). Chapman and Cohen observe that Physarum and other acellular

slime molds such as Badmania grow much more vigorously when they are placed in

an environment with yeast and other microorganisms. Others have observed that plas-

modia growing in a two-member culture survive longer than they otherwise would

and demonstrate a deepened behavioral repertoire (more dynamic growth).(Cohen,

1939), (Chapman and Coote, 1983) Cohen et al hypothesize that Physarum grown in

a two-member culture, consumes the yeast while the yeast breaks down the complex

carbohydrates locked up in the oats. In the context of our experiments, Physarum may

either utilize a nutrient-poor ring of oats, or invest energy in foraging for yeast. While

Physarum certaintly consumes a red yeast, the time and tempo of this behaviour has

not been characterized. Physarum and yeast could have a predator prey relationship,
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or the deposited slime sheath could introduce a succesional dynamic into this bipartite

ecological assemblage. By characterizing the interactions between Physarum and a red

yeast we may come to a better understanding of the dynamics of their relationship.

This would contribute to the sparse but interesting literature on Physarum’s behavioral

ecology. In addition to predator prey interactions with micro-organisms Physarum

has been shown to enter into symbiotic relationships with other protists. Waldo Lazo

has shown that, across many different Myxomycete (the class of organisms in which

Physarum belongs) – green algae species pairs, a symbiosis can arise. Lazo quantified

symbiosis by measuring the color of the Myxomycete across time. As algae grows

in the endoplasm the Myxomycete turns a shade of green. (Lazo, 1961) Gastrich et

al. observed that after several days albino Physarum plasmodia would take on a green

color. (GASTRICH and Anderson, 2002) Gastrich et al. have shown that growing

an albino variant of Physarum polycephalum in association with the photosynthetic

protist, Chlorella pyrenoidosa increases the longevity of Physarum from 5 to 10 days

to up to a month. Like Lazo they assess symbiosis by measuring the greeness of

the albino Physarum. They find it takes approximately one week for the plasmodia

to turn green. Gastritch et al. use a TEM to perform ultra-structure analysis. They

find the Chlorella within membrane compartments of Physarum polycephalum. The

authors hypothesize that Chlorella can provide Physarum with nutrients it produced

from Photosynthesis. Chlorella’s green pigment may protect the albino slime mold

from harmful illumination. Physarum as well as other Mycetozoa, may form intimate

beneficial relationships with many different types of microorganisms. Others have

not attempted to quantify the spatiotemporal dynamics of these sustained and unique

types of interactions. As we study the interactions between these two different species

(Physarum and a red yeast) we mainly focus on the morphogenesis of Physarum.

Physarum is generally more dynamic than red yeast. The Physarum vascular system,

what drives morphogenesis, and predation of the red yeast is easier to measure than

colonies of millions of microscopic organisms. We hypothesize that, over time and

space, the most desirable points in an environment change for Physarum as yeast

is consumed and consumes slime mold detritus (robust colonies of yeast are the

most desirable points). As we attempt to characterize the interaction between a red
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yeast and Physarum, we are guided by several questions about their shared dynamic.

How does a Physarum shape its plasmodia to most efficiently take advantage of the

moveable feast of red yeast? It would be interesting if a morphometric summary

statistic could be computed to quantify the fungitaxis of Physarum polycephalum. Such

a statistic would probably be useful in the world of swarm robotics where many para-

graphs have been recently written about the potential for swarms and decentralized

multiagent systems to robustly navigate environments with complex spatiotemporal

dynamics. Following this prompt we may ask: how does Physarum take advantage

of a red yeast across different types of morphologies (one with a large growth front

versus a vascularized tree) over the course of a week?

2 .4 behavioral ecology of the myxomycete

A recent monograph by Kataoka et al (Kataoka and Nakamori, 2020) investigates the

stereotypical slime sheaths that many Myxomycete species deposit as they migrate.

They demonstrate that different species of beetles in the genus Collembola may con-

sume plasmodia, or the deposited slime sheath, exclusively (In the monograph, each

of the two included beetle species consumes only one of the aforementioned). The

deposited slime acts as externalized memory in the Physarum as well as a source of

nutrients for other organisms. (Reid et al., 2013), (Kataoka and Nakamori, 2020) The

authors note that, in the case of the plasmodia consuming insect, the slime mold

is more likely to fragment - a single plasmodia splits up into smaller fragments.

By observing the behavior of Physarum as well as other Myxomycetes the authors

of the studies above make interesting and novel observations about myxomycete+

morphogenesis as well as the behavioral ecology of Physarum. In our work we

document a red yeast consuming a slime sheath. The slime sheath allows Physarum

to navigate through its environment, communicate with other conspecific plasmodia,

and serve as a nutritive source for a diverse array of organisms. Importantly the slime

sheath provides a means for Physarum to establish an ecological relationship with

other organisms.
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2 .5 dynamics of fungitaxis and photoavoidance

We hypothesized that by exposing Physarum to certain regimes of light exposure

we could influence its two-member ecology with a red yeast in an agar dish lined

with oats. Block et al. have shown that exposing Physarum to blue light affects the

frequency of the oscillatory contractions that shape Physarum morphogenesis (Alim,

2018), (Block and Wohlfarth-Bottermann, 1981). Andrew Adamatzky has shown that

plasmodial oscillation frequency is affected when (blue) light is turned on and off.

(Adamatzky, 2013). Continuously disrupting the oscillations of Physarum may broadly

influence morphogenesis by dampening growth and the rate of transport of organelles

and nutrients across the vascular network. These changes in growth and distribution

of organelles might privilege some morphological motifs over others. Other studies

such as (Briard et al., 2020) expose plasmodia to white and blue light (separately over

the course of two different experiments) for a few seconds. This is enough to bring

about a stress response in Physarum. We expose Physarum to blue light at intervals

of five minutes. It may be the case that the wavelength of light we use as well as

the long (five minutes) exposure intervals are phototoxic. If this is the case, and we

are poisoning Physarum with blue light, the light response we are trying to quantify

will be confounded by this progressive photopoisoning. It should be noted that not

all experiments were successful, sometimes Physarum simply does not grow. These

outcomes are anecdotally more common in experiments with higher amounts of blue

light exposure time. An avenue of inquiry that has not been addressed in the Physarum

literature which we are well-placed to investigate, is the time and tempo of Physarum

morphogenesis. Over long time horizons, how does Physarum grow and maneuver its

plasmodia in a dynamic environment? Physarum behaviour over longer time horizons

(days to weeks) is quite a young subfield, with only a few papers published recently,

none of which characterize Physarum’s fungitactic behaviours. When Physarum can

acquire resources how does it invest them in an environment with a mobile food

source? Are certain morphological motifs more common than others. For instance, at

the beginning of an experiment, one would expect to observe plasmodia organized as

a growth front. We assume that these different types of morphologies (vascularized vs

migratory, tree vs growth front) have different energetic requirements. By measuring
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F igure 2 .1 : Different morphotypes are characterized by different actin species
distribution and fluid flow organization. On the right we see a vascularized
plasmodia. On the left we see a migratory plasmodia.
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the mass of a growth front over time it might be possible to conclude that mass is

constant and that when Physarum is in this migratory morphology it is not using

nutrients to create more plasmodial area. Physarum has been shown to be efficient

at partitioning its morphology to meet complex static nutritional challenges. Perhaps

Physarum transitions between vascularized and migratory morphotypes to overcome

complex spatiotemporal nutritional challenges. In Figure 2 examples of each morpho-

type are shown. Migratory plasmodia have a large growth front and no visible veins.

Vascularized Physarum has ectoplasmic veins, connecting the plasmodia to different

sources of food. It is less mobile than migratory plasmodia. Morphotypes provide

us with a conceptual framework with which to build a morphospace. Physarum may

habituate to a stimulus and learn to ignore it. It is also the case that, as Physarum

navigates an environment it deposits a slime trail that may act to repel or attract

Physarum. In the following paragraphs we describe the current knowledge on these

two facets of Physarum behavioral ecology and how they might effect our efforts to

quantify Physarum morphogenesis and fungitaxis in a morphospace framework. As

Physarum adapts to and changes its environment, might it also be biasing itself to

certain types of morphologies?

2 .6 physarum habituation

Physarum habituation Recently papers have described Physarum’s ability to repress

its response to negative stimuli (such as salt and caffiene) if these stimuli are asso-

ciated with sources of nutrition. (Boussard et al., 2019) Papers have also shown that

Physarum can transfer this learned response to other plasmodia when it fuses with

them. (Vogel and Dussutour, 2016) The biological substrate of Physarum acclimation

seems to be different from its ability to compute shortest paths and physical processes

in morphogenesis as described by Ray and Alim.(Alim, 2018), (Ray et al., 2019) In

Vogel et al. plasmodia are conditioned to a particular stimulus. These conditioned

plasmodia may be cut up and fused with plasmodia that have never encountered the

relevant stimulus. As the conditioned and unconditioned plasmodia fuse together

they form a conditioned plasmodia. (Vogel and Dussutour, 2016). This behavioural
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response is driven by some biological signal contained within the plasmodial endo-

plasm. (Vogel and Dussutour, 2016),(Boussard et al., 2019). The habituation becomes

more pronounced the longer the Physarum is on the specific substrate. It would seem

that Physarum habituation is driven by the absorption of some environmental element

into the endoplasm. Because Physarum is unable to take light into its vasculature. We

hypothesize that global light exposure will elicit a consistent morphological response

(an hour of low light followed by an hour of high light induces a migratory phenotype

in Physarum). The above papers posit that a modified stimulus response involves

Physarum incorperating a stimulus such as salt into the fluid that flows through its

veins. Physarum morphogenesis is preceded by some biochemical processes, modifica-

tion of these processes perhaps by light could effect patterns of morphogenesis. Less

speculative is the fact that Physarum can modify its environment in ways that can

change its future patterns of exploration. Like habituation this behaviour could also

influence Physarum morphogenesis and confound our attempts to measure the effects

pf light exposure on Physarum morphogenesis.

2 .7 external memory in physarum

External memory in Physarum Recently papers have demonstrated that Physarum

may modify its environment so that it may better avoid obstacles and find regions

that contain food. Dussotour has shown that Physarum can navigate environmental

obstacles such as barriers around food, by depositing a slime sheath in areas that

they visit (Reid et al., 2013). When Physarum travels across its environment it leaves

behind portions of its actin skeleton and other unidentified components. Reid et

al. demonstrate that Physarum tends to avoid areas where they have deposited slime

sheathing. By avoiding previously explored areas plasmodia are more efficiently able

to explore their environment and navigate around obstacles through a process of

elimination (unproductive paths are entombed by Physarum slime sheath). Recently

in a monograph from Briard, et al. (Briard et al., 2020) the topic of external memory

and its relationship to slime molds deposition of its extracellular slime sheath was

further investigated. The new observations in (Briard et al., 2020), with Dussutour
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as a senior author, essentially correct the previous paper(Reid et al., 2013) also by

Dussotour. In the paper, the authors demonstrate that not all slime sheaths give off

an avoidant signal to other conspecific/clonal plasmodia. The signal of the slime

sheath is highly correlated to the stress state of the plasmodia. Well-fed, unperturbed

plasmodia leave trails that are attractive to other conspecifics. Stressed plasmodia

leave repellant slime sheaths. The authors show that Physarum, when given a choice

between regions explored by stressed plasmodia, regions explored by unexposed

plasmodia, and unexplored regions, will most likely go to the region with slime sheath

deposited by the less stressed plasmodia. Dr. Alim says in her paper ‘Fluid flows

shape organismal morphology’ that physical forces may feedback into biochemical

reactions to trigger complex spatio-temporal dynamics. . . currently more and more

observed in the morphogenetic(Alim’s spelling) processes.(Alim, 2018) It is possible

that a similar feedback loop could be created when Physarum consumes the red

yeast. As (Briard et al., 2020) shows, a well-nourished Physarum deposits an attractive

slime sheath. As the plasmodia migrate in the environment and consume yeast,

it might tend to leave more attractive slime sheath nearby sites of yeast predation.

This site of slime sheath deposition could be consumed by the red yeast as well

as serve as a future attractive stimulus. If not all slime sheath is consumed by

the red yeast, the sheath would attract the Physarum to the yeast once again. It is

tempting to hypothesize that this stigmergic slime sheath could serve as a substrate

for sustained successional ecological interaction. More ominously (for our attempts to

characterize photomorphogenesis) the spatial distribution of the slime sheath could

limit the morphological transitions Physarum can make by repelling or attracting

Physarum to specific areas of the dish. As times goes on in the experiment and as

more of the dish is coated with the slime sheath patterns of plasmodial migration

and taxis may become increasingly correlated with the spatial arrangement of the

slime sheath and canalized in a self reinforcing loop. This type of process may

confound traditional morphometric analysis. Aside from the external memory the

plasmodia creates with its slime sheath and the peristaltic pumping, there are a couple

of other biological processes that shape Physarum morphogenesis. These procceses

include actin synthesis and mechanotaxis. Both of these processes can be partially
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observed in the morphology of Physarum but clearly have a biochemical component.

In describing these processes we articulate additional ways biochemical processes

manifest themselves across longer timescales as morphogenic processes.

2 .8 physarum actin synthesis and taxis

Physarum actin synthesis and taxis In a 2018 paper by Oettmeier et al. “Form follows

function: Ultrastructure of different morphotypes of Physarum polycephalum”, the

ultrastructure of different plasmodial morphotypes are examined. (Oettmeier et al.,

2018) In the context of this paper, morphotype refers to the location of blebs along the

perimeter of the plasmodia. A bleb is a bulge in the membrane of a cell. In the case of

Physarum, a bleb can be thought of as the location of the growth front / leading edge of

the plasmodia. Oettmeier et al. choose to analyze three different blebbing geometries

in Physarum. The first is a microplasmodia; this type of plasmodia is grown in liquid

culture and is quite small. A microplasmodia may bleb anywhere on its surface. The

plasmodia exists in an environment different from the one we are interested in, so we

are not going to focus on it (liquid culture). The other two morphotypes; mesoplas-

modium and macroplasmodium are roughly divided into two different quadrants of

adhesion and blebbing. Each of these morphotypes moves in one direction. In the case

of the mesoplasmodium, the growth front/bleb/ leading edge is focused and singular,

while in the macroplasmodium the bleb is more diffuse and not contiguous along the

plasmodial perimeter. When the mesoplasmodia migrate all of its mass moves as one.

When macroplasmodia explores its environment the area of the plasmodia does not

remain constant; expansion occurs behind the macroplasmodial growth front creating

more plasmodia. Across the two morphotypes the synthesis and organization of

actin are also different. Oettmeier et al. describe two types of actomyosin structures;

endoplasm and ectoplasm. Ectoplasm is stationary, high in F-actin content, contractile,

solid, porous, and has a high viscosity. Ectoplasm forms the walls of the veins through

which the Endoplasm/cytosol flows through. (Oettmeier et al., 2018) Endoplasm

has high G-actin content, flows, is plastic, has no pores, and has a low viscosity.

Endoplasm flows through the ectoplasmic veins of Physarum. Endoplasm can be
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thought of as cytosol. (Oettmeier et al., 2018) These two states of actin organization

are not permanent and can be interchanged by sufficient pressure as well as by actin

polymerization or depolymerization. The Mesoplasmodium as it moves around its

environment maintains a constant size and has a well defined growth front, when it

migrates the whole organism moves as one (less adhesion). (Oettmeier et al., 2018)

In a macroplasmodium mass is created; as the growth front moves forward a layer

of solid ectoplasm is present at the leading edge and in its wake a membrane full of

endoplasm is left (more adhesion). Mass is created in the wake of the growth front.

These structural classifications based on observations of actin architecture provide a

useful framework to describe different sorts of morphotypes that we might encounter

in our fungitaxis experiments. By measuring the age, mass, and morphology of

plasmodia we can link these observations of form and function to behavior. From

these observations, we expect that environmental features that interact with the fluid

flow of the Physarum might influence taxis behavior.

2 .9 physarum mechanotaxis

Physarum mechanotaxis Murugan et al. (Murugan et al., 2020) demonstrate that Physarum

preferentially migrates to regions of an elastic medium that are under more strain. The

more compact and dense the regions are, the more likely the Physarum is to migrate to

them. The authors propose that the peristalsis that drives the fluid flow interacts with

a strain gradient created by the objects pushing down on the media in these regions.

Like a glacial stream going down a mountain wash, Physarum follows the path of least

resistance to the region with the greatest strain. Interestingly the authors show that

by inhibiting stretch sensitive ion channels involved in mechano-sensation they were

able to diminish the mass preference. For their analysis the authors use a boilerplate

random forest model where they feed in images of Physarum and predict where the

Physarum will end up going – to a region of high strain or low strain. To make sure

that they are not cheating, when training the model, the authors crop the parts of the

image that contain the masses, and also flip the images. These models have some

predictive capacity after a certain time point in the experiments. The ion inhibition
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data would seem to suggest that, at first, there is some sort of biochemical cascade that

can translate the vibrations (generated by peristaltic contraction) influenced by the

environment into a morphogenic response. This biochemical cascade theory would

also explain the improvement of the random forest model with time; after a period

of time the biochemical cascade mounts a morphogenic response that the random

forest can detect. Without this cascade, a morphogenic response cannot be initiated

and Physarum is less able to taxi toward regions of high mass and strain. Physarum

morphogenesis is driven by some sort of biochemical signaling regime in addition to

fluid flow and other physical mechanisms.
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chapter 3

Experimental design

3 .1 experimental pipeline

An experimental pipeline was designed to create a training corpus for the triplet

loss and FNN-LSTM neural networks. While these networks produced pathological

results we were still able to observe interactions between Physarum and a red yeast

across experimets. This pipeline was created by and improved upon by Zeth Dubois

and Leo Epstein. Zeth created the imaging apparatus and Leo designed the exper-

iments. Each experiment contained the same components and was arranged in the

same way. On a non-nutrient agar plate 12 oats were arranged on the perimeter

of the plate like numbers on the face of a clock. The oat at the 6 o’clock position

was innoculated with a red yeast. With this consistent spatial arrangment it was

beleived that we could more easily quantify the effect that varying the probability

of light exposure across time would have on morphogenesis. Oats were used as

food/fuel to prolong our observations of Physarum and a red yeast. While some

might say that oats interfere with our attempts to quantify Physarum yeast interactions

papers have shown that even in their presence interactions between Physarum and

micro-organisms occur and do so at a great rate.(Cohen, 1939). Oats are inert and

were consistently placed across all experiments, this consistency makes it unlikely

that they confounded our observations of Physarum fungitaxis. An imaging platform

was created to acquire time lapses of Physarum morphogenesis at a medium through-

put. With this scanner set up six plasmodia could be imaged simultaneously. Atop

these scanners we mounted LEDs which could turned on or off at intervals of five

minutes. The imaging platform was designed to be low cost and so it may be easily

modified to overcome an shortcomings we found in the generated data. Iterations

of the experimental pipeline solved various imaging and data processing challenges.

Physarum is grown in 100mm polystyrene petri dishes on non nutrient agar atop a

flatbed scanner(Canon Lide200). On top of the scanner a wooden template is placed
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with six spaces for polystyrene dishes. An open source API, SANE (Scanner Access

Now Easy) provides command line control of the scanners. A bash script using

the cron daemon was written to schedule scans at regular intervals. This script

was extended to control a blue light,turning it on and off at regular intervals. The

CRON daemon enables runtime light status assignment (on or off). Instead of a

regular petri dish lid, dishes are fitted with a blacked out funnel, its sloping walls

prevent condensation from forming. The black finish prevents outside light from

reaching the Physarum. A fitting ontop of the black funnel allows us to mount the

DIY RGB LED and expose Physarum to blue light. On top of these cones another

template is placed so they do not fall over or shift over the course of the experiment.

Cronjobs, light management, and file management are run using a raspberry pi.

BASH scripts, run on the pi, coordinate the aforementioned. Atop of everything

another cardboard enclosure is placed to ensure further stability as well as protection

from any other light source that might disrupt the experiments. The experimental

setup is shown in figure five. With our experimental set up we are able to observe

Physarum morphogenesis over periods of time substantially longer than reported by

others in the field.(Westendorf et al., 2018),(Reid et al., 2012) The actinic spectrum that

scanners use is of a very short wavelength and may have damaged the biomolecules

contained within the Physarum endoplasm. A plastic wavelength filter could have

been placed atop the scanner to filter our particularly short wavelengths.

3 .2 experimental overview

In our study, we observe Physarum morphogenesis across the scale of days. The

images we acquire to analyze Physarum morphogenesis are taken using a flatbed

scanner. Scanner images are segmented by hand using the tool ILASTIK.(Berg et al.,

2019) These hand segmented images are combined to create a curated ground truth

training set for a U-Net. Included in the training corpus are plates with a large

quantity of healthy plasmodia, plates with a large quantity of dead plasmodia, plates

with a large quantity of yeast, and plates in which these three classes interface. Plates

close together in time are also included. By including these close-in-time plate pairs
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F igure 3 .1 : A photo of the imaging apparatus.
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there will be more frame-to-frame class consistency. Despite these strategies, the

trained U-Net model is not perfect. The training dynamics of U-Net are not so well

understood. Measuring and understanding the dynamics of robustness in neural

networks is a very active area of research that requires some mechanistic knowledge

of the neural network learning process, which the field does not have. No optimal

U-Net training regime exists. We suppress U-Net frame-frame variability by taking

two adjacent frames and comparing them. Any pixel with the identity of Physarum in

both images is labeled Physarum in the denoised new image. Pixels pairs with only a

single Physarum identity are discarded/ changed to background. This process results

in fewer noisy pixels along class boundaries and fewer scanner artifacts. It is now

easier to identify short term trends. This filtering is carried across all time series. We

are also interested in measuring morphogenesis over longer temporal horizons (more

than a couple of frames). In this context other error suppresion rules are used. Across

fifty consecutive frames pixel values are summed along the time axis and the median

plasmodial age, variance, and mass are computed. Several frames at the beginning

and the end of the fifty frame window are used to make binary masks based on

presence or absence of pixels with the idenity of active plasmodia. These masks are

compared with a presence absence mask of Physarum across the rest of the temporal

window. These comparisions give us some metric of Physarum growth and retraction.

3 .3 measuring the macroplasmodial and

mesoplasmodial

How might Physarum adapt its morphology as it forages for a spatiotemporally vari-

able resource. Most if not all recent papers on Physarum morphogenesis have been

focused on analyzing Physarum growth and exploration in a static environment. I

believe that this static environment might provide a somewhat misleading picture of

the behavioral ecology of Physarum. An example of this is Physarum fragmentation

which has already been mentioned. Tiny fragments of plasmodia may be produced by

predation and eventually aggregate to form a mesoplasmodia. The dynamics of pre-

dation have a marked impact on Physarum morphogenesis. In an environment with
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a spatiotemporally variable but rich food source (a red yeast) a Physarum may more

efficiently forage in a mesoplasmodial form with a huge growth front then by using

a small pseudopod as macroplasmodia. Static versus dynamic environments may

favor different morphogenic regimes such as fragmentation or migratory behaviors.

Our experimental design increases our odds of observing novel forms of Physarum

morphogenesis and may also allow us to reinterpret older observations of Physarum

biology. We are especialy interested in quantifying and testing hypotheses dealing

with the behavioral ecology of Physarum polycephalum With our experimental pipeline

we attempt to create a datdaset that can be used to characterize Physarum and red

yeast interactions. We hypothesize that they interact in a way that can be captured

across the image time series we produce. We performed dozens of experiments

hoping that we would be able to test our hypotheses about blue lights effects on

Physarum taxis, and its theorized downstream effects on Physarum yeast interactions.

We expect that, in some cases, there should be a sort of predator-prey interaction

akin to a Lotka-Volterra model between the Physarum and a red yeast .Titrations of

light frequency per hour might effect the dynamics of this predator prey interaction.

A predator-prey interaction is feasable between these two organisms, as Physarum

consumes the red yeast, red yeast consumes the slime sheath that Physarum leaves

behind, and finally the Physarum migrates around the dish, leaving in its wake the

slime sheath which can be consumed by the red yeast. While this sort of interaction

could happen it probably won’t be observed across experiments with both yeast and

Physarum because unmixed systems have very chaotic dynamics. Physarum will not

always be able to find yeast to eat, and yeast will not be able to grow on inert

slime sheath. When the needs of the organisms are met interaction takes place

are met we may measure the dynamic via wavelet analysis. This is a technique

commonly used by researchers interested in analyzing an oscillating system such

as Lotka-Volterra. For instance, researchers studying plankton-rotifer interactions use

wavelet analysis to analyze the dynamics of this predator-prey pair.(Blasius et al., 2020)

Wavelet analysis provides summary statistics that can be used to compare Physarum

and yeast interactions across differing light conditions. In this masters thesis we

gambled on having enough Physarum-yeast interaction data that we could measure the
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interactions between Physarum and yeast to a degree that allows us to characterize the

light response in this system (by performing stastical analysis of the wavelet analysis

summary statistics). To characterize the complex morphogenic program of Physarum

across many experiments with heterogenous imaging conditions, and the effects that

fungitaxis as well as blue light exposure might have, it was neccesary to develop a

robust computational pipeline.
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chapter 4

Computational Pipeline

4 .1 computational pipeline

A computational pipeline was developed to measure and analyze how photo avoid-

ance and fungitaxis influence Physarum morphogenesis. Series of raw images contain-

ing several distinct plasmodia were semantically segmented using Ilastik and U-Net.

Ilastik interactive segmentation was used to create a training dataset for a U-Net

which would in turn segment all the data.(Berg et al., 2019),(Ronneberger et al., 2015)

Problems with the U-Net segmentations could be fixed with additional or modified

Ilastik segmentations. Once all raw time series were semantically segmented with

U-Net they were split apart into individual segmented time series that contained only

a single plasmodia. These separate segmented time series were then analyzed with

varying levels of success using neural networks such as FNN-LSTM(Gilpin, 2020),

Triplet loss(Hermans et al., 2017), and more traditional methods such as morphometric

feature engineering and wavelet analysis(Blasius et al., 2020). With this diverse set

of methods, we tried to first quantify Physarum morphogenesis, and then use the

measurements to better understand how photoavoidance shapes Physarum morpho-

genesis. How do different regimes of light exposure change the dynamics of Physarum

morphogenesis and how might changes in taxis effect Physarum predation of a red

yeast? f

4 .2 ilastik

Ilastik pixel segmentation was used to create and curate interactively labeled ground

truth masks. Ilastik is an interactive random forest classifier used for image analysis.

The workflow for Ilastik pixel segmentation is straightforward and fast. Portions of an

image are hand segmented by the user. These segmentation annotations are then used

by the Ilastik classifier to create filters with which it may classify the rest of the image.
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The user may add or remove segmentation annotations from the image used to train

the Ilastik classifier to improve its performance. Iterative annotation is carried out

until a satisfactory segmentation is created by Ilastik. A segmentation is considered

sufficient when a large portion of the active plasmodia are accurately segmented and

its vascular morphology well preserved. Holes in the plasmodial vasculature are

well defined, and blebbing across the perimeter looks plausible. To create the filters

required to train the Ilastik classifier, portions of our images were labelled as one of

the following classes: protoplasm rich Physarum, protoplasm poor Physarum, red yeast,

oats, and background. In Figure 3 examples of these classes and their annotations are

shown. The features used in conjunction with the user annotations to create the

segmentation were color intensity with a sigma of 0.3, edge with a sigma of 0.7, and

texture with a sigma of 0.7. Ilastik uses these features to “look for patterns” in the

curated annotations. Sigma refers to the width of the Gaussian kernel used to smooth

the image before application of the feature filters. The three sigmas chosen for each

filter were the smallest available. With a smaller gaussian kernel it is easier to produce

a semantic segmentation that faithfully captures the delicate structure of the Physarum

vasculature and more faithfully captures finer detail in the semantic segmentation.

The segmentation annotations used to train the ilastik classifier were constructed by

finding circular regions (with a radius of 31 to 61 pixels) of the image that contained as

many of the aforementioned classes, as possible and fully annotating them. By fully

annotating these circles we can define the boundaries between each of the classes

which may appear very similar. One such boundary would be between the red yeast

and depleted protoplasm. Both of these classes have the same translucent white color,

differing only in shape and texture. This approach to annotation advances our stated

goal of capturing the nuances of the Physarum vasculature by accurately capturing the

shape of objects from each class and the shape of the interface between classes as well

as the texture of the different features. Ilastik provides an easy and rich user interface

to carry out interactive segmentation with a powerful random forest backend.
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4 .3 decision trees and random forests

Until recently Ilastik has exclusively used a random forest backend; as its maintainers

say this family of algorithms are robust and can be trained with relatively sparse

annotations. As convolutional neural nets have become increasingly popular, the

maintainers have been building out backend infrastructure to allow the substitution

of the random forest classifier with a U-Net. A random forest belongs to a family of

algorithms called decision trees. A decision tree, is at its most basic, a collection of

binary tests organized in a tree structure. Each interior node of the tree is labelled

with a test. (Geurts et al., 2009) This test takes a value from the input and compares

it to a threshold. Each terminal node of the tree is labeled with a class. To classify

a new object it is propagated into the tree from the top node. When a terminal

node is reached, the class label of the terminal node is assigned to the object. In

the context of Ilastik, an object is a pixel. In a decision tree, the criteria for splitting

nodes, generally stated, is to find the test that creates leaves with the least variance

in the resulting nodes. By creating enough node-tests it is possible to classify all

training data correctly. When creating these trees it is essential to avoid overfitting.To

lessen the problem of overfitting, rules can be created to stop node splitting / tree

growing. Rules can also be created to reduce the number of nodes in existing decision

trees. To moderate tree growth during training, a halting rule can be used that

measures the increase in accuracy across cross-validation data sets as new nodes

are added. When a point of diminishing returns is reached with regards to node

creation and increasing CV accuracy; tree growth is stopped. The inverse of this

growth halting rule is used during pruning after a decision tree has been constructed.

When a tree is pruned we ask which nodes-rules may be removed with the lowest

impact on accuracy across cross-validation sets. Error pruning is the most classic

way of regularizing trained decision trees. Tuning the pruning and growth stopping

hyperparameters is a non-trivial task. The distribution of classes and their associated

features across different data sets make it challenging to know when you have reached

a plateau of accuracy. For instance, class imbalances might have a large effect on

the hyperparameters governing tree pruning and tree growth halting. Modifications

to classical decision tree algorithm have been made to avoid the thorny issue of
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hyperparameter selection. With a very large decision tree it is possible to classify

all data from the training set very well but have performance suffer greatly on unseen

data. This is called overfitting. Overfitting occurs when a model has learned spurious

features to classify the data. Related to the concept of overfitting is information gain.

Information gain, in the context of decision trees, refers to the way a rule affects the

class distribution in a dataset. The information gain of a rule can roughly be defined

as the amount it reduces class variance in the resulting leaf-nodes further along in

the tree. Information gain is not always an important means of measurement. If each

data point has a unique feature for a particular class then the information might be

very good, but the corresponding test could not be usefully applied to unseen data.

Ross Quinlan proposed that by taking into account the size of the branches created by

an upstream/up-tree test, you could qualify the information gain by some measure

of future use.(Quinlan, 1986). A decision tree with small branches will probably

be prone to overfitting whereas a tree with large branches and tests that produce

many data points will be more robust. Several algorithms solve the problem of hyper

parameter selection in decision trees. In random forests, bootstrapping and random

tree growth make the decision tree approach much more robust. By aggregating

many decision trees at once it is possible to substantially boost classification accuracy

without substantially increasing overfitting. Ilastik creates an ensemble or forest of

trees via the random forest algorithm. Each tree grown in the random forest is built

from a bootstrap sample. Each node of the tree is chosen by picking N attributes

randomly amongst all input attributes; an optimal test is found for each of these

attributes. The best rule generated from these tests is used to split the node. Repeating

this process across trees and nodes allows you to efficiently sample the feature space

and construct a robust decision surface. Boot strapping the training sample allows

you to combat the problem of class imbalance; producing datasets with differing class

compostions. Decision trees were very popular in the early 2000’s; lately, they have

been eclipsed in popularity by neural nets. Despite this, they are still being improved

upon and are an active area of research. Randomer forests developed by Joshua

Vogelstein’s group are a recent addition to this family of algorithms. Randomer forests

use random collections of linear combinations of features to improve accuracy and
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robustness. They achieve state of the art performance across one hundred different

data sets. (Tomita et al., 2019).

4 .4 u -net

While the ilastik classifier is quite robust across an image, there are several weaknesses

inherent in the method that make it difficult to use at the scale we require. These

issues include runtime of the classifier; when you add more training data-class/pixel

examples/nodes to the classifier, runtime(even during training!) can take minutes

to tens of minutes. Training a robust model is inhibited by memory and runtime

constraints. It is also the case that accuracy drops when images are classified by

random forests trained on different time series and scanners. This change in perfor-

mance may be associated with artifacts that are unique to the time series (plasmodial

thickness, vascular architecture, as well as the spatial organization of Physarum and

yeast interaction) or the scanner associated with the time series. To overcome these

issues we interactively train several Ilastik classifiers whose outputs we can collate

in a training corpus for a neural network with a U-Net architecture. This neural

network architecture has become very popular in the field of biological image analysis

recently due to its ease of use and good performance across many different semantic

segmentation tasks. By taking segmentations from many different Ilastik classifiers

we hope to create a more robust pixel classifier. Simply put we are able to quickly

train several Ilastik classifiers to accurately segment a single image. These images

can have widely differing abundances of semantic segmentation labels as well as

different brightnesses, luminosities and unique scanner artifacts. With a U-Net we

may distill these many random forests into a single more robust model. This approach

of training a neural network on somewhat noisy data may be considered as a form of

augmentation a powerful technique that increases the performance of neural networks

in terms of accuracy and robustness. In the following we describe the ways in which

the U-Net architecture and data augmentation interact to produce useful semantic

segmentations that can be used to measure complex biology from image data. A U-

Net is a fully convolutional neural network with an autoencoder architecture where
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pooling and upsampling layers of equivalent resolution are connected by skip connec-

tions.(Ronneberger et al., 2015) Pooling is a process in which the feature map (in this

case 2D array) is reduced along both axes by some factor. For example 10x10 => 5x5, if

the stride of the pooling is 2. In the aforementioned case a 2x2 convolutional window

will be applied across the 10 by 10 feature map and the average, maximum, whatever

other type of operation you want, can be selected 5x5 times. (Kauderer-Abrams, 2017)

Upsampling carries out the above operation in the inverse; interpolating a 5x5 2d fea-

ture map to a 10x10 feature map. Some evidence exists that pooling and convolutional

filter size help with translational invariance/ robustness but were secondary to the

importance that data augmentation played(Kauderer-Abrams, 2017). Skip connections

may allow the network to propagate information across the pooling and upsampling

bottleneck, allowing more layers in the neural network to learn. Drozdal et al observe

that by adding skip connections to a fully convolutional resnet they are able to get a

model to converge faster and have more layers in the model be updated with each

epoch.(Drozdzal et al., 2016) Many U-Net models, including the one used by us

implement extensive data augmentation. Augmentation strategies include rotating

images, shuffling channels in images, and rotating channels in images. Wang et

al. have shown that data augmentation (rotating the training images) can greatly

increase the performance of a U-Net. In the original U-Net paper the authors mention

that strong augmentation allows the U-Net to learn invariance to the deformations

introduced in the augmentations. (Wang et al., 2019) While important features of the

U-Net architecture have been shown to increase neural net performance, when used

together and separately, no papers have been published detailing how a U-Net works

and WHY its associated architectural features and training strategies are SO effective.

More broadly the impact of neural-net architecture and training regime on neural

network performance are not well understood. Despite this uncertainty about the

inner workings of the U-Net, we are able to successfully train one on a small number

(10 out of 10,000) of raw images and their Ilastik interactively annotated ground truth

counterparts. With a trained U-net we are able to generate semantic segmentations

of protoplasm-rich Physarum, protoplasm-poor Physarum, the red yeast, oats, and the

background across all experiments.
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F igure 4 .1 : In the side by side comparison of the two segmentation strategies and
the ground truth images we can clearly see that U-Net more faithfully captures the
vascular architecture of Physarum; active and inactive, than its Ilastik counterpart.
While neither segmentation algorithm can identify all of the yeast colonies, U-Net
captures many more than Ilastik.
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4 .5 data sorting

With these pixel-by-pixel semantic segmentations we set out to measure biological

processes associated with Physarum morphogenesis. Each of the six plates across each

scanner run were seperated into a segmented time series with each plate annotated

with the classes of plasmodia poor, plasmodia rich . . . . etc. To detect the circular

plates we used our knowledge of the experimental set up. In each scanner image

there is a light wooden frame which has holes for six polystyrene plates full of

media. These polystyrene agar dishes are under a black cone that shades Physarum

from outside illumination and prevents too much condensation from forming as

Physarum perspires (not much is known about Physarum respiration). These shade

cones create six black circles against a light wooden background. These six circles have

a similar radius and color. By using a hough circle detector with the radius, number

and distance between the centers of these dark circles as hyper parameters we find

the coordinates of each plate early on in the experiment and use these coordinates

to divide an image of six dishes into six separate images of one dish. Assuming

that these plates do not move around too much we may use the coordinates from

the hough circle detector to create six separate plasmodial time series for each six

plate scanner run. As each experiment has a slightly different placement of the

wooden frame the hough circle detector is run one time for each experimental run.

A substantial amount of work was put into creating an imaging platform with which

we could keep Physarum healthy for a substantial period of time, while also observing

its morphogenic behavior.

4 .6 data analysis and results

With the time series of single plasmodia, more involved computational techniques

were implemented to analyze the morphogenesis of Physarum as well as its fungitaxis

and photo avoidance behaviors. Some of these techniques met with more success

than others. A brief overview of the techniques used to analyze Physarum mor-

phogenesis includes metric learning, implementing an FNN LSTM, wavelet analysis,

and morphospace analysis. While not always successful or productive in the way
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that we wanted; these exercises provided valuable insight into the limitations of the

segmentation pipeline as well as the limitations inherent in the dataset (limitations of

experimental design). We observe for the first time Physarum fungitaxis behavior and

are able to propose new avenues of inquiry and contextualize old observations in a

new light. We were not able to find any correlation between light exposure regime and

morphogenesis. We observe particularly strong batch effects that may have hampered

our search for such a correlation. Nutritional status as well plasmodia origin may have

confounded our effort to correlate light exposure regime to Physarum morphogenesis.

4 .7 fnn -lstm

An analysis of Physarum fungitaxis and yeast predation was undertaken using William

Gilpin’s false nearest neighbour LSTM network.(Gilpin, 2020) We believed that we

could characterize the dynamics of Physarum and red yeast interaction by analyzing

changes in Physarum mass over time. We thought we might be observing an oscillating

ecological interaction (a predator-prey Lotka Voleresque type dynamic). These sorts

of interactions are classical examples of strange attractors. In the paper by Gilpin

“Deep reconstruction of strange attractors from time series” a recurrent autoencoder

with a regularizer that uses the false nearest neighbours statistic is described. Us-

ing this network you may reconstruct the latent space of a strange attractor from a

univariate time series without having to test for the appropriate time lag and the

most informative dimensionality of the latent space; these tasks are obviated by the

regularizer. To calculate the false nearest neighbours of a point you measure the

distance of the point to its neighbours in an n-dimensional space and then do the

same in an (n + 1) dimensional space. By calculating the ratios of the distances of

the point and its neighbours in the n n + 1 dimensional spaces you may find which

pairs are false nearest neighbours. Pairs with larger ratios are probably false nearest

neighbours and ones with smaller ratioes are probably real nearest neighbours. Using

this statistic as a regularizer, the neural network is able to create a more informative

embedding of a dynamical system by deemphasizing uninformative latent variables

(as measured by nearest neighbours attributed to that dimension). Using the FNN
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LSTM network it is possible to reconstruct and visualize the dynamics of the strange

attractor/ dynamical system from the time series Hankel matrix. Despite the neat

idea behind the neural network and its clever implementation we did not manage to

produce any informative embeddings using this method on univariate time series of

cumulative Physarum area and have a couple of ideas as to why. In Figure Six we

see that the FNN-LSTM was unable to reconstruct any strange attractors in the latent

space. This may be because there is no oscillating system present in the time series,

the data is nonstationary, or there are simply not enough oscillations present in the

time series for an informative latent space to be reconstructed. We have observed that

Physarum and yeast may in fact share an oscillatory dynamic, the fact that we could

not reconstruct the strange attractor driving this dynamic suggests that Physarum and

yeast interactions take place at a specific spatial scale. The univariate time series fed

into the FNN LSTM may contain several morphogenic behaviours of Physarum that

when observed together in a univariate time series cannot be distinguished.

4 .8 succesional dynamics of physarum and a red yeast

Succesional Dynamics of Physarum and a red yeast The spatiotemporal dynamics

of Physarum and a red yeast’s interactions are complex and difficult to capture. At

the start of each trial Physarum and Yeast are placed in different areas of the dish.

This means that there is usually significant time lag before the two organisms interact.

When Physarum interacts with yeast, we have observed that it does, in fact, consume it.

Physarum may invest the energy it has harvested from yeast, as well as oats into many

morphogenic programs. The two morphogenic programs which that are most easily

measure are growth and migration. Fitting these complex processes into a single

time series is a challenging task. Migration and growth might obscure Physarum

and yeast interactions in a univariate time series of Physarum mass. Physarum and

yeast interactions may take place in a very small portion of the dish. While we

have gathered data of Physarum sweeping over expansive lawns of a red yeast this

is probably not the most common form of interaction between the two species. Red

yeast takes a long time to grow and Physarum motility is influenced by age and
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F igure 4 .2 : Non stationary dynamics of Physarum growth make it difficult to
analyze using the FNN-LSTM architecture. First three plots are projections of the
latent space. The fourth plot is a plot of Physarum frequency across time. Across all
plots, time is encoded with the viridis palette. As time goes on the color becomes
warmer. There are approximately 3500 five minute intervals. each point is the mass
of a single plasmodia across time
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nutritional status. A more robust way to measure the oscillatory nature of Physarum

yeast interactions would be to measure the regions in a dish where Physarum and

yeast both occur across the whole time series. By doing so you are more likely to

be observing Physarum yeast interactions especially if there are sustained oscillations

between the two classes. Future work would take the spatial heterogeneity of these

interactions into account. In training our FNN LSTM, we are reminded that when

measuring a spatiotemporal process it is important to take into account both the

spatial and temporal dynamics. A succesional relationship could be obscured by other

biological processes in a univariate time series that measures Physarum mass over time

(no literature exists that says that Physarum can not migrate and consume yeast at the

same time). While no informative dimension reduction was obtained, the process

of creating and cleaning the plasmodial area time series with which the FNN-LSTM

model was trained, led to novel observations about Physarum-red yeast interspecies

dynamics. Across specific spatial scales, Physarum and the red yeast interactions have

an oscillating dynamic. By measuring areas where both Physarum and Yeast occur

across the time series, we can focus our measurements on the oscillating dynamic. If

we include areas outside this shifting cline of interaction, we may capture in our

measurements Physarum taxis or its behavior of approximating shortest spanning

trees between food sources. Neither of these processes are stationary or cyclical

as demonstrated by our failure to train an FNN-LSTM model that relied on these

assumptions. The real Irish GDP is concealed by corporate tax evasion, so too are red

yeast - Physarum dynamics concealed by Physarums deep behavioral repertoire and

the spatial diffuseness of yeast colonies. By taking the interaction zone approach, we

can be more confident that we are only observing yeast colonies that interact with

Physarum and Physarum’s fungitaxis behavior. We may better measure the time and

tempo of multi-species interactions. With this approach we observe across multiple

time series, from different experiments what would appear to be cyclical succession

between pixels of Physarum and pixels of a red yeast in the zone of interaction. In

Figure 7 we see that in clines of interaction, Physarum and a red yeast may have

an oscillatory relationship. Despite this success, further analysis (pertaining to the

effects of photoexposure on fungitaxis) could not be carried out due to the fact
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F igure 4 .3 : Top in gold: Frequency of Yeast in the successional cline over time.
Bottom in blue: frequency of Physarum within the succesional cline. An oscillatory
out of phase relationship is observed.

that Physarum and yeast interaction time series were not observed in enought time

series. Physarum has shown to be fungivorous (Chapman and Coote, 1983) and others

have engineered symbiotic relationships between Physarum and other protists (Lazo,

1961), (GASTRICH and Anderson, 2002). Having observed sustained successional

cycles between Physarum and yeast we can speculate on the substrate that drives

them. A recent paper by (Kataoka and Nakamori, 2020) mentions that a beetle may

eat the slime sheath produced by the migrating Physarum. The slime sheath is a

source of nutrition for the beetle. The clinal interactions between Physarum and

a red yeast may be sustained by nutritive qualities of Physarum slime sheath. As

Physarum leaves an area it deposits slime sheath. It is observed that the slime sheath

is subsequently consumed by a growing colony of red yeast. This red yeast is then

consumed by Physarum. While the appropriate experiments have not been carried

out to determine the exact nutritive properties of Physarum slime sheath. The slime

sheath provides a plausible explanation as to what drives this interaction. Physarum’s

slime sheath has also been shown to help clonal Physarum plasmodia navigate their

environment. Satisfied plasmodia leave behind an attractive stimuli in their slime

sheath and stressed Plasmodia leave behind a repellant stimuli in their slime sheath.

(Briard et al., 2020) We speculate that this slime sheath may have been consumed

by microorganisms as well as beetles. Our observation could add a new layer of

complexity to the biology of Physarum slime sheath. Following this observation we
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speculate that as Physarum navigates its environment it occupies specific regions of

a morphospace so that it may build a spatiotemporally optimal slime sheath to farm

the most microorganisms. Significantly we observe, for the first time, successional

dynamics between Physarum and another micro-organism.

4 .9 triplet loss

The next neural net approach used to analyze Physarum growth over time was a

triplet loss embedding. It was hoped that photomorphogenesis would encode certain

morphological motifs into plasmodia across different light conditions; by performing

a dimension reduction technique like triplet loss we would be able to get a better

understanding of how light exposure was correlated with Physarum growth and mi-

gration. Would different regimes of light exposure cluster in the triplet embedding

space? Training goes as follows: In each batch, P classes, and K images of each

class are randomly chosen without replacement. In each update three samples are

run through the network. (Hermans et al., 2017) These three samples are the anchor,

positive, and negative. The anchor is any data point you want to run through the

network, the positive is a data of the same class as the anchor, and the negative is

a data of a different class from the anchor. For each anchor, Hermans et al. choose

the hardest negative and positive data points within the batch. The hardest negative

is the point closest to anchor in the latent space that is of a different class than the

anchor, and the hardest positive is the point furthest away from the anchor in the

latent space of the same class. The triplet loss seeks to minimize the distance between

the anchor and the positive point and maximize the distance between the anchor and

the negative point. Over many updates, points are pushed around the latent space

such that points of the same class cluster together and points of different classes

are separate. By choosing the hardest negative and positive Hermans et al believe

that an embedding will be learned at a greater rate, and more stably as only the

most informative points are used. A triplet loss embedding clusters the input dataset

according to a specific variable such as light exposure or Physarum velocity per frame.

Using the triplet loss you may distill complex multidimensional relationships to lower
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dimensional ones. Triplet loss is a tool for classification problems where your class

examples are very sparse. Instead of learning features of each class specifically you

create an embedding in which all of the classes are placed together. Identifying

new data points involves feeding the point into the embedding and seeing with

which points it clusters. The class of these nearest neighbours is assigned to the

unknown point. An example of a problem where triplet loss may be used is be

person reidentification. Instead of creating a class for every single person you simply

create an embedding of all the people in your dataset. When you get new data

you run it through your network and you are given coordinates in the embedding

space. If you run a picture of Jose Conseco through your network he would be

located close to all the other pictures of Jose Conseco. As one of the premier power

hitters in major league baseball, you might expect Jose, or at least older pictures of

Jose to cluster with other baseball players. As the U-net learns to split an image up

into semantically labelled regions the the triplet loss can be used to embed elements

into clusters of semantically labelled classes. These embeddings are very useful for

characterizing relationships between your classes. The process of training triplet loss

networks and more generally metric learning loss functions is difficult. The training

space may collapse or the embedding may be effected by noise. If you do not have

enough informative triplets the embedding will be poor. In the following I discuss

the process of training a triplet embedding and touch on why ours failed. Ultimately

our attempt to train the triplet loss was unsuccessful. Despite this it failed in an

interesting way. Images of bioactive plasmodia were fed into the network and used

to predict the between frame difference in plasmodial pixels between the image and

the image that came before it in the same plasmodial time series. The embedding

produced by the triplet loss when visualized with UMAP contained temporally sorted

sequences of each time series. The triplet loss found that clustering the points by

time and individual plate was easier than clustering by frame-frame difference is

plasmodial mass. Looking at the embeddings in Figure 8, it seems that the Triplet loss

is using the similarity between subsequent points across time series to cluster the data

instead of some measure of plasmodial frame-frame difference. While it is possible

masks of bioactive plasmodia are not enought to learn a triplet loss embedding of
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F igure 4 .4 : In both embeddings, data points separate by individual plasmodia and
are temporally sorted. As with the other embeddings, time is encoded using the
viridis color palette. As time goes on, the point color gets warmer. Please zoom in for
easier viewing.



45

plasmodial frame-frame difference it is also the case that data augmentation strategies

can be used to emphasize plasmodial morphology instead of the correlation between

images in a time series. (Hermans et al., 2017) Hermans et al. and (Dosovitskiy et al.,

2014) Dosovitskiy et al. have shown that data augmentation allows convolutional

neural networks to learn more robust features. Several augmentation strategies that

might be used are image rotation, image warping, as well as pixel jitter. Another

augmentation strategy would be to strongly dilate, the pixels in the bioactive plas-

modia mask so that most if not all of the “real” non-noise bioactive plasmodia pixels

would be contained within one region. This region could be used to create a smaller

rectangular crop that could be applied to the undilated image. Using this cropping

strategy, in conjunction with the other augmentation methods might allow the triplet

loss to learn a more robust embedding of plasmodial velocity by removing long

range temporal correlations contained across a single plate. Ultimately these two

attempts at implementing neural networks have provided us with insight about the

appropriate spatiotemporal scales at which Physarum morphogenesis can be observed.

Physarum plasmodial growth should probably be measured across multiple frames

to overcome technical error. Physarum and Yeast, interactions occur at a local scale

and their measurement should reflect that. Our interaction zone observations also

suggest that Physarum morphogenesis and its behavioural modules can be localized.

Vascularized plasmodia can be largely stationary while putting out many smaller

growth fronts which would look very similar if we compared it to a much smaller

migratory plasmodia using the measure of plasmodial velocity in terms of measuring

univariate time series of plasmodial mass. By looking at the age of a plasmodia

across time we can get a much better sense of Physarum morphogenesis and be able to

differentiate between the two aforementioned morphotypes. By extracting summary

statistics of Physarum plasmodial age over time we can get a sense of the forces that

shape Physarum morphogenesis. We hypothesize that light and fungitaxis over some

time frame, effect Physarum growth and migration and have designed our experiments

in hopes of measuring their effects. It is also the case that Physarum morphogenesis

can be shaped by the internal state of the plasmodial for instance plasmodial nutrition,



46

stress, and perhaps even the humidity in the growth chamber can have profound

effects on growth.

4 .10 constructing a photo -morphospace

The presence of photomorphogensis is tested for by correlating the change in plas-

modial morphological state, with its exposure over time to blue light. If the dynamics

of plasmodial morphogenesis correlate with changes in the light regime, then photo-

morphogenesis may have taken place. Ultimately we were unable to find a correlation

between morphogenesis and light regime. Despite this I think some of the metrics

used to construct the morphospace may be useful in future data analysis. I also have

some hypotheses as to why we were unable to correlate plasmodial morphogenesis

to the light regime. The features used to quantify Physarum morphogenesis include

metrics such as plasmodia area, perimeter, plasmodial pixel median age, the variance

of per pixel plasmodia age, the plasmodial density across convolutional windows of

different sizes, the variance of plasmodial pixel age using a max projection across a

temporal interval, the variance in age across the same temporal interval and the mean

value of plasmodia pixels after a distance transform. While the pixel is an arbitrary

unit of measurement in the context of plasmodial biology - the model and resolution

of our scanners are consistent across all referenced experiments. By measuring the

median age and variance of per frame of plasmodial pixels we may come to a better

understanding of the cohesiveness of plasmodial morphogenesis. How many growth

fronts are present across the plasmodia? Are some portions of the plasmodia more

vascularized than others? While some Plasmodia migrate by moving their whole mass

across the environment, others send out growth fronts from a comparatively static

vasculature. Plasmodial per pixel variance in age may help us differentiate between

these two modes of movement. An increase in variance and mass would indicate

that parts of the plasmodia are old and others are new. A migratory plasmodia will

have a more constant pixel-wise age variance. As new plasmodia is created in the

growth front, older plasmodia decays. The plasmodia flux inherent in this migratory

mode of exploration dampens the variance in per pixel plasmodial age and maintains



47

a more constant mean per-pixel age. If light were to affect the time and tempo of

Physarum morphogenesis and exploration we may be able to detect it using these two

summary statistics. Ultimately we were not able to correlate light exposure regimes

with our measurements of morphogenesis. While there were promising aggregate

trends. For instance, as the frequency of light exposure over some time period rises,

the plasmodial density rises then falls. This trend in plasmodial density was not

present when individual plasmodia were measured. As light exposure changes across

time so does plasmodial nutrition. While the dynamism of Physarum morphogenesis

makes it hard to correlate it with a time-varying stimulus, the fact that it can habit-

uate to stimuli adds another layer of complexity. (Boussard et al., 2019) Boussard et

al. demonstrate habituation in plasmodia, some biochemical process might be altered

in a nonlinear way by repeated ligh exposure that would alter patterns of plasmodial

morphogenesis much like those hypothesized to play a role in habituation. The

Physarum light exposure-response may not be stable over time. Light exposure may

change the concentration of biochemical solutes in the Physarum cytoplasm, which

may have complex effects on morphogenesis. Following up on this work we plan on

observing Physarum in a differentially illuminated environment. When one half of the

plate is shaded, a photoavoidant morphological response can be measured by simply

counting pixels on the halves of the plate. We can quantify photoavoidance directly.

Like fungitaxis I do not expect all plasmodia to engage in photomorphogenesis the

same way. Previously mentioned work has described Physarum’s capacity for habitua-

tion. As Physarum habituates, repellent stimuli lose their effect. This may be true with

light exposure as well. By testing for photoavoidance in a half-illuminated dish we

may be able to quantify the temporal dynamics of Physarum photohabituation. If these

experiments demonstrate that photoavoidance exists and can be lost we may also find

that habituation occurs at different rates across different plasmodia depending on

their vascular architecture.
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chapter 5

Conclusion

5 .1 in summary

We were able to observe and characterize new biology in Physarum polycephalum.

We were able to characterize the successional dynamics of Physarum and red yeast.

While Physarum is most often cited for its capacity to approximate shortest paths

between different food sources, there are other facets of its behavior that warrant

attention. (Briard et al., 2020) shows that Physarum slime sheath can provide an

attractive or repulsive stimulus depending on the nutritive state of the depositing

plasmodia (well-fed is attractive and starvation is repulsive). These aids to navigation

help the Physarum more robustly navigate its environment in search of food. (Bous-

sard et al., 2019). We demonstrate that this deposited slime sheath may also act as

an attractant for micro-organisms. This observation expands the importance of the

slime sheath and betters our understanding of Physarum ecology. We are the first

group to characterize the spatiotemporal dynamics of Physarum interactions with a

micro-organism. Studying this successional dynamic we find an ecological function

for Physarum’s slime sheath.

5 .2 future work

Further research will better our understanding of Physarum’s habituative capacity to

light exposure. While it is probably the case the photoavoidance response will be vari-

able and may very well decay across time, we can directly measure photoavoidance

and likewise the variance in the decay of this behavior. Photoavoidance quantified as

the portion of plasmodial mass that is in the shaded half of the dish. Photoavoidance

is not neccesarily a temporal behaviour. Photoavoidance may be measured across a

single image, morphogenesis must be measured across several images of the same

plasmodia.
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