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Abstract

Current caching algorithms are based on heuristics or inflexible statistical mod-

els. In this thesis, I present the mixture model caching (MMC) algorithm. This

algorithm uses a flexible mixture of statistical models to describe the current usage

of a computer’s memory. MMC uses the expectation-maximization (EM) algorithm

to estimate all model parameters in the mixture before it evicts the page with the

smallest expected value. I present two mixture models – one that looks at the recency

and frequency of page references, and one that additionally looks at whether the last

reference to a page was for a read or for a write.

I use traces from real systems to demonstrate that MMC makes reasonable page

eviction decisions. I use published traces to compare both versions of MMC to the

least recently used (LRU) algorithm and the adaptive replacement cache (ARC) al-

gorithm. MMC outperformed LRU and compared favorably with ARC.
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Chapter 1: Introduction

Over the past 40 years, computational power has doubled roughly once every 18

months, but over that time, memory access speeds have only doubled once every 18

years [4]. Much of the world’s computer infrastructure is limited not by how quickly

a CPU can process data, but rather by how quickly data can be retrieved from a

backing store. Several techniques can mitigate the impact of this bottleneck, such

as data mirroring or space conscientious compiler optimizations [25, 18]. This thesis

focuses on a particularly effective technique: caching.

Caches are blocks of memory that are smaller and have faster retrieval times than

a backing store. For example, a cache can be placed in RAM while the backing store

is placed on an SSD or HDD. Caches store certain pages that have already been

referenced under the assumption that the pages will be referenced again.

Caches exist at many levels, such as between a CPU and the motherboard or

between the motherboard and RAM based main memory. Main memory is also

stored on a cache. Lower level caches, that is, the caches closer to the CPU, are

required to perform at a faster speed than higher level caches [23].

Not all memory can be constructed from the fastest type of memory for a variety

of reasons. First, faster memory tends to have a lower density, which means that the

physical volume required to construct a backing store constructed out of high speed

memory is prohibitive. Another issue is that faster memory is significantly more

costly to produce than slower memory. However, there are also benefits to having the

backing store for all of a computer’s data be on a non-volatile medium; whenver the

power fails, data will decay off a volatile medium but will persist on an HDD or SSD.

A caching algorithm, also commonly called a cache policy, decides which pages to

store and which pages to ignore. The “principle of locality” is the idea that programs

tend to concentrate their working sets to a particular subset of available memory for

a long period of time [1].
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Cache policies can take advantage of this in different ways. When a segment of

virtual memory contains machine instructions, those instructions are likely contained

in a loop, and a Least-Recently-Used (LRU) algorithm will tend to keep these in-

structions within cache. Another situation that benefits from the principle of locality

is when a program needs to scan a large file. In this situation, the memory addresses

near the end of the file are not likely contained within the cache. A prefetching

algorithm can vastly outperform an LRU in these situations.

Many effective demand-paging algorithms employ some form of heuristic to “mix”

multiple caching policies to better reflect the realities of modern systems. Caching

policies are generally specified by the system programmers and are “invisible” to

typical processes. While some cache techniques, such as the adaptive replacement

cache and the adaptive least recently/frequently used algorithm will adjust at runtime,

these approaches still use heuristical algorithms to adapt to moving hot spots and

changing working sets [13, 11].

This thesis offers two contributions to the field of memory caching. The first

contribution is that it presents the mixture model caching algorithm (MMC). This

algorithm uses statistical models to characterize the memory usage patterns of a

system, and using these models, it identifies the expected value for a page of memory.

The second contribution is that it demonstrates that statistical models provide a

flexible alternative to heuristical approaches.

The remainder of this thesis is arranged with a narrative structure. Chapter

2 describes many of the current caching algorithms. The chapter concludes with a

discussion of the approach employed by MMC. This is a high-level view that describes

the challenges that need to be handled by MMC.

Following this, chapter 3 derives the mathematical foundations for two variations

on the MMC algorithm. The first variation is inspired by recency and frequency

ideas that are employed by many of the caching algorithms described in chapter 2.
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However, the second variation takes advantage of the flexible nature of the MMC

algorithm to additionally account for whether the most recent request for a page was

to read from the page or to write to the page. Chapter 3 concludes with a high level

description of the coding choices used to translate the mathematical derivations into

the supplemental code for this thesis [3].

Chapter 4 presents data collected by the supplemental code [3]. The algorithms

derived in chapter 3 permit the computer to make non-intuitive decisions; the graphs

in chapter 4 illuminate much of this non-intuitive behavior. The purpose of chapter

4 is to demonstrate that MMC is capable of making reasonable caching decisions.

The chapter does not attempt to demonstrate that any one caching algorithm is

superior to others, but it does provide sufficient evidence to conclude that MMC is a

worthwhile topic for continued research.

Following these results, chapter 5 discusses why MMC is an exciting new paradigm

in caching. However, it also discusses the challenges that need to be solved in order

to prepare MMC for a production environment.

Finally, chapter 6 describes avenues of future work. This summarizes the tasks

required to prepare MMC for a production environment, but it also describes topics

of research that have the potential to improve the core MMC algorithm.
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Chapter 2: Background

This chapter describes two aspects of caching: the first aspect is the problem that

is addressed by caching techniques; the second aspect is a brief description of many of

the algorithms that are employed to handle caching. Finally, this chapter provides an

overview of the approach employed by the mixture model caching (MMC) algorithm.

A fundamental challenge encountered by many computing systems is that pro-

grams running on a computer’s CPU require data to operate. However, fetching this

data into the CPU’s registers is orders of magnitude slower than the operation speed

of modern CPUs. Furthermore, the amount of memory that can be quickly accessed

by a CPU is much smaller than the working set of most programs. Consequently, a

computer frequently needs to load a page that is stored on a slower, but more spa-

cious, medium. These mediums are arranged in a tiered structure, and are commonly

referred to as caches. When a cache does not have sufficient free space, a policy

decision must decide which page should be evicted to make room for fresh pages [1].

Different concerns govern which caching algorithms are useful for which levels of

cache. For a low level cache – that is, a cache that is very close to the CPU – faster

decisions are required. An example of an algorithm that is interesting primarily at

this level is the CLOCK algorithm [23]. Higher levels of cache are slower; therefore,

a computer is able to spend more time making page-out decisions. Since the MMC

algorithm requires a high computational overhead, this thesis focuses on algorithms

that are employed in higher levels of cache.

Virtual memory management systems can be split into reactive and proactive

approaches. Reactive memory management systems are commonly referred to as

demand-paging. In a reactive system, a page is only retrieved from the backing store

when a process requests the page. When this happens, if there is not enough space

in the cache, the algorithm must evict one of the pages currently in the cache. Any

future request for the evicted page generates a page fault. An algorithm that evicts
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a page from cache only when it needs to make room for a freshly-paged-in page is

referred to as a page-out algorithm. A variation of the demand-paging algorithm

employs a background daemon that wakes up when the cache is filled to a certain

capacity. At this point, the daemon evicts pages until the number of pages in the

cache falls below some threshold [12].

The second main variety of paging algorithm is proactive. This approach uses

prefetching to load pages into cache before a page fault occurs. Prefetching intro-

duces several concerns that do not exist in demand-paging systems. Among these are

coverage, which measures the fraction of page requests that are fulfilled via prefetch-

ing instead of demand-paging; accuracy, which measures the fraction of prefetched

pages that are used before they are evicted; and timeliness, which asks whether a

prefetched page was loaded into cache early enough that the page request does not

generate a page fault, and was prefetched early enough that it was not evicted before

it could be used [8].

Several virtual memory paging algorithms have been proposed. The efficacy of an

algorithm depends on two main factors. The first factor is the speed of the algorithm.

The second factor is how well the algorithm predicts future memory requests.

All algorithms must employ some technique to identify whether a page exists

within cache. FreeBSD uses a balanced binary tree, which takes O(|K|) time, where

|K| is the size of the cache, to identify whether a page is in cache [12]. Various popular

paging algorithms belong to different time complexity categories. For example, the

Least Recently Used (LRU) algorithm has a constant page eviction time, whereas

the amount of time it takes for the LRU-2 algorithm to evict a page belongs to the

class O(log(|K|)). If both of these algorithms use a page identification algorithm

that operates in logarithmic time, then both algorithms have a time complexity of

O(log(|K|)).
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2.1 Interesting metrics

In this thesis, several metrics for comparing page-out algorithms are used. This

includes the hit rate for various traces, the time complexity, and the space complexity.

The following sections describe different metrics.

2.1.1 Hit rate

The hit rate H is the ratio of cache hits C divided by the number of page requests

R: H = C
R

. The average speed A of a memory request depends on the hit rate. In a

simple system with uniform memory access (UMA), a memory request can be fulfilled

with one of two rates: the time for a cache hit TC , or the time for a cache miss TM .

In mathematical form, this is

A = H × TC + (1−H)× TM .

In general, the time needed to service a cache hit is much less than the time needed

to service a cache miss (i.e. TC << TM). Thus, when the hit rate is also modestly

low, we end up with the approximate relationship

A ≈ (1−H)× TM .

The hit rate is the most commonly used measurement to compare the efficacy

of two page-out algorithms since the hit rate summarizes how well the algorithm

performs over a period of time. However, the hit rate is not universal. Instead, we

can only measure the hit rate for traces. A trace is a sequence of page requests. A

trace can be randomly generated or recorded from a live system.
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2.1.2 Headway Between Faults (HBF)

This statistic measures how many page requests a caching algorithm is expected

to service before a page fault occurs. This information can help support (or discredit)

the notion that page requests are distributed according to some distribution. If all

page requests have an equal hit rate P , then the HBF statistic can be modeled with

a negative binomial distribution.

The HBF is of practical concern since all computer processes must be scheduled.

When a process generates a page fault, the system scheduler will generally perform a

context swap so that another process can use the processor. Many schedulers, such

as the FreeBSD ULE scheduler, use a priority calculation that favors processes that

voluntarily sleep while they wait for a page fault to be serviced [19]. This improves

the responsiveness of interactive programs.

2.1.3 Time complexity

As cache sizes grow, it is important to have a caching algorithm that scales well.

However, the two key time complexity requirements are (1) that the page-out algo-

rithm leaves enough CPU resources for other processes to run in a timely manner,

and (2) that the algorithm makes page-out decisions quickly enough that the process

does not add significant latency to the page-fetch process. As long as sufficient CPU

resources are available to a system, an asynchronous page-out process, such as the

FreeBSD page-out daemon, will negate this second time complexity requirement [12].

The time complexity is important, but only up to a point. The time complexity

of making a single page-out decision for several page-out algorithms is summarized

in 2.1. The two time complexities are O(1) and O(log(|K|)), where |K| is the size of

the cache. Even if an algorithm with a time complexity of O(log(|K|)) has a higher

hit rate than an alternative, it is not guaranteed that the algorithm will produce a
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speed-up over an algorithm with a time complexity of O(1).

2.1.4 Space complexity

All caching algorithms need to maintain some type of metadata. At a minimum,

the algorithm must maintain enough information that it can determine if a requested

page is resident in cache. However, this metadata is information that cannot be

evicted from the cache. Thus, if an algorithm requires less metadata, the effective

cache size is larger. The practical concern is that a large cache will typically have a

higher hit rate than a smaller cache. An algorithm with a higher space complexity

may be justified, however, if the algorithm also produces a sufficiently higher hit rate.

2.2 Benchmarks and traces

The Storage Performance Council (SPC) defined a standardized trace file format

[21]. The general information provided by a trace that follows this format is the page

identification, the size of the page request, an indication of whether the request is a

read or a write operation, and a time stamp.

This specification does not require that certain other relevant information be

recorded, such as the process ID or “madvise” system calls that provide the vir-

tual memory controller with usage pattern hints. The format does allow for ad hoc

additional information.

A trace can provide an example of how an algorithm might perform for a specific

application. It is not possible to draw universal conclusions about the performance of

an algorithm by looking at its performance on a single trace. However, while looking

at trace performance is imperfect, it is a widely used tool to benchmark page-out

algorithms.
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2.3 Memory reference models

One way to conceptualize a system’s paging behavior is to assume that all page re-

quests are drawn from some unknown distribution. Several models exist that attempt

to approximate this distribution. Some algorithms perform better on certain models.

For example, if all memory references are independent and identically distributed,

then the model is referred to as the independent reference model (IRM) [13]. Under

this model, the Least Frequently Used (LFU) algorithm will approach optimality.

Another model is the stack depth distribution (SDD), which assumes that there

is a discrete distribution with a fixed probability that the next page x can be found

in the stack at depth i. If the function H(x) specifies the depth, then the probability

mass function is Pr(H(x) = i) = pi.

A random reference model is a subset of the IRM. Under this model, all pages are

equally likely to be referenced, but since the domain of all pages is typically vastly

greater than the number of pages that can be stored in cache, the probability of a

cache hit is minuscule. The overhead of even a very cheap caching algorithm can

outweigh the benefit of the infrequent cache hits.

2.4 Page-out algorithms

A page-out algorithm is a reactive algorithm that will evict a page from cache

whenever a cache miss occurs. This section briefly describes some of these algorithms.

2.4.1 The MIN page-out algorithm

This algorithm evicts the page that has the longest time until it will be seen

again. Since this requires knowledge of the future, the MIN algorithm is only used to

post-process a trace.
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Algorithm Time complexity Space complexity Reference

MIN O(|K|2) O(|K|) [1]

LRU O(1) O(|K|) [1]

LFU O(1) O(|V |) [1]

LRU-K O(log(|K|)) O(|K|) [16]

2Q O(1) O(|K|) [7]

ARC O(1) O(|K|) [13]

LRFU O(1) to O(|V |) O(1) [11]

FBR O(1) O(|K|) [20]

LIRS O(1) O(|K|) [6]

Table 2.1: This shows the relative time and space complexities for the page-out
decision portion of various paging algorithms. The value |K| represents the size of
the cache while the value |V | represents the size of the virtual memory.

However, this algorithm obtains the theoretic optimal [1] hit rate for any trace so

it is useful to gauge the upper bound on performance for any caching algorithm.

2.4.2 Least Recently Used (LRU)

One of the most common paging algorithms is the LRU. This algorithm uses a

linked list to construct an eviction queue. If a page must be evicted, that page will

be found at the tail of the queue. If a page request generates a cache hit, the page is

first removed from the queue. The page is then placed at the head of the queue.

This algorithm is known to be optimal if the memory references come from a stack

depth distribution where the probability density of referencing any of the first |K|

pages is greater than or equal to the density of referencing any other page [24, 26].
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2.4.3 Least Frequently Used (LFU)

This algorithm generates an empirical density function. Whenever it needs to evict

a page, it will evict the page that has been seen the fewest number of times since the

trace started. This algorithm is optimal when all page requests are independent and

identically distributed according to an unknown static distribution [1].

2.4.4 Least Recently Used K (LRU-K)

The basic idea behind the LRU-K is that it will evict the page whose Kth most

recent access is the oldest [16]. It is possible to show that the LRU-2 algorithm is

optimal under the conditions that the algorithm is only provided with knowledge of

the times of the last two references to each page (up to some horizon) and that all

pages are drawn from a static distribution [17].

2.4.5 2Q

This approach uses two queues; one queue holds recently referenced pages that

have only been seen once while resident in the cache and the second queue holds

frequently referenced pages that have been referenced at least once after they were

paged into the cache [7]. This algorithm is an approximation of LRU-K algorithm

[13].

2.4.6 Adaptive Replacement Cache (ARC)

ARC uses the same idea behind 2Q where it maintains two queues; one for pages

that have not been referenced since they were paged into the cache, and one for the

pages that have seen at least one additional reference.

The trick to ARC is that the length of each queue is determined dynamically. The
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algorithm includes a ghost list that remembers which memory blocks were recently

evicted. If a cache miss occurs, but the reference would have been a hit if the ghost

entry had been in cache, then the length of the eviction queue is increased while the

length of the other eviction queue is decreased [13].

2.4.7 Least Recently/Frequently Used (LRFU)

This algorithm specifies a value for all pages within cache based on an exponential

smoothing function. This algorithm depends on a tuning parameter λ. For certain

values of λ the LRFU will model an LRU and for other values of λ it will model an

LFU [11].

The intuition behind the LRFU algorithm is that the more a page is used, the

more important it is, but that more recent references should count more than older

references. This idea is somewhere between the LRU policy where only the most

recent reference is used to inform a decision and the LFU policy where ancient ref-

erences to a page are assumed to be just as informative as recent references to a

page.

While the exponentially decaying reference counts allows this algorithm to dis-

count older references, there isn’t any model to determine what a decent decay rate

is. The most effective approach has been to collect a trace that is typical of a par-

ticular application’s workload and then select the decay rate λ based on analysis of

that trace.

2.4.8 Frequency Based Replacement (FBR)

This policy uses a series of heuristics to blend together the LRU and LFU policies.

Every page maintains a reference count. Furthermore, the algorithm uses three sec-

tions: new, middle, and old. A page accumulates references while it is in the middle
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or old sections, but it does not while a page is in the new section. Pages are only

evicted from the old section, which allows pages in the middle section enough time

to build up useful reference counts. Finally, the algorithm uses an exponential decay

to periodically reduce the hit counts [20].

As can be seen in these brief descriptions, most current caching algorithms are

based on heuristics. The FBR heuristic is based more on observations of paging

behavior than the more general 2Q or ARC algorithms. Even though the LRU has

been shown to be optimal for a specific type of SDD, it is still based on the heuristic

that recent pages are more valuable than older pages. The LRU-K algorithm modifies

LRU by making the assumption that it is more useful to approximate the rate with

which a page is requested than to merely know the most recent request for a page.

While the LRFU algorithm uses statistical ideas, it only uses them to blend together

recency and frequency measurements. This blending is not motivated by any data;

it’s a heuristic that takes two measurements and maps them down to a single heuristic

value.

The one algorithm that is heavily based on a statistical distribution is the LFU

algorithm. However, this algorithm is very inflexible and suffers from a severe bias

in its caching decisions. This severe bias is due to treating ancient references to a

page as being just as informative as recent reference to the page which causes the

algorithm to consistently favor pages that have once upon a time been popular.

2.4.9 Low Inter-Reference Recency Set (LIRS)

The low inter-reference recency set attempts to make eviction decisions based

on how frequently individual pages are referenced [6]. When the amount of time

between references is short, the algorithm places pages at the beginning of the low

inter-reference recency set (LIRS) eviction queue. When the page reaches a certain

age, it is placed at the beginning of the high inter-reference recency set (HIRS) eviction
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queue. Cold pages – that is, pages that do not exist in the cache as either resident

page nor as meta data stubs – are placed at the top of the HIRS eviction queue. This

placement is due to fact that the amount of time between the page’s most recent and

penultimate references is, as far as the algorithm can determine, infinite. All pages

in the LIRS are resident in memory, but only a few of the pages in the HIRS are

resident in memory at any time. The majority of the pages in the high inter-reference

recently set exist as ghost page stubs.

2.5 A statistical approach

An alternative to a heuristic approach is to construct a flexible statistical model.

Using measurements for each page held in cache, it is possible to use a model to derive

the probability that a page will be requested again. By multiplying this probability

by the cost of fetching a page, a caching policy will be able to evict only the pages

that have the smallest impact on the caching system.

However, several issues must be solved before this high level concept can be trans-

lated into machine code. One issue is the question of what measurements the algo-

rithm can take for each page. Some measurement of recency will be useful. A simple

way to measure recency is to compare the timestamp for the last request for a page

against the current timestamp provided by the computer’s clock. While this is simple,

and correlates with the stack depth distribution (SDD), it is not a perfect corollary.

An alternative measurement of recency is to use the location of a page in the SDD.

This means that the algorithm must be able to count the number of unique pages

that have been seen since a page was last requested. A linked list will not provide a

quick enough method to identify the index of a page that is deep in the list, but a

balanced binary tree that stores the sizes of subtrees can be used in lieu of a linked

list. This provides a quicker way to identify the index of a page in the SDD.

Another measurement is to compare how frequently a page has been requested
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relative to the other pages in cache. A simple counter for each page could provide

a sortable key that provides such a ranking; however, when should this count be

started? The easiest implementation is to start the count when a page is brought

into cache. However, it is also possible to use a rolling history or an exponential

decay for the hit count.

A core problem is to identify which of several measurements matters for a specific

page request. A convenient representation is to use a mixture model that is composed

of several source distributions where each source distribution describes only one of the

measurements taken for page requests. Whenever the algorithm takes measurements

for a page, it needs to identify which of these source distributions the page request

came from. However, this is censored information and can only be approximated. One

approximation is to identify the likelihood that any one of the source distributions

produces a page request with the observed measurements.

These source distributions need to be described compactly. Any of a large variety

of statistical distributions can be selected to represent a source distribution. Once a

family of distributions is selected, the algorithm needs a way to identify values for

the parameters that describe these distributions.

However, the estimate for the model parameters depends on which distribution a

page request is assigned to. To complicate issues, the distribution to which a page

request is assigned depends on the model parameters. A closed-form solution for

this conundrum only exists for some mixtures [22]. An alternative to a closed-form

solution is the expectation-maximization (EM) algorithm, which uses a hill-climbing

approach to produce approximations for the model parameters that converge to an

optimal value [2].

Finally, once the model parameters are identified, the algorithm is able to select

the page with the smallest expected value.

The next chapter explores solutions to these issues. The goal is to derive the
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details for an algorithm that is capable of making reasonable eviction decisions.
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Chapter 3: Methods

The crux of this thesis is the idea that a page request can be generated by one

of several sources. This section presents the derivations for the equations required

for this approach. It also discusses some of the design decisions and approximations

used to translate the theoretical results into the working algorithm presented in the

supplemental code [3].

3.1 Summary of notation

Presented here is a summary of notation that will be used in this section.

• N : Number of page requests.

• n: Index to specify a particular page request.

• R: Number of page requests recorded in a trace.

• r: Index to specify a particular element of the trace.

• D: Number of source distributions.

• d: Index to specify a particular distribution.

• i, j: Indexes to specify an arbitrary distribution.

• X: A specific page request.

• x: An arbitrary page.

• 1: Starting value of all indexes.

• τd: Multinomial probability weight of any given source distribution. That is,∑D
d=1 τd = 1.
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• θd: A vector of model parameters for the dth distribution.

• Bold font (e.g. τ ): A vector of variables. That is, τ = (τ1, τ2, ...)
ᵀ. However,

if enough indexes are available to refer to a single entry in a vector, I will no

longer use bold font.

• Zn: A 1 × D unit vector that has a 1 in location d if distribution d was the

source for page request Xn; otherwise Zn,d has the value 0.

• Z: Assignment vector for a page request X. Zd is the indicator that identifies

whether X came from distribution d. Zn is the assignment vector for a specific

Xn, while Zd,n indicates whether a specific Xn came from distribution d.

• Ẑ: A stochastic vector that is an approximation of Z. While the entries of Ẑ

are not restricted to the set {0, 1}, the values satisfy Ẑd ≥ 0 and
∑D

d=1 Ẑd = 1.

• Hd : X → y: A function that takes a page request X and produce a mea-

surement y. The notation Hd(X) is used for these functions. For example, the

function H could map all page requests X to the number of unique pages seen

since page X was last requested. In another example, the function range of H

could be the categories {read,write}.

• 〈Xn〉: The trace sequence of page requests.

• 〈Zn〉: The trace sequence of source distribution for each page request.

• 〈Xn,Zn〉: The trace sequence of page requests and assignments.

• C : x→ R+: A function, notated with C(x), that identifies the cost of fetching

page x from the backing store.

• Kn: The set of all pages x that are resident in cache after the nth page request.

• |Kn|: Number of pages held in cache after the nth page request.
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• |K|: The size of the cache.

• Vn: The page evicted after page request n, if a page is evicted.

• Accentˆ(e.g. Ẑ): An estimate.

• Accent¯(e.g. Z̄d): An arithmetic average.

3.2 The model

Assume that a page request X for a page x can come from one of D source

distributions and that these sources are independent of each other. If f represents a

probability mass function, then

Pr(X = x) =
D∑
d=1

τdfd(x|θd) (3.1)

where τd represents the probability that page X is drawn from the dth distribution,

and θd is the collection of model parameters for fd. The values τd are weights from a

multinomial distribution with τd ≥ 0 and
∑D

d=1 τd = 1.

For any page request X, let Z be a 1 ×D vector that contains a 1 at location d

if X was drawn from the dth distribution and a 0 everywhere else.

Let Kn be the set of pages in cache after the nth page request and let the func-

tion C(x) represent the cost of fetching page x from a backing store. If the model

parameters τ and θ are known, then if a page must be evicted from the cache, the

optimal choice Vn is

Vn = arg min
x∈Kn

C(x) Pr(X = x). (3.2)
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3.2.1 An illustrative example

Suppose that we have a cache K that can hold four pages. Now, suppose that

at some time n, we have Kn = {42, 1234567891, 1390, 4292014}. These four values

represent unique logical addresses. Now assume a two-source mixture distribution

with two measurement functions, H1 : x → 0, 1, 2, 3 and H2 : x → 0, 1, 2, 3. The

function H1 is the measurement of a page’s location in the SDD; that is, it identifies

how many unique pages have been seen since the page x was last seen. H2 is the

page’s frequency rank. If H2(1234567891) = 0 then no pages have been requested

more frequently than page 1234567891.

Now, let the probability mass functions be as follows:

f1(x) =



8
15

if H1(x) = 0

4
15

if H1(x) = 1

2
15

if H1(x) = 2

1
15

if H1(x) = 3

and f2(x) =



1
2

if H2(x) = 0

1
3

if H2(x) = 1

1
6

if H2(x) = 2

0 if H2(x) = 3

(3.3)

Let τ1 = 3
4

and τ2 = 1
4
. The values H(x) will need to be measured for all pages x ∈

Kn, but table 3.1 provides one possible set of measurements. Given this information,

we can make all page eviction decisions. Note that the sum of the expected values

adds to 1. This does not eliminate the possibility of a cache miss; however, if a cache

miss does occur, it means that the model is inaccurate.

3.3 Identifying the mixture weights

In order to use the model in equation 3.1, we need to know the mixture parameters

τ for all component distributions in our mixture distribution. We also need to know
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x H1(x) H2(x) f1(x) f2(x) τ1f1(x) + τ2f2(x)

42 0 3 8
15

0 3
4
× 8

15
+ 1

4
× 0 = 0.4

1234567891 1 1 4
15

1
3

3
4
× 4

15
+ 1

4
× 1

3
= 0.283

1390 2 2 2
15

1
6

3
4
× 2

15
+ 1

4
× 1

6
= 0.142

4292014 3 0 1
15

1
2

3
4
× 1

15
+ 1

4
× 1

2
= 0.175

Table 3.1: This is a small example of a mixture model. If the algorithm needs to
evict a page, it will choose page 1390 since it has the smallest expected value. Note
that this is neither the oldest nor the least frequently accessed page. It is, however,
the most logical eviction choice since the cost of retrieving the page multiplied by the
probability of needing the page in the near future is small.

the component distributions fd and θ, the model parameters that describe the shapes

for the component distributions.

We prefer to use the maximum likelihood estimates for τ and θ; however, we need

a way to express the likelihood of a single event X. Recall that the vector Z is a unit

vector that identifies the source distribution for observation X.

L(X,Z|τ ,θ) =
D∑
d=1

Zdτdfd(X|θd) (3.4)

L(X,Z|τ ,θ) =
D∏
d=1

(τdfd(X|θd))Zd (3.5)

Equation 3.4 is the weighted arithmetic mean, while equation 3.5 is the weighted

geometric mean. We will eventually use the estimate Ẑ ≈ Z where the entries in

the 1 × D stochastic vector Ẑ still sum to 1, but where the individual entries are

no longer constrained to the set {0, 1}; thus, there is a practical difference between

equations 3.4 and 3.5.

Since equations 3.4 and 3.5 are equivalent for any unit vector Z, we are free to

choose either, but this choice dictates the technique used to estimate Ẑ. I have chosen

equation 3.5, as it is easier to work with the log-likelihood of that expression.
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The full likelihood is

L (〈Xn,Zn〉 |τ ,θ) =
N∏
n=1

D∏
d=1

(τdfd(Xn|θd))Zd,n (3.6)

and the log-likelihood is

logL (〈Xn,Zn〉 |τ ,θ) =
N∑
n=1

D∑
d=1

Zd,n (log(τd) + log(fd(Xn|θd))) . (3.7)

In section 3.4, I outline an approach to identify the model parameters. In section

3.5, I provide details for 2 different mixture models.

3.4 Using the EM algorithm

One approach estimates the model parameters τ and θ via the EM algorithm

introduced by Dempster et. al. [2]. This algorithm uses neutral starting estimates

τ (0) ≈ τ and θ(0) ≈ θ. Using the estimates from step (t), we can identify the model

assignments
〈
Ẑ

(t)
n

〉
for the observations 〈Xn〉. We then use these model assignments

to estimate τ (t+1) ≈ τ and θ(t+1) ≈ θ.

This defines an iterative process where the likelihood L(〈Xn,Zn〉 |τ (t),θ(t)) con-

verges to a local maximum [27]. If the starting estimates are appropriately chosen,

the local maximum is also the global maximum and the estimates are arbitrarily close

to the maximum likelihood estimates.

While this is a potent algorithm, it does have a few drawbacks:

1. The EM algorithm requires access to the trace 〈Xn〉. Since a computer can

run indeterminately, the value N might be impractically large. Since it is not

practical to maintain the full trace, we need to maintain the rolling history 〈Xr〉,

where the length of the sequence 〈Xr〉 is R and where R < N . This introduces

the tuning parameter R. The setting for this tuning parameter affects the
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robustness of the model parameter estimates and how quickly the algorithm

adapts to changes in the model parameters.

2. While the EM algorithm typically converges within a few iterations, the size

of the trace R is typically some multiple of the cache size |K|; thus, it is too

expensive to run the EM algorithm every time we need decide which page V to

will evict.

3. Choosing good values for τ (0) and θ(0) can be difficult [9]. Good selections

cause the EM algorithm to converge more quickly, while poor selections cause

the algorithm to converge to degenerate local optima.

One mitigation of the issue presented in item 2 is to run the EM algorithm only

periodically. The frequency of EM algorithm runs is another tuning parameter. If

model parameters are updated too frequently, the updates dominate the cost of page

eviction; however, too-infrequent updates adapt too slowly to changes in the model

parameters.

One control is to run the EM algorithm after log(R) page requests. The expression

R|K| can be used to indicate that the value R is a function of the cache size |K|. Big

O notation can be used to identify the cost of using the EM algorithm:

EM(〈Xr〉) = O(log(r(|K|))

= O(log(|K| ∗ c)

= O(log(|K|)

A reasonable approach to address the issue in item 3 is to start the EM algorithm

by assigning Zd,r = 1
D

, where D represents the number of mixtures in the model. This

has the interesting effect of making the initial estimates for each θd take the same



24

values as if all items in the trace 〈Xr〉 came from the dth distribution.

3.4.1 Using a rolling expectation algorithm

Rather than treat our estimated model parameters as constants between invoca-

tions of the EM algorithm, we can instead use an incremental algorithm to modify

model parameters [15]. Since we can only maintain a limited trace of r entries, when-

ever we process a page request, we can account for the effects of adding the new item

and removing the old item.

An example of this algorithm is presented in section 3.5.1.

3.5 Examples

These examples are selected to demonstrate the versatility of the MMC approach.

3.5.1 A mixture of LRU and LFU policies

Many existing caching algorithms approximate some combination of recency and

frequency measurements [13, 7, 11, 16]. However, rather than use heuristics to make

decisions based on these measurements, we can use equation 3.1 to specify a general

mixture model for the page request behavior, and based on recency and frequency

measurements, we can use the EM algorithm to pick optimal model parameters.

We first need to choose the distributions with probability mass functions fd. I

arbitrarily choose to use the geometric distribution Geom with

H(X)|θ ∼ Geom(θ) and Pr(H(X) = y) = θ(1− θ)y, y ∈ {0} ∪ R+ (3.8)

to model both the stack depth distribution (SDD) and the independent reference
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model (IRM) distribution. Aside from the simplicity of the math, I am not aware of

a compelling reason that a mixture of geometric distributions serves as a better model

than, say, a mixture of a Poisson distribution for the SDD and a negative binomial

distribution for the IRM.

Some potential problems exist when trying to use the geometric distribution Geom

to model the IRM. If items are sorted with the elements of highest probability first,

then the geometric distribution specifies the probability that an arbitrary page x will

be found at the H(x)th location in the list. However, under the IRM, how should we

order the pages in virtual memory so that we can talk about the first, second, and so

on? The approach I use is to rank the pages based on the estimated number of IRM

requests seen in the last r requests.

If we let Hd(x) be a function that identifies the location of element x in the dth

distribution, we can write the probability mass function as

Pr(X = x) =
2∑
d=1

τdθd(1− θd)Hd(x). (3.9)

It does not matter to this derivation if we decide that the SDD will be distribution

d = 1 or if we decide that it will be distribution d = 2. However, in order to clarify the

discussion, I will use the convention that d = 1 refers to the stack depth distribution

(SDD) while d = 2 refers to the independent reference model (IRM).

In the expectation (E) step of the EM algorithm, we assign each page request X

to a distribution d using Ẑ
(t)
d,n = E(Zd,n|τ ,θ). We treat the values τ (t) and θ(t) as

known constants. To begin the derivation, we can use Bayes theorem to express the

expected value of Zi,r (in this case, i ∈ {1, 2}):
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Ẑi,r = E(Zi,r) (3.10)

= Pr(Zi,r = 1|Xr) (3.11)

=
Pr(Xr|Zi,r = 1) Pr(Zi,r = 1)

Pr(Xr)
. (3.12)

All of these factors are known:

Pr(Zi,r = 1) = τ
(t)
i (3.13)

Pr(Xr|Zi,r = 1) = θ
(t)
i (1− θ(t)i )Hi(Xr) (3.14)

Pr(Xr) =
2∑
d=1

τ
(t)
d θ

(t)
d (1− θ(t)d )Hd(Xr) (3.15)

Rewriting 3.12, we have

Ẑ
(t)
i,r =

τ
(t)
i θ

(t)
i (1− θ(t)i )Hi(Xr)∑2

d=1 τ
(t)
d θ

(t)
d (1− θ(t)d )Hd(Xr)

. (3.16)

For the maximization (M) step, we can use the log-likelihood of our trace 〈Xr〉,

together with the estimates of our missing values
〈
Ẑ

(t)
r

〉
, to find the maximum like-

lihood estimates (mle) for our model parameters. To begin, we need an expression

for the likelihood of
〈
Xr, Ẑr

〉
. Since we will allow the Ẑr values to take on fractional

values, we need a way to weight the observations from the two component distribu-

tions. However, the arithmetic mean produces an awkward log-likelihood; therefore,

we will use the geometric mean, as discussed in section 3.3.

The likelihood for a single observed pair (Xr,Zr) is
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L ((Xr,Zr)|τ ,θ) = (τ1f1(Xr|θ1))Z
(t)
1,r(τ2f2(Xr|θ2))Z

(t)
2,r . (3.17)

The log-likelihood for the sequence 〈Xr,Zr〉 is derived as

L (〈Xr,Zr〉 |τ ,θ) =
R∏
r=1

(τ1f1(Xr|θ1))Z
(t)
r,1(τ2f2(Xr|θ2))Z

(t)
r,2 (3.18)

log (L (〈Xr,Zr〉 |τ ,θ)) =
R∑
r=1

2∑
d=1

Z
(t)
d,r(log(τd) + log(fd(Xr|θd))) (3.19)

=
R∑
r=1

2∑
d=1

Z
(t)
d,r(log(τd) + log(θd) +Hd(Xr) log(1− θd)).

(3.20)

To find the mle for τi, we take

0 =
d

dτi
log(L(〈Xr,Zr〉 |τ ,θ)) (3.21)

0 =
R∑
r=1

(
Z

(t)
i,r

τ̂i
−

1− Z(t)
i,r

1− τ̂i

)
(3.22)

τ̂i =

∑R
r=1 Z

(t)
i,r

R
(3.23)

τ̂1 =

∑R
r=1 Z

(t)
1,r

R
(3.24)

τ̂2 =

∑R
r=1 Z

(t)
2,r

R
= 1− τ̂1 (3.25)

To find the mle for θi, we follow a similar process:
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0 =
d

dθi
log(L(〈Xr,Zr〉 |τ ,θ)) (3.26)

0 =
R∑
r=1

(
Z

(t)
i,r

θi
−
Z

(t)
i,rHi(Xr)

1− θi

)
(3.27)

θi

R∑
r=1

Z
(t)
i,rHi(Xr) = (1− θi)

R∑
r=1

Z
(t)
i,r (3.28)

θi

R∑
r=1

(
Z

(t)
i,rHi(Xr) + Z

(t)
i,r

)
=

R∑
r=1

Z
(t)
i,r (3.29)

θi =

∑R
r=1 Z

(t)
i,r∑R

r=1

(
Z

(t)
i,rHi(Xr) + Z

(t)
i,r

) (3.30)

θi =
Rτi

Rτi +
∑R

r=1 Zi,rHi(Xr)
(3.31)

A convenient first step in our algorithm is to arbitrarily assign Z
(0)
d,r = 1

2
for all d

and r. We will follow this with an M step, and afterward we will alternate between

the M step and the E step an arbitrary number of times. Since our final goal is to

identify the model parameters τ and θ, we will end after an E step.

If τ1 = 1, the model reduces to a least recently used (LRU) algorithm. If τ2 = 1,

the model reduces to a variation of the least frequently used (LFU) algorithm where

frequency counts are “forgotten” when elements fall off the trace.

3.5.2 Accounting for read/write information

We can make several qualitative observations about a page request X. Three

qualitative observations are of particular interest:

1. When a process requests a page, it can either read the page, or it can modify

the page. When the caching system responds to a page request, it can detect

whether the page is being read or written.
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2. On a cache miss the system can observe whether the address of the requested

page is a very short distance from a page that was resident in cache. The idea

here is that device drivers tend to arrange files linearly in physical memory. If

we are scanning a file, then we will frequently read a page that has an address

that is within one address of a recently read page, after which we will typically

not reference the page again.

3. We can record whether a page has been referenced at least once since it was

brought into cache. This qualitative observation is motivated by the mechanism

used in the 2Q and ARC algorithms to move pages to a second eviction queue

[13, 7].

Equation 3.1 is versatile enough to allow an algorithm to utilize any of these

measurements. However, item 1 does not suggest a source distribution for a page

request, whereas items 2 and 3 do. A method that will deal with this situation is

to use twice as many source distributions to account for whether a page request is a

read or a write, whereas the other categorical variables can be used to define a single

additional source distribution.

This section describes how an algorithm can give special consideration to whether

the last request for a page x was a read or a write. Let us use the function Read :

x→ read,write to indicate whether the last request for page x was a read or a write.

Unfortunately, for an arbitrary X = x, we cannot identify whether the last request to

the page x was a read or a write. We can only identify this information with certainty

if the page request was a cache hit.

Let us once again use a geometric distribution to describe each of our source

distributions. Our mixture model will then be
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Pr(X = x) =
4∑
d=1

τd Geom(Hd(x)|θd) (3.32)

=
4∑
d=1

τdθd(1− θd)Hd(x). (3.33)

The variable Z is now a 1×4 unit vector. However, since we have additional data

available whenever we have a cache hit, the estimate Ẑ ≈ Z will have a 0 in two of

its entries.

Consider the following distribution assignments:

• d = 1 represents that a read page request came from the stack depth distribution

(SDD).

• d = 2 represents that a read page request came from the independent reference

model (IRM).

• d = 3 represents that a write page request came from the SDD.

• d = 4 represents that a write page request came from the IRM.

In order to derive the estimate Ẑ ≈ Z, we need to deal with two cases; the first

case is when the page request X is a cache hit and the second case is when the page

request X is a cache miss.

Let us first deal with the case when X is a cache miss. Here, our estimate is nearly

identical to the estimate listed in equation 3.16; the only difference now is that we

have D = 4 instead of D = 2:

Ẑ
(t)
i,r =

τ
(t)
i θ

(t)
i (1− θ(t)i )Hi(Xr)∑4

d=1 τ
(t)
d θ

(t)
d (1− θ(t)d )Hd(Xr)

. (3.34)

This requires us to derive the estimate Ẑ|Read(x) ≈ Z. In order to simplify the

notation, let us use the convention that i and j represent source distributions with
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i 6= j and i, j ∈ {1, 2} or i, j ∈ {3, 4}. For example, we have i = 1 =⇒ j = 2 and

i = 4 =⇒ j = 3. From this, we have

Ẑi,r = E(Zi,r|Read(x)) (3.35)

=
Pr(Xr|Zi,r = 1) Pr(Zi,r = 1|Read(x)

Pr(Xr|Read(x))
. (3.36)

Each of the factors are also known:

Pr(Zi,r = 1|Read(x)) =


0 if Read(x) = 0 and i ∈ {1, 2}

0 if Read(x) = 1 and i ∈ {3, 4}

τi
τi+τj

otherwise

(3.37)

Pr(Xr|Zi,r = 1) = θi(1− θi)Hi(Xr) (3.38)

Pr(Xr|Read(x)) =
τi

τi + τj
θi(1− θi)Hi(Xr) +

τj
τi + τj

θj(1− θj)Hj(Xr) (3.39)

Using this to rewrite equation 3.36, we have

Ẑi,r =


0 if Read(x) = 0 and i ∈ {1, 2}

0 if Read(x) = 1 and i ∈ {3, 4}

τiθi(1−θi)Hi(Xr)

τiθi(1−θi)Hi(Xr)+τjθj(1−θj)Hj(Xr)
otherwise.

(3.40)

Now we need to find estimates for τ and θ. The likelihood and log-likelihood

equations are:

L (〈Xr,Zr〉 |τ ,θ) =
R∏
r=1

4∏
d=1

(
τdθd(1− θd)Hd(Xr)

)Zd,r
(3.41)

and the log-likelihood is
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logL (〈Xr,Zr〉 |τ ,θ) =
R∑
r=1

4∑
d=1

Zd,r (log(τd) + log(θd) +Hd(Xr) log(1− θd)) (3.42)

With respect to τ , equation 3.41 is the likelihood of a multinomial distribution.

Recognizing this, we can use the maximum-likelihood estimate of τ̂i ≈
∑R

r=1 Zi,r

R
= Z̄d.

See [14] for a cogent derivation of the maximum-likelihood estimate for a multinomial

distribution.

This leaves us needing to solve for θi.

0 =
d

dθi
logL (〈Xr,Zr〉 |τ ,θ) (3.43)

=
R∑
r=1

(
Zi,r
θi
− Zi,rHiXr

1− θi

)
(3.44)

θi =
Rτi

Rτi +
∑R

r=1 Zi,rHi(XR)
. (3.45)

The equations needed for the EM algorithm are nearly identical to the equations in

section 3.5.1. The primary difference is in how the assignment vector Ẑ is computed.

3.5.3 Significant implementation choices

An implementation of the algorithms described in sections 3.5.1 and 3.5.2 is avail-

able in the supplementary software [3]. I used several approximations in this imple-

mentation. In this section, I discuss some of the more important ones.

First, I decided to maintain a partitioning of the cache. In all of the simulations

found in chapter 4, I split the cache K into two equal and disjoint subsets. One subset,

k ⊂ K, represents all pages that are actively being stored. The other subset, K − k,

represents pages that have recently been evicted; however, we are still maintaining
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metadata about these pages. I chose to set the sizes 2|k| = |K| to facilitate a better

comparison with the ARC algorithm [13].

I chose to run the EM algorithm periodically after 50× log(R) steps. However, I

also implemented a rolling update scheme for the model parameters τ and θ. I ob-

served that equations 3.23 and 3.31 both use an accumulator. Starting with equation

3.23, I used the following equation to update the estimate:

τ̂i =

∑R
r=1

(
Z

(t)
i,r

)
− Zi,1 + Zi,R+1

R
. (3.46)

I updated equation 3.31 using

θi =
Rτi

Rτi +
∑R

r=1 (Zi,rHi(Xr))− Zi,1Hi(X1) + Zi,R+1Hi(XR)
. (3.47)

Neither of these updates is perfect since the EM algorithm requires that we up-

date all of the Ẑ values in response to an update of the model parameters. The

approximation in equations 3.46 and 3.47 both bypass the E step.

Some corner-cases concerning the functions H(X) need to be addressed.

In the SDD, H1(x) represents the depth of page x. However, we will frequently

encounter a cache miss where we have not previously encountered a request for page

x. I experimented with 4 solutions to this issue:

1. Modify equation 3.30 to only account for the values r where Xr was a cache

hit. This produced a stable and workable algorithm, but the final value of θ1

appeared to be biased in favor of larger values.

2. Set H1(x|miss) = |K|+ 1
θ1

. This choice is motivated by the fact that the geomet-

ric distribution is memoryless. However, this produced an unstable algorithm
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where θ1, and hence τ and Ẑ were unstable. This appeared to be due to a

mismatch between the two-source mixture model and reality. In a real-world

trace, we expect to see a large number of cache misses as the working set of

processes change. The mixture model in this example requires that the cache

miss be assigned to one of the two source distributions.

3. Set H1(x|miss) = 1
θ1

. This solution had an effect similar to item 1. I used this

solution in the simulations. The benefit of this solution is that the expected

depth of an element in the SDD, before we know whether it was a cache miss,

is 1
θ1

.

4. Set H1(x|miss) = τ1|K| + 1
θ1

. The theory here is that the number of entries in

the SDD is |K| even though only τ1 of those entries were placed there by a SDD

request. This was more stable than item 2, but it occasionally produced wild

estimates.

Cache misses did not affect the IRM nearly as drastically. Since the IRM assumes

that Pr(X = x) is a constant value, after we observe a request for page x we can

immediately update our estimate for Pr(X = x). Since we cannot record more than

|K| pages, the rank for page x is no worse than |K| − 1.

However, the IRM did pose problems when a trace element referred to a page that

had been purged from the cache K. An estimate for H2(x) is required for the EM

algorithm and for the rolling model parameter updating scheme outlined in equation

3.47.

Within the EM algorithm, whenever a trace element referred to a page x 6∈ Kn,

I used the estimate H2(x|purge) = 1
θ2

. However, this did not work for the rolling

updating scheme in equation 3.47. The issue is that the model parameter θi depends

on an accumulator. When we “forget” an element and remove its effects from the

accumulator, we need to use the value of H2(X1) that was originally used, not the
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estimate that we would like to use for an element that is not in the cache. In order

to address this issue, I augmented the trace to record the last estimated value for the

rank of a page in the IRM. I updated this value whenever the EM algorithm ran.

Only a few significant modifications were required to account for read/write infor-

mation, as described in 3.5.2. First, τ , θ, and Ẑ are all 1× 4 vectors as opposed to

the 1×2 vectors that were otherwise required. Every page and trace element recorded

whether the last request for that page was a read or a write. Consequently, the cal-

culation for Ẑ became a bit more complex in order to account for this information.
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Chapter 4: Results

The main focus of this thesis is to present a proof-of-concept caching algorithm

that is based on statistical foundations rather than on heuristics. In order to confirm

that MMC makes reasonable decisions, I wrote a caching simulator in Python2 that

accepts a sequence of page requests and then uses the equations derived in chapter 3

to decide whether to evict a page or to purge all metadata for a page. I compared this

to the hit-rate performance achieved with similarly sized caches using the LRU, ARC,

and MIN policies. I used the SPC1 traces hosted by the University of Massachusetts

[21] to test the algorithms. All code used to produce results reported in this thesis is

available open-source on a GitHub repository [3].

Several challenges need to be addressed before the MMC algorithm is ready for

a production environment; benchmarking the algorithm before that point would be

premature. Many of those challenges are outlined in section 6.

However, the preliminary results suggest that MMC vastly outperforms the least-

recently used (LRU) algorithm and compares favorably to the adaptive replacement

cache (ARC) algorithm. I used the two OLTP traces named Financial1.spc and

Financial2.spc, published by the Storage Performance Council and the University of

Massachusetts [21, 10]. These are examples of a financial database work flow, but

they should not be interpreted as being representative of financial database work flows

or of computing work flows in general.

These two traces record roughly 30 million transactions of 512KB pages, which

works out to a little over a terabyte of data requested per hour. In order to create

manageable graphs, I have broken these traces into smaller segments. The stack

depth distribution for the first million page request for the files Financial1.spc and

Financial2.spc is shown in Figure 4.1 and the cumulative stack depth distribution is

shown in Figure 4.2.

This suggests a few interesting test cases. If we choose a cache size of 445, the
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Figure 4.1: This shows the stack depth distribution (SDD) for the first 1000000 page
requests from Financial1.spc.
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Figure 4.2: This is the cumulative distribution function for the stack depth distribu-
tion for the first 1000000 page requests from Financial1.spc. The cumulative value at
a depth of 445 is 12.7%.
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LRU will completely miss the second high density region and the hit rate will be

limited to 12.7%. A good algorithm will be able to identify enough important pages

that it can cache many of the pages that are only referenced again after their depth

in the stack depth distribution exceeds 445. This represents a cache that can only

hold 222.5 MB.

It is worth noting that the bimodality of Figure 4.1 does not indicate that a

geometric distribution is a poor model for the stack depth distribution. MMC has

enough degrees of freedom that it can instead assign page requests from the second

high density region to the independent reference model.

In order compare how well MMC performs, I created several time-series graphs,

shown in Figures 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 that chart the cumulative average and

the rolling average for MMC, LRU, ARC, and MIN.

I also compared the performance of MMC on the trace Financial2.spc. The SDD

for the first 10000000 page requests are shown in Figure 4.9 while the CDF for the SDD

is shown in Figure 4.10. In sharp contrast to the SDD for Financial1.spc shown in

Figure 4.1, this trace shows a monotonic decay that is very suggestive of the geometric

distribution. It turns out that the MMC algorithm agrees with this assessment the

majority of the time, as shown by the graph of τ1 in Figure 4.14.

MMC records the relative depth and rank for all pages in cache. Figure 4.11 plots

these eviction points for all evictions made by the two-source MMC algorithm for the

first million requests of Financial1.spc with a cache that can hold 1000 pages. A few

interesting features stand out. First, a horizontal line exists at the depth 1000. At

various points, the value τ1 is set to the value 1, which is shown in Figure 4.13. When

τ1 = 1, the algorithm behaves like an LRU. The eviction plot in Figure 4.11 also

shows two dense eviction regions. These correspond to the pages that the algorithm

has identified as coming either from the independent reference model (this is the

region in the top left of the graph where the depth of the pages is well over the size
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Figure 4.3: This shows the average hit rates (dotted lines) and exponential moving
average hit rates (solid lines) for several algorithms on the first 1000000 page requests
in Financial1.spc. The cache size is 445, which is specifically picked because the SDD
has a high density region starting at a depth of 446. This causes the LRU to evict a
large number of pages just before they will be requested again. The ARC algorithm
uses a heuristic that causes it to act like an LRU for large portions of this trace. The
LRU would have needed to be 11% longer to achieve the same hit rate as ARC and
31% longer to achieve the same hit rate as MMC(RW), which includes the distinction
of whether the last reference to a page was a read or a write.
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Figure 4.4: This shows the average hit rates (dotted lines) and exponential moving
average hit rates (solid lines) for several algorithms on the first 1000000 page requests
in Financial1.spc. The cache size is 600. In certain areas, the hit rates for all of the
compared algorithms plummets. In these areas, the trace is exhibiting the type of be-
havior expected from a file scan. While the ARC algorithm has the best performance
on this trace, the MMC algorithms do well in the periods just after a file scan. The
size of the cache would need to have been increased by 26% for the LRU to achieve
the same hit rate as ARC and 19% to match MMC(RW).
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Figure 4.5: This shows the average hit rates (dotted lines) and exponential moving
average hit rates (solid lines) for several algorithms on the first 1000000 page requests
in Financial1.spc. The cache size is 1000.
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Figure 4.6: This shows the average hit rates (dotted lines) and exponential moving
average hit rates (solid lines) for several algorithms on the first 1000000 page requests
in Financial2.spc. The cache size is 445. The LRU cache would need to be 14% larger
to have the same hit rate as MMC, 27% larger to match the hit rate of MMC with
read/write information, and 83% larger to match ARC.
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Figure 4.7: This shows the average hit rates (dotted lines) and exponential moving
average hit rates (solid lines) for several algorithms on the first 1000000 page requests
in Financial2.spc. The cache size is 600. The hit rate for MMC is equivalent to a
28% larger LRU. MMC with read/write information has the same hit rate as a 41%
larger LRU. ARC has the same hit rate as a 90% larger LRU.
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Figure 4.8: This shows the average hit rates (dotted lines) and exponential moving
average hit rates (solid lines) for several algorithms on the first 1000000 page requests
in Financial2.spc. The cache size is 1000. A 54% larger LRU would have the same
hit rate as MMC, while a 90% larger LRU would be required to achieve the same hit
rate as ARC.
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Figure 4.9: This shows the stack depth distribution (SDD) for the first 1000000 page
requests from Financial1.spc.
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Figure 4.10: This is the cumulative distribution function for the stack depth distri-
bution for the first 1000000 page requests from Financial1.spc. The cumulative value
at a depth of 445 is 12.7%.
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of the cache) or from the stack depth distribution.

A small diagonal region at the top right of the graph shows the effect of the rolling

trace history. When a page is identified as being very important for the independent

reference model, the algorithm will keep hold of it as long as possible. However, the

rank of these pages will quickly deteriorate when the cluster of references is rolled off

the trace.

A hyperbolically shaped curve exists in Figure 4.11 that corresponds to points that

could not be cleanly identified as coming from the SSD or the IRM. The shape of this

curve depends on all of the model parameters, but it shows the general relationship

that as a page becomes more used (i.e., it is highly ranked in the IRM), the algorithm

is willing to hold onto the page for longer periods of time.

This graph also shows hints that the mixture model does not have enough degrees

of freedom to fully capture the memory usage patterns. The most obvious issue is

the vertical line at rank 1000. If τ2 were set to 1, then MMC would evict pages when

their rank exceeds the size of the cache. However, as can be seen in Figure 4.13, τ2

never equaled 1. Instead, near the end of the trace, the model set the value of θ1 to

a very small value that caused the most recent pages to be valued so highly that the

majority of the distribution was essentially flat with an expected value of nearly 0.

Since the distribution was so flat, the SDD provided very little differentiation between

the majority of pages. When the value θ1 was small and τ1 was not equal to 1, the

relative expected value for pages was determined primarily by the IRM.

We can obtain some insight into how the MMC algorithm works by graphing the

internal representation of all stored pages. Figure 4.15 shows a snapshot of the internal

representation of the pages in the cache. A frozen image doesn’t capture the dynamic

nature of the caching algorithm. The location of pages can change drastically after

the EM algorithm updates the Ẑ values for all pages. A video showing the internal

representation of the pages over time is available in the supplemental material [3].
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Figure 4.11: This shows the depth of pages in the stack depth distribution (SDD) and
the rank of pages in the independent reference model (IRM) when they are evicted
from the cache by the MMC algorithm. The cache can hold 600 pages and can store
the metadata for another 600 pages. The points in the top right corner represent
pages that had high rank in the IRM before all of their references rolled off the trace.
The horizontal line at depth 600 comes from the points in the trace where τ1 equals
1, which causes the algorithm to act like an LRU. The dense region in the bottom
half of the graph is caused by pages that are assumed to be drawn from the SDD. It
is denser than the region in the top left of the graph because more pages were marked
as having come from the SDD than from the IRM.
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Figure 4.12: This shows the depth of pages in the stack depth distribution (SDD) and
the rank of pages in the independent reference (IRM) model when they are evicted
from the cache by the MMC(RW) algorithm. The cache can hold 600 pages and
can store the metadata for another 600 pages. One of the more interesting things
about this plot is that the algorithm evicted pages with a depth of 0, which means
that immediately after the pages were requested they were thrown away. When the
algorithm does not see a request for pages that were recently read or written, it decides
that the SDD for reads or the SDD for writes is not part of the model. Therefore, it
assigns a very small expected value to those pages.
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Figure 4.13: This shows all of the model parameters for the two-source MMC al-
gorithm with 1000 pages over the first 1000000 page requests on the trace Finan-
cial1.spc. The value τ1 ranges between 0 and 1, while the values 1

θ1
and 1

θ2
use a

scale that shows the average value for a page request X drawn from either the SDD
modeled with Geom(H1(x)|θ1) or the IRM modeled with Geom(H2(x)|θ2), where the
function H1 identifies the depth of page x in the SDD and H2 identifies the rank of
page x in the IRM.
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Figure 4.14: This shows τ1 for the two-source MMC algorithm with 600 pages over
the first 1000000 page requests on the trace Financial2.spc. When the value of τ1 is
close to 1, MMC behaves much like an LRU.
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Figure 4.15: This shows a snapshot of all pages tracked by the two-source MMC
algorithm with 445 pages. Points with black circles are evicted pages for which MMC
is still storing metadata.
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Chapter 5: Conclusions

In this thesis, I have presented a statistical model for a caching algorithm. This

model is unique among caching algorithms because of the flexibility of the approach,

which I demonstrated by extending the algorithm to account for read/write informa-

tion. This statistical approach represents a new paradigm in caching algorithms.

A well-known issue with machine-learning techniques is the variance-bias tradeoff

[5]. This concept relates to the fact that the average squared error of a prediction

can be decomposed into the squared bias, which is the consistent and systemic error;

the squared variance, which is the error that occurs because a model is not flexible

enough; and an irreducible error that occurs because some things are just random. A

model that has too few degrees of freedom typically has a large bias, while a model

with too many degrees of freedom will typically has a large variance.

Some caching algorithms, such as the LRU, have no degrees of freedom, which

means that they are unable to adapt to match the data [1]. The ARC algorithm is

given a single degree of freedom [13]. In contrast with these algorithms, the MMC

algorithm is able to incorporate any number of degrees of freedom.

Furthermore, the MMC algorithm is able to incorporate measurements that cannot

be handled by previous algorithms. I have demonstrated this by deriving a method

that accounts for read/write information. While this model shows promising results,

it also displays some odd behavior. More specifically, the algorithm is willing to evict

the newest pages. While this decision was dictated by the statistical model, it is

contrary behavior to what many people expect from a caching algorithm.

Even though I supplied a reference implementation, the algorithm is not yet ma-

ture enough to be implemented in a production setting [3]. The most glaring issue

is the execution speed. Most of the phases of the algorithm take O(log(|K|)) time,

where |K| is the size of the cache. However, one portion of the algorithm takes O(|K|)

time. This is the phase where the algorithm recomputes the expected value for all
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pages in cache. Several techniques could be employed to reduce this time. Some of

these techniques are outlined in the future work section 6.

The primary benefits of the MMC algorithm are, first, that it provides a way

to obtain statistical insight into how a process generates page requests, and second,

that it provides a way to use data other than age or frequency when making caching

decisions.
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Chapter 6: Future Work

Several issues need to be resolved before MMC is ready to be tested in a production

setting. Furthermore, deeper research into particular aspects of the MMC algorithm

could yield improved performance. In this chapter I outline many of these important

questions.

1. Can we identify the page with the smallest expected value, or close to the

smallest expected value, in less than O(|K|) time?

2. Can a mixture model be used to provide a caching algorithm that is local to a

process or a thread, but where the amount of main memory that a process can

utilize is governed by a mixing parameter?

3. If we can estimate the expected headway between faults, can we use this infor-

mation to inform the scheduler?

4. Is there any benefit to looking at the relationship between page locations? For

example, a page hit occurs when the page is re-referenced while it is in cache.

However, what if we count a reference to page x+ 1 as a partial hit to page x?

5. Can we use more flexible distribution families to describe the shape of the source

distributions?

6. What other measurements can we take for page requests, and do these mea-

surements help improve the hit rate of the MMC algorithm?

7. Do alternatives to the EM algorithm exist that require drastically less processing

time?

8. Can a probabilistic model for prefetching be described that will fit into the

MMC mixture model?
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9. What design modifications need to be made to use fixed-point arithmetic rather

than floating-point arithmetic for all of the internal calculations?

Addressing these questions will allow us to take full advantage of the strengths of

the MMC algorithm. Virtual memory is one of the fundamental areas of systems

research, but caches have traditionally been a black box. Development into

statistical cache analysis techniques and algorithms could yield vital insights

and enhancements.
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