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Abstract

Artificial intelligence techniques are prevalent in many industries, but adoption barriers

still exist for smaller organizations. Additionally, current deep learning artificial neural

network designs seldom account for an evolving data landscape. However, particularly in

the realm of precision agriculture, increasing artificial intelligence usage is an important

step in expanding production efficiencies and potentially reducing climatic impacts. This

dissertation looks at existing popular artificial intelligence techniques and identifies two

candidates for further exploration: modularity in deep learning for increased data flexi-

bility and quantitative association rule mining (QARM) in genetic algorithms for more

explainable model outputs. Experiments using autoencoders as shared feature spaces for

data broken up into different modalities were conducted for the deep learning models to

assess the impact on modular networks on overall outputs. Quantitative association rule

mining genetic algorithms were also run with and without a novel sequence extension

to mine interesting datastream associations and create simple prediction models. Both

techniques used two datasets: a weather dataset from the Jornada Basin Research Center

and a biomedical dataset (VitalDB) of patient medical data. Ultimately, the modular

deep learning models performed as well as the monolithic models with the added advan-

tage of having a shared feature space for more flexibility when it came to adding specific

sites for the Jornada Basin data. For the biomedical data, the modular models (which

didn’t have a concept of being broken up by location) did not provide an advantage

over monolithic models. For the Jornada Basin data, the quantitative association rule

mining genetic algorithm models performed slightly below the neural network predictors

but had explainable output, and the sequence extension was more robust to sub optimal

parameters than the non-sequence models.
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1 Introduction

The introduction section of this dissertation aims to give a broad overview to the types of

questions explored in the work as well as the motivations behind them. The introduction

sections will go over general and specific motivations for the presented research interest.

The last decade has seen a significant uptick of interest in machine learning usage

across virtually every industry and sector. Artificial Neural Network (ANN)s in particular

have been explored and applied to a variety of problems including image recognition and

classification and natural language processing.

However, adoption of Artificial Intelligence (AI) is still slow by smaller organizations,

and there exist barriers to creating general models that can adapt with the data being col-

lected in a dynamic rather than static matter. Additionally, neural network approaches,

while often powerful, tend to be difficult to analyze and explain results with regard to

the specific function actually being fitted to the data.

This dissertation looks at modularity in artificial intelligence systems as well as tech-

niques to make certain artificial intelligence approaches increasingly usable and explain-

able. The general motivation for this work, explained more fully in the subsequent

subsection, involves making artificial intelligence more usable by smaller organizations.

The more focused motivation of this work involves increasing the adoption of artificial

intelligence techniques in the precision agriculture domain.

1.1 General Motivation

The dominant artificial intelligence methods in use today typically involve supervised

learning, which often necessitates pre-collecting large amounts of labeled data for the

task of interest. After data collection, design of an effective neural network is more of an

art than a science, requiring extensive knowledge of the problem domain or significant

trial and error processes, or both. Transfer learning on good existing network designs has

mitigated this problem somewhat. Deep artificial neural networks can contain millions

of parameters, so it is often useful to train them on specialized hardware like Graphics

Processing Units (GPUs) or Tensor Processing Units (TPUs). This equipment can be
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quite expensive. Artificial neural networks have achieved powerful performance on a

variety of tasks, but because of the knowledge required to design and operate them, their

usage is largely restricted to researchers as well as larger companies and organizations.

Additionally, a deep neural network can be performant but still a ”black box” model

when it comes to interpreting the inner workings of the model. The sheer number of

parameters and difficulty understanding the underlying logic of the model can make it

difficult to trust for users.

This dissertation is primarily interested in exploring (1) ways to make artificial in-

telligence networks easier to implement in the presence of new data, and (2) exploring

artificial intelligence alternatives to deep learning networks for more explainable out-

comes.

This dissertation takes note of the efficiency of the biological human brain and ex-

plores concepts that may be transferable to the artificial realm. The principle biological

inspirations in this dissertation utilize modularity, but the biological concepts of evolution

are also used in genetic algorithms to efficiently search a solution space.

1.2 Precision Agriculture Motivation

The definition of Precision Agriculture (PA) varies widely, but this proposal will use

the term in the most general form, referring to the incorporation of new technology

into agriculture practices. Precision agriculture here includes the following systems and

practices:
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• Site-specific management of ongoing real-time data.

• Drone/UAVs.

• Satellite Imaging.

• Remote Sensing.

• Guidance Systems.

• Automation.

• Robotics.

Research into the current state of the precision agriculture industry has illuminated

several drivers for the increased adoption of precision agriculture technology including

(1) increased projected demand on the food system (2) climate impacts, and (3) potential

for increased profits.

Increased demand on the food system

A 2012 UN Article titled “Feeding the World Sustainably”writes: “According to estimates

compiled by the Food and Agriculture Organization (FAO), by 2050 we will need to

produce 60 per cent more food to feed a world population of 9.3 billion”[3]. This is an

often-quoted statistic in the conversation about the future of agriculture, and concerns

over the ability of the world food system to produce adequately have been reflected in

governmental policy priorities. The need for greater efficiency in production has been

identified as key since the agricultural production land worldwide is expected to decrease

in size rather than increase [4].

Precision agriculture has been evaluated as a piece of the solution in realizing these

necessary efficiency and yield improvements. The literature surrounding precision agri-

culture has noted:

• The most common goal surrounding precision agriculture discussions was increasing

yield [5].
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• Of farmers who had adopted precision agriculture technologies, “72% report a pos-

itive yield impact from data-driven seeding rate decisions; 81% from fertilizer de-

cisions and 85% from drainage decisions”[6].

The world food supply problem poses challenges that precision agriculture is posi-

tioned to help address.

Climate Impacts

There is little debate that the agriculture industry, particularly in the United States, has

come with some negative environmental impacts:

• “Nonpoint-source pollution links agricultural practices with offsite movement of

nutrients, pesticides, and sediment”[7].

• “The agricultural sector contributes to the production of 25% of CO2 , 50% of CH4

, and 70% of N2O emissions in a global basis summing up to nearly 13.5% of the

total global anthropogenic GH emissions”[8].

• There have been concerns over over-application of fertilizer like nitrogen [8] and

the contamination of drinking water by farming chemicals, affecting potentially 54

million people in the U.S. [7].

Precision agriculture methods like site-specific treatment and variable rate technolo-

gies are expected to better mitigate adverse environmental impacts. A 2021 precision

agriculture US Congressional task force report stated that the USDA estimated variable-

rate technologies could bring down fuel consumption by 40%, water use by 20-25% and

chemical application by 80% [9]. Precision agriculture is also noted to reduce water usage

[8], at a 4% level in its current implementation and up to 21% with full adoption in the

U.S. [9].

Potential for Increased Profits

Worldwide, there is a strong case for precision agriculture driving increased profitability.

A European Parliament Think Tank study noted of a review comprised of 234 studies,
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[1988-2005] “precision agriculture was found to be profitable in an average of 68% of

the cases”[10]. Another study stated that resource saving was an important precision

agriculture consideration (in addition to legal compliance, revenue factors, and saving

time/labor) for experts in the field of Swiss Outdoor vegetable production. [11]. The

United States market reflects the optimism for profitability of the precision agriculture

industry, with $670 million raised by startups in 2017 for the sector [5].

Summary of the Current State of the Precision Agriculture Market

The United States is recognized as the current leader in Precision Agriculture research

and implementation [12][13], followed by China, Brazil, Spain, Germany, Australia, and

Italy. Additionally, “The increased government activities to assist the adoption of modern

agriculture technologies and enhanced infrastructure will facilitate the precision agricul-

ture market growth in North America over the forecast period [2022-2026]”[14]. The

United States has considerable government support of precision agriculture initiatives

and is recommending additional programs for incentive’s adoption and innovation in this

field [9].

Currently, hardware is the dominant force in the precision agriculture market [15][13],

but software and services are expected to experience high growth [15][13]. For the hard-

ware market, guidance systems were identified as having the highest global revenue [16].

When segmenting by application, yield monitoring had the highest revenue share [16][13].

Several market research companies have identified smartphones usage as an important

aspect of precision agriculture [17][18].

Summaries of market research reports were evaluated to obtain insight on market

potential. Forecast periods ranged from 2024 [19]-2032 [20], with expected CAGR [Com-

pound Annual Growth Rate] of the market ranging from 7.9%[21] to 14.95%[17], with an

average of 12.17% among the reports [22][15][17][16][21][20][18][23][14][19][13].
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Farmer Precision Agriculture Adoption Barriers

Despite increased interest in research and technology development for precision agricul-

ture, farmer adoption of these techniques has lagged behind industry growth. [10][5].

There is a substantial body of literature addressing what factors impact a farmer’s abil-

ity to adopt precision agriculture, which include farm size, farmer age, innovativeness,

and technical skills, and high cost of precision agriculture implementation [24][22][20][25]

[10][11][19][26][16][21].

Of these, this dissertation selects costs and skill gaps as main focus items. Cost

particularly is often singled out as the most important adoption factor [10][14], and these

two factors have the most straightforward path for improvement.

Large farms [24][11] or higher-value crop producers [10] are usually the producers

who most often overcome the high-cost barrier to entry regarding precision agriculture.

Precision agriculture systems often require high capital purchases with unclear returns

on investment. Some of the costs farmers expecting to use precision agriculture must

contend with include [10][11]:

• equipment costs.

• information storage costs.

• hardware and software costs.

• costs related to switching over existing systems.

Internet connectivity has also been singled out in several studies as an implementation

cost/barrier [9][11][6], as 25% of U.S. farms are not internet-connected [9], and precision

agriculture often relies on connectivity as a prerequisite for use.

The skill/knowledge gap between the developers of precision agriculture systems and

their end users (farmers) is another important barrier, because the average U.S. farmer

is over 50 years old [9] and IT personnel is unusual on small farms. Technology providers

need to keep these factors in mind when designing for their user. Data interoperability

between providers and usability of farmer decision support systems is a related issue

[27][28][5] regarding this gap as it remains a difficult management task.



7

Food Distribution System

While there are many improvements to be made in precision agriculture to increase food

production, it is important to note that increasing supply and efficiencies are not the only

factors involved in world food security. The food distribution system is highly complex

and interrelated, and is a major influence on what food is available at what time and

what place. While the focus of this dissertation is on developing technology with the

goal of assisting food production, the research is also designed to be general to other

domains, ideally including supply chains and logistics of transporting and distributing

food. Increasing research in the food distribution system has been identified as a currently

lacking area when it comes to food security [29].

Precision Agriculture Motivation Summary

Gaps exist between the current state of precision agriculture and the state of precision

agriculture adoption, which beg questions about which stakeholders the increased tech-

nology interest is focused on [5]. One study states that “By positioning limited adoption

rates as a challenge to be overcome by turning to other types of users, or a function of

farmers not understanding the benefits of PA, we question if these tools are really for

farmers versus the developers and various stakeholders that promote them ”[5].

There are certainly contexts where farmers have expressed interest in precision agri-

culture technology. However, it is essential to evaluate how these tools will help farmers

and the food supply, rather than just the bottom line of the technology organizations

providing them.

Artificial intelligence has been positioned as a game-changing technology and nec-

essary component of solving the world food crises as well as creating efficiencies and

increased profitability to farmers. If artificial intelligence is to be adopted by this in-

dustry, however, it needs less barriers to entry in terms of skilled operation in addition

to being trustworthy and explainable. Current AI offerings do not broadly meet these

criteria. There are needs for models that are easier to set up, maintain, modify, and

understand.
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1.3 Introduction Summary

This dissertation aims to explore methods of making artificial intelligence more accessible

to aid small business and organizations but especially to aid in the adoption of precision

agriculture by farmers and grower. The next section will explore existing work in this

field and its relation to the broad research motivations.
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2 Review of Work

Since this dissertation focuses on exploring more usable methods of integrating artificial

intelligence with a non-research-oriented community, several neural network types and

techniques have been researched for potential impact. One non-neural network but more

explainable technique has also been explored. This section will give an overview of the

existing techniques and/or concepts most relevant to this work including Artificial Neural

Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders,

Evolutionary Computation for Deep Learning, Evolutionary Computation for Quantita-

tive Association Rules, Biologically Inspired Networks, and Modular Neural Networks.

It will also discuss studies that have made strides in related problem domains such as

Multimodal Data Fusion Networks and Recurrent Neural Network and Autoencoder com-

bination networks. This section will finish with work that evaluates artificial intelligence

and deep neural networks with regard to application areas (Business Cases and Precision

Agriculture).

2.1 Artificial Neural Networks

ANNs are perhaps the most popular Artificial Intelligence tool currently in existence.

ANNs are not a new technique (the basis for the design was developed in the 1940s [30]),

but developments in computational power, memory, and availability of large datasets

have caused an explosion of interest in their use over the last decade.

ANNs are loosely analogous to a human brain architecture. Neural networks consist

of nodes, which are organized into layers. For a basic, fully connected feedforward ANN,

each node in a layer is connected to every node in the layer before and after. An input

layer passes data to the network, typically in vectorized form, while the output layer

produces information relevant to whatever task the ANN is trained for.

The method of connection between nodes in a network consists of weight and bias

values. Each input to the node is multiplied with a specific weight, and then the bias term

is added. This value is then processed by an activation function to introduce non-linear

learning capabilities to the network. For x, a vector of inputs, w a weight vector, b a bias
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vector, and θ an activation function, the output of a node n is expressed in relation to

the inputs in Equation 1:

n = θ(x ∗ w + b) (1)

where x*w is an element-wise multiplication followed by summation.

Networks typically incorporate a cost/loss/error function to measure the performance

of the network on a given input. The learning capability of ANNs comes with their ability

to adjust their weight values to minimize the error of the network. It is a nontrivial task

to determine what error should be assigned to an individual weight in the network in

order to adjust it. The backpropagation algorithm is a popular choice for determining

this and takes the derivative of the overall network error with respect to a particular

weight. The weight is then adjusted based on the error during the update step:

wnew = wold − η ∗ ε (2)

where wnew is the new weight value, wold is the old weight value, η is the learning

rate, and ε is the error value. For systems that use backpropagation, this error value is

the derivative of the total error with respect to that of the given weight.

The weights and bias terms are parameters automatically learned by a neural network.

However, there exist many hyperparameters that researchers must set before training

which can have a significant impact on ANN performance. The number of nodes in a

particular layer and the number of layers in the network are hypothesized to be related

to the capacity of the model. The learning rate (which scales the amount of change to a

given weight at a training pass) can affect the training speed of the model as well as its

ability to converge to a solution. Choices of activation and cost functions have different

effects on the model and can contribute to the ”vanishing” or ”exploding” gradient issues

where updates to weights can get unhelpfully large or small during training. Figure 1

illustrates the basic structure of an artificial neural network.

While there exist tools and tricks to help mitigate these problems (the Adam Opti-

mizer for the learning rate, dropout for overfitting, etc.). crafting neural networks that
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Figure 1: The basic structure of an artificial neural network. There are often multiple

hidden layers.

will perform well on a given task is not always straightforward. Network designers often

use rules of thumb or transfer learning, where good performance on one network for a

task can be used as a baseline for another task.

Additionally, most ANNs require large amounts of representative training data to

achieve satisfactory performance on a given task. For example, with regard to the Vertex

AI product, the Alphabet company (parent to Google) recommends providing at least

1000 examples per class [31].

For a simple feed-forward fully connected neural network, data is fed to the network as

a vector. This prevents a network from learning spatial correlations on more structured

data. Another form of ANN, a Convolutional Neural Network (CNN), helps mitigate

this problem.
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2.2 Convolutional Neural Networks

CNNs are highly performant networks where spatial correlations can be taken advantage

of in the data. Images tend to be the most popular inputs for CNNs, as well as data that

can be structured into matrix form.

CNNs are composed of convolutional layers, typically followed by fully connected

layers in the case of classification tasks. Convolutional layers are composed of filters,

which are matrices of weights that are convolved over the input in a sliding window

fashion to create feature maps, which are inputs to the next layer. Figure 2 illustrates

the basic convolution operation.

Figure 2: Convolution of a filter kernel with a structured matrix

Different channels of input are multiplied with different kernels within a filter, but

channel-wise maps are usually concatenated so there is only one output per filter before

the feature map is passed to the next layer. Convolution typically reduces the matrix

input size throughout the feedforward process and is flattened into a vector before being

passed to the output fully connected layer.
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There are many varieties of CNNs which have been applied to a variety of problem

spaces. CNNs (and ANNs in general) do not necessarily have to follow connection rules

limited to layers just before or after the current layer. Residual Networks [32] introduced

skip connections into their network architecture to incorporate information less locally

restricted by convolutional operations, to great success.

For tasks that require output images/matrices (such as image segmentation), the fully

connected network can be omitted. In this case, convolutional layers are usually followed

by upsampling layers to restore input size. Fully Convolutional Neural Networks [33]

such as this have the additional handy property of being able to handle multiple size

inputs as their feature maps are never flattened to vectors.

CNNs and vanilla ANNs have achieved considerable success when training samples

are independent of each other. However, neither network handles inputs well if they are

dependent on other inputs. For this, Recurrent Neural Networks (RNN)s are explored.

2.3 Recurrent Neural Networks

RNNs are networks which can handle sequences of data (where inputs are dependent on

each other). RNNs divide the inputs into timesteps, then ”unroll” a network architecture

into inputs, a hidden layer, and outputs. The hidden layer for each timestep is also part

of the input to the next timestep. A weight matrix for calculating the hidden layer

and outputs is shared across all timesteps. The network can be ”unrolled” to as many

timesteps as applicable, and therefore, RNNs can theoretically handle as many inputs

and outputs as needed. Figure 3 shows a basic RNN construction.

In practice, plain RNNs suffer from the vanishing gradient issue where inputs from

long-ago timesteps are forgotten by the network. This limits the length of a sequence an

RNN can process. An improvement of the base RNN was found in the Long Short Term

Memory Network (LSTM). This network incorporates an input and forget gate along

with previous hidden states and is able to retain information from previous timesteps

for longer periods of time. LSTMs are practically still limited in input length but are

generally able to extend it well beyond the capabilities of a basic RNN.
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Figure 3: Basic RNN structure, rolled and unrolled.

Another network capable of handling sequential and/or time-varying data includes

the Transformer network, which incorporates principles of attention (such as Squeeze and

Excitation Networks [34]) to the network with excellent results. At the time of writing,

transformer networks are exceptionally resource and data intensive to implement and

are not explored as a practical method for expanding general AI usage. However, this

dissertation aims to structure the proposed networks so that a transformer network could

easily be added later.

2.4 Autoencoders

Outputs at different layers of ANNs are often referred to as ”features” or ”feature maps”.

The intuition behind features is that layers of the network are building high-level infor-

mation from low-level inputs as information travels throughout the network. Therefore

designing a neural network architecture is a process of crafting the most useful and rep-

resentative set of features for the task at hand. However, manually trying to determine

feature sets by network design and trial and error experimentation is an arduous process.
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Autoencoder (AE)s are a potential solution to this problem. AEs are structures (often

implemented by ANNs, but that is not a necessary requirement) where the input and the

output are exactly the same: the point of the network is to re-create the input. While

this at first sounds pointless, the key functionality of AEs is found in their structure: an

undercomplete AE is one in which one or more of the subsequent network layers has less

nodes than the input layer. This bottleneck layer (which can also be labeled as the latent

space of the hidden representation) is assumed to be a compressed feature representation.

Everything before the latent layer is referred to as the encoder, with everything after

comprising the decoder. If the decoder can re-create the original input with only the

latent layer, the latent layer is assumed to be a good compressed representation of the

input. The compression aspect is handy for resource-constrained networks or problems

where the input space is huge, but one of the more interesting properties of latent space

is that it is assumed to not only be a smaller encoding of the input, but one with good

enough features to represent the input. Figure 4 shows a basic AE network structure.

Figure 4: An autoencoder network
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AEs can learn without labeled data (unsupervised learning), so they can learn a

useful feature set with less data annotation. Other neural networks can be built on

top of latent space representations, without needing as computationally intensive pre-

processing layers.

Latent space has plenty of prior usage in robotics. In [35], AE latent space was

used to train a robot to throw a ball, noting that the reinforcement learning technique

used to train the robot converges faster and more stably in latent space. Similarly, [36]

applied latent space to visual servoing and found it an effective representation. [37] used

reinforcement learning and deep AEs to complete basic visuomotor tasks with a robot.

An assistive robot was controlled by AEs mapping contexts to latent actions and decoding

latent actions into different actions in [38]. Visual Action Planning was carried out on a

robot using latent space to identify transitions between regions and generated valid visual

action planes [39], and a Mars Rover was trained to use latent space to opportunistically

explore areas [40]. Variational AEs were used to transfer learn between real and synthetic

images to allow a robot to take advantage of simulation data in [41]. Latent space was

used to create a low dimensional robot state in [42] to control soft robots.

In [43], latent space was used effectively as a search space for routing problems but

mentioned that the structure of their latent space was important to performance. A deep

AE was also applied to solving traffic congestion problems [44] to predict subsequent time

steps of traffic levels. [45] used stacked AEs to diagnose gearbox faults. Patient Health

Data and latent space encodings of that same data was used to predict outcomes based

on ICU data in [46].

2.5 Evolutionary Computation - Deep Learning

Evolutionary Computation covers a range of topics and techniques, but this section

evaluates those relating to design of ANN architectures. Evolutionary computation uses

principles of evolutionary algorithms applied to design and optimization problems. One

set of techniques includes Genetic Algorithm (GA). Typically GAs follow these basic

steps:
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1. A population of individual solutions to a problem is created.

2. Candidate solutions are evaluated on the basis of fitness, usually related to how well

they solve the problem at hand. The idea of fitness requires input from domain

experts as they are best suited to to determining evaluation metrics for a given

industry.

3. Individuals are usually selected on the basis of fitness to continue to the next

generation. The next population can be direct copies of the previous generation,

or they can crossover multiple individuals to create new ones. Mutation is also

usually introduced to allow individuals to vary.

4. This process is repeated for a set number of generations, for a specific performance

metric, or until a different stopping criteria is reached.

Genetic and evolutionary algorithms have been applied to the problem of automati-

cally designing effective neural networks rather than handcrafting them. One disadvan-

tage of these algorithms is that they are often quite computationally expensive. [47]

introduced Progressive Neural Architecture Search, which looked for performant CNNs

by searching for increasingly complex structures while learning a surrogate model. The

surrogate model helped guide the search of the space in question. This is followed by

Efficient Progressive Neural Architecture Search [48] which shares sample architecture

weights to reduce the need to train architectures from scratch. The similarly named Ef-

ficient Neural Architecture Search [49] searched for ”an optimal subgraph within a large

computational graph”. A policy gradient is used to select an optimal subgraph. [50]

uses a HyperNet to generate weights of the model based on its architecture, searching

for ANN models in one shot while [51] uses lower-level architecture motifs as network

building blocks to search for neural architectures. [52] used Sequential Model-Based

Optimization (SMBO) to search for neural architectures specifically for data fusion.
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2.6 Genetic Algorithms and Quantitative Association Rules

Evolutionary computation is not limited to neural networks, and the second part of this

dissertation looks at evolutionary computation particularly with regard to quantitative

association rules.

Quantitative association rules are useful ways of finding correlations between param-

eters, especially in large datasets or problem domains where a brute-force search would

not be attainable. These rules link parameters at certain values with a parameter of in-

terest at a value of interest and quantify the relationship. The relationship quantification

looks at the frequency of co-occurrence and statistical importance with a few measures

including support, confidence, and lift, which are explained more fully in subsequent

sections.

Quantitative Association Rule Mining (QARM) techniques have been explored as a

neural network alternative [53] [54] due to their highly explainable output, which is useful

regarding trust in artificial intelligence models.

While techniques exist to mine quantitative analysis rules without use of a GA [53]

[55], there has been considerable success in using genetic algorithms to find these infor-

mative associations [56] [57] [58] [59], including multi-objective approaches [60] [61] [62].

The applicable domains for such searches are vast and cover everything from COVID-19

patient analysis [60] to manufacturing defect analysis [53] and ocean dynamics [63].

There has been some prior work in exploring quantitative association rules for time

sequences as well. In [64], this technique was used to forecast next time steps based on

previous time steps. [65] actually evolved a single time sequence for associated parameters

along with parameter values for its take on the algorithm, which was able to successfully

predict ozone based on meteorological data. In [63], time data in a few different forms

were utilized alongside other methods to explore ocean dynamics (though time did not

appear to be an explicit part of the algorithm). However, the realm of exploration of

quantitative association rules with regard to time sequence data appears to still be in

the early stages of development.



19

2.7 Biological Neural Networks

We often look to biology for neural network design processes, in part because often

the motivation underlying artificial intelligence research is to automate tasks humans

are capable of solving well. Object and person recognition, navigating, planning, and

understanding language fall into this category. AI research at the time of this writing is

nowhere near the level of generalization power that a human is capable of learning.

While ANNs are roughly based on biological brain construction,the analogy quickly

breaks down in implementation. To begin, it is hypothesized that human brains contain

billions of neurons and connections, which cannot be physically implemented in hardware

at the time of this writing. Human brains are also more efficient than ANNs by orders of

magnitude. It takes roughly the same amount of power to light a lightbulb as for humans

to solve complex tasks [66], which is much more power-hungry than ANNs.

Many modern ANNs also do not closely align with human brain design principles.

Some of these limitations are practical: humans synthesize a tremendous amount of

information on a daily basis coming from a variety of sensors - taste, touch, sight, hearing,

skin temperature, balance, and pain, to name very few. Not all organizations have

the capability to collect a similar breadth of information, and many artificial neural

networks are trained on just one kind of information stream (such as images). However,

since human data collection is multimodal, it seems reasonable that more sophisticated

artificial intelligence designs could benefit from different streams of information.

Another disconnect between the artificial and biological brains includes network struc-

tures. Human brains are believed to be highly modular [67], from which we get diagrams

of brain functional areas such as the primary visual cortex and frontal cortex. In [68],

it is noted that brains are modular at both a lower level, with synapses clustered into

dendrites, and at a higher level, with the brain functional areas.

Aside from the functional areas, the human brain is hypothesized to include ”connec-

tion modules” or groups of neurons whose only purpose is to integrate information across

the brain [69]. When your brain is performing a more computationally complex task,

brain module activation stays about the same, but connector module activity increases
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[69]. Current ANNs tend to be monolithic, and rarely seem to incorporate specialized

modules for localized data processing.

Finally, the development and training of ANNs and the human brain differ. It is

hypothesized that the main structure of the human brain is more or less set in its design

by birth [67] while the connections between neurons are strengthened and weakened

over time. This perhaps lends itself to an evolutionary algorithm designing a network

structure while conventional methods are used to train this structure (though for many

reasons this method is not always feasible for an application). Humans also begin life

with neurons hyper-connected, and connections are pruned back over time.

One study sought to incorporate biological design principles into the development of

an autonomous robot bike [70]. It had a visual and audio modality with different network

structures for each, as well as hybrid state machine for decision making.

2.8 Modular Neural Networks

Modular neural networks incorporate a more biologically likely design. In fact, [71] eval-

uated neural networks and measured modularity by partitioning neurons into sets where

within-set connectivity is high and between-set connectivity is low. They found network

topology (pruning particularly) increases clusterability of a network. [68] recommends

breaking down the Modular Neural Network Design into 3 stages:

1. Task Decomposition: the overall task is broken up into simpler ones.

2. Training Modules: the simple modules learn their sub-tasks.

3. Multi-Module Decision Making: the local decision making is integrated into global

decision making.

In [72] six module operators were evaluated to Neural Network design, including splitting

(independent networks), substituting (related to transfer learning), augmenting (adding

new networks), inverting (switching the order the networks are run), porting (applying

networks to different contexts), and excluding (having the ability to remove networks).

In [73] the modularity of biological nervous systems is noted, and modular neural network
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operations are categorized by domain, topology, formation, and integration. This study

discussed techniques for all of these operations. [74] focuses on the design principles of

replication and decomposition. Replication allows the reuse of useful modules, where

decomposition allows breaking a complex problem into simpler ones. They separately

trained modules on subsets of data and were able to better able to recognize noisy images

than a monolithic network, though they comment that the monolithic network may be

better at statistically neutral problems.

[75] used a decision tree structure where non-terminal nodes were expert neural net-

works. In [76] a modular neural network was used for visual question answering where in-

dividual modules were ”independent and composable”. [77] also applied Modular Neural

Networks to Visual Question Answering . They explored several modular architectures

related to sub-tasks and found an intermediate degree of modularity application was

most effective for their application. [78] looks at modular neural networks from an in-

terpretability standpoint, as monolithic networks are often difficult to understand. They

used Gated Modular Neural Networks and a Mixture of Experts Architecture applied to

the Fashion MNIST dataset to try and understand what an individual module learned.

This study had some interesting insight on the behavior of jointly training experts and

trying to decompose tasks while preventing one expert from starving the rest. [79] and

[80] found that modularity in neural networks can assist in mitigating catastrophic for-

getting of networks, and [81] introduced a Cooperative Modular Neural Network which

used a voting scheme among multiple modules which could affect the responses of other

modules. [82] applied problem decomposition to a modular neural network to classify

handwritten Hindi alphabets.

2.9 Data Fusion Networks

Data Fusion networks take in more than one type of data and fuse them together at some

point during processing. Fusion is often broken up into three potential levels:

1. Early fusion or data level fusion: The data goes through little or no preprocessing

before combination with other data in the network. Figure 5 is an example of this.
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2. Middle fusion or feature-level fusion: The data is preprocessed before combination

and processed together following combination. Figure 6 is an example of this.

3. Decision level or late fusion: Data goes through nearly entirely separate processing

streams and is only evaluated together at the output of the network. Figure 7 is

an example of this.

Figure 5: Early or data level fusion network.

[83] looked at data fusion for fault diagnosis of a planetary gearbox. They found they

had the highest accuracy with data-level fusions of features but noted feature-level fusion

still had good performance. [84] used data fusion along with squeeze and excitation units

to add an attention mechanism and found that feature level and decision level fusion

performed the best for their model. [85] used decision level fusion and weighted majority

voting among modules for good results on classifying uterine EMG signals. [86] used a

multimodal model for dynamic hand gesture recognition by augmenting their dataset with

optical flow. They regularize their loss to increase performance. [87] looked at early and

late fusion for semantic video analysis. They discovered that late fusion in general worked

better, though in the cases where early fusion worked better it did so more significantly.
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Figure 6: Intermediate or feature level fusion network.

Figure 7: Late or decision level fusion network.
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[88] also applied data fusion to video data, in the area of action recognition. [89] fused

side face and gait information in videos to identify humans. In [90], multimodal image

data was fused and sent through a fully connected recurrent neural network to classify

videos.

[91] introduced Gated Multimodal Units - units internal to an ANN designed to find

intermediate representations. They used combinations of data from different data modal-

ities, which was tested on the IMDb movie plot and poster dataset. [92] used a “Tensor

Fusion Network”with three components: modality embedding subnetworks, tensor fusion

layer, and sentiment inference subnetwork. This is an example of feature level fusion,

though their tensor fusion layer was more sophisticated compared to simple concatena-

tion of preprocessed inputs. [93] used data fusion along with a CNN incorporating atrous

convolution for fault diagnosis. They said of their FAC-CNN network: “Theoretically,

the adaptive fusion layer can learn to extract features from unlimited multi-channels to

obtain the best one-dimensional representation of the fused data”. [94] stacked multiple

shared layers between different modalities to create their data fusion network, and used

an encoder-decoder architecture that decodes into different modalities. [95] trains their

fusion network with some examples having a modality purposefully zeroed out in order

to accommodate potential missing values. [96] introduced CentralNet, which combines

independent modality networks with a central network and automatically identifies the

best fusion levels for combining data.

Attention mechanisms have also been applied to multimodal deep learning, as is

the case in [97] and [98]. [97] uses modality-dependent attention weights and leverages

pretrained models.

2.10 Recurrent Neural Networks and Autoencoders together

A lot of sensor-streaming/IoT data is time series data. There is a significant body of

work concerned with combining the unsupervised learning properties of an AE with the

sequential processing abilities of a RNN.
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There are two main ways this combination can occur: either as separate modules

(typically with AE features feeding the RNN) or with one module integrated with another

(typically the AE is composed of recurrent cells). We will begin with the case of an AE

composed of recurrent cells.

A RNN inside an AE

An AE composed of LSTM cells was used in [99] for machine prognostics. Anomaly de-

tection for RNNs in AEs appeared to be a popular use case. This was the case for Indoor

Air Quality Detection in [100], attack detection for additive manufacturing in [101], audio

anomaly detection in [102], network anomaly detection in [103], solar radiation prediction

in [104], dialect analysis [105], anomaly detection in ECG readings [106], supply chain

manaement [107], remaining useful life prediction [108], and time series forecasting [109].

An AE followed by a RNN

In [110], smartphone sensor data went through a convolutional AE followed by an LSTM

network and two fully connected layer for human activity recognition. A stacked AE

was used as stage one and an LSTM as stage two for data processing for intrusion

detection in [111]. A traffic flow prediction model [112] also opted for the AE followed

by LSTM architecture, as did a motion recognition in video sequences model [113], and

flight testing [114] (although this model was implemented with Field Programmable Gate

Arrays). Attention in the form of squeeze and excitation was added to a similar structure

in [115]. Lung ultrasound data was was put through an AE followed by a CNN followed

by an LSTM to predict COVID-19 severity in [116], with a similar architecture used for

Human Activity Recognition in the DeepSense model [117].

An AE and LSTM were trained in parallel in [118] to forecast coronavirus global

spread.
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2.11 Business Case Issues with AI

While there is a vast body of research into artificial intelligence and neural networks,

very little of it focuses on practical integration of techniques to broader industry and

organizational stakeholders. At the moment, training an AI system remains a fairly

specialized skill. There are some known obstacles to AE integration for smaller companies

and organizations. [119] notes that “Research on AI in IS [Information Systems] is still

largely unexplored”. The same study notes that much existing research suffers from the

lack of a cohesive definition of what artificial intelligence is.

2.12 Internet of Things and Machine Learning Applied to Agri-

culture

There is an existing body of work applying Internet of Things (IoT) and machine learning

technology to agriculture. This section surveys these studies and their outcomes.

On the application side, [120] discussed popular usage areas for deep learning in

agriculture including identification of weeds, land cover classification, plant recognition,

fruits counting, and crop type classification. In much of the literature covered in this

section, diseases and pests classification and monitoring were popular applications as

well.

General AI in Agriculture

In [121], VGG and RetinaNet were used to localize and classify banana diseases, and [122]

used a bidirectional RNN and LSTM with weather data to predict pests and diseases.

[123] used a CNN on different light representations of plant images to classify leaf diseases.

[124] used colorimetric space and vegetation indices together with a CNN to detect vine

diseases. They found a combination of the YUV and RGB color spaces worked well. [125]

also used deep learning for vine disease detection on visible and infrared spectrum images,

and [126] and [127] used UAV multispectral images for grapevine disease detection. [128]

used a self organizing feature map for grape leaf pixel segmentation to detect grape

leaf diseases. Fuzzy decision trees were used in [129] to predict coffee rust based on
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weather station data. A probabilistic neural network aided [130] in plant classification

after using Principal Component Analysis (PCA) to identify 12 features. [131] made use

of annotated regions of interest and deconvolution to classify tomato diseases and pests

(in 9 categories) in real time.

Wireless Sensor Networks in Agriculture

In [132], Zigbee and Arduino-based Wireless Sensor Networks (WSN) were used for rose

greenhouses in Ecuador. They tested linear regression, neural networks, and support

vector machines (SVMs) to predict data, with SVM as the top performer. [133] used

a mote-based AgriSens WSN for groundnut pest and disease prediction, with Gaussian

Naive Bayes classification. [134] used an expert system for variable rate application

of fungicide, combining a wireless sensor network and AI backend of GLAIR cognitive

architecture. [135] is a WSN in a vineyard located in Spain for monitoring mildew, with

the incorporation of a variety of mildew models, while [136] uses a Zigbee-based WSN to

monitor diseases conditions, and a Hidden Markov Model to model them. They alerted

conditions via SMS messages. [137] used a Naive Bayes Kernel model to assist crop yield

in India and [138] also uses WSN with Arduino, Raspberry Pi 3 and Zigbee to monitor

pests and diseases. They used KNN, logistic regression, random forest regression, and

linear regression to model data. [139] uses a sensor network for tomato blight detection,

using real-world images in combination with PlantVillage dataset. [140] used a mote-

based WSN to monitor for Apple Scab disease and [141] used a mote system in an Oregon

vineyard to predict powdery mildew based on temperature pressure. [142] used a WSN

for monitoring the field as well as the wine cellar in a vineyard. [143] also used a WSN

for vineyard management. [144] used Zigbee wireless sensors and a mesh network for

environmental monitoring.

Data Fusion in Agriculture

In [145], the state of machine learning for detecting crop diseases was surveyed, including

data fusion techniques. They noted one challenge of data fusion was that it is “only
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worthwhile if it increases quality of predictions and relevance of decision based on data

combination”. [146] used a data fusion network (although they did not use this term)

to predict cotton quantity in Greece. Each input was processed by a separate network

and features were merged by a concatenate layer, while [147] applied data fusion for

rice prediction yield on two kinds of deep features. [148] checked input and feature

level fusion for soybean prediction yield which fared better than other methods when

more input variables were available. In [149] an extreme learning machine with multi-

sensor fusion was applied for phenotyping soybeans. [150] combined remotely-sensed

and weather data to forecast powdery mildew, while [151] used a Multi-Context Fusion

Network with a CNN backbone for crop disease prediction and outperformed state of the

art methods with a 97.5% identification accuracy. Both spatial and temporal context

information was incorporated into their model. Plant Classification used global and local

leaf features from 2 different CNNs along with early and late fusion in [152], with better

success in late fusion.

Precision Agriculture Systems

Some of the current precision agriculture offerings on the market include:

• FarmBeats: Microsoft has created (though not yet fully open-sourced) a system,

FarmBeats, for precision agriculture, citing the lack of affordable technology as

cause for limited adoption of data-driven agriculture by farmers [153]. FarmBeats

includes leveraging low-cost hardware (including a specialized radio that can uti-

lized unused TV white spectrum bands [154], a multimodal artificial intelligence

system. The FarmBeats Deep Microclimate Prediction Network [155] fuses a fore-

cast with local IoT information at multiple scales using an AE and incorporates

a CNN and LSTM for their final output. FarmBeats also encompasses methods

of reconstructing satellite images obscured by clouds [156], processing drone data

more effectively [157] and decreasing latency for low orbit earth satellites [158].

• AgStack [159]: AgStack has been put into motion by the Linux Foundation and

is supported by a multitude of partners and members, including OpenTEAM, far-
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mOS, and OurSci. They are developing a comprehensive open-source agriculture

infrastructure system. However, they appear to be in the beginning stages of de-

velopment. Right now, they are working with LF Edge and EdgeX to put IoT tools

into AgStack.

• OpenTEAM [160]: The Open Technology Ecosystem for Agricultural Manage-

ment is also working on a suite of precision agriculture tools, though their focus is

primarily on soil health. They are supported by several organizations including the

USDA. At this moment, they appear to have primarily focused on networking and

developing policies among their stakeholders. In their “collabathons”, they have

discussed technology concepts such as Ag Data Wallet and application program-

ming interface switchboard.

• OurSci [161]: Our Sci has several free precision agriculture tools, though also

appear to be early in development. They work on both hardware and software.

They have a free to use SurveyStack tool for surveys, and are working on projects

for soil health, bionutrients, a research farm, and more.

• vite.net [162]: This system looked at agriculture decision support systems in regard

to usability for farmers and developed a website as an improvement over existing

offerings. The site integrates many sources of information particularly for grape

growing.

• Other open-source tools include the Trellis Framework, Tania, AgroSense, Lite-

Farm, AgriXP, and Tamboro.

University of Idaho Precision Agriculture SCARECRO System

In Spring 2022, the University of Idaho began developing a precision agriculture system

(more narrowly focused in remote environmental sensing) with Laurel Grove Wine Farm

in Winchester, Virginia. The main design principles behind the system include being:
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• free (or low-cost),

• open-source,

• farmer-focused, and

• flexible.

The system is not expected or created to be a one-stop end-all precision agriculture

solution but is meant to act as a tool for future development and eventual integration

with more complete systems (for instance, AgStack). The system aims to speed up

research and adoption of precision agriculture remote sensing.

The SCARECRO remote sensing system is composed of the following components:

• sensors (hardware component on-site),

• aggregators (hardware component on-site),

• gateways (hardware component on-site),

• a middle agent and a weredog (software component in the cloud),

• a database (software component in the cloud),

• a dashboard (software component in the cloud), and

• artificial intelligence models (software component, eventually in the cloud).

All components except the artificial intelligence models (the focus of this dissertation)

currently have an implementation at Laurel Grove Wine Farm.

One important aspect of the system design is that it is provisionless: no device in the

system needs knowledge of other devices in order to function. This was an important

choice for our development team as reconfiguring devices in the field can be costly and

time consuming. As a result, any sensor can connect to an aggregator or gateway, and

any aggregator can connect to any gateway. If a sensor or aggregator is within range of

multiple aggregators or gateways, there is potential message duplication, which is handled
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naively by the middle agent. This has a nice side effect of being more stable to hardware

loss if a sensor or aggregator can reach more than one aggregator or gateway. This

scheme does require the individual sensors and devices to be identified and geolocated,

which was already a necessary requirement for managing site-specific data.

Figure 8: An Overview of the SCARECRO system

Sensors: For the overall system, nearly any type of sensor can be integrated with

minimal extra development. The current system uses Minew s1 Bluetooth tempera-

ture/humidity sensors, a generic soil pH sensor, soil moisture sensors, and SwitchDoc

Labs weather racks, thunderboards, and solar chargers. Sensors can be wired to a gate-

way or aggregator. Sensors can communicate their information on a variety of protocols

to either an aggregator or a gateway.

Aggregators: Since the main communication methods in this system are wireless,

there are concerns over wireless communication costs since the current system is using a

cellular network from farm to cloud. Aggregators were introduced to extend the range

of gateway nodes and provide a middle link between sensors farther away from gateways

without increasing connection costs. Aggregators read from sensors and pass information
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along to gateways via a local WIFI connections out of a hotspot run by the gateway. This

allows more sensor information at greater distance without connecting additional devices

to the cellular network.

The current implementation of this (called the Datagator) is a esp32-based Firebeetle

board with custom PCB design to extend the number of interfaces to different sensors.

The resulting board can read Bluetooth and wired sensors and communicate information

to the gateway via the local WIFI connection. Any microcontroller that can communi-

cate on a protocol the gateway can understand could act as an aggregator for a system

implementation. There are about eleven aggregators in use at Laurel Grove Wine Farm.

Gateways: The gateway reads sensor information from sensors and aggregators,

stores a local copy, and sends the information to the middle agent. Gateways can per-

form data cleaning if necessary for a sensor reading. Gateways keep a local copy of the

received data for a configured time in case of a connection loss; if such a loss is detected

the local copy can be sent at a later time to the middle agent and database. At the mo-

ment, gateways are implemented by Raspberry Pi microcontrollers: our research team

likes this device because it is highly extensible and compatible with a variety of inter-

faces and sensors. The seven implemented gateways at Laurel Grove Wine Farm use a

cellular connection to pass sensor data along to the middle agent. Gateway software was

written to be highly extensible to new sensor types: a driver that communicates sensor

information in the form of a data value dictionary requires minimal code to be integrated

into the system. The gateway can accept sensor information on multiple communication

protocols: right now, it listens on 433 MHz radio, WIFI, and wired interfaces. The gate-

way software is around 90% complete and includes features to automatically reboot at

connection losses and turn on a cooling fan if overheated.

Middle Agent: The middle agent is single point for all sensor information to flow

through before entry into the database. This allows gateways to be decoupled from the

database and provides the elimination of duplicate sensor readings. Right now the middle

agent implements duplicate elimination naively: it only accepts one message from one

sensor instance within a configured time frame. This also allows the farmer to control the

data rate into the database (which is not always possible on a sensor level, particularly
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for inexpensive sensors). Right now, the middle agent and weredog runs on a cloud EC2

instances using AWS, though it could easily be implemented in local hardware.

Database: The database is the home of all remotely sensed data. Right now, this is

implemented by Mongodb Atlas, a cloud no-sql database. Its non-relational data schema

allows us to be more flexible without sensor readings. With appropriate drivers, other

databases (or local rather than cloud instances) could be implemented into the system.

Dashboard: The dashboard is a crucial part of getting collected data to the actual

end user (the farmer) so it can be utilized. The dashboard allows real-time monitoring and

mapping, as well a historical data visualization and graphing. The dashboard displays

data from both remote sensors and other data sources (such as open weather APIs). Right

now, the dashboard is implemented as a webpage created in React, library, running on

an AWS EC2 instance.

Figure 9: SCARECRO block diagram

Artificial Intelligence Models: The ultimate goal of the SCARECRO system is to

collect sufficient data to aid in farmer analysis to make informed decisions about growing

techniques and processes. The artificial intelligence models will leverage the data in the
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cloud database to provide insights to the grower, with an interface eventually developed

via the dashboard. This is the only component not currently implemented in the system

and is the subject of this dissertation.

Figure 9 illustrates the block diagram of the SCARECRO system.

The SCARECRO system was designed with high-level AI processing in mind. It aims

to make high fidelity data collection automatic and simple to implement to aid the ability

of AI analysis to assist farmers in making high-level decisions.

2.13 Review of Work Summary

Overall, there have been many studies on improving various data collection and artificial

intelligence techniques related to the motivations of this study. There have also been

many attempts at improving precision agriculture specifically. This section of the disser-

tation evaluated relevant existing work and studies to determine what new approaches

could be promising to the field. The following section narrows down the focuses of the

research in this work and takes a look at the datasets that can be used to evaluate them.
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3 Dissertation Focus Areas and Datasets

This section outlines the two research focus areas of the work, and why these areas

are applicable to making artificial intelligence more accessible and/or explainable. This

section then describes the datasets chosen to evaluate the research focus areas and why

they they were selected.

3.1 Focus Areas

There are a vast array of artificial intelligence techniques that could potentially serve

precision agriculture adopters and/or smaller business and organizations, only a few

of which are outlined in this dissertation. However, this dissertation will focus more

narrowly on two areas:

1. Exploring trade-offs of modular flexibility regarding deep learning neural network

performance, and

2. Exploring more explainable quantitative association rule techniques compared to

deep learning approaches.

The first focus acknowledges the power and performance of deep neural networks

and seeks to examine ways they might be structured to better accommodate a dynamic

data environment. The second focus examines an alternative to neural networks that

yields more explainable results. These approaches were chosen for study due to their

potential to aid artificial intelligence adoption and system construction by smaller or less

technically savvy organizations or farms.

3.2 Datasets

Two datasets will be used for the experiments: a microclimate dataset, and a biomedical

dataset. The datasets are described below, followed by a justification for the choice of

these datasets.
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Dataset Descriptions

Microclimate Dataset: Jornada Basin [1]: The Jornada Rangeland research pro-

gram provides free microclimate data on the Jornada basin (located in the Chihuahuan

desert), including daily summaries of temperature, humidity, wind speed, solar, radia-

tion, and more across 30 geo-located sites. This dataset is perhaps most related to the

current SCARECRO project in terms of remote environmental modeling. The data are

provided as csv files and are free to download.

The regression task for this dataset involves predicting weather readings from past

weather readings. Predicting the presence or absence of frost will be the prediction task

for this dataset.

Biomedical Dataset: VitalDB [2]: VitalDB is a dataset of recorded vital signs from

surgery patients in Seoul National University Hospital in South Korea. The patient data

includes recordings from monitors during the surgery, as well as patient clinical data and

lab results from before, during, and after surgery. For these experiments, a subset of

this vast database will be used: 38 patients undergoing liver transplant surgery. The

regression tasks for this dataset will involve predicting vital signs ahead of time, while

the prediction tasks will include whether or not the operation is an emergency operation,

as well as glucose and discharge risk factors for these types of patients.

Both the Jornada Basin Dataset and the VitalDB dataset had more data available

than was usable in the scope of this project. Part of the experimental setup was evaluating

which types of data, in what formats, would be used in the resulting neural networks.

The datasets also had differences in the data formats, which necessitated slightly different

slates of models for each. The data formatting, types of models, and experimental setups

are described below.

Dataset Choice Justification

Both of the chosen datasets collect time data from a variety of features over set periods.

However, these datasets are otherwise very dissimilar, with different domains, manners of
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collections, and temporal resolution. The differences in the chosen datasets are purpose-

ful: in order to evaluate the models, it was important to note whether or not performance

was generalizable across domains or different time scales. The Jornada Basin dataset has

an obvious connection to precision agriculture in that it is composed of mostly weather

features, and models scrutinized subsequent time steps for the presence or absence of

frost. The VitalDB is a medical dataset, very different from precision agriculture. Aside

from being a new application of the models, the VitalDB dataset has a very fine tem-

poral resolution (on the level of seconds rather than days), which allows investigation of

model performance on more than one time scale. While these two datasets do not form

a comprehensive set of domains for experimentation, their differences are sufficient to

obtain an idea about the generalizability of the proposed models.

3.3 Focus and Datasets Summary

This section described the two specific focus areas of the dissertation and gave an overview

of the type and purpose of the datasets chosen to evaluate these areas. The next section

outlines proposed experiments for the datasets and the methodology of setting them up.
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4 Methodology and Proposed Experiments

The focus of this section of the dissertation is to develop intuition on artificial intelligence

deep neural network design for dynamic environments that can be implemented by small

or medium size organizations with multiple streams of data to process. This section is

split up by focus area, with deep learning modular networks explored first and genetic

algorithms second. Each focus first covers the principle research questions guiding the

experiments and neural network or algorithm design. It then covers potential datasets

that will be used for experimental validation, the neural network designs incorporated

into the experiments, and the steps for running each experiment. Finally, the metrics for

evaluating network design performance in the experiment are discussed.

4.1 Deep Learning Focus

This subsection is covers the methodology and design related to making modular neural

networks.

Research Questions

Four research questions relating to neural network design and data processing are pre-

sented below:

1. What is the best method of incorporating new data into an existing

neural network design? Neural networks are often restricted to a certain input

size, and new information cannot always be fitted to an existing neural network

structure. If a new data stream should be incorporated, often the network must be

retrained. This can be difficult for a system to handle if the new data stream was

not available at the same time as the other data values. There are several ways to

investigate this problem, including:

(a) Re-training a complete neural network system for new input;

(b) Creating a neural network structure that can handle different types of inputs

added or subtracted; or
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(c) Retraining a top-level model on an existing feature set, rather than re-training

an end-to-end model.

2. How modular can we make a multivariate system? There have been notable

successes in training modular neural networks and training networks with multivari-

ate data. Modularity in systems is very useful as it lends itself to a plug-and-play

design without needing to bother with interrelated dependencies if a data stream

is added, subtracted, or changed. However, as modular as the biological human

brain is hypothesized to be, it is an incredibly interconnected organ. Ideally, a

system can leverage independently preprocessed data features, but at some point,

it is likely that higher capabilities come with fusion before a decision.

3. Can we delegate multivariate (multiple types of input data) decision

tasks to exist on top of an existing feature set? High-level decision training

will ultimately necessitate some type of training label or feedback. However, it

would be beneficial to obtain a powerful feature set in an unsupervised manner,

allowing for smaller, more tailored decision networks reliant on this feature set.

These research questions will be evaluated with 2 datasets on several different neural

network designs.

Network Designs

To investigate the research questions, 4 network designs and 2 training modifications

are proposed. These network designs include using base models and current state of

the art approaches as comparisons to modified approaches incorporating various degrees

of preprocessing for eventual data fusion. The training modifications include adding

data streams and incorporating spatial locality principles. These designs incorporate

functionality discussed previously in the literature review, including using an AE as a

preprocessing technique with another network (likely an LSTM). The difference of this

approach has to do with adding data streams as well as investigating several levels of

data fusion with the AE preprocessor.
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Network Design 1: Base Models The first network designs for all 3 datasets are

baseline comparative models. A base approach for single and multivariate data streams

will be trained to provide a comparison for subsequent models. These models will be end

to end, with the multivariate data as input and the network directly giving the output

for a specific task. Figure 10 illustrates this design.

This design is meant to model a handcrafted (per task) network design for a particular

stream of data and use case. It is hypothesized that tweaking a base network of this type

can produce good results but may be time-consuming to fine-tune. It is also hypothesized

that with more data incorporation, this network design will be slow to retrain.

Figure 10: Network Design 1: Base Models.

Network 2: Modular Neural Networks, Separate Latent Spaces For this net-

work design, each data stream is preprocessed separately via autoencoder unsupervised

learning. Latent space features are concatenated as inputs to task-driven neural networks.

Figure 11 illustrates this design.

This design is very modular. If this design performs well, it is hypothesized that

adding data streams (which would be preprocessed as well) would involve re-training
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only the higher level task-driven neural networks, rather than the preprocessing AE

networks.

Figure 11: Network Design 2: Modular Neural Networks with Separate Latent Spaces.

Network 3: Modular Neural Networks, Shared Latent Space In this network

design, data streams are preprocessed separately via an AE. An additional network pro-

cesses the features into a shared latent space representation. The latent space represen-

tation will be used as input to task-driven neural networks. Figure 12 illustrates this

design.

This design is also modular, but to a lesser degree as it incorporates a shared fu-

sion space. It is worth investigating how the shared fusion space would develop (and

potentially need to be re-trained) as more data streams are added.

Network 4: Non-Modular Neural Networks, Shared Latent Space For this

network design, data is pre-processed together into a shared latent space. The latent

space representation will be used as input into task-specific neural networks. Figure 13

illustrates this design.
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Figure 12: Network Design 3: Modular Neural Networks with Shared Latent Spaces

This design does not separate data streams by different preprocessing networks but

preprocesses all data streams together. This design trains task-specific networks on top

of a shared latent space. For future work, it would be worth investigating if adding data

streams requires retraining both the shared latent space and the task-specific networks,

or the shared latent space alone.

Adding Additional Data Streams All network types will be evaluated by withhold-

ing and then adding a new data stream. Performance of these networks will be scrutinized

with regard to the potential difficulty of retraining or re-integrating the network. De-

creasing costs associated with adding data to existing trained models is one of the main

goals for the research.

Model Metrics

After training the different network models, there needs to be metrics in place to eval-

uate them. The model metrics will be used to compare different network design tasks

performance with each other for the same dataset. The performant models will be com-
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Figure 13: Network Design 4: Non-Modular Neural Networks with Shared Latent Spaces

pared across datasets to see if different network designs have similar results across data

domains.

Three different types of model metrics are needed for training and evaluation. To

begin, a method is needed to determine if the preprocessing autoencoder networks create

good latent space representations of the data. After this, the task-specific metrics need

to be established. There are two types of tasks: forecasting or regression, where a new

data sample is created based on input data sample(s) and classification or prediction,

where a class is identified for input data. These specific tasks will vary by dataset. The

different metrics for these tasks are explained further below.

Autoencoder Metric: The primary evaluation of performance for an autoencoder

is reconstruction error, which will be modeled with Mean Squared Error (MSE). Mean

Squared Error (named aptly: it takes the squared mean difference between the actual ob-

servation value and predicted observation value) allows for quantification of the deviation

of the reconstructed input with the actual input.
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For a vector x with elements x1 to xm, and a reconstructed vector y with elements y1

to ym, Equation 3 gives the calculation for MSE.

MSE =
1

n

m∑
n=1

(xn − yn)2 (3)

Regression Task Metric: Forecasting tasks compare predicted values with actual

values. For forecasting tasks, the MSE metric will also be used.

Prediction Task Metric: For classification tasks, a slightly different metrics will

be used to evaluate model performance. Tracked metrics will include the accuracy and

loss of the model, as well as true and false positives and negatives, precision, recall, and

the overall F1 statistic (2 multiplied by precision * recall divided by precision plus recall)

[163].

Experimental Design

To evaluate the proposed network designs on the chosen datasets with regard to the

research questions, several experiments will be conducted. A given dataset will be trained

on each of the four network models at least twice: once without training modifications,

and once with adding in a new data stream.

The experiments will be conducted in the following steps:

1. Prediction tasks will be identified for each dataset.

2. The dataset will be taken and broken into a training, test, and validation set.

3. The dataset first will be trained with an LSTM network approach, (Network Design

1) without unsupervised learning. The model will be evaluated on the appropriate

metrics (as explained in the previous section) for the task at hand. A model will

be trained for each prediction task separately (if more than one is identified), and

one model will be trained for all prediction tasks simultaneously.

4. The dataset will be split into unimodal data streams, and each stream trained on

the Network Design 1.
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5. The dataset will be split into unimodal data streams, and each stream will be

trained on an autoencoder neural network in an unsupervised manner. The la-

tent spaces will be concatenated together and used as input to task-specific neural

networks (Network Design 2). The models (and the AE) will be evaluated on the

appropriate metrics for the task at hand.

6. The dataset will again be split into unimodal streams and separately trained on

an autoencoder. The latent space features will then be fed as input to a feature

merging autoencoder, and its latent space features will be used to train the predic-

tion networks (Network Design 3) The same metrics will be used to evaluate the

models.

7. The dataset will NOT be split into separate modalities but used as input to one

autoencoder network (all data streams will be preprocessed together rather than

separately). The latent space features will be used to train the prediction network

and the model will use the same metrics as before.

8. One modality will be taken out of the dataset, and the experiments will be repeated.

The modality will then be added back into the network, and performance will be

compared to the initial full-data run.

4.2 Genetic Algorithms Focus

This subsection looks at general principles and research questions behind the explainable

AI focus of this dissertation applied to QARM and genetic algorithms.

One issue with neural network approaches is that there are limits on the explainability

of neural network models. While there has been some work in studying feature activation

and other methods of determining neural network behavior, networks are still by and large

mostly black box models. While performant, the sheer number of parameters in a neural

network makes it difficult to comprehend exactly what function is being fitted to the

data.
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In many contexts, a model does not necessarily need to be understood (in terms

of where the many weights and biases landed) to be useful. There are other contexts,

however, where a black box model is not preferred. In such cases, non-neural network

explainable artificial intelligence approaches should be explored.

Quantitative association rules take the form outlined in Equation 4.

feature1[v11, v12], feature2[v21, v22], ..., featuren[vn1, vn2]→ outcomeo[vo1, vo2] (4)

Where:

1. feature refers to a specific feature in the dataset,

2. vn1 refers to the lower bound of the value of feature n (inclusive),

3. vn2 refers to the upper bound of the value of feature n (inclusive),

4. outcome refers to a specific feature of the dataset of interest for correlation.

Essentially, a rule in this format states a correlation between specific features in

certain value ranges and an outcome feature between another value range. In some

cases, a particular value of a feature is sought, in which case its possible for vn1 = vn2.

A rule is simply a statement with no inherent meaning about the quantification or

usefulness of the relationship between the right side of the rule (rule antecedent or rule

body) and the left side of the rule (rule consequent or rule head). In order to deter-

mine if the rule is a ”good” rule, there must be a way of determining how often the

stated relationship occurs compared to the rest of the data. There are several metrics of

determining this. Three of the more common include support, confidence, and lift.

We’ll define:

1. num whole rule: The number of times the antecedent and consequent appear to-

gether (are correlated) in the dataset, within the bounds set for each feature in the

rule.

2. num dataset: The number of records in the entire dataset.
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3. num antecedent: The number of times in the dataset the items in the antecedent

appear between its set bounds in the rule.

4. num consequent: The number of times in the dataset the items in the consequent

appear between its set bounds in the rule.

The equations for support, confidence, and lift are given in Equations 5, 6, and 7.

supp(rule) =
num whole rule

num dataset
(5)

conf(rule) =
num whole rule

num antecedent
(6)

lift(rule) =
conf(rule)

supp(consequent)
(7)

Support gives the percentage of how often every item in the rule occurs out of every

item in the entire dataset.

Confidence gives the occurrence of the entire rule over just the antecedent; i.e., out

of all the occurrences of the antecedent, how many times did the consequent also occur?

Lift gives the ratio of the confidence of the rule over the support of just the rule

head. This gives a measure of how much more likely than expected the antecedent

and consequent occur together. A value close to 1 indicates that this is a normal co-

occurrence, and the rule is not very interesting. A positive value very different from 1

indicates that this is a more unexpected occurrence, and the rule is more likely to be

correlated.

High support, confidence, and lift bring credibility to the idea that the antecedent

and consequent are associated with each other.

There are different ways of performing QARM to obtain rules, but this dissertation in

particular looks at doing so with GAs. The GA operations with QARM will be presented

in subsequent sections.

The advantage of rules mined with a QARM GA is that the output is explainable

(it looks at combinations of factors between different value ranges) and very easy to

implement for real-time predictions (as it is a series of comparisons).
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Sequence Extension

While there has been plenty of prior work associated with QARM GAs, less attention

has been focused on using this information for time-sequenced data. One work did apply

these concepts to time-sequenced data when it came to QARM GA, evolving a time

barrier separately from the features to note the ranges in which the features occurred

together [65]. This dissertation extends this work by evolving a time range for each

feature separately.

A rule for this extension therefore takes the form in Equation 8.

feature1[v11, v12][t11, t12], feature2[v21, v22][t21, t22], ...,

featuren[vn1, vn2][tn1, tn2]→ outcomeo[vo1, vo2]
(8)

Where tn1 refers to the feature n sequence lower bound before the consequent oc-

currence, and tn2 refers to the feature n sequence upper bound before the consequent

occurrence.

Determining the consequent support for this extension is exactly the same as before,

as there is no consequent time evolution. For determining the entire rule support, the

entire rule is considered present, if, for the consequent, each feature n is present in the

associated bounds at least tn1 time steps ago and up to tnn2 steps ago. For determining

only the antecedent support, every time the features in the dataset occur in the time

and value patterns noted with regard to a record is considered an occurrence of the

antecedent.

Research Questions

This aspect of the dissertation mainly looks at the performance of QARM GA compared

to neural network approaches as well as the performance of different QARM GA methods

compared to each other. The research questions are:

1. What is the performance of a QARM GA predictor compared to a neural network

predictor?

2. How modular can we make a QARM GA?



49

3. For time-variable datasets, is there an advantage to using a sequence extension on

QARM?

QARM GA Process

There are many ways to set up a QARM GA. In the models used for this dissertation,

the GA was broken up into the following classes:

QARM GA Parameter

A QARM GA Parameter refers to a single parameter within a rule. A parameter has the

following properties:

1. upper bound: if not provided, it is calculated as the maximum value of the param-

eter within the dataset;

2. lower bound: if not provided, it is calculated as the minimum value of the parameter

within the dataset;

3. current upper bound: the current value upper limit of the parameter;

4. current lower bound: the current value lower limit of the parameter;

5. mean: the mean of the parameter in the dataset; and

6. stdev: the standard deviation of the parameter from the mean in the dataset.

If the experiment includes a sequence extension, the following are also present:

7. sequence upper bound: the maximum value a sequence can take, typically user-

specified. The lower bound is assumed zero;

8. current sequence lower bound: the minimum limit of the time range the parameter

is currently taking; and

9. current sequence upper bound: the maximum limit of the time range the parameter

is currently taking.
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The following operations can be performed on a parameter:

1. Mutation: The mutation changes either one of the value bounds or one of the

sequence bounds. If the parameter is part of the sequence extension, there is an

equal chance of choosing a value or sequence mutation. One of the values has a

random amount added or subtracted.

2. Value bound change: Part of a mutation, this picks a random amount between zero

and the mutation amount parameter multiplied by the standard deviation of the

parameter and adds or subtracts it to the chosen bound. If there is a restriction

on the range of the parameter, the new range is checked.

3. Sequence change: Part of a mutation, this adds or subtracts one or two timesteps

to the chosen sequence bound. If there is a restriction on the sequence range on

the parameter, the new range is checked.

4. Initialization: A parameter is randomly initialized between its bounds (to be within

range, if required).

QARM GA Rule

A QARM GA Rule is made up of one or more parameters in the parameter class (as

the antecedent). The rule knows the consequent information and occurrences as well,

in order to be able to calculate all rule metrics. Additionally, the rule has the following

properties:

1. whole rule number: the number of times in the dataset the rule occurs;

2. antecedent number: the number of times in the dataset the antecedent; occurs

3. consequent number: the number of times in the dataset the consequent; occurs

4. applicable records: the number of potential items in the dataset; (adjusted appro-

priately for sequence size, if applicable);

5. support: support for the rule;
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6. confidence: rule confidence value;

7. lift: rule lift value;

8. antecedent indexes: the indexes in the dataset where the rule antecedent can be

found;

9. consequent indexes: the indexes in the dataset where the rule consequent can be

found;

10. whole rule indexes: the indexes in the dataset where the whole rule (antecedent

and consequent) can be found; and

11. fitness: calculated fitness of the rule. This is typically a weighted combination of

one or more of the previous properties.

Additionally, the following operations can take place on the rule:

1. Initialization: The rule is randomly initialized to have one or more parameters.

The number of parameters at the rule initialization may be limited by the initial

rule limit parameter. The parameters forming the rule are randomly initialized as

well;

2. Mutation: The mutation can either add or subtract a parameter or change the

bounds of a parameter. The add/subtract percent and change percent parameters

are integers representing the percent change of that particular mutation occurring.

If add/subtract is chosen, a random new parameter is either added to the rule

(randomly initialized) or a randomly chosen existing parameter is subtracted. If

the rule only has one parameter, adding is the only option. If the bounds change

mutation is selected, a parameter is randomly chosen within the rule and its bounds

are changed; and

3. Fitness calculation: the rules support, confidence, and lift are calculated, as well

as its overall fitness. The fitness function is chosen based on the fitness function

index parameter. If the sequence penalty or range penalty parameters are true,
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the index of the exact sequence penalty or range penalty are chosen and applied

to the fitness. These penalized a rule from having too large of a domain. The

penalty is applied based on the average range and average sequence length if more

than one parameter is active. Fitness is calculated after initialization and after

mutation. If after mutation an antecedent support is zero, the mutation is retried

up to max mutation tries (another setting). If it is still unsuccessful, the mutation

is not applied.

QARM GA Population

A population in a QARM GA run for these experiments is made up of rules. It has the

following properties:

1. rules list: This is the list of rules that a population contains. The number of rules

is set in the population size setting;

2. top rules list: This is a list of rules with the highest fitness across all generations.

The size of the top rules list is set by top rules setting;

3. mutation rate: The rate at which to mutate members of the population;

4. generations: The number of generations to run the population;

5. tournament size: The size of the selection tournament pool for the next generation;

6. dominance: if true, this removes dominated rules with lower fitness from the pop-

ulation; and

7. reseed from best: if true, this reseeds some of empty population slots from the top

rules list.

Additionally, the population has the following operations:

1. Initialization: The population randomly creates a list of rules to fill a list of rules

to the length set by the population size parameter;
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2. Update top rules: the population sorts its rules by fitness and compares the top

number of rules in the current generation to the top number of overall rules. If the

rules are not the same, it adds the more fit rules from the current generation to the

top rules;

3. Update and kill dominated rules: If dominance is true, this kills rules whose value

bounds are already contained within other rules and whose fitness is lower;

4. diversify top rules: If true, this keeps only the highest fitness rule with the same

types of active parameters in a population’s top rules list (This is a somewhat

greedy technique to diversify but keep good performers);

5. tournament selection: this randomly chooses a number of rules (set by the tour-

nament size setting) from the population and copies the highest fitness rule to the

new population;

6. Mutation: This chooses a number of random rules equal to the mutation rate

percent from the population and mutates them;

7. generation run: This performs the following operations:

(a) Updates and kills dominated rules;

(b) Sorts the rules population by fitness;

(c) Diversifies the top rules, if set;

(d) Updates the top rules;

(e) If the reseed from best setting is set, population members are replaced with a

10% of being from the top rules and a 90% chance of being randomly initial-

ized. If the reseed from best setting is not set, the population members are

replaced by randomly initialized new population members;

(f) a tournament selection creates a new population from the existing population;

and

(g) the new population is mutated.
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8. save: rules (either all rules or top rules) are saved to a javascript object notation

file; and

9. experiment run: a population of rules is created, a number of generations equal to

the generation setting is run, and all rules in the last generation as well as the top

rules are saved to a javascript object notation file.

QARM GA Predictor

A QARM GA Predictor is given a test dataset and a list of top rules. For each rule, the

predictor:

1. Determines where in the dataset the features (according to the rule antecedent)

would predict the consequent;

2. Checks those predictions against the true consequent values in the dataset; and

3. Outputs accuracy, precision, recall, true positives, false positives, true negatives,

false negatives, and the F1 score for each rule.

QARM GA Parameterization

There are many possible parameters for a QARM GA that are set by a user. The following

are parameters for the QARM GA:

1. mutation rate: the percent of population members that will be mutated in a gen-

eration;

2. mutation amount: the percent of the standard deviation of a mutation parameter

that will be upper limit of the amount of change for a parameter on a give mutation;

3. range restriction: If set, this is the percent of standard deviation of the parameter

that the total range of the value upper and lower bound must be within;

4. range penalty: If true, this applies a range penalty to the fitness. The actual

penalty applied is set by the range penalty index. The idea of range amplitude can

be found in [61];
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5. initial rule limit: The initial limit of number of parameters that can be in a rule

when a population is created. Note that more can be added beyond this limit. This

aids in a quick initialization;

6. add subtract percent: The percent chance that a mutation will add or subtract a

parameter;

7. change percent: The percent chance that a mutation will change a parameter

bound;

8. max mutation tries: The maximum number of tries to mutate a parameter before

giving up;

9. population size: The number of members in the population;

10. top rules: The number of top rules to be kept across generations for a population;

11. generations: The number of generations for a population to run;

12. tournament size: The number of competitors in the pool for tournament selection;

13. dominance: If true, this kills rules with the same parameters and same bounds but

lower fitness than an existing rule. The idea of dominance and non-dominated rules

can be found in [62] and [61];

14. sequence limit: The upper limit on how far back the sequence can go for a param-

eter;

15. sequence penalty: If True, applies a penalty to the fitness based on how long the

sequence is. The exact penalty to be applied is set by sequence penalty index. This

is extended from the idea of penalizing the range amplitude;

16. diversify top rules: If true, this only keeps the highest fitness rule in a list of rules

with the same active parameters;

17. reseed from best: if true, missing population members have a chance of being

replaced from the top rules list;
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18. fitness function index: The index of the fitness function used to calculate the overall

fitness of the rule;

19. sequence penalty index: The index of the sequence penalty to apply to the rule;

and

20. range penalty index: The index of the range penalty to apply to the rule.

A Note on Sequence Antecedent Calculation

It should be noted that the calculation of the antecedent number when it comes to

sequences is not always intuitive, since each parameter can take on their own sequence

values. In this subsection, the way the model code is running to make these calculations

is explained more fully. The process to calculate the antecedent number is as follows:

1. First, a parameter is taken out of the rule;

2. Second, every index for where the parameter is within its value bounds is found in

the dataset;

3. Next, the sequence value range is calculated for that parameter;

4. Next, for each index of the parameter, every value within the sequence range is

added to create a new index list. For example, if the parameter occurs within its

values at index 2, 3, and 5, and if its sequence range is [2, 3], then the new index

list looks like [2+2, 2+3, 3+2, 3+3, 5+2, 5+3] for a new index list of [4, 5, 5, 6, 7,

8];

5. The new index list is reduced to the set of its elements. For our previous example,

the new index list looks like [4,5,6,7,8]. These represent that records in the database

for which the parameter fulfills both the sequence and values requirements. In

other words, for indexes 4,5,6,7, and 8, the parameter occurs within its values 2 or

3 timesteps ago for all of them.

6. For any other parameters, the process of getting the fulfilled index list is repeated;
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7. The lists of all parameters are then intersected to get the final fulfilled indexes. For

instance, for our previous example, if one other parameter was present and this

parameter fulfilled indexes [4, 7, 9, 10], the final fulfilled indexes would be [4, 7] for

this rule; and

8. The length of this final list is the number of antecedents. The number of possible

antecedents is found by taking the maximum lower bound of the sequence and

subtracting it from the number of records in the database. (Since an antecedent

can’t be filled earlier than this).

This approach can be implemented in python with numpy arrays, which was a con-

siderable boost to performance compared to repeated dataframe queries. This approach

also makes calculating the whole rule support much faster, as the consequent indexes are

merely intersected with the fulfilled rule indexes. This speed of this approach depends

on the dataframe being organized by timestep with no missing timesteps, however.

Metrics

Since the QARM GA results can be used to create predictions, the metrics used to

evaluate their performance will be the same used for the deep learning prediction task,

namely, the F1 score. False and true positives and negatives as well as overall accuracy

will also be tracked.

Computational Complexity

Genetic algorithms computational complexity compared to neural networks is difficult

to determine, as both depend on size and hyperparameter choice. It should be noted,

however, that the models in these experiments ran more slowly than the neural net-

work models but required much less up-front data wrangling to implement. Additionally,

the predictors that are ultimately output by the models are much less computationally

intensive than neural networks to create predictions. What parameters are more impor-

tant to a user when it comes to training and implementation timing, is worth further

investigation.
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4.3 Methodology Summary

This section outlined the methodology and experimental design for both the modular

deep learning networks and the explainable QARM genetic algorithm models, and dis-

cussed the research questions behind each and the methods to evaluate them. The deep

learning models use 4 network types in 4 separation schemes to investigate the impact

of modularity with regards to datastreams and location. The genetic algorithms use se-

quence and non-sequence models on just prediction tasks with sets of hyperparameters

to find highly correlated rules in the data. Both focus areas have specific metrics to

evaluate their importance against the research questions. The next section looks a how

the experiments will be set up for each task.
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5 Experimental Setup

This section describes how the neural network and GA experiments were set up and

run. In particular, it goes over the data formatting, data separation, experiment models

and model groupings, and experiment parameters for each focus area. As before, this

section of the paper separates the information by focus area, describing the modular

deep learning models first and the QARM GA models next. The section also describes

in detail some of the analysis techniques used and assumptions made when determining

the final models performance in the results section.

5.1 Jornada Basin: Deep Learning Models

The Jornada Basin is located in the Chihuahuan desert in New Mexico. The Jornada

Basin Long Term Ecological Research Project maintains a substantial data catalog of

ecological information, including weather data, net primary production, vegetative cover,

rodents, and more. For this dissertation, the 15 NPP meteorological sites were chosen,

which included the following sites: ’c cali’, ’c grav’, ’c sand’, ’g basn’, ’g ibpe’, ’g summ’,

’m nort’, ’m rabb’, ’m well’, ’p coll’,’p smal’, ’p tobo’, ’t east’, ’t tayl’, and ’t west’. The

first reporting date for any of the sites was July 23, 2013, and the last date used for all

the sites was December 5, 2022. Refer to Figure 14 for exact start and end dates for all

sites.

The amount, kinds, and start/stop time for different weather data at the different

sites varied. Four data streams were chosen for the neural network models, encompassing

15 total features. The features are outlined in the Figure 15 below.

The deep learning models in this dissertation examine the impact of adding and

subtracting different datastreams, which is why the features are broken up according to

Figure 15. While these features were likely collected at the same weather station, the

datastream split is a reasonable estimation of a component-level separation.

The Jornada Models also made use of several separation schemes, separating modal-

ities out by datastream, location, or both. Figure 16 outlines the separation schemes for

these models.
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Figure 14: NPP site names for Jornada Basin dataset with start and end dates of obser-

vations.
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Figure 15: Datastream features and descriptions for Jornada Basin LTER NPP meteo-

rological sites, taken from the meta data documentation in their catalog [1]

Figure 16: Separation schemes for the Jornada Basin Dataset and the number of models

needed for each scheme to reach parity of the full system.
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Data Formatting

Not all locations in the Jornada Basin dataset have every datastream at every time,

so the data was re-formatted in several ways. When there was a missing value in the

dataset, it was forward filled (using the last valid observation to fill a future one) using

the pandas fillna() method. If a feature was not present for a location (or barely present

in the timeframe considered), that feature would be eliminated for a given model.

The Jornada Basin dataset is an interesting dataset in that most locations have a fair

amount of data reported at the same time. Because of this, data features were predicted

per-location. For example, the wind speed was predicted for the c-sand site and the wind

speed was predicted separately for the g-basn site, rather than having one wind speed

prediction for both sites. This technique made the most sense from site-specific precision

agriculture perspective.

All data features were normalized to a value between 0 and 1 before being run through

the model.

Models to Run

For the deep learning models, there are two ways to look at the kinds of models to run:

in terms of what network they used to process the data, and in terms of how datastreams

and locations were broken up. Most models eventually predicted all datastreams at all

locations, but some models predicted one datastream at all locations, all datastreams

at one location, or one datastream at one location. These models were run in order to

look at aggregate performance of individual models after separating the prediction tasks.

Figure 17 displays the descriptions of the models that could be run in a particular slate.

In Figure 17 the Number of Datastreams column refers to how many of the broad

datastream categories were included for that model letter (1 or all). The Network Type

refers to the networks in Figures 10 through 13 and the Model Type indicates whether or

not an LSTM or autoencoder model was run for that letter. The Previous Input Name

refers to prior autoencoder input, and the ”Fused” on category is relevant for models

predicting all of one datastream or location using input from autoencoders that only
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Figure 17: Descriptions of the different types of general models run in the Jornada

Basin dataset. One or more of these models were run on each slate of experiments, with

modifications specific to that slate.
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used one. In these cases, the prior autoencoder inputs must be fused, either with regard

to the datastream or the location.

Slates of experiments

The 26 model letters were run in different experimental slates. Not all slates ran all

model letters. For instance, when adding a subtracted feature back into the data, only

the models that broke up by a data feature made sense to retrain, since a fully trained

version of the other model types already existed in a previous slate. Figure 18 describes

the model slates for Jornada Basin.

Figure 18: Descriptions of different model slates run with described modifications and

parameters. The Models column refers to the models run on from Figure 17.

In Figure 18, model letters D and I are absent after the first two slates. Early results

from the first two slates supported removing these models from subsequent slates (as

the models were computationally complex and not performant). This will be discussed

further in the results section of the dissertation.

Experiment Parameters

There were two types of models for the experiments: LSTMs and AEs. For both model

structures, there were modifications depending on the experimental slate, which incor-

porated slightly different hyperparameters. This section discusses the different model

hyperparameters depending on the experimental slate for a given model.

Each individual model was run with several variations in order to control for variability

in some of the structure and hyperparameter choices. Each dataset would be run with

two different amounts for input days (30 or 60) and two different amounts for output
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days (1 or 7), for 4 total pure dataset variations. Each LSTM model had three structure

variations possible (base 8, 32, or 64). For AE models, only one structure variation (70%

of input nodes) was trained.

There were a handful of static hyperparameters which did not change across the model

structure or slate. These included the test set split (20% for all), the validation set split

(20% for all), and the batch size, which was 32 samples.

The shallow LSTM model had one LSTM layer (with the default Keras tanh activation

function) followed by a 20% dropout layer. The input and output layers where shaped to

the desired formats but had no additional processing. The final activation of the LSTM

model used the Rectified Linear Unit function, and the Adam optimization scheme. It

would run for 100 epochs and using the MSE function as a loss function. For each run,

it kept track of the MSE. Shallow LSTM models ran for 100 epochs.

The three variations of the shallow LSTM model used different numbers of nodes in

the first and only LSTM layer in the model structure. The first variations used 8 nodes

(base 8 structure), the second 32 (base 32 structure), and the final used 64 nodes (base

64 structure).

The shallow AE used only one latent layer (aside from identical input and output

layers), with the number of nodes in the latent layer determined as 70% of the number

of input features. The dense latent layer and final layer used a Rectified Linear Unit

activation, and the loss function (and only metric tracked) for the AE was MSE. The AE

also used the Adam optimizer. The shallow AE model ran for 100 epochs.

Slates 18 and 19 were the only slates to use a deep LSTM model. There were two

differences between the deep LSTM model and the shallow model: model layer structure

and number of epochs. The deep LSTM model ran for 150 epochs. The first variation

(base 8 structure) had one LSTM layer with 24 nodes, followed by a 20% dropout layer,

followed by an LSTM layer with 8 nodes, followed by a 20% dropout layer. The second

variation (base 32 structure) had an LSTM layer with 64 nodes, followed by a 20%

dropout layer, followed by an LSTM layer with 48 nodes, followed by a 20% dropout

layer, followed by an LSTM layer with 32 nodes, followed by a 20% dropout layer. The

final variation (base 64 structure) had an LSTM layer with 128 nodes, followed by a 20%
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dropout layer, followed by an LSTM layer with 96 nodes, followed by a 20% dropout layer,

followed by an LSTM layer with 64 nodes, followed by a 20% dropout layer. Figure 19

provides the structures for the deep and shallow LSTM variations.

Figure 19: Model structures of deep and shallow LSTMs and variations.

Slates 20 and 21 were the only slates to use deep AE models. Like the deep LSTM

model, the deep AE varied from the shallow model only in number of epochs run and

model structure. The deep AE ran for 150 epochs and incorporated an additional dense

encoding and dense decoding layer. Each of these layers used the rectified linear unit

activation function and had 70% of the input nodes multiplied by 2. Figure 20 provides

the structures for the deep and shallow AEs.

Slates 17, 19, 21, 23, and 25 used prediction models. The LSTM prediction models

differed from the base shallow model only in the final activation function (sigmoid, in

this case) and the metrics it tracked. The prediction LSTM tracked the MSE, but also

the Binary Accuracy, Precision, Recall, True Positives, True Negatives, False Positives,

and False Negatives. Since the Jornada Basin dataset is relatively unbalanced in terms

of number of observations which actually record a frost event, the F1 statistic was used



67

Figure 20: Model structures of deep and shallow AEs.

as the primary performance metric for predictions models.

It is not very typical to use MSE as the loss function for an LSTM model, but it

was used here since many models had multiple binary predictions (presence or absence

of frost), rather than having multiple categories of output.

The prediction models letter which used AE inputs re-used the AEs from the corre-

sponding previous regression slate.

During training, all models used callbacks to monitor performance. Early stopping

was incorporated for all models with a patience of 10 (model training would stop if the

validation loss did not improve after 10 epochs). All models saved the best run over the

total training and loaded the best model before evaluating it.

5.2 VitalDB: Deep Learning Models

The VitalDB dataset [2] is composed of non-cardiac surgery patient information and

surgical patient monitoring recordings collected from Seoul National University Hospital

in South Korea. There is an immense amount of data available from a total of 6,388
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patient cases. The dataset includes 11 different patient monitors, clinical information,

and lab results from each case. Patient monitoring data is timestamped and, in some

cases, can be sampled at different rates.

Since this dissertation is investigating multivariate time-stamped data, a subset of

cases were taken to include those with patient monitoring data from the Orchestra,

Tram-Rac 4A (SNUADC) and Solar8000M patient monitors. A subset of clinical data

was also given as input. The clinical data, since it is static, was not included as output

for the predictions (since it is always an identity mapping from a previous observation),

so there were a total of four input and three output datastreams for regression tasks for

this dataset. Figure 21 displays the input features for the VitalDB experiments, broken

up by heading of their associated datastream.

The resulting subset of VitalDB data includes 38 patients, all of whom are undergoing

liver transplant surgery. These patients were selected since they contained all the data

features of interest for this study. The diagnoses for these patients included Hepatocel-

lular Carcinoma, Hepatitis B, Cirrhosis, Wilson Disease, Alagille Syndrome, and Biliary

Atresia.

Identifying appropriate prediction tasks for these datasets was tricky in that the

researcher is not overly familiar with the medical field or surgical operations. In order to

accomplish this, the researcher informally consulted with two professionals in the medical

field to identify potentially useful input parameters and gain insight on what might

constitute a useful prediction. The professionals identified useful input parameters and

advised searching the literature on liver transplant patient outcomes. From the literature,

negative patient outcomes were noticed when the patient’s postoperative hospital stay

lasted longer than 14 days [164]. Negative patient outcomes were also associated with

the patients glucose level spiking above 150 at any point during surgery [165]. From the

patient data, these two risk factors were created. The “Discharge Mortality Risk ”factor

“dis mortality risk ”was assigned 1 if the patient’s discharge time exceeded 14 days from

time of first recording patient info. This is not perfectly analogous to postoperative

stay since it also includes the time in surgery but is a very close approximation. The

”Glucose Risk” factor “gluc risk ”was assigned 1 if at any point the patient’s glucose lab
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Figure 21: VitalDB dataset input features, broken up by datastream [2].



70

data exceeded 150. There were three patients that did not have any glucose lab data to

work with, and so were not included in this particular prediction assessment. Finally,

the “Emergency Operation ”status of the patient was chosen as a third prediction factor,

which is provided natively in the dataset. Figure 22 outlines the different prediction

features with counts of how many cases express each.

Figure 22: Counts of cases with particular prediction factors.

Data Formatting

Similar to the Jornada Basin dataset, data preparation and cleaning was needed to make

the dataset usable by the models. All categorical variables (which were numerous in the

clinical data input) were encoded to numerical categories. Data was also all normalized

to a value between 0 and 1 depending on the max or min value of the particular feature

across all cases.

Some data features were recorded as numerical values, and others were waveforms

that could be sampled at different rates. For these experiments, all data is sampled at

1 second intervals. Missing data is first forward filled using the pandas fillna() method

(meaning a gap in data is replaced with the previous value) and then backward filled for

remaining gaps (where a gap is data is replaced with the next valid value).

Not all features began recording at the same time, so the dataset is trimmed to only

include the continuous period of time where all patient monitors were recording at the

same time. The average amount of recorded observations (at the 1 second rate) for the

cases was 19554.92, with a maximum of 32728 and a minimum of 5837. For model inputs,

30 seconds were used to generate either 10 seconds of output or predictions. The input

and output values were determined based on the informal conversations with the medical
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professionals. For the ultimate models, one thirtieth of the data was used as input in

order to be able to run the models.

Models to Run

The VitalDB dataset differs from the Jornada Basin dataset in that the surgeries took

place at different times, for different lengths of time. For Jornada Basin, locations were

mostly reporting the same kinds of data at the same time intervals. The VitalDB set does

not have this property, and therefore all models that tried to predict or separate out by

individual location are eliminated for these experiments. This also means no datastreams

are predicted specifically for any one case but are generalized across all cases.

The same basic types of models were run for the VitalDB dataset as the Jornada

Basin Dataset, without the models that relied on location. For consistency, the alphabet

character model identifiers remained the same. Figure 23 displays the 9 types of models

the VitalDB dataset ran.

Figure 23: VitalDB models to run.

Slates of experiments

13 slates of experiments were run for the VitalDB dataset. Slate 1 ran the basic regression

models for all Network types and splits of the data, while slates 2-5 focused on predictions.

Slates 6-9 focused on the retraining problem with regression tasks, while slates 10-13 did

the same with a prediction task. Figure 24 displays the slate information for VitalDB.
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Figure 24: VitalDB slates to run.

Experiment Parameters

As with the Jornada Basin Dataset, there were two basic types of networks run for

VitalDB models: LSTMs and AEs.

Both networks had several hyperparameters in common. Both ran for 150 epochs,

incorporating early stopping with a patience of 10 based on the validation loss. The best

model, based on the validation loss, was loaded after training before evaluation. Both

used a batch size of 128 due to the much larger data size. Both models used a test split

of 20% and a validation split of 20%. Both models also made use of the Adam optimizer

from the Keras library.

For regression tasks, LSTM models kept track of the MSE, MAPE, and MAE metrics,

using MSE as the loss function. Regression LSTMs also used the Rectified Linear Unit

function as the final activation, and the tanh function as the default LSTM activation.

Prediction LSTM models kept track of the MSE, Binary Accuracy, Precision, Recall,

True Positives, True Negatives, False Positives, and False Negatives metrics for each run,

using MSE as the loss function. Prediction LSTMs also used the sigmoid function as the

final activation.

There were three variations of LSTM structure run for each model. The first had an

LSTM layer with 48 nodes followed by a 20% Dropout layer, an LSTM layer with 32

nodes, followed by a 20% Dropout layer, and an LSTM layer with 16 nodes followed by

a 20% Dropout layer. The second used the same structure but with 192, 128, and 64
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nodes in the LSTM layer, respectively. The final used 384, 256, and 128 nodes. Figure

25 displays the different LSTM structures for the VitalDB dataset.

Figure 25: LSTM structure variations for VitalDB dataset

The AE models were reused between prediction and regression tasks. All AE models

had a simple structure of three layers - one dense encoding layer composed of 70% the

number of input nodes multipled by three, a dense latent space layer with 70% of input

nodes, and one decoding layer with 70% of the input nodes multipled by 3. All dense

layers used the Rectified Linear Unit activation function. Rectified Linear Unit was also

used as the final activation function. Figure 26 displays the AE structure for the VitalDB

dataset.

5.3 Jornada Basin - QARM GA Models

The QARM GA models for the Jornada Basin Dataset only ran a subset of similar models

from the deep learning tasks. Since only positive association rules would be mined, these

experiments looked only at the frost prediction task.
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Figure 26: LSTM structure variations for VitalDB dataset.
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Data Formatting

For the QARM GA, the data formatting was similar to the deep learning models, with

a few exceptions. The data was not normalized for these algorithms. Additionally, the

prediction columns of the dataframes used were shifted up one, so the prediction for the

next day would be on the same row as the current day. This was done for convenience of

allowing sequences to begin at zero. Filling “N/A ”data was not necessary for this task.

Models to Run

For the QARM GA Models, experiments were run according to a slate letter. Each slate

letter ran 4 distinct sets of parameters, and each run was repeated 3 times. So, each letter

ran a total of 180 genetic algorithms (15 sites * 4 sets of parameters, * 3 runs). Each slate

letter had a non-sequence version, where the normal QARM GA was run using only one

day prior of data for frost prediction, and a sequence version, where the number of past

days the model considered was evolved per parameter in the dataset. Additionally, since

this dissertation wanted to consider site-specificity versus using all available datastreams

when it came to site-specific management, some letters used just the site data to predict

the frost occurrence for that specific site, and others used all site data to predict the frost

data for the specific site. Figure 27 displays which slate letters used all site data and

which used specific site data.

Unlike the deep learning models, data-specific QARM GAs were not run for this set

of experiments.

Experiment Parameters

While experiments were run with different sets of parameters, some of the parameters

remained the same across runs. All models had a mutation rate and mutation amount

set to 20, and no models restricted the range of the parameter. The models had an initial

rule limit of 2, a 30% chance of adding or subtracting a parameter, and a 70% chance

of changing a parameter bound when a mutation occurs. There is maximum limit for

mutation tries of 5. All sequence experiments used a sequence limit of 12 (days prior).
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Figure 27: Slates Letters and whether they used all or specific site data to make prediction
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There was a selection tournament size limit of 4 population members. Killing dominated

parameters was set to true.

Slates of Experiments

For the experiment sets, the population size, number of generations, diversification, re-

seeding from best, fitness function index, and range penalty indexes varied from model

letter to model letter. For sequence models, the sequence penalty index also varied. Fig-

ure 28 gives the letters and parameters for the non-sequence models. Figure 29 gives the

same information for the sequence models.

Figure 28: Slates Letters and parameter values for non-sequence models

For the sequence and non-sequence models, corresponding letters have the same pa-

rameters except for models A and B, since the sequence letters varied sequence penalty

indexes while the non-sequence letters varied the reseeding parameter.

The equations for the respective range penalties, sequence penalties, and fitness func-

tions are outlined below.
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Figure 29: Slates Letters and parameter values for sequence models

Sequence Penalties Sequence penalty index 2’s effect on fitness is outlined in Equa-

tion 9.

fitness = fitness− (1 ∗ (0.5 ∗ amplitudesequence) + (0.8 ∗ fulfillmentearly)) (9)

where amplitudesequence is defined as the length of the sequence divided by the total possi-

ble length, averaged across the parameters in the rule, and fulfillmentearly is defined as

the percentage backward the earliest bound occurs in the total sequence limit. Sequence

penalty 3’s effect on fitness is displayed in Equation 10.

fitness = fitness− (1 ∗ (0.5 ∗ amplitudesequence) + (0.8 ∗ fulfillmentlate)) (10)

where amplitudesequence is defined as the length of the sequence divided by the total

possible length, averaged across the parameters in the rule, and fulfillmentlate is defined

as the percentage backward the latest bound occurs in the total sequence limit.

Range Penalties Range penalty index 0’s effect on fitness is displayed in Equation

11.

fitness = fitness− 1 ∗ (0.1 ∗ amplitudebound) (11)

where amplitudebound refers to the average bound range out of the total bound possible

bound range across all parameters in a rule.
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Range penalty index 1’s effect on fitness is displayed in Equation 12.

fitness = fitness− 0.2 ∗ (0.1 ∗ amplitudebound) (12)

Fitness Functions Fitness function index 1’s calculation is given in Equation 13.

fitness = (2 ∗ support ∗ (num whole rule/num consequent)) ∗ confidence (13)

For fitness function 2, the calculation is given in Equation 14.

fitness = (5 ∗ support+ 0.5 ∗ confidence) (14)

For fitness function 5, Equation 15 gives the calculation.

fitness = (5 ∗ support+ 0.5 ∗ confidence+ 0.1 ∗ lift) (15)

5.4 VitalDB - QARM GA Models

Data Formatting

For the QARM GA, the data formatting was similar to the deep learning models, as

with Jornada. Again, the data wasn’t normalized, and prediction columns were shifted

upwards. N/A data had been forward and backward filled for prediction tasks as before

with VitalDB. One slight difference in these models, however, is that the entire dataset

was resampled to 1/30 of its size. Therefore, for sequences, 1 sequence timestep actually

represents 30 total seconds.

Models to Run

As with the Jornada QARM GA models, experiments were run according to a slate

letter, with 4 sets of parameters, for 3 runs each. Since VitalDB data is not separable by

location (case), the models run all cases at once, for a total of 12 models per slate letter.

Each slate letter also had a sequence and non-sequence version. Different slates letters

had different prediction tasks, Slates A and D predicted the glucose risk, Slates B and E

predicted an emergency operation, and Slates C and F predicted the discharge mortality

risk. Figure 30 breaks down the slates by prediction tasks.
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Figure 30: Slate letters and prediction tasks.

Experiment Parameters

All slates in these experiments used a mutation rate and amount of 20, no range restric-

tion, range penalty 0 from Equation 11, and an initial rule limit of 2. As with Jornada,

there was a 30% chance of adding or subtracting a parameter, and a 70% chance of

changing a parameter bound when it came to mutation. Only 5 mutation attempts were

allowed. The number of top rules to keep for the models was set at 10. The tourna-

ment size for selection was limited to 4 individuals. For sequence models, the sequence

limit was 12 timesteps backward. Killing dominated parameters was set to true, as was

diversifying the top rules. Reseeding the population from the best rules was always false.

Slates of Experiments

For the VitalDB slates, the number of population members, number of generations, and

the fitness function index were varied across model letters and parameter sets. For

sequence models, the sequence penalty index was also experimented with. Figure 31

gives the model letters and parameters for sequence and non-sequence models.
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For non-sequence models, the sequence penalty index column is irrelevant and for a

few letters more than one parameter set is the same due to this.

Figure 31: Slate letters and associated parameters.

For this set of models, the sequence penalties 2 and 3 are the same as in Equations

9 and 10. Fitness function 2 is the same as Equation 14 and Fitness function 5 is the

same as Equation 15. Fitness functions 3 and 6 are outlined in Equations 16 and 17

respectively.

fitness = (2 ∗ support ∗ (num whole rule/num consequent)) ∗ confidence ∗ lift (16)

fitness = (2 ∗ support ∗ 2 ∗ confidence ∗ 5 ∗ (1− lift)) (17)

Data Reduction Error

Due to an error in comma separated value creation, the QARM GA Models for the

VitalDB dataset ran with 4 less cases than the deep learning models: cases 4481, 55,

2332, and 6227. Only two of these cases had any positive prediction factors, both for the

discharge mortality risk. Since this risk was found 23 of the original 38 cases, having 21

of the 34 cases with the discharge mortality risk had roughly the same balance as the

deep learning set.

5.5 Experiment Analysis Techniques and Assumptions

For both the Jornada Basin and VitalDB dataset, the MSE metric was chosen as the

evaluation for model performance for regression tasks and AEs. For prediction tasks, the
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F1 metric was chosen, as the datasets tended to be unbalanced and the F1 statistic in

this case is a better representation of model capability. The F1 and MSE metrics were

based on the test set evaluation for a given model (20% of the dataset for each model

was reserved for testing). This section describes the results of slates and models within

slates for each dataset.

In the results and analysis below, slates break up the models to compare only those

which predict the same inputs and outputs. Combinations of models are then used to

find overall comparisons between input and output groups, when applicable.

Wilcoxon Signed-Rank Test

In addition to comparing mean, minimum, and maximum metrics between models in

the group, it is useful to compare the statistical significance between the differences to

gain a more accurate picture as to the performance of one versus the other. Each model

had multiple variations, for both input/output day combinations (Jornada Basin only),

model structures, and (for those models which broke up input by datastream or location)

the particular index of the input. It was important to look at the differences between

individual networks with exactly the same model parameters across the letters (i.e., same

number of input days, same number of output days, same network structure, same input

and output). For this reason, some kind of paired samples t-test was needed. In this case,

the model letter was one nominal variable, and the type of individual neural networks

within the model letter was the second nominal variable. The measurement variable was

the overall test MSE of the network.

However, the difference distributions of two given model letters are highly non-normal.

Because of this, a paired samples t-test could not be used (which has a null hypothesis

of the mean differences between distributions as 0.) Instead, the Wilcoxon signed-rank

test was used, which does not rely on the assumption of normality. This test uses a null

hypothesis of median differences between distributions as 0. Information on the use of

the Wilcoxon signed rank test was found in [166]. To perform the Wilcoxon signed rank

test, the scipy.stats module was used.
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Comparing Multiple Separate Models to One Combination Model

Some of the model letters in each slate only predict a subset of features (one datas-

tream’s worth), and in the Jornada Basin case, only for one location. This dissertation

investigates any benefit or detriment to maintaining multiple separate models for specific

datastreams or locations versus maintaining a larger model which predicts more features.

In order to do this, the best separate models for the feature subset they operate on are

chosen and analyzed for the same error metric as the larger combination model.

All separate model metrics had to be weighted. The outputs were multiplied by

the number of features they predict, divided by the number of features the combination

models predict before being added together. That allowed a comparison of the separated

and combination models. Figure 32 illustrates this with a sample case for the MSE

metric.

Figure 32: Multiplying separate model MSE by the number of features they predict

divided by the total features predicted by the combination model before adding them

together creates the comparable MSE of the separate versus combination model.
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5.6 Experimental Setup Summary

This section described the experimental setup and parameters for both focus areas of the

dissertation with regard to both chosen datasets. The deep learning models and genetic

algorithms are both grouped into slates, where model letters within slates look at partic-

ular network and separation scheme combinations. Slates had different hyperparameter

sets on the high-level models. For genetic algorithms, model letters within slates looked

at particular tasks and/or combinations of data to use, while slate sets had different hy-

perparameters. This section also discussed some of the underlying analysis assumptions

and some evaluation techniques (including the model comparison and statistical signif-

icance analysis) to be used discussing experimental results. The next section gives the

in-depth results of the experiments described here.
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6 Results and Discussion

This section of the dissertation presents the results of the experiments described in the

previous section, broken up by focus area (deep learning networks vs. QARM GA models)

and by dataset (Jornada Basin and VitalDB). This section particularly looks at the

experimental results and model performance with regard to the research questions posed

in the dissertation.

6.1 Jornada Basin Dataset - Deep Learning Models

Slate Model Performances

For the Jornada Basin Dataset, the performances per-slate will first be discussed, followed

by the relevance of the experiments to the research questions.

Slate 16 Slate 16 was a regression scheme (every datastream was predicted for every

site) that used the normal shallow LSTM or normal AE for all model letters. Figure

33 looks at the performance for each LSTM model letter in slate 16. For models that

predict datastreams or locations separately, the MSE presented is based on the weighted

models for all datastreams and locations together.

Figure 33: Slate 16 LSTM models and their performance.

The best mean MSE metric across the variety of hyperparameters was found for
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model letter N, a Network 2 letter which used the autoencoder model L. L processed all

datastreams for one location at a time. N took that latent space output for each location

and fused it to come up with predictions for all datastreams and all locations. The model

letter which contained the overall best performing model was model letter A, which was

a Network 1 (monolithic) model. The best model for A used a base 64 neural network.

The AE performance for the slate is displayed in Figure 34. The minimum mean AE

model was X, a Network 2 model while previous input from model L, while the lowest

overall MSE was found in model AC, a Network 4 model which used autoencoders with

all datastreams and location together. Models X and AC had considerably lower MSE

compared to the other AE letters.

Figure 34: Slate 16 autoencoder models and their performance.

Slate 17 Slate 17 was a prediction scheme that reused the same autoencoders from

Slate 16. The normal shallow LSTM models were used, but this time for prediction

tasks. Frost was predicted for all LSTM letters, and the combination models used the

same weighting scheme depending on datastream or location as the regression task, but

with regard to the F1 statistic rather than the MSE. Figure 35 displays the parameters

and best and mean model performance for the F1 statistic for slate 17.

The model with the best mean F1 statistic was model AB, which is a Network 3

model which gets input from AE Z. Z is Network 3 AE which preprocesses input for all

locations on one datastream after getting input from AE H. The model with the best

overall F1 statistic was model W, which used the AE U as input. Model letter U is a

Network 3 AE that processes input for all datastreams on one location after fusing input

from AE H, which outputs one datastream per location.



87

Figure 35: Slate 17 LSTM models and their performance.

Slates 16 and 17 preliminary observations From Slates 16 and 17, it was evident

that the separation scheme which maintained a separate model for each datastream and

location (model letters D and I) was not performant compared to all other separation

schemes. This was unsurprising, as these models do not have opportunity to learn inter-

actions from other features and/or locations. For subsequent slates, model letters D and I

were dropped. However, the AE model letter H was kept (despite processing datastreams

and locations separately) to account for the possibility that other model processing on

top of H’s outputs might result in useful models.

Slate 18 Slate 18 (a regression model) used the same parameters as slate 16, with the

exception of the depth of the LSTM network structure depth. Slate 18 used deep LSTMs

for all of the base 8, 32, and 64 model variants. Slate 18 re-used the autoencoders from

Slate 16, since LSTM model depth was the only network structure change. Figure 36

displays the model letter results from Slate 18.

For Slate 18, model letter monolithic model letter A had both the overall minimum

MSE as well as the lowest average MSE. This is not entirely surprising, as depth is

generally believed to be related to the model capacity, and more depth presumably allows

the model more ability to understand the interactions between different features. Figure

37 displays the results from Slate 19.
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Figure 36: Slate 18 LSTM models and their performance.

Slate 19 Slate 19 (a prediction model) was similar to Slate 17 in terms of parameters,

except for using deep LSTM network structures as in Slate 18.

Figure 37: Slate 19 LSTM models and their performance.

For slate 19, model letter W had the highest mean F1 statistic, while model letter

AB had the overall highest F1 - model letters that flipped ”best” positions from Slate

17. AB and W are both network 3 models but took slightly different processing paths as

noted in the paragraph in Slate 17.

Slate 20 Slate 20 trained regression models similar to Slate 16, but with deep AE

preprocessing models rather than the normal shallow ones. Since model letters A-D do

not use any type of AE model, they were left out of this slate. For comparison, the

results for A-D for slate 16 are provided in Figure 38.
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Figure 38: Slate 20 LSTM models and their performance.

Model letter Y boasted the best overall mean metric. Y is a network 3 model which

takes input from AE X, which in turn gets input from model letter L. Model N had the

overall lowest MSE, with input from AE L.

Since slate 20 used deep AE models, it was naturally necessary to retrain them, which

took slightly longer than before due to the added depth. Figure 39 gives the performance

of the trained AEs for Slate 20.

Figure 39: Slate 20 autoencoder models and their performance.

Model letter AC had the overall lowest MSE as well as the lowest mean MSE. However,

it can be seen that model letters S and X had similarly good performance compared to

the over model letters.

Slate 21 Slate 21 was a prediction slate with the same parameters as slate 17, except

for the use of the deep AE models from slate 20. As with slate 20, models A-D were not

run for this slate due to their lack of AE, but were provided for reference in Figure 40.
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Figure 40: Slate 21 LSTM models and their performance.

For Slate 21, model letter Y had the best overall mean performance, while model

letter A had the overall highest F1 statistic. As mentioned previously, Y takes input

from AE X, which takes input from AE L.

Slate 22 Slate 22 was a regression slate with a shallow AE and LSTM network. How-

ever, Slate 22 was geared to provide a starting point for examining the impact of adding a

datastream. Slate 22 therefore used all of the same model letters as slate 16, but with the

temperature/humidity datastream missing. Slate 22 therefore had only 3 datastreams as

opposed to 4. Because of the missing datastream, it was also necessary to train new AEs

for the starting point of Slate 22. Figure 41 displays the results from this slate.

Figure 41: Slate 22 LSTM models and their performance.

The overall lowest mean from this slate came from model letter B, a monolithic
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Network 1 letter that uses site-specific models (15 total). Model letter T had the best

overall MSE for a model. Model T is a Network 3 model which uses AE S, which uses

AE E. AE E is a datastream-specific model.

Slate 22’s AE model letters were retrained to accommodate one less datastream.

Figure 42 displays the performance of these AEs. The overall best mean MSE was found

in AE model S, while the overall lowest was noted in model letter AC. S, X, and AC had

significantly lower MSE compared to the other models.

Figure 42: Slate 22 autoencoder models and their performance.

Slate 23 Slate 23 was similar to Slate 22 in that it excluded a datastream but Slate 23

used the AE trained in Slate 22 and ran the frost prediction task. Like Slate 22, Slate

23 used shallow LSTM network structures. Figure 43 displays the results from Slate 23.

Figure 43: Slate 23 LSTM models and their performance.

The highest mean F1 statistic as well as the overall highest F1 statistic was found in

model letter N, a Network 2 model which uses AE model letter L.
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Note on Slates 22 and 23 It is plain from the data that Slates 22 and 23 did not

perform quite as well as the slates the came before them. This is unsurprising given that

the exclusion the temp/humidity datastream would eliminate very useful information in

a weather system, particularly for the prediction task. The presence or absence of frost

was derived from one of the features in the temp/humidity datastream, so it expected to

see lower performance. For a general prediction task, it would not necessarily be obvious

which data streams are most related to performance.

Slate 24 Slate 24 is meant to mimic Slate 16 exactly in terms of total output but uses

Slate 22 as a starting point. Since the temp/humidity datastream is added back in, Slate

24 retrains autoencoders E, H, S, and U, which separate by datastream or use input from

another AE which does. For E and H, which separate by datastream on an individual

letter, only the AE which processes the new datastream must be trained, which takes

down the overall training time for these models considerably (they are able to use input

from Slate 22 on the previously trained datastreams for these model letters). Since many

model letters require end-to-end training, many of the models would exactly mimic Slate

16’s process. These models were also not retrained, but their performance in Slate 16

is provided for comparison. Ultimately, model letters E (in part), G, H (in part), J, S,

T, U, V, and W were retrained for Slate 24. Figure 44 gives the performance for Slate

24 models (bolded in the Figure) compared in conjunction with the analogous Slate 16

models.

For the simulated full retrain, model letter W had the best overall mean performance,

while model letter G had the best minimum performance. As previously mentioned,

model W uses input from AEs U and H, while model letter G uses input from AE letter

E.

Figure 45 displays the AE performance for Slate 24 as well as the comparison models

from slate 16 for the full simulated retrain case. It should be noted that for E and H, it

is giving only the performance for the retrained models, which doesn’t completely encap-

sulate every AE model used for these letters, as slate 23 models were also incorporated.
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Figure 44: Slate 24 LSTM models and their performance.

Figure 45: Slate 24 autoencoder models and their performance.
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Model letter X from Slate 16 had the overall lowest mean MSE for this simulated

combination, while model letter S from slate 24 had the overall lowest MSE. Model letter

AC from Slate 16 had similar performance to S and X as well.

The mean performance of the AE model letter E and H used by the Slate 24 models

upstream is presented in Figure 46.

Figure 46: The weighted MSE for model letters E and H from Slates 22 and 24.

Slate 25 Slate 25 simulated adding the temp/humidity datastream, similar to Slate 24,

but for the frost prediction task. When applicable, Slate 25 reused the AEs from Slate

24, but for end-to-end models that would need full retraining for the added datastream,

Slate 17 models are provided for comparison. Figure 47 displays the results from this

Slate in conjunction with the Slate 17 comparison models.

Figure 47: Slate 25 LSTM models and their performance.

For this simulated retraining slate, model letter W had the best mean F1 statistic as

well as the highest overall performance. As before, model letter W uses input from AE

U which takes input from AE H.
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Sanity Checking Slates 23 and 24 With only a few exceptions, most models would

require complete end-to-end training when adding a new datastream. For this reason,

Slates 23 and 24 retrained the models that had enough modularity to avoid complete

end-to-end training and then compared performance to analogous models in Slates 16

and 17. However, as a sanity check, the LSTM model performances from the fully trained

and the retrained models should be compared. Since they have exactly the same inputs

and outputs and use models with exactly the same parameters (though perhaps trained

at different times, in the case of 23 and 24), the performance would not be expected to

differ. Figure 48 displays the mean and best metrics for Slates 16 and 24 and Slates 17

and 25 on the models letters in question.

Figure 48: Mean and Best Overall Model Metrics for Slates 16 and 24 and Slates 17 and

25.

As expected, there is little difference between Slates 16 and 24 and between Slates 17

and 25 in terms of model letter performance.

Jornada Combination Models and Separation Schemes

For the Jornada Basin dataset, there were several ways to separate out datastreams and

locations, which were explored by the different separation schemes. For regression tasks,
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the ultimate goal was to predict every datastream value for every site, while for prediction

tasks, the goal was to predict the presence or absence of frost for each site. However, the

experiments run in this dissertation accomplished this both by using large combination

models and by using combinations of smaller models which predicted subsets of the data.

One of the investigations in this dissertation for this dataset was determining which of the

separation schemes functioned best. Figure 49 displays the best mean of each separation

scheme for each slate from 16-21 and Figure 50 displays the best overall minimum of

each separation scheme for the same slates. Slates 22 and 23 were not included in these

Figure since they were missing a datastream.

Figure 49: Best mean performance of separation schemes for Jornada dataset.

Figure 50: Best overall performance of separation schemes for Jornada dataset.

It can be seen from these figures that predicting all datastreams for all sites together

or predicting frost for all sites together performed better than any other separation

scheme. Separation scheme 1, which used a separate model for each datastream and

each location, performed sufficiently poorly to cease to run for Slates 18 on. In second

place was separation scheme 3, which predicted datastreams or frost for all locations

separately (in other words, models that took in site-specific data only). While all models

predicted specific features for specific sites, allowing (in some scheme) the models to take

in data from all sites was generally a net gain in performance.
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Slate 22’s mean model performance was the only exception. Without the temp/humidity

datastream, this slate found site-specific model data (with model letter B) to have the

lowest mean for the regression task. Slate 22 also had overall comparatively higher model

error (unsurprising, given the missing datastream). Without this datastream, Slate 22

had better luck predicting only on a site-by-site basis than with a combination model.

This did not hold for Slate 23, interestingly, for the frost prediction task with the similarly

missing datastream.

While the combination models of separation scheme 4 in general fared much better

than their separated counterparts, it should be noted that this does not eliminate the

possibility of more modular data management, as many of the best performing models

incorporated more modular autoencoder breakdowns to arrive at the final predictions.

These model organizations are discussed in more detail in the following section.

Jornada Network Organizations

For these experiments, 4 network types were proposed, incorporating various degrees of

modularity and autoencoder preprocessing. Some AEs and LSTMs combined separation

schemes at various points in the process.

The results for the AE performance in Slates 16 and 20 (normal and deep AE) had

significantly lower errors for model letters S, X, and AC. Model S and X are Network

3 models, whereas model AC is a Network 4 model. S, X, and AC were all separation

scheme 4 models, which means their latent space represented features for all datastreams

and all locations. However, model letter X takes input from AE L, which outputs site-

specific latent space, where S takes input from AE E, which outputs datastream-specific

latent space.

It is interesting that the Network 3 architecture output performant AEs for both the

datastream and location separation schemes: in both cases, AEs X and S were able to

learn representative features allowing them to recreate the input with less errors than the

prior AEs. This was the same for both shallow and deep AEs, which does not lend itself

to concluding that depth alone was responsible for the increased performance. The multi-
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leveling itself (sub-tasks in earlier AEs before the combination task) may be beneficial

to the increased performance.

Autoencoder AC generally also had higher performance than the other models. AC

took in all datastreams for all locations and output all datastreams for all locations. S,

X, and AC demonstrate the usefulness of having more data features processed together

in order for the AE to learn representative latent space features.

However, better AE performance does not necessarily translate into better LSTM

model performance. Autoencoders can sometimes function as regularizers, which prevent

noisy data from impacting model training. Higher capacity to correctly recreate data may

translate into more noise reaching the final model.

Model letters A, N, W, Y, and AB all found themselves in mean or overall best

model for a Slate at least twice. Models G and T only scored once each (in either a

retraining or missing datastream slate), while model AD never topped the charts. Model

G is a Network 2 model which took input from AE E, which separated information by

datastream (one datastream, all locations) which is synthesize for each datastream to

arrive at the final output. Model letter T is a Network 3 model which took input from

AE S, which had synthesized the info from AE E. Model letter AD only took input from

AE AC.

Model letter A was a monolithic network which did not use any AE preprocessing.

Model letter N took input from AE L (a per-location AE), while model letter W took

input from model letter U, which output per-location data based on synthesized infor-

mation taken from AE model H. Model letter Y took input from X, which synthesized

per-location information from AE model L. Model letter AB took synthesized informa-

tion from AE letter Z, which output per-datastream information synthesized from model

letter H.

For Slates 16-21, the best mean regression model was found in Slate 16, with model

letter N. The best mean prediction model was found in Slate 21, with model letter Y.

The overall minimum regression model was found in Slate 20, model letter N, while the

overall maximum prediction model was found in Slate 17 with model letter W.
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The top performers overall were therefore either in the normal shallow models or in

the deep AE models, and all top performers incorporated location-specific data at some

point in the process. Model letter N was a better performer for regression tasks, while

Y and W fared better for prediction tasks. Models N, Y, and W all incorporated some

form of site-specific separation.

A Wilcoxon signed rank test was performed on the model distributions for A, N, W, Y,

and AB for Slates 16,17,18,19,20,21, 22, and 23. (For slates 20 and 21, the distributions

for A were repeated, since these slates looked at deep AEs and A does not incorporate

an AE). Figure 51 demonstrates a table of p-values of the test between model letters.

At the p < 0.05 level, only W demonstrated a statistically significant difference from

A’s distribution. None of the other autoencoder models had a statistically significant

difference in distributions between themselves.

Figure 51: P-values of Wilcoxon Signed Rank Test between distributions of model letters.

For this dissertation, network depth was another important factor in evaluating per-

formance. The depth (base 8, 32, or 64) at which model letters A, N, W, Y, and AB

achieved their best performance is presented in Figure 52.

Figure 52: Base network where model letters achieved best performance for each Slate.

Figure 52 demonstrates that, with few exceptions, most models had their best per-

formance with the deep network structure, base 64.
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Though AE models had slightly better overall performance, it would then be tempting

to conclude that from a depth standpoint, a small organization would be better off

sticking with monolithic models than with AE models, as incorporating AEs is overall

more models and thus more processing and development time. For the pure regression

task, this mostly proved true. However, for the prediction task, an interesting pattern

emerges for the high performing AE nodes with regard to mean performance for depth.

Figure 53 displays the mean performance of model letters for the prediction task per base

network structure.

Figure 53 shows that models W and Y (and occasionally N and AB) often beat (or

came very close to) monolithic letter A’s performance at a lower network depth. Y and

W are reusing the feature learning from training in the prior regression slate, allowing for

shallower models to achieve the same or better performance on the subsequent prediction

task.

For Slate 17, model letter W and Y did better than model letter A at 8 nodes than

A did at 32 nodes. W and Y performed best at 8 nodes. For Slate 19, N, W, W, and

AB all outperformed model letter A at 8 or 32 nodes from A’s 64 nodes. For Slate 21,

models W, Y, and AB at 8 nodes outperformed model letter A at 32 nodes, and model

Y at 32 nodes also outperformed model letter A at 64 nodes.

Discussion on Jornada Basin Dataset Deep Learning Models with Regard to

Research Questions

How modular can we make a multivariate system? While initially this disserta-

tion assumed modularity would be most impactful in terms of types of data added and

subtracted into the system, the experiments found generally better performance when

separating data out by location of collection rather than datastream.

For AE training, both datastream or location separation schemes performed well, as

AE performance was more affected by the ability to process all datastreams together at

some point than by pure separation scheme. This was borne out by the fact the models

S (separation by datastream before combination processing), X (separation by location
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Figure 53: Mean performance of model letter per base network structure on prediction

task.



102

before combination processing) and AC (only combination processing) had significantly

lower recreation error compared to the other models.

The performant AE models were N, W, Y, and AB. Of these, W, Y, and N all

incorporate location specific processing at some point in the process. The path of the

data for each model is outlined below:

N: All data for each location is processed separately by an AE model (L). The latent

space output for each location is concatenated and provided as input to model N, an

LSTM.

W: Each datastream for each location is processed separately by an AE model (H).

The latent space model for each datastream is concatenated per location and each lo-

cation’s total datastream latent spaces are processed by an AE model (U). The latent

space per location is provided as input to model letter W, an LSTM.

Y: All data for each location is processed separately by an AE model (L). The latent

space output for each location is concatenated and provided as input to an AE model

(X). The latent space AE model is provided as input to model Y, an LSTM.

AB: Each datastream for each location is processed separately by an AE model

(H). The latent space output for each datastream (every location) is concatenated and

provided as input to an AE model (Z). The latent space output per datastream is con-

catenated and provided as input to model AB, an LSTM.

In these experiments, modularity provided a boost to model performance, especially

when it came to location-specific processing.

However, for these experiments, complete separation of datastreams and/or locations

did not lead to high performing models. The best performing models necessitates having

all data together at some point in the process. No other separation scheme consistently

achieved as high results as separation scheme 4, which used one model to output all data.



103

What is the best method of incorporating new data into an existing neural

network design? For Jornada Basin dataset, the best models generally used AE pro-

cessing. For each of model letters N, W, Y, and AB, the retraining process would be

different if adding a new datastream or a new location. The top level LSTM models

would need to be retrained for all.

For model N, only the new location would need an additional AE in L to be trained.

N would be fully retrained. For a new datastream at all locations, both the AE and

LSTM would need to be fully retrained.

For model W, for new location or new datastream, only the corresponding new highly

specific AEs in H would need to be retrained. AE model U and W would be fully

retrained.

For model Y, only the new location would need to be trained for AE model L pro-

cessing. AE X and LSTM Y would need to be fully retrained. For a new datastream, L,

X, and Y would all need to be fully retrained.

As seen in the results from models 24 and 25, the retraining process does not hurt

model performance. If using a monolithic network, the monolithic network alone would

need to be retrained.

Can we delegate multivariate (multiple types of input data) decision tasks

to exist on top of an existing feature set? All autoencoder models created latent

space feature sets that were eventually used as input to LSTM models to perform tasks.

In these experiments, the frost prediction tasks were trained on top of the latent feature

output of these autoencoder models in comparison to the monolithic models. In general,

the model trained on top of the AE feature sets outperformed the monolithic models.

Additionally, the prediction tasks utilizing an existing feature set were often able to get

better results at a lower network depth than the monolithic model.

Jornada Basin Dataset Deep Learning Final Thoughts

The Jornada Basin Dataset explored several types of AE and LSTM networks in many

combinations of datastreams and locations to gain insight into structuring of highly
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dynamic data environments for farms or organizations that may not enjoy unlimited

computing power or ability to collect and label data. There are advantages and disad-

vantages of different approaches when it comes to computing power, manageability, and

expected rate of change for model inputs and outputs.

Model letter N is fairly easy to implement if a farm expects changes purely on a

location basis, since it can add a per-location AE input to the feature set before retraining

top-level tasks. Models W, Y, and AB require more AE retraining but potentially smaller

top-level networks.

If a farmer or business owner needs a lot of high-level tasks for the same data inputs

(for instance, one model per specific pest or disease in a highly susceptible environment),

reusing an existing feature set could be very useful. Each high-level task can be po-

tentially made of a smaller network that takes input from the feature latent space and

trained more quickly. The existing feature sets also have the advantage that they were

created with unsupervised learning and do not need labeled data to train the initial

model. In this case, the feature set can potentially be created with much more data than

exists in the high-level task. For example, if a farmer has 8 years of weather data but

only 2 years of pest data, the AEs can be trained with 8 years and the pest set with 2.

However, the difficulty of maintenance of that feature set likely depends on the degree

of variability of the data environment. If new datastreams and new locations are con-

stantly being added, there will be potentially less retraining when working with highly

specific AE models. All performant models in these experiments needed some form of

combination processing at some point, which limits the usefulness of modularity to some

degree.

Manageability is another aspect to consider in a data environment. If new locations

are constantly added, it might be less work for a farmer to maintain site-specific models

only (without input from other sites) at the cost of some accuracy.
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Jornada Basin Deep Learning Results Summary

In this set of experiments:

• Models that processed all datastreams together fared better than models that did

not;

• However, the best faring models generally incorporated some version of site specific

datastream processing;

• More modular networks had no statistically significant difference in distribution

from monolithic models; and

• However, the site modular networks often obtained the same performance as a

monolithic model at a lower depth.

6.2 VitalDB - Deep Learning Models

For the VitalDb dataset, it did not make sense to separate the data by ”location” which

in this case corresponded to the patient in question. Unlike the Jornada Basin dataset,

the surgeries for the patients in the VitalDB dataset would have taken place at different

times, often for different lengths of time. Because of this, there are only two separations

schemes for this dataset: separated by datastream (each datastream predicts the metric

separately) or not separated at all. There were three datastreams for the vital models,

corresponding to the Orchestra infusion pump ”orch”, the SNUADC ECG ”snu”, and the

Solar8000 ventilation monitor, ”solar”. For regression LSTMs, clinical information was

as given as input but not predicted (as it is the same across all time sequences for a given

case). For prediction tasks (and autoencoders), this information was not given as input,

as it was too easy for the networks to memorize clinical information associated with a

particular case. Figure 54 displays the separation schemes for the VitalDB dataset.
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Figure 54: Separation Schemes for the VitalDB dataset.

Slate Model Performances

As with Jornada, VitalDB individual slate metrics will be discussed first, followed by a

discussion of experiment performance in relation to the research questions.

Slate 1 Slate 1 was composed of regression models for which took 30 seconds of input

data and outputted the next 10 seconds of vital signs. For the LSTM regression models,

clinical data was also provided as input (not so for autoencoders or prediciton models).

For models that predicted datastreams separately, the metrics for the relevant model

combinations which predict all datastreams is presented. Figure 1 55 displays the MSE

results for Slate 1 LSTM models.

Figure 55: VitalDB Slate 1 Metrics for LSTM models.

Model letter F had the best performance for both the mean MSE and the lowest

overall MSE. Model F is Network 2 model with separation scheme 2, meaning it predicts

datastreams separately. Model F is actually 3 models (one per each datastream) with

the metric in Figure 55 reporting the average MSE across the 3 models. Model F takes

input from AE letter E, which processes each datastream separately.

The AE model performances are displayed in Figure 56.

The best performing AE for this slate was model letter AC. Model AC processes

all datastreams together, outputting a latent space with features from all datastreams.

Model letter S for this slate did considerably more poorly than model letter E or AC.
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Figure 56: VitalDB Slate 1 Metrics for AE models.

Slate 2 Slate 2 was a prediction slate to determine whether or not the inputs repre-

sented an emergency operation. Slate 2 reused the AEs from Slate 1 and used the same

inputs and outputs. Figure 57 displays the results for Slate 2.

Figure 57: VitalDB Slate 2 Metrics for LSTM models.

For Slate 2, model letter G had the highest mean F1 statistic and highest overall mean

statistic. Model letter G is a network 2, separation scheme 4 model which takes input

from model letter E per datastream and concatenates the latest space before processing

it.

Slate 3 Slate 3 is the same as Slate 2, except that it predicts the presence or absence

of a discharge mortality risk. Figure 58 displays the results for Slate 3.

Figure 58: VitalDB Slate 3 Metrics for LSTM models.

Model letter F had the highest mean and overall F1 statistic. However, it should be

noted that the models across the board performed quite terribly for this task. Model F’s
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highest F1 statistic was approximately 0.449, which was much lower than for Slate 2’s

prediction task.

Slate 4 Slate 4 is the same as Slates 2 and 3, but it predicts the presence or absence

of the glucose risk factor. Figure 59 gives the results of Slate 4.

Figure 59: VitalDB Slate 4 Metrics for LSTM models.

For Slate 4, model letter T had the highest mean F1 statistic while model letter AD

had the overall highest F1 statistic. Model letter T is a Network 3, separation scheme 4

model which outputs all datastreams together. T takes input from model AE letter S,

which synthesizes individual datastream latent space outputs from model letter E. AD

is a Network 4, separation scheme model which takes input only from model letter AC,

with all datastreams processed together for both models.

It should be noted that model letter AD’s mean performance was considerably lower

than model letter T, G, and A’s average performance for this task. T’s best model was

fairly close to model letter AD. Model letters A and G performance was close behind T.

Slate 5 Slate 5 combined slates 2-4 to try and predict the presence or absence of

an emergency operation, discharge mortality risk, or glucose risk together. Figure 60

displays the results for Slate 5.

Figure 60: VitalDB Slate 5 Metrics for LSTM models.

Model letter T had the highest mean F1, while model letter A had the highest overall
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F1. However, Slate 5 (similar to Slate 3) had generally bad performance for all models.

The highest overall F1 statistic, from model letter A, was only about 0.526.

Given that this slate incorporates the same prediction task as the underperforming

slate 3, this is not an altogether surprising result.

Slate 6 Slate 6 is a regression slate, essentially the same as Slate 1 except the ”orch”

(Orchestra infusion pump) datastream is excluded from the models. The models in

Slate 6 were trained with only the ECG the Respirator information, as well as clinical

parameters (regression models only). Slate 6 sets up future retraining in slate 8. Because

of the missing datastream, Slate 6 retrains the needed autoencoders. Figure 61 displays

the results from Slate 6.

Figure 61: VitalDB Slate 6 Metrics for LSTM models.

Model AD had the lowest mean and overall MSE for this slate. Model A was the only

other model with similar performance to model AD.

Figure 62 gives the AE metrics for Slate 6.

Figure 62: VitalDB Slate 6 Metrics for AE models.

For this slate, model letter AE had the lowest MSE, while model letters E and S had

much higher MSE. Models E and S’s errors did not vary much from one another.

Slate 7 Slate 7 was essentially the same as slate 6, but with the prediction task for

emergency operations. Slate 7 also did not include the ”orch” datastream. Since this
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slate was a prediction task, it did not use any clinical data as input. Figure 63 displays

the results for Slate 7.

Figure 63: VitalDB Slate 7 Metrics for LSTM models.

For this slate, model G had the highest mean F1 statistic, while models G and T tied

for the overall highest F1 statistic. Models G, T, and AD all did well for this task, with

model A not far behind. Models C and F performed comparatively poorly on this task.

Slate 8 Slate 8 retrained the models from Slate 6 with the ”orch” datastream added

back in. As in the Jornada Experiments, some models would need to be retrained end-

to-end, making them equivalent models to slate 1. In Slates 8 and 9, only LSTM model

letters G and T needed to be investigated at since they took input in combination from

the retrained AE models. Slate 8 is a regression slate. The results are presented in Figure

64 with the missing models added from Slate 1 for comparison.

Figure 64: VitalDB Slate 8 Metrics for LSTM models.

In Figure 64 it can be seen that in the combination Slate, model letter F (retrained)

still would have fared better than the retrained models G or T, as in Slate 1.

The AE metrics for Slate 8 are presented in Figure 65. For model letter E, only the

model for the new datastream was trained, which is why it has a much lower MSE.

The overall performance of model letter E from Slate 8 in combination with Slate 6

for all datastreams is given in Figure 66.
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Figure 65: VitalDB Slate 8 Metrics for AE models.

Figure 66: VitalDB Slate 6 and 8 combination performance for model letter E.

Ultimately, models S and AC used for this slate and its comparison outperformed the

newly retrained combination of AE model letters for E.

Slate 9 Slate 9 is the same as Slate 7, with the ”orch” datastream added back in.

As with Slate 8, only models G and T are relevant for this task, using the combination

of retrained AEs from slates 6 and 8. Slate 9 is a prediction task for the emergency

operation factor. Figure 67 displays the results for Slate 9.

Figure 67: VitalDB Slate 9 Metrics for LSTM models

Models G and T, retrained from Slate 9, fared best in this slate, with model T having

the highest overall and mean F1 statistic.

Sanity Checking Slates 8 and 9 Slates 8 and 9 were mostly run as a sanity check to

verify that the performance of retrained models aligned with expectations set in Slates 1

and 2. Ideally, there should be little difference in performance with the retrained models

as the initial models.
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However, overall less VitalDB models were run per slate than Jornada, and the model

behavior is less consistent between runs. Figure 68 displays the comparison of Slates 1

and 8, and Slates 2 and 9.

Figure 68: VitalDB Slates 8 and 9 Mean Metric Comparison.

It can be seen that model performances varied more from each other than in Jornada,

but not dramatically. The one exception was model letter T in Slate 8, which performed

quite a bit worse than in Slate 1 (though in Slate 9, it performed better than Slate 2).

Less experimental runs might explain the more variable nature of the mean performance

for these slates. At the same time, the emergency operation may just be a difficult

prediction task for which good performance is more difficult for a model to converge to.

Slate 10 Slate 10 is a regression slate, essentially the same as Slate 1 except for using

300 seconds (5 minutes) of input rather than 30 seconds. Otherwise, it uses the same

parameters as slate 1.

Figure 69: VitalDB Slate 10 Metrics for LSTM models.

In Slate 10, the lowest mean and overall MSE were found in model letter AD. Model

letter F was slightly behind AD.



113

Figure 70: VitalDB Slate 10 Metrics for AE models.

Figure 70 displays the AE results for slate 10.

In Slate 10, model letter S had the lowest MSE, with model letter AC not far behind.

Slate 11 Slate 11 was the same as Slate 10, but a prediction task for the presence or

absence of an emergency operation. Like slate 10, Slate 11 used 300 seconds of input

rather than 30. Figure 71 displays the results from Slate 11.

Figure 71: VitalDB Slate 11 Metrics for LSTM models.

In this slate, model letter T had the highest overall mean F1 statistic while model

letter G had the overall highest F1 statistic. However, models G,T, and AD were all

relatively close to one another in terms of performance, especially regarding their overall

best models. Model G synthesizes input from AE letter E, while model T takes input

from AE letter S, which synthesizes input from AE letter E. Model letter AD takes input

from AE letter AC, which processes all datastreams together.

Slate 12 Slate 12 was the identical to Slate 11 except that it predicted the discharge

mortality risk. Figure 72 displays the results of slate 12.

The highest mean F1 statistic for this slate belonged to model letter G, while the

overall highest F1 statistic belonged to A, G and T. For average performance, none of

the models did very well. In terms of mean F1, none of the models performed very well,

while the overall highest F1 models were acceptable compared to the analogous Slate 3.
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Figure 72: VitalDB Slate 12 Metrics for LSTM models.

Slate 13 Slate 13 is identical to Slates 11 and 12 except that it predicted glucose risk

instead of emergency operations or discharge mortality risk.

Figure 73: VitalDB Slate 13 Metrics for LSTM models.

The mean highest and overall highest F1 statistics for this slate occurred with model

letter AD. The performance. Model letter T was just behind model letter AD in terms

of mean and overall performance, while model letter G’s overall performance was also

close.

Slate 14 Slate 14 was the combination of Slates 11, 12, and 13, which attempted to

predict the presence or absence of an emergency operation, discharge mortality risk, and

glucose risk altogether. Figure 74 gives the results of Slate 14.

Figure 74: VitalDB Slate 14 Metrics for LSTM models.

In this slate, no model performed very well. The mean highest F1 belonged to model

letter A, while the highest overall F1 belonged to model letter T. A and T were close to

each other in both measures. However, the overall highest F1 statistic was only about

0.551, which is not good performance.
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Slate 15 Slate 15 was identical to slate 10 except that it removed the ”orch” datas-

tream. It’s analogous slate is slate 6, except that slate 15 uses 300 input seconds instead

of 30. Figure 75 displays the results of Slate 15.

Figure 75: VitalDB Slate 15 Metrics for LSTM models.

Slate 15 had the lowest mean and overall MSE with model letter F, with G close

behind. F is a network 2 separation scheme 2 model (datastream-specific). Figure 76

Figure 76: VitalDB Slate 15 Metrics for AE models.

Model letter S had the lowest overall MSE for AEs in Slate 15. Model letters E and

AC had very similar performance.

Slate 16 Slate 16 is identical to Slate 15 in the removal of the ”orch” datastream but

is a prediction task for the emergency operation factor. Figure 77 shows the results of

Slate 16.

Figure 77: VitalDB Slate 16 Metrics for LSTM models.

For Slate 16, model letter AD had the mean highest F1 statistic and overall highest

F1 statistic. The overall highest F1 statistic for model letter A was close behind model

letter AD, but its mean performance was significantly lower.
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Slate 17 Slate 17 retrained AEs and associated LSTM models from Slate 15 with the

”orch” datastream added back in, analogous to Slate 8 with Slate 6. The comparison

models from Slate 10 are provided for this simulated combination. Slate 17 is a regression

task. Figure 78 displays the results.

Figure 78: VitalDB Slate 17 Metrics for LSTM models.

The comparison model letter AD from Slate 10 still had lowest mean and overall

MSE.

The retrained AEs and comparison are displayed in Figure 79. Note that the AE

model letter E in this slate only represents the one trained model for the missing datas-

tream, which is why it is comparatively lower. Figure 80 gives the value of the overall

performance of model letter E representing all datastreams from Slates 15 and 17.

Figure 79: VitalDB Slate 17 Metrics for AE models.

Figure 80: VitalDB Slate 15 and 17 combination performance for model letter E.

Slate 18 Slate 18 was the same as 17, except adding back in the “orch ”datastream for

the emergency operation prediction task. Figure 81 displays the results from Slate 18,

with missing models provided by comparison Slate 11.
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Figure 81: VitalDB Slate 18 Metrics for LSTM models.

In this simulated comparison slate, model letter T from slate 18 had the highest mean

F1 statistic, while model letter AD from comparison Slate 11 had the overall highest F1

statistic. Model T’s mean and overall highest F1 statistic were much closer to one another

compared to the other model models letters.

Sanity Checking Slates 17 and 18 As with Slates 8 and 9, Slates 17 and 18 were

sanity-checked to ensure model performance when retrained with consistent with expec-

tations. Figure 82 displays the mean and best metric comparison between Slates 10 and

17 and Slates 11 and 18.

Figure 82: VitalDB Slates 17 and 18 Mean and Best Metric Comparison.

While mostly the models did not see huge differences in performance, model letter G

in Slate 18 had much worse performance than model letter G in Slate 11. As with Slates

8 and 9, there was less consistency in between runs for the Vital models. In conjunction

with Slates 8 and 9, it is reasonable to conclude that while there is a fair amount of

variation in the model predictions from run to run, retraining does not appear to have a

consistent negative impact on model outputs, as expected.
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VitalDB Combination Models and Separation Schemes

As with the Jornada Basin Models, one aspect of this dissertation was to determine

if one combination model or several datastream-specific models performed best on a

given task. Vital DB only had separation schemes 2 and 4 rather than 1-4, since data

represented individual patients who were not undergoing simultaneously, rather than

weather collection sites which collected data at the same time. Therefore, separation

by individual patient case was not feasible. Figure 83 gives the mean best performers

for Slates 1-5 and 10-14, while Figure 84 gives the overall best performers for the same

slates.

Figure 83: Separation schemes and top performers for metric mean by slate.

Figure 84: Separation schemes and top performers for overall best metric by slate.
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In these Slates 1-5 and 10-14, however, some of the prediction tasks did not succeed.

To be able to analyze actual performant models, any prediction model that did not

achieve an F1 statistic of at least 0.7 in some parameter combination was removed from

consideration. This removed the combinations of prediction models (Slates 5 and 14) and

one of the discharge mortality risk slates (Slate 3). Figure 85 shows the mean performance

by slate for the remaining models, while Figure 86 gives the overall best performances

for these same models.

Figure 85: Separation schemes and top performers for metric mean by slate, limited to

”good” models.

Figure 86: Separation schemes and top performers for overall metric by slate, limited to

”good” models.

In the majority of the performant models, separation scheme 4 worked much better

than separation scheme 2. For regression tasks, the MSE between separation schemes 2

and 4 were very close, but for prediction tasks, separation scheme 4 was far and away
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a better option. Slate 1 was the only slate that saw slightly better performance when

separating out by datastream.

VitalDB saw very similar results to the Jornada Basin Dataset with regard to sepa-

ration scheme: LSTM models worked much better when able to process all datastreams

together at some point in the process. The data in the VitalDB set is highly interrelated,

as each individual sample is coming from a single person undergoing liver transplant

surgery. It is logical that interactions between the different datastreams would be im-

portant for the model’s performance.

VitalDB Network Organizations

For the performant slates, model letter G had the top mean 3 times, model T and AD

2 times each, and model F one time. For overall best performer, model AD had the top

spot 4 times, model G had it 2 times, and model A once. The overall minimum mean

MSE for a regression task was found in Slate 10 for model AD and for a prediction task,

in slate 2 for model G (emergency operation prediction task). The overall best MSE for

a regression model was found in Slate 10 for model letter AD and the overall maximum

F1 statistic for a prediction model was found in Slate 11 for model letter G (emergency

operation prediction task).

In all cases except for the maximum F1 statistic in Slate 12 (discharge mortality

prediction task), an LSTM model utilizing an AE outperformed the monolithic model

for models that processed datastreams together.

While it might make the researcher (and the researcher’s dissertation committee)

happy to conclude that AE models are better suited to VitalDB prediction tasks, this

conclusion is likely erroneous. Figure 87 displays the p-values of Wilcoxon signed rank

test between model letters A, G, T, and AD for Slates 1-7 and 10-16. None of the models

demonstrated a statistically significant difference in distributions from any other.

Of course, this is not necessarily a death knell for the usefulness of the AE models in

this context! But Figure 88 is.
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Figure 87: Wilcoxon signed rank test between model letters A, G, T, and AD.

Figure 88: Performance by base network structure for model letters in Slates 1, 2, 4, 10,

11, 12, and 13.
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Figure 88 gives the mean performance by network structure depth for model letters

in the performant slate. Highlights indicate where, if anywhere, an AE model beat

monolithic model letter A’s performance at an earlier depth. This occurred only in 3 of

the 7 slates pictured. Additionally, the performance by depth demonstrates extremely

high sensitivity of the models to network depth as regards overall performance on the

prediction tasks.

It is entirely possible that the models are generally too deep (even at their shallowest)

to capture information about model depth versus performance. For these experiments,

however, there does not appear to be benefits in using AE models over monolithic models.

Without statistically significant differences in model performance, there could be

advantages to using AE models if the top-level prediction tasks could use smaller models

than monolithic ones if reprocessed this way. Essentially, the prediction tasks would be

sharing features discovered by unsupervised learning in one phase of processing, with

ideally less processing afterward. However, since the top-level tasks did not consistently

need shallower models, then a model using an AE is likely going to be slightly larger than

a similar monolithic network.

The only potential advantage of an AE model from this set of experiments could be

found in the potential of unsupervised learning. It could be the case that the top-level

task data is available for less time or samples than the input data, in which case it

would be worth investigating if an LSTM using an AE that trained on unlabeled data

for a longer period of time would outperform a monolithic LSTM that had access to the

labeled data for a shorter period.

To test that, 10 additional slates of experiments were run. Slates 19-23 ran only the

regression and 4 prediction LSTM tasks on top of Slate 1’s autoencoder models with

30 seconds of input, while Slates 24-28 ran the same on top of Slate 10’s autoencoder

models with 300 seconds of input. For these models, the training set was limited to only

30 percent of its size (the autoencoders used, of course, had the entire training set). The

results of this small run are displayed in Figure 89.

The slate results were very similar to the initial model results. In general, AE models

outperformed based models. A Wilcoxon signed rank test was performed on results from
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Figure 89: Results of rerunning LSTM tasks on smaller training dataset, with same

autoencoders models from Slates 1 and 10.

Slates 18-21 and Slates 24-26 (The slates the predicted glucose risk were removed. It

can be seen that several models arrived at the same metric for this task. By eliminating

two thirds of the dataset, the dataset had mostly positive glucose risk cases, which led

to models that mostly only predicted the glucose risk). This is displayed in Figure 90.

Figure 90: Results of rerunning LSTM tasks on smaller training dataset, with same

autoencoders models from Slates 1 and 10.

There were no statistically significant differences found between the base Network 1

model and any of the AE models for this experimental re-run. It is unlikely in this case

that an AE model poses an advantage over a base model for neural networks of this type

and form.
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Discussion on VitalDB Dataset Deep Learning Models with Regard to Re-

search Questions

In this section, the specific research questions posed for this dissertation are related back

to the broader research questions being explored.

How modular can we make a multivariate system? For VitalDB, modularity did

not prove to be a huge advantage. While modular models G and T had generally good

performance, they did not have statistically significant differences from the monolithic

models. They also did not perform similar at shallower depths, meaning performant

modular models are likely to be as large or larger than the monolithic models. Retraining

for added datastreams or tasks would likely take just as long or longer as using an end-

to-end neural network model.

What is the best method of incorporating new data into an existing neural

network design? In these VitalDB experiments, retraining the modular models for

new datastreams did consistently hurt their performance. However, ultimately these

experiments did not find a more performant or faster way of incorporating new data into

a neural network system than training an entirely new end-to-end model.

Can we delegate multivariate (multiple types of input data) decision tasks to

exist on top of an existing feature set? This research question proved to be true for

VitalDB models as well as the Jornada models. The prediction tasks for VitalDB models

fared no worse (and usually fared better) than the monolithic models, although all non-

monolithic prediction tasks shared a feature set with the other prediction tasks. However,

not all prediction tasks worked especially well. For Slates 1-5, the emergency operation

and glucose risk predictions tasks worked well, while for Slates 10-14, all prediction tasks

except for the combination task found acceptable models.

It is interesting that the combination task fared so poorly. This supports the idea

of small top-level and task-specific models instead of combination tasks, as the one task

that combined multiple others never received an F1 statistic above 0.7. However, in this
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case, the AE shared feature set did not pose an advantage over task-specific monolithic

neural networks.

VitalDB Deep Learning Final Thoughts

In the Jornada Basin Dataset models, models that shared location-specific feature sets

in some combination generally provided a slight advantage in terms of shared depth than

monolithic models. VitalDB models in these experiments had only the option of sharing

datastream-specific features sets and did not see that same advantage.

Jornada Basin did not see advantages in datastream-specific shared feature sets and

so perhaps it is unsurprising that VitalDB did not have this property either. However, it

should be noted that VitalDB had several differences from Jornada: it’s time-sequenced

data happened on the order of seconds rather than days, the environment for VitalDB

is highly dynamic, and the domain is completely different. Due to time constraints, less

models were also run on VitalDB with different hyperparameters. It’s possible that the

hyperparameter choice might heavily impact the model performance.

However, VitalDB models did perform – achieving acceptable F1 scores for the best

prediction models, although any given model run had quite a bit of variation compared to

Jornada Basin. More research should be conducted to note advantages of site-specificity

compared to datastream-specificity to determine if one is generally better than or another,

or if performance between the two is domain-dependent.

VitalDB Deep Learning Models Results Summary

In this set of results,

• Prediction tasks performance was highly variable across experimental runs;

• Processing all data together performed better than processing datastreams sepa-

rately;

• In general, modular networks performed slighly better than non-modular networks,

but;
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• No statistically significant difference in network distributions suggests no advantage

in using a modular network over a monolithic one for this dataset.

6.3 Jornada - QARM-GA

This subsection presents and discusses the results of the Quantitative Association Rules

with Genetic Algorithms.

Slate Metrics

The average F1 score across the best F1 score per run for all the parameters in the

non-sequence models is presented in Figure 91 and these same metrics for the sequence

models are presented in Figure 92.

Figure 91: Average F1 score across all sites for average of best rules per run of the

parameters for non-sequence models.

The overall mean best rules across runs was found in the non-sequence models for

Model H in parameter set 3. The sequence models, this was also found in Model H for

parameter set 2.

If the best rule out of each run for a given parameter was taken instead of averaged,

the best F1 for all sites for non-sequence models is given in Figure 93 for non-sequence

models and Figure 94 for sequence models.

The best F1 score across the sites for a given parameter was found in Slate letter

F in parameter 2 in non-sequence models, and for the sequence models, it occurred in
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Figure 92: Average F1 score across all sites for average of best rules per run of the

parameters for sequence models.

.

Figure 93: Average F1 score across all sites for best rule per run of the parameters for

non-sequence models.

.

Figure 94: Average F1 score across all sites for best rule per run of the parameters for

sequence models.



128

slate letter H in parameter 3. In general, models worked best with fitness function 2 and

reseeding from the best rules.

Interestingly, for both the sequence and non-sequence models, having other site data

incorporated into the site specific data was helpful and generally had better results than

using only site specific data. For both models, most of the mined rules for a given site

incorporated weather from a different site.

Samples rules for some of the sites are given in Figures 95 and 96 for non-sequence

and sequence runs, respectively.

In Figure 95, the NPP c grav average air temperature was the best frost predictor

for the NPP c cali site: if the average air temperature was between roughly −2 and 7,

on a given day, there was likely to be frost the next day. For Figure 96, the NPP t west

average air temperature was the best predictor for the NPP p smal site. If the average

air temp had been between 4 and 12 degrees anytime in the previous 9 days, a frost event

could be predicted.

Discussion on Jornada Basin Dataset QARM-GA Models with Regard to

Research Questions

This section looks at the performance of the QARM GA predictors specifically in relation

to the research questions.

What is the performance of a QARM GA predictor compared to a neural

network predictor? Overall, the QARM GA predictor was not as powerful as a neural

network predictor, but it wasn’t too far behind. The best neural network F1 score was

0.847, while the best for a QARM GA was 0.803. Considering the QARM GA predictor

is a small series of value comparisons instead of high-parameter function evaluation,

this is surprisingly close. In addition, the results for the QARM GA models are highly

interpretable and potentially more insightful, as the best rules captured statistically

interesting interactions between unrelated sites when it came to predicting frost.
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1 "npp_c_cali": [

2 {

3 "parameters": {

4 "npp_c_gravAir_TempC_Avg": {

5 "lower_bound": -2.943737408868765,

6 "upper_bound": 6.914454394126818

7 }

8 },

9 "support": 0.06873879258816497,

10 "confidence": 0.7516339869281046,

11 "lift": 7.310951512387901,

12 "fitness": 0.7134103174657996

13 }

14 ],

15 "npp_c_grav": [

16 {

17 "parameters": {

18 "npp_m_rabbAir_TempC_Avg": {

19 "lower_bound": -2.6047473295618273,

20 "upper_bound": 6.341436730109321

21 }

22 },

23 "support": 0.09802749551703527,

24 "confidence": 0.7735849056603774,

25 "lift": 5.701354833347187,

26 "fitness": 0.8709397005574128

27 }

28 ]

Figure 95: Sample site rules for non-sequence runs for Slate letter H.
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1 "npp_m_well": [

2 {

3 "parameters": {

4 "npp_p_smalAir_TempC_Min": {

5 "lower_bound": -9.227515495969113,

6 "upper_bound": -5.425585853230013,

7 "seq_lower_bound": 0,

8 "seq_upper_bound": 9

9 }},

10 "support": 0.1972504482964734,

11 "confidence": 0.7051282051282052,

12 "lift": 3.080103099685345,

13 "fitness": 0.9585987087181179

14 }],

15 "npp_p_coll": [

16 {

17 "parameters": {

18 "npp_m_nortAir_TempC_Avg": {

19 "lower_bound": -2.677282997019196,

20 "upper_bound": 13.56464798653699,

21 "seq_lower_bound": 0,

22 "seq_upper_bound": 1

23 }},

24 "support": 0.2355050806933652,

25 "confidence": 0.6512396694214876,

26 "lift": 2.6638727798096546,

27 "fitness": 1.4516494496692345

28 }]

Figure 96: Sample site rules for sequence runs for Slate letter H.
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How modular can we make a QARM GA? As with the Jornada models, models

ran best when they had all site data rather than a subset. Site-specific models ran

more quickly and were not far behind in performance, however, and may be easier to

implement. It was interesting that almost all the top rules in models that used all data

relied on features from a different site than the one being predicted. This could be simply

because it was difficult to mine the exact same site parameter and using a different one

regularized the algorithm’s analysis somewhat. However, it may also be the case that the

Jornada sites are sufficiently spread out that one site gets weather events slightly earlier

than the next – or one site’s past weather events affects the next site’s more than its

own.

For time-variable datasets, is there an advantage to using a sequence extension

on QARM? For these slates of experiments, the non-sequence models had slightly

higher performance for a given high-performing set of parameters than sequence models

did. However, in averaging the best parameter runs across all the slates, the sequence

models had a slightly higher average performance than the non-sequence models. While it

makes sense that the day prior would be most important in predicting frost, the sequence

models seemed slightly more robust to algorithm runs with less optimal parameters –

essentially, the sequence models tended to still be able to find performant rules when

parameters did perform as well overall compared to the non-sequence models. This

makes some sense – the sequence models were able to look back at longer and more

dynamic time intervals (the best rules for model runs F and H used 0 to 11 days in the

past, depending on the rule), which is probably more stable than relying on a single past

day.

Jornada Basin QARM-GA Results Summary

For the Jornada QARM-GA results:

• Using all data together generally performed better than using site-specific models.

• However, site-specific models were not far behind.



132

• QARM-GA models did not perform quite as well as neural network models.

• However, QARM-GA models are highly explainable and very easy to implement in

real-time.

• Non-sequence models performed slightly better than sequence models.

• However, sequence models appeared to be more robust to sub-optimal parameters.

6.4 VitalDB - QARM-GA

This subsection presents the results of the QARM GA models for the VitalDB dataset

on the glucose risk, emergency operation, and discharge mortality risk prediction tasks.

Slate Metrics

This subsection presents and discusses the results of the QARM GA models with regard

to the VitalDB dataset.

The best rule for each parameter was taken from each run and then averaged together

to give the average best results of the F1 statistic for non-sequence models in Figure 97:

and for sequence models in Figure 98.

Figure 97: Average best F1 score across runs for each parameter set for the vital non-

sequence models.

The average best rule for non-sequence models was found in Slate letter A, parameter

set 3. For sequence models, this was Slate letter A, parameter set 4.

The overall best rule F1 score for a given parameter for non-sequence models is given

in Figure 99 and for sequences models is given in Figure 100.
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Figure 98: Average best F1 score across runs for each parameter set for the vital sequence

models.

Figure 99: Best F1 score across runs for each parameter set for the vital non-sequence

models.

Figure 100: Best F1 score across runs for each parameter set for the vital sequence

models.
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The overall best rule was found in Slate A parameter set 3 for non-sequence models,

and Slate A parameter set 4 for sequence models.

Only Slate letter A, which predicted the glucose risk factor for the VitalDB cases, had

performance above 0.7 on the F1 score. While the sequence models slightly outperformed

the non-sequence models, both performed very poorly except for the glucose risk. Even

the glucose risk factor model only performed well for a specific set of parameters.

However, looking more closely at the glucose risk models in Slate A, the models are

not quite as useful as the relatively high F1 score would make them out to be. Figure

101 displays the accuracies, metrics, and true and false positives and negatives for the

top 10 rules in the sequence.

Figure 101: Top 10 overall rules by fitness for Vital Sequence A.

The false and true negatives columns are highlighted in Figure 101. It is immediately

evident that the test set for the glucose risk task is highly bent towards positive cases.

There are comparatively few negative cases. Most of the rules mined for the glucose risk

task skewed towards predicting mostly positive cases, and there were more false positive

predictions than true negatives. This is a major limitation on the usefulness of any of

the predicted rules despite the high F1 metric. For even the one model (Sequence A)

that saw an F1 score above 0.7, the mined rules are not useful predictors.

This domain, however, is slightly different from the Jornada Basin Dataset in that

the usefulness of the algorithm might not be limited to prediction models. For this med-

ical dataset, having rules with decent support and decent lift might indicate correlated

features with patient outcomes, even if they aren’t strong predictors in themselves. Find-

ing correlated features may help healthcare providers investigate vital sign interactions

and/or help identify useful patient status metrics.
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For this reason, rules with lift at or above 1.6 and support at or above 0.01 (1 % of the

data) were taken from each sequence and scrutinized for logical relation to the related

medical outcome (and, due to this researcher’s lack of knowledge in the medical domain,

discussed with medical doctors). Investigation into individual rules was conducted for

Sequence models B and C, for the emergency operation and discharge risk prediction

tasks (as the glucose risk task did not come up with rules that appeared to be highly

statistically significant). The sequence and non-sequence models often came up with

similar rules, with slightly different values or similar but not quite the same measurement

parameters.

For Sequence B, (which predicted whether or not an operation was an emergency

operation), rules are displayed in Figures 102 through 106.

1 {

2 "Orchestra_RFTN20_CT": {

3 "lower_bound": 0.0,

4 "upper_bound": 0.06108558775989881,

5 "seq_lower_bound": 2,

6 "seq_upper_bound": 2

7 }

8 },

9 "support": 0.018364245564567807,

10 "confidence": 0.9269870609981515,

11 "lift": 6.2521321448796146,

12 "fitness": 0.02556893065043826

13 }

Figure 102: Rule for Vital Sequence model B for Orchestra RFTN20 CT data feature.
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1 {

2 "Orchestra_RFTN20_CE": {

3 "lower_bound": 0.006904498730275301,

4 "upper_bound": 0.3181121957791861,

5 "seq_lower_bound": 5,

6 "seq_upper_bound": 5

7 }

8 },

9 "support": 0.015775474640007336,

10 "confidence": 0.9976798143851509,

11 "lift": 6.728924599118398,

12 "fitness": 0.018493499817958347

13 }

Figure 103: Rule for Vital Sequence model B for Orchestra RFTN20 CE data feature.

1 {

2 "Orchestra_RFTN20_CP": {

3 "lower_bound": 0.0,

4 "upper_bound": 0.2347718503013766,

5 "seq_lower_bound": 10,

6 "seq_upper_bound": 10

7 }

8 },

9 "support": 0.015548808538043978,

10 "confidence": 0.9135135135135135,

11 "lift": 6.1612588167842235,

12 "fitness": 0.016695474359485322

13 }

Figure 104: Rule for Vital Sequence model B for Orchestra RFTN20 CP data feature.
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1 {

2 "Orchestra_RFTN20_RATE": {

3 "lower_bound": 0.0,

4 "upper_bound": 3.091700112845868,

5 "seq_lower_bound": 7,

6 "seq_upper_bound": 7

7 }

8 },

9 "support": 0.03355556779987878,

10 "confidence": 0.3837429111531191,

11 "lift": 2.588182177652728,

12 "fitness": 0.01476182816528856

13 },

Figure 105: Rule for Vital Sequence model B for Orchestra RFTN20 RATE data feature.

1 {

2 "Solar8000_VENT_MAWP": {

3 "lower_bound": 6.901997556628691,

4 "upper_bound": 7.191949062119614,

5 "seq_lower_bound": 0,

6 "seq_upper_bound": 0

7 }

8 },

9 "support": 0.02797842187071409,

10 "confidence": 0.9244712990936556,

11 "lift": 6.235164404407566,

12 "fitness": 0.016637439378973315

13 }

Figure 106: Rule for Vital Sequence model B for Solar8000 VENT MAWP data feature.
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Four of the five rules found dealt with the infusion pump. The Orchestra infusion

pump delivered remifentinal (a pain medication) during anesthesia to the patients in

these cases. Figure 107 and Figure 108 give the values for specific features of the pump

for the training set cases for emergency operation and non-emergency operation patients,

respectively.

Figure 107: Graphing values from orchestra infusion pump for training set for emergency

operation cases.

It can be seen that anesthesia rates and targets trend slightly lower to begin with

for emergency operation patients than for non-emergency operation patients. It was

explained to this researcher that this is not unexpected: an anesthesiologist will try to

meet certain target values for a planned patient surgery generally before the surgery

begins. For an emergency operation, the levels might not be fully met before the surgery
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Figure 108: Graphing values from orchestra infusion pump for training set for non-

emergency operation cases.
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begins due to the time sensitive nature of the operation [167]. The dataset portion

used for these experiments was cut in time to the seconds where most if not all the

machines had started recording. For an emergency operation, it then makes sense that

the other patients monitors would be recording while anesthesia levels are low if the

surgery timeframe has been compressed.

Perhaps more interesting is the ventilator information from Solar8000 VENT MAWP

datastream, which measures mean airway pressure on the patient’s lungs. Figure 109

displays the mean airway pressure of emergency operation patients compared to non-

emergency operation patients.

Figure 109: Mean airway pressure values for emergency operation cases compared to

non-emergency operation cases.

Mean airway pressure gives an approximate measurements of lung stiffness (the pres-

sure that must be overcome to ventilate the patient) [168]. The emergency operation

patients in this set had slightly higher mean airway pressure values on average, and this

rule mined a range not seen as often in the non-emergency operation patients. A 2021

study in the Journal of Intensive Medicine suggested mean airway pressure as a singular

and highly useful metric correlated with negative patient outcomes [168] but noted that

the metric needed further validation. The discovery of this metric in higher ranges by

the QARM GA being associated with emergency operations is promising.
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Sequence C predicted whether the hospital discharge time met or exceeded 14 days.

It some similar infusion pump rules as the emergency operation task (unsurprising, as

three of the five emergency operation cases also had the extended discharge time), and

two additional types of rules, which are outlined in Figures 110 and 111.

1 {

2 "Solar8000_VENT_INSP_TM": {

3 "lower_bound": 1.0968162494645863,

4 "upper_bound": 1.1110976640944852,

5 "seq_lower_bound": 1,

6 "seq_upper_bound": 1

7 }

8 },

9 "support": 0.0765219300653236,

10 "confidence": 0.9258357316803187,

11 "lift": 1.7335248574586806,

12 "fitness": 0.021098401251895667

13 }

Figure 110: Rule for Vital Sequence model C for Solar8000 VENT INSP TM data fea-

ture.

The inspiration time in both rules notes a very small interval of values. Of more

interest is the SNUADC FEM data feature, which looks at the femoral arterial pressure

wave from a patient.

This rule states that the inspiration time between 1.07 and 1.12 seconds (between 2

and 2.5 minutes prior to the event) and a femoral arterial pressure wave value between

95.46 and 104.01 mmHg (between 2 and 1.5 minutes before the event) typically see an

event of an extended hospital stay. The support value of 0.011 notes that this correlation

was found in 1.1% of the data, while the confidence notes that every time this rule

occurred, the extended hospital stay event also occurred in the data 92.5% of the time.

The lift notes that this is above 1.73 times more likely than expected.
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1 {

2 "SNUADC_FEM": {

3 "lower_bound": 95.46352258693517,

4 "upper_bound": 104.00994272738527,

5 "seq_lower_bound": 2,

6 "seq_upper_bound": 3

7 },

8 "Solar8000_VENT_INSP_TM": {

9 "lower_bound": 1.0729557488679515,

10 "upper_bound": 1.1191693738796773,

11 "seq_lower_bound": 3,

12 "seq_upper_bound": 4

13 }

14 },

15 "support": 0.011267244380118353,

16 "confidence": 0.924812030075188,

17 "lift": 1.7316080895932908,

18 "fitness": -0.34785002214893773

19 }

Figure 111: Rule for Vital Sequence model C for SNUADC FEM and So-

lar8000 VENT INSP TM data feature.
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Figure 112 looks at a box plot the femoral arterial pressure wave values (only positive)

for patients with an extended hospital stay versus patients who did not stay in the hospital

as long.

Figure 112: Femoral arterial pressure wave positive values for patients with extended

hospital stay (dis risk) and non-extended hospital stay (non dis risk)

The rule in Figure 111 involving the arterial pressure wave (SNUADC FEM and

Solar800 VENT INSP TIME) noted values between 95 and 104 mV often lead to an

extended hospital stay. These values were in the slightly higher end of the normal range

from the cases, and could perhaps indicate less cardiac control during the surgery.

Discussion on VitalDB Models with Regard to Research Questions

This section looks at the performance of the QARM GA predictors specifically in relation

to the research questions. The modularity question was left out as it was not applicable

to this dataset since data is case rather than site specific.

What is the performance of a QARM GA predictor compared to a neural

network predictor? For this dataset, the QARM-GA did not produce useful results

for predicting the values set out in the prediction tasks. Even the model with the best

metric did not create reasonable prediction output. The QARM GA was less useful than
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the neural network for this task. However, the resampling of the data to 30 seconds only

may have been a problematic data wrangling choice.

For time-variable datasets, is there an advantage to using a sequence extension

on QARM? Since no experiments predicted the tasks successfully for this dataset,

it was difficult to evaluated whether or not the sequence or non-sequence version was

preferable, especially since one sequence step was equivalent to 30 seconds of input in

this case. This resampling occurred due to the vast size of the dataset. Additionally,

the sequence penalty was such that the algorithm generally mined very short sequence

intervals, making it difficult to determine a sequence benefit. Further research would be

needed to see if there is an advantage of one technique over the other. However, since

vital signs interactions are highly dependent on time, it is hypothesized that the sequence

extension would be the best area of further research.

VitalDB QARM-GA Results Summary

For the VitalDB QARM-GA models:

• None of the algorithm runs produced useful prediction models.

• However, the algorithm mined an interesting correlation for emergency operations

that aligns with another medical study as a patient outcome indicator.

• Further research is needed to determine if the sequence or non-sequence run of this

algorithm would be more useful.

6.5 Results Summary

To summarize the experimental results, it can be seen that the Jornada Basin dataset

was able to be successfully regressed and predicted by neural network models and by

genetic algorithms, with neural networks producing slightly more accurate predictions

and QARM GA models producing more explainable and less computationally-heavy ones.

For both neural networks and the QARM-GA models, results were best when all data
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were processed together. For VitalDB models, performance was not quite as accurate,

especially for prediction tasks, though neural networks fared better than the QARM-

GA models. However, the QARM-GA models did find some interesting and sensible

correlations of patient data with overall outcomes. The QARM-GA models used a slightly

different sampling method than the neural network models, which may have decreased

performance. The next section looks at the limitations of the experiment as well as

potential directions of future work.
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7 Study Limitations and Future Work

This section acknowledges the limitation of the experiments conducted in the dissertation

particularly in the areas of datasets and model architectures. It also outlines several

different directions of future work that could be pursued based on the results obtained.

7.1 Study Limitations

Overall, there are several limitations of the work presented in this dissertation, including

limitations in the datasets and how they were used, in the deep learning model architec-

tures, and in the QARM GA models.

Datasets

For both experiments, only two datasets were used: the Jornada Basin NPP weather

station datasets and a subset of patient data from the VitalDB dataset. Neither dataset

was collected firsthand for this research. For the Jornada Basin dataset, the prediction

task was derived from one of the features provided to the models, which is a somewhat

weaker metric than collecting observed frost data. For VitalDB, the data provided is

likely much more case-specific (by virtue of being medical data) and the subset of cases

chosen are not guaranteed to be representative of medical cases in general. For VitalDB,

more missing data was found in the prediction models, and often repeated to fill gaps.

VitalDB’s predictors were also not balanced through the datasets, which may have thrown

off results. Both datasets are very domain-specific, and results may not hold up for other

domains. These datasets also had data with a simple structure; a more intensive data

environment using images or videos may need separate techniques entirely. More intensive

data streams would also likely need preprocessing before being added to the main model

pipeline.
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Deep Learning Models

The deep learning models in this dissertation used a very small subset of hyperparame-

ters, and results may change drastically with other hyperparameter choices and network

structures. While each deep learning model ran a few different network structures, the

structures mainly varied in terms of numbers of nodes in the layer, not in terms of total

layers. The experimental runs were often performant, but it would be difficult to deter-

mine if they were truly optimal. Additionally, the prediction tasks for all deep learning

models were binary rather than categorical. Classification models with more than one

objective of interest may not have similar results.

QARM GA Models

The QARM GA models also used a small subset of the potential possible hyperparam-

eters, and other models with different hyperparameters are not guaranteed to fare the

same. For these models, parameters like the mutation rate, mutation amount, number

of rules to keep, the killing dominated rules remained the same throughout runs. How-

ever, mutation rates and amounts generally have a nontrivial impact on performance

and dominated rule killing impacts the diversity of the rule population. The number of

top rules impacts the overall performance in choosing only a subset of rules to evaluate.

In reality, the fitness score of the individual was only a proxy measurement for predic-

tion accuracy, and there may be more predictive rules in the population that did not

make the top 10 list. Different hyperparameter choices could have led to very different

models, whereas this set of experiments only looked at a subset of roughly 20 parameter

combinations. Genetic algorithms in general are perhaps more sensitive to hyperparam-

eter choice. Different parameter choices should be explored for overall impact to model

performance.

7.2 Future Work

In this dissertation, several experiments were run to look at site-specific models versus

data-specific models. Ultimately, models using some forms of site-specificity were more
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performant than the data-specific models for deep learning neural networks. However,

the test cases for site vs data specificity were narrow in this dissertation, and the tradeoffs

and/or performance differences between the two would likely be worth further study.

The domains for these experiments were also narrow, and further work should be

conducted to see if the performance holds up for other uses. A planned future implemen-

tation of this work involves trying out several neural network types identified in this work

on time sequenced weather data for a vineyard in Winchester, Virginia. Frost modeling

with the QARM GA is also planned to be conducted at this location.

Another test site is the University of Idaho Sandpoint Organic Agriculture Center.

In addition to weather parameters, one extension of this artificial intelligence research

involves determining impact of light penetration to the apple tree canopy with regard to

more optimal pruning techniques.

More intensive information types should also be looked at with regard to network

structure. This dissertation was unable to look at spatial locality mapping in designing

networks due to the unsuitability of the chosen datasets. However, this is very much an

area of interest. To remedy this, a custom robotic dataset is slated for future work of

the project. The University of Idaho owns four MyCobot320 Pi 6-axis robots, of which

one will be used to generate this. The dataset will include motor encoder readings and

images taken from a mounted camera on the robot, labeled with time of observation.

The goal use of this dataset is to develop robot proprioception, allowing the robot to

perform more complex tasks.

For the quantitative analysis rules with GAs, potential exists for application to do-

mains who may not need prediction models as much as help investigating causation in

event analysis. Two domains particularly could be included for this application: envi-

ronmental science and manufacturing defects.

The sequence extension in this paper seeks to look at correlated factors in the same or

different time steps with regard to observed phenomena. For environmental science, a lot

of collected data is in time series, particularly regarding weather, flow, land use change,

and more. QARM GA with sequence extension is a potential way for researchers to

examine closely correlated factors in a vast search space to help identify areas of interest
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for causes. In manufacturing, process steps also often occur in sequence, especially in

manufacturing areas that have some form of continuous flow. Identifying correlated

factors to defects may assist in identifying defect causes or machine settings that may

sub-optimal products more likely. The explainability of QARM GA may be helpful in

find causes behind correlations outside of the normal prediction tasks.

Limitations and Future Work Summary

This section looked at a variety of limitations in the experimental setups and architec-

tures, as well ways the research can be expanded in the future for both deep learning and

QARM GA models and applications. The next section concludes the dissertation with

high level discussion on the experimental results.
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8 Conclusions

This dissertation explored two concepts in making artificial intelligence more usable to

smaller organizations: reorganizing neural networks to modularize input data and ex-

ploring a non-neural network technique for prediction tasks with increased explainabil-

ity. Neither technique was a complete solution to making artificial intelligence an easy

implementation for a small organization. However, both exhibited properties that may

aid in future construction and adoption of artificial intelligence systems that will be more

accessible to smaller organizations. This section outlines final thoughts on the results of

the experiments and their contributions to research in this area.

For the deep learning models, two organizational strategies were tested: maintaining

multiple separate models or using combination models that used all datastreams and/or

locations. Overwhelmingly, the combination models fared better for both the Jornada

Basin and VitalDB datasets. This was unsurprising, given deep learning’s ability to find

interesting interactions between parameters that are useful for prediction. Ultimately,

having more data features aided prediction tasks considerably.

For the deep learning models, modularizing data within a network structure was

also tested by using autoencoders as shared feature sets for a given modality. For the

Jornada Basin dataset, modalities were broken up by datastream, location, or both, and

reassembled based on network types. For VitalDB, modalities were only broken up by

datastream.

For the Jornada Basin dataset, the networks that broke up modalities by location

in some form usually slightly outperformed monolithic networks for these experiments

– though not in a statistically significant way. However, the shared feature sets of the

experiments aid in reducing retraining time when adding locations to an overall system.

The shared feature space models generally outperformed the monolithic models with less

depth, and therefore, adding a new location could retrain a shared feature set once before

retraining smaller top-level tasks, rather than completely retraining several large end-to-

end tasks together. In this dataset, breaking up modalities by datastreams did not see

the same advantages.
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For the VitalDB dataset, breaking up modalities by datastream did not provide ad-

vantages over monolithic models, as was the case for Jornada. Since VitalDB did not

have a sensical way of separating the data by location (case-based not location-based)

the shared latent space and autoencoder models for VitalDB did not provide statistically

significant improvements although they generally outperformed the monolithic models.

VitalDB had a much less straightforward dataset and more difficult prediction tasks,

which may have contributed to the lack of performance gain seen in this dataset. In

these experiment sets, however, VitalDB did have a useful contribution: it demonstrated

that trying to predict multiple tasks simultaneously fared worse than having one predic-

tion model per task.

From a precision agriculture perspective, this set of experiments suggests more re-

search into site-specific management artificial intelligence system construction. In the

case where a grower has many high-level tasks to monitor (frost, pests, diseases, etc.)

and plans on expanding their data collection, it might be beneficial to them to incor-

porate a shared feature space by location somewhere in their system. If multiple small

task networks are drawing from one shared feature space, retraining for all the tasks

with a newly added location is likely less training than trying to train an entire system.

For a grower just beginning to explore artificial intelligence, these architectures deliver

performance with slightly more flexibility than a monolithic architecture.

If retraining a system is daunting to a grower, however, these deep learning experi-

ments demonstrated that training site-specific models outperforms training data-specific

models, and results can be beneficial even without the helpful additional data.

The second part of this dissertation focused on applying QARM GA’s to prediction

tasks using non-sequence and sequence data. For Jornada, the QARM GA’s mined for

the sequence and non-sequence models did not yield as powerful predictions – however,

they were close in performance to the neural network predictors and yielded simple and

highly explainable rules. These results of these models were easy to interpret as well as

being much more trivial to run as predictors.

The sequence extension did not perform as well as the non-sequence models but did

perform more robustly for sub-optimal parameters. The QARM GA’s model results are
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also interesting in their potential for exploring casual relationships between data and

sites.

For the VitalDB dataset, the QARM GA models were not useful for finding predictors

of patient outcomes. However, they did mine some interesting and explainable feature

correlations with patient outcomes that could be worth further investigation and study.

While the QARM GA could not approach neural network performance in looking to future

patient states, the ability of the algorithm to quantify appearance of data features in time

and value ranges with regard to dataset results may make it a helpful tool in determining

places to look for causal relationships or factors that influence surgery outcomes.

The QARM GA models particularly brought into focus the importance of using the

technique alongside, not instead of, domain expertise. While the models generated ex-

plainable input, the actual results are meaningful mainly for a member of the particular

field and industry. This expert is needed to interpret the results and catch correlations

that are already known, not useful, or meaningless. In these experiments, a cardiologist

assisted in categorizing and explaining the results used to evaluate the VitalDB models,

as this task was well beyond the purview of a computer scientist. While it is exciting to

develop new tools for new applications, domain experts must be kept in the loop for the

entire process, from design to interpretation, in order to make and evaluate tools that

truly serve the industries well.

In summary, this dissertation suggests further research in modularity for site-specific

management and use of QARM GAs to mine rule correlations for explainable output.

This dissertation also presented a novel sequence extension to the QARM GA algorithm

for use in time-sequenced environments and recommends further research into the use of

this sequence extension for diagnostic and investigative contexts. These techniques can be

explored further in a variety of domains to help make artificial intelligence more accessible

to smaller organizations and aid in the adoption of precision agriculture techniques.
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