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ABSTRACT 

Background: Statistics is a key component of bioinformatics, which provides crucial insight 

into biological processes, such as testing genetic association with the risk of complex human 

diseases and variation of drug response. A lack of statistical power due to small sample size in 

genetic association studies increases the probability of type II error, and the determination of 

the correct sample size for these studies is influenced by various biological parameters. 

Additionally, multiple hypothesis testing, which is common in genetic association studies, 

leads to type I error inflation.  

Objective and Methods: This study focused on statistical properties that are important in 

genetic association studies: 1) testing effects of biological factors on sample size estimation 

by regression analysis; 2) developing a two-stage Bonferroni type I error correction procedure 

using linkage disequilibrium (LD) to define independent haplotype blocks; and 3) adjusting 

alpha levels in sample size estimation based on LD structure among genetic markers in 

different racial groups. 

Results: The first study showed that a recessive genetic model requires the largest sample 

size; the most significant factors for sample size estimation were minor allele frequency under 

the recessive genetic model, and genetic effect size under dominant and additive genetic 

models. The two-stage adjusted Bonferroni correction was less conservative than the standard 

Bonferroni correction, but less liberal than FDR. Sample sizes estimated using an adjusted 

alpha level based on LD structure could be reduced by 14% to 24% depending upon racial 

group, compared with the standard Bonferroni adjustment for alpha level.  

Conclusion and implication: Genetic inheritance model, effect size, and allele frequency 

significantly impact sample size estimation. The results can be applied to genetic marker 

selection, sample size estimation, and statistical power prediction. The two-stage adjusted 

Bonferroni type I error correction procedure improves statistical power, and introduces a 

simple way to control for type I error in genetic association studies. Using LD structure across 

the tested DNA region to adjust the alpha value for sample size estimation by race can reduce 

the required total sample sizes, improve statistical power, and lead to cost-effective outcomes. 
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CHAPTER 1: INTRODUCTION 

Bioinformatics is a recently emerged interdisciplinary field that draws scientists from 

statistics, mathematics, computer science and engineering to study, understand and process 

molecular and genetic data1. The development of high-throughput sequencing and genotyping 

technology has led to the production of huge amounts of genetic data. This flood of data 

introduces significant challenges in bioinformatics, such as data storage and retrieval, data 

manipulation and analysis. Statistics is the key component of bioinformatics that provides 

crucial insight into biological processes, to understand molecular level biological systems and 

to allow the simultaneous analysis of millions of data points. Without statistics and statistical 

techniques required to analyze, summarize and interpret these data, we are very limited to 

learn from our observations, which will in turn inhibit our ability to move forward in genetic 

research. Although basic statistical concepts help biologists to prepare experiments, verify 

conclusions and interpret results, these traditional statistical tools often fail in the face of an 

immense challenge due to high volume and large heterogeneity of biological data.  

Genetic variants, a type of biological data, are often investigated to detect genetic 

association with complex human diseases and variation in drug response. Various biological 

factors affect statistical power in a genetic association study and as more genetic variants are 

tested simultaneously, larger sample sizes are required to achieve adequate statistical power to 

detect the association. Also, when a large number of single nucleotide polymorphisms and/or 

genes are tested, multiple hypothesis tests can lead to type I error inflation, resulting in false 

positive results. To confront these challenges, we applied basic statistical concepts to develop 

new methods for finding genetic association with targeted phenotypes. 

This dissertation used a bioinformatics approach to understand parameter influence on 

sample size estimation in study design, to address and solve type I error inflation problems in 

multiple tests, and to apply type I error adjustment methods in sample size estimation for 

multi-locus genetic association studies. The dissertation involved a broad range of 

bioinformatics across statistics, genetics, and computational biology, including single 

nucleotide polymorphism genotype data query, computational simulation, linkage 

disequilibrium test, haplotype block inference, genetic inheritance model assumption, 

statistical analysis, etc. 
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GENETIC ASSOCIATION STUDY 

Genetic association studies are a major tool for identifying genes conferring susceptibility 

to complex disorders. Genetic association studies are performed to determine the associations 

between a phenotype/phenotypes and a genetic variant or multiple genetic variants, such as to 

test whether a genetic variant is associated with a disease or a trait (e.g. variation in drug dose 

response). Despite the potential problem of low power to definitively identify the 

associations, the genome-wide studies are applied to test the large number of polymorphisms 

simultaneously. If an association is present, a particular allele, genotype or haplotype of a 

polymorphism or polymorphisms will be seen more often than expected by chance in an 

individual carrying the trait. Thus, a person carrying one or two copies of a high-risk variant 

is at increased risk of developing the associated disease or having the associated trait2. 

Genetic association can be between phenotypes, between a phenotype and a genetic 

polymorphism, or between two genetic polymorphisms3-5. Single nucleotide polymorphisms 

(SNP) are the most common source of genetic polymorphism in the human genome6. A 

SNP is the result of point mutations that produce single base-pair differences (substitutions or 

deletions) among chromosome sequences7. Traits and diseases are termed “complex” when 

both genetic and environmental factors contribute to the susceptibility risk. Extensive 

experience in genetic studies for many complex disorders (such as diabetes, heart disease, 

autoimmune diseases, and psychiatric traits) confirms that many different genetic variants 

control disease risk, with each variant having only a subtle effect2. 

Advanced genotyping technology has made genome-wide association studies possible to 

test if any variants among hundreds of thousands or even millions of polymorphisms are 

associated with the phenotypes of interest. However, when a large number of polymorphisms 

are tested in a genome-wide study, the power to definitively identify associations is low. 

Therefore, most recent genetic association studies still examine a single polymorphism or a 

set of polymorphisms near a single gene, or focus on a candidate region that we have prior 

reason to believe might be associated with the phenotype of interest. Bioinformatics is 

commonly used to identify the candidate genes and nucleotides (SNPs) to help researchers to 

better understand the genetic basis of disease. 

https://en.wikipedia.org/wiki/Human_genome
https://en.wikipedia.org/wiki/Point_mutations
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A significant genetic association between a SNP and a disease could be interpreted as 

either (1) direct association, in which the genotyped SNP is the true causal variant conferring 

disease susceptibility; (2) indirect association, in which a SNP is in linkage disequilibrium 

(LD) with the true causal variant; or (3) a false-positive result, in which there is either chance 

or systematic confounding, such as population stratification or type I error inflation. 

Distinguishing between direct and indirect association is challenging and may require 

resequencing of the candidate region, dense genotyping of all available SNPs, or functional 

studies to confirm the role of a putative mutation in disease2. 

The simplest study design used to test for association is the case–control study8, in which 

a number of cases affected with the disease of interest are collected together with a number of 

control individuals without the presence of the phenotype of interest. The specific choice of 

phenotype for the cases may define the exact hypothesis to be tested, and applying strict 

clinical criteria for ascertainment is necessary to ensure a homogeneous set of cases. Controls 

are collected from individuals who have been screened as negative for presence of the 

phenotype of interest, or randomly ascertained from the population, whose disease status is 

unknown. A study with screened unaffected controls will have higher power to detect an 

association compared with a study using population-based controls. However, for some 

diseases, screening controls for the presence or absence of the disease may be difficult, and 

using a larger sample of unscreened controls may be more efficient2. 

A sample size with sufficient statistical power is critical to the success of genetic 

association studies in detecting causal variants of complex human diseases and drug 

responses. Sample size is typically estimated according to an appropriate statistical model 

that is derived under the hypothesis, the study design, the primary study endpoint, and 

the clinically meaningful difference of the primary study endpoint between case and 

control. 

To test for association between polymorphisms and an outcome (e.g. disease), a genetic 

model needs to be assumed8. If we assume a dominant or recessive genetic model, the SNP 

genotypes are dichotomized to force heterozygotes to have the same risk or mean phenotype 

as one of the homozygotes. Additive models impose a structure in which each additional copy 

of the variant allele increases the response, whether log odds ratio, log hazard ratio, or mean 
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phenotype, by the same amount. For categorical outcomes, the simplest association test is a 

Chi-Square test of independence computed on a cross-classification table of outcome versus 

alleles or genotypes for each variant. For quantitative phenotypes, ANOVA, a type of linear 

regression models for quantitative outcomes and categorical predictors, can be used to test for 

association between a genotype and a phenotype. Each of the hypothesis tests yields a p value. 

In statistics, the p value is the probability of obtaining the observed sample results, when 

the null hypothesis is actually true9. In inferential statistics, the null hypothesis usually refers  

to a general statement or default position that there is no relationship between two measured 

phenomena (e.g. genetic variants and disease state), or no difference among groups10. The p 

values are used to help scientists determine whether or not their hypotheses are correct. A 

small p value (typically ≤ 0.05) indicates strong evidence against the null hypothesis, so we 

reject the null hypothesis. A large p-value (> 0.05) indicates weak evidence against the null 

hypothesis, so we fail to reject the null hypothesis. The probability of achieving statistical 

significance is called statistical power, when in fact the alternative hypothesis (contrary to the 

null hypothesis) is true. Such as a p value of 0.01 may imply a significant association 

between a genetic variant and a disease. Thus, a person carrying one or two copies of the 

genetic variant is at increased risk of developing the associated disease or having the 

associated trait. To declare the statistical significance, we need a criterion/ measure to 

compare with the p value. Therefore, before each of a hypothesis tests is performed, a 

threshold value is chosen, called the significance level of the test, traditionally 5% or 1% and 

denoted as α10, 11. If the p-value is equal to or smaller than the significance level (α), it 

suggests that the observed data are inconsistent with the assumption that the null hypothesis is 

true and thus that hypothesis must be rejected. When a true null hypothesis is incorrectly 

rejected, a type I error (false positive) occurs. The significance level (α) is also the probability 

of Type I error10. However, when a false null hypothesis is accepted, a type II error (false 

negative) occurs. As the statistical power increases, the chance of type II error decreases. 

Most genetic association studies involve multiple SNPs and/or genes, to test a large number of 

hypotheses for direct or indirect association with phenotypes of interested. When multiple 

hypothesis tests are performed simultaneously in a study, the risk of inflation of the type I 

error rate increases, resulting in false positive results10, 11. 
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THE OBJECTIVES OF THIS DISSERTATION 

The dissertation consists of three main parts: 1) testing parameter effects on sample size 

estimation for single locus genetic association studies; 2) developing a two-stage adjusted 

Bonferroni correction procedure for multiple hypothesis tests of association between multiple 

genetic markers and disease; and 3) developing a method to calculate the alpha level in 

sample size estimation in multi-locus genetic studies by taking linkage disequilibrium 

between genetic markers into account.  

Sample size determination is among the most commonly encountered tasks in statistical 

practice. The sample size required to detect genetic association is influenced by various 

parameters specific to these types of studies. Our first objective was to test the effects of 

minor allele frequency, genetic inheritance model, and genetic effect size on sample size 

estimation to achieve adequate power in genetic association studies. Based on the different 

combinations of these three parameters, two statistical models (logistic regression and linear 

regression) were used to estimate sample sizes in accordance with two phenotypes, disease 

state and quantitative trait, respectively. A case-control study design was used for disease 

outcome while a study cohort with independent individuals was used for a quantitative trait. 

Minor allele frequencies were from 0.01 to 0.30, effect sizes were from small to medium, and 

genetic inheritance models were dominant, recessive, and additive. Poisson regression models 

were applied to examine the main and interaction effects among the three factors on sample 

size estimation. The results of the effects were represented by regression coefficients and 

surface plots. Finally, real clinical studies were given as examples to illustrate the importance 

and effects of these parameters on sample size estimation. 

The multiple-comparison problem with type I error inflation arises in genetic association 

studies when the association between phenotypes and multi-locus genotypes is examined. The 

Bonferroni correction directly targets the type I error problem but it may yield conclusions 

that are too conservative due to correlation among genetic markers. The correlation among 

these markers violates the independence assumption of the Bonferroni procedure, resulting in 

type II error inflation. Our second objective was to develop a two-stage adjusted Bonferroni 

correction procedure, which corrects for the problem of correlation among genetic markers. 

The procedure was to 1) simulate p values based on the LD structure of 267 SNPs taken from 
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HapMap12 to mimic the p values from the statistical association tests between the 267 SNPs 

and disease state; 2) derive the effective number of independent tests based on linkage 

disequilibrium (LD) structure among the 267 SNPs; 3) calculate the point-wise error rates 

based on the effective number of independent tests as the threshold values to determine 

whether or not these SNPs were significantly associated with the disease; 4) compare the p 

values with the point-wise error rates across the blocks and singletons; and 5) apply the 

Holm–Bonferroni method and dependent false discovery rate (FDR) to highly-correlated test 

statistics within each LD block when there are SNPs in the LD block that have smaller p 

values compared to the point-wise error rate. Our third aim was to apply the type I error 

adjustment method to calculate the alpha level in sample size estimation in accordance with 

the multi-locus genetic association study design. 
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CHAPTER 2: INFLUENCE OF BIOLOGICAL PARAMETERS ON SAMPLE SIZE 

ESTIMATION IN GENETIC ASSOCIATION STUDIES 

ABSTRACT 

Background: Genetic association (GA) studies assess the association between genetic 

polymorphisms and phenotypes of interest, such as disease states and drug responses. A 

sample size with sufficient statistical power is critical to the success of genetic association 

studies. Various biological factors in GA studies could affect statistical power, including 

frequency of the risk allele, genetic effect size and mode of inheritance. 

Objective and Methods: To optimize statistical power, we studied the effects of three 

parameters on sample size estimation: minor allele frequency, genetic inheritance model, and 

genetic effect size. Based on different combinations of the three parameters, two statistical 

models (logistic regression model and linear regression model) were used to estimate the 

sample sizes in accordance with two phenotypes, disease state and quantitative trait, 

respectively. A case-control study design was used for disease outcome while a study cohort 

with independent individuals was used for a quantitative trait. Minor allele frequencies ranged 

from 0.01 to 0.30, effect sizes were small or medium, and genetic inheritance models were 

dominant, recessive, and additive. Poisson regression models were used to test for main and 

interaction effects among the three factors on sample size estimation.  

Results: The main and the interaction effects among the three factors were statistically 

significant (p<0.001). Among the three genetic models, the largest sample size is required to 

detect the genetic effect of variants under the recessive model in both dichotomous and 

quantitative outcomes. To reach a specific statistical power to discover causal variants, a 

larger sample size was needed for small minor allele frequency and genetic effect size. As 

such, we need to select genetic markers with allele frequencies at least 1% and genetic effect 

size being larger than small. The significant interaction indicates that the effect of one factor 

on the sample size is different at different values of the other two factors. Minor allele 

frequency is the most important factor under the recessive genetic model, and genetic effect 

size has the most influence under dominant and additive genetic models.  
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Conclusion and Implication: Required sample sizes in genetic association studies were 

significantly associated with genetic inheritance model, effect size, and allele frequency. Our 

simulation results could be applied to real genetic association studies to help researchers in 

genetic marker selection, sample size estimation, and statistical power prediction.  

Keywords: Genetic association study; Sample size estimation; Statistical power; Genetic 

effect; Genetic inheritance model.  

INTRODUCTION 

Genetic makeup plays an important role in the development of human diseases such as 

asthma, hypertension, and diabetes. Interacting with lifestyle and environmental factors, 

single gene or polygenic disorders cause at least six thousand human diseases13. A person’s 

chance of developing or passing on a genetic disorder can be influenced by many factors. 

Therefore, only part of these genetic diseases can be passed on from generation to generation. 

For instance, asthma is a heritable disease and polygenic disorder; the onset of asthma and 

related traits is associated with at least 200 genes14. Four of these genes (NPPA, NPRA, 

CLCN6, and ILF2) were found to be involved in lung vasodilatation, bronchorelaxation, 

pulmonary permeability, and surfactant production and action15, 16. Sickle cell disease is also 

one of the most common genetic diseases with prevalence of 0.16% in African Americans. 

Acute chest syndrome is the leading cause of mortality17-19 in patients with sickle cell disease. 

The etiology of acute chest syndrome in sickle cell disease is not fully understood. However, 

both the NOS1 AAT-repeat polymorphism and NOS3 T-786C polymorphism were reported to 

be associated with acute chest syndrome in sickle cell disease20.  

Genetic variants also affect individual variability in drug response. For example, warfarin 

is the most widely prescribed anticoagulant drug worldwide to prevent heart attacks, strokes, 

and blood clots21. The optimal warfarin dose is difficult to establish because it can vary 10-

fold among patients. An incorrect dose could lead to life threatening side effects, such as 

severe bleeding. Previous studies indicated that the single nucleotide polymorphisms in 

vitamin K epoxide reductase complex 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9) 

genes have prominent effects on warfarin dose requirements22. The new disciplines of 

pharmacogenetics and pharmacogenomics study genetic effects on drug response, challenge 
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the traditional one-size-fits-all dosage, and develop individualized medicine based on the 

patient’s genetic background. The ultimate goal of pharmacogenetics and pharmacogenomics 

is to maximize efficacy and minimize toxicity by individualized drug therapy. 

A genetic association study identifies genetic polymorphisms or variants for the trait of 

interest in a population. There are many types of genetic polymorphisms, but this study 

focuses on single-nucleotide polymorphisms (SNP). A SNP is defined as a genetic variant that 

occurs in coding, non-coding, or untranslated regions of the genome in at least 1% of the 

population. Some of these variants in human DNA sequences can affect how humans develop 

diseases and respond to pathogens, drugs and other agents.  

A fundamental notion in genetic association studies is the linkage disequilibrium (LD) 

between a genetic marker and the locus/loci that affect the trait (e.g. a specific disease) under 

study. LD is a measure of deviation from random association among alleles at two or more 

loci from their close proximity on a chromosome in the population. The genetic marker is 

expected to be in strong LD with a nearby disease locus. Therefore, the association between 

an unobserved genetic variant and the disease is indirectly measured between a candidate 

marker and the disease. In the indirect genetic association study, the strength of the 

association between the genetic markers and the phenotype of interest is attenuated along with 

the decrease in LD strength between the genetic markers and the causal variant. Many 

polymorphisms in the human genome carry redundant information since they are in LD with 

each other. As such, representative SNPs are commonly used in candidate gene/variant 

association studies, which specifically test one or a few genetic regions with prior hypotheses 

on sets of genes or polymorphisms associated with the phenotype of interest. Furthermore, 

genome-wide association studies investigate hundreds of thousands or even millions of 

polymorphisms in the entire genome.  

Drawbacks in genetic association studies include low statistical power and type I error 

inflation due to insufficient sample size23.  Sample size estimation is crucial to assure validity, 

accuracy, reliability, and integrity in a genetic association study. An insufficient sample size 

lacks power, leading to a false negative conclusion (type II error), whereas an over-powered 

study wastes time and resources. Gauderman24-26 implemented regression models in sample 

size or power estimation for association studies of genes, gene-environment interaction, or 
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gene-gene interaction for study designs with matched case-control, case-sibling, case-parent, 

and case-only designs. Pfeiffer27 calculated sample sizes for unmatched case-control and 

sibling case-control studies to detect genetic association, and discovered factors affecting 

required sample size. Hong28 estimated statistical power with increasing numbers of markers 

and compared sample sizes that were required in case-control/case-parent studies under 

various assumptions. 

This study investigates the influence of several biological factors that are important for 

sample size estimation in genetic association studies, and determines how adequate statistical 

power can be achieved for candidate gene/variant association studies. The factors include 

linkage disequilibrium (LD), minor allele frequency, genetic inheritance model, genetic effect, 

and disease prevalence. Clinical studies are given as examples to illustrate the importance of 

these parameters and interaction effects in sample size estimation. 

STATISTICAL MODELS FOR SAMPLE SIZE ESTIMATION 

Sample size is typically estimated according to an appropriate statistical model that is 

derived under the hypothesis, the study design, the primary study endpoint, and the clinically 

meaningful difference of the primary study endpoint between cases and controls29. In our 

study, different statistical models were used to estimate sample size for two phenotypes, 

disease state and quantitative trait. Logistic regression models were used for genetic 

association with diseases; and linear regression models were used for genetic association with 

quantitative outcomes. The estimation models are introduced as follows. 

Disease trait 

Population-based genetic association studies24 are commonly used to investigate genetic 

effects on phenotype by randomly sampling diseased (case) and non-diseased (control) 

individuals from targeted populations. The mean proportions of genetic risk variants are 

compared between cases and controls to determine how these genetic factors are related to 

disease risk.  

A case-control genetic association study determines whether the presence of a genetic 

variant increases the risk of a disease in a large population of unrelated individuals. In the 
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study, there are two well-designed groups: the case group includes individuals with the 

disease under study, and the control group includes individuals without the targeted disease. 

Causal genetic variants are sought based on the assumption that an individual carrying one or 

two copies of a disease risk variant is more likely to develop the disease, and therefore an 

increased frequency of a variant or genotype in cases compared with controls implies that the 

variant may be associated with the disease.  

A logistic regression model is used because a subject either has the disease or does not. 

Suppose that N denotes the number of disease affected subjects (cases) and NK is the number 

of disease unaffected individuals (controls), where K is the ratio of controls to cases. We wish 

to determine the smallest N that will give us sufficient power to reject the null hypothesis 

when it is false. Sample sizes can be estimated for a single marker or multi-locus markers. 

To test the effect of a single genetic marker, we assume that it is the causal mutation or 

that it has complete or strong LD with the causal locus. The biallelic genetic marker has two 

possible alleles “A” or “a”, and therefore there are three possible genotypes, “AA”, “Aa” and 

“aa”. The subject carrying the allele “A” is more prone to develop the disease than one with 

allele “a” only and this is indicated by the genetic factor, G. G is determined by genotype g 

and the inheritance model as follows: 

Dominant: G=1 for g=AA, Aa; G=0 for g=aa 

Recessive:   G=1 for g=AA; G=0 for g=Aa, aa 

Log-additive: G=2 for g=AA; G=1 for g=Aa; G=0 for g=aa 

Disease occurrence in the population is given by the logistic regression model24, 25, 30, 31.  

     ,       

where S is an indicator of disease status (1=diseased; 0=not diseased). The baseline 

probability of disease is P0= , which is the disease risk in genetically normal 

(G=0) subjects. The disease odds ratio for carriers (G=1) compared to non-carriers (G=0) is 

the quantity , which is the population-average genetic relative risk in an 

epidemiological study of the genetic factor alone. The mean population genetic odds ratio 

with genetic factor alone also can be estimated as   
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To obtain a maximum likelihood estimate for the logistic regression model, the following 

likelihood for the logistic model with N cases and N  controls is maximized: 

    

To demonstrate algorithms for testing a genetic factor, we supposed a null hypothesis  

of interest is that  (or , which means no significant genetic effect on the disease 

with the alternative hypothesis  

 . 

The likelihood ratio statistic (deviance) for testing the lack of fit for a logistic regression 

model is given by 

           

 has a chi-square distribution with degrees of freedom equal to the difference in the  

number of degrees of freedom (df) between the two models (i.e., the number of variables 

added to the model). If ,  the lack of fit is significant at significance level .  

A sufficiently large deviance implies the logistic model is inappropriate. Inference 

concerning any regressor or subset can be computed by determining how much the presence 

of each regressor contributes to the reduction in deviance. Therefore, to test the hypothesis 

that the genetic factor is significantly associated with the disease, we are going to test the 

difference in variation explained between the full and reduced models by   

2(            

Under the null hypothesis ( ),  is asymptotically distributed as a chi-square random 

variable with one degree of freedom. When  is rejected, N is the non-centrality parameter 

of the chi-squared distribution for a given sample size N. Sample size can be computed 
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by  , where the parameters are type I error rate (α-0.05), type II error rate 

(β=0.80) and K = controls/cases. Since Λ is a function of the odds ratio , a smaller 

odds ratio requires a larger sample size. Therefore, the total sample size is equal to 2N for the 

matched case-control study, and N+KN for unmatched case-control study. 

Quantitative trait 

A quantitative trait genetic association study can be used to determine genetic impact on 

quantitative outcomes. For instance, fluticasone propionate is used to treat asthma. The 

genetic variant Gly16Arg of ADRB2 was found to be implicated with responsiveness to this 

drug32. A study was conducted to compare the measurements of lung function between variant 

carriers and non-variant carriers in patients who take the medication. Sample size estimation 

at the beginning of this study was performed based on a two-sample parallel design with a 

dominant genetic model (Arg/Arg+Arg/Gly vs. Gly/Gly in Gly16Arg of ADRB2). 

For the quantitative outcome trait, we assume a linear model relating the phenotype to the 

genetic factor, as Y=β0+β1G+e. The residual e is assumed to be normally distributed, with 

mean zero and variance σ2.  The parameter β1 is the main effect of the genotype. It is 

measured by the change in mean Y (outcome) per unit increase in genotype, such as for the 

dominant genetic model: G=1 for genotypes AA, and Aa; G=0 for genotype aa. 

Rg2 denotes the proportion of variation in Y explained by the marginal genetic effect. The 

marginal genetic effect is the effects of a gene risk factor in the population as a whole, 

averaged over all other variables. Rg2 can be computed as  

           

 can be computed based on the assumed genetic model and allele frequency. For 

example, if a dominant model is assumed,  

           

Assume that the null hypothesis  of interest is that , which means no significant 

genetic effect on the outcome Y with the alternative hypothesis  
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The maximized likelihood under the null hypothesis is given as  

 

The maximized likelihood under the alternative hypothesis is given as  

 

The likelihood-ratio test statistics is  

Λ=2∗[𝐿𝑛(𝐿1)−𝐿𝑛(𝐿0)]           

Assuming a two-sided alternative hypothesis, N is then computed as  

,          
 

where a is the significance level (set to 0.05), 1 – β is the desired power (set to 0.8).  For a 

given number N of sampling units, the quantity NΛ is the non-centrality parameter of the chi-

square distribution under H1. 

FACTORS THAT INFLUENCE SAMPLE SIZE ESTIMATION 

Sample size estimation in genetic association studies requires making assumptions about 

biological parameters. Some of these parameters are under the control of the investigator or 

are known, such as power, type I error rate, or disease prevalence. However, we need to make 

assumptions for some of these parameters, i.e. genetic effect size and model of inheritance 

(additive, dominant, or recessive), degree of linkage disequilibrium between markers and trait 

loci, and allele frequencies at these loci, based on expert knowledge and results from previous 

studies. These parameters are described in the following sections. 

Type I error and power 

In a statistical hypothesis test, a type I error is the incorrect rejection of a true null 

hypothesis, while a type II error is the failure to reject a false null hypothesis. In the following 

graph, α refers to the type I error while β denotes type II error. The distribution of the test 

statistic is shown for both the null (left) and alternative (right) hypotheses. The vertical line is 

the critical value of the test. The black and gray areas under the alternative hypothesis 

represent the power of the test. The shaded gray area refers to the type I error rate of the test. 
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The unshaded area under the alternative hypothesis is the probability of committing a type II 

error. 

.  

If the null hypothesis is true, we may correctly accept the null hypothesis, or incorrectly 

reject the null hypothesis at rate α, which is determined by the experimenter to decide at what 

threshold the test will be declared significant. In this way, the sensitivity and specificity of a 

statistical test can be described and controlled. There is a trade-off between these two 

properties: Lowering the threshold increases sensitivity (i.e., increases power, reduces type II 

errors) but also decreases specificity (i.e., increases type I errors). Traditionally, the values of 

α=0.05 and β=0.2 are adopted to represent a realistic and adequate tradeoff between type I and 

II errors. 

Linkage disequilibrium  

Linkage disequilibrium (LD) is a measure of deviation from random association among 

alleles at two (or more) loci resulting from their close proximity on a chromosome. A genetic 

marker may not be the functional locus responsible for a disease but may be in linkage 

disequilibrium with the true functional locus.  

Suppose that a sample of 
Tn  haploid individuals is drawn from a large population, and there 

are only two possible alleles at each locus A and B. The four possible haplotypes 

are 01011000 ,,, BAandBABABA , and the observed numbers of these haplotypes in the sample will 

be denoted by 11100100 ,,, nandnnn respectively, with Tnnnnn  11100100 . The random variable n 

follows a multinomial distribution as33  
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The maximum likelihood estimate of Tijij nnisp / . The frequency of the iA  allele is denoted .ip , 

and its maximum likelihood estimate is Ti nn /. , where .in is the number of iA alleles in the sample. 

The maximum likelihood estimate of the frequency of the jB  allele is obtained similarly. 

Measures of linkage disequilibrium between allele iA  and jB  include:   

jiijij pppD .. , max

' / DDD         

and  11100100

22 / PPPPDr  .           

The closer to zero the D' value is, the greater the amount of historical recombination 

between the two loci. Therefore, the value of 0 for D' indicates that the examined loci are 

independent of one another, while a value of 1 demonstrates complete dependency. The 

measure of r2, however, has a stricter interpretation than that of D'; r2 = 1.0 only when the 

marker loci also have identical allele frequencies. The allele at the one locus can always be 

predicted by the allele at the second locus. D' is affected solely by recombination and not by 

differences in allele frequencies between sites. r2 is also affected by differences in allele 

frequencies at the two sites, and is therefore a better measure of potential allele-trait 

associations than D'.  

Currently, empirical power estimation is usually based on the assumption that the genetic 

marker is a causal locus or both the marker and disease loci are in complete linkage 

disequilibrium. However, if the genetic marker is linked to a trait-influencing locus with a 

certain degree of LD, the sample size should be the total sample size divided by LD strength. 

As mentioned above, the degree of LD can be estimated by the correlation coefficient ( ) 

between the genetic marker and the potential causal variant. The correlation determination r2 

is 1 if two SNPs arose from the same branch of the genealogy with no recombination between 

them; but it tends to be less than 1 if these SNPs came from different branches or if a cross-

over event occurred between them34-37. Larger r2 between genetic marker and causal locus 
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allows smaller sample size. If N subjects are needed to reach a certain power in a direct 

genetic association test, the minimum sample size of N/r2 will be required for an indirect test38.  

Marker allele frequency 

When trait and marker loci with high LD have similar allele frequencies, the power to 

detect association is optimized.  Genetic variants with low frequency require a large sample 

size. Therefore, a rare variant is difficult to detect in association studies. 

Genetic inheritance model, disease prevalence, effect size, and disease prevalence 

A genetic inheritance model (dominant, recessive, additive) describes the relationship 

between an individual's genotype and their phenotype or trait. The term model of inheritance 

refers to exactly how phenotypic values depend on the number of risk alleles. When only one 

copy of the disease allele is required to induce an effect on the disease phenotype, the mode of 

inheritance is called dominant. However, if two copies of the disease allele are required to 

elevate the disease risk, we speak of a recessive model of inheritance. Depending on the 

‘scale’ with an additive mode of inheritance, the penetrance probability of heterozygous 

genotype is mid-way between the penetrance probabilities of both homozygous genotypes. 

For example, a single gene with two alleles (A and a) is related with a disease, and the two 

alleles contribute to phenotypic variability. An individual can either be affected or unaffected 

based on the genotype that the individual carries. Let qA=frequency of the allele A increasing 

risk of disease, where qA+qa=1. The penetrance parameters are fAA=probability of being 

affected given AA genotype, fAa probability of being affected given Aa genotype, and 

faa=probability of being affected given aa genotype, and Kp=population prevalence of the 

disease. Kp is the overall disease risk in the general population as follows:  

  Kp= ,  

where S is an indicator of disease status (1=diseased; 0=not diseased). The disease risk of a 

genotype (AA, Aa, and aa) relative to the average population can be calculated as fAA/Kp,  

fAa/Kp, and faa/kp, respectively.  As the penetrance of the disease variant decreases, the power 

to detect the genetic association also attenuates.  

The term effect size can refer to a standardized measure of effect (such as r, Cohen's d, 

and odds ratio), or to an unstandardized measure (e.g., the raw difference between group 

http://en.wikipedia.org/wiki/Cohen%27s_d
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means and unstandardized regression coefficients). For instance, the relative risk (or odds 

ratio) parameters RAA and RAa quantify the effect size of a genetic variant, and they represent 

that individual with genotype AA or Aa are RAA or RAa times more likely to have the disease 

than individuals with the aa genotype (arbitrarily assuming that aa is the low-risk, reference 

genotype). Genotypic relative risks are likely to be in the range of 1.1–1.5 for a typical 

genotype39, 40.  

The relationship between the relative risk parameters RAA and RAa can be specified by the 

underlying genetic model of inheritance as follows: 

Table 2-1. The relationship between relative risk and genetic inheritance models 

Genetic Model of Inheritance 
Relative Risk (Genotype aa as the reference) 

RAA RAa 

Dominant  RR RR 

Recessive  RR 1 

Additive 2RR RR 

Multiplicative genetic model RR2 RR 

For example, relative risks of RAA = 4 and RAa = 1 indicate a recessive mode of inheritance 

for the A allele, because the Aa heterozygote contributes no more risk than the recessive aa 

homozygote. In contrast, relative risks of RAA = 16 and RAa = 4 imply a multiplicative model 

of inheritance, because the risk of the AA genotype is the square of the risk associated with the 

heterozygote. 

Population stratification by race 

Epidemiologic studies of genetic factors and disease are sensitive to population 

stratification into racial or ethnic groups. Numerous studies have reported that unrecognized 

population structure could induce bias, false-positive associations, and lack of replication in 

association studies41-46. Population stratification (i.e. confounding by ethnicity) can occur if 

both baseline disease risks and risk-conferring allele frequencies differ across the groups 

being studied (e.g., races or ethnicities). 

Genome-wide association or linkage methods are dependent on the linkage disequilibrium 

among genetic variants on a chromosome. Differences in the pattern of linkage disequilibrium 

by race have been reported3, which could affect the success of gene discovery efforts. 

Previous work45 also reported that ignoring ethnicity in molecular epidemiologic studies can 
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lead to some distortion of association estimates. Therefore, all studies should carefully 

consider the potential for confounding by ethnicity, ancestry, or race, and respond with an 

appropriate study design or analytic methods. As such, the statistical analyses in genetic 

association studies are often performed by race to correct for different population structures. 

The number of subjects required for one racial group could also be different from another 

group. Therefore, in genetic research design, sample size estimation should also be performed 

by race to optimize statistical power. 

SIMULATING SAMPLE SIZES AND TESTING FACTOR EFFECTS ON SAMPLE SIZE ESTIMATION 

An appropriate sample size for genetic association studies requires assumptions about 

potential impact factors. Some factors mentioned above may have greater influence on the 

determination of sample size than others. For instance, in a power analysis, a non-centrality 

parameter is estimated, which is the effect size multiplied by a sample size factor. Therefore, 

a large effect size can result in a large non-centrality coefficient lambda, which produces a 

high power to detect an association. Under the same power level, only a small sample size is 

required to detect a large effect size, while a large sample size is needed to detect a small 

effect size.  

In this study, a systematic evaluation of factor influence on sample size estimation was 

conducted. Instead of time-consuming data simulations, a closed-form expression of statistic 

formulae was applied to calculate sample sizes under a variety of different scenarios, and to 

test the effects under various parameter settings using SAS 9.4. Cary, NC: SAS Institute Inc., 

and QUANTO software. QUANTO is a computational program developed by WJ Gauderman 

et al. to calculate sample sizes in genetic association studies with dichotomous and 

quantitative outcomes under various assumptions24, 25, 47, 48.   Using the program, we 

calculated sample sizes under different parameters to investigate main and interaction effects 

of several factors on sample size estimation, and determined how adequate statistical power 

can be achieved in a genetic association study. 
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Study design and outcome variables  

Sample size estimation was performed based on genetic association studies, and single 

nucleotide polymorphisms (SNP) were the genetic markers for the studies. The case-control 

study was used to identify candidate genes that contribute to a specific disease. The outcome 

variable was disease status (case-control).  In the case-control study, a higher frequency of the 

SNP allele or genotype in cases (affected individuals with a disease) compared with controls 

(non-affected individuals with a disease), implies that the tested variant increases the risk of 

the specific disease. A cohort study was used by drawing an independent sample from 

unrelated individuals to test genetic effect on drug/treatment response. A significant 

difference in mean responses between variant and non-variant carriers suggests a genetic 

association with the outcomes.  

Statistical models 

Two statistical models were applied to estimate the sample size in accordance with two 

different phenotypes (disease state and quantitative trait). Logistic regression was used for 

genetic association with diseases. Linear regression was applied for genetic association with 

quantitative outcomes. In the logistic regression model, an odds ratio (OR) was calculated to 

measure the associations between genetic variants and a dichotomous outcome (e.g. disease 

status). In the linear regression model, βg was used to measure the difference in the predicted 

value of outcomes (e.g. drug dose) between genotypes of a genetic variant, holding other 

variables constant. Sample sizes were calculated by the likelihood ratio test statistic Λ for a 

single sampling unit based on the expected maximum log-likelihoods under the research 

hypothesis and the null hypothesis. For a given number N of sampling units, the quantity NΛ 

was the non-centrality parameter of the chi-squared distribution under the alternative 

hypothesis.  

Parameters for sample size estimation  

For each analysis, a variety of parameter settings was tested. We assumed 1) the power of 

the test is 80%; 2) a significance threshold α=0.05 for a single genetic variant; 3) R2  for pair-

wise Linkage Disequilibrium (LD) was 0.5 or 1; 4) case-control ratio was 1:1for disease 

outcomes; 5) minor allele frequencies were 1%, 5%, 20%, or 30%; 6) genetic inheritance was 
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additive, dominant, or recessive; and 7) genetic effect sizes varied according to trait. It is 

generally accepted that genetic effects on phenotypes are likely to be small, therefore, small to 

medium effect sizes were used. Effect sizes are defined by H. Chen49 as small - OR= 1.68,  

medium - OR=3.47, and  large - OR= 6.71. Cohen's f2 method define the effect sizes as small 

(f2=0.02), medium (f2= 0.15), and large (f2=0.35) for the difference of more than two means in 

ANOVA or multiple regression50.  The f2 effect size measure for multiple regression is 

defined as f2=R2/ (1-R2), where R2 is the squared multiple correlation. Therefore, translated 

the effect sizes of f2 =0.02 (small), 0.15 (medium), or 0.35(large) into R2, this gives 0.02, 0.13, 

or 0.26, respectively50. In a genetic association test, Rg2 is the marginal proportion of variance 

in Y (outcome) explained by genetic effect of the tested genetic markers. 

Since genetic effect size is generally small40, we set up the small effect sizes of  odds 

ratios at 1.2, 1.5, 2.0, and 2.5 to calculate sample sizes for disease outcome, and we applied 

Cohen’s f2 values 0.02, 0.15, and 0.35 to set up R2  at a range from small to medium of  0.01, 

0.05, 0.10, and 0.25  for sample size estimation with a quantitative outcome.  

Poisson regression analysis to examine factor effects on sample size estimation 

Poisson regression is used to model count variables, such as the number of subjects. To 

test the effects of minor allele frequency, genetic inheritance model, and genetic effect size  

on sample size estimation, we applied Poisson regression analysis at α=0.05, β=0.80 and 1% 

disease prevalence with the estimated sample size as outcome variable and the three factors as 

predict variables. Here, the genetic markers were assumed to be causal variants in the 

regression model and LD was not used in the analysis. For the quantitative outcome, the 

genetic effect size of βg was used for the expected outcome difference between genotypes. For 

the dichotomous outcome, the genetic effect size of OR was used to measure the genetic 

association with disease. 

The Poisson distribution is a discrete probability distribution that expresses the probability 

of a given number of events occurring in specified intervals such as time, distance, 

experiment, area or volume. Assume that the number of subjects in a study follows a 

Poisson probability distribution. Log-linear models were applied to investigate main and 

interaction effects of three factors on the number of required subjects. Given that 

N=sample size, qA=minor allele frequency, E=genetic effect, and M=genetic inheritance 

http://en.wikipedia.org/wiki/Discrete_probability_distribution
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mode with the additive genetic model as the reference group, the log-linear model to assess 

factor main effects only was: 

         

The full log-linear model to test interaction effects among the three predictors was: 

 

To assess the interrelationship of the three factors, the model fit was assessed, and tests 

were done to check the significance of the relationships. The criteria for assessing goodness of 

fit include Akaike Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion 

(BIC). 

Visualizing interaction effects by smoother surface plot 

To visualize the impact of the three parameters on sample size estimation, smoother 

surface plots were generated using a bivariate spline interpolation method51-53 with smoothing. 

The interpolation method trades closeness to the original data points for smoothness by 

generating the z values from x, y points since the original data does not contain enough 

combinations of x, y, and z values to generate a surface plot. The surface formed by the 

interpolated data passes precisely through the data points in the raw data set.  

RESULTS 

Sample sizes under different parameter combinations 

Two statistical models were applied to estimate the sample size in accordance with two 

different phenotypes (disease state and quantitative trait). Logistic regression was used for 

genetic association with diseases, and linear regression was used for genetic association with 

quantitative outcomes. For a dichotomous outcome, the genetic effect size of odds ratio was 

used for the measure of association between an exposure and an outcome. For a quantitative 

outcome, the genetic effect size of βg was used for the expected outcome difference between 

genotypes.  
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The subject numbers required for dichotomous and quantitative outcomes with genotype 

as an independent variable were estimated under different parameter combinations at α=0.05 

and β=0.80. For each parameter, the results were generated holding other factors constant; for 

instance, the minor allele frequencies were changed from 0.01 to 0.30, while the odds ratio, 

genetic model, linkage disequilibrium and disease prevalence were held constant.  

Table 2-2 lists the sample sizes required for a dichotomous outcome (disease state) with 

genotype as the independent variable under different parameter combinations at α=0.05, 

β=0.80, and 1% of disease prevalence.  

Table 2-2. The number of case-control pairs needed to detect genetic association with dichotomous 

outcomes under different parameter assumptions at α=0.05 and β=0.80 

 Mode of Genetic Inheritance and Strength of LDa 

ORb qA
c
 

Additive Dominant Recessive 

R2=1 R2=0.5 R2=1 R2=0.5 R2=1 R2=0.5 

1.2 0.01 21861 43722 22233 44466 >1,000,000 

 0.05 4593 9186 5002 10004 173299 346598 

 0.20 1405 2810 2007 4014 11337 22674 

 0.30 1091 2182 1901 3802 5367 10734 

1.5 0.01 3978 7956 4056 8112 783620 1567240 

 0.05 847 1694 933 1866 31457 62914 

 0.20 271 542 400 800 2080 4160 

 0.30 216 432 391 982 998 1996 

2.0 0.01 1192 2384 1219 2438 233342 466684 

 0.05 259 518 290 580 9378 18756 

 0.20 89 178 136 272 631 1262 

 0.30 74 148 139 278 310 620 

2.5 0.01 617 1234 632 1264 119982 239964 

 0.05 137 274 155 310 4827 9654 

 0.20 50 100 79 158 330 660 

 0.30 43 86 83 166 165 330 
a   Linkage Disequilibrium (LD) between a genetic marker and the locus/loci that affect the trait is  

measured by correlation determination R2. 
b   OR ( ) = Odds Ratio of disease is calculated by the ratio of allele carriers (exposed to 

genetic risk factor) to non-carriers (unexposed to genetic risk factor) in cases compared with controls. 

Small effect size OR= 1.68, medium effect size OR=3.47, and large effect size OR= 6.71 by Chen49. 
c   1% disease prevalence is assumed in disease status outcome.  

Among three genetic inheritance models, the largest sample sizes were required for a 

recessive trait while the smallest sample sizes were needed in the additive model. As expected, 

the higher LD between a genetic marker and the locus/loci that affect the trait (e.g. a specific 

disease) under study, the fewer subjects are needed to detect the genetic association with the 



24 

 

disease. Additionally, larger effect size and larger minor allele frequency both lead to smaller 

sample sizes.  

Table 2-3 lists the sample sizes required for quantitative outcomes (i.e. drug dose) with 

genotype as an independent variable under the different parameter combinations at α=0.05 

and β=0.80 from general linear regression modeling. Rg2 is the marginal proportion of 

variance in Y (outcome) explained by genetic effect of the tested genetic markers. For a 

quantitative outcome, the βg was used for the expected outcome difference between genotypes.  

Table 2-3. The number of individuals needed to detect genetic association with quantitative under 

different parameter assumptions when population mean=100, standard deviation=10, α=0.05 and 

β=0.80 

 Mode of Genetic Inheritance and Strength of LDa 

Rg
2b qA

c Additive Dominant Recessive 

R2=1 βg
d R2=1 βg R2=1 βg 

0.01 0.01 781 7.11 781 7.16 781 100.01 

 0.05 781 3.24 781 3.37 781 20.03 

 0.20 781 1.77 781 2.08 781 5.10 

 0.30 781 1.54 781 2.00 781 3.49 

0.05 0.01 153 15.89 153 16.01 153 223.62 

 0.05 153 7.25 153 7.54 153 44.78 

 0.20 153 3.95 153 4.66 153 11.41 

 0.30 153 3.45 153 4.47 153 7.81 

0.10 0.01 74 22.47 74 22.64 74 316.24 

 0.05 74 10.26 74 10.66 74 63.32 

 0.20 74 5.59 74 6.59 74 16.14 

 0.30 74 4.88 74 6.33 74 11.05 

0.25 0.01 27 35.53 27 35.80 27 500.03 

 0.05 27 16.22 27 16.86 27 100.13 

 0.20 27 8.84 27 10.42 27 25.52 

 0.30 27 7.72 27 10.00 27 17.47 
a  Linkage Disequilibrium (LD) between a genetic marker and the locus/loci that affect the trait is 

measured by correlation determination R2. 
b   Rg

2
 is the marginal proportion of variance in Y (outcome) explained by genetic effect. It is also a 

measure of marginal genetic effect. A small effect size Rg
2= 0.02, a medium effect size Rg

2=0.13, and 

a large effect size Rg
2 = 0.26 Based on  Cohen’ f2 index50. 

c   qA=minor allele frequency. 
d  βg=Genetic effect (Difference in expected outcome between genotypes). Measured by the change in 

mean Y (outcome) per unit increase in genotype (e.g. dominant genetic model: G=1 for genotypes AA, 

and Aa; G=0 for genotype aa. 

To detect the genetic association in the same number of subjects, the largest genetic effect 

was needed for a recessive trait while the smallest genetic effect was required in the additive 

genetic model. For example, If there are 781 subjects in a study, we expect to detect a genetic 
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variant associated with a quantitative outcome if the genetic marker’s  minor allele frequency 

is at least 1%  and the mean difference between genotypes (main effects) is  at least 7.11 

(additive), 7.16 (dominant), or 100.01 (recessive).  Thus, a variant with recessive inheritance 

model has the lowest power to detect statistical significance. A negative association was also 

observed between minor allele frequencies and genetic effects on sample size estimation. For 

example, among 781 subjects, we expect to detect an additive variant associated with a 

quantitative outcome if the genetic marker has a small minor allele frequency 0.01 and large 

main effect size 7.11, or a large minor allele frequency 0.30 and a small main effect size 1.54. 

As we expected, higher marginal genetic effects Rg
2 require smaller sample sizes, such as 

when Rg
2 was 0.01, 0.05, 0.10, and 0.25, the required sample sizes were 781, 153, 74, and 27, 

respectively, when other parameters were held constant.  From the results in Tables 2-1 and 2-

2, the sample size estimation in genetic association study is significantly impacted by genetic 

effect size, minor allele frequency, and genetic inheritance model. Other factors such as LD 

between causal locus and genetic marker and disease prevalence also play an important role in 

the sample size estimation. 

Poisson regression analysis to examine factor effects on sample size estimation 

To test the effects of the three factors on sample size estimation, these parameters were 

used in a Poisson regression analysis at α=0.05, β=0.80 and 1% disease prevalence in disease 

status outcome. The estimated regression models for main effects were: 

 Estimated sample size (N) for dichotomous outcome 

           

 Estimated sample size(N) for quantitative outcome 

              

The regression coefficients, standard deviation of the coefficients, and p values from two 

regression models for both dichotomous and quantitative outcomes were summarized in 

(Table 2-4), minor allele frequency and genetic effect size had significant inverse effects on 

sample size estimation (P<0.001). That is, the required sample size decreases as the allele 

frequency and genetic effect size increase. Holding other factors constant, the additive genetic 
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inheritance model required significantly smaller sample sizes compared with the dominant 

and recessive genetic models (P<0.001).  

Table 2-4.  The tests of main effects for three parameters in Poisson regression analyses 

Parametera Dichotomous Outcome Quantitative  Outcome 

Maximum Likelihood Parameter 

Estimates 

Maximum Likelihood Parameter 

Estimates 

Estimate Standard Error P value Estimate Standard Error P value 

β0 14.32 0.002 <0.001 5.27 0.006 <0.001 

qA -25.88 0.006 <0.001 -2.22 0.028 <0.001 

M 

   Recessive 

   Dominant    

 

3.50 

0.16 

 

0.001 

0.002 

 

<0.001 

<0.001 

 

0.51 

0.02 

 

0.006 

0.005 

 

<0.001 

<0.001 

E -3.19 0.001 <0.001 -0.02 0.000 <0.001 

Assessing goodness of fit 

   AIC 11984452.06 281428.64 

   BIC 11984478.05 281457.24 
a  qA=minor allele frequency; M=genetic inheritance mode, and additive genetic model as the reference 

group; and E=genetic effect size. 

We have reported the main effects of the three parameters on the sample size estimation. 

The following included the results of testing interaction effects among the three parameters on 

sample size estimation. 

The estimated full regression models including interaction terms were: 

 Estimated sample size (N) for dichotomous outcome 

 

 Estimated sample size(N) for quantitative outcome 

 

Table 2-5 shows the results from the full models of the Poisson regression analysis. The 

full models fit the data better than the main effects only models based on AIC and BIC model 

selection criteria. The main, two-way, and three-way interaction effects among minor allele 

frequency, the type of genetic inheritance model, and genetic effect size were significantly 

associated with the estimated sample sizes in both dichotomous and quantitative outcomes 
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(P<0.0001). However, the genetic effects were not significant different between dominant and 

additive genetic inheritance models (p=0.59), while additive genetic model is reference model. 

In the three-way interactions in dichotomous outcome, the required sample size in the 

recessive inheritance model significantly decreased more (P<0.001) when the minor allele 

frequency and effect size increased, compared with that in the additive genetic model. 

Table 2-5. The tests of main and interaction effects for three parameters in Poisson regression analyses  

Parameter Dichotomous Outcome Quantitative  Outcome 

P valueb 

by LR 

statistics 

for Type 

3 analysis 

Maximum Likelihood 

Parameter Estimates 

P valueb  

by LR 

statistics 

for Type 

 3 analysis 

Maximum Likelihood 

Parameter Estimates 

Estimate Standard 

Error 

P value Estimate Standard 

Error 

P value 

β0  16.64 0.01 <0.001  6.71 0.01 <0.001 

qA <0.001 -14.81 0.13 <0.001 <0.001 3.38 0.07 <0.001 

M                 

  Recessive    

  Dominant       

<0.001  

-1.07 

-0.07 

 

0.01 

0.02 

 

<0.001 

<0.001 

<0.001  

0.54 

-0.13 

 

0.02 

0.02 

 

<0.001 

<0.001 

E <0.001 -5.69 0.01 <0.001 <0.001 -0.11 0.001 <0.001 

qA×E <0.001 2.98 0.10 <0.001 <0.001 -2.11 0.01 <0.001 

qA× Ma <0.001    <0.001    

  qA× 

  Recessive 

58.39 0.13 <0.001 -3.05 0.09 <0.001 

  qA× 

  Dominant 

1.43 0.16 <0.001 0.60 0.11 0.002 

E× Ma <0.001    <0.001    

  E× 

  Recessive 

4.31 0.01 <0.001 0.11 0.001 <0.001 

     E× 

  Dominant 

-0.01 0.02 0.59 -0.01 0.002 <0.001 

qA× E× Ma <0.001    <0.001    

  Recessive -59.96 0.11 <0.001 1.22 0.01 <0.001 

  Dominant    0.97 0.13 <0.001 0.48 0.02 <0.001 

Assessing goodness of fit 

  AIC 6748165.45    34880.50 

  BIC 6748227.95    34949.13 
a  qA=minor allele frequency; M=genetic inheritance model, and additive genetic model as the reference 

group; and E=genetic effect size (In quantitative outcome, βG was used for the expected outcome 

difference between genotypes. In dichotomous outcome, OR was used for odds ratio as a measure of 

association between an exposure and an outcome). 
b   P  value by likelihood ratio statistics for type 3 overall test of significance. 
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Interaction effects illustrated by smoother surface plots 

The surface plots revealed the interaction effects of the three genetic inheritance 

models in dichotomous and quantitative outcome variables. The axes are scaled to 

include all positive values representing the sample size. Each axis is labeled with the 

corresponding variable. The tick marks on the axes are divided into five even intervals in 

X (minor allele frequency from 0.01 to 0.30) and Y (genetic effect size from 1.5 to 25 for 

the expected mean difference between genotypes) axes, and eight even intervals in Z 

(sample size) axis. The reference lines at the major tick marks on all axes were drawn.  

Surface plots graphically represent the relationship between independent and 

dichotomous dependent variables, as well as the interaction between minor allele 

frequency and genetic effect size of odds ratios on the estimated sample sizes in the three 

genetic inheritance models (data not shown). The plots revealed that when minor allele 

frequency approaches 0.01 and odds ratio approaches 1, the recessive genetic inheritance 

model required much larger sample size compared with dominant and additive genetic 

models. Furthermore, when minor allele frequency and odds ratio increase, the required 

sample size in the recessive genetic inheritance model decreased faster compared with 

other two models. The results were consistent with the results in Table 2-5 from Poisson 

regression analyses.    

In Figure 2-1, three surface plots graphically represent the relationship between the 

independent and quantitative dependent variables, and illustrate the interaction between 

minor allele frequency and genetic effect size of the expected mean differences between 

genotypes on the estimated sample sizes in the three genetic inheritance models. Figure 

2-1 A reveals that the surface plane declines along with the increase in minor allele 

frequency. However, Figure 2-1 B and 2-1 C shows that the surface plane declines along 

with the increase in effect size. The results indicate that minor allele frequency plays an 

important role in estimation of sample size in the recessive genetic model, while genetic 

effect size has a more significant influence on the desired sample size in dominant and 

additive genetic models. 
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                                                           Figure 2-1 A 

 
                                                  Figure 2-1 B 

 
                                                              Figure 2-1 C 

Figure 2-1.  Surface plot showing effect of minor allele frequency and genetic 

effect size on sample size for a quantitative outcome under a A) recessive, B) 

dominant or C) additive genetic model  
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DISCUSSION AND CONCLUSIONS 

Genetic association studies assess the association between genetic polymorphisms and 

phenotypes, such as disease states and drug responses. Low power and type I error inflation 

are major problems in these studies. Adequate sample size is crucial to assure study validity, 

accuracy, reliability, and integrity. An insufficient sample size lacks precision, leading to a 

false negative conclusion (type II error), whereas an over-powered study wastes time and 

resources.  

Study design and choice of outcomes for genetic association studies follows the same 

concepts and principles as any epidemiological study. A case-control study is a typical 

observational study. For dichotomous outcomes, we applied the case-control design to 

compare the frequency of SNP alleles in two well-designed groups of individuals: cases, who 

have been diagnosed with the disease under study, and controls, who are either known to be 

unaffected, or who have been randomly selected from the population. The power in genetic 

association studies is a function of three things: the strength of association or outcome  

difference between the case and control subjects, the allele frequency, and the sample size54. 

Although there is a concern about linkage disequilibrium between genetic markers and the 

true causal allele, it may be true that the allele itself is functional and directly affects the 

expression of the phenotype or the genetic marker may have complete linkage disequilibrium 

with the true causal allele. Therefore, among the five parameters, we mainly focused on 

testing minor allele frequency, genetic effect size and the genetic inheritance model by 

holding other parameters constant.  

Sample size estimation is influenced by multiple factors. We report the minimum sample 

sizes required under different parameter combinations in Tables 2-2 and 2-3. The Tables 

present reference information for required sample sizes for readers to make practical 

assumptions for their studies. A reasonable sample size should depend on research objective, 

study design, and technique/financial limitations.  

Minor allele frequency has a significant impact on the desired sample size. From Table 2-

2, we see that the required sample size is very large (more than one million) if we want to 

detect a small genetic effect size (OR=1.2) for a variant with a minor allele frequency 0.01 

under a recessive genetic effect model. To reach a statistical power of 80% when minor allele 
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frequency is lower than 20%, the required sample sizes were at least two times more than the 

sample sizes for minor allele frequencies greater than 20%. This relationship between minor 

allele frequency and statistical power was also reported by Scott54, who indicated that when 

allele frequencies are less than 20%, the power falls off dramatically in a case-control genetic 

association study. 

Using our previously published study to illustrate how statistical power was impacted by 

the factors of minor allele frequency, genetic inheritance model, and the strength of LD 

between the genetic markers and causal variant. The case study used a case–control design to 

determine associations between asthma and four common SNPs of the NPPA gene in white 

participants55. Atrial natriuretic peptide (ANP) plays an important role in the lung and in 

augmenting allergic inflammation in asthma. The gene encoding ANP, NPPA, is located on 

chromosome 1p36, a region that has been linked to asthma. There were two cohorts in the 

study. A screening cohort was used to find significant genetic variants with asthma, and a 

replicate cohort was used to confirm the findings from the screening cohort. The screening 

cohort consisted of 336 asthmatic and 154 non-asthmatic controls. The replicate cohort 

consisted of 172 asthmatic cases and 115 healthy controls. The frequency of minor allele C 

for SNP rs5067 was 0.10. A dominant genetic model was assumed with the risk range of 

asthma in C carriers having odds ratios from 0.20 to 0.50.   

In the post hoc power analysis, the power to detect associations between the C allele and 

asthma could be 75% at odds ratio 0.50 in the screening cohort, and 98% at odds ratio 0.24 in 

the replicate cohort. To confirm the post hoc power prediction, we compared the calculated 

power with the study results.  The results showed that the C allele of SNP rs5067 was 

associated with asthma in the screening and replicate cohorts: ORs (95% confidence intervals) 

were 0.50 (0.29–0.84; P = 0.009) and 0.24 (0.11–0.53; P=0.0001) adjusted by age, gender and 

body mass index, respectively. These results confirmed our prediction for statistical power at 

75% for an odds ratio 0.5 in screening cohort, and at 98% of the power for an odds ratio 0.24 

in the replicate cohort.  The significant association results of ORs (95% confidence intervals) 

0.50 (0.29–0.84; P = 0.009) and 0.24 (0.11–0.53; P=0.0001) provided the evidence of that the 

genetic marker SNP rs5067 was statistically significantly associated with asthma. 
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To test whether our prediction is reliable and valid in the dichotomous outcome study, we 

also compared our results with others. E. P. Hong et al28 computed the effective sample size 

and statistical power based on case-control study design using Genetic Power Calculator 

developed by Purrcell et al.56, while we applied QUANTO program24, 25, 47, 48. They reported 

that 248 cases were needed to test a SNP marker under the assumption of an odds ratio of 2, 

5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium, 1:1 

case/control, and a 5% error rate in an allelic test. They also found that a smaller sample size 

was required under a dominant model than other genetic models, and a much lower sample 

size was required under a dominant model with a strong effect size, common SNP, and 

increased LD. Our study results confirmed their findings, and additionally we applied Poisson 

regression models to test the main and interaction effects on sample sizes among the three 

factors of genetic inheritance model, minor allele frequency, and genetic effect size (OR). The 

results from the Poisson regression analyses help us to better understand how these factors 

influence each other in sample size estimation.     

We have discussed how the factors affect the sample size estimation in a dichotomous 

outcome study. Here we are discussing the parameter influence on sample size estimation in a 

quantitative outcome study. From Table 2-3, we could find that the allele frequency (qA) has a 

significant impact on sample size estimation. At Rg
2 =0.25, when the qA changes from 0.01 to 

0.30, the genetic effect sizes must be at least as a range of 35.53 to 7.72, respectively, to be 

able to detect the effects of an additive genetic inheritance variant in 27 subjects. In other 

words, among the same number of subjects, a lower allele frequency qA requires a larger 

genetic effect size. The genetic association study with quantitative outcome has the lowest 

power to detect the effects of a variant under a recessive genetic model. For instance, if we 

have 27 subjects, it is unlikely we will find a genetic association in a variant with minor allele 

frequency 1% under a recessive genetic model because it is unlikely the outcome difference 

can reach 500 units between genotypes.  

To verify our research findings in the quantitative outcome study, we used our previously 

published study to perform a post hoc power prediction. The study was to determine the 

quantitative influence of vitamin K epoxide reductase complex subunit 1 (VKORC1) 

polymorphism G3673A on warfarin dose requirements in 205 Turkish patients57 . Warfarin is 
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the most widely prescribed anticoagulant for the prophylaxis and treatment of venous and 

arterial thromboembolic disorders. Warfarin has a narrow therapeutic range and shows large 

inter-individual variation in dose requirements. The genetic variability is in part responsible 

for large differences in required warfarin dose. Based on an additive genetic model, the 

genotype of VKORC1 3673 was coded as AA as 2, GA as 1 and GG as 0. The frequencies of 

the minor allele (A) in Turkish, Asian, African-American, and Caucasian populations were 

0.50, 0.12, 0.12, and 0.43, respectively57. The estimated mean Warfarin dose and standard 

deviation in the Turkish population were 34.2±16.8, and the estimated partial R2=0.17 for the 

SNP effect, which is a medium-to-large effect size by Cohen’s f2 (R2/ (1- R2)) was 0.20. 

Based on these parameters of sample size 205, additive genetic model, and a medium-to-large 

genetic effect size, the power to detect the association between VKORC1 G3673A and 

warfarin dose requirements was 99.99%. To confirm the post hoc power prediction, we 

compared the calculated power with the published results from the study. The results showed 

that the VKORC1 G3673A promoter polymorphism was associated with variation of weekly 

mean warfarin dose: for GG genotype the dose was 43.18 mg/week, for GA genotype 33.78 

mg/week and for AA genotype 25.83 mg/week (P<0.0001). Patients who carried VKORC1 

variants needed a 40% lower mean weekly warfarin dose compared to wild type (P<0.0001). 

The results confirmed our prediction of 99.99% statistical power to discover the genetic 

association with warfarin dose requirements. The results indicated that effect size plays an 

important role in sample size estimation. A large genetic effect size predicts that not only a 

small sample size is required but also the genetic markers are possible causal variants or they 

are in a high LD with causal variants. 

The main contribution of the study was to understand the main and interaction effects on 

sample size estimation, and the study results could be applied in other genetic association 

studies for genetic marker selection, sample size estimation, and statistical power prediction. 

Our regression models provided deep insight into how the three factors interact with each 

other in sample size estimation for both quantitative and dichotomous outcome studies. We 

tested the main and interaction effects on sample size estimation among the three parameters, 

including effect size, allele frequency, and genetic inheritance model by Poisson regression 

analysis (Table 2-4 and 2-5). The negative coefficients in minor allele frequency and genetic 

effect size variables indicated that the lower allele frequency and smaller genetic effect size 
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were related with larger sample size, and the positive coefficients for recessive and dominant 

model variables indicated that the two genetic models were associated with larger sample 

sizes compared with additive genetic effect models. The results confirmed the findings in 

Tables 2-2 and 2-3.  In the Poisson regression models for testing main and interaction effects 

with dichotomous and quantitative outcomes (Table 2-5), all the two-way and three-way 

interaction effects were statistically significant with the sample sizes among the three 

parameters. Therefore, when we select the genetic markers in a genetic association study, we 

should consider the significant interaction effects among the three factors. Such as, we need to 

set up the different minimum accepted minor allele frequencies for different genetic 

inheritance models to reach a specific statistical power.  

To visualize the evidence of interaction effects among the three factors, surface plots were 

presented to show the three factors influence on sample sizes. Under the recessive model, a 

higher peak in Figure 2-1A was observed at the back corner than that in Figure 2-1B and 2-

1C, which implies that the highest sample size required when the minor allele frequency 

approaches 0.01 and OR tends to 1. The Figure 2-1A shows that as allele frequency 

increases, the required sample size significantly decreases. From Figure 2-1B and 2-1C, 

we also observe that as effect size increases, the required sample size significantly 

decreases. These plots provide visual evidence that a recessive genetic model has the 

lowest power in genetic association studies, and therefore, the largest sample size is 

required; genetic effect size is an important factor on sample size under dominant and 

additive genetic model; and minor allele frequency significantly impacts sample size 

under the recessive genetic model.     

In summary, the study provided evidence that required sample sizes in genetic association 

studies were significantly associated with genetic inheritance model, effect size, and allele 

frequency at a specific type I error rate and power level. Among the three genetic models the 

recessive model required the largest sample size to detect the effect of a variant. Since a very 

large sample size needed to discover the causal variants if the minor allele frequency and 

genetic effect size are small, we have to select genetic markers with allele frequencies at least 

1% and genetic effect size at least 2. The interaction effects among the three factors were 

statistically significant, which implies that the three factors affect the required sample sizes, 
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and the effect of one factor on the sample size estimation is different at the different values of 

the other two factors. Minor allele frequency is the most important factor under the recessive 

genetic model, and the genetic effect size has the most influence under dominant and additive 

genetic models on the sample size estimation.  

We tested parameter influence on the sample size estimation under various assumptions. 

Our simulation results could be applied in real genetic association studies to help researchers 

in genetic marker selection, sample size estimation, and statistical power prediction.    
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CHAPTER 3: TWO-STAGE ADJUSTED BONFERRONI PROCEDURE FOR TYPE I 

ERROR CORRECTION IN MULTI-LOCUS GENETIC ASSOCIATION STUDIES 

ABSTRACT 

Background: Genetic association studies assess the association between phenotypes of 

interest and multiple genetic polymorphisms or markers. Because there are multiple genetic 

markers, these association tests involve multiple statistical comparisons, leading to type I 

error inflation. The Bonferroni correction directly targets the type I error problem but it may 

yield too conservative conclusions due to correlation among genetic markers. The correlation 

among these markers violates the independence assumption of the Bonferroni procedure, 

resulting in type II error inflation.  

Objectives and Methods: We proposed a two-stage adjusted Bonferroni correction 

procedure, which corrects for the multiple-comparison problem with type I error inflation. We 

first simulated p-values that indicate the significance of association between single nucleotide 

polymorphisms (SNPs) and a disease state. The simulation was based on the linkage 

disequilibrium (LD) structure of 267 SNPs taken from HapMap12 and reflected small, medium 

and large associations. The second step was to derive the effective number of independent 

tests based on LD structure among the 267 SNPs. Three algorithms were used to separately 

estimate the effective number of independent tests, resulting in numbers of Haplotype blocks 

and singleton SNPs. The point-wise error rates were calculated using the family-wise error 

rate divided by the number of blocks and singleton SNPs.  The point-wise rates provided the 

threshold values to determine whether or not SNPs were significantly associated with the 

disease.  Finally, we compared the p values with the point-wise error rates across blocks and 

singletons. If some SNPs in an LD block had smaller p values compared with the point-wise 

error rate, then the Holm–Bonferroni method and dependent false discovery rate to highly-

correlated test statistics (FDR) were applied within each significant LD block.  If a p value is 

equal to or smaller than the threshold value, it suggests the SNP is statistically significantly 

associated with the disease.  

Results: Among three haplotype blocking methods, the Gabriel algorithm generated the 

largest number of independent tests, resulting in the smallest number of significant SNPs. The 
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numbers of significant SNPs were 4-9 by the standard Bonferroni correction and Holm-

Bonferroni method, 9 from the empirical experiment-wise critical value method, and 2-267 by 

FDR adjustment across three levels of p values at the family-wise error rate 0.05. Compared 

with the five correction methods, the two-stage adjusted Bonferroni correction generated 

numbers of significant SNPs falling between the conservative standard Bonferroni correction 

and the liberal dependent FDR.  

Conclusion and Implication: Our two-stage adjusted Bonferroni type I error correction 

procedure applied the statistics technique for understanding biological/genetic data, provided 

a new, simple, easy way to control for type I error to increase the specificity in hypothesis 

testing accounting for LD variation for both within- and across-blocks, improved the 

statistical power by increasing the testing sensitivity, and introduced a better way than the 

traditional Bonferroni correction to control for type I error in genetic association studies. 

Keywords: Genetic association study; Type I error; Linkage disequilibrium; Bonferroni type I 

error correction; Haplotype block; Point-wise error rate; Family-wise error rate, False 

discovery rate. 

INTRODUCTION 

Genetic makeup plays an important role in the development of human diseases such as 

asthma, hypertension, and diabetes. Interacting with lifestyle and environmental factors, 

single gene or polygenic disorders cause at least six thousand human diseases13. A genetic 

association study identifies the underlying genetic basis of a particular disease trait by finding 

genetic polymorphisms or variants associated with the trait. There are many types of genetic 

polymorphisms, but this study focused on single-nucleotide polymorphisms (SNP). A SNP is 

defined as a genetic variant that occurs in coding, non-coding, or untranslated regions of the 

genome in at least 1% of the population. These variants in human DNA sequences can affect 

how humans develop diseases and respond to pathogens, drugs and other agents.  

In genetic research, the case-control design has been used widely to evaluate genetic 

susceptibilities to complex human diseases and markers, i.e. SNPs, to localize disease gene 

variants. A case-control genetic association study determines whether the presence of a 

genetic variant increases the risk of a disease in a large population of unrelated individuals. In 
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the study, there are two well-designed groups: the case group includes individuals with the 

disease under study, and the control group includes individuals without the targeted disease. 

Causal genetic variants are sought based on the assumption that an individual carrying one or 

two copies of a disease risk variant is more likely to develop the disease, and therefore an 

increased frequency of a variant or genotype in cases compared with controls implies that the 

variant may be associated with the disease.  

The development of high-throughput genotyping technology has led to the simultaneous 

analysis of millions of single nucleotide polymorphism markers. Therefore, modern genetic 

association studies involve multiple SNPs and/or genes, to test a large number of hypotheses 

for direct or indirect association with disease phenotypes. When multiple hypothesis tests are 

performed in a study, there is a risk of inflation of the type I error rate. In statistical 

hypothesis testing, a type I error is the incorrect rejection of a true null hypothesis (a "false 

positive")58. The Bonferroni correction is commonly used to control for the Family Wise Error 

Rate (FWER), which is the probability of making one or more false discoveries, or type I 

errors, among all the hypotheses when performing multiple hypotheses test. The correction 

method reduces the chances of obtaining false-positive results when multiple pair-wise tests 

are performed on a single set of data. The procedure is simple, but conservative and lacks 

power if several highly correlated tests are undertaken. 

In multi-locus genetic association studies, closely spaced genetic markers often yield high 

correlations because of extensive linkage disequilibrium (LD) among them. Therefore, tests 

performed on each genetic marker are usually not independent of each other. This violation of 

the independence assumption makes the Bonferroni procedure less effective, and the point-

wise error rate for each test should be adjusted to achieve the experiment error rate at a 

nominal level. However, if the number of independent tests can be inferred correctly, the 

standard Bonferroni correction can still be applied to rapidly adjust for multiple testing. Based 

on this idea, previous studies have reported using the number of independent tests by 

haplotype blocks and principle component method59-61. Since the strength of LD varies from 

moderate to high in the haplotype blocks, the same point-wise error rate applied to all SNPs 

within a haplotype block could still inflate the experiment-wise type I error. For instance, 

when a point-wise error rate α1 is applied to a haplotype block with n SNPs, the real error rate 

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Null_hypothesis
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for the block may be over α1 due to recombination that might have occurred among these 

SNPs, and therefore these SNPs are not in complete linkage disequilibrium.  

Considering these issues, we developed a two-stage adjusted Bonferroni correction 

procedure. The correction is to 1) derive the effective number of independent tests based on 

LD structure among multiple loci; 2) use standard Bonferroni to calculate the point-wise error 

rate for each derived independent test; and 3) apply the Holm–Bonferroni method and 

dependent FDR to highly-correlated test statistics within each significant LD block, which is 

defined as a block in which any p values for SNPs are smaller than the point-wise error rate. 

We validated this new procedure using standard Bonferroni, Bonferroni adjusted by number 

of independent tests, empirical experiment-wise critical value method, Holm–Bonferroni 

method, dependent FDR62, and finally a real clinical data study. 

CURRENT METHODOLOGY FOR TYPE I ERROR CORRECTION 

Standard and modified Bonferroni correction methods 

The Bonferroni correction is applied when multiple independent or dependent hypotheses 

are tested63. In our previously published study, we applied the Bonferroni correction to 

establish a P value cutoff of 10-7 for a significant association for type I error of 0.05 assuming 

550,000 tests for a GWAS with warfarin maintenance dose64. Although the Bonferroni 

correction can be applied to independent and dependent hypotheses, RC Johnson65 indicated 

that one of the key assumptions of a Bonferroni adjustment is that all comparisons are 

independent, and for non-independent tests, Bonferroni adjustment may lead to over-

correction. In a genetic association study, neighboring SNPs on a chromosome tend to be 

inherited together in blocks and are non-independent66, making a strict Bonferroni adjustment 

overly conservative. However, modified Bonferroni correction methods were developed to 

adjust the type I error when dependent hypotheses are tested. The following includes a brief 

introduction to standard and modified Bonferroni correction methods that were applied in our 

study. 

In hypothesis testing, a test statistic T from the observed data is calculated to decide 

whether the null hypothesis (H0) should be rejected. The p value is defined as the probability 
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of obtaining a test statistic at least as extreme as the T value under the condition that H0 is 

true: p=P (T≥t│H0). If the p-value is smaller than a threshold α (traditionally set at 0.05), then 

the null hypothesis is incorrectly rejected. If m multiple hypotheses are tested at α level = 0.05 

for each test in a study, it is expected that 5% of the n tests will be declared statistically 

significant, when H0 is in fact true for all of these tests. The standard Bonferroni correction67 

simply sets the point-wise significance cut-off at α/m as in the following inequality, 

           

to control m independent tests with corresponding p values Pi under the family-wise error rate 

α. Therefore, standard Bonferroni correction simply sets the point-wise significance cut-off at 

α/m SNPs. The step-down Bonferroni method is more powerful (smaller adjusted p-values) 

while in most cases maintaining strong control of the family-wise error rate. The step-down 

method was pioneered by Holm68 (1979) . Bonferroni-Holm correction for multiple 

comparisons is a sequential rejection version of the simple Bonferroni correction for multiple 

comparisons and strongly controls the family-wise error rate at level alpha. The Holm 

Bonferroni method controls the family wise error rate without assuming independence.  

The Bonferroni step-down (Holm) p-values are obtained from 

           

As always, if any adjusted p value exceeds 1, it is set to 1.  

Type 1 error correction by permutation procedure  

The robust but computationally intensive permutation test69 is widely used in genetic 

association studies as an alternative to the Bonferroni correction for multiple-testing 

correction among  dependent tests. To find the permutation-based empirical experiment-wise 

critical value for the overall 0.01 or 0.05 type I error rate, a permutation is performed by 

random reassignment of case-control status to the data. A p value is calculated for each of m 

multiple tests (e.g. the number of m tested genetic markers) on the reassigned data set, and the 

smallest p-value in the m multiple tests is recorded. The procedure is then repeated for a large 

number of x times, such as 1000 times. Therefore, there are in total x smallest p-values, which 
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are used to construct an empirical null frequency distribution of the smallest p-values under 

the null hypothesis of no true associations in the study. The smallest p values are arranged in 

ascending order and the first and fifth percentiles are the permutation-based empirical 

experiment-wise critical values for the overall 0.01 and 0.05 type I error rates, respectively. 

The p value calculated from the real data (such as a p value resulting from an association test 

between a genetic variant and a disease) can be compared with the permutation-based 

empirical experiment-wise critical value. If the p value is smaller than the critical value, the 

null hypothesis is rejected, and statistical significance is declared. 

False Discovery Rate  

The false discovery rate (FDR) was proposed by Benjamini and Hochberg62 for multiple-

testing inference in behavior genetics research. FDR has since been applied to adjust for 

statistical assessment of microarray studies70 and for genetic association in autism66. The 

method controls the expected number of false discoveries in n tests by setting α at an 

appropriate level (i.e. 0.05) and making no assumptions about the relationship between the 

number of tests and the prior probability that H0 is true. These adjustments do not necessarily 

control the family-wise error rate. However, FDR-controlling methods are more powerful and 

more liberal, and hence reject more null hypotheses, than adjustments protecting the family-

wise error rate.  

Suppose we test null hypotheses  , and obtain the p values  . 

Denote that ordered p values as , and order the tests appropriately: 

. Suppose we know  of the null hypotheses are true and  are 

false. Let R indicate the number of null hypotheses rejected by the test, where V of these are 

incorrectly rejected (that is, V tests are type I errors) and R-V are correctly rejected (so 

 tests are Type II errors). The FDR is defined as  
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A dependent false discovery rate control method can be applied to control the false 

discover rate for p-values under any kind of dependence71-73. Let . The dependent 

FDR can always control the false discovery rate at level  

,   where  is the significance level. 

The adjusted p-values are computed as  

           

This formula is introduced in the SAS MULTTEST procedure. 

MODELING AND PARAMETER TESTING 

Data sets 

SNP genotype data was downloaded from the international HapMap project12 (HapMap 

Data Rel 28 PhaseII+III, August 2010, on NCBI B36 assembly, dbSNP b126). The genotype data 

was extracted from 200 kbp at chr10:67587369..67787368 in 174 Utah residents with 

Northern and Western European ancestry from the CEPH collection in 27 trios from 20 

families. DNA regions including at least 10 haplotype blocks were selected. Since there is 

racial variation in genetic effects, only data for white individuals was extracted from the 

database. Individuals with >50% missing genotypes were excluded from the study cohort. The 

267 SNPs in this sample with a minor allele frequency >0.1 were used. Among the 267 SNPs, 

mean pair-wise linkage disequilibrium, r2, and standard deviation were 0.36 ± 0.36. 

P-value simulation and empirical distributions 

We performed p-value simulations for two purposes:  1) to determine empirical 

experiment-wise critical values, and 2) to simulate p values for the 267 SNPs. The p value, or 

calculated probability, is the probability of finding the observed, or more extreme, results 

when the null hypothesis (H0) of a study question is true. The null hypothesis is usually that 
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there is "no association" e.g. no association between a tested genetic variant and a disease. 

These p values are used to determine statistical significance in a hypothesis test with 

significance level, alpha, which is a pre-chosen probability from the study design.  If the p 

value is less than the chosen significance level, then the null hypothesis is rejected. A small p-

value (typically ≤ 0.05) indicates strong evidence against the null hypothesis i.e. the evidence 

supports an association between the tested genetic variant and the disease.   

In a genetic association study, since there is linkage disequilibrium among some of the 

tested SNPs in a region of the genome, the p values from the association tests among these 

SNPs will be correlated with each other. Therefore, we simulated the p values for the null 

distribution based on the LD structure among these genetic markers. 

We simulated 267 uniform random numbers 1000 times and then transformed these 

independent random numbers into p values based on the LD structure among the 267 SNPs. 

The details of the procedure are shown in Figure 3-1.  
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Figure 3-1. Procedure for p value simulation 

SNP genotype data from the HapMap12 project were used to calculate pair-wise r2 values 

of LD among 267 SNPs using the program Haploview74 (A1 and A2 in Figure 3-1). These 

r2 values were ordered based upon the positions of the SNPs on the chromosome (A3 in 

Figure 3-1). Meanwhile, 1000 repeats of 267 independent random numbers (0-1) from a 

uniform distribution were generated (B1 in Figure 3-1) and the 1000 x 267 matrix of these 

random numbers was multiplied by 0.1, 0.05,  or 0.01 (B2 in Figure 3-1), to produce three 

matrices corresponding to large, medium and small levels of p values, respectively. The level 

of p values indicates how strong the evidence against the null hypothesis. A small p value 

(typically ≤ 0.05) indicates strong evidence against the null hypothesis (i.e. no association 

between a genetic marker and a disease), therefore, reject the null hypothesis to declare that 
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the tested genetic marker is significantly associated with the disease. Finally, the numbers in 

the three matrices were transformed into correlated p values using the formulas shown in C1 

and C2 in Figure 3-1. 

To determine the empirical experiment-wise critical values, the smallest p value among 

the 267 SNPs was recorded for each of the three levels of correlated p values. There were 

1000 smallest p values from 1000 repeated simulations for each level of p values. This is 

equivalent to the 1000 smallest p values derived by the permutation test that are used to 

construct an empirical null frequency distribution of the smallest p values under the null 

hypothesis of no true associations in the study. The smallest p-values are arranged in 

ascending order and the first and fifth percentiles are the permutation-based empirical 

experiment-wise critical value for the overall 0.01 and 0.05 type I error rates, respectively. 

We then used the p-values simulated above to assign p values for the 267 SNPs. For each 

of the 267 SNPs, we found the smallest p-value among 1000 repeats for each of 267 SNPs at 

each of the three levels of p values. The p value for each SNP denotes the probability of 

obtaining an effect at least as extreme as the one in the sample data, assuming the SNP is not 

associated with the targeted phenotype (e.g. disease), that is the truth of the null hypothesis. 

Deriving the effective number of independent tests based on LD structure among multiple loci  

Linkage disequilibrium (LD) provides insights into how two or more loci in gametes or on 

chromosomes are correlated with each other. Haplotype blocks were inferred based on the linkage 

disequilibrium structure among markers. Suppose that a sample of nT haploid individuals is drawn 

from a large population, and there are only two possible alleles at each locus A and B. The four 

possible haplotypes are A0B0, A0B1, A1B0, A1B1, and the observed numbers of these haplotypes in 

the sample will be denoted by n00, n01, n10, and n11, respectively, with Tnnnnn  11100100 .
 

The random variable n follows a multinomial distribution as18  
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sample. The maximum likelihood estimate of the frequency of the Bj allele is obtained similarly. 

Measures of linkage disequilibrium between allele Ai and Bj includes Dij = Pij - PiPj, D' = D/Dmax, 

and r2 = D2 / P00P01P10P11. 

The closer the D' value is to zero, the greater the amount of historical recombination 

between the two loci, therefore the value of 0 for D' indicates that the examined loci are in 

fact independent of one another, while a value of 1 demonstrates complete dependency. 

However, the measure of r2 has a stricter interpretation than that of D'; r2 = 1.0 only when the 

marker loci also have identical allele frequencies. The allele at the one locus can always be 

predicted by the allele at the second locus. D' is affected solely by recombination and not by 

differences in allele frequencies between sites. r2 is affected by differences in allele 

frequencies at the two sites, and is therefore a better measure of potential allele-trait 

associations than D'.  

To obtain the number of independent tests, we constructed haplotype blocks to define the 

underlying pair-wise linkage disequilibrium structure among genetic markers. We applied 

three haplotype blocking algorithms: Gabriel's algorithm, the 4-gamete test, and the solid 

spine of LD measure using the Haploview software74. Gabriel defined haplotype blocks based 

on the confidence interval of the LD measure D' in 2002. In Gabriel's algorithm75, a haplotype 

block is defined as a region over which a very small proportion (<5%) of comparisons among 

informative SNP pairs show strong evidence of historical recombination. By the algorithm, 

95% confidence intervals (CI) on D' are generated and each comparison between informative 

SNP pairs is called 'Strong LD', 'inconclusive' or 'strong recombination'. A strong LD is 

defined for the pairwise D' when CI minima for upper CI bound = 0.98 and CI minima for 

lower CI bound = 0.70. A block is created if 95% of informative comparisons are ‘strong LD'.  

Wang et al76 introduced the four Gamete rule in 2002. The population frequencies of the 4 

possible two-marker haplotypes are computed for each marker pair. If all 4 are observed with 

at least frequency 0.01, a recombination is deemed to have taken place.  Blocks are formed by 

consecutive markers where only 3 gametes are observed. Barrett et al77 proposed the solid 

spine of the LD algorithm (SSLD).  The SSLD method creates blocks of SNPs that have 

contiguous pairwise D' values of greater than 0.80. The method searches for a 'spine' of strong 

LD running from one marker to another along the legs of the triangle in an LD chart (e.g. 
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Figure 3-2). This search results in the first and last markers in a block that are in strong LD 

with all intermediate markers while intermediate markers are not necessarily in LD with each 

other. For all three algorithms, the effective number of independent tests ( ) is equal to the 

number of LD blocks across the DNA region and the number of inter-block SNPs (i.e. 

singleton SNPs).  For instance, if there are 52 singleton SNPs and 17 haplotype blocks among 

267 SNPs, then the effective number of independent tests is 69. The effective number of 

independent tests is used in a Bonferroni adjustment to estimate study-wide significance 

thresholds for multiple-test correction in a study. 

 

Figure 3-2. Haplotype blocks from SNP sequence data at chr10:67587369..67787368 in 174 Utah 

residents.  

The genotype data for 267 SNPs were extracted from HAPMAP12, and the LD structure 

among the 267 SNPs was determined using each of three algorithms.  Figure 3-2 illustrates 

the partial LD structure for these data. The plot includes eight singleton SNPs and two 

haplotype blocks generated by the Gabriel algorithm. The color schemes in the plot are in 

accordance with the strength of LD between SNPs. The log of the odds (LOD) was used to 

measure LD between loci. LOD>2 indicated significant LD. Therefore, bright red indicates a 

strong LD with the log of the odds (LOD) ≥2 and D'=1, while white indicates a weak LD with 
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LOD<2 and D'<1. Between the strong and weak LDs, blue represents LOD<2 and D'=1 while 

shades of pink/red shows LOD≥2 and D'<1. The plot includes eight singleton SNPs and two 

haplotype blocks generated by the Gabriel algorithm. 

Adjusted point-wise significance level 

The point-wise error rate (PWER) is the type I error rate for an individual test or the 

probability of incorrectly rejecting the null hypothesis. Experiment-wise error rate, also called 

family-wise error rate (FWER), is the probability of making at least one type I error when 

performing a large number of related tests. Keeping FWER (af) at a nominal significance 

level, the adjusted PWER is denoted as . Since current genetic association analyses involve 

a large number of markers, multiple statistical tests are commonly performed. The multiple 

testing could result in a large FWER. However, if we set the PWER,  to a low level, the 

family-wise error rate can be controlled. In our study, we calculated the adjusted PWER 

thresholds for standard Bonferroni, adjusted Bonferroni by the number of independent tests, 

and percentiles from the empirical distribution of p values.  

Under the standard Bonferroni correction, we assumed that the m hypothesis tests are 

independent, and the point-wise error rates are obtained as  

 

Under the adjusted standard Bonferroni correction, we used the effective number of 

independent tests ( ) to estimate the point-wise error rate  

 for small . 

Finally we obtained three point-wise error rates for the large, medium, and small 

simulated p values. These simulated p values were arranged in ascending order, and the first 

and the fifth percentiles became the simulation-based empirical experiment-wise critical 

values for the overall 0.01 and 0.05 type I error rates, respectively.  
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Adjusted point-wise error rate among and within haplotype blocks by the step-down 

Bonferroni method 

To calculate the point-wise error rate among and within haplotype blocks, we proposed a 

two-stage adjusted Bonferroni correction procedure to 1) derive the effective number of 

independent tests based on linkage disequilibrium (LD) structure among multiple loci; 2) 

calculate the point-wise error rate among haplotype blocks based on the effective number; and 

3) apply the Holm–Bonferroni method and dependent false discovery rate (FDR) to highly-

correlated test statistics within each LD block. 

The three haplotype blocking algorithms group correlated SNPs across the DNA region 

into haplotype blocks. However, the strength of LD varies from moderate to high within the 

haplotype blocks. For instance, 267 SNPs could be grouped into 17 haplotype blocks and 52 

singleton SNPs by the Gabriel method, resulting in 69 independent tests. The point-wise error 

rate is calculated as 0.05/69=7.25×10-4.   In this situation, the same point-wise error rate is 

applied to all SNPs within a haplotype block, such as there are z SNPs in a haplotype block, 

and then the significant level 7.25×10-4 are applied into the significant test in the z SNPs. This 

adjustment may still inflate the family-wise type I error. Therefore, if there are significant 

SNPs within a haplotype block, we further apply the Holm–Bonferroni method and dependent 

FDR to highly-correlated test statistics within each LD block to get the adjusted the p values 

for SNPs within each of haplotype blocks.  

Declaring significant SNP associations   

For each of the type I error adjustment methods, the 267 simulated p-values were 

compared to the three empirical experiment-wise critical values (generated from three-level p 

values) and the adjusted point-wise significance levels to control the type I error rate at 0.05. 

If the p-value is smaller than the critical value or the adjusted point-wise significance level, 

the null hypothesis is rejected, indicating that the SNP has a statistically significant 

association with the targeted phenotype (e.g. a disease).  
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RESULTS 

P-value simulations based upon LD 

The genotype data for 267 SNPs were extracted from HAPMAP12, and the pair-wise r2 as 

a measure of LD among the 267 SNPs was calculated using Haploview74.  There were 35778 

total pair-wise r2 values among the 267 SNPs, however, we only used 267 r2 values. For 

example,  SNPs A, B, C, D, and E are next to each other on the DNA sequence, and the pair-

wise r2 values between AB, BC, CD, and DE were taken for the p value simulation. The mean 

and standard deviation of the 267 pair-wise r2values was 0.36 ± 0.36. Most of the r2 values 

were smaller than 0.60 (77.15%), which implies that a large number of independent tests 

could be inferred. The LD structures among the SNPs on the tested DNA region resulted in 

certain correlation patterns of p-values if we replicate the hypotheses a number of times. Also 

the LD structure can derive different numbers of independent tests based on different 

haplotype algorithms. Therefore, it is important to understand the distribution of these 267 

pair-wise r2 values as shown in Figure 3-3. 

Using the 267 pair-wise r2 values between two adjacent SNPs, we produced correlated p 

values based upon independent uniform random numbers at three levels to understand if the 

performance of the two-stage type I error correction is different at the different strengths of 

association between SNPs and disease. Figure 3-4 shows the p value distributions for large, 

medium and small p values generated by multiplying uniform random numbers by 0.1, 0.05, 

and 0.01, respectively, and then transferred the independent numbers into correlated p values 

based on the LD structure among these SNPs. The three distributions are approximately 

symmetric. The ranges for large, medium and small p value levels were 0.000-0.021, 0.0000-

0.0096, and 0.0000-0.0021, respectively. Table 3-1 summarizes the descriptive statistics for 

the three levels.  

 



51 

 

 

Figure 3-3. Distribution of 267 pair-wise r2 among 267 SNPs calculated by 

Haploview74 from 200 kbp at chr10:67587369..67787368 in 174 Utah 

residents 

Table 3-1. Descriptive statistics for the three levels of p values 

Level Mean ± Std. 1st percentile 5th percentile 

Small 7.5×10-4 ± 3.8×10-4 4.0×10-5 1.6×10-4 

Medium 3.8×10-3 ± 1.9×10-3 2.0×10-4 8.0×10-4 

Large 7.5×10-3 ± 3.8×10-3 4.0×10-4 1.6×10-3 

The first and the fifth percentiles are the simulation-based empirical experiment-wise 

critical values for the overall 0.01 and 0.05 type I error rates, respectively. In the following 

analyses, we set up the significance level at 0.05. Therefore, we will use only the 5th 

percentile values (αe) to control the type I error rate under 5%. 
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Figure 3-4. P value distributions for large, medium and small p value 

generated by multiplying uniform random numbers by 0.1, 0.05, and 

0.01, respectively. 
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Effective number of independent tests  

To estimate the effective number of independent tests, we used three haplotype blocking 

algorithms: Gabriel's algorithm, the 4-gamete test, and the solid spine of LD measure, to find 

the number of haplotype blocks among the 267 SNPs. The effective number of independent 

tests is the sum of the number of haplotype blocks and the number of singleton SNPs.  The 

effective numbers of tests across the three haplotype block algorithms are shown in Table 3-2.  

Table 3-2. The number of independent tests (haplotype blocks) across haplotype blocking 

algorithms 

Algorithm for haplotype 

blocking 
Singleton SNP Haplotype Block 

Number of 

Independent Tests 

Gabriel method 52 17 69 

4-Gamete test 18 42 60 

Solid spine of LD measure 1 10 11 

Among the three LD-based methods, the Gabriel algorithm generated the largest number 

of independent tests, therefore, it is the most conservative. However, compared with the 

standard Bonferroni correction, the three LD-based methods are anti-conservative when 

constructing Bonferroni significance thresholds. 

Adjusted point-wise significance level 

Applying the effective number of independent tests, we calculated point-wise error rates 

using standard and adjusted Bonferroni procedures across the three haplotype blocking 

algorithms. We also found the empirical experiment-wise critical values for the p values at 

three levels. Setting the nominal significance level to be 0.05, we calculated the point-wise 

error rates by dividing the nominal significance level of 0.05 by the number of independent 

tests for the standard Bonferroni and adjusted Bonferroni corrections by the Gabriel 

algorithm, 4-Gamete test and Solid spine of LD measure. The empirical experiment-wise 

critical values for the fifth percentile p-values at large, medium, and small levels are also 

shown in Table 3-3.  
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Table 3-3. Point-wise error rates under family-wise error rate of 0.05 among 267 SNPs in three 

haplotype inferring algorithms 

Adjustment Method Number of Independent Tests Point-wise error rates 

Standard Bonferroni αβ
a 267 1.9×10-4 

Adjusted Bonferroni αj
b 

    Gabriel method 

    4-Gamete test 

    Solid spine of LD measure 

 

69 

60 

11 

 

7.2×10-4 

8.3×10-4 

4.6×10-3 
a   αβ is calculated by α/N of unadjusted Bonferroni correction for comparison purpose, where N is the 

total number of unadjusted tests such as the total number of SNPs. 
b   αj is point error rate of adjusted Bonferroni correction by the nominal level α divided by the number 

of independent tests (sum of haplotype blocks plus the singleton SNPs) 

Among the three haplotype algorithms in the adjusted Bonferroni methods, the solid spine 

of LD measure is the most liberal and yields the largest point-wise error rate because it has the 

fewest number of independent tests. In the point-wise error rate (1.61×10-4) from the 

empirical p value distribution, the small-level p values is close to the point-wise error rate 

(1.87×10-4) for the standard Bonferroni correction.   

Number of tests declared significant  

After determining the point-wise error rate by LD structure, we then applied the step-

down Bonferroni method to get the adjusted point-wise error rate within haplotype blocks and 

to declare whether the tests were statistically significant. Table 3-4 lists the number of SNPs 

declared as significant across these methods to validate the new two-stage Bonferroni 

procedure and to test the procedure's performance. 
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Table 3-4. Numbers of SNPs with significant associations with disease across type I error adjustment 

methods among 267 SNPs in three haplotype inferring algorithms 

Adjustment Method 

Haplotype Algorithmsa 

Gabriel method 4-Gamete Test Solid Spine of LD measure 

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

Standard Bonferronib  4 4 9 4 4 9 4 4 9 

Adjusted Bonferroni by 

number of independent testsc 4 7 117 4 9 138 49 145 267 

Empirical experiment-wise 

critical value methodd 9 9 9 9 9 9 9 9 9 

Holm–Bonferroni methode 4 4 9 4 4 9 4 4 9 

Dependent FDRf 2 145 267 2 145 267 2 145 267 

Two-stage adjusted Bonferroni correctiong 

    Holm–Bonferroni method 4 5 28 3 4 21 2 4 26 

     Dependent FDR 4 5  28 3 3 18 2 2 75 
a     Values of 0.1, 0.05 or 0.01 indicate that p values were generated by uniform random numbers×0.1, 

0.05 or 0.01.  
b    Standard Bonferroni correction simply sets point-wise significance cut-off at α/Ns, where Ns is the 

total number of SNPs. 
c     Adjusted Bonferroni correction uses the nominal level α divided by the number of independent tests 

(sum of haplotype blocks plus singleton SNPs). 
d     Simulation-based empirical experiment-wise critical value for the overall 0.05 type I error rate 

served as true cutoff. 
e     Holm–Bonferroni method without assumptions required to control family-wise error rate. 
f      Dependent FDR procedure controls the expected proportion of incorrectly rejected null 

hypotheses  ("false discoveries").  
g     Two-stage adjusted Bonferroni correction applies two procedures to control for family-wise error 

rate. The first stage applies the adjusted Bonferroni correction, then the second step applies Holm–

Bonferroni method or the dependent FDR within haplotype blocks.  

Among the 267 SNPs, the numbers of significant SNPs were 4-9 by both the standard 

Bonferroni correction and the Holm-Bonferroni method, 9 from the empirical experiment-

wise critical value method, and 2-267 by FDR adjustment across the three p-value simulation 

models (large, medium, and small) in three different haplotype algorithms at the family-wise 

error rate 0.05. It was not surprising that the empirical experiment-wise critical value method 

resulted in the same number of nine significant tests among three levels of p values because 

the p value distributions from the random numbers were the same since the random numbers 

were multiplied by constants.  

After adjustment by Bonferroni correction based on the number of independent tests 

generated from three haplotype algorithms, the Gabriel method resulted in the smallest 

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Null_hypothesis
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number of significant SNPs. Among above five correction method, the standard Bonferroni 

correction was the most conservative while the dependent FDR was liberal. Compared with 

the five correction methods, two-stage adjusted Bonferroni correction generated numbers of 

significant SNPs that were between the conservative standard Bonferroni correction and the 

liberal dependent FDR. 

APPLICATION OF THE TWO-STAGE CORRECTION IN REAL CLINICAL STUDIES 

To evaluate the two-stage Bonferroni correction, we applied the method to our previously 

published study that tested the association between polymorphisms in the NPPA gene and 

asthma55. In the published study, we applied a Bonferroni’s factor to define the threshold of 

significance in a study of the association of NPPA gene polymorphisms with asthma. We 

compared our results from the two-stage Bonferroni correction with the published results 

which used the unadjusted Bonferroni type I error correction. In the genetic association study, 

three common SNPs (rs5063, rs5065, and rs5067) of the NPPA gene were genotyped among 

white participants in a case-control study. Among these SNPs, haplotypes were constructed 

using imperfect phylogeny by the software package HAP78. Additive and dominant genetic 

models were applied to assess genetic association. The following includes study background, 

objective, statistical method, results and conclusion, and shows how the two-stage Bonferroni 

correction method can be used to adjust for the type 1 error in the study.  

Asthma is a complex chronic disease characterized by inflammation, constriction of the 

airways and bronchial hyper-responsiveness to external stimuli. Asthma affects an estimated 

20 million people in the US and 300 million people world-wide. It is the most common 

disease of childhood and is the third leading cause of hospitalization among individuals<18 

years old. Numerous candidate genes have been linked to asthma, and susceptibility loci for 

asthma have been mapped to regions in most chromosomes79-85. Moreover, a region on 

chromosome 1p36 has been identified as an asthma candidate locus81. Atrial natriuretic 

peptide (ANP) plays an important role in the lung and in augmenting allergic inflammation in 

asthma. The gene encoding ANP, NPPA, is located on chromosome 1p36, a region that has 

been linked to asthma. The objective of this study was to determine associations between 

asthma and four common SNPs on the NPPA gene: C/G (rs13305986) in the promoter; G/A 
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(rs5063) in Exon 1 resulting in NPPA Met32→Val substitution; T/C (rs5065) in Exon 3 

resulting in an Arg152→Ter substitution; and T/C in the 3’UT region (rs5067). 

A case–control design was used in this study of asthma in Caucasians55. The screening 

cohort consisted of 336 asthmatic cases who participated in a large clinical trial and 154, non-

asthmatic controls. The replicate cohort consisted of 172 asthmatic cases from a second 

clinical trial and 115 healthy controls. Demographic characteristics were well matched for 

cases and controls in the screening cohort. Adjusted (age, gender, body mass index) odds 

ratios (OR) were calculated by χ2 and logistic regression. A dominant genetic inheritance 

model was assumed for all of the three SNPs. The Bonferroni method was used in the 

publication to define the threshold of significance, which was 0.0167 for the three SNPs, 

rs5063, rs5067, and rs5065, (0.05/3 SNPs).    

Table 3-5. Influence of NPPA SNPs on the risk of asthma risk for white participants in the screening 

cohort55 

SNP Genotype 

Participants 
Adjusted odds 

ratio (95% CI)a P-value Cases 

N(%) 

Controls 

N(%) 

rs5063 AG 

GG 

18(6.1) 

275(93.9) 

19(12.8) 

129(87.2) 

0.43(0.21-0.88) 

1 

0.02 

rs5065 CC+TC 

TT 

70(24.1) 

220(75.9) 

60(41.4) 

85(58.6) 

0.45(0.29-0.70) 

1 

<0.0001 

rs5067 CC+TC 

TT 

40(13.6) 

254(86.4) 

37(25.0) 

111(75.0) 

0.50(0.29-0.84) 

1 

0.009 

a  Adjusted for age, gender and body mass index. CI=confidence interval. 

Tables 3-5 and 3-6 include the p values from the screening and replicate cohorts55. Using 

the standard Bonferroni correction for the screening cohort, rs5065 and rs5067 had p-values 

that were less than the threshold of 0.0167, and thus were reported to be significantly 

associated with asthma (Table 3-4).  Since p value of rs5063 (P=0.02) was larger than 0.0167, 

no significant association was found between it and asthma. In the replicate cohort, only the p 

value of rs5067 (P<0.0001) was smaller than 0.0167 based upon the standard Bonferroni 

correction.  
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Table 3-6. Influence of NPPA SNPs on the risk of asthma risk for white participants in the replicate 

cohort55 

SNP Genotype 

Participants 
Adjusted odds 

ratio (95% CI)a P-value Cases 

N (%) 

Controls 

N (%) 

rs5063 AG 

GG 

17(9.9) 

155(90.1) 

9(8.1) 

102(91.9) 

1.02(0.36-2.83) 

1 

0.98 

rs5065 CC+TC 

TT 

53(30.8) 

119(69.2) 

24(22.4) 

83(77.6) 

1.16(0.60-2.24) 

1 

0.66 

rs5067 CC+TC 

TT 

23(13.4) 

149(86.6) 

28(25.0) 

84(75.0) 

0.24(0.11-0.53) 

1 

<0.0001 

a  Adjusted for age, gender and body mass index. CI=confidence interval. 

To test our two-stage Bonferroni correction using data from the screening cohort, the 

number of independent tests was first determined using the three haplotype block algorithms 

(Gabriel confidence intervals, four Gamete rule, and solid spine of LD). The number of 

independent tests was based on the number of haplotype blocks and singleton SNPs. Using 

the confidence intervals for the Gabriel algorithm on the screening cohort data, one haplotype 

block of rs5067 and rs5065 and a singleton SNP (rs5063) were found. Therefore, the point-

wise error rate (the threshold of significance) at the first stage was 0.05/2=0.025 for rs5063 

and the haplotype block of rs5067 and rs5065. To test the significance for the singleton SNP 

rs5063, the p value of rs5063 (p=0.02) was compared with the point-wise error rate 0.025. 

Since this p value is less than the threshold, SNP rs5063 is declared to be significantly 

associated with asthma. For SNPs (rs5067 and rs5065) in the haplotype block, the second 

stage type I error adjustment using the Holm-Bonferroni step-down method within the 

haplotype block was performed. First the two SNPs were ordered from smallest to largest p-

value: rs5065 (p<0.001) < rs5067 (p=0.009). Next the p-value for rs5065 was compared to 

0.025/2. Since 0.001 is less than 0.025/2 the block is considered significant and the next p-

value is tested. The p-value for rs5067 was compared to 0.025/1, and both SNPs within this 

block are also significantly associated with asthma. Thus rs5063 is significantly associated 

with asthma using our method but is not according to the standard Bonferroni correction.  

Using the algorithm of four Gamete rule and solid spine of LD methods, we only 

discovered one haplotype block among the three SNPs. The Holm-Bonferroni step-down 

correction was applied therefore using 0.05 as the threshold. In this case, the three p values 

are ordered smallest to largest; the smallest p-value rs5065 (p<0.001) is compared to 0.05/3. 
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Since this value is less than 0.05/3, rs5065 is significantly associated with asthma, and we 

continue to test the other two SNPs. The p-value for rs5067 (p=0.009) is compared to 0.05/2, 

which again indicates a significant association.  The p-value for rs5063 is then compared to 

0.05/1 and again an association is found. Thus when all of the values are within a single block, 

the results are the same as the Holm-Bonferroni step-down method, and again, the p-value for 

rs5063 is significant when it was not for the standard Bonferroni correction.  

DISCUSSION AND CONCLUSION 

Our two-stage adjusted Bonferroni type I error correction procedure is a simple and easy 

way to reduce the chances of obtaining false-positive genetic markers in candidate gene and 

genome-wide SNP studies. In multiple-locus genetic association studies, the traditional 

Bonferroni correction is commonly applied to control for type I error. However, the 

correlation among genetic markers can result in non-independent tests, which violates the 

independence assumption of the Bonferroni procedure to control type I error effectively and 

inflates the type I error rate, resulting in more false positive genetic markers. With a small 

sample size, the type II error rate may be detrimentally inflated by a Bonferroni correction65, 

resulting in low power to detect positive genetic markers.  

Our two-stage adjusted Bonferroni type I error correction procedure introduces a better 

way than the traditional Bonferroni correction to control for type I error accounting for the 

correlation among genetic markers. Although the gold standard for multiple testing 

adjustment in genetic association studies is the permutation test, this test is computationally 

intensive, and therefore, it is not commonly used. Instead, the blocking method is a 

biologically meaningful, easy and fast way to achieve type I error rates closer to the desired 

value over a range of LD levels. Johnson et al65 determined whether the number of 

informative SNPs inferred by principal components analysis (PCA) and haplotype blocking 

based on the LD structure could increase statistical power, i.e. the ability to detect true 

associations. The inferred number of informative SNPs was used in a Bonferroni adjustment 

to obtain multiple candidate SNPs or GWAS-wide significance threshold. Their study 

assumed that the SNPs within haplotype blocks and principle component groups were in 

complete LD or strongly correlated. They reported a moderate increase in power using this 
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method compared to the traditional Bonferroni method. Since the strength of LD varies from 

moderate to high within haplotype blocks, applying the same point-wise error rate to all SNPs 

within a haploype block could still inflate the experiment-wise type I error. For instance, 

when a point-wise error rate α1 is applied to a haplotype block with n SNPs, the real error rate 

for the block may be over α1 due to recombination that might have occurred among these 

SNPs. As a result, these SNPs are not in complete linkage disequilibrium as Johnson et al65 

assumed.  

To solve these problems, our two-stage adjusted Bonferroni type I error correction 

procedure applies linkage disequilibrium structure into statistics to account for the variation in 

linkage disequilibrium across-blocks and within blocks. In the first step, we adopted three 

haplotype block algorithms3, 4 to find the number of independent tests based on LD structure, 

and then to calculate the pointwise error rate using the number of independent tests among 

multiple loci. Among the three algorithms, the solid spine of LD measure generated the 

smallest number of informative SNPs (Table 3-2) and the largest point-wise error rate (Table 

3-3), and therefore, it is the least conservative type I error correction. The Gabriel method 

generated the largest number of independent tests, resulting in the smallest pointwise error 

rate compared with the other two algorithms. A small threshold value is less likely to reject a 

null hypothesis, resulting in a significant test. Therefore, a smaller pointwise error rate among 

multiple SNPs could declare less SNPs to be significantly associated with a disease. The 

results across the three haplotype blocking methods in our study agreed with the results 

reported by K. K Nicodemus4. Since the three blocking methods generated different pointwise 

errors, we would consider the LD structure among genetic markers to decide which blocking 

algorithm should be used. Based on the report from K. K Nicodemus4, Gabriel blocking 

algorithm consistently gave a ~3.4% type I error rate across moderate and high LD conditions, 

which is close to the desired 5% level. Therefore, we would recommend that the Gabriel 

blocking algorithm is the first choice for inferring the number of independent tests in our two-

step method.  

In the second step, we further adjust the type I error within haplotype block accounting for 

the LD within each block. Our adjustment procedure was more liberal than standard 

Bonferroni and often more liberal than the Holm–Bonferroni correction method, but stricter 
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than the type I error adjustment by the number of informative SNPs. Since the number of 

independent tests is smaller than the number of genetic markers, the pointwise error rate (the 

threshold of significance) is larger than that from a standard Bonferroni correction. The 

pointwise error rate is calculated by the familywise error rate/the number of independent tests. 

If there are m genetic markers and M independent tests (M<m), the pointwise error rates for 

standard Bonferroni correction and two stage standard Bonferroni correction are 0.05/m and 

0.05/M, respectively, while 0.05/m<0.05/M. As a result, the declared number of significant 

tests after type I error adjustment from our two-stage adjusted Bonferroni correction 

procedure is more than that from standard Bonferroni method. Table 3-4 shows that the 

number of tests declared as significant from our two-stage Bonferroni adjustment was larger 

than the numbers from the standard Bonferroni correction, but smaller than the numbers from 

the Holm-Bonferroni adjustment by number of independent tests. Compared with the 

dependent FDR method, our method appears to be more conservative. FDR is commonly used 

in studies involving large amounts of true alternatives, such as in micro-array data analysis of 

differentially expressed genes. In the simulated small level p values, all tests were declared 

significant by FDR. Furthermore, compared with the PCA and haplotype blocking to infer 

number of informative SNPs used by Johnson et al65, our two-stage type 1 error adjustment 

would increase the specificity in hypothesis testing to avoid false positive variants.  

In summary, our two-stage adjusted Bonferroni correction procedure provides a new, 

simple, easy way to control for type I error by incorporating informative SNPs. The correction 

method accounts for LD variation both within- and across-blocks, and therefore, it could 

increase the specificity in hypothesis testing of genetic association. Additionally, the two-

stage adjustment method would also increase the sensitivity and power to discover causal 

genetic variants, compared with commonly used standard Bonferroni correction. 
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CHAPTER 4: APPLYING THE ADJUSTED TYPE I ERROR RATE IN SAMPLE SIZE 

ESTIMATION FOR GENETIC ASSOCIATION STUDIES 

ABSTRACT 

Background: In multi-locus genetic association studies, as more SNP markers are tested 

simultaneously, a larger sample size is needed to reduce false positive association and to 

increase the reliability of a study. However, a study with large sample size may not be cost-

effective, leading to wasted time and resources. It is crucial, therefore, to find an effective 

sample size, which is the minimum number of samples that achieves adequate statistical 

power to detect the genetic association with a targeted phenotype. Because of the complicated 

pattern of linkage disequilibrium (LD) in humans, statistical power is influenced by the LD 

structure of the tested DNA region. 

Objective and Methods:  We incorporated linkage disequilibrium structure into estimating 

sample size for multi-locus genetic association studies. Haplotype blocking was first used to 

find the effective number of independent tests among multiple loci by race. We then applied 

the effective number of independent tests in the calculation of point-wise error rates using 

standard Bonferroni procedure and adjusted Bonferroni correction. We then used the point-

wise error rates to estimate sample sizes.  Finally, we applied our procedure to a case study to 

illustrate the procedure of using adjusted significant levels in sample size estimation for three 

racial groups. 

Results: The case study was to estimate sample size in a multi-locus genetic association study 

to determine the associations between SNPs in the vitamin D binding protein gene, GC, and 

hypovitaminosis D. Compared with sample sizes estimated using a significance level from a 

standard Bonferroni type I error correction, the sample sizes required using the significance 

level from our haplotype blocking method were 14.94% and 28.50% lower in Han Chinese in 

Beijing, China and Utah residents with Northern and Western European ancestry populations, 

respectively. Since no haplotype blocks were inferred in the GC gene region in ASW, the 

haplotype block method resulted in the same sample size as in the standard Bonferroni 

method. 
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Conclusion and Implication: Population structure impacts the statistical power in an 

association test. Applying LD structure across the tested DNA region to adjust the alpha value 

for sample size estimation by race could reduce the sample size to reach enough statistical 

power to find the genetic association with the targeted phenotype, which would have cost-

effective outcomes in these studies. 

Keywords: Type I error; LD; Bonferroni type I error correction; Haplotype block; Point-wise 

error rate; Family-wise error rate. 

INTRODUCTION 

A common problem in bioinformatics is multi-locus or genome-wide association studies, 

which are powerful and widely-used studies to find genetic variants that impact a drug 

response or increase the risk of developing a particular disease. These studies are complex and 

must be planned carefully in order to maximize the probability of finding causal genetic 

variants that are associated with phenotypes.  For these studies, design choices must balance 

sample size with budget constraints to optimize the power in detecting associations. 

In Chapter 2, we addressed the problem of sample size estimation to achieve adequate 

power. We tested various combinations of parameters that are specific to genetic association 

studies and the influence of interactions among these parameters on sample size calculation. 

Type I error affects the number of individuals needed in a genetic association study, and we 

held the type I error at 0.05 because we were studying a single locus. For a single variant 

association test, the family-wise error rate is as the same as the point-wise error rate at a 

nominal level of α. However, for the multi-locus or genome-wide association study, the 

family-wise error rate must be controlled by adjusting the point-wise error rate for each 

genetic marker tested.  

In Chapter 3, we proposed a two-stage adjusted Bonferroni correction procedure to control 

for inflated type I error rates in multiple testing among genetic markers. This procedure not 

only takes into account the linkage pattern among haplotype blocks to determine the number 

of independent tests that arise in the data but also within haplotype blocks to adjust the type I 

error among correlated genetic markers within blocks. Our two-stage adjustment method 

accounts for Linkage Disequilibrium (LD) variation within the haplotype blocks to control for 
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block-wise type I error and overcomes the too conservative limitation of traditional 

Bonferroni correction to increase power. On the other hand, the two-stage correction method 

is less liberal to control for the type I error inflation compared with the haplotype blocking 

method only.  

In this chapter, we focused on testing how sample size estimation can take advantage of 

this adjusted Bonferroni correction for type I error rate in multi-locus association studies. 

More subjects in a study leads to higher statistical power to detect the association of genetic 

variants with a targeted phenotype. However, a too large sample size could result in an 

economic burden and a great effort to collect sample. Therefore, finding an effective sample 

size, which is the minimum number of subjects to achieve enough statistical power, is an 

important step in study design. Here, we applied LD structure in sample size estimation by 

adjusting the significance level using the number of independent tests.  

Linkage disequilibrium, the non-random association between alleles of different loci, is 

extremely important for the dissection of complex traits. Linkage disequilibrium patterns in 

the human genome are different across populations. The level and pattern of LD is influenced 

by many factors, e.g. genetic drift, admixture and inbreeding, which are population specific 

factors86. Additionally, statistical power is dependent on the frequency of the genotype or 

exposure being studied87. Genotype frequencies tend to vary by ethnicity, ancestry, or race.  If 

race/ethnicity-specific estimates of genotype or exposure frequencies are not considered in 

sample size estimation, studies may have inadequate power or may be inefficient (i.e., using 

larger sample sizes than may be necessary). Therefore, to incorporate the different patterns of 

LD structure and genotype frequencies among populations into sample size estimation, we 

used a blocking method discussed in Chapter 3 to find the adjusted significance level for 

different populations, and then used the adjusted significance level to calculate sample sizes.  

METHODS 

Find the effective number of independent tests 

To obtain the number of independent tests, we constructed haplotype blocks to define the 

underlying pair-wise linkage disequilibrium structure among genetic markers. The effective 



65 

 

number of independent tests is the sum of the number of haplotype blocks and the number of 

singleton single nucleotide polymorphisms (SNP). There are three haplotype blocking 

algorithms for inferring haplotype blocks, including Gabriel's algorithm, the 4-gamete test, 

and the solid spine of LD measure. The three haplotype blocking algorithms group correlated 

SNPs across a DNA region into haplotype blocks. Our study results in Chapter 3 showed that 

the Gabriel algorithm generated the largest number of independent tests among the three 

haplotype blocking methods. Since the Gabriel algorithm is the most conservative, we used 

the method to find the effective number of independent tests for point-wise error calculation.  

Calculate the point-wise error rate  

We calculated point-wise error rates using the standard Bonferroni correction and the 

Bonferroni correction adjusted by the effective number of independent tests. Setting the 

nominal significance level at 0.05, we calculated the point-wise error rates by dividing the 

nominal significance level of 0.05 by the number of genetic markers for the standard 

Bonferroni and by the number of independent tests generated by Gabriel algorithm for the 

adjusted Bonferroni correction. For instance, if there are n SNPs and m independent tests, 

then the point-wise error rates are 0.05/n for the standard Bonferroni correction and 0.05/m 

for the adjusted Bonferroni correction. 

Estimate the sample size 

We assumed the simplest disease model in which a genetic marker is correlated with the 

causal variant. Logistic regression models were used to estimate sample sizes in accordance 

with a dichotomous outcome variable with genotype as the predictor variable. The genetic 

inheritance model is dominant, recessive, or additive. Assuming a null hypothesis of no 

significant genetic effect on the outcome variable, we performed a likelihood ratio test to 

compare the goodness of fit of two models, the null model (reduced model) and the 

alternative model (full model). The test is based on the likelihood ratio, which expresses how 

many times more likely the data are under one model than the other.  The likelihood ratio 

statistic (deviance) has a chi-square distribution with degrees of freedom, which is equal to 

the difference in the number of degrees of freedom between the full and reduced models. A 

sufficiently large deviance implies the logistic model is inappropriate. Inference concerning 
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any regressor or subset can be computed by determining how much the presence of each 

regressor contributes to the reduction in deviance. Therefore, to test the hypothesis that the 

genetic factor is significantly associated with the disease, we are going to test the difference in 

variation explained between the full and reduced models by     

2( , 

where β1 is coefficient of genetic factor.   

Under the null hypothesis ( ),  is asymptotically distributed as a chi-square random 

variable with one degree of freedom. When the null hypothesis is rejected, N  is the non-

centrality parameter of the chi-squared distribution for a given sample size N. Therefore, 

sample size can be computed by 

       ,     

where a two-sided alternative hypothesis is tested, α is the significance level, 1 – β is the 

desired power (set to 0.).  To test a single locus, the significance level α is equal to the family-

wise error rate or point-wise error rate. To test multiple loci, we should control the family-

wise error rate under a specific level (e.g. 0.05), therefore, we need to replace the significance 

level α by the point-wise error rates calculated by standard and adjusted Bonferroni 

corrections. Under the null hypothesis (e.g. the genetic marker is not associated with the 

disease),  is asymptotically distributed as a chi-square random variable with one degree of 

freedom. When the null hypothesis is rejected (e.g. the genetic marker is associated with the 

disease), N  is the non-centrality parameter of the chi-squared distribution for a given sample 

size N. Since Λ is a function of the odds ratio, a smaller odds ratio requires a larger sample 

size. The total sample size is equal to 2N for the matched case-control study, and N+KN for 

an unmatched case-control study, where K = controls/cases.  

The following includes a case study to illustrate how we apply the adjusted pointwise 

error rates to calculate sample size in multi-locus genetic association studies. 
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CASE STUDY 

The case study introduces the sample size estimation procedure in a multi-locus genetic 

association study to determine the associations between SNPs in vitamin D binding protein 

gene (GC) and hypovitaminosis D.   

Introduction 

One-half of healthy adults in developed countries might suffer from vitamin D 

insufficiency88. Vitamin D is crucial to maintain human health. Recent studies reported that 

vitamin D insufficiency has been linked to diabetes, cancer, and cardiovascular disease. The 

level of 25-OH D is the widely-accepted biomarker of vitamin D status. Determinants of 

circulating 25-hydroxyvitamin D (25-OH D) include sun exposure and dietary intake. 

However, only about a quarter of the inter-individual variability in 25-OH D is associated 

with the factors of season, geographic latitude, and vitamin D intake89, 90.  Previous studies 

suggest that genetic determinants may also play a role in the variability of 25-OH D91, 92 with 

estimates of heritability as high as 53%. Candidate gene studies with modest sample sizes and 

small numbers of variants and genome-wide association studies have been performed to 

examine the effect of specific vitamin D-pathway genes on the vitamin D plasma level91-95.  

The prevalence of vitamin D deficiency varies by race/ethnic group. Previous studies 

showed that vitamin D deficiency is more common among African Americans than among 

European Americans93. Previous genome-wide association studies in European populations 

identified vitamin D pathway gene single-nucleotide polymorphisms (SNPs) associated with 

serum vitamin D [25(OH)D] levels, but a few of these SNPs have been replicated in African 

Americans93. We calculated sample size for investigating the associations of vitamin D 

binding protein gene, GC, with hypovitaminosis D in asthmatic populations of Caucasians, 

African Americans and Asians, separately.  

Methods 

We calculated sample sizes based on a logistic regression model, in which the 

dichotomous outcome variable is the disease status if a patient had hypovitaminosis D or not. 

The sample sizes were estimated by three different racial groups: Caucasian, African 
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Americans and Asian. SNP genotype data in the vitamin D binding protein gene were 

downloaded for each racial group from HapMap12 Genome Browser release #27 (Phase1, 2, 

&3-merged genotypes &frequencies). Haplotype block structure from these SNP genotype 

data for each of the racial groups were inferred by Haploview12 software. Based on the 

haplotype structure in each of the three race groups, the number of independent tests was 

calculated. And then the point-wise error rate (alpha value) was calculated using the number 

of independent tests and family-wise error rate. Finally the sample sizes were estimated by 

genetic program Quanto24, 25, 47, 48 with parameters as follows: 

 The prevalence of the hypovitaminosis D in asthmatic population is 80%. 

 A matched case-control design. 

 Dominant inheritance model was assumed.  

 Odds ratios for risk allele carriers compared to normal from 1.5 to 3.0. 

 Desired power is 80%. 

 The type I error rates are set at 0.05/ m, m=the number of candidate SNPs (standard 

Bonferroni type I error correction), 0.05/x, x=total number of haplotype blocks and 

singletons among the candidate SNPs, and 0.05 (assuming a single SNP) with a 2-

sided alternate hypothesis. 

RESULTS 

Structure of haplotype block and pointwise error rate 

Haplotype blocks were inferred using SNP genotype data from HapMap12, 96, and the 

pointwise error rate was calculated by the number of haplotype blocks and singletons from the 

Gabriel method. SNP genotype data for the GC gene DNA region at chr4:72824381.. 

72862352 were downloaded for each of the three racial groups. The racial groups were: 

African ancestry in Southwest USA (ASW) including 12 singletons and 11 trios from 40 

families; Utah residents with Northern and Western European ancestry (CEU) from the CEPH 

collection including 27 trios from 20 families; Han Chinese in Beijing, China (CHB) 

including 45 singletons from 45 families.  SNPs were selected if the p value for a Hardy 

Weinberg Equilibrium test was larger than 0.001, non-missing genotype percentage was at 

least 75%, maximum number of Mendelian errors was 1, and the minimum minor allele 

frequency was at least 0.001. The haplotype block structures for the three racial groups are 
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shown below. The color schemes in LD plot are in accordance with the strength of LD 

between SNPs. The D' value and the log odds (LOD) were used to measure LD between loci. 

The closer the D' value is to zero, the greater the amount of historical recombination between 

the two loci. LOD>2 indicates significant LD, therefore, bright red indicates a strong LD with 

LOD ≥2 and D'=1, while white indicates a weak LD with LOD<2 and D'<1. Between strong 

and weak LDs, blue represents LOD<2 and D'=1 while shades of pink/red shows LOD≥2 and 

D'<1. 

Haplotype Structure in ASW population  

Haplotype blocks were inferred for the GC gene region for the ASW population. There 

were a total of 36 SNPs in the GC gene region. The minor allele frequencies among the 36 

SNPs ranged from 0.009-0.462. The linkage disequilibrium plot in Figure 4-1 showed that no 

haplotype blocks were inferred among these SNPs. Therefore, the number of independent 

tests was equal to the number of SNPs, which was 36. The point-wise error rate under the 

family-wise error rate 0.05 was calculated by 0.05/36=0.001, which was equal to the error rate 

calculated by the standard Bonferroni correction. 

 
Figure 4-1. Linkage disequilibrium plot for SNPs in vitamin D binding protein gene 

(GC) region at chr4:72824381..72862352 among African ancestry in Southwest USA 
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Haplotype Structure in CEU population  

Haplotype blocks were inferred in the GC gene region for the CEU population. There 

were a total of 36 SNPs selected to infer the haplotype block structure. The minor allele 

frequencies among the 36 SNPs ranged from 0.009-0.462. The following LD plot (Figure 4-2) 

showed that two haplotype blocks and four singletons were inferred for these SNPs. 

Therefore, the number of independent tests was equal to the sum of the number of haplotype 

blocks (2) and the number of singletons (4), which was 6. The point-wise error rate under the 

family-wise error rate 0.05 was calculated by 0.05/6=0.008.  The error rate calculated by 

standard Bonferroni correction was equal to 0.05/36=0.001.  

 
Figure 4-2. Linkage disequilibrium plot for SNPs in vitamin D binding protein gene 

(GC) DNA region at chr4:72824381..72862352 among Utah residents with Northern 

and Western European ancestry 

Haplotype Structure in CHB population  

Haplotype blocks were inferred in the GC gene region of the CHB population. A total of 

45 SNPs at the GC gene region were selected to infer the haplotype block structure. The 

minor allele frequencies among the 45 SNPs ranged from 0.011-0.465. The following LD plot 

(Figure 4-3) showed that two haplotype blocks and four singletons were inferred among these 

SNPs. Therefore, the number of independent tests was equal to the sum of the number of 

haplotype blocks (5) and the number of singletons (14), which was 19. The point-wise error 
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rate under the family-wise error rate of 0.05 was calculated by 0.05/19=0.003.  The error rate 

calculated by standard Bonferroni correction was equal to 0.05/45=0.001. 

 

 
Figure 4-3. Linkage disequilibrium plot for SNPs in vitamin D binding protein gene 

(GC) gene DNA region at chr4:72824381..72862352 among Han Chinese in Beijing 

Sample size estimation 

Table 4-1 shows the estimated sample sizes for testing the main effects of SNPs in the GC 

gene region with hypovitaminosis D. Because the pattern of linkage disequilibrium in a 

genome is impacted by population structure, there are differences in significance (α) levels 

among the three racial groups and hence different sample sizes. When the haplotype blocking 

method for multi-locus tests was used to calculate the alpha level, the estimated sample sizes 

from the adjusted alpha value were between the sample sizes from the standard Bonferroni 

correction and the unadjusted single locus calculation. The sample sizes required using the 

significant level from our haplotype blocking method were 14.94% and 28.50% lower than 

for the standard Bonferroni correction in CHB and CEU populations, respectively. Since no 

haplotype blocks were inferred at the GC gene region in ASW, the haplotype block method 

resulted in the same sample size as in the standard Bonferroni method. The unadjusted one 

locus method in sample size estimation resulted in the smallest sample sizes among the three 

methods and required on average 54% smaller sample sizes compared to the standard 
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Bonferroni correction, however, we would lack of power to test the multiple SNPs with the 

targeted phenotype, simultaneously. 

Table 4-1. Sample size required to test genetic association with hypovitaminosis D 
Minor 

Allele 

Frequency 

Odds 

Ratio 

Number of Case-Control Pairs (percentage decreasea) 

Standard Bonferroni 

(ASW, CEU, CHB)b 

Haplotype Block Adjustment 

 

One Locus Method 

(ASW, CEU, CHB) 

α=0.001 α=0.003  (CHB) α=0.008 (CEU) α=0.05 

0.10 1.5 1475 1253 (15.05) 1054(28.54) 678(54.03) 

0.10 2.0 546 464 (15.02) 390(28.57) 251(54.03) 

0.10 2.5 334 284 (14.97) 239(28.44) 154(53.89) 

0.10 3.0 247 210 (15.00) 177(28.34) 114(53.85) 

0.15 1.5 1109 942 (15.06) 793(28.49) 510(54.01) 

0.15 2.0 404 344 (14.85) 289(28.47) 186(53.96) 

0.15 2.5 245 208 (15.10) 175(28.57) 113(53.88) 

0.15 3.0 180 153 (15.00) 129(28.33) 83(53.89) 

0.20 1.5 946 804 (15.01) 676(28.54) 435(54.02) 

0.20 2.0 340 289 (15.00) 243(28.53) 156(54.12) 

0.20 2.5 204 174 (14.71) 146(28.43) 94(53.92) 

0.20 3.0 149 126 (15.44) 106(28.86) 68(54.36) 

0.25 1.5 869 739 (14.96) 621(28.54) 399(54.09) 

0.25 2.0 309 262 (15.21) 221(28.48) 142(54.06) 

0.25 2.5 183 156 (14.75) 131 (28.41) 84(54.10) 

0.25 3.0 132 112 (15.15) 95 (28.03) 61(53.79) 

0.30 1.5 841 715 (14.98) 601 (28.54) 387(53.98) 

0.30 2.0 295 251 (14.92) 211 (28.47) 136(53.90) 

0.30 2.5 174 148 (14.94) 124 (28.74) 80(54.02) 

0.30 3.0 124 106 (14.52) 89 (28.23) 57(54.03) 

0.35 1.5 847 720 (14.99) 606 (28.45) 389(54.07) 

0.35 2.0 294 250 (14.97) 210 (28.57) 135(54.08) 

0.35 2.5 171 146 (14.62) 122 (28.66) 79(53.80) 

0.35 3.0 122 104 (14.75) 87 (28.69) 56(54.10) 

0.40 1.5 884 751 (15.05) 632 (28.51) 406(54.07) 

0.40 2.0 303 258 (14.85) 217 (28.38) 139(54.13) 

0.40 2.5 175 149 (14.86) 125 (28.57) 81(53.71) 

0.40 3.0 124 105 (15.32) 88 (29.03) 57(54.03) 

0.45 1.5 951 809 (14.93) 680 (28.50) 437(54.05) 

0.45 2.0 323 275 (14.86) 231 (28.48) 149(53.87) 

0.45 2.5 185 158 (14.59) 133 (28.11) 85(54.05) 

0.45 3.0 130 111 (14.62) 93 (28.46) 60(53.85) 
a   Percentage decrease = (the number from haplotype block method or one locus method - the number 

from standard Bonferroni method)/the number from standard Bonferroni method) ×100 
b  ASW: African ancestry in Southwest USA including 12 singletons and 11 trios from 40 

families, CEU: Utah residents with Northern and Western European ancestry from the CEPH 

collection including 0 singletons and 27 trios from 20 families, CHB: Han Chinese in Beijing, 

China,2.The prevalence of the hypovitaminosis D in asthmatic population is 80%; dominant 

inheritance model was assumed; desired power is 80%; The type I error rates were set at 0.05/ m the 

number of candidate SNPs (standard Bonferroni type I error correction), 0.05/x, x=total number of 

haplotype blocks and singletons among the candidate SNPs,  and 0.05 (assuming a single SNP) with 

a 2-sided alternate hypothesis; A matched case-control design. 
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DISCUSSION 

Genetic association studies commonly test multiple genetic variants. If we estimate the 

sample size based on a single variant for a multi-locus genetic association study, the estimated 

sample size might result in insufficient statistical power to detect true evidence for an 

association, leading to high false negative rates and reducing the reliability of the study. 

Therefore, a large number of SNP markers requires a large sample size to reduce false 

positive association due to testing multiple hypotheses. 

For instance, E.P. Hong et al.28 reported that as the number of genetic markers tested 

increased, the Bonferroni p-value that was specific to the number of SNP makers tested 

decreased, and the required sample sizes increased. In their study, they set up the family-wise 

error rate at 0.05. Therefore, for a single SNP marker p=0.05, for 500k SNP markers 

p=1×10~7, and for 1M SNP markers p=5×10-8. They calculated the sample sizes with 80% 

power for increasing number of SNP markers in case-control and case-parent studies as 

shown in the following table28.  

Table 4-2. Results from Hong’s study28 in sample sizes with 80% power by increasing number of SNP 

markers in case-control and case-parent studies 

 

From Table 4-2, we can see that as the point-wise error decreased from 0.05 to 5×10-8, the 

required sample sizes increased. They used standard Bonferroni correction to get the point-

wise error rates to account for the effects for multiple genetic markers in sample size 

estimation and to control for the family-wise error rate at the specific level.  

However, the adjusted alpha level from the standard Bonferroni correction can generate 

much larger sample sizes compared with an un-adjusted alpha value. Though a large sample 

size improves the ability to detect genetic association with a disease, it may not be cost-
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effective. To find the minimum number of samples to achieve adequate statistical power, we 

investigated the pattern of LD structure across the tested DNA region among the racial groups 

by the haplotype blocking method (BCM). BCM applied probability theory to identify 

statistical associations among a set of SNPs across a specific DNA region, and grouped these 

SNPs into related subsets of SNPs. The number of subsets of SNPs and singletons of SNPs 

formed the number of independent tests, which accounts for historical biological relationships 

among these genetic markers in the point-wise error calculation. Compared with the standard 

Bonferroni type I error correction calculation for the alpha level, our method generated a more 

precise pointwise error rate to get a more appropriate and effective sample size with enough 

power and reasonable cost to realistically collect samples.  

Genome-wide association or linkage methods are dependent on the linkage disequilibrium 

among genetic variants on a chromosome. Differences in the pattern of linkage disequilibrium 

by race have been reported3, this could affect the success of gene discovery efforts. A 

previous study45 also reported that ignoring ethnicity in molecular epidemiologic studies can 

lead to some distortion of estimates of association. Therefore, all studies should carefully 

consider the potential for confounding by ethnicity, ancestry, or race, and respond with 

appropriate study design or analytic methods. As such, the statistical analyses in genetic 

association studies are often performed by race due to the different population structure. 

Therefore, the number of subjects required for one race group could be different from another 

group. In our case study, ASW required a larger sample size than the other two race groups to 

detect genetic association in the same DNA region with hypovitaminosis D since there was 

weaker LD among the genetic variants in the ASW population compared with that in CEU 

and CHB populations. Using one standard method for the different racial groups to calculate 

sample sizes, might result in a lack of power to find the causal genetic variants in the ASW 

population, but overestimate sample sizes needed to test the genetic association in other two 

populations.  

The haplotype block by race accounts for the historical biological relationships among 

genetic makers at a specific DNA region to group these genetic variants with high linkage 

disequilibrium into subsets. The subset of SNPs not only can be used to find a tag SNP, but 

also the number of independent tests. A tag SNP is a representative single nucleotide 
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polymorphism in a region of the genome with high linkage disequilibrium that represents a 

group of SNPs called a haplotype. It is possible to identify genetic variation and association to 

phenotypes without genotyping every SNP in a chromosomal region. We used the number of 

independent tests or tag SNPs across the tested DNA region to adjust the alpha value for 

sample size estimation by race. This could reduce the number of subjects required, but have 

enough statistical power, to find evidence of genetic association with the targeted phenotype, 

leading to cost-effective outcomes in these studies. 
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