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Abstract

Connecting people offers opportunities to build communities of any size and consequently,

brings the world closer together. Conventionally, the connectivity has happened through

traditional radio-frequency communication method. However, the ever-increasing demand

for higher data-rate communications and the explosion of advanced wireless applications

such as virtual reality, augmented reality, and internet of things, reduces the effectiveness of

these methods. Therefore, developing next-generation technologies, such as learning-based

communication systems, that can satisfy the large data and ultra-high rate communication

requirements would be of interest.

To address the challenging problem of connectivity, our research focuses on developing

a learning-based framework for the next-generation communication systems. These systems

can proactively adapt their communication and networking strategies to the dynamics of

the environment, thereby maximizing their end-to-end performance in terms of data-rates,

energy-efficiency, and link-reliability. Toward this goal, first information-theoretical tools

are used to establish the fundamental limits (including bounds on the end-to-end perfor-

mance). These performance limits are the keys for building reliable and efficient systems.

Then, powerful machine learning techniques, such as deep learning, are employed for the

implementation of such systems. In particular, a simple and cost-effective system with

near-optimal performance can be implemented by merely taking off-the-shelf deep learning

models, applying them to communication design problems, and tuning them based on the

training data.
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1
CHAPTER 1

Introduction and Background

1.1 Communication Systems

Communication systems transmit information from a source to a destination via a physical

communication channel that propagates electromagnetic, acoustic, or optical waves. Figure

1.1 shows a block diagram of a communication system.

Figure 1.1: A block diagram of a communication system.

As shown in Fig. 1.1, a communication system has three main elements: A transmitter,

a communication channel, and a receiver. The main purpose of the transmitter is to process

the message signal into a form suitable for transmission over the physical communication

channel. This process is called modulation. The communication channel’s function is to

provide a path between the transmitter’s output and the receiver’s input. The receiver’s

function is to recover the message signal from the received signal using detection and decoding

algorithms. The transmitter can use two methods to transmit the message signal over the

communication channel: Analog or digital methods. Both methods have advantages and

disadvantages. Digital methods have the following advantages:

• They have an immunity to noise and interference which are impossible to prevent in

the communication channel.

• The transmitter can implement the same format for different types of message signals

including voice data or video data.
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• The transmitter can use encryption techniques to provide security for message signals.

The disadvantages of the digital methods are that they can be complex and costly for com-

munication channels such as underwater communication channels, satellite channels, and

optical fibers. For analog methods, the advantages include the following:

• The implementation of most analog methods in communication systems is very simple.

• Analog methods are not expensive because they can be implemented using simple

technologies.

1.2 Modulation/Demodulation

Modulation is the process that modifies the message signal into a form that is suitable

for transmission over the communication channel. It changes some parameters of the car-

rier wave in accordance with the message signal so that the output signal will match the

bandwidth of the communication channel. The modulation process happens on the trans-

mitter side. To recover the message signal from the received signal, the receiver uses the

inverse of the modulation process which is called the demodulation process. There are other

benefits of using modulation other than matching the communication channel’s bandwidth.

One of these benefits is that modulation enables multiplexing. This process enables the

transmitter to transmit different message signals over the same channel at the same time.

The other benefit is that modulation modifies the message signal to be immune to noise and

interference. The modulation process varies one or more parameters of the carrier signal,

with a modulating signal that typically contains information of the message signal. The

carrier signal is a sinusoidal signal and has three independent parameters that can be varied

with the message signal. These three parameters are amplitude, frequency, and phase. The

process that changes the carrier signal’s amplitude in accordance with the message signal is

called amplitude modulation (AM). Frequency modulation (FM) is the process that varies

the frequency of the carrier wave. The last form of modulation is phase modulation which is
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done by changing the carrier signal’s phase. Most of the communication systems use those

modulations in our daily life.

1.3 Detection/Estimation Algorithms

The receiver uses algorithms to estimate the transmitted symbols from the received

signal. In this section, we present detection algorithms used by the receiver to recover

the information transmitted by the transmitter. Before we present those algorithms, we

need to describe our system model so that we can have some insights for each algorithm’s

performance. We assume that we have a single-input-single-output (SISO) communication

system. In other words, we have one transmitter/receiver and each one is equipped with

one single transmit/receive antenna. The transmitter wishes to transmit p symbols x =

[x1, · · · , xp] to the receiver, over p time slots. We denote by y = [y1, · · · , yp] the received

symbols. The received signal y is related to the transmitted signal x through a probabilistic

channel law Py|x which is the probability law of observing y given that an x has been

transmitted.

1.3.1 MAP Detection Algorithm

To find the maximum a-posteriori (MAP) estimate of x (i) given that we have observed

y (i), we find the value of x (j) , 1 ≤ j ≤ p, that maximizes

x̂ (i) = arg max
x(j), j=1,...,p

P(y (i) |x (j))P(x (j)) for 1 ≤ i ≤ p. (1.1)

1.3.2 ML Detection Algorithm

The maximum likelihood (ML) detector searches for all the possible transmitted symbols

x (j) , 1 ≤ j ≤ p, to find the estimated symbol x̂ (i) that maximizes the likelihood of

obtaining the received sequence [1], i.e.,
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x̂ (i) = arg max
x(j), j=1,...,p

P(y (i) |x (j)) for 1 ≤ i ≤ p. (1.2)

When the prior probabilities are uniform, i.e., P(x (j)) = 1
p
, ∀j ∈ {1, · · · , p}, the MAP

estimator is equivalent to the ML estimator.

Although the above algorithms are optimal from an error performance point-of-view, they

are complex to implement, especially for multiple-input-multiple-output (MIMO) systems.

Next, we briefly overview the two most popular linear algorithms that are less complex, but

are sub-optimal.

1.3.3 ZF Detection Algorithm

Zero forcing (ZF) algorithm is implemented in MIMO communication system. In this

case, the transmitter has Nt transmit antennas while the receiver has Nr receive antennas.

The transmitter wishes to transmit Nt×p symbols through Nt transmit antennas. We denote

by X, the Nt × p transmitted matrix. We denote by Y , the Nr × p matrix that contains

all the received signals. We consider the elements of the received matrix Y are given by the

following equation:

Y = HX +Z, (1.3)

where H is the Nr × Nt channel matrix that contains the communication channel’s coeffi-

cients, and Z ∼ N (0, σ2INr) is a circularly additive white Gaussian noise (AWGN) with 0

mean and covariance σ2INr . We assume a flat fading environment, where the channel matrix

H is constant over the transmission of p symbols. Examination of equation (1.3) shows that

each received signal at each receive antenna consists of linear superposition of signals from

all the transmit antennas. As a result, if a receive antenna tries to detect the signal from a

specific transmit antenna, then the signals from the other transmit antennas constitute the

interference. In a ZF detector, the effect of interference is reduced by premultiplying the

received signal matrix Y by the Moore-Penrose pseudo inverse of the channel matrix, which
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is denoted by H+ and is defined as follows:

H+ =
(
HHH

)−1
HH , (1.4)

where HH is the conjugate transpose of the matrix H .

1.3.4 LMMSE Detection Algorithm

In linear minimum mean square (LMMSE) detection algorithm, the estimated transmitted

matrix X̂ is given by:

X̂ = WmmseY , (1.5)

where Wmmse =
(
HHH + σ2INr

)−1
HH . If we compare (1.5) and (1.4), we find that the

difference between the two equations is the term σ2INr . This term avoids the problem of

noise amplification in ZF detection algorithm.

1.4 Thesis Outline

This thesis aims to provide efficient and practical learning-based algorithms for the

communication system. First, we present the background and the important basis of deep

learning (DL). Second, we propose information-theoretical tools to establish the fundamental

limits and to understand the inner mechanism of DL algorithms. Finally, we apply DL

techniques to the communication system for interference cancellation, channel estimation,

and symbol detection.

In chapter 2, we introduce the basics of DL including supervised and unsupervised learn-

ings, the architecture of different deep neural networks (DNNs), the backpropagation algo-

rithm, and the autoencoders.

In chapter 3, we derive an upper bound on the expected generalization error of the
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convolutional neural network using information theoretical tools in terms of the entropy

of the input and the number of layers. When there is no one-to-one mapping between

hidden layers, the upper bound shows that as the number of hidden layers increases in

the convolutional neural network, the expected generalization error decreases exponentially

to zero. We showed that adding more layers is not rewarding when there is at least one

one-to-one mapping between two consecutive hidden layers.

In chapter 4, we propose a learning-based approach relying on DNN to design a partial

zero forcing (PZF) interference cancellation scheme in uplink cellular networks. Numerical

results show that the learning-based approach mimics accurately the model-based approach

while reducing substantially the execution time by more than 90 %.

In chapter 5, we develop a neural networks-based estimator that can explicitly estimate

the channel state information (CSI) at the receiver without knowing the optical channel

model. We design a neural networks-based detector that uses the estimated CSI to detect

transmitted symbols without knowing the optical channel model.

1.5 Notation

Random variables are represented by uppercase letters, e.g., X, their realizations by

lowercase letters, e.g., x, and their distributions by PX . Random vectors are represented

by bold capital letters, e.g., X, their realizations by bold lower letters, e.g., x, and their

distributions by PX . We denote by P(X,Y ) the distribution of the joint random variable

(X, Y ), and by PY |X the distribution of the conditional random variable Y |X. E
PX

[.] denotes

the expectation of the expression inside the brackets over random variable X.
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CHAPTER 2

Learning-Based Communication Systems

2.1 Motivation

As we discussed in chapter 1, a typical wireless communication system contains a trans-

mitter, channel, and receiver. The channel model characterizes the physical phenomena of

the transmitted signals and helps in designing the transmitter and the receiver. Convention-

ally, traditional radio-frequency (RF) communication systems transmit signals at frequencies

below 10 GHz. In these systems, the channel model follows tractable mathematical models

that describe the propagation characteristics of the transmitted signals with reasonable ac-

curacy. However, in other complex systems, it is difficult to find a tractable mathematical

model that describes the channel model with high accuracy [2]. We highlight two complex

scenarios where it is difficult to describe analytically the channel model. The first sce-

nario is high frequency communications, i.e., millimeter-wave (mm-Wave) communications

(30 GHz-100 GHz) [3]. The second scenario is underwater or molecular communications [4].

Mm-Wave channels offer massive expansion in bandwidth to support high data rates to users

[5, 6, 7]. In mm-Wave communications, channel models are too complex and they change

very fast. Hence, it is difficult to estimate the channels with reasonable accuracy. This

estimation of CSI is necessary for many detection algorithms, i.e., ML, PZF, and LMMSE

detection algorithms. The latter scenario includes molecular channels, i.e., the channel over

which molecules transmit signal between each other to communicate [4]. In this category,

channel models are unknown or difficult to derive. Therefore, it is difficult to use traditional

detection algorithms to optimize the system performance.

DL is a subfield of machine learning that has recently showed unprecedented success in

classification and prediction problems without the need of well-defined mathematical model

[8]. It shines in many applications like computer vision, automatic speech recognition, and

natural language processing [8]. Researchers are actively trying to extend this technology to
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other domains, such as wireless communications. Using DL techniques on a wide range of

communication systems has achieved unprecedented success such as cognitive radio, resource

management [9], link adaptation [10, 11] and positioning [12]. The DL-based communication

system has promising applications in complex scenarios for the following reasons:

First, deep networks have shown an unprecedented ability to approximate diverse function

[13], i.e., they are considered as universal function approximators, with high-level learning

ability regardless of the complex channel conditions [2]. In DL-based communication sys-

tems, learned algorithms are represented by learned weights that optimize the end-to-end

performance of the communication systems using convenient training methods instead of

using well-defined and complex mathematical models.

Second, the distributed and parallel computing architectures of DL ensure computa-

tion speed and processing capacity. DL systems demonstrate a remarkable energy-efficiency

through fast-developing parallelized processing architecture such as graphical processing

units (GPUs).

2.2 Supervised and Unsupervised Learning

In this section, we present two learning concepts in DL including supervised and unsu-

pervised learning.

2.2.1 Supervised Learning

In supervised learning, the learning algorithm learns the mapping function between

the input space X and the output space Y , i.e., Y = f (X ). In this case, each training

sample Zi = (Xi, Yi), where Xi ∈ X is the input variable and Yi ∈ Y is the label or the

desired output variable. It is called supervised learning because the learning process of the

underlying algorithm from the training dataset can be seen as a teacher supervising the

learning process [14]. In other words, the algorithm knows the desired output of each input
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variable and tries to find the optimal mapping function that gives the closest solution to the

label. The learning process stops when the learning algorithm achieves an acceptable level

of performance. There are two types of supervised learning problems:

• Classification: A classification problem is when the output variable is a category. For

instance, consider the problem of learning an algorithm for animal image classification.

In this case, the output variable takes animal’s names such as: "dog", "cat", and

"lion".

• Regression: A regression problem is when the output variable is not discrete anymore

but is real value, such as "weights" or "dollars".

Among popular examples of supervised learning algorithms, we have:

• DNN that is used to solve both classification and regression problems.

• Linear regression that is used to solve regression problems.

• Support vector machine that is used to solve classification problems.

2.2.2 Unsupervised Learning

In unsupervised learning, we have only the input variable X ∈ X . In this case, each

training sample Zi = Xi where Xi ∈ X . The purpose of unsupervised learning is to let the

learning algorithm learn the underlying distribution in the data in order to learn more about

the data. It is called unsupervised learning because there are no correct answers, i.e., labels,

and there is no teacher. Learning algorithms are left to their own to find the interesting

distribution in the data [14]. A concrete example of unsupervised learning is a housekeeping

robot. Nobody explicitly tells the robot what are the steps that it needs to follow to do the

housework. The robot learns by itself to do the tasks. There are two types of unsupervised

learning problems:
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• Clustering: In clustering problems, the learning algorithm tries to find the inherent

grouping in the data. For instance, we try to group customers depending on their

purchasing behaviour.

• Association: In association problem, the learning algorithm tries to find rules that

describe large portions of the data.

Among popular examples of unsupervised learning algorithms, we have:

• K-means that are used to solve clustering problems.

• Apriori algorithms that are used to solve association problems.

2.3 DNNs

In this section, we describe the architecture of two DNNs such as fully connected and

convolutional neural networks.

2.3.1 An Overview of FNN

Below, we briefly explain how fully connected neural networks (FNNs) work. Essentially,

it consists of 2 main engines. The first one is the construction of the underlying layers, with

each layer consisting of a certain number of neurons (perceptron), weights and biases. The

second consists of a backpropagation algorithm to update the weights and the biases.

The Structure of FNN

The FNN is an artificial neural network composed of many perceptrons and many layers

[15]. For simplicity, we restrict to 3-layered FNN as showing in Fig. 2.1. The first, the

second and the third layers are the input, the hidden and the output layer, respectively. In

Figure 2.1, x = [x1, . . . , xnI ] denotes the input of the FNN. Each input x corresponds to a

label y = [y1, y2, . . . , yno ]. a
(k)
i denotes the output for the ith node in the kth layer. W (i)
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Figure 2.1: A 3-layered FNN. The input, the hidden and the output layers have nI , nH and
no neurons, respectively.

contains the weight factors between the (i− 1)th layer to the ith layer. b(k)
i represents the

bias for the ith node in the kth layer. σ is the activation function. z(k)
i denotes the output

for the ith node in the kth layer before the activation function. For instance, for 3-layered

FNN in Figure 2.1, the outputs of each layer are obtained as following

z(i+1) = W (i+1)a(i) + b(i+1), (2.1)

a(i+1) = σ
(
z(i+1)

)
, i = 1, 2, (2.2)

where a(i) = [a
(i)
1 , . . . , a

(i)
n ]T , b(i) = [b

(i)
1 , . . . , b

(i)
n ]T and z(i) = [z

(i)
1 , . . . , a

(i)
n ]T , with n ∈

{nI , nh, no}. The objective of the FNN is to obtain a final output (a(3) in this case) as

close as possible to the label y corresponding to the current processed input sample x.

The Backpropagation Algorithm

The main function of the backpropagation algorithm is to update the weights and

the biases to optimize the following quadratic cost function [15] (Applied in the FNN in
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Figure 2.1)

C =
1

2
‖y − a(3)‖2 =

1

2

no∑
j=1

(
yj − a(3)

j

)2

. (2.3)

The backpropagation algorithm is a systematic way to compute

∂C

∂w
(3)
ij

,
∂C

∂b
(3)
j

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (2.4)

where n = nh if m = no and n = nI if m = nh; w
(k)
ij denotes the weight between the jth

node, in the (k − 1)th layer, and the ith node in the (k)th layer. For quadratic cost function,

the backpropagation algorithm is presented as follows:



∂C
∂W (3) = δ(3)a(2)T ,

∂C
∂b(3)

= δ(3),

δ(2) = W (3)T � σ′
(
z(2)
)
,

∂C
∂W (2) = δ(2)a(1)T ,

∂C
∂b(2)

= δ(2),

(2.5)

where δ(3) is given by

δ(3) =

[(
a

(3)
1 − y1

)
σ′
(
z

(3)
1

)
, · · · ,

(
a(3)
no − yno

)
σ′
(
z(3)
no

) ]
, (2.6)

where σ′ (·) is the derivative of the activation function σ (·) and � is the Hadamard product.

Backpropagation algorithm is based around 4 fundamentals equations (2.5), i.e., the partial

derivatives of weights and biases. In each iteration, the FNN implements the backpropagation

algorithm in order to optimize the cost function (2.3), i.e., to converge toward the desired

level y.
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Figure 2.2: A 5-layered CNN: The input, the convolution, the pooling, the fully connected,
and the output layers.

2.3.2 An Overview of CNN

In this section, we describe the layers of convolutional neural network (CNN). As can

be seen in Fig. 2.2, CNNs have three types of layers: convolutional, pooling and fully

connected layers. A convolutional layer computes the output of a convolution operation

between the input image and a set of learnable filters. The benefit of using this layer is that

the convolution operation is not over the whole input image, but over a specific region called

receptive field. To process all the input image’s pixels, the filter shifts with a known stride

parameter. Hence, we obtain a map feature with less dimensionality compared to the input

image. Pooling layers are also referred to as downsampling layers. These layers come after

the convolutional layer. They reduce the spatial dimension of the feature map by taking

a filter of size 2 × 2 and a stride of length 2. There are two types of pooling layers: max

pooling and average pooling. Max pooling is applied to the feature map and it outputs

the maximum number in every sub-region that the filter convolves around. Average pooling

outputs the average number in every sub-region that the filter convolves around. Pooling

layers serve two purposes. The first is that the number of weight parameters is reduced,

and this lessens the complexity cost. The second is that it avoids the overfitting [16] which

happens when the CNN performs well on the training data, but it performs poorly on the

testing data. Fully connected layers are located at the end of CNN.
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Figure 2.3: The structure of an AE with three fully connected hidden layers.

2.4 Autoencoders

Autoencoders (AEs) are neural networks (NNs) that are used to solve unsupervised

learning problems [14]. AEs are trained to attempt to copy its input to its output [14]. They

are used for data’s dimensionality reduction [17]. The structure of an AE is shown in Fig.

2.3. As can be seen in Fig. 2.3, an AE consists of two parts, the encoder and the decoder.

The encoder and decoder are defined as transition functions φ : X → F and ψ : F → X ,

respectively, where X is the input space and F is the feature space. The AE attempts to

copy its input to its output by solving the following optimization problem:

φ, ψ = argmax
φ,ψ

‖x− (ψ ◦ φ)x‖2, (2.7)
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where x ∈ X is the input vector to the AE. In the simplest case, when the AE contains three

layers: an input, a hidden, and an output layers, respectively, the encoder part of the AE

takes the input x ∈ Rd = X and maps to z ∈ Rp = F , where d and p denotes the number

of neurons in the input and the hidden layers, respectively. The mapping between x and z

is given by:

z = σ (Wx+ b) , (2.8)

where W is the matrix weight, b is the bias vector, and σ (·) is an element-wise activation

function. The image z is called the code, latent variables, or latent representation [14]. The

decoder part of the AE takes the code z and maps to the reconstruction vector x′ ∈ Rd = X

which has the same dimension as the input vector x. This mapping is given by

x′ = σ′ (W ′z + b′) , (2.9)

whereW ′ is the matrix weight, b′ is the bias vector, and σ′ (·) is an element-wise activation

function of the decoder. W ′, b′, and σ′ (·) may differ from W , b, and σ (·) of the encoder

which depends on the design of the AE. During the training stage, the AE attempts to

minimize the reconstruction error/loss, which is given as follows:

L (x,x′) = ‖x− x′‖2 = ‖x− σ′ (W ′ (σ (Wx+ b)) + b′)‖. (2.10)



16
CHAPTER 3

Upper Bound on the Expected Generalization Error of the

Convolutional Neural Network

3.1 Motivation and Related Work

DL is a subfield of machine learning (ML) that has capabilities in classifications and

predictions [18]. It shines in many applications like computer vision and natural language

processing because it is really difficult to model real images and languages using an accurate

mathematical function. CNNs have been used in image recognition [16] and they showed a

great success due to the large public image repositories, such as Imagenet and Quickdraw

[19, 20], and high-performance computing systems, such as GPUs. However, despite their

success, there is still no in-depth theoretical understanding of their learning and optimiza-

tion process. Understanding the inner mechanism in DL has been an open problem for many

years and much effort is being deployed to explain its success. Among the open questions

that researchers are trying to answer are: Why NNs are able to predict outcome values for

previously unseen data? To answer that question, many works tried to bound the generaliza-

tion error. It is the difference between the expected loss of the testing data and the empirical

loss of the training data [21, 22]. This measure is used to quantify the degree to which a su-

pervised DL algorithm may overfit to training data, i.e., how the learning algorithm fits well

on testing data [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Bounding the generalization error

provides a theoretical understanding of the DL algorithms’ performance so that, ultimately,

it helps designing better learning algorithms.

Research works tried to understand the learning process of learning algorithms by bound-

ing the generalization error which reflects how the learning algorithm fits well on testing data,

i.e, an unseen data. For example, the works in [21, Chap. 8],[22, Chap. 6] obtained an upper

bound over the Vapnik-Chervonenkis (VC) dimension. The authors in [21, 22] used the VC

dimension to ensure that the empirical risk will converge uniformly to the expected risk.
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Figure 3.1: A CNN with L hidden layers. S represents the input of the CNN, Tk represents
the output of the kth hidden layer, k ∈ {1, · · · , L}. The output of the Lth hidden layer is
equal to the output of the CNN, i.e., TL = O.

The authors in [23] obtained bounds on the generalization error of support vector machines

(SVMs) both in the classification and in the regression framework that do not depend on

the implicit VC dimension. In [24], an energy-based exploration of random features (EERF)

algorithm is proposed to maintain a low generalization error in supervised learning. The

authors in [24] obtained an upper bound on the generalization error of the EERF algorithm.

Moreover, [25] introduces new stability-based and information-theoretical tools for analysis

of the generalization of learning algorithms in the adaptive setting. The authors in [26, 27]

proposed a margin based generalization bound. The bound in [27] depends on the elemen-

twise L1-norm of the weights in each layer, while the bound derived in [26] depends on

the Frobenius norm (elementwise L2-norm) of the weights in each layer. Recent work [28]

discusses generalization error bounds of learning algorithms in the probably approximately

correct (PAC) model based on mutual information. The authors in [25, 28] assumed that

the output has low mutual information with the input dataset to derive those bounds. In

[29], the authors derived an upper bound on the generalization error of a learning algorithm

in terms of the mutual information between the input and the output. The authors in [29]

restrict the loss function to be a σ-sub-Gaussian to derive their upper bound. In [30], the

authors propose several information-theoretic measures and use them to upper-bound the

generalization error of learning algorithms. The framework in [30] is complementary to the

information-theoretic methodology developed in [29]. Finally, the authors in [31] obtained

an upper bound of the generalization error in terms of the mutual information when the loss

function has an upper bounded cumulant generating function.
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3.2 An Information-Theoretical View of CNN

In this section, we present the relationship between CNN and the concept of information

loss. We formally define the generalization error.

3.2.1 CNN and Information Loss

Figure 3.1 infers that a CNN can be seen as a Markov chain. In other words, S → T1 →

· · ·TL−1 → TL = O forms a Markov chain. Using data processing inequality (DPI)[32], we

have the following relationships:

I (S;O) = I (S;TL)

≤ I (S;TL−1) ≤ I (S;TL−2) ≤ · · · ≤ I (S;T1)

≤ I (S;S) = H (S) , (3.1)

where H (X) represents the entropy of the random variable X and I (X;Y ) denotes the

mutual information between random variables X and Y . Equation (3.1) clearly states that

the output of each layer can only get nosier as we progress towards the CNN’s output

O. Equivalently, the information about S gained by observing the output’s layer can only

decrease while moving from one layer to another towards the CNN’s output.

3.2.2 Strong Data Processing Inequality

In this subsection, we introduce the concept of strong data processing inequality

(SDPI)[33] which is given in the following Theorem:

Theorem 1. [33] When three random variables X, Y and Z form a Markov chain, i.e.,

X → Y → Z, and if the mapping PZ|Y is noisy, i.e., we can not recover Y perfectly from
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the observed random variable Z, then there exists 0 ≤ η < 1, such that:

I (X;Z) ≤ ηI (X;Y ) . (3.2)

From Fig. 3.1, we have Tj−2 → Tj−1 → Tj form a Markov Chain, ∀j ∈ {3, · · · , L}. Since

the mapping PTj |Tj−1
is not necessarily noisy, then (3.2) could be replaced by:

I (Tj−2;Tj) ≤ ηI (Tj−2;Tj−1) , (3.3)

where 0 ≤ η ≤ 1. Note that η in (3.3) is equal to 1 if and only if Tj and Tj−1 are linked via

a one-to-one mapping. Applying this propriety recursively to the Markov chain in Fig. 3.1,

we obtain the following relationships:

I (S;O) = I (S;TL)

≤ ηLI (S;TL−1) ≤ ηLηL−1I (S;TL−2)

≤ · · · ≤

(
L∏
k=1

ηk

)
I (S;S) =

(
L∏
k=1

ηk

)
H (S) , (3.4)

where 0 ≤ ηk ≤ 1, k = 1, . . . , L, quantifies the information loss in the kth hidden layer. Note

again that
L∏
k=1

ηk = 1 if and only if ηk = 1, ∀k ∈ {1, · · · , L}. This means that the mapping

between hidden layers is a one-to-one mapping.

3.2.3 The Generalization Error

A CNN F : Z → W can be regarded as a randomized mapping from the training sample

space Z to the hypothesis space W . In other words, if we denote this randomized mapping

by PW |S, then the CNN takes as input a training sample S = [Z1, Z2, · · · , Zn] of size n of

independent and identically distributed (i.i.d.) random elements of Z drawn from unknown

distribution PZ , and picks a random element W of the hypothesis space W . We denote by

l : Z ×W → [0, 1] the loss function to measure the quality of a prediction with respect to
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a hypothesis. We assume that the loss function is bounded. The true risk of a hypothesis

W ∈ W on PZ is defined as follows [30]:

LPZ (W )
∆
= E

PZ
[l (W,Z)] . (3.5)

Since PZ is unknown, the learning algorithm cannot directly compute LPZ (W ) for any

W ∈ W , but can instead compute the empirical risk of W as a proxy which is defined as

follows [30]:

LS (W )
∆
=

1

n

n∑
i=1

l (W,Zi) . (3.6)

In practice, the true risk is just approximated with a test data [34]. In other words, the

empirical test risk is used to approximate the true risk [34]. For a CNN characterized by

PW |S, the generalization error on PZ is the difference LPZ (W ) − LS (W ), and its expected

value is given as follows [30]:

GEN
(
PZ , PW |S

)
= E

P(S,W )

[LPZ (W )− LS (W )] (3.7)

= E
P(S,W )

[
E
PZ

[l (W,Z)]− 1

n

n∑
i=1

l (W,Zi)

]
, (3.8)

where the expectation is taken with respect to the joint distribution P(S,W ). A small expected

generalization error implies that the learned hypothesis will have similar performance on both

the training and testing datasets, i.e., there is no overfitting.

3.3 Main Result

In this section, we present the main result which is an upper bound on the expected

generalization error of CNNs as formalized in the following theorem:

Theorem 2. The expected generalization error for a CNN with L hidden layers, input S
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with distribution PS, and output W , can be upper bounded as follows:

|GEN
(
PZ , PW |S

)
| ≤ exp

(
−L

2
log

1

M

)√
2 log (2)H (S)

n
, (3.9)

where 0 ≤ M = max
k=1,··· ,L

ηk ≤ 1, with ηk quantifies the information loss in the kth hidden

layer.

We note that the results in Theorem 2 provide an analytical closed-form upper bound on

the expected generalization error of the CNN. Below, we provide insights as to how Theorem

2 could be used to understand the learning process of the CNN. For example, when there is

at least one one-to-one mapping between two consecutive hidden layers, then M = 1, and

the upper bound does not depend on the number of hidden layers L. Therefore, introducing

more layers is not rewarding in this case. When there is no one-to-one mapping between

hidden layers, then M < 1 and the expected generalization error decreases exponentially to

zero as the number of hidden layers L increases in the CNN, because log
(

1
M

)
> 0. Hence,

adding more layers is beneficial only if all the mapping between any two consecutive layers

is noisy 1, from a generalization error point of view.

3.4 Numerical Results

In this section, we study the performance of the proposed CNN on the classification of

Quickdraw dataset. First, we describe the dataset. Second, we present the CNN architecture

that we used in our simulation. Then, we describe how we implemented the CNN. Finally,

we present the obtained results.
1In practice, each hidden layer of CNN can be a noisy version of the previous hidden layer when the

mapping between these two hidden layers is not a one-to-one mapping, i.e., not an invertible mapping. For
instance, the rectified linear unit (ReLU) activation function is not a one-to-one mapping function. All the
negative values in the ReLU have the same output which is a zero output.
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Figure 3.2: The architecture of the CNN.

3.4.1 Quickdraw Dataset

we use a CNN to classify Quickdraw images, i.e., a human-drawn images containing

different classes of objects released by Google. Quickdraw consists of 345 classes. From 345

categories, we restricted to classify only 10 categories of images which are: Alarm clock,

Aircraft-carrier, Apple, Calendar, Cake, Crab, Hurricane, Purse, Sink, and Banana.

3.4.2 CNN Architecture

As can be seen in Fig. 3.2, the architecture of the CNN contains L = 7 layers: two

convolutional layers, two max-pool layers, two fully connected layers, and an output layer.

The first convolutional layer contains 20 feature maps with size 24×24, while the second

convolutional layer contains 40 filters with size 10×10. Every fully connected layer contains

500 neurons. The number of outputs for the output layer is 10, as we have 10 categories for

classification.
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3.4.3 The Implementation

We train our CNN over 50,000 samples of training set in batch sizes of 10. We set

the number of iterations, i.e., the number of epochs, to 40. We use a mean square error

(MSE) as a lost function and stochastic gradient descent (SGD) to train our CNN. After the

training, we test it over 1,000,000 samples. We implemented the training and testing phase

using Theano [35].

3.4.4 Results

As shown in Fig. 3.3, The network had an accuracy of 91.2% on the testing data. It

was the best accuracy reached during several trials. During the learning process the network

started with 74% and then learned fast and reached 80% within the first epoch. By epoch

15 the network reached the 90% and in epoch 35 it reached the best test accuracy.

Figure 3.4 illustrates the expected generalization error for different number of hidden

layers L. It shows the expected generalization error and the upper bound. To plot the ex-

pected generalization error which is represented by the red curve, we computed the difference

between the empirical testing error and the empirical training error for different samples set

of size n. After that, we computed the average. To plot the upper bound given by (3.6)

that is represented by the black curve in Fig. 3.4, we have to first compute H (S) as well

as M . To compute H (S), we use the method used by [36]. In this paper, they used an en-

tropy estimator developed by Kraskov et al. [37] and they uploaded the correspondent code

in Github [38]. The built-in package that calculates the entropy is called non-parametric

entropy estimation toolbox (NPEET) [39]. However, to compute M , we first evaluate the

ratios of mutual information of each pair of consecutive hidden layer. We then find the max-

imum value of these ratios numerically and plug it as M in (3.6). To compute the mutual

information between any two successive hidden layers, we use the same method used by [36].

In this paper, they used a mutual information estimator developed by Kraskov et al. [37] and
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Figure 3.3: The learning progress of the CNN.

they uploaded the correspondent code in Github [40]. The same built-in package NPEET

calculates the mutual information [39]

Remark 1: If for some layers the information loss is equal to 1, i.e., ηk = 1 for some

1 ≤ k ≤ L, then the kth layer does not provide any information gain. Hence, we can remove

that layer from the CNN.

Figure 3.4 shows that when the number of hidden layers L increases, the gap between

the upper bound and the expected generalization error decreases. As shown in Fig. 3.4, the

expected generalization error decreases rapidly when the number of hidden layers L increases.

For instance, training the CNN with L = 15 hidden layers drops the expected generalization

error by 80% compared to training the CNN with L = 7 hidden layers. Therefore, increasing

the number of hidden layers reduces the overfitting which is confirmed analytically by the
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Figure 3.4: The expected generalization error versus the number of hidden layers L. The
black and red curves represent the upper bound and the expected generalization error, re-
spectively. To vary the number of hidden layers L, we added a fully connected layer in each
case which contains 500 neurons.

tightness of the upper bound on the generalization error for L large enough.
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CHAPTER 4

Training Deep Neural Networks for Partial Interference

Cancellation in Uplink Cellular Networks

4.1 Motivation and Related Work

In wireless communications systems, partial interference cancellation (PIC) has been

conventionally performed using analytical methods assuming that an accurate channel model

is available. However, in practical communications systems, such accurate models may not

be always easy to devise. In this case, it is difficult to derive performance limits for realistic

wireless channels. Furthermore, even when an accurate channel model exists, PIC induces a

high implementation complexity which compromises its benefit.

Motivated by the success of NNs in various fields, we propose a learning-based PZF

interference cancellation scheme to overcome the complexity issue and demonstrate the ef-

ficiency of the proposed approach numerically. Specifically, we use DNN [41] to mimic the

PZF algorithm [42]. The choice of DNN to perform this task is motivated by the fact that it

only requires simple matrix-vector multiplications which reduces the complexity enormously.

Another reason of using DNNs is their energy-efficiency when implemented on GPUs, thus

providing real time processing [43, 44].

Recently, they have been several works suggesting that learning-based algorithms can

accomplish as good as model-based counterparts in communications systems. In [42], the

authors show that DNNs can estimate the CSI and can detect the symbols in an orthogonal-

frequency division multiplexing (OFDM) system. In [45], a recurrent neural network (RNN)

is proposed to decode, over an AWGN channel, a sequence of bits that has been encoded

using linear codes. The authors in [2] propose an AE-based communications system, in

which, the transmitter and the receiver are FNNs with multiple dense layers. The authors

proved through extensive simulations that the proposed method can achieve the optimal

accuracy of a Hamming code with ML decoding. The authors in [46] showed that it is
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possible to design an AE-based point to point communications system that can be used for

over-the-air transmissions. In [47], an AE is developed to transmit and detect reliably over

a Rayleigh fading channel without having to equalize for the channel gains.

4.2 System Model

The network comprises K + 2 nodes. It includes a base station (BS), a reference

transmitter and K interferers. We chose a finite number of interferers (K <∞) to capture

cellular networks with finite number of interferers. Each transmitter has one single antenna

while the BS has M receive antennas. The receiver has perfect CSI of Nc interferers and

only knows the statistics of the remaining K − Nc interferers. The BS, then, decodes the

first set via a PIC approach while treating the second set of interferers as noise [48]. The

signal at each receive antenna is corrupted by an AWGN with zero mean and variance σ2.

During the transmission process and at an instant t, the ith node transmits the signal si (t),

with E
[
si (t)

2] = Pi, the transmitted power of user i. The channel vector between the ith

transmitter and the BS is equal to hi = [h1i, h2i, ..., hMi]
T where hji is the complex channel

coefficient between the ith transmitter and the jth receive antenna. Each channel gain hi

accounts for Rayleigh fading and shadowing as described by hi = 10
ηi
20wi, 0 ≤ i ≤ K, where

ηi is the shadowing factor and wi ∼ CN (0, IM), is the fading vector. In the presence of

log-normal shadowing, the {ηi} are i.i.d. Gaussian with mean µs and variance σ2
s . We denote

by x(t) = [x1(t), x2(t), ..., xM(t)]T the vector of signals at M receive antennas.

x(t) =
Nc∑
i=0

hisi(t) +

(
K∑

i=Nc+1

hisi(t) + n(t)

)
. (4.1)

4.3 Model-Based PZF Scheme

Now, the receiver may utilize a PZF decoding strategy to cancel the Nc interferers

[49, 48]. Accordingly, let us define H (Nc) = (h1, . . . ,hNc) ∈ CM×Nc , which includes the
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effective channels from the Nc interfering nodes. Departing from (4.1), PZF receiver cancels

Nc interferers by multiplying the received signal x (t) by a filter v (Nc)
H given by:

v (Nc) =

(
I −H (Nc)H (Nc)

†
)
h0∥∥∥(I −H (Nc)H (Nc)

†
)
h0

∥∥∥ , (4.2)

where A† designates the pseudoinverse of A. Observe that v (Nc) in (4.2) reduces to maxi-

mum ratio combining (MRC) when Nc = 0 and to full ZF when Nc = M − 1.

4.4 Learning-Based PZF Scheme

In this section, we present the proposed approach that uses DNN to mimic PZF. First, we

present a description of the DNN architecture. Second, we show how we generate the training

and the testing data. Finally, we explain how training and testing stages are performed.

4.4.1 The DNN architecture

As can be seen in Fig. 4.2, our FNN contains one input layer, three hidden layers, and

one output layer. The received signals x ∈ CM×1 are the inputs of the network. Hence, the

input layer contains M neurons. The outputs of the network are the estimates of the desired

transmitter’s binary phase shift keying (BPSK) symbols via DNN ŝ0,DNN . Therefore, the

output layer contains one neuron. The first, the second and the third hidden layers contain

200, 80, and 80 neurons, respectively. A ReLU function is used as the activation function

for all hidden layers, and a tangent hyperbolic (Tanh) activation function is used as the

activation function of the output layer. The reason why we chose the fully connected (FC)

architecture instead of the CNN architecture is that the former is more performing in terms of

prediction and classification accuracy than the latter when the data inputs are independent

from each other [14]. Note that the CNN architecture is more suitable when the data inputs

are correlated [14]. For instance, CNNs are more accurate in image classification because
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(a) Training stage.

(b) Testing stage.

Figure 4.1: DNN-based PZF scheme. (a) In the training stage, a fully-connected neural
network NN is trained using samples obtained from model-based PZF developed in section
III. (b) In the testing stage, the trained network is incorporated into the receiver to mimic
PZF and estimate the BPSK symbols.

the image itself contains finite number of pixels that are totally correlated to each other. In

our case, we assume the received signals at the BS are totally independent from each other

over time, i.e, there is no time correlation in the received signal. Hence, FC architecture is

more efficient than CNN architecture.



30

Figure 4.2: The architecture of the DNN.

4.4.2 Training Data Generation

We generate the data using the following steps: 1) We generate the BPSK symbols

transmitted from the K transmitters {s(i)
k }, 0 ≤ k ≤ K. The superscript i denotes the index

of the training sample. 2) We generate the channel realizations {h(i)
k } and the AWGN {n(i)}.

3) For each tuple
(
{s(i)

k }, {h
(i)
k }, {n(i)}

)
, we generate the received signal {x(i)} according

to (4.1), and we get the estimates of the desired transmitter’s BPSK symbols {ŝ(i)
0,PZF}

by running the PZF algorithm using (4.2). The tuple
(
{Im

(
x(i)
)
, Re

(
x(i)
)
}, {ŝ(i)

0,PZF}
)

represents the ith training sample, where Im (·) and Re (·) represent the imaginary and the

real part, respectively. 4) To obtain the entire training data, we repeat the above process

multiple times. We use the same process to generate the validation data set which is used to

perform cross validation and model selection. It is used to minimize overfitting by stopping

the NN during the training stage.
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4.4.3 Training stage

To optimize the weights of the NN, we use the entire training data set
(
{Im

(
x(i)
)
, Re

(
x(i)
)
}

, {ŝ(i)
0,PZF}

)
i∈T

, where T contains the indices for the training sets. We use the quadratic cost

function which is the mean square error between the true label {s(i)
0,PZF} and the output of

the network {ŝ(i)
0,DNN}. The optimization algorithm we use for our NN is a mini-batch SGD.

4.4.4 Testing stage

In this stage, we generate the testing data using the same process used to generate the

training data sets. Then, we pass each received signal {x(i)} through the trained network

and obtain the estimates of the BPSK symbols {ŝ(i)
0,DNN}. Finally, we compute the bit error

probability (BEP) of the DNN and compare it with that obtained by the PZF.

4.5 Numerical Results

In Fig. 4.3, we study the impact of varying the batch size on the mean square error

(MSE) evaluated on the validation set. As can be seen in Fig. 4.3, larger batch size leads

to slower convergence and higher validation error. Based on this figure, we choose the batch

size to be 200.

Figure 4.4 illustrates the MSE of the validation set during the learning process for different

learning rates. The figure shows that by increasing the learning rate, the MSE converges to

zero very fast. Therefore, we choose the learning rate to be 0.01.

Figure 4.5 shows the MSE versus the number of iterations at Eb
N0

= 15 dB during the

training phase. As illustrated in Fig. 4.5, the MSE decreases sharply at first and then

gradually declines until the MSE approaches zero during the training process of the network.

The MSE in every Epoch was approximately the same, for training and validation data set,

which means that the NN fits accurately the training data set.
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Figure 4.3: The MSE of the DNN during the learning process for different batch sizes at
Eb
N0

= 0 dB. The network comprises 11 users and a receiver with 12 antennas. The transmit

signal-to-noise-ratios (SNRs) of the users are equals to Eb
N0

(
Eb,i
N0

= Eb
N0
, 0 ≤ i ≤ K

)
. Nc is

equal to 10. We set µs =0 and σs =0 dB.

We studied the average BEP of the model-based and the learning-based PZF for 8 phase

shift keying (8-PSK) and BPSK as shown in Fig. 4.6. To train the NN on 8-PSK and

BPSK symbols, we used the same NN’s architecture, i.e., the input, the first hidden, and the

second hidden layers contain the same number of neurons for both BPSK and 8-PSK symbols,

respectively. Since the outputs of the NN are the estimates of the desired transmitter’s BPSK

and 8-PSK symbols, the NN’s output layer, when BPSK (8-PSK) respectively, symbols are

used for transmission, contains one neuron (three neurons) respectively, because we can

represent one BPSK (8-PSK) respectively, symbol as one bit (three bits) respectively. It can

be seen in Fig. 4.6 that the error performance of the learning-based PZF is very close to

the model-based PZF at low SNRs for both BPSK and 8-PSK symbols. For instance, the



33

0 10 20 30 40 50 60 70 80 90 100

Time (Seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
e
a

n
 S

q
u

a
r
e
 E

r
r
o

r
 (

V
a

li
d

a
ti

o
n

 S
e
t)

Learning Rate: 0.0001

Learning Rate: 0.002

Learning Rate: 0.01

Figure 4.4: The MSE of the DNN during the learning process for different learning rates at
Eb
N0

= 0 dB. The network comprises 11 users and a receiver with 12 antennas. The transmit

SNRs of the users are equals to Eb
N0

(
Eb,i
N0

= Eb
N0
, 0 ≤ i ≤ K

)
. Nc is equal to 10. We set µs =0

and σs =0 dB.

relative error between the model-based and the learning-based PZF performances, for both

BPSK and 8-PSK is at most 6% at high SNR. However, learning-based PZF requires only a

small fraction of the computational resources used by model-based PZF.

Table 4.1 illustrates the computation reduction which is defined as tPZF−tDNN
tPZF

, where tPZF

and tDNN represent the total central processing unit (CPU) execution time in seconds for

the model-based and the learning-based PZF, respectively, for different number of users K.

It is observed that using learning-based instead of model-based PZF reduces substantially

the implementation complexity in terms of computational time by more than 90%.

We studied the BEP of the model-based PZF and the learning-based PZF when MSE

and cross entropy are used as loss functions for BPSK symbols as shown in Fig. 4.7. It can
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Figure 4.5: The MSE of the DNN during the learning process at Eb
N0

= 15 dB. The network
comprises 11 users and a receiver with 12 antennas. The transmit SNRs of the users are
equals to Eb

N0

(
Eb,i
N0

= Eb
N0
, 0 ≤ i ≤ K

)
. Nc is equal to 10. We set µs =0 and σs =0 dB.

be seen in Fig. 4.7 that the error performance of learning-based PZF with MSE loss function

matches the error performance of learning-based PZF with cross entropy loss function when

−5 ≤ Eb
N0

< 20. Furthermore, the relative error between the learning-based PZF with MSE

loss function and the learning-based PZF with cross entropy loss function performances is

at most 6% at high SNR, i.e., 20 ≤ Eb
N0
≤ 25. In addition, the BEPs of both leaning-based

PZFs with MSE and cross entropy loss functions are very close to the model-based PZF’s

Table 4.1: Computational complexity comparison for different number of users K. The
receiver comprises 12 antennas. The transmit SNRs of the users are equals to Eb

N0(
Eb,i
N0

= 5 dB, 0 ≤ i ≤ K
)
. Nc is equal to 10. We set µs =0 and σs =0 dB.

# of users (K) tDNN (sec.) tPZF (sec.) tPZF−tDNN
tPZF

11 0.047 0.851 94.48%
15 0.093 1.938 95.2%
19 0.149 5.103 97.08%
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CHAPTER 5

Symbol Detection and Channel Estimation Using Neural Networks

in Optical Communication Systems

5.1 Motivation and Related Work

Studying communication performance limits, such as the channel capacity and the

bit error rate, of the OWC system is more difficult than those of the RF systems. First, in

OWC systems, the transmitted signal must satisfy nonnegativity, peak, and average intensity

constraints due to practical and safety reasons. Second, a clear characterization of the optical

channel model is not available in many OWC scenarios. Hence, designing communication

systems that can efficiently perform without heavily relying on the channel model is much

more preferable in OWC.

Conventionally, a ML rule has been used to detect transmitted symbols at the optical

receiver [50]. But, this rule is deficient in two ways. First, it assumes the receiver knows that

the channel follows a certain model, which leads to inaccurate symbol detection when the

actual channel is different from the assumed model. Second, although detection algorithms

based on the ML rule are optimal in terms of error performance, they usually entail a high

computational complexity due to searching over all possible outcomes [1, 51]. Motivated by

the success of deep learning in image recognition, natural language processing and recom-

mender systems [14], and their ability to capture communication problems [42, 45, 52, 2],

we propose a deep learning architecture for detection and estimation for OWC that does not

rely on a channel model.

Recently, several studies suggested that learning-based communications algorithms can

perform as well as their model-based counterparts. For example, the work in [42] proposes a

NN architecture that implicitly estimates the CSI and detects symbols in an OFDM system.

Two major problems are associated with this approach. First, CSI is not actually estimated

but is assumed to be implicitly estimated by the NNs; hence, communications systems that
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require CSI for modulation classification and power control, e.g., [53, 54, 55], will have to

obtain CSI using some other means. Second, while the proposed architecture provides a good

detection accuracy, a study about the complexity of their proposed architecture during on-

line implementation is not provided. The authors in [56] propose a learning-based approach

relying on NNs to design a minimum mean square error (MMSE) channel estimator in uplink

wireless communications. Simulation results show that the normalized mean square error

performance is close to the performance of the MMSE channel estimator with low complexity

execution. In [57], the authors proposed learning algorithms for coordinated beamforming

for highly-mobile mm-Wave systems. Additionally, authors in [56] train NNs based on the

assumption that the covariance matrices of the channel and the noise are known, i.e., the

statistics of the channel and the noise are known, which might be impractical in real scenarios.

Moreover, [58] shows that using pseudo-random bit sequences or short repeated sequences

can severely degrade NNs’ accuracy in optical communication systems because they can

overfit and are, hence, biased towards predicting these sequences.

5.2 System Model and Background

We consider an OWC system, shown in Fig. 5.1, where a transmitter wishes to reliably

communicate the message m ∈M,M = {1, 2, . . . ,M} over an optical channel to a receiver.

To do so, m is first mapped into the sequence XL ∈ ΩL, where Ω is an optical modulation

set. Now, the elements of XL given by X(i), 1 ≤ i ≤ L satisfy the nonnegativity and

peak intensity constraints dictated by the physical properties of the optical channel, i.e.,

0 ≤ X(i) ≤ A, [59]. Let T = LTs be the coherence time of the optical channel, where L

is the number of channel uses and Ts is the symbol duration. The communication rate of

this OWC system is k
L
bits/channel use, where k = log2 (M) bits are transmitted through

L channel uses. Afterwards, the sequence XL is transmitted through an optical wireless

channel and the sequence Y L ∈ RL is received by the optical receiver. Here, a specific

channel model is not considered and the received sequence Y L can be generated according
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to the probabilistic law given by

P
(
Y L |XL, h

)
, (5.1)

where h ∈ R+ represents the optical channel gain and is assumed to be constant during the

transmission of the sequenceXL. Furthermore, the positivity of h follows from the fact that

in OWC, information is communicated through the intensity of the light [50]. Note that

the channel transition probability law given by (5.1) need not be known for the proposed

approach to work. As we argue below, such a law will be learned by the NN during the

training stage. Furthermore, we consider a pilot-based channel estimation approach, in

which the pilot symbol Xp is used for channel estimation and is transmitted as the first

symbol X(1) of the transmitted sequence, i.e., Xp
∆
= X(1). In the following section, we

describe the proposed NN-based estimation and detection algorithms.

5.3 Proposed Learning-Based Receiver Design for Channel Estima-

tion and Detection

As mentioned before, the ML detection algorithm requires the knowledge of the chan-

nel model and even when the channel model is available, ML entails a large computation

complexity. Therefore, we propose a learning-based receiver design that does not rely on a

channel model, can estimate CSI, and can achieve the optimum performance of the model-

based ML detector. Figure 5.1 shows a typical communication system incorporating the

proposed learning-based channel estimator and neural detector.

5.3.1 Proposed Learning-Based Estimation Scheme

In this section, we propose the NN-based estimator that outputs ĥ as an estimate of h.

The NN Architecture: The neural estimator NN(ĥ) consists of one hidden layer, a

sigmoid activation function at the hidden layer, and a linear activation function at the output

layer. The input to NN(ĥ) is the first element of the received sequence Y (1), and the output
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Figure 5.1: The implementation of the proposed NN-based channel estimation and symbols
detection (at the receiver) in a communication system. The transmitter encodes a stream of
bits into coded bits using appropriate coding schemes. Then, a modulator maps the coded
bits into the sequence XL ∈ ΩL with the first symbol X(1) = Xp fixed as a pilot, which
passes over an optical channel. At the receiver, the NN-based channel estimator NN(ĥ) uses
the first element Y (1) = Yp of the received sequence YL ∈ RL to obtain an estimate of the
channel gain ĥ. Then, the NN-based detector NN(X̂L) uses ĥ and the received sequence YL

to estimate the transmitted symbols as X̂L ∈ ΩL.

is the estimated CSI, ĥ.

Training Data Generation: The training data for channel estimation is generated

according to the following steps:

• We first generate the channel coefficients {hn} with 1 ≤ n ≤ Ns, where Ns is the

number of training samples.

• We then generate the first element of the received signals {Y n
p } according to (5.1) for

the nth training sample.

• Finally, we label the training data as the tuple {Y n
p , h

n}.

Training stage: The loss function L(ĥ, h) is the normalized mean square error (NMSE),

defined as:

L(ĥ, h) =
1

Ns

Ns∑
n=1

(ĥn − hn)2. (5.2)
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Figure 5.2: The NN used for detection. A sigmoid activation function is used for the hidden
and output layers, where Ai denotes the ith output at the hidden layer.
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Figure 5.3: Error performance of NNs-based channel estimator and detector as the number
of training epochs increases, given a training SNR of 15 dB.

Then, the task during the training stage can be formulated as:

minimize
ĥ

L(ĥ, h), (5.3a)

subject to 0 ≤ ĥ <∞. (5.3b)

To solve the optimization problem in (5.3), the gradient decent algorithm is implemented

with backpropagation to update the weights at the hidden and output layers as in [60, eq.

(4.4)–(4.11)].
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Testing stage: In the testing stage, new data is generated to examine the performance

of the NN estimator. The data is generated as in the aforementioned steps for generating

the training data. The NN-based estimator uses the received signal Yp
∆
= Y (1) to obtain an

estimate of the channel ĥ.

5.3.2 Proposed Learning-Based Detection Scheme

We now present a learning-based detection scheme that uses NNs to detect the transmitted

symbols sequence XL.

The NN Architecture: Figure 5.2 illustrates the structure of the NN used for detection.

The received signals Y (j), 1 ≤ j ≤ Lsub, where Lsub ≤ L, are the inputs to the network.

Hence, the input layer contains Lsub neurons. Lsub represents the length of the subsequence

that it is contained in the whole sequence of length L. In this case, L = qLsub, with q

∈ N. The outputs of the network are the estimates of the transmitter’s symbols via NN,

i.e., X̂ (j), 1 ≤ j ≤ Lsub. Therefore, the output layer contains Lsub neurons. The hidden

layer contains K = 2Lsub neurons. A sigmoid function is used as an activation function for

the hidden and output layers. In this way, Lsub symbols are detected through each pass

through the NN. The process is then repeated until all L symbols are detected. If current

received signal is uncorrelated with previous ones, it is enough to use Lsub = 1. But if the

received signals are correlated in time, then we recommend using Lsub equal to the channel

memory length. Clearly, as Lsub increases, the training complexity (in terms of the number

of required operations) increases.

Training Data Generation: We generate the training data using the following steps:

• We first generate the transmitted sequences {XL,n} and the channel coefficients {hn},

where the superscript n denotes the index of the training sample.

• We then generate the received signals {Y L,n} according to (5.1).

• The tuple
(
{Y L,n}, {XL,n}

)
represents the nth training sample.



43

Training Stage: We use the entire training data set ({Y L,n}, {XL,n})n∈T , where T

contains the indices for the training sets. Furthermore, we employ the quadratic loss function

L(X̂,X) which is defined as the mean square error between the true label {XL,n} and the

output of the network {X̂L,n} and is given by

L(X̂L,XL) =
1

NsL

Ns∑
n=1

‖X̂L,n −XL,n‖2, (5.4)

where ‖ · ‖ is the Euclidean norm. Therefore, the optimization problem can be formalized

as:

minimize
X̂L

L(X̂L,XL) (5.5a)

subject to 0 ≤ X̂(i) ≤ A, (5.5b)

∀ i = 1, . . . , Lsub. (5.5c)

To solve the problem in (5.5), the gradient decent is used with backpropagation.

Testing Stage: We generate the testing data using the same process used to generate the

training data, except that we use the estimated channels ĥn obtained by NN(ĥn). Then, we

pass each received signal Y L through the trained network NN(X̂L) and obtain the estimated

sequence X̂L.

5.4 Numerical Results

In this section, for the sake of training data generation for NN-based estimation and

detection schemes, we consider that the received sequence Y L is generated by a specific

model. The considered model also allows for performance comparison between the learning-

based methods and a model-based algorithm benchmark, such as ML. In particular, we
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(a) K = 2.
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(b) K = 10.
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(c) K = 25.
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(d) K = 50.
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(e) K = 100.
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(f) K = 200.

Figure 5.4: The effect of changing the number of hidden nodes, K, on the training error.

consider that the elements of the received sequence Y L are generated by

Y (i) = hX(i) + Z(i), for 1 ≤ i ≤ L, (5.6)

where h is distributed according to the Lognormal distribution with variance 1, which is

constant during L channel uses, and Z(i) ∼ N (0, σ2) is the AWGN. Note that the Lognormal

distribution is an accurate model for a free space optical link operating over weak turbulence

channels [50, Ch. 9]. Assuming the channel model in (5.6), the simulated training and testing

data sets are generated according to the steps described in Sec. III-B.

Next, we briefly review the ML detection algorithm. The ML detector searches over the

space of all possible symbols in the modulation set Ω to find the symbol X̂(i) that maximize

the likelihood of obtaining the received sequence [1], i.e.,

X̂(i) = arg max
X(j)∈Ω, j=1,...,L

P(Y (i)|X(j)) for 1 ≤ i ≤ L. (5.7)
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Figure 5.5: Comparison of BER versus SNR performance between a NN-based detector
and a ML detector under different CSI assumptions, namely: under CSI obtained using a
NN-based and MMSE channel estimators and under perfect CSI (at the receiver).

Since the noise Z (i) is Gaussian, then (5.7) is equivalent to:

X̂(i) = arg max
X(j)∈Ω, j=1,...,L

|Y (i)− hX(j)| for 1 ≤ i ≤ L. (5.8)

We now illustrate the performance of the proposed scheme to estimate the channel and

then detect transmitted symbols at the receiver. We assume that the OWC system employs

ON-OFF keying (OOK) modulations (a modulation scheme often used in OWC systems

because it satisfies the nonnegativity and the peak intensity constraints dictated by the

physical properties of the optical channel [59, 61, 62]). The numerical results herein assume

L = 128, and that a pilot sequence of length one is used out of the 128 symbols for channel

estimation. The pilot sequence that has been corrupted by fading and AWGN is fed to the
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NN-based channel estimator. The remaining sequence of random signals (of length 127)

and the output of the channel estimator (i.e., ĥ) are fed to the NN-based detector, whose

output is an estimate of the transmitted symbols (i.e., X̂). The size of each of the training,

validation, and testing data sets is 20000, 20000, and 10000 sample sequences, respectively.

Each dataset is randomly generated according to the steps outlined in Section 5.3. The

validation dataset is used to illustrate the performance of the NN on unseen data.

Figure 5.3 shows the training errors for the NN-based channel estimator and the NN-based

detector, respectively. In Fig. 5.3(a), the NMSE between the true CSI and the estimated

CSI approaches zero as the number of training epochs increases. This trend happens for both

the training data and the validation data, which means that the NN architecture designed

herein avoids over-training and is also able to achieve low estimation and detection errors

on new data. In Fig. 5.3(b), the bit error rate (BER) performance of NN-based detector

approaches that of the ML detector, which is a lower bound on detection error but entails a

high computational complexity and requires a channel model.

To demonstrate that setting K = 2Lsub provides optimal detection accuracy while main-

taining a low implementation complexity, we simulate the effect of changingK on the training

error during the detection stage for a fixed Lsub. Figure 5.4 shows several attempts for ob-

taining a good accuracy during the training stage by varying the number of hidden nodes K

when Lsub = 5. Note that the SNR in Fig. 5.4 is 0 dB. Figure 5.4(a) shows that having only

two hidden nodes leads to achieving an error floor that is much greater that the lower bound

ML error. But as the number of hidden nodes increases to ten and twenty five in Figures

5.4(b) and 5.4(c), respectively, the NNs BER performance gets closer to the BER perfor-

mance of the optimal ML detector. When the number of hidden nodes increases to fifty,

one hundred, and two hundred as shown in Figures 5.4(d)-5.4(f), the BER changes rapidly

between iterations. We stipulate that these rapid changes in the BER can be ameliorated by

varying the learning rates when the number of hidden nodes increases. But since computa-

tional complexity is important and since ten hidden nodes achieve an accuracy comparable
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to that of the ML detector, it is sufficient to use only ten hidden nodes in this case. We also

observed this pattern for numerous values of Lsub. Hence, the experiments suggest that using

K = 2Lsub achieves high detection accuracy while maintaining an acceptable implementation

complexity.

To examine the robustness and accuracy of the proposed NN-based channel estimator

and detector, we simulate the error performance of the proposed method during the on-

line phase for various SNRs. Figure 5.5 compares the BER versus SNR performance of the

proposed NN-based channel estimator and symbols detector with the ML along with MMSE

channel estimator and with the ML detector along with perfect CSI. We observe that the

BER performance of the NN-based detector closely matches the BER performance of the

ML detector across all SNRs, under different CSI assumptions. In addition, the NN-based

detector with NN-based channel estimator provides 14 dB gain compared to the ML-based

detector with MMSE channel estimator at BER of 6× 10−4. For the case of the perfect CSI

at the receiver, the NN-based detector achieves the optimal performance of the ML detector

across all SNRs. Furthermore, when the NN-based channel estimator is employed to obtain

the CSI rather than having perfect CSI, the error performance shifts by less than 1 dB, for

the BERs that are less than 10−3. In this case, both the NN-based detector and the ML

detector assume that the estimated CSI from the NNs based estimator is the true CSI.
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CHAPTER 6

Concluding Remarks

6.1 Summary

In this thesis, we investigated the design of learning-based algorithms for the wireless

communication systems.

In chapter 3, we derived an upper bound on the expected generalization error of the

CNN in terms of the entropy of the input and the number of layers. The upper bound shows

that when there is no one-to-one mapping between hidden layers, the expected generalization

error decreases to zero as the number of hidden layers L increases in the CNN. It also shows

that adding more layers is not rewarding when there is at least one one-to-one mapping

between two consecutive hidden layers.

In chapter 4, we designed a new DNN-based scheme for PIC to overcome the computation

complexity of PZF. Our empirical results indicate that NNs can be trained to well-mimic

the behaviour of PZF. In many aspects, we expect that DNNs could be used in many

computationally expensive signal processing tasks with stringent real-time requirements.

Finally, in chapter 5, we proposed and designed a novel NN-based scheme for channel

estimation and symbol detection for OWC systems that does not require a channel model.

The empirical results indicate that NNs can be trained to accurately estimate the CSI and

closely mimic the behavior of the ML detector. We observed that the proposed NN-based

scheme using two architectures for channel estimation and symbols detection, each containing

only one hidden layer for reduced complexity, provides comparable estimation and detection

accuracy to that of the model-based ML algorithm.

6.2 Future Research

The work presented in this thesis can be extended in different ways. First, it will

be interesting to find a lower bound on the expected generalization error which depends
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on the CNN’s parameters such as the number of training samples and the number of lay-

ers. Second, extending the proposed scheme in chapter 4 to multiple-input-multiple-output

(MIMO) PIC system, and to see how NNs perform under different wireless channels models

such as Nakagami channel model is also of interest. Finally, one could extend the proposed

learning-based scheme in chapter 5 to include power control and modulation classification in

OWC system, and to see how NNs perform under different optical channels models, such as

input-dependent and Poisson channels.
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Appendix A: Proof of Theorem 2: The Upper Bound on the Ex-

pected Generalization Error

Starting from (3.7), we have:

GEN
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)
= E
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(6.3)

= E
(PZ ,PW )

[l (W,Z)]− E
P(Z,W )

[l (W,Z)] , (6.4)

where (6.1) follows using the ghost sample principle [63] in which S′ = [Z ′1, · · · , Z ′n] has

i.i.d components with distribution PS′ = PS and is independent from S. Note that the first

expectation in (6.4) is over the marginals PZ and PW , whereas the second expectation is

over the joint P(Z,W ). Next, we bound (6.4) as follows:

| E
(PZ ,PW )

[l (W,Z)]− E
P(Z,W )

[l (W,Z)]|

= |
∑
i,j

(
PZ (Zi)PW (Wj)− P(Z,W ) (Zi,Wj)

)
l (Wj, Zi)| (6.5)

≤
∑
i,j

|PZ (Zi)PW (Wj)− P(Z,W ) (Zi,Wj)||l (Wj, Zi)| (6.6)

≤ ‖PZPW − P(Z,W )‖1‖l (W,Z)‖∞ (6.7)

≤ ‖PZPW − P(Z,W )‖1, (6.8)

where the sum in (6.5) is a double sum over i′s and j′s, i, j = 1, . . . , n, and ‖·‖1 and ‖·‖∞

represent the L1-norm and the infinity norm, respectively. Note that ‖l (W,Z)‖∞ ≤ 1 since

the loss function is assumed to be bounded. Now, we use the following Theorem which
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provides an upper bound on the L1-norm in (6.8):

Theorem 3. [32] For any distributions P and Q, the following upper bound holds:

‖P −Q‖2
1 ≤ 2 log (2)D (P ||Q) , (6.9)

where D (P ||Q) is the Kullback-Leibler (KL)-divergence between P and Q.

Using Theorem 3, we have:
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Furthermore, we have,
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where Si−1 = [Z1, · · · , Zi−1]. (6.14) follows from the independence of the S ′is and (6.15)
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holds true since conditioning reduces the entropy. Therefore, we have:

I (Z;W ) ≤ I (S;W )

n
. (6.18)

On the other hand, we use recursively the SDPI inequality for the Markov chain in Fig. 3.1

to obtain:

I (S;W ) = I (S;TL) ≤ ηLI (S;TL−1) (6.19)

≤ ηLηL−1I (S;TL−2) (6.20)

≤ · · · ≤
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Therefore, we have:
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where 0 ≤M = max
k=1,··· ,L

ηk ≤ 1. This completes the proof of Theorem 2.


