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Abstract 

     RELAP5 is based on a two-fluid, non-equilibrium, non-homogeneous, hydrodynamic 

model for the transient simulation of the two-phase flow system behavior. In current versions 

of RELAP5, the “non-conservative” numerical approximation form is used. For 

discretization of the non-conservative form, the truncation errors introduced in the 

linearization process can produce mass and energy errors for some classes of transients 

during time advancements, either resulting in (a) automatic reduction of time steps used in 

the advancement of the equations and increased run times or (b) the growth of unacceptably 

large errors in the transient results. To eliminate these difficulties, a more conservative 

numerical approach has been introduced and implemented into RELAP5/SCDAP. This article 

demonstrates the theory of both the non-conservative and the developed conservative 

numerical approach. It also introduces the solution strategy of the more conservative 

approach and presents the code-to-code comparison between the non-conservative and more 

conservative approaches. RELAP5/SCDAP mode 4.0 versions are utilized for the code-to-

code comparisons. These comparisons results prove that mass error is significantly reduced 

by implementing the more conservative numerical approximation. 

KEYWORDS: RELAP5, conservative numerical approximation, semi-implicit solution 

strategy 
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Chapter 1: Introduction 

     RELAP5 (Reactor Excursion and Leak Analysis Program) is one of the commonly 

used nuclear safety codes for nuclear safety licensing and analyzing nuclear power plant 

systems. It includes six governing equations for two fields (liquid and vapor). Conservative 

and non-conservative methods are two numerical approaches used for the solution of 

governing equations. However, a feature of the more conservative form of approximation is 

better preservation of energy and mass in a system. Examples of the conservative and non-

conservative numerical approximations are shown in Figure 1. 

 

Conservative approximation: 

 

Non-conservative approximation: 

 

Figure 1: Examples of Conservative and Non-conservative Numerical Approximations 

 

The superscripts indicate time levels, with ‘m+1’ meaning new time value and m meaning 

old time value. Clearly, non-conservative approximation uses old time values for the 

coefficients in front of derivative terms. Therefore, it does not express an exact conservation 

principle in finite volume form.   

     The current RELAP5 numerical scheme has two steps to evaluate basic conservation 

equations. The first evaluation uses non-conservative numerical approximation and the 
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truncation errors in the linearization procedure of non-conservative numerical approximation 

may produce mass and energy errors during the advancement. The second step of semi-

implicit scheme is to use the intermediate time variables, which are from non-conservative 

forms (expanded forms), to re-compute vapor/liquid internal energies and non-condensable 

fraction in the conservative forms (unexpanded forms) of governing equations. Because of 

utilizing the conservative forms, current RELAP5 is considered as a ‘conservative’ code. 

However, it is not fully conservative due to the fact that the final pressure value is obtained 

by using non-conservative forms. Moreover, void fraction and phasic densities are all a 

function of the pressure.  

     Therefore, when the transfers of masses and energies in the system are summed at the 

entrance and exit boundary conditions, the summed values can be different from summation 

of mass or energy of each volume in the system (NSAD, 2001). Switching to the consistent 

conservative form of numerical approach reduces the loss or gain of mass and energy. This 

work focuses only on time derivative terms in mass and energy governing equations. The 

conservative forms of the momentum equation and the space derivative terms in mass/ 

energy equations are not part of the study.  

     Codes with the fully conservative forms of governing equations have an advantage 

over others (Mahaffy, 1993) and the current RELAP5 is not a fully conservative code. 

Therefore, this work focuses on developing, implementing, and solving a set of more 

conservative mass and energy equations in RELAP5. The paper presents five conservative 

approximations of mass and energy balance equations alone with sixteen constitutive 

equations. Then, a solution strategy for the more conservative form of governing equations is 

introduced. The new solution method constructs one matrix for each system with the balance 
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equations and constitutive equations. It solves the matrix to obtain the changes in all new 

time variables simultaneously. The system matrix is composed of two sub-matrices including 

volume balance equations (mass and energy) and junction conservation equations 

(momentum). Since the conservative numerical approximation is applied only for mass and 

energy governing equations, the article gives only the coefficients used to build volume 

mass-energy sub-matrix with conservative mass-energy balance equations and their closure 

equations. Moreover, the preliminary tests show the comparison results between the fully 

conservative and non-conservative approaches in RELAP5 (G. A. Roth, F. Aydogan, 2014a, 

2014b). The improved code is implemented into RELAP5/SCDAP mod 4.0 version. The 

code verification was done by using the US-NRC’s Regulatory Guide 1.203 (Rg 1.203, 2005) 
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Chapter 2: Mass/Energy Balance Equations and Closure Equations 

     The RELAP5 thermal-hydraulic model solves six governing equations including 

liquid/vapor mass continuity, liquid/vapor energy conservation, and liquid/vapor momentum 

conservation and two additional equations for non-condensable mass conservation and 

conservation of solute (i.e., boron). In order to solve the non-linearized mass and energy 

partial differential equations, numerical approximations are used to linearize mass and energy 

differential equations. Before introducing numerical solution in next section, the basic mass 

and energy differential equations in RELAP5 are demonstrated starting from equations 1 

through 5 (NSAD, 2001). These partial differential equations are the same for both the non-

conservative and conservative numerical approximations. Equations 1 through 5 demonstrate 

mass and energy conservation equations. The procedures for the momentum equations are the 

same as in RELAP5 and are not included in the following derivations. 

 

Conservation of Mass of Non-condensable Gases 

�
�� �������	 = −∇ ∙ �������̅�                                      (1) 

 

Conservation of Vapor Mass 

�
�� �����	 = −∇ ∙ �����̅� + Г�� + Г� + Г�                             (2) 

 

Conservation of Liquid Mass 

�
�� �����	 = −∇ ∙ �����̅� − Г�� − Г� − Г�                             (3) 
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     The conservation mass equations are from the one-dimensional phasic mass equations 

(Ransom, V.H., 1989). In equations 1 through 3, the terms on the left hand sides are the time 

rate of change of the mass. The first terms on the right hand sides are the change in mass due 

to the mass entering of leaving the control volume. The Гig is the bulk interface volumetric 

mass exchange rate between liquid and vapor. Гw is the boiling mass transfer in the boundary 

layers near the walls and Гc is the condensing mass transfer in the boundary layers near walls 

(Roth, G. A., Aydogan, F., 2014a, 2014b). 

 

Balance of Vapor Internal Energy 

�
�� �������	 = −∇ ∙ �������̅� − � ���

�� − ��∇ ∙ ���̅�	 + Г��ℎ�° + Г�ℎ��` + Г�ℎ��` + ��� +
��� − ��� + ������ ��!                                                 (4) 

 

Balance of Liquid Internal Energy 

�
�� �������	 = −∇ ∙ �������̅� − � ��#

�� − ��∇ ∙ ���̅�	 − Г��ℎ�° + Г�ℎ��` + Г�ℎ��` + ��� +
��� − ��� + ���������!                                                 (5) 

 

     The energy equations also come from the one-dimensional phasic thermal energy 

equations (Ransom, V.H., 1989). To obtain RELAP balance energy equations from 1D phasic 

thermal energy equations, the following simplifications are used: 

• The Reynolds heat flux is neglected 

• Covariance terms are universally neglected 

• Interfacial energy storage is neglected 

• Internal phasic heat transfer is neglected 



6 

     In RELAP5 conservation of energy equations 4 and 5, the term on the left hand side is 

the time rate of change of the energy for both liquid and vapor phase. The first two terms on 

the right hand sides of energy equations are energy change due to mass crossing boundary by 

convection and energy change due to time rate of change in volume faction separately. The 

third term of right hand side represents power of compression working due to volumetric 

straining (Roth, G. A., Aydogan, F., 2014a, 2014b). 

     Energy exchanges due to phase change are represented with terms - Г��ℎ�° , Г�ℎ��` ,
and Г�ℎ��` . Qgf is the sensible heat transfer rate per unit volume and it is the heat transfer at 

the non-condensable gas-liquid interface. It represents thermal energy exchange between the 

bulk fluid states themselves when non-condensable gas is present. Qif/Qig is the heat transfer 

from interface to liquid/vapor and Qwf/Qwg is the heat transfer to liquid/ vapor from the wall 

(Roth, G. A., Aydogan, F., 2014a, 2014b). 

     The last terms in equations 4 and 5 represent the phasic mechanical energy dissipation 

terms. Notice the phasic energy dissipation terms, DISSf and DISSg, are written here in terms 

of the product of α, ρ, v
2
, and wall drag coefficients for liquid and vapor/gas (FWF/FWG). 

Moreover, mass transfer between phases near the wall is again split into a boiling part (Гw) 

and condensing part (Гc) (NSAD, 2001). 

     In these equations, the time derivative quantity is the same as the quantity convected in 

the convection term. Integrating these equations over the volume and applying the divergence 

theorem to the convective terms, the above conservation Equations 1-5 are transferred into 

integral differential form and become Equations 6-10. 
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Conservation of Mass of Non-condensable Gases in Integral Form 

( �
�� �������	)*+ = − ( �������̅� ∙ ),̅                     -                           (6) 

 

Conservation of Vapor Mass in Integral For 

( �
�� �����	)*+ = − ( �����̅� ∙ ),̅ + ( (Г�� + Г� + Г�))*+                     -            (7) 

 

Conservation of Liquid Mass in Integral Form 

( �
�� �����	)*+ = − ( �����̅� ∙ ),̅ − ( (Г�� + Г� + Г�))*+                     -            (8) 

 

Balance of Vapor Internal Energy in Integral Form 

( �
�� �������	)*+ = − ( �������̅� ∙ ),̅- − ( � ���

�� )*+ − ( ����̅� ∙ ),̅- + (  (Г��ℎ�° ++

Г�ℎ��` + Г�ℎ��` + ��� + ��� − ��� + ������ ��!   ))*                            (9) 

 

Balance of Liquid Internal Energy in Integral Form 

( �
�� �������	)*+ = − ( �������̅� ∙ ),̅- − ( � ��#

�� )*+ − ( ����̅� ∙ ),̅- − (  (Г��ℎ�° ++

Г�ℎ��` + Г�ℎ��` − ��� − ��� − ��� − ���������! ))*                                (10) 

 

     Additional algebraic equations are required to have a set of simultaneous equations that 

can be solved. These equations, constitutive or closure equations, are given in Equations 11-

23. 
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Void Fraction Relationship 

�� + �� = 1                                                  (11) 

 

Thermodynamic State for Vapor Density 

�� = �1�(�, ��, ��)                                                 (12) 

 

Thermodynamic State for Liquid Density 

�� = �1�(�, ��)                                                    (13) 

 

Thermodynamic State for Vapor Temperature 

2� = �3�(�, ��, ��)                                                 (14) 

 

Thermodynamic State for Liquid Temperature 

2� = �3�(�, ��)                                                    (15) 

 

Saturation Temperature Corresponding to Partial Pressure of Water Vapor 

24 = �45(�4)                                                       (16) 

 

Saturation Temperature Corresponding to Total Pressure 

23 = �43(�)                                                       (17) 

 

Interface Mass Transfer 

Г�� = − 67�839:3�;<67#839:3#;
=�° :=#°

                                          (18) 
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     The interface energy is the sum of bulk interface heat transfer (Q
B

ig or Q
B

if)  and 

energy exchange due to interface mass transfer (ℎ�° Г�� or ℎ�° Г��).  

   

Г> = ���? + ℎ�° Г�� = ���? + ℎ�° Г�� = − =#° 67�839:3�;<=�° 67#[39:3#]
=�° :=#°               (19) 

 

Mass Transfer at Wall Due to Flashing 

Г� = Г��B + Г���∆2� + Г���∆2� + Г��45�∆23 + Г��455∆24              (20) 

 

Mass Transfer at Wall Due to Condensation 

Г� = Г��B + Г���∆2� + Г���∆2� + Г��45�∆23 + Г��455∆24              (21) 

 

Wall Heat Transfer to Vapor 

��� = ���B + ����∆2� + ����∆2� + ���45�∆23 + ���455∆24           (22) 

 

Wall Heat Transfer to Liquid 

��� = ���B + ����∆2� + �Г���∆2� + ���45�∆23 + ���455∆24          (23) 

 

     This section presents mass and energy conservation equations in both differential and 

integral-differential forms along with thirteen thermodynamic state and transfer relations. For 

this study, fundamental field equations are not changed; instead, the study focuses on using a 

different numerical approximation approach to solve these equations. The following sections 

first present the current RELAP5 numerical approximation method (non-conservative form). 

Then, it presents the new approximation approach method (more conservative form). 
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Chapter 3: Conservation Equations in Non-conservative Forms 

     The following procedures are used in the current Relap5 thermal hydraulic model 

(NSAD, 2001) and are called the non-conservative form of the numerical approximation to 

the two-phase thermal hydraulic equations. 

     The time derivatives of the product terms in the partial differential (Equations 6-10) are 

replaced by the differentiated products to obtain Equations 24 through 28. Note that this is an 

exact mathematical operation. The results are: 

 

Conservation of Mass of Non-condensable Gases 

( [���� �DE
�� + ���� �1�

�� + ���� ���
�� ])*+ = − ( �������̅� ∙ ),̅                     -          (24) 

 

Conservation of Vapor Mass 

( [�� �1�
�� + �� ���

�� ])*+ = − ( �����̅� ∙ ),̅ + ( (Г�� + Г� + Г�))*+                     -      (25) 

 

Conservation of Liquid Mass 

( [�� �1#
�� + �� ��#

�� ])*+ = − ( �����̅� ∙ ),̅ − ( (Г�� + Г� + Г�))*+                  -        (26) 

 

Balance of Vapor Internal Energy 

( [���� �F�
�� + ���� �1�

�� + ���� ���
�� ])*+ = − ( �������̅� ∙ ),̅- − ( � ���

�� )*+ −
( ����̅� ∙ ),̅- + ( (Г��ℎ�° + Г�ℎ��` + Г�ℎ��` + ��� + ��� − ��� + ������ ��!))*+                                

                                                                      (27) 
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Balance of Liquid Internal Energy 

( [���� �F#
�� + ���� �1#

�� + ���� ��#
�� ])*+ = − ( �������̅� ∙ ),̅- − ( � ��#

�� )*+ − ( ����̅� ∙-

),̅ − ( (Г��ℎ�° + Г�ℎ��` + Г�ℎ��` − ��� − ��� − ��� − ���������!))*+          (28) 

 

     The integral parts in Equations 24 through 28 are approximated by a difference 

approximation for the time derivatives and using old information for the factors of the time 

derivatives. Therefore, applying the differentiation of product rules is not done in the 

conservative method and this is the first difference between the non-conservative and 

conservative methods. Several general guidelines were followed in developing numerical 

approximations Equations 29-33 from Equations 24 through 28 (NSAD, 2001). They are: 

• Mass and energy are kept consistent and conservative by the numerical scheme, which 

means both mass and energy are convected from the same cell, and each is evaluated at 

the old time level (m) 

• Implicit evaluation (m+1) is used for the velocity in order to achieve fast execution speed. 

 

Conservation of Mass of Non-condensable Gases in Non-conservative Numerical 

Approximation Form 

+
∆� 8�����	G∆�� + �����	G∆���	 + �����	G∆���	; = ∑ �������	I

GIJ37 �̅�IG<K,I −
∑ �������	I

GIJL7 �̅�IG<K,I                                              (29) 
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Conservation of Vapor Mass in Non-conservative Numerical Approximation Form 

+
∆� 8���	G∆���	 + ���	G∆���	; = [∑ �����	I

GIJ37 �̅�IG<K,I − ∑ �����	I
GIJL7 �̅�IG<K,I] +

*(Г��G<K + Г�G<K + Г�G<K)                                            (30) 

 

Conservation of Liquid Mass in Non-conservative Numerical Approximation Form 

+
∆� 8���	G∆���	 + ���	G∆���	; = M∑ �����	I

GIJ37 �̅�IG<K,I − ∑ �����	I
GIJL7 �̅�IG<K,IN −

*(Г��G<K + Г�G<K + Г�G<K)                                             (31) 

 

Balance of Vapor Internal Energy in Non-conservative Numerical Approximation Form 

+
∆� {�����	G∆�� + �����	G∆���	 + [�����	G + �G]∆���	} =
[∑ �������	I

GIJ37 �̅�IG<K,I − ∑ �������	I
GIJL7 �̅�IG<K,I] − �G[∑ ��IGIJ37 �̅�IG<K,I −

∑ ��IGIJL7 �̅�IG<K,I] + *[Г��G<Kℎ�° + Г�G<Kℎ��` + Г�G<Kℎ��` + ���G<K + ���G<K − ���G<K +
(������ ��!)G]                                                   (32)     

 

Balance of Liquid Internal Energy in Non-conservative Numerical Approximation Form 

+
∆� {�����	G∆�� + �����	G∆���	 + [�����	G + �G]∆���	} =
[∑ �������	I

GIJ37 �̅�IG<K,I − ∑ �������	I
GIJL7 �̅�IG<K,I] − �G[∑ ��IGIJ37 �̅�IG<K,I −

∑ ��IGIJL7 �̅�IG<K,I] − *[Г��G<Kℎ�° + Г�G<Kℎ��` + Г�G<Kℎ��` − ���G<K − ���G<K − ���G<K −
(���������!)G]                                                   (33) 
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     The forward Euler approximation to the time derivative of the quantities is the simple 

difference between the new and old time values of the quantity divided by the time 

difference. The subscribe j stands for junction index. Subscribes T and F stand for ‘to’ and 

‘from’ junction index separately. Symbol S represents junction flow area. In the RELAP5 

equations, the time derivative of the convected quantities is the sum of the time derivative 

approximation for each factor times the product of the old values of other factors. In the 

conservative method, time derivative approximation is applied to the convected quantity as a 

unit and they are called macroscopic quantities (USNRC, TRACE V5.0). 
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Chapter 4: Conservation Equations in Conservative Forms 

     Numerical approaches are different for conservative and non-conservative methods 

when applying derivatives in conservative equations (Equations 6-10). In non-conservative 

approximation used in current version of RELAP5 (NSAD, 2001), the derivative of 

(��, �� , ��, ��, ��, ��, ��) involves the multiplication of each term’s derivative. However, in 

the conservative approximation, the approximation to differentiation is applied to the 

convective quantities (macroscopic quantities), that is, the product terms �������	Q , 

 �������	Q ,  �������	Q ,  �����	Q , and �����	Q . These convective quantities now become 

unknowns in the resultant set of simultaneous equations. To clearly indicate the convective 

terms as opposed to the factors in the convective terms, the factors with a curved mark placed 

above the factors are used as a symbol for the convective quantities. 

     Equations 34-38 demonstrate mass, momentum and energy conservation equations in 

conservative numerical approximation forms. 

 

Conservation of Mass of Non-condensable Gases in Conservative Numerical Approximation 

Form 

 
+
∆� M∆�������	Q N = ∑ �������	I

GIJ37 �̅�IG<K,I − ∑ �������	I
GIJL7 �̅�IG<K,I         (34) 

 

Conservation of Vapor Mass in Conservative Numerical Approximation Form 

+
∆� M∆�����	Q N − *(∆Г�� + ∆Г� + ∆Г�) +
M∑ �����	I

GIJ37 �̅�IG<K,I − ∑ �����	I
GIJL7 �̅�IG<K,IN = *(Г��G + Г�G + Г�G)         (35) 
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Conservation of Liquid Mass in Conservative Numerical Approximation Form 

+
∆� M∆�����	Q N +  *�∆Г�� + ∆Г� + ∆Г�	 +
M∑ �����	I

GIJ37 �̅�IG<K,I − ∑ �����	I
GIJL7 �̅�IG<K,IN = −*(Г��G + Г�G + Г�G)        (36) 

 

Balance of Vapor Internal Energy in Conservative Numerical Approximation Form 

+
∆� M∆�������	Q N − *∆Г��ℎ�° − *∆Г�ℎ��` − *∆Г�ℎ��` − *∆��� − *∆��� + *∆��� +
M∑ �������	I

GIJ37 �̅�IG<K,I − ∑ �������	I
GIJL7 �̅�IG<K,IN − �G8∑ ��IGIJ37 �̅�IG<K,I −

∑ ��IGIJL7 �̅�IG<K,I; =
*[Г��G ℎ�° + Г�Gℎ��` + Г�Gℎ��` + ���G + ���G − ���G + (������ ��!)G]           (37) 

 

Balance of Liquid Internal Energy in Conservative Numerical Approximation Form 

+
∆� M∆�������	Q N + *∆Г��ℎ�° + *∆Г�ℎ��` + *∆Г�ℎ��` − *∆��� − *∆��� − *∆��� +
M∑ �������	I

GIJ37 �̅�IG<K,I − ∑ �������	I
GIJL7 �̅�IG<K,IN − �G8∑ ��IGIJ37 �̅�IG<K,I −

∑ ��IGIJL7 �̅�IG<K,I; =
−*[Г��G ℎ�° + Г�Gℎ��` + Г�Gℎ��` − ���G − ���G − ���G − (���������!)G]          (38) 

 

     The five product quantities are essentially additional unknowns, and five additional 

algebraic relationships are required to solve balance equations. The additional relationships 

are the algebraic expressions defining the product quantities. When the liquid or vapor phase 

is not present in a volume, indefinite results can arise, and provisions must be provided for 

those situations. The algebraic expressions are presented here and they include the linearized 
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approximations to the expressions, which are the expressions for the indefinite processing. 

For example, the definition of non-condensable mass fraction is given by Equations 39 and 

40. 

 

Non-condensable Mass Fraction Definition 

�� = (��1�DE)Q
(��1�)Q , if (����)Q G<K > 0                                      (39)      

 

�� = 0,      if (����)Q G<K = 0                                      (40) 

 

     Newton-Raphson method is used to obtain the linearized approximation for algebraic 

equations. Equations 43 and 44 are plugged into Newton-Raphson Equation 41 to result the 

approximation equations 45-46 for the non-condensable mass fraction definition. 

 

− �
�TU �(VUG) ∙ ∆VU = �(VUG)                                           (41) 

 

, where ∆VU = VUG<K − VUG and                                        

�(VUG) = � W��G, �������	Q G, �����	Q GX = ��G − (��1�DE)Q Y
(��1�)Q Y                (42) 

 

, so its derivative becomes 

− �
�TU �(VUG) = −[1, − K

(��1�)Q Y , (��1�DE)Q Y
8(��1�)Q Y;Z]                               (43) 

 ∆VU = [∆��G, ∆�������	Q G, ∆�����	Q G]                                (44) 
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Then, the approximation Equation 41 becomes 

∆�� − ∆(������)Q
(����)Q G + (������)Q G∆(����)Q

8(����)Q G;! = (������)Q G
(����)Q G − ��G 

, if (����)Q G<K > 0                                                (45) 

 

∆�� = 0     

, if (����)Q G<K = 0                                                (46) 

 

     Vapor internal energy definition is given by Equations 47 and 48. Equations 49 and 50 

are derived with Newton-Raphson method [Equation 41] from Equations 47 and 48 in the 

same manner of non-condensable mass fraction.              

 

Vapor Internal Energy Definition 

�� = (��1�F�)Q
(��1�)Q ,     if (����)Q G<K > 0                                (47) 

 

�� = �4�F(24),    if (����)Q G<K = 0                                 (48) 
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Vapor Internal Energy Approximations 

∆�� − ∆�������	Q
�����	Q G + �������	Q G∆�������	Q

M�����	Q GN! = �������	Q G

�����	Q G − ��G 

, if (����)Q G<K > 0                                               (49) 

 

∆�� − [L9�\
[39 ]G ∆24 = �4�F(24G) − ��G                        

, if (����)Q G<K = 0                                                (50) 

      

     Equations 51 and 52 give the definition of liquid internal energy. Equations 53 and 54 

give the numerical approximation forms of liquid internal energy. 

 

Liquid Internal Energy Definition 

�� = ��#1#F#	Q
(�#1#)Q ,    if (����)Q G<K > 0                                (51) 

 

�� = �4�F(24),    if (����)Q G<K = 0                                (52) 
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Liquid Internal Energy Approximations 

∆�� − ∆��#1#F#	Q
��#1#	Q Y + ��#1#F#	Q Y∆��#1#F#	Q

M��#1#	Q YNZ = ��#1#F#	Q Y

��#1#	Q Y − ��G  

, if (����)Q G<K > 0                                               (53) 

 

∆�� − [L9#\
[39 ]G� ∆24 = �4�F(24G) − ��G                   

, if (����)Q G<K = 0                                               (54) 

 

     Equations 45-46, 49-50, and 53-54 are not needed for the non-conservative form of 

differential, but they are necessary for the proposed conservative equations due to the extra 

unknowns introduced in conservative form. Since we introduce five new unknowns, we need 

two more relationships in order to close the system of the equations. These two relationships 

are embedded in liquid/vapor void fraction [Equation 55]. Following twelve thermodynamic 

relations are the rest of constitutive equations for conservative numerical approximation.  

     Liquid and vapor void fraction relationship used for conservative form is presented in 

Equation 55 and its approximation [Equation 56] is derived by applying Newton-Raphson 

method [Equation 41]. 

  

Liquid and Vapor Void Fractions Relationship 

�� + �� = (�1)Q �
1� + (�1)Q #

1# = 1                                       (55) 
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Liquid and Vapor Void Fractions Approximation 

∆(�1)Q �
1�Y − (�1)Q �Y∆1�

�1�Y	Z + ∆(�1)Q #
1#Y − (�1)Q #Y∆1#

W1#YXZ = 0                            (56) 

 

     The seventh and eighth constitutive equations are state equation for vapor density 

[Equation 57-58] and state equation for vapor temperature [Equation 61-62]. Their 

approximation equations are Equations 59-60 and 63-64 separately. 

 

Equations of State for Vapor Density 

�� = �1�(�, ��, ��),     if (����)Q G<K > 0                         (57) 

 

�� = �41�(�),          if (����)Q G<K = 0                          (58) 

 

Equations of State for Vapor Density Approximations 

− �L̂ �
�DE ]G ∆�� − �L̂ �

�F ]G ∆�� + ∆�� − �L̂ �
�_ ]G ∆� = 0  

, if (����)Q G<K > 0                                              (59) 

 

∆�� − )�41�
)� `

G
∆� = �41�(�G) − ��G 

, if (����)Q G<K = 0                                               (60) 
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Equations of State for Vapor Temperature 

2� = �3�(�, ��, ��),    if (����)Q G<K > 0                          (61) 

 

2� = �43(�),          if (����)Q G<K = 0                          (62) 

 

Equations of State for Vapor Temperature Approximations 

− �La�
�DE ]G ∆��� − �La�

�F ]G ∆�� + ∆2� − �La�
�_ ]G ∆� = 0  

, if (����)Q G<K > 0                                              (63) 

 

∆2� − [L9a�
[_ ]G ∆� = �43�(�G) − 2�G   

, if (����)Q G<K = 0                                              (64) 

 

     Equations 65 and 66 are the state equations of liquid density. Equations 67 and 68 are 

their approximation forms derived from Equations 41.  

 

Equations of State for Liquid Density 

�� = �1�(�, ��),    if (����)Q G<K > 0                             (65) 

 

�� = �41�(�),       if (����)Q G<K = 0                            (66) 
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Equations of State for Liquid Density Approximations 

− �L^#
�F ]G ∆�� + ∆�� − �L^#

�_ ]G ∆� = 0  

, if (����)Q G<K > 0                                              (67) 

 

∆�� − [L9^#
[_ ]G ∆� = �41�(�G) − ��G  

, if (����)Q G<K = 0                                              (68) 

 

     Equations 69 and 70 are the state equations of liquid density. Equations 71 and 72 are 

approximation forms of equations of state for liquid temperature. 

 

Equations of State for Liquid Temperature 

2� = �3�(�, ��),    if (����)Q G<K > 0                             (69) 

 

2� = �43(�),       if (����)Q G<K = 0                             (70) 

 

Equations of State for Liquid Temperature Approximations 

− �La#
�F ]G ∆�� + ∆2� − �La#

�_ ]G ∆� = 0  

, if (����)Q G<K > 0                                              (71) 

 

∆2� − [L9a#
[_ ]G ∆� = �43�(�G) − 2�G   

, if (����)Q G<K = 0                                              (72) 
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     Equations of saturation temperature corresponding to partial pressure of water vapor 

are shown from Equations 73 through 74. Their numerical approximation forms are 

Equations 75 and 76. 

 

Equations of State for Saturation Temperature Corresponding to Partial Pressure of Water 

Vapor 

24 = �43(�4),    if �� > 0                                      (73) 

 

24 = 23,        if �� = 0                                      (74) 

 

Equations of State for Saturation Temperature Corresponding to Partial Pressure of Water 

Vapor Approximations 

 

− [L9a
[_9 ]G ∆�4 + ∆24 = �43(�4G) − 24, if �� > 0                      (75) 

 

∆24 = ∆23,                     if �� = 0                      (76) 

     

     Equations of saturation temperature corresponding to total pressure of water vapor are 

shown from Equations 77 through 78. Their numerical approximation forms are shown in 

Equations 79 and 80. 

 

Equation of State for Saturation Temperature Corresponding to Total Pressure 

23 = �43(�)                                                   (77) 
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Equation of State for Saturation Temperature Corresponding to Total Pressure Approximation 

− �L9a
�_ ]G ∆� + ∆2� = �43(�G) − 23G                               (78) 

 

     The interface transfer quantities including both mass and energy transfers are presented 

below. The definition of interface mass transfer is shown in Equation 79 and Equation 80 

gives its numerical approximation form. 

 

Interface Mass Transfer 

Г�� = − 67�839:3�;<67#[39:3#]
=�° :=#° =���(24, 2�, 2�)                           (79) 

 

Interface Mass Transfer Approximation 

− 67�∆3�<67#∆3#:867�<67#;∆39
=�° :=#° + ∆Г�� = ����24G, 2�G,   2�G	 − Г��G            (80)                 

      

     The definition of interface energy transfer is shown in Equation 81 and Equation 82 

gives its numerical approximation form. 

 

Interface Energy Transfer 

Г> = − =#° 67�839:3�;<=�° 67#839:3#;
=�° :=#° = �>(24, 2�, 2�)                        (81) 
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Interface Energy Transfer Approximation 

− =#° 67�∆3�<=�° 67#∆3#:M=#° 67�<=�° 67#N∆39
=�° :=#° + ∆Г> = �>�24G , 2�G,   2�G	 − Г>G       (82) 

      

     Definitions and their approximations of mass transfers due to wall are presented in 

Equation 83 through Equation 86. Flashing is mass transfer from liquid to vapor; 

condensations transfers mass from vapor to liquid phase. 

 

Mass Transfer at Wall Due to Flashing 

Г� = Г��B + Г���∆2� + Г���∆2� + Г��45�∆23 + Г��455∆24                       (83) 

 

Mass Transfer at Wall Due to Flashing Approximation 

∆Г�−Г��∆2� − Г��∆2� − Г�4∆24 − Г�3∆23 = 2�b − 2�G                  (84) 

 

Mass Transfer at Wall Due to Condensation 

Г� = Г��B + Г���∆2� + Г���∆2� + Г��45�∆23 + Г��455∆24               (85) 

 

Mass Transfer at Wall Due to Condensation Approximation 

∆Г�−Г��∆2� − Г��∆2� − Г�4∆24 − Г�3∆23 = 2�b − 2�G                    (86) 

 

     Finally, definitions of heat transfers due to wall are presented. The definition of wall 

heat transfer to vapor is shown in Equation 87 and Equation 88 gives its numerical 

approximation form. 
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Wall Heat Transfer to Vapor 

��� = ���B + ����∆2� + ����∆2� + ���45�∆23 + ���455∆24             (87) 

 

Wall Heat Transfer to Vapor Approximation 

∆c�−c��∆2� − c��∆2� − c�4∆24 − c�3∆23 = c�b − c�G                    (88) 

 

     The definition of wall heat transfer to liquid is shown in Equation 89 and Equation 90 

gives numerical approximation form of wall heat transfer to liquid. 

 

Wall Heat Transfer to Liquid 

��� = ���B + ����∆2� + �Г���∆2� + ���45�∆23 + ���455∆24            (89) 

 

Wall Heat Transfer to Liquid Approximation 

∆c�−c��∆2� − c��∆2� − c�4∆24 − c�3∆23 = c�b − c�G                    (90) 
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Chapter 5: Solution Strategies of the Non-conservative and Conservative Method 

     Before introducing the solution strategy for the new conservative method, the semi-

implicit advancement solution strategy of the non-conservative method in current RELAP5 is 

briefly described first.  

     The numerical approximation to the momentum equations results in two equations per 

junction, involving only the liquid and vapor velocities for the junction and the pressures for 

the two volumes connected by each junction. Using the 2 by 2 matrices from the two 

equations per junction, expressions for the liquid and vapor velocities in terms of the 

pressures from the connected volumes can be obtained. The numerical approximations for 

the other conservations equations result in five equations per volume derived from the partial 

differential equations plus thirteen equations from the algebraic relationships. Using 

algebraic substitutions, variables can be eliminated until only five equations per volume 

remain, involving volume pressure, vapor void fraction, liquid and vapor internal energies, 

and non-condensable mass fraction. The submitters involving the remaining five equations 

per volume is factored into lower and upper submitters, the submitters manipulated to obtain 

the inverse elements for the row of the matrix defining the pressure. Using the inverse 

elements, an expression can be obtained for one equation for each volume involving the 

pressure and the velocities from the attached junctions. The velocity expressions obtained 

from the momentum equations are used to eliminate the velocities in the pressure equation 

obtained from the inverse elements. This results in a system of equations, one per volume, 

involving only volume pressures. The resulting matrix is solved for pressures using a sparse 

matrix routine. The number of equations in the sparse matrix is one equation for each volume 

and the nonusers in the sparse matrix are the diagonal element plus an off-diagonal element 
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for each volume. The pressures are back substituted into the expressions from the momentum 

equations to obtain velocities, and pressures and velocities are back substituted into the other 

four volume elations to obtain the remaining volume quantities (NSAD, 2001). 

     The conservative form of the conservation equations should be able to be solved in a 

similar manner to that for the non-conservative form. However, comparing the non-

conservative form, the conservative form of the differential equations introduces five new 

unknowns, which requires five extra algebraic equations to solve the simultaneous equations. 

Therefore, there are twenty-one unknowns in total for conservative volume mass and energy 

sub-matrices. Those unknowns are the convective quantity for non-condensable mass 

fraction (kg/m3), the convective quantity for vapor density (kg/m3), the convective quantity 

for liquid density (kg/m3), the convective quantity for vapor internal energy (J/m3), the 

convective quantity for liquid internal energy (J/m
3
), non-condensable mass fraction , vapor 

internal energy (J/m
3
), liquid internal energy (J/m

3
), liquid density (kg/m

3
), vapor density 

(kg/m
3
), total pressure (Pa), vapor temperature (K), liquid temperature (K), the saturation 

temperature corresponding to partial pressure of water vapor (K), the saturation temperature 

corresponding to total pressure (K), the interface mass transfer (kg/m
3
s), the interface energy 

transfer associated with interface mass transfer (W/m3), the flashing rate at wall (kg/m3s), the 

condensing rate at wall (kg/m3s), the wall heat transfer to vapor (W/m3), the wall heat 

transfer to liquid (W/m
3
) (Fu, Z., Aydogan, F., Wagner, R., 2014). 

     The corresponding twenty one volume-related equations are sixteen closure equations 

and five conservation equations. These five conservation equations include the conservation 

of mass of non-condensable gases, the conservation of vapor mass, the conservation of liquid 

mass, the conservation of vapor internal energy, and the conservation of liquid internal 
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energy. Sixteen closure equations include definitions of quality, vapor internal energy, liquid 

internal energy, vapor density, liquid density, void fraction, vapor temperature, liquid 

temperature, the saturation temperature corresponding to partial pressure, the saturation 

temperature corresponding to total pressure, interface mas transfer, interface energy 

exchange, the wall mass transfer to vapor, the wall mass transfer to liquid, the wall heat 

transfer to vapor, and the wall heat transfer to liquid (Fu, Z., Aydogan, F., Wagner, R., 2014). 

     Unlike non-conservative solution strategy, which solves a 5 by 5 matrix and closure 

equations separately, the conservative approach simply places all twenty one equations for 

each volume and two monument equations per junction into a single sparse matrix and it uses 

the sparse matrix routines to obtain the solutions. 
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Chapter 6: Matrix Structure of the System of Equations 

     The hydrodynamic volumes and junctions used in a RELAP5 simulation are divided 

into hydrodynamic systems. Fluid in a system can only move within that system. The 

primary and secondary systems in a reactor power would be separate systems in a RELAP5 

simulation. If a steam generator tube is modeled to allow a tube rupture by inserting a valve 

between the inside and outside of the generator tube, the primary and secondary systems now 

become one system whether the valve is opened or closed. Each hydrodynamic system is 

advanced separately. This is, the simultaneous equations and their systems are built and 

solved separately. The hydrodynamic systems can be linked thermally, and the hydrodynamic 

and heat conduction simultaneous equations are linked. But this linkage is done with a quite 

small impact on the either the hydrodynamic or heat conduction solution procedures.  

     For the non-conservative form of the conservation equations, the number of 

simultaneous equations in a hydrodynamic system is 19 * number of volumes + 2 * the 

number of junctions. For moderately sized system with 100 volumes and 100 junctions, the 

number of simultaneous equation would be 2100. The previous section shows that, for the 

conservative form of the conservation equations, the number of simultaneous equations is 21 

* number of volumes + 2 * number of junction. The number of simultaneous equations for 

the conservative form of the moderately sized problem is 2300, about a 10 percent increase.  

     This section presents the structure of matrix in conservative form and lists all the 

coefficients in five conservation equations and sixteen constitutive equations. Mass and 

energy conservation equations and closure equations form a 21 by 21 nonzero pattern for 

mass-energy sub-matrix for each volume in order to solve twenty one unknowns associated 

volume quantities. The diagonal sub-matrix for conservation of mass and energy equations is 
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called matrix Avv (Figure 2). The equation names are presented in the rows and the unknowns 

are in columns.

 

Figure 2: Structure of Volume Matrix Avv 

 

     The matrix above is a sparse matrix, which means most of elements in matrix are 

zeroes. However, the element filled with numbers above have non-zero coefficients. Each 

pair of numbers represents row and column indexes. A matrix solver is used to solve vector x 

in operation Avvx=b and x contains the increments of twenty-one volume quantities (Figure 

3). Moreover, Avv is a sub-matrix of A and its coefficients are listed in Equations 91 to 150 

and vector b equals to zero.  
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Figure 3: Vector x Containing Increments in Volume Quantities 

 

     The vector x is solved for the increment of each volume quantity and they are added 

into previous values in order to get new time values. There are total eighty-one nonzero 

coefficients. Twenty-one diagonal elements have coefficient one; other nonzero coefficients 

in matrix Avv are listed below. 

     The first equation in matrix Avv is the conservation of non-condensable gases, which 

has only one non-zero element at row one and column one as shown in Figure 2. The second 

row in matrix Avv represents conservation of vapor mass, which has unknown variables of 

convective quantity for vapor density (column 2), interface mass transfer (column 16), 
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flashing rate at wall (column 18), and condensing rate at wall (column 19). Its off-diagonal 

element coefficients are presented in Equations 91 through 93.  

 

Coefficients in Conservation of Vapor Mass 

db!Ke = −∆f                                                   (91) 

db!Kg = −∆f                                                   (92) 

db!Kh = −∆f                                                   (93) 

    

     The third row in Avv is conservation of liquid mass equation. The unknowns in the 

equation are convective quantity for liquid density (column 3), interface mass transfer 

(column 16), flashing rate at wall (column 18), and condensing rate at wall (column 19). 

Their off-diagonal element coefficients are shown in Equations 94 through 96. 

 

Coefficients in Conservation of Liquid Mass 

dbiKe = ∆f                                                     (94) 

dbiKg = ∆f                                                     (95) 

dbiKh = ∆f                                                     (96) 

 

     Conservation of vapor internal energy occupies the fourth row of Avv. The unknowns 

in the equation are convective quantity for vapor internal energy (column 4), interface energy 

transfer associated with interface mass transfer (column 17), flashing rate at wall (column 18), 

condensing rate at wall (column 19), and wall heat transfer to vapor (column 20). The off-

diagonal coefficients are shown in Equations 97 through 100. 
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Coefficients in Conservation of Vapor Internal Energy 

dbjKk = −∆f                                                   (97) 

dbjKg = −ℎ�∆f                                                 (98) 

dbjKh = −ℎ�∆f                                                 (99) 

dbj!b = − ∆�
+                                                    (100) 

 

     Conservation of liquid internal energy is in fifth row, which includes five unknowns - 

convective quantity for liquid internal energy (column 5), interface energy transfer associated 

with interface mass transfer (column 17), flashing rate at wall (column 18), condensing rate 

at wall (column 19), and wall heat transfer to liquid (column 21). The off-diagonal 

coefficients are shown in Equations 101 through 104. 

 

Coefficients in Conservation of Liquid Internal Energy 

dblKk = ∆f                                                    (101) 

dblKg = ℎ�∆f                                                  (102) 

dblKh = ℎ�∆f                                                  (103) 

dbl!K = − ∆�
+                                                    (104) 

 

     The first constitutive equation is mass fraction of non-condensable gases, which is the 

sixth row of matrix Avv. Non-zero coefficient variables are convective quantity for non-

condensable mass fraction (column 1), convective quantity for vapor density (column 2), and 

non-condensable mass fraction (column 6). Their off-diagonal coefficients can be obtained 

through Equations 105 and 106. 
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Coefficients in Mass Fraction of Non-condensable Gases Equation 

dbebK = − K
(��1�m )                                               (105) 

dbeb! = (��1�nEm )
(��1�m )Z                                                (106) 

 

     The second constitutive equation is vapor internal energy equation, which is the 

seventh row of matrix Avv. Non-zero coefficient variables are vapor internal energy (column 

7), convective quantity for vapor density (column 2), and convective quantity for vapor 

internal energy (column 4). Their off-diagonal coefficients can be obtained through 

Equations 107 and 108. 

 

Coefficients in Vapor Internal Energy Equation 

dbkb! = − K
(��1�m )                                               (107) 

dbkbj = (��1�\�m )
(��1�m )Z                                                (108) 

 

     The third constitutive equation is liquid internal energy equation, which is the eighth 

row of matrix Avv. Non-zero coefficient variables are liquid internal energy (column 8), 

convective quantity for liquid density (column 3), and convective quantity for liquid internal 

energy (column 5). Their off-diagonal coefficients can be obtained through Equations 109 

and 110. 
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Coefficients in Liquid Internal Energy Equation 

dbgbi = − K
(�#1#m )                                               (109) 

dbgbl = (�#1#\#m )
(�#1#m )Z                                                (110) 

 

     The fourth constitutive equation is vapor density equation, which is the ninth row of 

matrix Avv. Non-zero coefficient variables are convective quantity for vapor density (column 

9), non-condensable mass fraction (column 6), vapor internal energy (column 7), and total 

pressure (column 11). Their off-diagonal coefficients can be obtained through Equations 111-

113. 

 

Coefficients in Vapor Density Equation 

 dbhbe = − �1�
�DE                                                (111) 

 dbhbk = − �1�
�F�                                                (112) 

 dbhKK = − �1�
�_                                                 (113) 

 

     Liquid density equation has two non-zero off-diagonal coefficient variables, which are 

liquid internal energy (column 8) and total pressure (column 11). Its coefficients are 

computed by Equations 114 and 115. 
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Coefficients in Liquid Density Equation 

dKbbg = − �1#
�F#                                                  (114) 

dKbKK = − �1#
�_                                                   (115) 

 

     The sixth constitutive equation is void fraction equation, which is the eleventh row of 

matrix Avv. Non-zero coefficient variables are convective quantity for vapor density (column 

2), convective quantity for liquid density (column 3), vapor density (column 9), liquid 

density (column 10), and total pressure (column 11). Their off-diagonal coefficients can be 

obtained through Equations 116-119. 

 

Coefficients in Void Fraction Equation 

dKKbi = K
1#                                                    (116) 

dKKKb = − (�#1#m )
1#Z                                                (117) 

dKKb! = − K
1�                                                  (118) 

dKKbh = (��1�m )
1�Z                                                  (119) 

 

     The seventh constitutive equation is vapor temperature equation, which is the twelfth 

row of matrix Avv. Non-zero coefficient variables are vapor temperature (column 12), non-

condensable mass fraction (column 6), vapor internal energy (column 7), and total pressure 

(column 11). Their off-diagonal coefficients can be obtained through Equations 120-122. 
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Coefficients in Vapor Temperature Equation 

dK!be = − �3�
�DE                                                 (120) 

dK!bk = − �3�
�F�                                                 (121) 

dK!KK = − �3�
�_                                                  (122) 

 

     The thirteenth row contains liquid temperature equation, which has non-zero 

coefficient variables - liquid temperature (column 13), liquid internal energy (column 8), and 

total pressure (column 11). Their off-diagonal coefficients can be obtained through Equations 

123 and 124. 

 

Coefficients in Liquid Temperature Equation 

dKibg = − �3#
�F#                                                  (123) 

dKiKK = − �3#
�_                                                   (124) 

 

     The ninth constitutive equation is saturation temperature corresponding to partial 

pressure equation, which is the fourteenth row of matrix Avv. Non-zero coefficient variables 

are saturation temperature corresponding to partial pressure of water vapor (column 14), non-

condensable mass fraction (column 6), vapor internal energy (column 7), and total pressure 

(column 11). Their off-diagonal coefficients can be obtained through Equations 125-127. 
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Coefficients in Saturation Temperature Corresponding to Partial Pressure Equation 

dKjbe = − �39o
�DE                                                  (125) 

dKjbk = − �39o
�F�                                                  (126) 

dKjKK = − �39o
�_o                                                  (127) 

 

     Saturation temperature corresponding to total pressure equation has only one non-zero 

off-diagonal coefficient variable, which is total pressure. Its coefficient is computed by 

Equation 128. 

 

Coefficients in Saturation Temperature Corresponding to Total Pressure Equation 

dKlKK = − �39o
�_o                                                  (128) 

 

     The eleventh constitutive equation is interface mass transfer equation, which is the 

sixteenth row of matrix Avv. Non-zero coefficient variables are interface mass transfer 

(column 16), vapor temperature (column 12), liquid temperature (column 13), and saturation 

temperature corresponding to partial pressure of water vapor (column 14). Their off-diagonal 

coefficients can be obtained through Equations 129-131. 
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Coefficients in Interface Mass Transfer Equation 

dKeK! = − 67�
=�° :=#°                                                (129) 

dKeKi = − 67#
=�° :=#°                                                (130) 

dKeKj = 67�<67#
=�° :=#°                                                 (131) 

 

     The twelfth constitutive equation is interface energy exchange equation, which is the 

seventeenth row of matrix Avv. Non-zero coefficient variables are interface energy transfer 

associated with interface mass transfer (column 17), vapor temperature (column 12), liquid 

temperature (column 13), and saturation temperature corresponding to partial pressure of 

water vapor (column 14). Their off-diagonal coefficients can be obtained through Equations 

132-134. 

 

Coefficients in Interface Energy Exchange Equation 

dKkK! = − =#° 67�
=�° :=#°                                                (132) 

dKkKi = − =�° 67#
=�° :=#°                                                (133)  

dKkKj = − =#° 67�<=�° 67#
=�° :=#°                                           (134) 

 

     Wall mass transfer to vapor equation is the eighteenth equation in Avv matrix. Its non-

zero coefficient variables are wall mall transfer to vapor (column 18), vapor temperature 

(column 12), liquid temperature (column 13), saturation temperature corresponding to partial 

pressure of water vapor (column 14), and saturation temperature corresponding to total 
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pressure (column 15). Their off-diagonal coefficients can be obtained through Equations 135-

138. 

 

Coefficients in Wall Mass Transfer to Vapor Equation 

dKgK! = − Гp#�
∆�                                                 (135) 

dKgKi = − Гp##
∆�                                                 (136) 

dKgKj = − Гp#9oo
∆�                                                (137) 

dKgKl = − Гp#9oq
∆�                                                (138) 

 

     Wall mass transfer to liquid equation is the nineteenth equation in Avv matrix. Its non-

zero coefficient variables are wall mall transfer to liquid (column 19), vapor temperature 

(column 12), liquid temperature (column 13), saturation temperature corresponding to partial 

pressure of water vapor (column 14), and saturation temperature corresponding to total 

pressure (column 15). Their off-diagonal coefficients can be obtained through Equations 139-

142. 

 

Coefficients in Wall Mass Transfer to Liquid Equation 

 dKhK! = − Гr��
∆�                                                (139) 

 dKhKi = − Гr�#
∆�                                                 (140) 

 dKhKj = − Гr�9oo
∆�                                               (141) 

  dKhKl = − Гr�9oq
∆�                                               (142) 
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     The constitutive equation in twentieth row is wall heat transfer to vapor equation. Its 

non-zero coefficient variables are wall heat transfer to vapor (column 20), vapor temperature 

(column 12), liquid temperature (column 13), saturation temperature corresponding to partial 

pressure of water vapor (column 14), and saturation temperature corresponding to total 

pressure (column 15). Their off-diagonal coefficients can be obtained through Equations 143-

146. 

 

Coefficients in Wall Heat Transfer to Vapor Equation 

 d!bK! = − sp#�+
∆�                                                (143) 

 d!bKi = − sp##+
∆�                                                (144) 

 d!bKj = − sp#9oo+
∆�                                               (145) 

 d!bKl = − sp#9oq+
∆�                                               (146) 

 

     The last constitutive equation is wall heat transfer to liquid equation. Non-zero 

coefficient variables are wall heat transfer to liquid (column 21), vapor temperature (column 

12), liquid temperature (column 13), saturation temperature corresponding to partial pressure 

of water vapor (column 14), and saturation temperature corresponding to total pressure 

(column 15). Their off-diagonal coefficients can be obtained through Equations 147-150. 
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Coefficients in Wall Heat Transfer to Liquid Equation 

   d!KK! = − sr��+
∆�                                                (147) 

 d!KKi = − sr�#+
∆�                                                (148) 

 d!KKj = − sr�9oo+
∆�                                               (149)    

  d!KKl = − sr�9oq+
∆�                                               (150) 

 

     Another sub-matrix is constructed with the momentum conservation equation; therefor 

it is used to solve the increments in pressure, junction vapor velocity, and liquid velocity 

quantities in a 21 by 2 matrix called Ajj. Moreover, a complete matrix structure of a 4-volume 

pipe model is given as an example in Figure 4. 

 

 

Figure 4: Matrix Structure of a 4-volume Pipe 
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     Matrix A in Figure 4 is composed with both mass-energy and momentum sub-matrices. 

There are four columns of 5 by 5 matrices shown in Figure 2 and each one of them represents 

a 21 by 21 volume sub-matrix Avv in Figure 1. Since a four-volume pipe has three inner 

junctions, there are six momentum equations for both phases. The momentum equations 

construct the bottom six rows in matrix A. These matrices representing liquid and vapor 

momentum equations have unknowns of changes in pressure and changes in velocity. The 

similar matrix A is built for each system. For example, a simplified one loop pressure water 

reactor contains two systems - primary loop and secondary loop, so it will construct and 

solve two matrices for each system at every time step. 

     The current conservative code solves a linear solution of conservation equations once 

every time step, so the convergent criterial was not studied in the scope of this paper. The 

future work will focus on solving the non-linear equations with Newton Raphson iteration. 

Therefore convergence will be studied in the future work related to the iteration. Moreover, 

several tests are performed to compare with the results from the original non-conservative 

approach. The comparisons are presented in the following sections. 
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Chapter 7: Test Results 

     In this section, six simple pipe models with different thermal hydraulic conditions and 

one simplified PWR steady state have been studied with RELAP5 in order to test the new 

solution strategy. The sample problems, which did show mass error reductions, were 

primarily designed to test code situations such as single phase flow of each phase, two phase 

flow, and transitions between single and two phase flow in each direction. The transitions are 

a difficult point in the simulation. The derivative terms in the approximation of the equations 

of state can change signs and orders of magnitude. The simulation relies on a time step 

control using halving and repeating of the time step to approach the transition point, using a 

very small time step to cross the transition, and then doubling back of the time step as 

permitted. The formulation of the two phase model limits void fractions to be within the 

values of 0 and 1, but the finite difference approximations to the conservation equations do 

not enforce those limits. Excessive violations cause time step reductions and repeat of time 

steps. Simply resetting the void fractions to the limits introduces mass error. Corrective 

action such as reducing the mass and energy interphase transfer rates are used to the extent 

possible. This handling of the transitions between single phase and two phase conditions is 

required in both the non-conservative and conservative form of the conservation equations. 

Test cases thus far have been focused on these situations. Table 1 briefly describes the test 

cases presented in the section.  
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Table 1 Testing Cases and Input Deck Description 

Input Deck Case Studies 

cnsimpl.i Case #1:signle phase liquid, equilibrium condition 

Case #2:two phase liquid and vapor in equilibrium condition 

Case #3:two phase liquid and vapor in non-equilibrium condition 

cnsimplhs.i Case #4:signle phase liquid with heat structure 

Case #5:two phase at equilibrium initial condition with heat structure 

Case #6:two phase at non-equilibrium initial condition with heat structure 

splantstst.i simplified PWR plant steady state 

 

     The first input deck is created based on a simple pipe model and the nodalization is 

shown in Figure 5. The system is horizontally orientated and it contains a one-volume pipe 

(Pipe_3), a trip valve (Valve_4), and a time dependent volume (TDV_5). The pipe has no 

heat structure attach to it, so there is no heat going in and out. Even though a trip valve is 

used, it is modeled as a closed valve through the simulation. Therefore, there is no mass 

transferring between the pipe and the outside world. 

 

 

Figure 5 cnsimpl.i Nodalization 
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     Table 2 presents geometry dimensions of all the components in the simple pipe model. 

 

Table 2 Geometry Information In cnsimpl.i 

TDV_5 L=0.204801m; Af=4.56037e-3m
2
 

Valve_4 Af=3.96752e-3m
2
 

Pipe_3 L=0.204801m; Af=4.56037e-3m
2
;  

number of pipe volume: 1 

 

     There are three cases in the input deck cnsimpl.i and each one of them has a different 

initial condition within the pipe: Case#1 has a single phase liquid in pipe; Case#2 mimics 

two phases in an equilibrium condition; and Case#3 models two phases in non-equilibrium. 

The initial conditions are shown in table 3. 
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Table 3 Initial Conditions in cnsimpl.i 

Initial Conditions 

TDV_5 P=1.0e5 Pa; Xs=1.0 

Valve_4 Closed through the entire problem 

Pipe_3 in Case#1 P=7.0e6Pa; Uf=9.78293e5J/kg;  

Ug=2.58184e6J/kg; voidg=0.0(equilibrium) 

Pipe_3 in Case#2 P=7.0e6Pa; Xs=0.5 (equilibrium) 

Pipe_3 in Case#3 P=7.0e6Pa; Uf=1.27e6J/kg; Ug=2.6e6J/kg; 

voidg=0.5(non-equilibrium)  

 

     Case#1 models a single phase liquid in a one-volume pipe, which is completely 

isolated from the outside environment. Consequently, the fluid properties are constant. 

Figures 6 to 8 represent comparisons of pipe pressure, liquid temperature, and liquid internal 

energy in Case#1 between the conservative and the non-conservative forms of simulation 

results. 



49 

 

Figure 6 Case#1 Pressure Comparison 

 

 

Figure 7 Case#1 Liquid Temperature Comparison 
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Figure 8 Case#1 Liquid Internal Energy Comparison 

 

     The percent differences of pressure, liquid temperature, and liquid internal energy 

between the conservative and non-conservative results are zeros. It means, in the Case#1 

simple pipe model, the conservative form gives the exactly same results as the non-

conservative form does. 

     The second test in the same input deck is more interesting since there are both liquid 

and vapor presenting in the pipe. Figure 9 and Figure10 show the vapor void fraction and the 

vapor internal energy values. 
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Figure 9 Case#2 Vapor Void Fraction Comparison 

 

 

Figure 10 Case#2 Vapor Internal Energy Comparison 
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equilibrium condition is tested by the last case in cnsimpl.i. Therefore, interphase 

mass/energy transfers occur.  

     Figure 11 and 12 show the comparisons of vapor void fraction and the vapor 

generation rate in Case#3. 

 

Figure 11 Case#3 Vapor Generation Rate Comparison 

 

 

Figure 12 Case#3 Vapor Void Fraction Comparison 
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     It may appear that discrepancy is more noticeable in the vapor void plot of Case#3. 

However, the percent differences in the conservative and non-conservative forms are very 

small. At 20 seconds of the run time, it is about 0.003% difference. 

     ‘emass’ is one of the general quantities in RELAP5. It is computed within the code and 

used to estimate of mass errors in all systems. Finally, the absolute values of mass errors in 

the conservative and non-conservative forms are compared and presented in Figure 13. As 

appeared in the plot, the conservative form gives much smaller mass error values than the 

non-conservative form does. At the end of the run, the conservative form results a mass error 

in an order of ten to the negative ten comparing to .00014 from the non-conservative 

approach. 

 

 

Figure 13 Case#3 Mass Errors 
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conservative code can be used to verify the improved code. The comparison tests show that 

the conservative code predicts the same thermal hydraulic behavior as the non-conservative 

does. Meanwhile, mass error comparison plots show that a better accuracy or less mass error 

can be achieved with the fully conservative approach. 

     The second input deck is an extension of cnsimpl.i. The system shown in Figure 14 is 

the same as the previous model. It has a one-volume pipe (Pipe_3), a trip valve (Valve_4), 

and a time dependent volume (TDV_5). The pipe has a heat structure (Hts_3) attach to it. 

The heat structure mimics a wall of the pipe and has no power within it. C-steel is used as the 

heat structure material. Even though a trip valve is used to connect the time dependent 

volume and the pipe, it is modeled as a closed valve through the simulation and there is no 

mass transfer into or out of pipe. Nodalization is shown below: 

 

 

Figure 14 cnsimplhs.i Nodalization 

 

     Table 4 presents geometry dimensions of all the components in the model. 
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Table 4 Geometry Information in cnsimplhs.i 

TDV_5 L=0.204801m; Af=4.56037e-3m
2
 

Valve_4 Af=3.96752e-3m2 

Pipe_3 L=0.204801m; Af=4.56037e-3m
2
;  

number of pipe volume: 1 

Hts_3 Thickness=0.0381m; Heated length=0.204801m 

 

     Testing cases 4 to 6 are in the input deck and each has a different initial condition 

within the pipe: In Case#4, pipe has a single phase liquid; Case#5 mimics two phase in 

equilibrium condition; and Case#6 models two phases in non-equilibrium. The initial 

conditions are shown in table 5. Unlike cnsimpl.i model, cnsimplhs.i has heat transfer 

through the heat structure. 
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Table 5 Initial Conditions in cnsimplhs.i 

Initial Conditions 

TDV_5 P=1.0e5 Pa; Xs=1.0 

Valve_4 Closed through the entire problem 

Pipe_3 in Case#4 P=7.0e6Pa; Uf=9.78293e5J/kg;  

Ug=2.58184e6J/kg; voidg=0.0(equilibrium) 

Pipe_3 in Case#5 P=7.0e6Pa; Xs=0.5(equilibrium) 

Pipe_3 in Case#6 P=7.0e6Pa; Uf=1.27e6J/kg; Ug=2.6e6J/kg;  

voidg=0.5(non-equilibrium)  

Hts_3 No heat source; Isolated right boundary; Tinitial=600K 

 

     Cnsimplhs.i is the same as cnsimpl.i besides the pipe wall is modeled with heat 

structure; therefore the comparison test mainly focuses on the newly introduced the heat 

structure related parameters, such as heat fluxes (RELAP5 parameter-HTRNR), heat 

structure average temperatures (RELAP5 parameter-HTVAT), and interface mass transfers 

due to wall boundary conditions (RELAP5 parameter-GAMMAW). 

     Since all three cases are very similar, the results of Case#4 alone are analyzed to 

represent the group of simulations in cnsimplhs.i. Case#4 initially has liquid in the pipe at an 

equilibrium condition. Then a small amount of vapor is generated due to the heat addition 

from the heat structure to the pipe. At the end, simulation reaches a steady state and vapors 
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condense. Figure 15 and 16 show the comparisons of the heat structure parameters, including 

the heat fluxes between pipe/wall and the volume-average heat structure temperature, 

resulted from the conservative form and the non-conservative form. The outside of wall (left 

boundary of heat structure) is isolated, so heat flux is zero and only heat flux at inner wall 

(right boundary of heat structure) is plotted here. 

 

 

Figure 15 Case#4 Heat Flux at Inner Wall Comparison 

 

 

Figure 16 Case#4 Heat Structure Temperature Comparison 
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     The heat structure temperatures of Case#4 are compared and the percent differences 

are presented in Figure 17. Finally, the mass error resulted from the simulation is compared. 

At the end of the time step, the total mass error from the conservative approximation 

approach gives about 1.147E-7. The non-conservative form results a mass error at around 

1.7E-5, which is about 100 times larger. 

 

Figure 17 Case#4 Heat Structure Temperature Percent Difference 
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Figure 18 Simplified PWR Nodalization 

 

     The primary system contains system pipings, a core vessel containing the nuclear core, 

a pressurizer with a surge line, a steam generator, and a Westinghouse pump. The secondary 

loop includes a steam generator tube sheet, a separator, a steam dome, a steam dome outlet 

time dependent volume, and a downcomer annulus with a feedwater inlet. The heat slab of 

the steam generator tubes is modeled with the heat structure 150 (Hst_150) with 3 heat 

structure volumes, which are shaded areas in Figure 18. Table 6 gives the initial condition 

values. 
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Table 6 Initial Conditions in splantstst.i 

Primary system pressure 15 MPa 

loop average temperature 550 K 

loop flow rate 131 kg/sec 

core power 50 MW 

Secondary System pressure 2 MPa 

feedwater flow rate 26.1 kg/s 

feedwater temperature 478 K 

 

      

     The primary pressures in volume_140 [Fig 18] of the conservative form and the non-

conservative form are compared and presented in Figure 19. The percent differences in 

pressures are plotted in Figure 20. The differences disappear once the simulations archive 

steady state. 
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Figure 19 Simplified PWR Primary Loop Pressure Comparison 

 

 

Figure 20 Simplified PWR Primary Loop Pressure Difference 
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percent differences are computed and plotted in Figure 22. During steady state, the 

conservative and non-conservative numerical approaches produce the same results. 

 

 

 

Figure 21 Simplified PWR Separator Temperature Comparison 

 

 

Figure 22 Simplified PWR Separator Temperature Difference 
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     Another volume parameter - vapor void fraction in separator is compared in Figure 23 

and the percent differences between the conservative method and the non-conservative 

method are present in Figure 24. 

 

 

Figure 23 Simplified PWR Separator Vapor Void Fraction Comparison 

 

 

Figure 24 Simplified PWR Separator Vapor Void Fraction Difference 
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     Next, one junction parameter (junction velocity) and one heat structure parameter (heat 

flux values) are shown in Figure 25 and Figure 26 separately. Heat structure volume 1502 is 

the center volume of the steam generator; and the junction velocities are ones in the steam 

generator inlet junction 141 [Fig 18].  

 

 

Figure 25 Simplified PWR Primary Loop Junction Velocity Comparison 
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Figure 26 Simplified PWR Steam Generator Heat Flux Comparison 

 

     The results give percent differences in ~0.001% for heat flux and ~0.002% for junction 

velocity at steady state condition. The purpose of this simplified PWR plant comparison is to 

show that the new conservative code is able to simulate a complete plant model and the 

predictions are similar to the non-conservative numerical approximation. 

     However, the main motivation of the work is to reduce mass error by implementing a 

fully conservative form. Therefore, the mass error comparison between the conservative and 

non-conservative forms is plotted in Figure 27. 
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Figure 27 Simplified PWR Primary System Mass Error Comparison 

 

     Since the mass error from the conservative form is extremely small, Figure 27 is not 

able to present the value of conservative mass error. Therefore, a zoomed plot for the 

conservative mass error is re-plotted in Figure 28. 

 

 

Figure 28 Simplified PWR primary system mass error conservative forms 
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     The simple plant mass error comparison shows that a large amount of mass error 

reduction is achieved in a fully conservative code.  

     The significant benefit of the fully conservative approach is also demonstrated by 

Table 7. Table presents some of testing models and lists them in the ascending complexity 

order. Complexity is ranked by number of components and thermal hydraulic conditions in 

the models. For example, models with flow or heat structure are more complex than ones 

without flow or heat structure and non-equilibrium model is more complex than equilibrium 

condition. As shown in Table 7, conservative code is able to reduce mass error by about 

factor of 10
12

 in all testing cases. 

     The table also shows that PWR plant model, which has much more components than 

simple pipe does, results about 1000 times bigger mass error. When models become more 

complex, mass errors increase. Therefore, as models becoming more complex, they can be 

troublesome for non-conservative code by continually increasing mass error. Eventually, 

large errors will lead to incorrect simulation results in non-conservative code. However, 

expectation from conservative code is that it will reduce the mass error by factor of 10
11

 and 

keep them at low values even in more complex simulations, so the correct simulation results 

can be obtained. 
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Table 7 Mass Error Comparison Table 

 Test Cases Mass error ( non-

conservative form) 

Mass error 

(conservative form) 

Ratio of conservative 

to non-conservative 

1 Pump test 8.830810E-04 3.13296E-14 3.547761E-11 

2 Simple pipe 

with power 

input, no flow 1.639210E-03 3.191890E-16 1.947212E-13 

3 Simple pipe 

with flow and 

power 0.0354538 1.065210E-12 3.004502E-11 

4 PWR Plant 0.1042274 3.1832310E-12 3.054121E-11 
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Chapter 8: Conclusion 

     The desirability of the more conservative form of the conservation equations is due to 

the mass and energy within the bounds of the problem being conserved over time 

advancements. Thus, even though truncation error may not allow the mass and energy to be 

properly distributed over the volume of the problem, the total mass and energy within the 

system are preserved. A method that preserves that total mass and energy is intuitively more 

attractive than one that does not conserve total mass.  

     In the RELAP5 semi-implicit method, a non-conservative form of the conservation 

equations is used. The solution values are consistent in that the solution can be checked by 

substituting the new time values into the simultaneous equations resulting from the numerical 

approximation to the hydrodynamic equations. Then, the conservation equations of mass and 

energy are rewritten using the more conservative form of those equations and using results 

from the prior non-conservative solution as needed. The equations can be explicitly solved 

(no simultaneous equations) for the convective quantities, vapor void fraction times vapor 

density times non-condensable mass fraction and the void fraction times density and void 

fraction time density times internal energy for each phase. New internal energies are obtained 

by dividing the product of the void fraction, density, and internal energy by the void fraction 

times density for each phase. New void fractions can be obtained by dividing the product of 

the void fraction, and densities by the extrapolated densities for each density obtained during 

the first step. But if that is done, the void fractions do not necessarily sum to 1.0. So instead, 

the two phases are mixed and the void fraction is determined from the mixture equation. This 

step seems to introduce mass errors and may negate gains made from using the conservative 

form of the mass and energy equations in the second step. The proposed change to the 
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solution of the conservation equations offers a conservative form of the conservation 

equations in a consistent, single step method. 

     Even though the current conservative code increases computational effort, the 

computing time of using the new solution strategy heavily depends on the ability and 

efficiency of the sparse matrix solver used. The current code uses MA28 sparse matrix 

solver. Switching to the most recent sparse matrix solver, such as Intel Math Kernel Library, 

could improve the efficiency and reduce the simulation run time. 

     There are other possible means of increasing speed of the conservative form. Simple 

replacement operations can be used to eliminate variables and equations from the complete 

set of equations for each volume. Four of the equations for each volume define four different 

temperature changes as functions of pressure and internal energy using a two term Taylor 

series approximation of the equation of state. Six other equations use the four temperature 

changes to define mass and energy transfers between the phases and heat transfer between 

the vapor and liquid and heat structures. The equations defining the temperature changes 

from the equation of state are used to replace the temperature changes in the six equations. 

The effect is that the four equations defining the temperature changes can be set aside for 

later use in back substitution, and four equations per volume have been removed from the set 

of simultaneous equations. The six equations define six quantities appearing in the 

conservation of mass and energy equations. Similarly, these quantities can be replaced in the 

mass and energy equations, allowing six more equations to be set aside. This is continued for 

additional equations until only six equations per volume remain the set of simultaneous 

equations for the conservative form and five equations remain for the non-conservative form. 

This simple replacement is possible because a replacement could be done using only one 
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equation to define a replacement. If more equations are required to define replacements, the 

operation is more difficult. The replacement operations were originally performed manually. 

But since that task is tedious and errors are easily introduced, Mathematica was used to do 

the replacements. 

     The instability relates to the fundamental finite difference methods used in the codes 

(semi-implicit for this study); in addition, another cause is the explicit time evolution of 

friction and heat transfer terms (Mahaffy, 1993). The stability of semi-implicit method has 

been studied (Liles, D. R., Reed, WM. H., 1978). The new conservative code does not 

change the semi-implicit scheme, nor does it alter the way of evaluating friction and heat 

transfer terms. Therefore, it is believed that the more conservative form does not introduce 

new sources of instability. Moreover, as part of this work, it is intended to test small change 

to allow Crank-Nicolson advancement. An explicit advancement using only old time values 

for space oriented quantities would not require solution of simultaneous equations, but time 

steps would be severely limited by stability considerations to a sonic velocity based limit. 

Using new time values for the space oriented quantities requires the solution of simultaneous 

equations but larger time steps can be used. The semi-implicit advancement used new time 

values for only selected quantities such that time steps up to a material transport limit are 

possible and the simultaneous equations could be readily solved. Later, a nearly-implicit 

method which used additional new time information was added which removed the stability 

limit but required more run time per advancement in order to handle the larger set of 

simultaneous equations. Moving to Crank-Nicolson advancement is simply the replacing the 

use of a new time value with the average of the new and old time values. Intuitively, this 

seems desirable since given a purely integration problem, one would select a trapezoidal 
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based numerical integration over a rectangle based integration. Advancements using Crank-

Nicolson can generate oscillatory behavior even though the advancement is unconditionally 

stable. The heat conduction advancement in RELAP5 uses Crank-Nicolson advancement. 

Tests of the heat conduction advancement procedures were run comparing Crank-Nicolson 

and fully implicit advancement at varying time steps for problems having analytical 

solutions. Oscillatory behavior for the Crank-Nicolson was observed, but it was also noted 

that the fully implicit advancement was highly damped. An average of the oscillatory 

behavior may have been nearer to the analytical solution than the fully implicit advancement. 

Use of the Crank-Nicolson technique may require improved time step control.  

     Simple models (with a wide range of thermal-hydraulic conditions) are built for testing 

the new code and six simple pipe cases are presented in paper to show comparable results 

from conservative form. The tests focus on volume, junction, and heat structure parameters. 

In future work, other RELAP5 parameters like trip variables and control variables will be 

tested. A more complicated PWR plant is also tested for code accuracy and ability to simulate 

a complete plant model. 

     The mass error comparison tests show that improved code is able to reduce mass error 

by a factor of about 1011. Moreover, mass error increases with more complex models. As 

complexity goes up, models can become troublesome for non-conservative code because of 

continually increased mass errors. Eventually, large errors will lead to incorrect simulation 

results. However, conservative code will reduce the mass error by factor of 10
11

 and avoid to 

result a large mass error, so the correct simulation results can be preserved by the improve 

code. 
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     The work of implementing fully conservative forms into RELAP5 is a continuing task. 

The status quo of the study is presented in this part II of the series paper. The main purpose is 

to introduce an innovative strategy for implementing and solving fully conservative mass and 

energy equations. The small differences between two codes are targeted because the new 

version of RELAP5 is supposed to predict the same results with smaller mass error (the main 

motivation of the work). Moreover, the comparison tests results prove that the solution 

strategy is feasible and a mass error reduction by using conservative forms is observed. The 

future wok will focus on implementing iteration method to improve the accuracy, improving 

code robustness with Crank-Nicolson scheme, and improving efficiency of the fully 

conservative forms. 
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