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Abstract

Many datasets have missing entries. Since downstream tasks often require full datasets with little

noise, accurately imputing the missing data is quite valuable. Autoencoders have proven themselves as

effective data imputers. However, while they exploit high order dependencies between the columns of

a dataset, autoencoders typically treat each row independently. This produces two problems. First,

imputation accuracy is suboptimal because not all of the data is used effectively. Second, downstream

classification tasks suffer since rows belonging to different classes get treated the same. Presented in this

thesis is CLAIM (CLustered Autoencoder IMputation), an algorithm that adapts existing autoencoder

networks in a way that directly addresses these issues. CLAIM first separates rows into clusters based

on similarity. Then, in the encoder, it applies different, loosely connected, learned linear transformations

to each cluster. Results show that this method improves accuracy with typical autoencoder imputation

strategies on large enough datasets. Also presented is a CLAIM-specific iterative clustering algorithm,

which allows CLAIM to improve initial cluster assignments as needed.
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Chapter 1: Introduction

Throughout this thesis, the word ”dataset” will be used to mean a 2-d matrix of data. Each row

corresponds to an entity (individual) and each column to a feature (attribute).

1.1 Motivation

In practice, data matrices with missing entries are prevalent [1]. Data can be missing for many

reasons. Some common ones are: missing responses to survey questions, people forgetting or unable to

take certain measurements, and machine error. An example of unavoidable machine error that results

in missing values is data generated by single-cell RNA-sequencing (scRNA-seq). scRNA-seq is a state-

of-the-art technology for measuring gene expression levels. While it can capture gene expression at the

individual cell level [2] scRNA-seq suffers from a high rate of dropout [3]. Dropout is where a gene is read

to have count zero due to a technical error with the procedure. While some of the zeros are a result of a

true gene expression of zero, most are due to limitations in the sequencing technology itself and cannot

be distinguished from biological zeros [4]. Because of this, zeros in the data should be treated as missing

values.

Missing data is an obstacle for many downstream tasks. It is especially important to deal with

missing data in a way that preserves its quality in the area of machine learning [5]. Because of this, many

advanced imputation algorithms have been developed. One of the more recent methods called autoencoder

imputation (detailed in 2) is the focus of this project. Autoencoders show strong performances in imputing

a wide range of datasets, including electronic health records [6], scRNA-seq data [4][7][8][9], and traffic

data [10]. Autoencoders exploit non-linear relationships between features to predict what the missing

values should be. However, they do not inherently utilize relationships between the rows of the data.

This thesis presents a novel method for allowing the autoencoder to exploit the similarity between rows.

1.2 Proposed Method

Consider a dataset where the rows represent different people, and the columns are various body

dimensions. Suppose we know the hip circumference of the person, but waist circumference is missing.

It is known that males have a larger waist to hip ratio than females on average [11] [12]. So if we

knew the individual was male we would predict a larger waist size than if we knew they were female.

Without knowing their sex, we would predict somewhere in-between those two values. In this example,

we know that the same relationship between features does not necessarily hold when considering males

as opposed to considering females. This intuition tells us that imbuing the autoencoder with knowledge
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of which group (cluster) each row belongs to should improve performance. It also tells us that one way

to improve performance is to interpret the row differently based on the group to which it belongs. The

proposed method is to train a different transformation matrix for each group, transforming the input data

differently based on the cluster. On scRNA-seq data, results show that adding the cluster information

improves the performance of the autoencoder architectures studied in this thesis, assuming the datasets

are not too small.
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Chapter 2: Background

2.1 Types of Missing Data

2.1 Missing Completely at Random

A common assumption about missing data, and the one made in this thesis, is that the data is missing

completely at random (MCAR). Data is considered to be MCAR if every entry in the dataset is equally

likely to be missing.

2.1 Missing at Random

In the case where data is missing at random, data is missing with a probability dependent on other,

known features. For example, it may be that brain surgeons are less likely than bartenders to tell you

how often they drink alcohol.

2.1 Missing Not at Random

Missing not at random is when the probability of a missing entry depends on factors not seen in the

known data. It could even be dependent on the missing value itself. This might happen if people with

lower incomes tend to not report their hourly wage.

2.2 Overview of Selected General Imputation Methods

2.2 Complete Case

The complete case (CC) method is possibly the most straightforward method for dealing with missing

values. It simply removes all rows in the dataset that have missing values. This acts to produce a

complete dataset, but removes possibly useful information. CC can only be considered if the fraction of

rows with missing data is small.

2.2 Mean Imputation

Mean imputation replaces missing entries with the mean of the known values of the feature they

represent. There are at least two problems with this method. First, it reduces the correlation between

features. This is because any imputed values in one feature are guaranteed to be independent of known

values of other features. This deteriorates the structure of the data, which makes extracting useful

information more difficult. Second, decision-tree-based classification algorithms operate by splitting the
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data based on the order of the numerical values in each feature. In this case, mean imputation serves to

keep errors from occurring when running the algorithm, but offers it no way to distinguish between the

imputed values.

2.2 Multiple Imputation

Multiple imputation (MI) [13] improves imputation methods that produce imputations stochastically.

MI is performed by producing m imputed datasets from a stochastic imputation method. The final

imputation is the mean of the m imputed datasets. One advantage of MI is that the standard error of

the imputation can also be calculated for each imputed value. Analysis on MCAR data has shown that

MI with a Markov chain Monte Carlo (MCMC) imputation method that assumes multivariate normality

[14] is more effective than either complete case or mean imputation [15]. However, it takes more time

and is harder to implement.

2.2 K Nearest Neighbor

The k-nearest neighbor (KNN) imputation [16] algorithm takes each row of the dataset and finds the

k most similar rows, based on known values. The common metric to determine similarity is the Euclidean

distance. A weighted average is taken over non-missing entries in these k rows and is used to replace each

missing value in the original row. The average is weighted based on the similarity score. There are two

main drawbacks to KNN. The first is that on large datasets it can be slow. Secondly, it has been shown

to distort the original structure of the data [17].

2.3 Artificial Neural Networks

2.3 Definition

Artificial neural networks (ANNs) are multivariate composite functions with trainable parameters.

The vanilla ANN is the fully connected neural network (FCNN) (see figure 2.1 for a visual example of

an FCNN). An FCNN can be seen as a sequence of layers. Each layer, except the input layer, is the

result of a linear transformation acting on the previous layer, followed by a shift, and then run through a

non-linear function a, called an activation function. The layers in-between the input layer and the output

layer are called hidden layers. A typical fully connected neural network with n− 1 hidden layers can be

written recursively as a nested set of functions:

Let

n ∈ {2, 3, . . . },
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m = (m0,m1, . . . ,mn) ∈ Nn+1,

W = [W1,W2, . . . ,Wn],

and

b = [~b1, ~b2, . . . , ~bn],

where

Wk =



wk11 wk12 . . . wk1mk

wk21 wk22 . . . wk2mk

...
...

. . .
...

wkmk−11 wkmk−12 . . . wkmk−1mk


∈Mmk−1×mk

(R), and ~bk = (bk1, bk2, . . . , bkmk
) ∈ Rmk

for 1 ≤ k ≤ n.

Let

~x = (x1, x2, . . . , xm0
) ∈ Rm0 ,

and define

~O0 = ~x.

Then let

~Ok = a( ~Ok−1Wk + ~bk) for 1 ≤ k ≤ n− 1,

and

~On = ~On−1Wn + ~bn.

Then the fully connected neural network fW,b : Rm0 → Rmn can be defined by

fW,b(~x) = ~On, (2.1)

where the weights W and biases b are trainable parameters. The standard method is to initialize b with

all zeros, and W with either a normal [18] or uniform distribution [19] centered at zero.

The activation function that has received the most attention is the rectified linear unit (ReLU). It is

defined as

ReLU(x) = max(x, 0).
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The simplicity of the ReLU function makes it computationally efficient compared to other activation

functions like sigmoid and tanh. Additionally, for positive path signals, ReLU ’s linearity eliminates the

vanishing gradient problem caused by the chain rule acting on many layers with small derivatives [20].

A variant of ReLU is LeakyReLU [21] which allows for small gradients to be passed through negative

signals. It is defined by

LeakyReLU(x) = max(x, ax).

A typical value for a is 0.01.

2.3 Training

Suppose we wanted to predict how many points a player in the National Basketball Association (NBA)

will score in a given season based on their height, weight, and age. To do this with a neural network we

would first collect some data ~xi = (hi, wi, ai) where hi, wi, and ai are respectively the height, weight,

and age of the ith player we collected data on. We also record the number of points yi scored by the ith

player in the corresponding season.

To train a neural network to make these predictions we need a way to tell the network how to update

its parameters based on the observed data. It is the loss function that does this. Here, a loss function

will be defined as any function L : R2 → R such that L(y, ŷ) is increasing with respect to |y − ŷ|, where

y is the true value, and ŷ is the predicted value. The loss function will serve to indicate to the ANN how

far off its output is from the desired output, and in which direction. A typical loss function for regression

tasks is the squared difference L(y, ŷ) = (y− ŷ)2. If we have a sample of size N (also called a batch size),

we would use the mean squared error:

MSE =
1

N

N∑
i=1

(yi − ŷi)2.

The goal when training the network is to minimize the error with respect to all its parameters (all the

elements of W and b in the case of a fully connected ANN) on the entire training set. This can be done

by any optimization algorithm, but is typically done by using a variant of stochastic gradient descent

(SGD) which requires taking the gradient with respect to the MSE. We will use the backpropagation

algorithm to do this. The backpropagation algorithm is an efficient algorithm that employs the chain

rule to find this gradient. The steps to train the network are as follows. First, obtain a random sample

of data of size N , call it x = (x1, x2, . . . , xN ). Then ŷ = (ŷ1, ŷ2, . . . , ŷN ) = fW,b(x), where f is as defined
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as in eq. (2.1). So,

MSE =
1

N

N∑
i=1

(yi − (fW,b(xi)))
2.

In general, the yi’s may be of arbitrary shape, and the MSE as defined above would take on that same

shape. To calculate a gradient, the loss function has to output a single scalar. So, either the sum or

mean over all the elements of the MSE is used as the loss (the mean is typically used). This result is

differentiable with respect to all the parameters contained in W and b. Let λ > 0 (called the learning

rate), then using vanilla SGD we can update the network parameters by doing

p← p− λ∂(MSE)

∂p

for each parameter p of the network. The idea behind this parameter update is simple. The gradient is

the direction of the fastest increase of the MSE function. To reduce the MSE, we should move all the

parameters opposite the direction of the gradient (i.e. in the direction of the fastest decrease). We repeat

the steps above using disjoint samples of the data, called batches, to calculate the error and update the

parameters. Once all the data has been used once, we say that we have trained the network for one

epoch. All the input/output pairs are shuffled in-between epochs. The number of epochs to train for is

just one of many hyperparameters for a neural network. Other hyperparameters include the batch size,

number of outputs in each layer, and the type of activation functions to use. They are usually set by the

practitioner based on their intuition of the problem at hand, but can also be found using an optimization

algorithm like grid search.

2.3 Validation

To make sure that what a network learns during training has predictive value, we need to perform

validation. This consists of randomly splitting the collected data into two sets, the training set, and the

validation set. A typical split ratio is to dedicate 30% of the data to validation and 70% to training. We

train the network only using the training set. Then, every so often we send the validation data through

the network, but do not perform an optimization step. Instead, we just calculate and record the error.

If the error is decreasing on this validation set, we can be confident that the network is generalizing.

Sometimes half of the validation set is separated into what is known as a test set. This is useful

when we want to tune hyperparameters (e.g. learning rate and layer sizes). We use the validation set

to check how well the new hyperparameter configuration is performing, and change the hyperparameters

to reduce the error. The error obtained from the validation set is now biased since the hyperparameters

were selected to reduce it. However, the test set still provides an unbiased evaluation of the network.
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2.3 k-fold Cross-Validation

A downside to the validation methods described above is that not all the data can be used for training.

To circumvent this, we can use k-fold cross-validation. This type of validation is implemented by following

these steps:

1. Randomly split the data into k equal-sized subsets.

2. Create k different models. From the k subsets, assign a different one to each model to be used as

a validation set for that model.

3. Train each model on all the data not in its validation set.

4. Use the average of the validation errors over all models as the total validation error of the k models

combined.

5. Use the average output of the k models for predictions.

A widely used, and empirically verified, value for k is 10 [22].

2.3 Early Stopping

Early stopping is a criterion for when to stop training. To perform early stopping we calculate the

validation error every so often. If the error is lower than at all previous times we save the new model.

Otherwise, we start counting the number of times it has failed to reach the previous lowest error. Once

this count reaches a predefined number, called the stopping patience, training is stopped. The previous

best model can then be loaded and used for predictions.

2.3 Reducing Overfitting with Dropout

If the network is more complex than the data (this is usually the case) the network will begin to

simply memorize the input/output pairs given enough training time. This phenomenon, called overfitting,

reduces the predictive power of the network (see figure 2.2). There are several methods to deal with

overfitting, but arguably the most popular is dropout [23]. Dropout can be applied to any layer of the

network except the last. At every training step dropout randomly zeros out a fraction q (a typical value

is 0.5) of the features in that layer (a layer being Oi for some 0 ≤ i ≤ n − 1 in the above formulation).

Without a correction, the signal from this layer would be diminished by approximately a factor of 1− q.

To account for this, we divide the values in the layer by 1 − q. Dropout causes the same input to look

different each time it is passed through the network, preventing the network from simply memorizing

input/output pairs.
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2.3 L2 Regularization

Another method to attenuate overfitting in neural networks is to add L2 regularization. It penalizes

the network for having large weights:

Lreg = L+ γ

n∑
i=1

∑
w∈Wi

w2

for some γ > 0, called the regularization coefficient. This addition to the loss function acts to penalize

large weights unless they are necessary. This added constraint reduces the network complexity. If the

network is more complex than the data it is handling, then overfitting can occur [24].

2.4 Denoising Autoencoders

An autoencoder is an FCNN where the input is also used as the target output during training. It is

standard to make the network completely symmetric, but not required for many use cases. Two pieces

make up an autoencoder, the encoder, and the decoder. The encoder section takes in the input data, and

(usually) returns a lower-dimensional representation of the input. It is the job of the decoder to take the

encoder’s representation of the input to reconstruct the input. This encoder-decoder structure is shown

in figure 2.3.

Denoising autoencoders [25] are autoencoders that were trained to remove noise from inputs. They

are trained by corrupting the input before sending it through the network, and setting the target output

to be the original, non-corrupted input.

2.5 Missing Data Imputation With Denoising Autoencoders

There are many forms of noise that could be added to the input when training a denoising autoencoder.

The noise used to facilitate data imputation is dropout. By zeroing out some values on the input, we

force the network to make predictions on these values by using the values it knows. As with regular

dropout, we need to compensate for the reduced signal by dividing by one minus the fraction dropped.

Compensating for dropout this way assumes that the autoencoder is one with a bottleneck much smaller

than the original input. Only this case is treated here. See 6 for discussion on autoencoder imputation

where this assumption does not hold.

Let X be a dataset with m rows and n columns, where each column represents a different feature.

Suppose X has missing values. To account for this we need to first replace all missing values with zeros.

Thus, actual missing values will behave the same as artificially dropped values. Second, the calculation
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for the MSE needs to only consider entries with known values. Take a sample of N rows from X, call it

x = [ ~x1, ~x2, . . . , ~xN ]T . Let x̂ = [ ~̂x1, ~̂x2, . . . , ~̂xN ]T be the version of x with dropout applied. We take the

MSE for the sample to be the MSE calculated only on the known values in the sample:

MSEimputation =

∑N
i=1

∑n
j=1(xij − f

(
~̂xi

)
j
)2 ∗ 1(xij is not missing)∑N

i=1

∑n
j=1 1(xij is not missing)

,

where

1(argument) =


1 argument holds

0 argument does not hold

.

The encoder reduces the dimensionality by finding relationships between the features. Whenever features

are found together the encoder learns about the nature of their interdependence. Thus, a missing data

point can be made up for in the encoded representation of the input by other, non-missing features,

that it depends on. The decoder then uses these encoded features to reconstruct the input, with all

previously-missing data imputed.

Figure 2.1: A typical FCNN architecture [26].
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Figure 2.2: Example of overfitting [27].

Figure 2.3: A typical autoencoder structure [26].
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Chapter 3: Related Work

3.1 Overview of Imputation methods on scRNA-seq data

scRNA-seq data is very sparse, with as high as 90% of the data missing. Additionally, these datasets

are larger than many imputation algorithms can handle. As a result, several methods have been developed

specifically for imputing scRNA-seq data. Some of the most prominent are mentioned here. scImpute [28]

and MAGIC [29] are similar in that they donate known values from cells to similar cells that have missing

entries. They are variants for the KNN imputation algorithm outlined in 2.2. SAVER [30] instead uses

the similarity between genes. DCA (deep count autoencoder network) [7] and scVI (single-cell variational

inference) [8] are autoencoder methods that treat cells independently.

3.1 MAGIC

The scRNA-seq dataset used in this thesis was created via the MAGIC [29] algorithm. So the algorithm

is described in greater detail in this subsection. MAGIC uses Euclidean distance to estimate the similarity

between cells. If there are m cells, this produces a matrix of size m×m. An affinity matrix A is computed

by

A(i, j) = e−(Dist(i,j)σ )
2

,

with σ chosen based on the approximate number of cells wanted in each cluster. Then, a Markov transition

matrix M is calculated by normalizing the rows of A to have unit sum:

M(i, j) =
A(i, j)∑
k A(i, k)

.

Then M t(i, j) represents the probability of cell i transitioning to cell j after t steps via a random walk.

The imputed dataset is the weighted average (weighted by M t) of the cells related to each cell. If X is

the original dataset, then the imputed version of X is calculated by

Ximputed = Rescale(M tX)

where the Rescale function accounts for the fact that multiplying by M t spreads out the values along

the gene dimension. This function brings the top gene expressions to similar levels as before imputation.

As shown in their paper, small values of t result in a sensitivity to noise, while large values result in

a loss of information. They offer an algorithm that searches for the optimal value of t.
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3.1 LATE

This project was inspired by the ”LATE (Learning with AuToEncoder) combined” [4] method. The

LATE paper claims superiority over all the imputation methods mentioned above on MSE, recovery of

nonlinear gene-gene relationships, and the correlation between imputed and ground truth genes. LATE

is a simple autoencoder with ReLU activation, and dropout for regularization.

While LATE is not new on its own, LATE combined appears to be the first autoencoder method which

utilizes cell-cell relationships as well as gene-gene relationships. They do this by using the autoencoder

to first train using genes as features, and cells as samples. This model is used to obtain imputed matrix

X(g). The steps above are then repeated, but this time using cells as features, and genes as samples, to

obtain a different imputed matrix X(c). For each matrix and each gene j calculate its MSE against the

known values:

MSE
(g)
j =

∑
i(Xij −X(g)

ij )2 ∗ 1(Xij is not missing)∑
i 1(Xij is not missing)

,

MSE
(c)
j =

∑
i(Xij −X(c)

ij )2 ∗ 1(Xij is not missing)∑
i 1(Xij is not missing)

,

where X is the input matrix. Then construct Ximputed by taking X
(g)
j if MSE

(g)
j ≤ MSE

(c)
j , and X

(c)
j

otherwise, for each gene j. While they offer no theoretical basis for why this should reduce the MSE

on imputed values against the ground truth, they imply that it does. The two main failures of LATE

combined are:

1. It lacks a theoretical basis.

2. It is computationally prohibitive on datasets with too many cells.

They also present an extension to LATE called TRANSLATE (TRANSfer learning with LATE) (as

well as its counterpart - TRANSLATE combined). TRANSLATE runs LATE twice, and requires a

reference dataset. It first runs LATE on the reference data, then the trained weights are transferred to a

new LATE model as initialization to run on the dataset that requires imputing. However, it was deemed

unfair to compare TRANSLATE to other methods that did not utilize a reference dataset. So only LATE

and LATE combined were considered in their analysis.
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3.2 Selected Autoencoder Imputation Variants

3.2 Cascaded Residual Autoencoder

The cascaded residual autoencoder (CRA) [31] is a stacked version of the traditional autoencoder. It

takes multiple autoencoders and uses the output of one as the input to the next. At the output of each

autoencoder the loss between the known data and imputed data is calculated (as in 2.5). Parameters are

updated based on the sum of these losses. This acts to iteratively improve the imputation at each of the

stacked autoencoders, while mitigating the vanishing gradient problem. The desired output can either

be the output of the very last autoencoder, or an average of the outputs of all the autoencoders in the

stack.

3.2 Overcomplete Denoising Autoencoder

An overcomplete autoencoder is an autoencoder which has higher-dimensional hidden layers than the

input. Using an overcomplete autoencoder for imputation was introduced in the MIDA (Multiple Impu-

tation Using Deep Denoising Autoencoders) paper [32]. The intuition is that more lateral connections

may be required in order to recover data with high accuracy. Indeed, if the dimensionality of the raw

data is brought lower than the dimensionality of the manifold it lies on, important information can be

lost.
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Chapter 4: Methods

4.1 Tools

All of the code for this project is written in Python 3.6. The neural networks are written in Pytorch,

a flexible deep learning framework in Python. The Numpy package is used for its scientific computing

operations and compatibility with Pytorch. Scikit-learn, a popular machine learning library, is used for

its k-means clustering algorithm. Finally, the Pandas library was used for loading datasets into memory,

and manipulating them.

Training is done on a laptop with a GeForce GTX 1050 Ti with 4 GB of dedicated memory.

4.2 Datasets

The MAGIC dataset was developed by the authors of the LATE paper. They started with a mouse

bone marrow dataset of 16, 114 genes, and 2, 576 cells. The original count data were log-transformed

by log10(count + 1). This dataset was very sparse, so MAGIC (see 3.2) was used to impute the missing

values. This imputed dataset is considered the ground truth. From the imputed dataset 90% of the

values were randomly erased, and the result is used as the input data.

The OpenIntro [33] datasets were filtered from the full list of datasets on OpenIntro (found at

https://www.openintro.org/data/). The steps for processing this data were, for each dataset:

1. Remove all categorical features.

2. Remove the dataset if it has fewer than five remaining features.

3. Remove the dataset if it has more than 90% missing values.

4. Normalize all remaining features to have values from zero to one by subtracting off the minimum

then dividing by the range.

This left 26 datasets out of the original 195.

4.3 Autoencoder

4.3 Architecture

The LATE paper mentions several different architectures they experimented with. However, it does

not state which one was used to produce their results. Based on the GitHub repository linked to in their
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paper, they used 3 hidden layers. The default structure found is 800, 400, and 800 nodes in the first,

second, and last hidden layers respectively. They use a dropout rate of 0.8 in the input layer, and 0.5 in

all hidden layers. The ReLU activation function is applied to all layers after the input layer, including

the output layer.

Introduced in this thesis are some notable improvements on their architecture. To differentiate, the

proposed architecture will be referred to as NEW. The differences between LATE and NEW are outlined

below:

1. ReLU is not applied to the output layer in NEW. The rationale behind applying ReLU to the

output seems to be that scRNA-seq data is non-negative. While ReLU enforces the non-negativity

of the data, it also slows down training since no gradient is passed through negative outputs. In

NEW, the non-negativity of the data is easily enforced by applying ReLU on the imputed data

(post training).

2. The only dropout introduced is in the input layer at a rate of 0.5. Dropout on the input is important

because it simulates instances of missing data, when, in fact, the true values are known and can be

used for training. Applying dropout on the hidden layers did not show any increase in performance,

and slowed training.

3. The bottleneck of the autoencoder is 1664 dimensions for the MAGIC dataset, which is about four

times as large as in LATE. Each of the three hidden layers were given the same size as the bottleneck

to control memory issues. This larger bottleneck was found to increase accuracy and training speed.

In fact, research suggests that increasing hidden layer dimensions past that of the input continues

to improve results [32]. This was confirmed in some preliminary tests for this thesis, but introduces

other problems detailed in 6. Due to the added complexity that case is not treated here. Instead,

on all but the MAGIC data, NEW uses a bottleneck size of one third the input size, rounded up.

4.3 Validation

For validation, let M be a matrix with the same shape as the dataset. Randomly set a validation

fraction p of the data in M to 0, and set the rest to 1. Let X be the matrix that needs to be imputed,

and let X(M) = X ∗M where ∗ is the Hadamard product. Take X(o) to be the output of the network

given input X(M). The validation error is just calculated on the known values that were masked out of

the input:

MSEval =

∑
i

∑
j(Xij −X(o)

ij )2 ∗ 1(Xij is not missing) ∗ (1−Mij)∑
i

∑
j 1(Xij is not missing) ∗ (1−Mij)

.
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The usual validation method is to withhold samples (rows) from the training for validation. Doing so

resulted in low-quality imputation on the rows withheld and does not capture the real performance of the

network, which is how well it does at imputing the values it cannot see. The validation method presented

here captures that characteristic exactly.

4.3 Training

Suppose the dataset has m rows and n columns. For training, a batch size of bm/10c + 1 was used.

For the loss function, MSE as defined in 2 for autoencoder imputation was employed. The Adam [34]

optimizer (a popular variant of SGD) was used to minimize this loss, with the learning rate defined by:

learning rate = 0.0003

√
batch size

258
.

This learning rate is 0.0003 on the MAGIC dataset. The idea behind this dynamic learning rate is to

keep the expected standard error of the parameter update constant when using SGD [35].

On the MAGIC dataset, training was done for 1000 epochs. The best model during training was

chosen according to the validation metric above, with a validation fraction of p = 0.01. However, the

ground truth dataset was used to calculate the final metrics displayed in 5.

On all other datasets, training ran for up to 5000 epochs. A patience of 15, checked every 10 epochs,

was used for early stopping. Once again, the best model during training was used for imputation. Because

these datasets contained some missing values for which no ground truth was known, the metrics were

calculated based only on the known values. A validation fraction of p = 0.5 was used.

Also, while ReLU was used on the MAGIC data, it was found that with the smaller datasets, the

encoded representation was often entirely zeros due to ReLU and large negative biases. So on these other

datasets LeakyReLU with a slope on the negative side of 0.01 was used.

4.4 CLAIM

The CLAIM algorithm is a novel modification to existing autoencoder imputation methods. Suppose

the encoder portion of the autoencoder hasN fully connected layers with weights matricesW1,W2, . . . ,WN ,

and respective bias vectors ~b1, ~b2, . . . , ~bN . Then CLAIM is implemented as follows:

1. Use a clustering algorithm to cluster the data into k clusters.

2. Choose the weight matrix with fewest entries (to reduce memory consumption and fight overfitting),

Wi, and produce k copies of it with the same initialization. Call these copies W
(1)
i ,W

(2)
i , . . . ,W

(k)
i .
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3. Whenever data belonging to cluster j is passed through the network, use weight matrix W
(j)
i in

place of Wi (see figure 4.1).

4. Suppose Wi is an m × n matrix. Let c1, c2, . . . , ck be the fraction of data in clusters 1 through k

respectively. During training, a regularization penalty is added to the loss function:

MSECLAIM = MSEimputation + ε

k∑
j=1

m∑
a=1

n∑
b=1

((
W

(j)
i

)
ab
−

k∑
l=1

cl ∗
(
W

(l)
i

)
ab

)2

This added term penalizes the weights when they are different from the weighted mean of the weights

of each cluster. This fights overfitting by keeping the network from memorizing the output from

small clusters. It also allows clusters to ”teach” each other things they have learned individually.

The value ε = 10−5 was found to be a good default value.

Steps 2-4 can be done with the biases as well. In this research, the biases on the swapped layer were

removed. Results for all architectures are compared with their CLAIM counterpart. For example, NEW

will be compared to its CLAIM version, labeled as NEWCLAIM.

4.5 Clustering

4.5 Single-Shot Clustering

For clustering, an autoencoder with the architecture outlined in the previous section, is used to deal

with the missing values. For the MAGIC dataset, dropout was not used because tests indicated it was

not needed. However, for other datasets a dropout rate of 0.5 was used only on the input layer, because

it proved necessary to produce high-quality clusters. The rows are clustered via the following procedure:

1. Train the autoencoder using rows as samples. In this research, training was done for up to 2000

epochs with an early stopping patience of 15 checked every 10 epochs.

2. Use the encoder portion of the autoencoder to encode each row down to dimension d. This produces

an m× d matrix.

3. (optional) Use principal component analysis (PCA) with k principal components on the m × d

matrix to produce an m× k matrix (k = 5 was used in this project). This is a recommended step

to improve the clustering performance of the k-means algorithm [36].

4. Cluster all the rows using the k-means algorithm.
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Tests were done on the MAGIC dataset with and without PCA (step 3). Omitting PCA delivered better

results on this dataset, so it was not used when clustering the other datasets. No biases were used for the

autoencoder for clustering the OpenIntro data. This was done to fight a tendency for the autoencoder to

simply return a zeroth degree regression for each feature. It would sometimes zero out all contributions

from the inputs (possibly due to a bad initialization), and train the bias on the output. Due to the large

number of features in the MAGIC data, this measure was not found to be necessary.

4.5 Iterative Clustering

The k-means algorithm uses Euclidean distance to determine clusters. However, clustering the encoded

representation of the input by Euclidean distance may not result in clustering those inputs that should be

treated with the same linear transformation. In fact, the results demonstrate that the above single-shot

clustering does not consistently produce better results when using CLAIM than not clustering at all. To

fix this, a CLAIM-specific iterative clustering algorithm is presented below.

1. Cluster the inputs into k clusters using any clustering algorithm. This initializes the cluster assign-

ments.

2. Remove 50% of the known entries in the dataset and save those for cluster evaluation. Call this the

cluster validation set.

3. Train the autoencoder using CLAIM for some time with the current cluster assignments (10 epochs

is used in this thesis).

4. Run all the data through as if it was all in cluster one. Record the cluster validation loss. Then as

if it all belonged to cluster two. Record the cluster validation loss. Do this all the way until cluster

k.

5. Reassign each input to the cluster in which it produced the lowest loss on the cluster validation set.

6. Repeat steps 3-5 until a stopping criterion is reached. In this thesis, the number of times the cluster

validation loss was not lower than the previous lowest was recorded. Also recorded was the number

of times the fraction of inputs that received a different cluster assignment dropped below 0.005. If

the sum of these two numbers was greater than five, the cluster search got terminated.

7. Add the cluster validation set to the training set, and train until convergence. Record the final

imputed dataset.
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In practice, steps 2-7 are repeated, but with the other 50% of known data for cluster validation. The

cluster assignments found from the first clustering can be used to initialize the second one. Finally, take

the element-wise average of the two imputed datasets to produce the final imputed dataset.

Only one 50% split was used to produce the results in 5. Otherwise, this method would have an

unfair advantage compared to the others that were only run once. Though it may be time-consuming,

one could perform multiple imputation with this method. Simply repeat the entire procedure n times

using a different half of the data each time for validation. This should produce results with accuracy

increasing with n. Additionally, one could calculate the standard error for each imputed entry.

Figure 4.1: CLAIM inserts a different fully connected layer into the encoder for each cluster [26].
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Chapter 5: Results

5.1 Single-Shot Clustering

There are three metrics used in this thesis to determine the performance of each method. The first

is the MSE between the imputed and ground truth values. Second and third are the median and mean

of the correlations between each column of the imputed dataset, and the corresponding column in the

ground truth dataset. Because autoencoder imputation produces predictions for each entry (including

non-missing entries), previously known values will be altered. These altered values could be reset to the

known values, but are not. This is because many downstream tasks rely on the order of the data, and

not on their exact values.

On the MAGIC data, each method was run nine times, and their metrics recorded. The means and

standard errors of these runs are shown in table 5.1. Three different versions of CLAIM are compared to

the original method without CLAIM. For this data, 10 clusters were used. The versions are:

1. using PCA before clustering

2. using PCA before clustering, and waiting 100 epochs to apply the regularization

3. not using PCA before clustering, and waiting 100 epochs to apply the regularization

We see that waiting to apply the regularization improves performance by a significant margin. It also

appears that PCA removes some important distinctions between clusters on this dataset, resulting in a

worse performance. All three metrics tended to agree with each other about which method performed

the best, though not in every case. The method that performed the best in both the LATE and NEW

architectures was CLAIM, without PCA, and with delayed regularization. This was true across all three

metrics.

For the OpenIntro data, all clustering was done without PCA, and regularization was only applied

after 100 epochs. Additionally, the data were grouped into just two clusters. Each of the 26 datasets

were imputed 10 times. Each time, a random 50% of the entries were removed before the data were

sent through the imputation process and used for validation. The metrics for the original version were

subtracted from the CLAIM version for each run. The mean of these differences was recorded. Figure

5.1 shows the histogram produced by the mean difference for each of the 26 datasets. Based on this

data, there is no evidence that CLAIM can be used to improve imputation on a wide variety of datasets.

Many of the imputations were harmed by adding CLAIM, likely due to overfitting caused by separating
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the clusters. The results for OpenIntro used a regularization coefficient of 0.001. Other coefficients were

tested but did not give any noticeable improvement. It was found that CLAIM improved imputation on

the larger datasets more than smaller ones.

It was of interest to further inspect a dataset containing data of people’s body dimensions. Also

contained in the dataset, but not used as input, was the sex of the person. Because men and women

on average have different body dimensions, it would make sense to cluster the data based on sex. In

figure 5.2, two different versions of CLAIM are compared to not using CLAIM. CLAIM with single-

shot clustering significantly lowered the MSE, but was not able to increase either the mean or median

correlations. However, when clusters were separated manually by if the person was male or female, the

results were superior to the other two methods. This suggests that given the right clustering and dataset,

the CLAIM algorithm does in fact improve autoencoder imputation. The problem then lies in developing

the right clustering algorithm. This is why the iterative clustering algorithm for CLAIM was developed.

5.2 Iterative Clustering

Also shown in figure 5.2 are the results from iterative clustering on the body dimensions data. We

can see that iterative clustering significantly improves the performance on this data. Using the other half

of the data on a second pass of iterative clustering increases the accuracy further. This result shows that

the k-means algorithm does not accurately cluster data that have similar relationships between variables.

It is likely that the clustering is based more on the magnitude of the signal, which is less important

for imputation. We see that CLAIM improves performance as long as it receives high-quality cluster

assignments.

Figure 5.1: Difference between metrics using NEWCLAIM and NEW. Vertical lines
designate means. Horizontal lines represent the standard error. Lower MSE is better,
and higher correlations are better.
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Table 5.1: Compares performance on three metrics between the original version,
compared to CLAIM used three ways: (1) Using PCA before clustering. (2) Using
PCA before clustering, and delaying regularization for 100 epochs. (3) Not using
PCA before clustering, while delaying regularization for 100 epochs.

Dataset - MAGIC
MSE Median Gene

Correlation
Mean Gene
Correlation

LATE (7.6± 0.1) ∗ 10−4 0.98829± 0.00006 0.9674± 0.0003

LATECLAIM (PCA) (7.1± 0.1) ∗ 10−4 0.98816± 0.00004 0.9675± 0.0005

LATECLAIM (PCA
& delayed reg)

(6.96± 0.08) ∗ 10−4 0.98833± 0.00003 0.9668± 0.0003

LATECLAIM (no
PCA & delayed reg)

(6.8 ± 0.1) ∗ 10−4 0.98857 ± 0.00003 0.9679 ± 0.0005

NEW (1.655± 0.009) ∗ 10−4 0.99279± 0.00003 0.98818± 0.00006

NEWCLAIM (PCA) (1.64± 0.01) ∗ 10−4 0.99287± 0.00005 0.98849± 0.00009

NEWCLAIM (PCA
& delayed reg)

(1.577± 0.007) ∗ 10−4 0.99325± 0.00002 0.98890± 0.00003

NEWCLAIM (no
PCA & delayed reg)

(1.548 ± 0.009) ∗ 10−4 0.99340 ± 0.00002 0.98911 ± 0.00002
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Figure 5.2: Distributions of the metrics from three methods: without CLAIM, with
CLAIM and automatic clustering, with CLAIM and manual clusters, with CLAIM
and one pass of iterative clustering, with CLAIM and two passes of iterative cluster-
ing. 100 runs were executed for each method to obtain these histograms. Vertical
lines represent means, horizontal lines represent standard error.
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Chapter 6: Future Work

The regularization scheme that was found to be most effective was not intuitive. It is not clear why

waiting for 100 epochs before applying regularization was helpful. One explanation is that it just needed

more freedom, but reducing the regularization coefficient produced a worse performance. In contrast to

the observation here, some evidence has been found that applying regularization early, and then removing

it later, is better for classification tasks [37]. It could be that the 1000 epochs used in this thesis are too

few, and different results could surface given enough training. Additionally, regularization in CLAIM is

different from standard regularization, where the weights decay towards zero. Future research into this

phenomenon is warranted.

Better regularization strategies may exist. One idea would be to swap some cluster assignments

randomly during training. Also, the regularization technique used to tie clusters may be improved by

allowing for parameters to be off by a certain factor. This could be done by instead encouraging cosine

similarity between the parameters of different clusters.

In this thesis, CLAIM was used to replace a single layer based on the cluster assignment of the input

data. No testing was done to see if replacing multiple layers would produce better results. If memory

constraints can be avoided, a group of loosely tied autoencoders could be employed. In this case, an entire

autoencoder would be dedicated to each cluster. Also, CLAIM can be adapted to any neural network

where the inputs can be clustered. This means that it may find use in many other architectures and

fields, not just autoencoders for imputation.

There has been some evidence that using an autoencoder which has larger hidden layers than the

input is better for imputation [32]. This is called an overcomplete autoencoder. These findings were

confirmed during the research that went into this thesis. However, it was also discovered that, in this

case, dropout cannot be applied as normal. Typically when a fraction p of the nodes are dropped, the

rest of the inputs are divided by 1 − p to compensate for the reduced signal strength in the next layer.

With overcomplete autoencoders, dividing by 1−p caused the validation accuracy to diverge. This seems

to indicate that the signal from each input becomes mostly separated from other inputs. There should

still be some interaction between signals to get optimal accuracy, so there needs to be compensation for

the lost signal caused by dropout. One solution may be to randomly choose the dropout fraction p at

each training iteration. This way the network would be forced to learn how to deal with different signal

strengths on its own. It may also be possible to ’tell’ the network the dropout rate in some useful way,

allowing it to dynamically adapt.

Categorical data was not used in this thesis. In future work it should be utilized. Preliminary tests
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show that one-hotting each categorical variable and using the resulting full matrix for imputation hurts

the performance on the ordinal data. It seems that this very sparse input acts to obscure the existing

structure in the data. It may be better to embed each categorical variable into just a few dimensions

(maybe just one) for the input, with the target being the one-hotted version. If the accuracy is still worse

on the ordinal data, one solution is to make the target be only the ordinal data. A separate model could

be used on the categorical data. Preliminary tests indicated this last option does improve performance

on ordinals, compared to not using categorical data at all.

Finally, it remains to be seen how well CLAIM performs on data missing at random and not at

random, as only data missing not at random was treated here.
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Chapter 7: Discussion and Conclusion

Because datasets that contain missing data are prevalent, highly accurate imputation algorithms are

very valuable. The literature shows that autoencoder imputation is a particularly powerful algorithm.

However, autoencoders do not innately exploit the dependencies between rows, and the dependencies

between columns simultaneously. Though the authors of the LATE paper attempt to do this, their

method lacks a theoretical basis.

Presented in this thesis was CLAIM, a novel method for utilizing row similarities in addition to col-

umn dependencies with autoencoders. This was accomplished through clustering the rows, and applying

a different fully-connected layer in the encoder for each cluster. Without some regularization the net-

work could overfit to small clusters. Additionally, clusters can benefit from information contained in

other clusters. Thus it is natural to loosely tie the cluster transformation matrices together through

regularization.

Another contribution was the iterative clustering algorithm that allows CLAIM to dynamically deter-

mine the best cluster assignments. This algorithm also reduces the problem of overfitting small clusters

since the iterative clustering can choose how many clusters to keep based on performance.

Through the CLAIM algorithm, we see that autoencoders can indeed utilize relationships between

the rows of a dataset and not just the columns. Furthermore, CLAIM can be used to improve any

autoencoder imputation design and is backed both theoretically and empirically. It only requires that

the dataset not be too small, so that the clustering does not introduce too much bias.
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