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Abstract

Engineering fundamentals implemented in advanced computational programs drive
innovative and precise engineering solutions in modern industrial systems. This thesis
presents a practical design tool created for industrial implementation. The Generalized Form
of Castigliano’s Theorem is utilized to perform an analysis determining the stress and
deflection of flatbed semi-truck trailers. The solution is implemented into computer software,
a graphical user interface allows design engineers to use the tool immediately after
installation. The tool generates a 3-D model and a design report for assessment and
documentation. The numerical solution is validated by comparing analysis results with
experimental data collected in the field, concluding that the solution is indeed valid. In
addition, this thesis presents a resource guide outlining examples of how to apply the
theorem to essentially any mechanical problem. Castigliano’s Theorem is used to relate a
point loads to displacements, it’s practical in determining the deflection in structures. The
value in this thesis lies in the demonstrated practical application and the guide focused on
making The Generalized Form of Castigliano’s Theorem more accessible to engineers

around the world.
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Chapter 1: Introduction

Engineering has driven enormous improvements to our modern day lives. Engineers
have a societal responsibility of developing precise innovative solution to global challenges
by using fundamental concepts and past experiences. Technology advances in computing
power are providing engineers with access to state-of-the-art fundamentally accurate methods
of analysis to rapidly solve and model solutions to a wide ranges of engineering problems.
The goal of this research was to develop a practical applicable design tool by integrating The
Generalized Form of Castigliano’s Theorem into computer software and creating a resource

guide with numerous examples for anyone interested in applying the theorem.

Castigliano’s Theorem is most commonly used to relate a point load to a
displacement at that location through partial derivatives of strain energy. It is very practical
when used to determine the deflection in structures, which is its most common application.
The Generalized Form of Castigliano’s Theorem is presented in this thesis both by way of
examples through a resource guide, and by demonstrating how it is implemented to solve an

industrial problem.

The Generalized Form of Castigliano’s Theorem extends Castigliano’s Theorem by
making the solution process accessible and applicable to a wide range of problems. The
robust generalized method is identical for both simple and complex problems. The resource
guide in this thesis outlines a systematic technique that steps through setting up a problem
from drawing a free body diagram to programing the necessary equations in a computer

program.

Prior to the wide availability of computers and numerical techniques, solving
problems with these methods was tedious and error prone. That is why there is few people
such as Dr. Edwin Odom with significant knowledge on the specific method. There is great
value in making this knowledge more accessible to engineers around the world interested in
learning and applying The Generalized Form of Castigliano’s Theorem to their problems.

With computers capable of performing substantial computational workflows, now is the time



to make this readily available to anyone with an interest expanding their knowledge base in

applying this method.

The design tool performs an analysis that determines deflection and stress of flatbed
semi-truck trailers. This tool is created by integrating Autodesk Inventor, Microsoft Excel,
and TK Solver with the fundamental concepts of The Generalized Form of Castigliano’s
Theorem. The design tool contains a few essential components. The complex computation
for deflection analysis is found in TK Solver where The Generalized Form of Castigliano’s
Theorem is applied. A software communication system between programs sends and receives
information to generate a 3-dimensional solid model and a design report for design parameter
communication and documentation. The final element is a graphical user interface where a

designer can easily work with relevant parameters to execute an analysis.

/' / Elite 53 Laden Vs Unladen Profile
g //

3D-Model

AUTODESK'
INVENTOR

A) Input ‘

B) Universal Interface

\» ﬂTKSoIver

C) Numerical Solver

Figure 1.1: Design Tool Flow Chart



Applying the Generalized Form of Castigliano’s Theorem to a trailer is no different
than the approach taken for any other problem. In simple terms the trailer was analyzed as a
beam with a set number of supports and an applied distributed load. The dummy load
technique was applied to allow an integration along the length of the trailer and in turn
determine the deflection throughout the entire structure. The application yields a numerical
solution that closely matches the experimental data. The results conclude that the method and

solution are valid for this problem.

The combination of a fundamental engineering concept and the use of modern
computer programs is a prime example of how accurate innovative solutions are used in
industry. All industries are interested in minimizing the time between concept and final
product, the design tool outlined in this thesis provides an example of how this goal is
accomplished. Simply, the design tool improves designs and condenses design times. This
practical application and the resource guide on The Generalized Form of Castigliano’s

Theorem demonstrate how the goals of this thesis are met.

Literature Review

In the late 1800’s Italian mathematician and physicist Carlo Alberto Castigliano
developed a method for determining displacements in structures by relating applied forces to
displacements in the direction of the of the forces through the partial derivatives of strain
energy [6]. Castigliano’s Theorem has been successfully applied to determine the deflection
of structures in practical applications and is a well-known concept widely taught in applied
mechanics of materials. His contributions are recognized by a two-part theorem named after
him. Castigliano’s Theorem I states that the first partial derivative of the strain energy with
respect to a displacement at a point is equal to the corresponding force in the direction of the
deflection. Theorem II states that the first partial derivative of the strain energy with respect
to the force at a specified point is equal to the displacement in the direction of the applied

force [10]. The two equations below are the general forms of for Castigliano’s Theorem.

ou
Castiglaino's Theorem I: Fi=—
d6;
o ou
Castiglaino's Theorem II: 6; =

_G_Fi



Both general forms can be expanded further, expanding the second theorem for strain

energy of bending yields the following equation.

51' dx

_aU_jLMaMi
~90F,  J, EI 0F;

The equation is the general form for determining the displacement in a structure of
length L at location i. U is the strain energy, F; is the applied force, di the displacement, M;
the bending moment, £ is the elastic modulus, and finally / is the structures moment of
inertia. As is, Castigliano’s Theorem works well for solving statically determinate structures.
The analysis becomes more complex when it is applied to statically indeterminate structures
with non-typical supports and end conditions. To make the Castigliano’s Theorem easily
applicable to the more complex problems Dr. Frederick Ju from the University of New
Mexico proposed The Generalized Form of Castigliano’s Theorem presented in his 1971
article, “On the Constraints for Castigliano’s Theorem,” found in the Journal of The
Franklin Institute [1]. His method involves adding a term consisting of a Lagrange multiplier
and partial derivative of an equilibrium equation with respect to the force. The general form

the equation is presented below.

ou L'mom; dgn
51' = f
0

=— = | =X x4 122
oF, E1 9F, “* T 3F,

The term A; is the Lagrange multiplier and g, is an equation of equilibrium. g, s a
static constraint and is a function of the externally applied loads. The additional term is used
to reintroduce a constraint into a problem to account for supports and end conditions in the
structure. Complex or statically indeterminate problems become trivial when applying Dr.
Ju’s method. The graduate work conducted in this thesis utilizes the Generalized Form of

Castigliano’s Theorem.

The most recent documented use of Dr. Ju’s publication is in master’s thesis, “Energy
Methods and Finite Element Analysis in Orthodontic Applications” by Sarah Willis at the
University of Idaho in 2019 [4]. Sarah validates the theorem by successfully applying it to
solve a complex orthodontic force system and confirming her results with a finite element

analysis. In 2014 it was used to determine forces caused by friction on multiple statically



indeterminate semi-circular beams [9]. Two publication by Dr. Edwin Odom and Dr. Carla
Egelhoff are cited using Dr. Ju’s method [3] [7]. Their publications present an approach for
solving deflection, of statically determinate stepped shafts using Castigliano’s Theorem at an
undergraduate level. Jozef Rédl from Slovak University of Agriculture published an article
showing the derivation of modified Castigliano’s theorem and an exact solution for a
cantilever beam in bending [8]. His goal was to summarize how the theorem was created and
how it is applied in mechanical engineering. J. G. Bennett and Dr. Ju published a technical
report where Castigliano’s Theorem is used to design a helium vessel as a load carrying
member [5]. A Cambridge publication presents techniques for modeling flexible robotic
manipulator arms using Castigliano’s theorem to compute deformations and correct
positional errors using motion control algorithms [2]. This is a brief summary of all the
known publications citing Dr. Ju’s publication. “On the Constraints for Castigliano’s
Theorem,” is the only known publication altering Castigliano’s Theorem to make it easily
applicable to more complex problems. Contributions to Castigliano’s Theorem from Dr. Ju
and Dr. Odom have made it possible apply the method to other applications and more

available to interested engineers.



Chapter 2: A Guide to The Generalized Form of Castigliano’s Theorem

Statement of Contribution
This chapter contains content written in collaboration with Dr. Edwin Odom with the
purpose of providing an online resource for anyone interested in applying The Generalized

Form of Castigliano’s Theorem by way of example problems.

Background

In the mid 1980's, Professor Ju at the University of New Mexico taught a course in
Variational Mechanics. The content presented here is based on approximately five pages of
class notes and his 1971 article, “On the Constraints for Castigliano’s Theorem,” found in
the Journal of The Franklin Institute. The problems presented are several examples he
presented in class and an addition of more recently developed ones. At the time of the class,
closed form analytical solutions were still the norm. These solutions were tedious and error
prone (for the students). Presently, the use of numerical techniques allow this generalized
solution process to be more accessible. The analyst can focus on free body diagrams, writing
moment equations, and formulating equations of equilibrium knowing that computers will
perform the heavy computational workloads. Additionally, with this method an identical

solution process is used to solve all problems, whether simple or complex.

It is noted that Professor Ju’s article has very few citations and no other work has
been found in the literature. Consequently, his Generalized form of Castigliano’s Theorem
has been validated here at the University of Idaho by way of finite element analysis in a
master’s thesis by Sarah Willis. Applied applications of Professor Ju’s work for statically
indeterminate structures is the focus of a master’s thesis by Selso Gallegos. The examples

presented here are intended to be a resource for the curious and interested engineer.

In the classroom, I remember Professor Ju as being well prepared, highly energetic
and having very high expectations. Many years later, he was very gracious in answering my

questions and providing me with a copy of his article. E. M. Odom



Introduction
To introduce the class to the topic of constraints on Castigliano’s theorem, Professor
Ju guided the class through a series of steps to find the reactions of a simply supported

uniformly loaded beam with the caveat that we would use Castigliano’s theorem. It went as

follows:

T TTT 11T 1]

[« L >

Figure 2.2: Simply Supported Uniformly Loaded Beam

T T T 11T 11

A X A
>
R, Rx

Figure 2.3: Free Body Diagram of a Simply Supported Uniformly Loaded Beam

Constraint/equilibrium equations:

M(x) = Ry x — %woxz

0

L
0=5L=_=§f0 M(.X')

0= i(RLL3 _ woL4)
3 8

M(x) 1 (L wox?
oR, dx—EfO [RLx— . ]xdx



The moment equation is constructed then used in the deflection equation to solve for

3wolL

Swol
and Rg = 8°

the reactions, Ry, = , which is incorrect. The problem solved is actually

a simply supported, uniformly loaded cantilever beam shown in Figure 2.3.

T T T T 1T 111

< L >
Figure 2.4: Simply Supported, Uniformly Loaded Cantilever Beam

As I recall, my colleagues and I had that feeling you get when the magician is
successful. Every step is correct, and the answer is known, yet there is something wrong. A
non-mathematical explanation is that we are writing equations and integrating from left to
right. We are not using any information about what is happening on the right-hand end of the
beam. E. M. Odom. For some problems this works for others it may not. What is needed is a
way to convey information, when necessary, into the equations written from the left about
what the conditions are at the right-hand end of the beam. This was the discussion that

preceded the presentation of Professor Ju’s Generalized Form of Castigliano’s.

Generalized Form of Castigliano’s Theorem

The following is a formal presentation of Generalized Form of Castigliano’s Theorem

Theorem I:  Generalized Form of Castigliano’s Theorem

ou* 09n
=— 4+, ==
U =5p. ¥ " 3p,
Where:
k is a variable used as a subscript to differentiate between various loads and

displacements, e.g., instead of using P, O, and R for three different loads, P1, P>, P3
would be used which could be further shortened to Px where k& could equal 1,2,3...



qk a generalized displacement at the location of a specific generalized loading, ¢ could be
a displacement ¢ or a rotation & (mechanics of materials) (The examples to follow will
use o to denote the deflection)

U"  is the complimentary energy, for linear elastic materials; it is equal to the strain energy
U. Professor Ju and all textbooks always make this point. In practical applications,
nearly all solutions use strain energy.

Pr ageneralized loading at a specific location £, P could be an axial load, a torque or a
moment (mechanics of materials)

An is a Lagrange multiplier used to reintroduce a constraint into a minimization problem
(note that the subscript 7 is repeated in the last term meaning it’s a summation)

n is a static constraint and is a function of the externally applied loads P, e.g., 2F,=0,
2M=0, 2T=0 (n is used as a shorthand way to track each constraint)

When to Include Constraints

Definitions:

P’s  that occur in U are called explicit forces

P’s  that do not occur in U are called implicit forces

P’s  corresponding to ¢’s=0 are called non-working forces

g’s  involving only explicit forces are called explicit constraints

g’s  involving only implicit forces are called implicit constraints

Theorem II:  Only implicit constraints corresponding to non-working implicit forces are

ignorable.

Theorem III:  Only explicit nonworking forces (reactions) can be removed by a reduction in

variables.
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Preliminary concepts
The formalized presentation of The Generalized Form of Castigliano’s Theorem,
while concise and brief, in itself does not lend itself to immediate use in practical structural
applications. Additionally, on several occasions it has been observed that the experienced
energy methods analysist sometimes has more difficulty adjusting to Professor Ju’s
Generalized Form of Castigliano’s Theorem than the student new to the practice of energy
methods. For example, consider analyzing a left end cantilevered beam with an applied load

P to find a displacement at a point of interest at location A.

o
v

A

Figure 2.5: Left End Cantilevered Beam with Applied Load P

The experienced analysist upon seeing the cantilever beam shown, might construct
the following free body diagram including dummy load Q located at point A and use insight
to place the x-axis origin at the location of the load P. This axis will not run left to right
rather than right to left. Using this origin simplifies the moment equation and reactions at the
wall, R; and M; need not be calculated. In addition, the equations of equilibrium do not

propagate into the solution for the displacement.

M, g‘_f)l4— alp
L

R

Figure 2.6: Free Body Diagram of Left End Cantilevered Beam with Applied Load P

G
X

The moment equations for this free body diagram are:
0<x<a M(x)=-Px
a<x <L M(x)=-Px-Q(x-a)

The displacement at point 4 is:

= JL_Px (- (x- a)dx



11

For statically determinant and even slightly statically indeterminate problems, an
insightful problem formulation simplifies the solution process. However, as the degree of
indeterminacy increases, experience and insight is not sufficient. To obtain the solution of the
above problem above using The Generalized Form of Castigliano’s Theorem requires more
calculus and algebra than a traditional method. On a positive note, Professor Ju’s method is
identical for both simple and complicated problems. No further insight is needed.

To efficiently apply this method, the analysist must relax some traditional habits and
approach problems in a slightly different manner. Some concepts that are important when

using this solution method are:

1. Consistent sign convention in the equilibrium and moment equations
2. The Heaviside step function H(1*,2"%) and its use in moment equations
3. Noting the position of the dummy load Q with the variable &

4. The concept of generalized forces and displacements

5. Ignorable constraints

Each of these concepts will be discussed by way of the previously presented cantilevered

beam problem. The free body diagram is shown below.
- |0
Mgl 5 l = &
A 4
@

(f

—
R X

Figure 2.7: Free Body Diagram of Left End Cantilevered Beam with Applied Load P Using

Generalized Form of Castigliano’s Theorem Method

Note: The x-coordinate axis is established at the right end of the beam
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Sign Convention
When solving for the displacement the two governing equations are the equations of

equilibrium:
g =Y F,=0=+R -0-P
&= ZMx:L =0=+R,L+M, _Q(L_SZ)

Depending on the problem, these two equations may also be used as constraints g;
and g2 in The Generalized Form of Castigliano’s Theorem.

ou* 0gn
% = 5p, + An 2P,

In the equations of equilibrium, we can be somewhat casual with the sign convention
as long as we are consistent in each equation. Whether R, is positive or negative in the
summation of forces in the y-direction does not matter as long as all the other forces in the
equation are consistent. The same goes for the summation moments about x=L. Whether a
counterclockwise moment is positive or negative does not matter as long as all the other
moments in the expression are consistent. The problem occurs when the equations of
equilibrium cannot be ignored in The Generalized Form of Castigliano’s Theorem. In a
constraint equation where we will use the partial derivative, the sign will matter. It will be
important that the sign convention be consistent between the two equilibrium equations as
well as the relation for the moment equation which is the next governing equation. The

moment equation is used to calculate the strain energy of bending.
M(x)=+ Rx+M, -0(x=&)H (x,§)

Note: The sign convention is consistent between the three equations.
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Heaviside Step Function
The Heaviside Step Function, H(I*,2™), is used in the moment equation. This allows
the moment equation to be written as a single equation that expresses the moment from the
beginning of the beam to the end of the beam. The step function states that if the first input is
less than the second than the output is equal to zero and if the opposite is true than the output

is equal to one. This function is defined as follows:
H(15t,2") =0 if 15t <2™ else H(1%,2™) =1

This function can be straightforwardly programmed, as in the TK Solver example in the

figure 2.7. The use of the Heaviside step function streamlines the computer programming.

=) PROCEDURE: H - 10| x|
Comment: Heaviside Step function
Parameter Variables:
Input Variables: first,second
Output Variables: z
kI i
_St| Statement i|
| if first<second then z=0 else z=1
=]
<] | 2
Figure 2.8: Tk Solver Heaviside Step Function
The Dummy Load

The dummy load method has been used extensively in the literature to find the
displacement at a location where there is not an applied load or reaction. The difference in
this method is use of the Greek letter £ to denote the location of the dummy load Q.
Traditionally, this location is single valued; in this method it is a variable that ranges in value
from the beginning of the beam to the end of the beam. A displacement curve can be

generated by calculating a series of displacements for multiple values of ¢.

Generalized Forces and Displacements
When applying The Generalized Form of Castigliano’s Theorem, the forces in the
moment equation are not thought of in terms of reactions and applied loads. Rather the
variables M;, R;, O, and P are regarded as “generalized forces”. The displacements

corresponding to those generalized forces, @1, J1, dg, and Jp are then regarded as
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“generalized displacements.” The variable x is a working axis and will be the integration
variable and £ is the location for the point of interest variable. The experienced analysist will
assume M; and R; to be reactions and that would be correct, but in The Generalized Form of
Castigliano’s Theorem approach they are stationary generalized forces that is, they are non-
working forces. The other forces P and Q are working forces, as they displace during their
application. The generalized forces M;, R;, Q are used in both equilibrium equations and the
moment equation. Therefore, these variables are explicit generalized forces and both
equilibrium equations are explicit constraints that cannot be ignored in the solution. If a
generalized force is present in the equilibrium equations but not in the moment equation, that
generalized force is implicit. The applied load on the end of the beam P is an implicit force in
the moment equation therefore the equilibrium equation for the sum of the forces in the y-
direction is termed an implicit constraint. If that implicit force is stationary it is non-working.
Being familiar with these concepts will aid the curious engineer in understanding and using

this approach.

Ignorable Constraints

Consider the equations of equilibrium for the cantilever beam previously shown in

figure 2.6. These expressions are constraints g1 and g.

g = F,=0=+R -0-P

&= ZMx:L =0=+R,L+M, _Q(L_SZ)
These expressions are used in The Generalized Form of Castigliano’s Theorem

oU* dgn,
=ap. T ap,

qx

As equilibrium equations these expressions cannot be ignored; however there are end
conditions where these expressions can be ignored in The Generalized Form of Castigliano’s
Theorem. In those cases, The Generalized Form of Castigliano’s Theorem simplifies to the

equation shown below.
aUu”
P,

qr =
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The most prevalent end condition allowing these expressions to be ignored is the
cantilever end condition. Many textbook problems use this end condition. The suggested
solution route is to setup a coordinate system opposite to the cantilever end condition and
integrate towards it. Other textbook problems, such as simply supported beams have the
analysist solve for the reactions in terms of the applied loads, what Professor Ju termed,
“reduction in variables.” As problems become more complex and interesting, these solution
routes present their limitations.

Professor Ju’s introductory problem of the uniformly loaded simply supported beam
demonstrates what happens when the analysis ignores a constraint that is not ignorable. A
solution is obtained, just not the solution sought. If a constraint is ignorable and the analysis
does not ignore it, after all the calculus and algebra is done, the analysis will discover a

LaGrange multiplier in the solution with a value of zero (0).

Prelude to Examples 1-3
The first three example problems presented here are statically determinate beams with
different end conditions. In two of the examples, using The Generalized Form of
Castigliano’s Theorem requires more mathematical analysis than a traditional solution
process. In the other example, The Generalized Form of Castigliano’s Theorem simplifies to
Castigliano’s theorem. These problems are instructive in that their solution process is

methodical and identical. The steps that lead to a solution are as follows:

1. Draw a free body diagram

2. Formulate the constraint/equilibrium equations

3. Write the moment equation (for strain energy of bending formulation)

4. Evaluate constraint/equilibrium equations to determine which if any need be included
in The Generalized Form of Castigliano’s Theorem

5. Apply boundary conditions (specify the generalized displacements at reaction
locations)

6. Solve for the reactions and LaGrange multipliers

7. Write an expression for the displacement in terms of the position variable ¢



16

Example 1: Simply Supported Beam
Determine the deflection anywhere along the length of a simply supported beam with
a concentrated load shown in Figure 2.8. Assume Young’s modulus £ and the second area of

moment / are known and constant along the beam.

{ a blP

| I

A 2

P L >

Figure 2.9: Example 1-Simply Supported Beam with a Concentrated Load

| a P

l Sf >l Q

y 3 X F 3
R i RR

Figure 2.10: Example 1-Free Body Diagram of a Simply Supported Beam

Constraint/equilibrium equations:

g1=2FE,=0=R, —Q—P+Ry Eq (1.1
92 =2XMy=, =0=RL—-Q(L—-$—-P(L~-aqa) Eq(1.2)
Moment equation for strain energy of bending:

M(x) = Ryx = Q(x —HH(x,$) — P(x —a)H(x,a) Eq (1.3)

Evaluation of the constraint equations: In g; the variable Ry is not used in the moment
equation M(x), therefore R is an implicit force and it is stationary (nonworking): By
Theorem II, g is ignorable. In g> the variables R, O, and P, are explicit in M(x), therefore

g2 is an explicit constraint and cannot be ignored.
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Boundary conditions:

A pin is used as the support on the left end; therefore, the displacement is zero. Eq
(1.4) is the general form for deflection of Castigliano’s Theorem for this example. The
deflection equation for the simply supported beam is defined in Eg (1.5) by inserting the
generalized constraints g, and M(x) from Eq (1.2) and Eq (1.3) respectively into Eq (1.4).

_ 5, =24 200 _ [L2Mozo o 20,
0=20,= aRy, + AORL - fO EI 0Rp dx + Ay ORL Eq (1.9
0= fOLRLx—P(XETIa)H(xra) xdx + AM(L) Eq (15)

There are three unknowns R;, Ry, & Ay and three equations Eq (1.1), (1.2), & (1.5).
The reactions are determined form Eq (1.1) & Eq (1.2) while the Lagrange multiplier is
determined through the evaluation of the integral in Eq (1.5).

Eq (1.6) is the general form of the deflection at the point of interest Q. The deflection
can be determined at any point along the beam by using Eq (1.7).

U | .0 L Mg=o M d

Sq=5gtA50 =y —E2 55 dx + 2572 Eq (1.6)
L Ryx—P(x-a)H(x,

8y = fo RLx P(xEIa)H(xa) (_(x _ E))H(x, £)dx +AM(—(L _ f)) Eq (1.7)

It is possible to algebraically solve for the reactions using Eq (1.1) and (1.2) and to
integrate Eq (1.7). However, it is easier and less error prone to code these equations and use a
computer to find the final answers. The following figures show the TK Solver solution to the

problem.

=7 Rules

Status | Rule
Satisf| 0=R_L*L-P*(L-a); Eq(1.2)tofind R_L
Satisf| 0=R_L-P+R_R; Eq(1.1)tofind R R
Satisf| 0=Simpson(integrandR,0,L,n)+A_M*L; Eq (1.5) to find A_M
Satisf| -6_t=Simpson(integrandd,0,L,n)}+A_M*((L-€)): displacement at POI ¢
Satisf| if solved() then call displacement(); Eq (1.7) to find displacement curve

Figure 2.11: Example 1-TK Solver Rule Statements
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-~

Status | Input Name Output Unit Comment
100 n number of integration steps
1E7 E psi Young's modulus (psi or MPa)
6718 d in diameter of beam (in or mm)
20 E in length of beam (in or mm)
10 a in distance to load P (in or mm)
30 P Ibf load (Ibf or N)
R L 15 Ibf reactions (Ibf or N)
R_R 15 Ibf
AM -.007501211 Lagrange multiplier (rad)
10 4 in Point Of Interest location (in or mn
0 ¢ -.050008072| in displacement (in or mm)

Figure 2.12: Example 1-TK Solver Variables

- O] x
Beam Deflection
.01,
(1R D L T T e EEEEED < E T
£ -01; B
§ -02
s -0
3 -04]
-05-
-.06 | | | I | ] | ] | | |
0 2 4 6 8 10 12 14 16 18 20 22
Distance Along the Beam (in)
Figure 2.13: Example 1-TK Solver Beam Deflection Curve
= o]
Comment:
Parameter Variables: R_L,P,a,E.d
Input Variables: X
Output Variables: z
< | 2l

St| Statement

z=(R_L*x-P*(x-a)*H(x,a))*x/(E*l); integrand of Eq (1.5)

Figure 2.14: Example 1-TK Solver Integral Content Procedure



=] PROCEDURE: integrand§

Comment: integrand of Eq (1.7)
Parameter Variables: d,R_L,P,aE,f
Input Variables: X
Output Variables: z
St| Statement
I=pi()*d~4/64
M=R_L*x-P*(x-a)*H(x,a)
ParMwrt_Q=-(x-£)*H(x,§)
z=(M*ParMwrt_Q)/(E*1)

Figure 2.15: Example 1-TK Solver Integral Procedure

=] PROCEDURE: displacement

Comment:

Parameter Variables: L,n,A_M
Input Variables:

Output Variables:

<] |

St| Statement

for i=1 to 201

&=l

€_temp[1]=¢

‘8[i]=-(Simpson('deverywhere,0,L,n)+A_M*(-(L-¢))); displacement at a POI g

next i

Figure 2.16: Example 1-TK Solver Displacement Procedure

Comment: integrant of Eq (1.7)

Parameter Variables: d,R_L,P,a,E

Input Variables: X

Output Variables: z

St| Statement

| | 1=pi()dr4/64
M=R_L*x-P*(x-a)*H(x,a)
ParMwrt_Q=-(x-£)*H(x,)
z=(M*ParMwrt_Q)/(E*l)

Figure 2.17: Example 1-TK Solver Entire Length of Beam Deflection

19
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Example 2: Cantilever Beam Fixed at Right End

Determine the deflection along the cantilever beam fixed at the right end with an

applied concentrated load.
} a >1P

- 4 -

Figure 2.18: Example 2-Cantilever Beam Fixed at Right End

' P
I a
——— 1
| 1)
'—X'V T My
R
Figure 2.19: Example 2-Free Body Diagram of Cantilever Beam Fixed at Right End

Constraint/equilibrium equations:
g1=2F,=0=—-Q — P+ Ry Eq (2.1)

g2 =XMy_;, =0=—-Q(L-&) —P(L—-a)— Mg Eq (2.2)

Moment Equation for Strain Energy of Bending:

M(x) = -Q(x —HH(x,$) — P(x — a)H(x,a) Eq (2.3)

Evaluation of the constraint equations: In g; the variable Rr is not used in the moment
equation M(x), therefore R is an implicit force and it is stationary (nonworking): By
Theorem 11, g; is ignorable. In g> the variable My is implicit in M(x); therefore, g2 is an
implicit constraint and nonworking, therefore, g2 is ignorable. For this problem The

Generalized Form of Castigliano’s Theorem is the general Castigliano’s Theorem.
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Boundary Conditions:
_ U _ (LMg=odM
8o = 30" Jy T dx Eq (2.4)

By inserting the generalized constraint M (x) from Eq (2.3) into Eq (2.4) the displacement
constraint is fully defined. Equation Eg (2.5) used to find the displacements a position &.

8y = %fOL —P(x —a)H(x,a)(—(x — &))H(x, &) dx Eq (2.5)

This expression can be directly integrated or numerically integrated. To directly
integrate the two Heaviside step functions in the integral of Eg (2.5) can be modified using of

the following relation [1].
H(x,a)H(x,§) =H(x,a) if é<a & H(xé) ifé=a

This relation allows the displacement equation Eg (2.5) to be written in the form
shown in Eq (2.6). Consequently, the closed form solution for the displacement is then

derived in Eq (2.7).

ElS = [} P(x — a)(x — §)dx + H(§, a) J{ P —a)(x - )dx Eq (2.6)
EISg L3 al? L? a® a?¢ a’  a?¢& & a¥?
T—?—7—7+aEL+?—T+H(€,a)(—?+T+Z—T) Eq (2.7)

Conversely, the expression in Eq (2.5) can be numerically integrated for various values of £.

This is shown with the TK Solver program solution in the subsequent figures.

=7 Rules ;Ll

Status | Rule
Satisf| 8_Q=(-1/(E"))*Simpson(integrand,0,L,n); Eq (2.5) for single location

Satisf| if solved() then call displacement(); Eq (2.5 for displacement curve
Figure 2.20: Example 2-TK Solver Rules
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o Veriables
Status | Input Name Output Unit Comment

100 n number of integration steps

1E7 E psi Young's Modulus (psi or MPa)
:_ | in"4 moment of inertia (in"4 or mm*4)

10 L in length of beam (in or mm)

0 a in location of load P (in or mm)

30 P Ibf load (Ibf or N)

0 4 in Point of Interest (in or mm)

6 Q -1 in deflection (in or mm)

-01
-.021
-.03
-.04
-.05
-.06 |
-07-
-.08 1
-.09

-1

Deflection (in)

P

Figure 2.21: Example 2-TK Solver Variables

=} PROCEDURE: integrand

Comment:

Parameter Variables: ¢,P,a

Input Variables: X

Output Variables: Z

St| Statement
M_Qeq0=-P*(x-a)*H(x,a)
Par_M_wrt_Q=-(x-§)*H(x,§)
z=M_Qeq0*Par_M_wrt_Q

Figure 2.22: Example 2-TK Solver Integral Content Procedure

| K3

0

T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11

Distance Along the Beam (in)

Figure 2.23: Example 2-TK Solver Deflection Curve
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Example 3: Cantilever Beam Fixed at Left End

A variation of the beam from example 2 is a cantilever beam fixed at the left end with
an applied point load. This problem will further demonstrate how working and non-working

forces tie to the generalized constraints.

v
Ny

a

<l nl

Figure 2.24: Example 3-Cantilever Beam Fixed at Left End

| . . |

! d > P
——— { ———»| l

Figure 2.25: Example 3-Free Body Diagram of Cantilever Beam Fixed at Left End

Constraint/equilibrium equations:

g1=2XK,=0=R,—Q—-P Eq (3.1)
92 =XMy-p =0=RL—-M, —Q(L -8 —P(L-a) Eq(3.2)
Moment Equation for Strain Energy of Bending:

Mx)=Rx—M, —Q(x—&H(x,é) —P(x—a)H(x,a) Eq (3.3)

Evaluation of the constraint equations: In g, the variables R;, Q, and P, are explicit in the
moment equation M(x) and there are not implicit variables, therefore by Theorem II, g, is an
explicit constraint and is not ignorable. In g> the variables Ri, M, Q, and P, are explicit in

the moment equation, g2 is an explicit constraint and cannot be ignored.
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Boundary Conditions:
—0=2Y 4299 ) %92 _ LMoz M 991 1 5. 992

0p=0=7r+h or, T = oR, Jo El 0R, dx + 4y or, T An OR, Eq (3.4
_ 0= 9U 291, 5 99 _ (LMozo M 291 | ) 90

0, =0= M, + 44 oM, + 4, M, fo FTRET dx + 4, M, + Am M, Eq (3.5)

Note than in the above equations 4; is renamed /4, and 4> is renamed Aa. This
renaming along with knowing that the units of 4, are the same as the displacement and the

units of Ay are radians is useful in understanding the Lagrange multipliers

When the generalized force constraints g;, g, and moment equation M(x) are inserted

Eq (3.4) & (3.5) turn into Eq (3.6) & (3.7) respectively.

0 =8, =—[(Ryx — M, — P(x — @)H(x,@))(~1)dx + A, (0) + Ay (1) Eq (3.6)
0= 0y =— f, (Rux — M, — P(x — @)H (x, @))(—1)dx + 1,(0) + Ay (~1) Eq(3.7)

There are four unknowns Rr, ML, Ay and Am and four equations Eq (3.1), (3.2), (3.6)
and (3.7); therefore, the reactions and Lagrange multipliers can be determined. The
displacement anywhere along the beam can be determined when the partial derivative, the
general displacement equation is taken with respect to the dummy load Q as in Eq (3.8).
Inserting the generalized force constraints g,, g, moment equation M(x) and the reactions
into displacement constraint in Eq (3.8) provides Eq (3.9) the displacement anywhere along
the beam that can be numerically integrated.

ou 0 0
5Q=£+Alai(;+azai; Eq (3.8)

8o == [ (Ryx = My — P(x — )H(x,@)) — (x = OH(x, )dx + 1 (-1) +12(-L - &) Eq (3.9)

The TK Solver program solution is shown with the in the subsequent figures. The location of

the concentrated load P in the following example is defined by a = 10 in.



=7 Rules
Status
Satisf| R_L=P; Eq(3.1)
Satisf| M_L=P*a; Eq(3.2)
Satisf| 0=Simpson(integrandM_|,0,L ,n)+A_M*(-1); Eq(3.7)
Satisf| 0=Simpson(integrandR_1,0,L,n)+A_y*(1)+A_M*L; Eq(3.6)
Satisf| -6_Q=Simpson(integrandd_Q,0,L,n)}+A_y*(-1)+A_M*(-(L-€)); Eq (3.9)

Satisf

if solved() then call displacement(); Eq (3.9) to find displacement curve

Figure 2.26: Example 3-TK Solver Rules

=] PROCEDURE: integrandM_|

Comment:

Parameter Variables: E,JIR_LM_LP,a

Input Variables: X

Output Variables: z

<] |

St| Statement
z=1/(E*)*(R_L*x-M_L-P*(x-a)*H(x,a))*(-1)

Figure 2.27: Example 3-TK Solver Moment Integral Content Procedure

=] PROCEDURE: integrandR_|

Comment:

Parameter Variables: E,JIR_LM_LP,a
Input Variables: X

Output Variables: z

|

St| Statement

z=1/(E*)(R_L*x-M_L-P*(x-a)*H(x.a))"x)

Figure 2.28: Example 3-TK Solver Reaction Integral Content Procedure

Comment:
Parameter Variables: EJIR_LM_LP.at
Input Variables: X
Qutput Variables: z
St| Statement
z=1E*) (R_L*x-M_L-P*(x-a)*H(x,a))*(-(x-§)*H(x,E))

Figure 2.29: Example 3-TK Solver Q Integral Content Procedure

25



26

)

Deflection {in)

' ' ' ' ' '
S O g o0 O
o O WN = O

-.07 1

' '
R T
- O o

| | | I ] I 1 ]
2 3 4 5 6 7 8 9 10

Distance Along the Beam (in)
Figure 2.30: Example 3-TK Solver Deflection Curve
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Prelude to Examples 4-10

Examples 4-8 are solutions to the same beam and loading configuration but with five
different end conditions. Examples 9 and 10 are examples cited from textbooks. The identical

seven steps outlined for Examples1-3 are used for each beam end condition.

1. Draw a free body diagram

2. Write the equations of equilibrium (constraint equations)

3. Write the moment equation (assumes the strain energy of bending)

4. Evaluate the equations of equilibrium to determine which if any need be included in
the Generalized Form of Castigliano’s Theorem

5. Apply boundary conditions (specify the generalized displacements at reaction
locations)

6. Solve for the reactions and LaGrange multipliers

7. Write an expression for the displacement in terms of the position variable ¢
What remains unchanged for example problems 4-8 is the moment equation.
M(x) = Rix + Ry (x = b)H(x,b) — Q(x — §)H(x,§) — P(x —a)H(x,a)

What will change for each problem will be the terms at the end of the equilibrium/constraint
equations. Whereas the Examples 1-3 used calculus (numerical integration) and algebra for
the solution, the solution process for examples 4-8 will write the final equations in matrix
form, which allows the use of readily available linear algebra functions. For each of the
beams in examples 4-8, there will be a core linear algebra representation as follows,

{0}=[C]{R} that remains unchanged.

c, C
0y =[Clir) = { v }{R}
C21 C22
However, these displacement and force vectors will be augmented with additional
rows and the compliance matrices will be augmented with rows and columns depending on
the beam end conditions. The entries for this matrix will be shown in Example 4. In the
examples that follow the LaGrange multipliers will be denoted with either a “y” or “M”

rather than a “1” or “2” to provide a meaningful attribution.
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Example 4: Statically Indeterminate Beam with Two Supports and Fixed

Left End

I a » P
h 4
A 3
«— b b4 c »

Figure 2.31: Example 4-Statically Indeterminate Beam with Two Supports Fixed Left End

[a)
R
v
v

—— i ——] ¢

— ] |
— ) >l c >
RL RM RR
Figure 2.32: Example 4-Free Body Diagram of Statically Indeterminate with Two Supports
and Fixed Left End

Constraint/equilibrium equations:

g1=2E,=0=R,+Ry—Q —P + Ry Eq (4.1)
gy =2M,_; =0= R, L+Ryc—Q(L—&) —P(L—a)— Mg Eq (4.2)
Moment equation for strain energy of bending:

M(x) =R, x+ Ry(x—b)H(x,b) — Q(x —&)H(x,é) — P(x —a)H(x,a) Eq (4.3)

Evaluation of the constraint equations: In g; the variable Ry is not used in the
moment equation M(x), therefore Ry is an implicit force, g1 is an implicit constraint and Rp is
stationary (nonworking): By Theorem II, g, is ignorable. In g> the variable Mg, is implicit,
thus it is an implicit constraint and MR is stationary (nonworking). The g> constraint is

ignorable.
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Boundary Conditions:

§,=0= ;T“L = fj%j—}’zdx Eq (4.4)
bu=0=qgm= [y Eq (4.5)
Substituting in for the moment and partial derivatives Eq (4.4) and (4.5) become

5,=0= fOL RLx+RM(x—b)H(J;Ib)—P(x—a)H(x,a) dix Eq (4.6)
5, =0 = fOL RLx+RM(x—b)H();,lb)—P(x—a)H(x,a) (x — bYH(x, b)dx Eq (4.7)

Rearranging these two equations by moving known variables to the left-hand side of the

equal sign and writing in matrix form gives the following relation.

L _ L,2 Loyl _
8+ f p &~ Dhtx a)x a)E};(x, DX f %dx f *(x — b)H(x,b) ?IH(X‘ D) i . ]
0 _ 0 0 L
Lp(x —a)H(x,a)(x — b)H(x,b) | (Ex(x — b)H(x, b) L(x —b)?H(x,b) Rm

This expression can be written as:

Lp(x —a)H(x,a)x
o) +f dx
" El _[Cu clz] RL]
Lp(x —a)H(x,a)(x — b)H(x, b)d €21 C2l Ry
x

5+f
1% ), El

By comparing the two equations, one can discern relationships for the values in the

compliance matrix. These will remain unchanged for all Examples 4-8. This is a symmetric
matrix, therefore C;2 is equal to C>;. After the two reactions are calculated, the reactions on
the right-hand end of the beam can be found using the equilibrium equations and the
displacement at point of interest ¢ can be determined using Castigliano’s Theorem.

U j-L Moo OM

5Q—£ 0 EI aQ

Eq (4.8)

which becomes
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_0U _ fL Rpx+Rpy(x—b)H(x,b)—P(x—a)H(x,a)

8o =32= I = (x — &)H (x, &)dx Eq (4.9)

The above expression can be numerically integrated for various values of & to obtain
displacement, 3¢ for the length of the beam. The location of the concentrated load P in the

following example is defined by a = 20 in.

=7 Rules

Status | Rule
Satisf| call precalcC(); calculates the [C] matrix entries
Satisf| call precalcA(); calculates the [A] vector entries

Satisf| call SLINSOLVE('C,'A,'sol);  built in linear equation solver

Satisf| call assign_var(;R_L,R_M,R_R,M_R); assigns solution vector entries to variables
Satisf| -6_¢=Simpson(integrandd,0,L,n); displacement at POI §

Satisf| if solved() then call displacement(); Eq (1.7) to find displacement curve

Figure 2.33: Example 4-TK Solver Rules

+4) Variables = =]
Status | Input Name Output Unit Comment
200 n # of steps in integration
1E7 E psi Young's modulus (psi or MPa)
.01 | in"4 moment of inertia (in"4 or mm*4)
20 a in distance to load P (in or mm)
10 b in distance between R_L and R_M (in or mm)
20 c in distance between R_M and R_R (in or mm)
30 L in length of beam (in or mm)
30 P Ibf load (Ibf or N)
0 6_L_initial in displacement at left support (in or mm)
0 6_M_initial in displacement at middle support (in or mm)
RIL -4.500005512] Ibf Reaction on the left support (Ibf or N)
R_M 17.25001232 | Ibf Reaction on the middle support (Ibf or N)
R R 17.24999319 | Ibf Reaction on the right support (Ibf or N)
M_R 89.999919 Ibf moment at right support (in-Ibf or N-mm)
201 4 in Point of Interest (POI) (in or mm)
6 ¢ -.0162083751| in displacement at POI (in or mm)

Figure 2.34: Example 4-TK Solver Variables
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Comment:

Parameter Variables: P,ab.c,L.n
Input Variables:

Output Variables:

St| Statement

‘C1[1]=Simpson('C11,0,L,n)
‘C1[2]=Simpson('C12,0,L,n)

'C2[1]=C1[2]

'C2[2]=Simpson('C22,0,L,n)

Figure 2.35: Example 4-TK Solver Matrix Entity Procedure

=i 2 [Ei=1
Comment:

Parameter Variables:  6_L_initial, &_M_initial,P,a,b,c,L,n
Input Variables:

Output Variables:

<] |

St| Statement
‘A[1]=6_L_initial+Simpson(datR_L_byP,0,L,n)
‘A[2]=6_M_initial+Simpson('datR_M_byP,0,L,n)

Figure 2.36: Example 4-TK Solver Vector Entity Procedure

Beam Deflection

I I
0 5 10 15 20 25 30

Distance Along the Beam (in)

Figure 2.37: Example 4-TK Solver Deflection Curve
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Example 5: Statically Indeterminate Beam with Three Supports

I a >lP

i 5 4

R b P < C >

Figure 2.38: Example 5-Statically Indeterminate Beam on Three Supports

==mmdl
=]

R Ry Rr
Figure 2.39: Example 5-Free Body Diagram of Statically Indeterminate Beam with Three

Supports
Constraint/equilibrium equations:
92 =XMy-, =0=RL—Q(L—$§)+Ryc—P(L—a) Eq(5.2)

Moment equation for strain energy of bending:

M(x) =Rx —Q(x—&H(x,&) + Ryy(x —b)H(x,b) — P(x — a)H(x, a) Eq (5.3)

Evaluation of the constraint equations: In g; the variable Ry is not used in the moment
equation M(x), therefore Rr is an implicit force and g is an implicit constraint. Since RR is
stationary (nonworking) by Theorem I, g; is ignorable. In g> the variables R, O, Ry, and P,

are explicit variables in M(x), therefore g> is an explicit constraint and cannot be ignored.
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Since one of the constraints cannot be ignored The Generalized form of Castigliano’s

theorem must be used.

Boundary Conditions:
—0=23Y 992
6L =0= R, + /1M 9R, Eq (54)
_n_ 9U 09>
Substituting in for the moment and partial derivatives Eq (5.4) and (5.5) become
L Rpx+Rp(x—Db)H(x,b)—P(x—a)H( )
8 =0 = [ Ay di + Ay L Eq (5.6)
Sy =0 = fL Rpx+Rp(x—b)H(x,b)—P(x— a)H(xa)( _ b)H(x b) dx + Ayc Eq (5.7)

EI

Rearranging these two equations by moving known variables to the left-hand side of the

equal sign and writing in matrix form gives the following relation.

[ LP(x —a)H(x,a) 17T L x2 Lx(x — b)H(x, b) ]

i 5L+f0 i i | ET f e dx LI R,
LP(x —a)H(x,a)(x — b)H (x,b) | (“x(x —b)H(x,b) b)H(x b) (x — b)zH(x b) | [RM]

|5m+f0 I dx | [f f —"dx cJ Ay

L P(L-a) ] 0

or

L —
5L+Lwdx

EI L ¢ A

[ 1

| El | Ci1 Cip RL
! By + fLP(x —a)H(x,a)(x — b)H(x,b) dx! = [Clz Cyy (c)] [RM]
0

[ P(L - a) |
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The expression above can be numerically solved for the reactions and the Lagrange

multiplier. Then the displacement everywhere can be computed using the following

relationship.
__au dag

L Ryx+Rpy(x—b)H(x,b)—P(x—a)H(x,a)

0 o1 (—(x — E)H(x, &) dx + A(—(L — &) Eq (5.9)

The TK Solver program solution is shown with the in the subsequent figures. The location of

the concentrated load P in the following example is defined by a = 20 in.

=) PROCEDURE: precalcA

Comment:

Parameter Variables:  6_L_initial,&_M_initial,P,a,b,c,L,n
Input Variables:

Output Variables:

St| Statement

"‘A[1]=6_L_initial+Simpson('datR_L_byP,0,L,n)

‘A[2]=8_M _initial+Simpson(datR_M_byP,0,L,n)
‘A[3)=P*(L-a)

Figure 2.40: Example 4-TK Solver Vector Entity Procedure
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Comment:

Parameter Variables: P,ab.c.L.n
Input Variables:

Output Variables:

|

St| Statement
‘C1[1]=Simpson('C11,0,L,n)
‘C1[2]=Simpson('C12,0,L,n)
'C1[3]=L

‘C2[1]="C1[2]
'C2[2]=Simpson('C22,0,L,n)
'C2[3]=c

'C3[1]="C1[3]

'C3[2]='C2[3]

'C3[3]=0

Figure 2.41: Example 4-TK Solver Matrix Entity Procedure

—

&) PLOT: displaceme = [0 x|

Beam Deflection
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Figure 2.42: Example 4-TK Solver Deflection Curve
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Example 6: Statically Indeterminate Beam with Two Supports and Left

End Roller
| a >1P

" ¥

< b 3 4 & o

Figure 2.43: Example 6-Statically Indeterminate Beam with Two Supports and Left End
Roller

——¢—l 0

()

oy
) 4
!

v v
| )
P
> Mpg
[ — b >« C =
RL RM

Figure 2.44: Example 6-Free Body Diagram of Statically Indeterminate Beam with Two
Supports and Left End Roller

Constraint/equilibrium equations:

g1=2F,=0=R,+Ry—Q—P Eq (6.1)
gy =2My_; =0= R, L+Ryc—Q(L—& —P(L—a)— My Eq (6.2)
Moment equation for strain energy of bending:

M(x) =Ryx + Ry(x —b)H(x,b) — Q(x —é)H(x,&) — P(x —a)H(x, a) Eq (6.3)

Evaluation of the constraint equations: In g; the variable Ri, Ru, Q, and P, are explicit in
the moment equation therefore g; is an explicit constraint. It cannot be ignored. In g> the
variables My, is implicit in the moment equation and is nonworking, g> can be ignored.
Since one of the constraints cannot be ignored The Generalized form of Castigliano’s

theorem must be used.
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Boundary Conditions:

_n_ U 991 _ (L9Mg=o OM 991
6,=0= or, T var, = fO = 3R d X+ A, 3R, Eq (6.4)
Sy=0= oy T Ay i N — d +2, . Eq (6.5)

Substituting in for the moment and partial derivatives Eq (6.4) and (6.5) become

LRy x+Rp(x—b)H(x,b)—P(x—a)H(x,a) xdx +/1

5L:0—f I,

Eq (6.6)

fL Rpx+Rp(x—b)H(x,b)—P(x— a)H(xa)(

oy =0= =

— b)H(x,b)dx + 1, Eq (6.7)

Rearranging these two equations by moving known variables to the left-hand side of the

equal sign and writing in matrix form gives the following relation.

P(x —a)H(x,a) a) Lx(x — b)H(x, b)
I[ s [TUTDHED [ECSLCLI
_ _ _ _ R
|8M+f P(x —a)H(x, c;)l(x b)H (x, b)dx! f x(x b)H(x b) f (x b)ZH(x b) dx 1 L;/l]
L7 P I 1 0
Or
Lp(x —a)H(x,a)
[ 8L+J;] El dx C11 C12 1 RL
Lp(x —a)H(x, —Db)H(x,b =|C, Cpy 1[(R
lSM 4 fo (x —a)H(x c]ls)l(x )H (x, b) dx| [ iz iz : AZ
P(L—a)

The expression above can be numerically solved for the reactions and the Lagrange

multiplier. Then the displacement everywhere can be computed using the following

relationship.
_ U 891 _ (L9Mg=o oaM 991
bp = 70 +AORQ = fo = d X+ A, = T Eq (6.8)

OU L Ryx+Rpy(x—b)H(x,b)—P(x—a)H(x,a)
- fo (

6o = 20 El

—&H(x,$)dx — 4, Eq (6.9)
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=) PROCEDURE: precalcC
Comment:

Parameter Variables: P,a,b,c,.L,n
Input Variables:

Output Variables:

K|

St| Statement
‘C1[1]=Simpson(C11,0,L,n)
‘C1[2]=Simpson('C12,0,L,n)
'C1[3]=1

'C2[1]='C1[2]
'C2[2]=Simpson('C22,0,L,n)
'C2[3]=1

‘C3[1]="C1[3]

'C3[2]="C2[3]

‘C3[3]=0

Figure 2.45: Example 6-TK Solver Matrix Entity Procedure

=] PROCEDURE: precalcA

Comment:

Parameter Variables: ~ 6_L_initial,&_M_initial,P,a,b,c,L,n
Input Variables:

Output Variables:

Ll |

St| Statement
‘A[1]=6_L_initial+Simpson('datR_L_byP,0,L,n)
‘A[2]=6_M_initial+Simpson('datR_M_byP,0,L,n)
"A[3]=P

Figure 2.46: Example 6-TK Solver Vector Entity Procedure

Beam Deflection

T
15

Distance Along the Beam (in)

Figure 2.47: Example 6-TK Solver Matrix Entity Procedure

38
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Example 7: Statically Determinate Beam with Two Supports
a >lP
|
A

- b > ¢ c »

Figure 2.48: Example 7-Statically determinate Right End Cantilever Beam with Two
Supports

E . 3»1() >1P
.

Ry Ry
Figure 2.49: Example 7-Free Body Diagram of Statically Indeterminate Right End

Cantilever Beam with Two Supports

Constraint/equilibrium equations:

9g1=2E,=0=R, +Ry—Q—P Eq (7.1)
gy =2M,_; =0= R, L+Ryc—Q(L—-&) —P(L—a) Eq (7.2)
Moment equation for strain energy of bending:

M(x) =Ryx + Ry(x —b)H(x,b) — Q(x —&é)H(x,&) — P(x —a)H(x, a) Eq (7.3)

Evaluation of the constraint equations: In both constraints, the variables Ri, Ry, O, and P,

are explicit in the moment equation. Neither constraint is ignorable.

Since one of the constraints cannot be ignored The Generalized form of Castigliano’s

theorem must be used.



Boundary Conditions:
au agl agz LaMon oM 6g1 agz
0,=0=—+ A —+1,—=—== _— 961 992
L AR, tA ARy, T4 AR, fO EI 0R, dx + 4y R, +Au R,
au 091 ag, LOMg=9 OM 091 09,
oy =0= A A =
M dRy tA dRy t A Ry fO EI dRy dx + 4y dRy +Au dRy

Substituting in for the moment and partial derivatives Eq (7.4) and (7.5) become

LRy x+Ry(x—b)H(x,b)—P(x—a)H(x,a)

6L:0:f0 I xdx+ly+/1ML
Sy =0 = fOL RLx+Rm(x—b)H(>;lb)—P(x—a)H(x,a) (x — b)H(x, b)dx + Ay + Ayc

40

Eq (7.4)

Eq (7.5)

Eq (7.6)

Eq (7.7)

Rearranging these two equations by moving known variables to the left-hand side of the

equal sign and writing in matrix form gives the following relation.

[ L P(x—a)H(x,a) T [ L% L x(x—b)H(x,b)
8L+fonx f();dx fOde
L P(x—a)H(x,a) (x—b) H(xb) L x(x=b)H(x,b) L (x=b)2H(xb)
By + J;J El dx| = fo El dx fO EI dx
P 1 1
i P(L—a) | I L c

The expression above can be numerically solved for the reactions and the Lagrange

SO =k =

multiplier. Then the displacement everywhere can be computed using the following

relationship.
_au 991 992 _ (L OMg=o M 991 992
8o aQ+/11 30 + 1, 0 = Jy — anx+/11 30 + 1, 30

_ou _ L Ryx+Rmy(x—b)H(x,b)—P(x—a)H(x,a)
bg = aQ fO El (

Eq (7.8)

x=§Hx,§dx — Ay —Au(L =) Eq(7.9)



Comment:

Parameter Variables: P.,ab.c.L,n
Input Variables:

Output Variables:

St

Statement

‘C1[1]=Simpson('C11,0,L,n)

‘C1[2]=Simpson(C12,0,L,n)

C1[3]=1

C1[4]=L

C2[]=C1[2]

'C2[2]=Simpson(C22,0,L,n)

'C2[3]=1

'C2[4]=c

'C3[1]=C1[3]

'C3[2]=C2[3]

'C3[3]=0

'C3[4]=0

‘CA[1]=C1[4]

'CA[2]="C2[4]

'CA[3]="C3[4]

'CA[4]=0

Figure 2.50: Example 7-TK Solver Matrix Entity Procedure

Comment:
Parameter Variables:
Input Variables:
Output Variables:

6_L_initial 5_M_initial,P,a,b,c.L,n

Statement

‘A[1]=6_L _initial+Simpson('datR_L_byP,0,L,n)

"A[2]=6_M_initial+Simpson('datR_M_byP,0,L,n)

B[3]=P

‘A[4]=P*(L-a)

Figure 2.51: Example 7-TK Solver Vector Entity Procedure

29 PLOT: displacement
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Figure 2.52: Example 7-TK Solver Deflection Curve
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Example 8: Statically Indeterminate Beam with Two Supports and Two
Springs at Right End

Note: depending on the spring stiffness, this configuration can model Examples 4,5,6, and 7

l a >1 P

|
A &
< b . c >

Figure 2.53: Example 8-Statically Indeterminate Beam with Two Supports and Two Springs
at Right End

} =]

—— i——l 0

v v
| | )
A x

A
"

— ] i
b > c >
RL RM RR

Figure 2.54: Example 8-Free Body Diagram of Statically Indeterminate Beam with Two
Supports and Two Springs at Right

Constraint/equilibrium equations:

g1=2F,=0=R,+Ry—Q—P+Ryg Eq (8.1)
gy =2My_; =0= R, L+Ryc—Q(L—& —P(L—a)— Mg Eq (8.2)
Moment equation for strain energy of bending:

M(x) =R, x+Ry(x—b)H(x,b) — Q(x —&)H(x,é) — P(x —a)H(x,a) Eq (8.3)

Evaluation of the constraint equations: Variable Rg in g; and M in g2 are both implicit in

the moment equation, however they are working, therefore neither constraint is ignorable
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The springs on the end of the beam are included in the system, therefore the strain energy in

the springs must be included in the total strain energy.

LM x 2 RZ MZ
U :f (x) 4 Dk MR
o 2EI | 2kg ' Zkny

Boundary Conditions:

_ 091 agz _ (L OMg=o oM 091 992

6L——+/11—+/12 = [, — — Ld +/1yaR +/1M6RL Eq (8.4)
__ou g4 ng _ (LOMgp=o M 091 %

6M = ORm + Al OR,, + /12 = fO El OR d + Ay ORy + /1M ORy Eq (85)
=9V L0915 %92 _ Lf’MQoaM 99 992

Og = orn + M ore + Ay R Jo—5— d + + Ay == ore T Au T Eq (8.6)

au 6g1 092 _ LMg=o OM Mg 091 aﬂ
Or = TR + A5 +/12 o = N - aMRd + + Ay o0 + Ay R Eq (8.7)

Substituting in for the moment and partial derivatives Eq (8.4-8.7) become

LRy x+Ry(x—b)H(x,b)—P(x—a)H(x,a)

5,=0=[ = xdx + Ay, + Ayl Eq (8.8)
Sy =0 = [ Rt RnCDHEDZPEOID (v — h)H(x, b)dx + Ay + Ayc Eq (8.9)
Sp = i—}’: + 4, Eq (8.10)
HLZIZ_;"‘AM Eq (8.11)

Rearranging these two equations by moving known variables to the left-hand side of the

equal sign and writing them in matrix form gives the following relation.

L x? L x(x—b)H(x,b) )
5 4+ fL P(x—a)H(x,a) dx fO ;dx fO de 0 0 1 L R -
Lodoo L x(x-b)H(xb) L (=b)?H () L
5+ [" PG n(sa) =) J; ————dx J; ———dax 0 0 1 C[|Ry,
M 0 EI 1 RR
5 = 0 0 e
Or 0 0 o = 1 olla
P km
| Ay
P(L— a) 1 1 1 1 00
L c 0O 0 0 o
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The expression above can be numerically solved for the reactions and the Lagrange
multipliers. Then the displacement everywhere can be computed using the following

relationship.

991

8q = +/11 +/12 02 fLM"’Md +2,29 44,208 0 Eq (8.12)

0 EI Y 90

oUu fL Rpx+Ry(x—b)H(x,b)—P(x—a)H(x,a) (x

Sg a0 Jo El

—$H(x,§)dx — Ay — Ay (L = &) Eq (8.13)

The first three expressions in the solution are identical to the previous four examples.
Additional lines code display the assigned solution variables. The input and output data are
shown. On the following pages, the expressions for calculating the entries in the C-matrix are

shown. A more efficient method is shown in Examples 9 and 10.

Status | Rule

Satisf| call precalcC(); calculates the [C] matrix entries
Satisf| call precalcA(); calculates the [A] vector entries

Satisf| call SLINSOLVE(C,'A,’sol);  built in linear equation solver

Satisf| call assign_var(;R_L,R_M,R_R,M_R,A_y,A_M); assigns solution vector entries to
Satisf| 5_§=-(Simpson(integrandd,0,L,n)+A_y*(-1)+A_M*((L-))); displacement at POI §
Satisf| if solved() then call displacement(); Eq (1.7) to find displacement curve

)

Figure 2.55: Example 8-TK Solver Rules

Input Name Output Unit Comment

200 n # of steps in integration
1E7 E psi Young's modulus (psi or MPa)
01 | in"4 moment of inertia (in"4 or mm*4)
20 a in distance to load P (in or mm)
10 b in distance between R_L and R_M (in or mm)
20 c in distance between R_M and R_R (in or mm)
30 L in length of beam (in or mm)
30 P Ibf load (Ibf or N)
6_L_initial in displacement at left support (in or mm)
0 6_M_initial in displacement at middle support (in or mm)
RL -30 Ibf Reaction on the left support (Ibf or N)
R_M 60 Ibf Reaction on the middle support (Ibf or N)
R R 45 Ibf Reaction on the right support (Ibf or N)
M_R -.025000005 | Ibf moment at right support (in-lbf or N-mm)
30 £ in Point of Interest (POI) (in or mm)
0 € -45 in displacement at POI (in or mm)
A_M 025000005
Ay -45
1 k_R spring constants
1 kM
0 5 R displacement at base of springs
0 6 R

Figure 2.56: Example 8-TK Solver Variables
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Comment:
Parameter Variables: P,a,b,c,L.n.k Rk M
Input Variables:
Output Variables:

St| Statement
PSO 0
‘C1[2]=Simpson(C12,0,L,n)
‘C1[3]=0
‘C1[4]=0
‘C1[5]=1
'C1[6]=L
‘C2[1]="C1[2]
‘C2[2]=Simpson('C22,0,L,n)
‘C2[3]=0
‘C2[4]=0
‘C2[5]=1
'C2[6]=c
‘C3[1]="C1[3]
‘C3[2]="C2[3]
‘C3[3]=1/k_R
‘C3[4]=0
‘C3[5]=1
‘C3[6]=0
‘C4[1]='C1[4]
‘C4[2]="C2[4]
‘C4[3]=0
‘C4[4)1=1/k_M
‘C4[5]=0
‘C4[6]=1
‘C5[1]="C1[5]
‘C5[2]="C2[5]
'C5[3]="C3[5]
‘C5[4]="C4[5]
‘C5[5]=1
'C5(6]=0
‘C6[1]="C1[6]
'C6[2]="C2[6]
'C6[3]="C3[6]
‘C6[4]="C4[6]
'C6[5]="C5[6]
‘C6[6]=1

Figure 2.57: Example 8-TK Solver Matrix Entity Procedure

45
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Comment:

Parameter Variables:  6_L_initial,&_M_initial,P,a,b,c,L,n,6_R,6_R
Input Variables:

Output Variables:

St| Statement
"‘A[1]=6_L_initial+Simpson(datR_L_byP,0,L,n)
‘A[2]=8_M_initial+Simpson('datR_M_byP,0,L,n)
‘A[3]=6_R

‘A[4]=6_R

‘A[5]=P

‘A[6]=P*(L-a)

Figure 2.58: Example 8-TK Solver Displacement Vector Procedure
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Figure 2.59: Example 8-TK Solver Displacement curves for each end condition achieved by

changing the spring constants.
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Example 9: Spring-Supported I-Beam

This is an example problem (Example 5.18 page 185) from Advanced Mechanics of
Materials 6™ Edition by Boresi and Schmidt [11]. The solution first appeared in the 3
edition of the book published in 1978. At that time, closed form analytical solutions were the
norm, so several assumptions were made to simplify the solution. These assumptions are that
all the springs that support the beam have the same spring constant, the springs are equally
spaced, and the springs are symmetric. These assumptions do not need to be made when

using The Generalized from of Castigliano’s Theorem. The problem statement is as follows:

An aluminum alloy I-beam (depth=100 mm, 1=2.45X10® mm*, and E= 72.0 GPa) has
a length of 6.8 m and is supported by seven springs (K=110N/mm) spaced at distance 1=1.10
m center to center along the beam as shown. A load P=12.0 kN is applied at the center of the
beam over the center spring. Determine the load carried by each spring, deflection of the

beam under load, the maximum bending moment, and maximum bending stress in the beam.

W
W
W

Wh

Figure 2.60: Example 9-Spring-Supported I-Beam
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Figure 2.61: Example 9-Free Body Diagram of Spring-Supported I-Beam
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Constraint/equilibrium equations:

=Y F,=0=)R -P-Q Eq (9.1)

7

=> M _, =0=—3R(L-L)+P(L-L,)+O(L—¢) Eq (9.2)

1

Moment equation for strain energy of bending:

7

M(x)= 3 R (x= L )H(x.L, )= Px— L, JH(x,L, )~ Ox— E)H(w,£) Eq(9.3)

i=1

Evaluation of constraint equations: Since every force variable (R;, P, Q) in the constraint
equations g; and g2 (Eq (9.1) and Eq (9.2)) also appear in the moment relation Eq (9.3),

these forces are explicit, and the constraints are explicit. Neither can be ignored.

The strain energy of the beam and the springs is given by the relations

L M(x) " R’
U= de+ > S Eq (9.4
l 2Bl T4 104

Note that the strain energy of the springs is included in the total strain energy U.

Using the Generalized form of Castigliano’s Theorem, the deflection o, corresponding to

each generalized force R; is then

5 =Y 45 %
TR, TR,

J

. =17, n=1,2 Eq (9.5)

Substituting Equations (9.1, 9.2, 9.4) into Eq (9.5)

5j:;(jf‘f5<1>( L) (xL)dH(s_M()MM(L_Lj) £q 96)

Substituting Eq (9.3) into Eq (9.6) and parsing out known variable P, taking the integral into

the inside of the summation and some rearranging yields Eq(9.7)
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J;+ J.OL Plx=L,)H(x. L) (x -1 )H (x, L )dx =

El
Eq (9.7)

3[R i, R, 000,001 )

i=1

In Eq (9.7) the indices j can take on values of 1 to 7 corresponding to the seven
springs. Therefore, Eq (9.7) represents seven equations. The unknowns in Eq (9.7) are the
seven reactions R; and the two Lagrange multipliers 4, and Ay. A solution requires two more
equations, these are the equilibrium equations, Eq (9.1) and Eq (9.2) rearranged to put the
known variable P and its moment on the left-hand side of the equal sign. The variable 9;; is
the Kronecker delta which has a value of 1 if i=j and 0 if i#/. This in effect augments the
diagonal of the matrix with the effect of the spring. In matrix form, the solution readily

obtained using a preprogramed linear algebra routine. This matrix form is:
0=[clry
The function below will calculate the entries in the augmented Compliance [C] matrix

Statement
; #R 1s the number or reactions or springs supporting the beam
;This is the loop for the #R by #R portion of the matrix
for i=1 to #R
for j=1 to #R
'i_temp[1]=i; passes the value of i to the integrand function

'j_temp[1]=j; passes the value of j to the integrand function

'C[1][j]=Simpson('Rintegrand,0,L,n)+ «A(1,j)*(1/'k[1])
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next j

next i

b

;Assigns the values for the rows (equilibrium equations) and columns (LaGrange

multipliers)

fori=1 to #R

'C[][1+#R]=1

'C[1+#R][i]=1

'C[1][2+#R]=(L-'L[1])

'C[2-+#R][i]=(L-'L[i])

next i

; assigns the zeros in the lower right of matrix

fori=1to2

forj=1to?2

'C[#R+i][#R+{]=0

'C[#R+][#R+i]=0

next j

next i

Below is the integrand function used by the Simpson integration tool, see Eq (9.7)

Statement

i='i_temp[1]

j=j_temp[1]

z=((x-"LID*H LD *(x-"LHD*H THDV(E*D)
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1S

St| Statement
; this loop will calulate a value for each row of the vector =

fori=1to #R
i_temp[1] =1i; temporary storage of i that can be accessed by the inttegrand function
"A[i]="6_base[i] + Simpson(Pintegrand, 0, L,n)

next

: next line calculates the total of the loads being applied
"‘A[#R+1)=P

; this loop performs a summation of moments about x=L of the external loads
"‘A[#R+2]=P*(L-a)

Figure 2.62: Example 9-Simpson Integration Tool

Below is the integrand function used by the Simpson integration tool see Eq (9.7)

Statement
i='"i_temp[1]; the value of i represents the row of the vector

7=P*(x-L_P)*H(x,L_P)*(x-"L[i])*H(x,'L[i])/(E*I)

After the augmented compliance matrix is calculated, the augmented displacement vector [9]
is calculated. Once the augmented compliance matrix and augmented displacement vector are
calculated a solution for the reactions and Lagrange multipliers can be computed using a
preprogramed linear algebra function. The next step is to calculate the beam displacement
using the dummy load method. The FBD shows a dummy load Q applied at a distance ¢ from

the beginning of the beam. We use Castigliano’s theorem as follows:

oU ¢ M(x) oM (x) dg og
o, = = d A =L+ 2 Eq (9.8
o0 hTE ap # A ag Mg 109

Substituting in for the moment and constraint equations leads to the following relation:

5Q=j:

ME(;C) (x— EWH (x, E)de+ A, (~1)+ 4y, (- (L - &)
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For any value of & using numerical integration, this integral will give the beam
displacement at that location. Thus, the complete displacement curve can be calculated and

plotted.

Note that the central part of the program is unchanged from previous problems.

However, more lines of code are needed to read, assign, and retrieve input and output data.

Status | Rule

Comn ;assigning variables to list
Satisf| call spring()

Satisf| call diplacements()
Comn ;
Satisf| call precalcC()

Satisf| call precalcA()

Satisf| call SLINSOLVE(C,'A,'sol)

Satisf| call assign_R(R_1,R_ 2R 3R 4R 5R 6,R_7A_yA_M)

Satisf| call deflection(); calculates the deflection along the beam
Comni ;

Comn ; variable extraction from lists

Satisf| call V_and_M (); plot data for shear and moment diagram
Satisf| q_p=min('6num); maximum deflection

Satisf| M_max=max(moment)*1000; maximum moment

Satisf| o max=M max*50/I; maximum bending stress

Figure 2.63: Example 9-TK Solver Rules
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Status | Input Name Output Unit Comment
100 n # of steps in integration
72000 E Young's modulus (psi or MPa)
2450000 | moment of inertia (in*4 or mm*4)
6800 L length of beam (in or mm)
1 #P number of applied loads
12000 P load (Ibf or N)
3400 a distance to load P (in or mm)
7 #R number of reactions
110 k_1 spring constants(N/mm or Ibf/in)
110 k 2
110 k_3
110 k 4
110 k 5
110 k_6
110 k 7
0 o 1 base of spring displacement (mm or in)
0 6_2
0 6_3
0 6 4
0 6.5
0 5 6
0 6 7
R_1 -454 056433 Reactions (Ibf or N)
R_2 1215.83233
R_3 3093.98401
R 4 4288.48019
R_5 3093.98401
R_6 1215.83233
R_7 -454.056433
Ay 54558419 Lagrange Multipliers
A_M -.013280562 radians
qp -38.9861835 deflection at load P (in or mm)
o_max | 93.4658633 maximum bending stress (MPa or psi)
M_max | 4579827.3 maximum moment (N-mm or |bf-in)

Figure 2.64: Example 9-TK Solver Variables
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Figure 2.65: Example 9-Shear & Moment and Beam Deflection Plots

Note that the solution matches the Boresi Schmidt solution. However, this solution
can use different spring constants, move the load around, or even have no load but just a

spring displacement.
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Example 10: Stepped Shaft
This is Example 10.9 from “Design Analysis of Shafts and Beams’ by R. Bruce Hopkins

[12]. The figure below is a shaft which is assumed to be equivalent of an inline six-cyclinder
engine. The vertical component of the forces when the gas pressure is a maximum in the #3
cyclinder are W1=4094, W>=3970, W3=27,501, W4=-7941, W5=4998, and Ws=3970. Find
the reactions at the seven journal bearing locations and the deflection along the shaft. Include

the effect of shear in the solution.

Wi W Ws; W, W; Ws
t ry
o Balell F 50— —fp— 11— b Ramkonts s Bt St [ F-—-fF-- e
¥
A I A A A A A
0.5o5|o5
— 6 6—+— 6 6 6 6 A-T
R1 Rz R_? R4 R5 Rﬁ R7

Figure 2.66: Example 10-Stepped Shaft equivalent to stepped crankshaft for six-cylinder

disel engine
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Figure 2.67: Example 10-Free Body Diagram Stepped Shaft equivalent to stepped crankshaft

for six-cylinder diesel engine
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We begin by creating lists for the load W¥;, the distance to reactions LR;, and the distance to
loads LW;, then:

Equilibrium/constraint equations:

7 6
-1 i1

XM =0 ==Y R (L LR)« YL~ )+ (L) Eq(102)

Moment and shear equations:

M(x)zi R(x—LR)H(x,LR) Z x—LW)H(x,LW,)-O(x—&)H(x, &) Eq (10.3)

V(x)=) RH(x,LR)- Z H(x,LW,)-QH(x,¢) Eq (10.4)

i—1

Evaluation of the constraint equations: Note that the variables R;, Wi, and Q in the two
constraint equations are explicit in the M(x) and V(x) equations, therefore both constraints

are explicit and cannot be ignored.

The strain energy in the beam is composed of the strain energy due to bending and the strain

energy due to shear as given by the relation

L M(x)’ LaV(x)

U=| Ldﬁgj Larx Eq (10.5)
o 2FEI 0 2GA

The a is a correction coefficient for the strain energy due to shear (Boresi) and the € is used

as an on-off switch for including shear strain energy (1: include, 0: exclude) Using the

Generalized form of Castigliano’s Theorem, the deflection o, corresponding to the

generalized force R; is

5 =Y ; %
IR T aR,

J

, j=1L..7T n=12 Eq (10.6)
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Substituting equations (10.3,10.4) into Eq (10.5) along with equations (10.1,10.2) is
substituted into Eq (10.6) with some parsing yields Eq (10.7)

6

S (o= LW, (x, LIV, Y W H(x,LIV,)

5+[ |- = (LR )+ @ —— (x, LR, Jdx =

L oo (x—LR,)H(x,LR,) aH (x,LR,)
ZRJO( = (x—LR,)+ Q=——2r (e, LR, Jax + 4,(1) + 4, (L - LR,)
Equation (10.7) represents seven equations that along with equations. (10.1 and 10.2) are
sufficient to solve for the seven reactions and the two LaGrange multipliers. With those
found the displacement everywhere (denoted by the variable &) along the shaft can be
determined by Eq (10.8).

5 _oU :IL(M(x) 8M(x)+QaV(x)5V(x)de N ﬂy% Y, 9%, Eq (10.7)

8o = Jy (B2 (x = &) + QZ2) (x — ) H(x, ©)dx + Ay (=1) + Ay (—(L = ©))  Eq(10.8)

Note that a program with the same core code with minimal changes in a few lines of code

allows the numerical solution to be derived.

=7 Rules
Status Rule
Satisfied | call resetlist()
Satisfied | call precalc()
Satisfied | call vector()
Satisfied | call SLINSOLVE(M,V,'sol)
Satisfied | call assign var(R_ 1R 2R 3R 4R 5R 6, R 7A yA M)
Satisfied | call Displacement()
Figure 2.68: Example 10-TK Solver Rules
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Input Name Output Unit Comment
60 #x
500 n number of steps in Simpsons integration
3E7 E Young's modulus (psi)
.01 | second moment of area (in"4)
36 L Length of beam (in)
7 #R number of reactions
6 #P number of loads
12000000 | G
1.33 a
0 61 Displacement at reactions
0 52
0 6 3
0 b4
0 65
0 56
0 6 7
R_1 1973.54586 Reactions
R _2 1375.7168
R_3 19732.9544
R 4 11090.725
R 5 -6296.64243
R 6 7934 43314
R 7 781.267225
AM -7.80447E-6 Lagarnge Multipliers
Ay 0
Figure 2.69: Example 10-TK Solver Variables
L ———
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Figure 2.70: Example 10-TK Deflection Plot
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Chapter 3: Practical Application on Semi-truck Trailer

Introduction
Western Trailers, headquartered in Boise Idaho, is one of the nation’s leading trailer
manufacturers. Their vision is focused on being leaders in the tractor-trailer industry by
continuously delivering high quality innovative solutions to their customers. As with many
industries, minimizing the time from concept to finished product is important. In support of
this local industry, the University of Idaho developed a design tool in the early 1990’s. Over
the intervening years, design requirements, computer software and suspension systems for

tractor trailers have changed, requiring a major update to the design tool.

In today’s world, engineers have access to modern fundamentally precise methods of
analysis at their fingertips. These include Finite Element Analysis (FEA) and Computer
Aided Design (CAD) programs to create mechanical drawings. Both software programs
work well if the engineer has an extensive background and investment or a mental concept of
a structure or component in mind. A properly design tool on the other hand, helps the
engineer flesh out what’s on their mind. The tool can be created with constraints for shop
operations or components that exist in the supply chain. In short, a proper design tool

shortens the design time and improves design quality.

The objective was to develop a new design tool to layout the major dimensions of a
trailer frame rail to meet deflection and stress requirements. This new design tool needed to
work with the software used by Western Trailers, namely Autodesk Inventor and Excel. The
design tool must also be capable of accepting different parameters including; length, profile,
cross-section, material, number of axles, and load conditions. In addition, a graphical user
interface must be created to allow the designers to easily utilize the tool. Finally, a design
report with all relevant parameters and results must be created to document each analysis

performed.
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Background

The fundamental approach of trailer design must clearly be understood before
defining the problem statement and formulating a solution path. Trailers carry heavy loads; in
the United States the maximum weight for a semi-truck and trailer combination is 80,000
pounds. Therefore, any weight saved in the truck/trailer is payload that can be carried. So, the
goal of a trailer design is the least weight, a high, uniform but safe stress operating level, and
an elastic response to the load. This last item, elastic response, has an additional design
attribution that a proper design must pass. It has to look correct under load; in layman’s
language the trailer cannot have a “swayback” under load. This being the case, it is no

surprise that optimizing the shape of the trailer profile is an industry standard.

As mentioned, trailers are designed with optimal shape profiles to deal with the
deflection they will experience under loaded conditions. The top of the profile along the
length of the trailer is known as the camber. Essentially it is large arc or a combination of
multiple arcs and flat sections. Additionally, the profile of trailer rail cross section is non-
uniform throughout the length of a trailer. It varies to contribute to the goal of reduced
weight without comprising performance. The cross-sections are another critical part of the
trailer design. They can either be very complex geometries or as simple as an [-beam. The
length and number of axles on a trailer are yet another feature that varies depending on
requirements. Understanding this background provides the groundwork to dive into the

problem and solution for this project.

Client Requirements
In basic terms, the requirement of this project is to create a design tool that will
perform an analysis on a semi-truck trailer to predict the stress and deflection along the
length of the trailer. Further, the results should closely match experimental data collected by

Western Trailers.
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Solution Process

A technical problem such as this one is best solved by integrating several computer
programs and fundamental engineering concepts. The figure below shows a diagram of the
programs used, (Autodesk Inventor, Microsoft Excel, and TK Solver) and the flow of data
between the various programs. Per Western Trailer’s request, Autodesk Inventor was used to
create the graphical user interface to input parameters and create a three-dimensional solid
model. When the designer is ready to execute an analysis, data is exported from Autodesk
Inventor to Microsoft Excel which serves as a universal communication hub. Functioning in
the background of Excel is the TK Solver tool kit for executing the complex computations
which then sends data back to Excel. Per Western Trailer’s request, a design report is created

in Excel for interdisciplinary use.

/' ./ Elite 53 Laden Vs Unladen Profile

3D-Model e

AUTODESK'
INVENTOR

A) Input . - .
D) Design Report
g Excel

B) Universal Interface

\\> ﬂ TK Solver

C) Numerical Solver
Figure 3.1: Design Tool Flow Chart
There are three critical links for creating the design tool, first the deflection analysis
executed in TK Solver. Second, the communication link between the programs and last a

friendly graphical user interface.
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Castigliano’s Theorem Applied to a Semi-Truck Trailer
The previous chapter provided a thorough guide on how to apply The Generalized
Form of Castigliano’s Theorem to essentially any problem. The approach to solving for the
deflection of this trailer is no different, the exact sevens steps outlined in the previous
examples will be taken to obtain a solution. The analysis begins with a 2-d sketch of the

problem as shown followed by a free body diagram:

Figure 3.2: Trailer loaded with a distributed Load
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Figure 3.3: Free Body Diagram of Semi-Truck Trailer

Note that in the free body diagram, the cross section was simplified, during the actual
computation, the actual cross-section was utilized. Additionally, a virtual (displacement
equal zero, magnitude equal zero) set of end reactions were added to serve as beginning and

end points for the displacement curve.



63

Constraint/equilibrium equations:

5
gl:VL+ZRL'_W0(LEL_LSL)_Q+VR:0

=1

5
L L
G2 = SMymy = ViL+ ) Ri(L = L) = wy(Lgy — Lsy) (L - (%)) ~QU-9=0

=1
Moment equation for strain energy of bending:

x — Lg;.
2

5
MG =Vt ) R = LOHG L) = wo(x — L) (=2 ) HCx, L)
_ x—Lg
2

4w (0 = L) (S5 ) HOo L) = QUL = OH(x, L) = 0

With some algebraic manipulation this becomes

> w,
M(x) =V,x + z Ri(x — L)H(x,L;) — 70 [(x — Lg,)*H(x, Ls) + (x — Lg)*H(x, Lgy)]

=1

—Q(L—8H(x,Lg,) =0

Evaluation of the constraint equations: Vy in g; is implicit in the moment equation and
nonworking, therefore g; is ignorable. All the variables in g> are explicit in the moment

equation, g2 is not ignorable

At first glance, this appears to be a statically indeterminate problem. However, identical airbag
suspensions are used for the first three axles and the suspension of the last axle is set up to be
72 the force of the three intermediate axles. Therefore, R>=R;=Rs=2Rs. It is statically

determinant.

Boundary Conditions:

OU agz J-LaMon aM agz
0

Oy0=0=—+1 = A, —=
x=0 av, T 25y, Bl av, X T 25y,
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This is one equation with one unknown, A>. After computing the Lagrange multiplier, the
displacement everywhere along the beam can be found by numerically integrating the

following equation for various values of ¢.

ou 09, _ j‘LaMQ=0 oM 99,
aQ 0

The two equations above are identical with the difference being the point of interest.
The first equation will solve for the displacement at a specified reaction. The second equation
solves of the displacement across the length of the trailer when it is numerically integrated

for various values of &.

Substituting in the moment and partial derivatives in the equations above they

become the equations below.

Oy=0=0
fL [Z?=1 Ri(x — L)H(x,L;))] — % [(x — LSL)ZH(x: Lg;) + (x — LEL)ZH(-X; Lg)] d
- EI xax
—A2(L)
6o =0

_ fL [25’:1 Ri(x — L)H(x,L;))] — % [(x — LSL)ZH(x; Lg) + (x — LEL)ZH(x: Lg)] @
I A El

—$H(x,$)dx — A,(L =)
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Data Validation

With the above equation solved, we can plot data from Western Trailers and our
numerical prediction for validation as shown below. Before commenting on this plot, it is
important to observe that the y-axis data is a maximum of six inches while the x-axis data is
over 600 inches. The plot visually magnifies the camber of the trailer frame rail. The top blue
line in the plot is the shape of the camber of the top of the rail as it was designed. The red
line just below that line is the as-built measured camber of the top of the rail. Western
Trailers indicated this difference is repeatedly observed and is attributed to the fabrication
process of the trailer. The two lower lines overlay the shape predicted with the analysis and
the experimentally measured shape. The analytical prediction uses the as-built shape as the
baseline. It is easy to see how close the numerical data is to the experimental data. Based off

the results we conclude that the method and solution are both valid for this problem

statement.
Elite 53 Laden Vs Unladen Profile
.
6 ——Numerical-Unladen
5 ——Numerical-Laden
& 4 —Experimental-Unladen
[*]
g 3 —Experimental Laden
~
= 2
51
»

0 100 200 300 400 500 600
Horizontal Profile(in)

Figure 3.4: Elite 53 Numerical vs Experimental Data Deflection Plot

The figure below shows the stress profile across the length of the trailer. The values
on the plot have been inverted to make a visual connection between the top of the trailer
profile and stress at the top. In reality the stress at the top of the frame rail is in compression

and the bottom of the frame is in tension.
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Elite 53 Stress Profile
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Figure 3.5: Elite 53 Numerical vs Experimental Data Stress Plot

The next figure shows the results of this same analysis performed on a shorter trailer
with two axles rather than four and different loading conditions. The analysis yields valid

results and proves once again that the method and solution are indeed valid.

Elite 48 Laden Vs Unladen Profiles

——Numerical-Unladen
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—Experimental-Unladen
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Figure 3.6: Elite 48 Numerical vs Experimental Data Deflection Plot
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Design Tool
Using Castigliano’s Theorem has provided a fundamentally valid solution for the
problem. Autodesk Inventor is the CAD software that the designers at Western Trailers use.
The use of the design tool will begin and end in Autodesk Inventor. A graphical user
interface to input parameters has been created for the user to input design parameters. A 3-D
model is generated for the designers to use in their next phase of design. The figure below

shows a window of what a designer will see on their screen when they begin to use the

I DO-EH=- - Lm0 @ Auminmeo ~ @ @l*Ancdized ~ @8 @ fr 4 IWDTRO3 3. » Search Help & Commends.. S Siann riw @~ - & X
3D Model  Sketch  Annotate Inspect Tools Manage View Environments Get Started  Collaborate (<2l
Modal iLo.. X + = 2: 4
Rules Forms Global Fo 4| »
Rall Design Tool
Execute Design —
@]
Designer selso &
File Path C:\Users\selso\OneDrive\Documents\t WOT Tool Revision) -
'7
Last Exectued Revision: Elite-Rall Design Tool-selso-03-31-2020-12.30.42 2
Traller Type Alite = Material Aluminum - 4
w7
G
Support Locatioris ~ Payload Parameters
King Pin Loaction: 14 1n Applied Payload(lbs). 65000 <t
Axde 1 Location: 4243125 in Payload Starting Polnt: 180 in -
Adle2 Location: 4853125 in Payload End Point:  420in =]
Axle 3 Location: 5463125 In

Axle 4 Location:  611.3135 In
Reinforcement Flange Effective Length: 30 in
Flaor Board Ffectiveness 4

Alite Frame
Elite Frame
- Classic Frame

Execute Design

Done

IWDT R 03 it X

For Help, press F1 1
—

Figure 3.6: Autodesk Inventor Design Tool Interface

The design tool was created using Visual Basics programing through Autodesk
Inventor’s ILogic functionality. ILogic allows for variables to be used in different
configurations, design tables, and other custom applications. In order to make this design
tool, every parameter relevant to the analysis was uniquely named to make each one valuable
and easy to use in the future. The VB program collects all the relevant parameters from the
Inventor design and sends them to an Excel spread sheet when the program is executed. A
Graphical User Interface (GUI) allows the designer to change the parameter values on the fly
in a dialog box rather than searching through sketches to change them. The figure below
shows the GUI, when the user has changed all the desired parameters, they can execute the

design and export all the data to an Excel workbook.
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To make the design tool easy to use for a variety of trailers designs. Inputs include
different lengths, profiles, cross-sections, materials, number of axles, and load condition
bounds. The next two figures show the parameters that can be changed in the rail profile. The
origin is placed at the top left-hand side of the rail. The rail has a top and bottom profile that
are defined independently of each other. The top is broken out into three sections, two arcs
and as flat section tangent at their intersection. The first arc starts at the origin and ends at a
specified x-location (x_C2), its size is defined by radius R1. Arc two starts where arc one
ends and ends at a specified x-location (x_C3), its size is specified by R2. The final part of
the top profile is flat section tangent to the second arc that ends at the full length of the trailer
(x_C4). The rear end of trailer is in line with the origin in the vertical direction. The bottom

profile is broken out into eight sections each having a depth and height value based of the

origin.
x_C4
x_C3 |
x_C2 |
R1— ‘ R
C_— ]
x_d2 —=—-=f
~—x_d3 4
~——-—x_d4
X_d5 |
x_dé
x_d7
x_d8
x_d9

Figure 3.7: Rail Profile Depth and Camber Parameters
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| ‘ R1 —H L ﬁRZ 4 l |
y_dl
d2
y- d3

y_
4
44 s y_d6

Figure 3.8: Rail Profile Height Parameters
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The main design tool GUI has inputs for some of the major parameters. The dialog
boxes are populated with the current values in the model that correspond to the last executed
revision of the analysis. When a value is changed in any of the dialog boxes in the GUI it will
automatically change in the model. The main window has execution buttons at the top and
bottom of the window. Every time the tool is used, it generates a new document with a
unique name. The document name contains the type of trailer analyzed, designer who
executed the design, and the time and date the tool was used. The figure above shows three

types of trailers because in general there are three different types of trailers this tool will be

used in.
Execute Design
Designer selso
File Path: C:\Users\selso\OneDrive\Documents\1 WDT Tool Revision)
Last Exectued Revision: Elite-Rail Design Tool-selso-03-31-2020-12.30.42
Trailer Type Alite ~  Material Aluminum -
~ Support Locations ~ Payload Parameters
King Pin Loaction: 14 in Applied Payload(lbs): | 65000
Axle 1 Location: 424.3125in Payload Starting Point: | 180 in
Axle 2 Location:  485.3125in Payload End Point: 420 in

Axle 3 Location; 546.3125in
Axle 4 Location: 611.3125in

Reinforcement Flange Effective Length: 30 in
Floor Board Effectiveness: 4

Alite Frame
Elite Frame

Classic Frame

Execute Design

Done

Figure 3.9: Design Tool Graphical User Interface (GUI)
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Opening the drop-down meu for each trailer type provides different parameter
dropdown menus for different parts of the trailer. Each of the three trailer types will contain

the dropdown menus found on the next figure.

~  Alite Frame
~  Camber Properties
~  Frame Rail

~ Top Hange ~ Bottom Flange ~ Reinforcement Flange

~ Hoor Board

Figure 3.10: GUI Specific Trailer Drop Down Menus

The Camber Properties menu contains dialog input boxes for the camber values and their end
position in the x-direction of the trailer, as specified previously the origin of the trailer is
located at the top left-end of the profile. If a user wants to use a single camber rather than two
unique ones, they will set the values of the cambers to the same value then specify a value for
Camber 2 End Point. The analysis requires Camber 1 End Point for completeness, but its

value will not affect results.

~ Alite Frame

~ Camber Properties

Camber 1: 6000 in
Camber 2: 9000 in
Camber 1 End Point: 221.3125in
Camber 2 End Point: 485.3125in

Flat Section End Point: 632.3125in
Alite Main Web Thickness:
0.25in

Figure 3.10: GUI Trailer Camber Parameters
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The Frame Rail menu contains dialog input boxes for x and y values of the frame rail
sections. An image is also provided to remind the designer what each of the parameters

represent in the model. This image also shows where the camber property parameters.

~ Frame Rail
- X Ral - ¥ Rail
x_C5
x_C4 Ax_di 0in Ay _di 11in
‘—*-Czﬂ Ax_d2 37.25in Ay d2 11in
R1 R2 = :
| i TEEERERER! Ax_d3 85.25in Ay_d3 13in
C
x_d2——] I 1 Y 7 Ax_d4 157.25In Ay_d4 23.5in
l—x_d3 y-dl Ax_ds 211.75in Ay ds 28 in
y_d2
x4 y_d3 Ax_d6 337.75in Ay_d6 28 in
————x_ds
2 o y_d4 - Ax_d7 388.750n Ay_d7 22in
£ 1 ¥
% d7 .8 Ax_d8 485.3125 In Ay_d8 20.0625 in
x_d8 y_d7 Ax_dg 633 in Ay_do 165 in
x_d9 _ds

Figure 3.11: GUI Trailer Frame Rail Parameters

For the most complicated trailer there are four sections in the rail cross-section. Those
sections are the top flange, bottom flange, reinforcement flange, and web. The top, bottom,
and reinforcement flanges are defined in their individual drop down menus. Only key
parameters can be changed in the drop-down menus. Note, cross-sections are not changed on
trailer as often as rail profiles so these drop downs might not be used as much. The web
thickness is defined in the main GUI window of this tool and the web height is defined with a

combination of top, bottom, and rail profile parameters.

~ Top Flange ~ Bottom Flange ~ Reinforcement Flange

@

@

“
i

(1) Flange Height:  5.5in a

) Flange Width: 5in (1) Flange Width:  7.375in
(2) Flange Width:  Sin (2) Flange Width: 2.5in (2) Flange Height: 2.375in
(3) Bottom Tab: 1in (3) Flange Web Thickness: 0.250 in (3) Web Thickness: 0.251in
) (

(4) Top Tab Width: 1.5in 4
(5) Web Thickness: 0.250 in
(6) Top Tab Height: 1in

Flange Bottom Height: 1.1625000 in 4) Flange Thickness: 0.35in

Figure 3.12: GUI Trailer Cross-section Parameters
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The final part of the trailers cross-section is the floorboard. Identical sections of the
floorboard are welded together to connect the rail and create a trailer bed. The following
figure shows the floorboard cross-section, this menu provides the dialog boxes for the major

parameters of the floorboard.

~ Floor Board

g

2 el N i Nl N i = N P

o] : '

(1) Flange Width: 19in

(2) Fange Height: 1.25in

(3) Peak Length:  1.2500000 in
(4) Saddle Length: 11in

(5) Tab Width: 1in

(6) Tab Thickness: 0.125in

(7) Web Thickness: 0.1250000 in

Figure 3.13: GUI Trailer Floorboard Parameters
The GUI contains all the inputs necessary to fully define a trailer for deflection
analysis. Note that even though the GUI doesn’t show parameters such as moment of inertia
for the floorboard. They are being calculated and exported to be used in the analysis. Once
the designer has modified all the desired parameters they click “Execute Design Tool,”
Immediately, after they do so a new Excel workbook with a unique name containing the type
of trailer analyzed, designer who executed the design, and the time and date the tool was used

will be created. The figure below shows an example of an Excel workbook created with the

design tool.

file Home Insert  Pagelayout  Formulas  Data  Review View Developer Help 2 Search 15 Share  ©1 Comments

123 ¥ I 3
A B c D E F 6 H i J K L M N =

1| New Gen Rail Geometry Defenition
2 | Designer: selso
2 Date:  2/4/2020
4 Time  1:26 PM
5 | Top Rail Profile Bottom Rail Profile Web Depth |
6 |Description Name Value Description Name Value Description Name Value |
7 Camber x-Distance from Origin to Point 2(in) x C2 221.3125  x-Depth point 1(in) $x_di 0.0000  y-Depth point 1(in) $y_d1 = 11.0000
g |Camber x-Distance from Origin to Point 3(in) x C3 4853125  x-Depth point 2(in) $x d2 37.2500  y-Depth point 2(in) $y_d2 = 11.0000 ‘
] fCamber y-Distnace from Origin to Point 3(in) y C3 3.3595 x-Depth point 3(in) $x_d3 85.2500  y-Depth point 3(in) $y_d3 = 13.0000 |
10| Camber x-Distance from Origin to Point 4(in) x C4 632.3125  x-Depth point 4(in) $x d4 = 157.2500 y-Depth point 4(in) Sy d4 = 23.5000
11 | Camber y-Distnace from Origin to Point 4(in) y_C4 0.0000  x-Depth point 5(in) $x d5 211.7500  y-Depth point 5(in) Sy d5 = 28.0000
12 Radius Arc 1(in) R 1 6000.0000  x-Depth point 6(in) $x d6  337.7500 y-Depth point 6(in) $y_d6 = 28.0000
13 Arc 1 x-distance from Orgin to Arc Center(in) h_1 260.2261  x-Depth point 7(in) $x d7 388.7500  y-Depth point 7(in) $y_d7 = 22.0000
14 | Arc 1 y-distance from Orgin to Arc Center(in) k_1 5994.3542  x-Depth point 8(in) $x d8 485.3125  y-Depth point 8(in) $y_d8 20.0625
15 Radins Arc 2(in) R 2 9000.0000  x-Depth point 9(in) $x d9 633.0000  y-Depth point 9(in) $y_d9 16.5000
16 Arc 2 x-distance from Orgin to Arc Center(in) h 2 279.6829 ‘
17 |Arc 2 y-distance from Orgin to Arc Center(in) k 2 8994.2011 |
18 |
19 |
2 o
i ;I_[ €s | st | T® | Deflection Lists | Stress Lists :WExper\mental Data | Deflecion Plot | swesselot | @ 7 D ; ; 0
Ready 23 iz m - ] + 100%

Figure 3.14: Design Tool Excel Workbook
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The Excel workbook contains all relevant parameters required for the deflection
analysis. There are nine sheets in the Excel workbook; I, CS, TK, Deflection Lists, Stress
Lists, Experimental Data, Deflection Plot, and Stress Plot. Each of these sheets contain
information about the analysis, examples of these can be found in the appendix section of this
thesis. Excel uses the TK Solver add in to perform the analysis with the TK Solver code. The
“Solve Button,” on the TK Solver Tab in Excel allows the user to solve for the analysis, the

figure below shows where it is located.

File Home Insert  Draw  Page Layout Formulas  TK Solver  Data  Review  View
| =2 =] B |ﬂ_1 [y b [ | Enable Solver Addin @ 6
P N BB E
Insert Update Solve Show TK Options Insert Show Create Report Help About
Model Links ~  Solver - List Tables Package
TK Solver

Figure 3.15: TK Solver Tab in Excel Workbook

Once the solve button has been used to perform the analysis the Deflection Lists and
Stress Lists are populated and the plots for stress and deflection are generated. If a designer
wants their analysis to included experimental data, they must populate the experimental data

sheet with the proper data.

The Excel workbook serves as a design report that can be shared amongst
stakeholders and invested designers. As soon as the analysis has been performed, any person
that has Excel access can view the results. In industry, this is useful because the designer is
really the only person who needs to edit parameters but everyone across interdisciplinary
teams has a vested interest in results. Notice that throughout this analysis the designer has not
been required to edit code in TK Solver or Autodesk Inventor. This is a key feature of a
robust design tool; the degrees of freedom are limited to key parameters and a full stress and

deflection analysis can be performed in the matter of seconds.
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Chapter 4: Discussion & Conclusion

Every project is formulated with the goal of improving a current process, innovating
new technology, or growing a knowledge base. The deliverables of this project have proven
to be very successful. Creation and implementation of a software-based design tool is by no
means a trivial undertaking. Not only must the fundamental engineering core be precisely
correct, but the tool must be seamlessly integrated into the designer’s toolbox of engineering
software. Knowledge is shared by expanding on known concepts then documenting results
and sharing them with others interested in applying those concepts. This thesis contains
enough information about The Generalized form of Castigliano’s Theorem to provide an
interested engineer sufficient understanding in the theorem to become competent in applying
it.

Professor Ju would be pleased to know that thanks to Dr. Odom the work he did on
Castigliano’s Theorem is being utilized by industry and being made available to more
engineers. The examples presented and numerical techniques used allow this generalized
process to be accessible to more engineers. There is value in the identical solution process
presented in every problem. There is tremendous value in sharing the concept and the
application with others so that this method of Castigliano’s can be applied to solve

engineering problems for years to come.

The design tool created will undoubtably be implemented at Western Trailers. Its
graphical user interface has proven to be effective and efficient. The design report and its
format are useful not only for the design engineer using it firsthand but for every stakeholder
with a vested interest. Fortunately, for this project we have experimental data to compare
against our numerically calculated results. The data has allowed us to verify that the solution
is accurate. The ultimate goal of a trailer design is to generate a trailer design with minimum
weight, high uniform operating stress, and an elastic load response. This being the case,
optimizing the shape of the trailer profile is an industry standard and the design tool

presented contributes directly to achieving that goal.
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Appendix

AutoSave Alite-Rail Design Tool-selso-03-31-2020-1149.0 - R.. - Last Modified: March 31 ~ Gallegos, Selso (gall0S53@vandals.uidaho.edu) (Gs' [
File Home Insert  Draw  Page Layout Formulas  TKSolver ~Data  Review View Help 0 Search & Share  J Comments
Y E,g] :;',; m % % % i— _k [[] Enable Solver Addin e 0
Insert Update Solve Show TK Options Insert Show Create Report Help About
Model Links Solver ~ List Tables Package
TK Solver ~
Q17 fe v
A 8 c D E F G H 1 J K *
1 Alite Rail Geometry Defenition
2 Designer: selso
3 Date:  3/31/2020
4 Time 11:49 AM
5 Top Rail Profile Bottom Rail Profile Web Depth
6 Description Name Value Description Name Value Description Name Value
7 Camber x-Distance from Origin to Point 2(in) X (€2 221.3125  x-Depth point 1(in) $x_dl 0.0000  y-Depth point 1(in) Sy d1  11.0000
8 Camber x-Distance from Origin to Point 3(in) x (C3 4853125 x-Depthpoint 2(in) $x d2  37.2500  y-Depth point 2(in) Sy d2  11.0000
9 Camber y-Distnace from Origin to Point 3(in) y C3 3.3595  x-Depth point 3(in) $x d3  85.2500  y-Depth point 3(in) Sy d3  13.0000
10 Camber x-Distance from Origin to Point 4(in) x_C4 632.3125  x-Depth point 4(in) $x d4 157.2500  y-Depth point 4(in) Sy d4 23.5000
11 Camber y-Distnace from Origin to Point 4(in) y C4 0.0000  x-Depth point 5(in) $x d5 211.7500  y-Depth point 5(in) Sy d5  28.0000
12 Radius Arc 1(in) R 1 6000.0000  x-Depth point 6(in) $x_d6 337.7500  y-Depth point 6(in) Sy d6  28.0000
13 Arc 1 x-distance from Orgin to Arc Center(in) h 1 260.2261  x-Depth point 7(in) $x_d7 388.7500  y-Depth point 7(in) Sy d7  22.0000
14 Arc 1 y-distance from Orgin to Arc Center(in) k1 5994.3542  x-Depth point 8(in) $x _d8 4853125  y-Depth point 8(in) Sy d8 20.0625
15 Radius Arc 2(in) R 2 9000.0000  x-Depth point 9(in) $x_d9 633.0000  y-Depth point 9(in) Sy d9 16.5000
16 Arc 2 x-distance from Orgin to Arc Center(in) h2 279.6829
717JArc 2 y-distance from Orgin to Arc Center(in) k2 8994.2911 v
1| CS | LSL | TK | DeflectionLists | StressLists | Experimental Data Deflection Plot | Stress Plot ® < »
L BHla o- 1 + 100%

Figure A.1: Design Report Rail Geometry Parameters

AutoSave (® Alite-Rail Design Tool-selso-03-31-2020-11.49.0 - R.. - Last Modified: March 31 ~ Gallegos, Selso (gall0553@vandals.uidaho.edu) ' GS
File Home Insert Draw Page Layout Formulas  TK Solver  Data Review View Help 0 Search 2 Share  ©J Comments
. [;j 3] @ D @ % ‘y’ __\ [] Enable Solver Addin e 0
Insert Update Solve Show TK Options Insert Show Create Report Help About
Model Links ~  Solver~ List Tables Package
TK Solver A
P20 > fe v
A B C D E F G H | ) K L
1 Alite Cross-Section Defenition
2 Designer: selso
3 Date:  3/31/2020
4 Time 11:49 AM
5 Top Flange Bottom Flange Remaining Properties
6 Description Name Value Description Name Value Description Name  Value
7 Top Flange Heigth(in) TFLh 5.5000 Bottom Flange Heigth(in) BFLh 2.5000 Web Thickness(in) webt 0.2500
& Top Flange Area(in"2) TFLA 5.4704 Bottom Flange Area(in"2) BFLA 6.1316  Young's Modulus(psi) E 1.00E+07
9 Top Flange Center of Gravity(in) TFLcg 1.0601 Bottom Flange Center of Gravity(in) BFLcg  0.6475  (i-1) Trailer Length(in) L 632
0 Top Flange Moment of Inertia(in®4) ~ TFLI 15.9868 Bottom Flange Moment of Inertia(in*4) BFLI 1.1687  Number of Integration Steps n 200
n Mass(Ib) M 4205.0657
12 Interior Flange Floor Board Material Material Aluminum
13 Description Name Value Description Name Value
14 Interior Flange Area(in"2) BFRA 3.3742 Floor Board Area(in2) AFB 3.7548
15 Interior Flange Center of Gravity(in) BFRcg 0.7036 Floor Board Center of Gravity(in) FBcg 0.4940
16 Interior Flange Moment of Inertia(in*4) BFRI 0.4125 Floor Board Moment of Inertia(in®4)  IFB 0.7990
17 Interior Flange Effectiveness BFReff 30.0000 Floor Board Effectiveness(0>1) FBeff 0.4000
18
19
2| -
& | €S ISL | TK | Deflectionlists | Stresslists | Experimental Data Deflection Plot | Stress Plot ® « »
| [ - 1 + 85%
=

Figure A.2: Design Report Rail Cross-Sectional Parameters
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Alite-Rail Design Tool-selso-03-31-2020-11.490 - R.. - Last Modified: March 31 ~ Gallegos, Selso (gall0553@vandals.uidaho.edu
File Home Insert Draw Page Layout Formulas  TKSolver Data  Review  View Help 0 Search &8 Share 7 Comments
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Model links  ~ Solver~ List Tables Package
TK Solver A
R25 - f =
A B C D E E G H | J K L M N A
. Alite Load/Support Location & Definition
2 Designer: selso
3 Date:  3/31/2020
4 Time 11:49 AM
5 Applied Load King Pin & Axle Location
6 Description Name Value Description ~ Name Value
7 Payload(lb) Payload 65000.00 King Pin(in) LR 1 14.00
8 Distributed Load Start(in) L_ws 180.00 Axle 1(in) LR 2 42431
9 Distributed Load End(in) L_we 420.00 Axle 2(in) LR 3 485.31
10 Axle 3(in) LR 4 546.31
" Axle 4(in) LR 5 611.31
12
13
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Figure A.3: Design Report Load & Support Location Definition

Alite-Rail Design Tool-selso-03-31-2020-11.49.0 - - Last Modified: March 31 ~ Gallegos, Selso (gall0553@vandals.uidaho.edu
File Home Insert Draw Page Layout Formulas TK Solver Data Review View Help 9 Search 3 Share ] Comments
@ 6 Ej m % <% [ [ Enable Solver Addin o o
Q W v = 3 =
Insert Update Solve Show TK Options Insert Show Create Report Help About
Model Links ~  Solver~ List Tables Package
TK Solver IS
M7 » fr v
A B © D E F G H | J K .~

1 Alite TK Solver Model

2 TWDTR_11_21_2019.tkw |

EN Inputs Outputs
£l Variable Value Description Variable Value Description
5 |x C2 221.3125|Camber x-Distance from Origin to Point 2(in) w 270.83333|Distributed Load(Ib/in)
6 x_C3 485.3125|Camber x-Distance from Origin to Point 3(in) Rn_1 27007.919|Reaction at King Pin(lb)
7 |y_63 3.359494|Camber y-Distnace from Origin to Point 3(in) Rn_2 10854. ion in ion 1(Ib)
8 x_C4 632.3125|Camber x-Distance from Origin to Point 4(in) Rn_3 10854.88|Reaction in Suspension 2(lb)
9 yCa 0|Camber y-Distnace from Origin to Point 4(in) Rn_4 10854. ion in ion 3(Ib)
10 R_1 6000|Radius Arc 1(in) Rn_S 5427.4401|Reaction in ion 4(Ib)
11 h_1 260.22609|Arc 1 x-distance from Orgin to Arc Center(in) Ay 0|Deflection Lagrange Multiplier(lb)
12 k_1 5994.3542|Arc 1 y-distance from Orgin to Arc Center(in) A_m -0.0. Lagrange Multiplier(lb)
13 R_2 9000|Radius Arc 2(in) MT -16576.624 i Tensile Stress(psi)
14 h_2 279.68288|Arc 2 x-distance from Orgin to Arc Center(in) MTL i Tensile Stress Location(in)
15 k_2 8994.2911|Arc 2 y-distance from Orgin to Arc Center(in) MC 16355.9|Maximum Compressive Stress(psi)
16 $x_d1 0|x-Depth point 1(in) MCL i Compressit (in)
17 $x_d2 37.25|x-Depth point 2(in) \J 9386.611|Rail Volume (in*3)
18 $x_d3 85.25|x-Depth point 3(in) DM -5.482971 i Displ.
19 $x_d4 157.25|x-Depth point 4(in) DML 297|Maximum Displacent Location(in)
20 $x_dS 211.75|x-Depth point 5(in) =
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B m - 1 + 100%
=

Figure A.4: Design Report TK Solver Model
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