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Abstract

C and C++ are the most popular programming languages used to implement browsers,

runtime libraries, internet of things devices and operating system kernels. Due to

the important nature of these devices and their software, it is important to identify

security vulnerabilities in the software before adversaries find them. One of the

common low-level vulnerabilities in C/C++ programming languages involves the

misuse of variadic functions. Variadic functions take a variable number of arguments

and pass them to other functions. Misusing variadic functions can lead to memory

safety violations, mismatching of function arguments or can enable execution of

remote code. The most common attack vectors involve providing input that forces

a function in the program to assume it has received more arguments than were

actually passed. This allows the attacker to read and possibly write values on the

control stack, and in effect dynamically patch the code while it is running.

The goal of this research is to develop a theory and proof of concept tool for

the automated detection of variadic functions in stripped binaries and the actual

numbers of arguments passed to that function. This technology will enable future au-

tomated patching of vulnerable variadic functions. We implemented an automated

tool, called Detector for identifying variadic functions to assist software developers

and security analysts in pinpointing and repairing vulnerable code. The approach

presented in this dissertation focuses on analyzing stripped binaries, which are those

with all debug and symbol data removed. These binaries represent the difficulty

found in fixing security vulnerabilities in legacy code and third-party libraries, al-

though they can also be used to represent newly developed software. The target

binaries were compiled by three different compilers: GCC, Clang, and ICC in both

popular Intel x86 and x64 architectures.

Our major contribution in this research is using syntactic and semantic analysis

to detect the variadic functions based on their behavior in the stripped binary code.

Our experimental results indicate that the Detector is more accurate than other
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existing tools. The average of precision and recall for GCC x64 and x86 are more

than 99%, Clang X64 is around 98%, and ICC X64 is around 94%.
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chapter 1

Introduction

C and C++ are the most popular programming languages used to write system

software. Although programmers use these programming languages for a wide

variety of usages, there are some common vulnerabilities within them. Some of

the low-level vulnerabilities in C and C++ programming languages are memory

safety violations [1], uninitialized variables [2], misusing arguments in variadic func-

tions [3], control-flow hijacking [4], privilege escalation [5], and information leak-

age [6]. Attacks against these vulnerabilities can lead to security concerns and these

attacks can change the program’s behavior. Therefore, analyzing these programming

languages plays a vital role in security. These kinds of security vulnerabilities can be

tracked in both source code and binary code. The applications of source code and

binary code are different. Indeed, source code demonstrates function declarations,

types of the arguments, and return values while binary code does not show such

information because it is in the format of byte streams. Therefore, the importance

of tracking vulnerabilities in binary codes requires meticulous attention. In this way,

many binary analysis tools have been designed using static, dynamic, or even hybrid

approaches to detect low-level vulnerabilities in binary codes.

The goal of this research is to develop a theory and proof of concept tool for

the automated detection of variadic functions in stripped binaries and the actual

numbers of arguments passed to that function. This technology will enable future

automated patching of vulnerable variadic functions. The specific aim of this dis-

sertation is to design a theory and proof of concept tool, called Detector, to auto-

matically detect variadic functions in stripped binary code of C and C++ programs.

There are two kinds of binaries, non-stripped binary code which contains debugging

information and stripped binary code which generally removes the debugging infor-

mation from the executable file since this information is not necessary for execution.

Variadic functions are flexible in C and C++ because of the absence of the type

and number of arguments. They allow the caller to pass an unbounded number of
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arguments. The contract between the caller and callee for passing the arguments

is implicit so misusing the variadic function is an attractive case for attackers. In

unsafe code, attackers can force arguments to have unexpected values or can change

the number and the type of arguments, affecting the behavior of the function. For

this purpose, we set out to develop a process for detecting variadic function and

developed a proof of concept tool, Detector, that can automatically recognize variadic

functions in a stripped binary code. The Detector is able to detect the variadic

functions in binaries generated by three different compilers: GCC, Clang, and ICC,

in both Intel x86 and x64 architectures with different levels of optimization. Detector

uses a syntactic analysis to statically identify the variadic function patterns. Each

compiler and architecture has its own patterns. First, Detector predicts the type of

compiler and architecture based on the instructions found in the stripped binary

code. Then, based on the type of compiler and architecture, Detector tracks the

variadic function patterns. These patterns include the status of registers which take

the variadic arguments and how arguments are passed and located on the stack.

Finally, Detector extracts the information of the call site to show which functions

are called by the variadic function and also, which functions are calling variadic

functions in stripped binary code.

1 .1 variadic functions

The role of variadic functions in C and C++ programming languages is to allow

calling functions to pass a non-fixed number of arguments to the functions unlike

non-variadic functions that take a fixed number of arguments. Programmers use

variadic functions to eliminate duplication in code, reduce code size, and increase

compilation speeds [1]. To make it clear, the variadic function is called with a

variable number of arguments. The variadic functions can be recognized in the

source code by the ellipsis meta-operation ("..."). The ellipsis is used as a place

holder for variadic arguments, which can accept any number of arguments for

that parameter. Take the source code shown in Listing 1.1 as an example of a

variadic function. The average() function takes a variable number of arguments
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L isting 1 .1 : Average function is an example of the variadic function
1 ###includeincludeinclude <cstdarg >

2 ###includeincludeinclude <iostream >

3 using namespace std;

4 intintint average (intintint num , ...){

5 va_list arguments;

6 intintint sum = 0;

7 va_start (arguments , num);

8 forforfor (intintint x = 0; x < num; x++)

9 sum += va_arg (arguments , intintint);

10 va_end (arguments);

11 returnreturnreturn sum / num;

12 }

13 intintint main (){

14 cout << average (3, 12, 22, 4) <<endl;

15 cout << average (2, 30, 4) <<endl;

16 }

and calculates the average of all of them. On line 4, the arguments of the average()

function are num and ellipsis. "Num" is non-variadic argument and ellipsis is a

variadic argument. In this example, this num is used to specify the number of

variadic arguments. From the main() function, the average() function is called two

times on lines 14 and 15. First, with (3, 12, 22, 4), the num is 3. It is the non-variadic

argument and specifies the number of variadic arguments. Variadic arguments in

the first call are 12, 22, and 4. In the second call, the num is 2. It is the non-variadic

argument and the variadic arguments are 30 and 4.

Most variadic functions have been defined by using macros defined in one of

two different files stdarg.h and varargs.h, that were written according to ISO C99

standard and ANSI C89 standard, respectively. In listing 1.1, four main macros are

used to define the average function as a variadic function. These macros are va_list,

va_start, va_arg, and va_end. In the following, the tasks of these macros are defined.

• va_list declares a local variable used to refer to the list of variable parameters.

• va_start() is passed a valid va_list and the name of the last fixed parameter

variable before the ellipsis ("...") in the source code. A common practice is to
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use this last fixed parameter as an integer to describe the number of arguments

that are being passed into the variable parameters it can also be a format string

instead of an integer. The va_list variable is used to reference the list of variadic

parameters.

• va_arg() is used to parse the next argument from va_list as a specified type and

return that value. The return value of va_arg() is the value of the next argu-

ment; va_arg() can be called repeatedly to step through the variable number of

arguments specified by va_list.

• va_end() is used to clean up the va_list variable.

1 .2 vulnerable variadic functions

The main concern of this dissertation is that the C and C++ compilers cannot stat-

ically check the number and the type of the arguments in the implicit contract

between the callee and the caller, which leads to vulnerabilities in the variadic

function. This section describes the state of the art by addressing some of the most

common problems in using variadic functions where such vulnerabilities have been

mentioned.

Memory safety violations can lead to erroneous execution, crashes, and reboot

since the attacker can successfully exploit a dangling pointer vulnerability to execute

arbitrary malicious code and even bypass address space layout randomization [7].

Misusing the variadic functions in this type of vulnerability can lead to Format

String Attack. Format String Attack can occur when the submitted data of an input

string is evaluated as a command by the application so the attacker can execute code,

read the stack, or cause a segmentation fault [8].

Format String Attack [9] exploits functions such as printf() which can accept

a variable number of input arguments. The first argument of printf() is a format

string which is used to define the types and numbers of arguments. If the at-

tacker can change the contents of this argument, then it is called a format string

attack. C/C++ programming languages use many variadic functions including
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printf, fprintf, sprintf, syslog, etc. Memory safety vulnerabilities can happen in

these functions. Among efforts to mitigate format string vulnerabilities are tools

that restrict the use of the %n qualifier in the format string [10].

In addition to format string vulnerabilities there could be a mismatching number

of arguments because of the flexibility of the variadic functions. There might be a

mismatch between the type and number of arguments that have been transferred

between the callee and the caller,since the contract between the caller and the callee

is implicit. Therefore, the attacker has the capability to break the contract between

the callee and the caller and then change the number of arguments or use the wrong

argument type and change the behavior of the program. The attacker can also hijack

an indirect call of the variadic function and violate the implicit contract between

caller and callee. Control Flow Integrity or CFI countermeasures specifically prevent

illegal calls over indirect call edges. However, even the most precise implementations

of CFI, which verify the type of the targets of indirect calls, are unable to fully stop

illegal calls to variadic functions [11]. The attacker also has the capability to read or

write the memory contents.

If the caller of a variadic function could explicitly specify the number of input

arguments it prepares as another input argument, it would make a format string

attack much more difficult, if not impossible [12].

Effects of Vulnerable Variadic Functions: The mentioned vulnerabilities can give

the attacker the capability to read sensitive data or overwrite the memory contents.

The attacker can read data from internal memory locations, overwrite function point-

ers or change return addresses.

There are three main vulnerabilities related to variadic functions that have been

defined by the Common Weakness Enumeration (CWE™) [13] project.

• CWE-628 Function Call with Incorrectly Specified Arguments: CWE-628 in-

cludes the wrong variable or reference, an incorrect number of arguments,

incorrect order of arguments, or wrong type of arguments.

• CWE-686 Function Call with Incorrect Argument Type: The types of variable

arguments cannot be enforced at compilation time.
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• CWE-1056 Invokable Control Element with Variadic Parameters: If the relevant

code is reachable by an attacker then it may not prevent an attack.

1 .3 research motivation and objectives

According to Song et al. [3] "The variadic function’s source code does not specify the

number or types of these variadic arguments. Instead, the fixed arguments and the

function semantics encode the expected number and types of variadic arguments.

Variadic arguments can be accessed and simultaneously typecast using va_arg. It is

impossible to statically verify that va_arg accesses a valid argument, or that it casts

the argument to a valid type. This lack of static verification can lead to type errors,

spatial memory safety violations, and uses of uninitialized values."

Although Song et al. [3] state that it is “impossible to statically verify that va_arg

accesses a valid argument", we claim that under many cases it is possible and

that their claim is in the general case. More importantly, we propose to develop

techniques that can clearly determine if a variadic function is susceptible to ar-

gument overrun by not accurately checking the limits. We also propose that we

could implement techniques to modify variadic functions to define an additional

argument insert logic in the function that uses this argument for bounds checking

that represents the actual numbers of parameters.

1 .4 challenges for detecting variadic functions in

binary code

Detecting variadic functions in binary code is essential and critical for many security

reasons. The Detector should overcome the challenges that are described below.

• The Detector does not have access to abstractions and libraries which are used

to describe the high-level information of programming languages. To make it

more clear, this means the Detector needs to recognize the variadic function

abstractions based on behavioral analysis. The Detector just has access to the
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stripped binary code and function boundaries. There are no symbol tables and

debug information.

• The variadic functions can be called both directly and indirectly. The Detector

can check both direct and indirect calls statically. If functions in the program

use the variadic arguments of vulnerable variadic function then it will affect

the whole program. The Detector shows which functions are called by the

variadic function and also, which functions are calling variadic functions in

stripped binary code.

• The compilers GCC, Clang, and ICC for both Intel x64 and x86 have their

instructions for taking and locating the variadic arguments. Applying data

flow analysis is very complex because of the lack of high-level information.

The variadic arguments can be located in different locations such as stack and

registers. However, the Detector overcomes this challenge by using behavior

analysis and following the patterns statically in the binary code.

• Compilers GCC, Clang, and ICC and different optimization levels generate the

stripped binary code in different ways. The programmers use optimization

levels to reduce the code size and improve performance. Some of the functions

use jumps instead of calls in high-level optimization. Therefore, the Detector

should recognize the different jumps which enter variadic functions. The

variadic functions can be called from multiple locations in the whole program.

The Detector overcomes this challenge by capturing all callsite information for

each variadic function in the program.

• The Detector identifies variadic functions which execute in the program. Tools

that conduct source code analysis find that some variadic functions are just

defined in the headers or inline libraries and these variadic functions do not

execute in the program. Detector identifies the executed variadic functions in

the program.
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1 .5 summary of contributions

In this dissertation, we design a novel process to identify the variadic functions in

the stripped binary code to assist in the improvement of software security. We also

test our process using a proof of concept tool, Detector. The base implementation of

Detector is static analysis.

Detector applies deep static analysis to recognize the functionality of variadic

functions in all possible paths without executing the program. We precisely use

static pattern matching of variadic functions for each compiler and architecture to

follow the functionality of variadic functions in the program.

The main goals of this research are summarized as follows:

• Detector predicts the type of the compiler and the architecture by using syn-

tactic analysis. According to the type of compiler and architecture, Detector

chooses the pattern of variadic function.

• Detector detects variadic functions automatically in the binary level of Intel x86

and x64 architectures.

• Detector detects variadic functions automatically in the binary code compiled

by GCC, Clang, and ICC using optimization levels (-O0 to -O3).

• Detector analyzes the behavior of the function by syntactic analysis to recog-

nize if the behavior of the function matches a variadic function pattern.

• Detector captures the call information of the caller and callee to recognize

which functions can be affected by variadic functions and their arguments in

the program.

• Detector has more precision and accuracy compared to other existing tools. We

support this statement in the experimental result.

• Unlike previous approaches for detecting variadic functions, the only require-

ments of the Detector are stripped binary code and function boundaries. Other

existing tools need more requirements such as accessing the source code, con-

sidering symbol tables, and compiling information.
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1 .6 dissertation outline

The rest of the dissertation is organized as follows: Chapter 2 covers the relevant

background information. Chapter 3 describes applied techniques for designing

the theory to identify variadic functions in the stripped binary code automatically.

Chapter 4 presents the implementation of Detector for the different compilers GCC,

Clang, and ICC. Chapter 5 demonstrates the experimental results of the detected

number of variadic functions by comparing it with other available tools. And lastly,

Chapter 6 concludes.
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chapter 2

Background and Related Works

This chapter discusses the background and related work for this dissertation. Sec-

tion 2.1 describes binary analysis, techniques of binary analysis, variadic functions in

binary code, and passing the arguments from variadic function through other func-

tions. Section 2.2 discusses the related works that includes the following sections.

Section 2.2.1 compares the exiting tools of binary analysis. Section 2.2.2 focuses

on the other existing techniques for mitigating the vulnerabilities in source code and

binary code of variadic functions. Sections 2.2.3 - 2.2.5 introduce the existing tools

related to detecting functions in binary code.

2 .1 background

2.1.1 Binary Analysis

Binary analysis is one of the ways for evaluating a program when source code is

not available. Binary analysis is a difficult task in the absence of function types,

boundaries, layout, and all the extra information found in source code.

2.1.2 Techniques of Binary Analysis

There are several different types of binary analysis methods. One way to categorize

them is based on whether they require execution of the target program.

Static Analysis: Static analysis evaluates the software without execution. This

evaluation can include source code, or just the binary executable. Static analysis tech-

niques can analyze all possible control flows of a program, achieving a significant

higher coverage of program vulnerabilities and, as a result, produce a significantly

lower false negative rate compared to dynamic analysis approaches.
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Dynamic Analysis: Dynamic analysis, such as fuzzing, symbolic execution, and

taint analysis, requires execution of the target program during analysis. Symbolic

execution is an analysis technique that executes programs with symbolic rather than

concrete inputs and maintains a path condition that is updated whenever a branch

instruction is executed [14]. A symbolic execution engine replaces the inputs with

symbolic variables, that are initially set to be anything, and then runs the programs.

This way constraints are encoded on the inputs that reach that program point. Based

on the idea of modern application’s tendency to crash due to random input, Fuzzing

was proposed by Miller et al. [15] in 1990. They developed the first Fuzzing tool

"Fuzz", which generates streams of random characters. Since then, Fuzz has been

proved to be an effective method to find software vulnerabilities. Fuzz was tested on

ninety different utility programs on seven versions of UNIX and was able to crash

more than 24% of them. Disadvantages of this approach are state-explosion, high

cost and low coverage, however it gets a low false positive rate.

Hybrid Analysis: A hybrid approach attempts to combine the benefits of static

and dynamic analysis techniques while mitigating their disadvantages. A hybrid

approach might use static analysis to reduce state-space explosions by ruling out

certain paths, while running dynamic analysis on portions of the code that can not

be modeled in a static analysis.

Comparing Binary Analysis Techniques: Static analysis techniques, such as data

flow analysis can be utilized to detect vulnerabilities in source code without code

execution. Although it is a fast and scalable technique for scanning millions of lines

of source code, it has high rate of false positives. On the other side, dynamic analysis,

such as fuzzing and symbolic execution, needs the code to be run during analysis,

and evaluates limited inputs or runs slowly.

2.1.3 Functions in Binary code

Most of the constructs in a program consist of functions. Detecting the functions in

the source code is not hard because function declarations, definitions, and layouts
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are available. In contrast, identifying functions in binary code is not easy since

the only available information is byte streams. The first step of binary analysis is

disassembly which translates the code into decoded instructions [16]. The executable

file does not need high-level information such as function names, argument types,

and return values. Therefore, an essential task is detecting functions in binary code

without accessing the high-level information. Reverse engineering [17] is one of the

methods that helps to recognize the functions from binary code. Reverse engineering

analyzes the compiled code to recognize the behavior of the program. Some of the

reverse engineering techniques are disassembling, control flow analysis, function

abstraction, call graph construction, software architecture recovery [16]. Fortunately,

a companion project that is part of the University of Idaho JIMA tool suite can do this

very well [18]. In this dissertation, static analysis and pattern matching have been

applied to recognize the variadic functions in binary code, given function boundaries.

More precisely, we recognize the patterns of variadic functions syntactically in binary

code. These patterns determine the functionality of variadic functions in code.

2.1.4 Variadic Functions versus Non-variadic Functions in Binary Code

As mentioned before, variadic functions take a variable number of arguments but

non-variadic functions take a fixed number of arguments and pass them to the other

functions. In this section, the differences between the variadic functions and non-

variadic functions in assembly code are discussed.

Listing 2.1 and Listing 2.2 show the source code of the average() function in

two formats as variadic and non-variadic functions. Both variadic and non-variadic

functions have been compiled by GCC with x86 architecture.

Listing 2.3 and Listing 2.4 compare the caller function main(), in both variadic

and non-variadic functions in assembly code. The compiled code demonstrates

that a compiler uses the same structure for calling both variadic and non-variadic

functions. Both of them show pushing the arguments on the stack in the same way.

(Lines 8-12 in Listing 2.3 and 7-11 in Listing 2.4)

Figure 2.1 compares the callee side of the binary code in both variadic and non-

variadic functions. As the compiled code illustrates, the main difference between
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L isting 2 .1 : Average function in variadic function format
1 ###includeincludeinclude <cstdarg >

2 ###includeincludeinclude <iostream >

3

4 using namespace std;

5

6 intintint average ( intintint num , ... )

7 {

8 va_list arguments;

9 intintint sum = 0;

10 va_start ( arguments , num );

11 forforfor ( intintint x = 0; x < num; x++ )

12 sum += va_arg ( arguments , intintint );

13 va_end ( arguments );

14 returnreturnreturn sum / num;

15 }

16 intintint main()

17 {

18 cout << average ( 3, 12, 22, 4 ) <<endl;

19 }

non-variadic and variadic functions is related to how these functions read their ar-

guments. The yellow is the function entry preamble, the grey highlighted command

shows how the variadic function defines the va_start and va_arg macros in binary

code, and the green is for function exit.

2.1.5 Calling Convention for Variadic Functions

Calling conventions specify how arguments are passed to a function, how return

values are passed back out of a function, how the function is called, and how the

function manages the stack and its stack frame [19]. As mentioned in Section 2.1.4,

the compiler has to use the same calling convention for both non-variadic and

variadic function calls. During a variadic function call, only the caller knows the

exact number and types of arguments. Therefore, the callee cannot be responsible

for deallocating the arguments when it returns to the caller, which has to be the

caller’s task. Since there could be no difference between non-variadic function and

variadic function calls, it follows that in all calls; it is the caller that deallocates the

arguments after the callee has returned.

The typical calling convention is the following:
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L isting 2 .2 : Average function in non-variadic function format
1 ###includeincludeinclude <iostream >

2

3 using namespace std;

4

5 intintint average ( intintint num , intintint a1 , intintint a2 , intintint a3 )

6 {

7 intintint sum = 0;

8 sum += a1; sum += a2; sum += a3;

9 returnreturnreturn sum / num;

10 }

11 intintint main()

12 {

13 cout << average ( 3, 12, 22, 4 ) <<endl;

14 }

1. The caller evaluates the arguments and places them in sequence starting at a

known location.

2. The caller saves its return address and branches to the callee.

3. The callee can reference a prefix of the arguments since it knows the location

of the first one.

4. The callee returns to the caller by branching to the return address.

5. The caller deallocates the arguments.

On a stack-based implementation, step 1 typically pushes the arguments in re-

verse order on the stack, and step 5 adjusts the stack pointer by a constant amount.

An implementation that allows passing of arguments in registers, stores the first

several arguments in registers before pushing any additional arguments on the stack.

2.1.6 Abstract Stack Analysis

This section describes how the macros in the variadic function walk through the call

stack [4] and call each other to execute the variadic function. Figure 2.2 demon-

strates the functionality of the important macros va_start and va_arg for the list

of arguments A, B, and C assumed as variadic arguments. va_start initializes the

variadic function by pointing to the first argument from the list of arguments. Then,
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L isting 2 .3 : Caller of variadic function in binary code
1 17 {

2 0x0804863e <+0>: push %ebp

3 0x0804863f <+1>: mov %esp ,%ebp

4 0x08048641 <+3>: and $0xfffffff0 ,%esp

5 0x08048644 <+6>: sub $0x20 ,%esp

6

7 18 cout << average ( 3, 12, 22, 4 ) <<endl;

8 0x08048647 <+9>: movl $0x4 ,0xc(%esp)

9 0x0804864f <+17>: movl $0x16 ,0x8(%esp)

10 0x08048657 <+25>: movl $0xc ,0x4(%esp)

11 0x0804865f <+33>: movl $0x3 ,(%esp)

12 0x08048666 <+40>: call 0x80485f4 <average(intintint , ...)>

13 0x0804866b <+45>: mov %eax ,0x4(%esp)

14 0x0804866f <+49>: movl $0x804a040 ,(%esp)

15 0x08048676 <+56>: call 0x80484c0 <_ZNSolsEi@plt >

16 0x0804867b <+61>: movl $0x8048530 ,0x4(%esp)

17 0x08048683 <+69>: mov %eax ,(% esp)

18 0x08048686 <+72>: call 0x8048520 <_ZNSolsEPFRSoS_E@plt >

19 0x080486df <+161>: mov $0x0 ,%eax

20 20 }

21 0x080486e4 <+166>: leave

22 0x080486e5 <+167>: ret

va_list is used by va_arg to return the arguments from the list one by one. The

function determines the types of arguments and passes this information to va_arg

which uses it to return the correct variable type.

2 .2 related works

2.2.1 Existing Binary Analysis Tools

There are a number of tools which use static analysis, dynamic analyis, or hybrid

analysis. Some of these tools are discribed in the following:

FindBugs [20] is an open source static analysis tool for Java programs that uses

finely tuned analyzers called Bug Detectors to search for simple bug patterns. Bug

patterns are defined as code idioms that are often errors. The detectors contain

numerous heuristics to filter out warnings that may be inaccurate or incorrect. Find-

Bugs has also been used on Sun’s Java Development Kit (JDK), Sun’s Glassfish J2EE

server, Eclipse, and in portions of Google’s Java codebase. In FindBugs, warnings

are grouped into over 380 Bug Patterns which in turn are grouped into Categories
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L isting 2 .4 : Caller of non-variadic function in binary code
1 12 {

2 0x08048620 <+0>: push %ebp

3 0x08048621 <+1>: mov %esp ,%ebp

4 0x08048623 <+3>: and $0xfffffff0 ,%esp

5 0x08048626 <+6>: sub $0x10 ,%esp

6 13 cout << average ( 3, 12, 22, 4 ) <<endl;

7 0x08048629 <+9>: movl $0x4 ,0xc(%esp)

8 0x08048631 <+17>: movl $0x16 ,0x8(%esp)

9 0x08048639 <+25>: movl $0xc ,0x4(%esp)

10 0x08048641 <+33>: movl $0x3 ,(%esp)

11 0x08048648 <+40>: call 0x80485f4 <average(intintint , intintint , intintint ,

intintint)>

12 0x0804864d <+45>: mov %eax ,0x4(%esp)

13 0x08048651 <+49>: movl $0x804a040 ,(%esp)

14 0x08048658 <+56>: call 0x80484c0 <_ZNSolsEi@plt >

15 0x0804865d <+61>: movl $0x8048530 ,0x4(%esp)

16 0x08048665 <+69>: mov %eax ,(% esp)

17 0x08048668 <+72>: call 0x8048520 <_ZNSolsEPFRSoS_E@plt >

18 0x0804866d <+77>: mov $0x0 ,%eax

19 14 }

20 0x08048672 <+82>: leave

21 0x08048673 <+83>: ret

such as Correctness, Bad Practice, and Security. All of the bug pattern detectors are

implemented using BCEL [21], which is an open source bytecode analysis and instru-

mentation library. The bug detectors can also be divided into four main categories of

Class structure and inheritance hierarchy only, Linear code scan, Control sensitive,

and Dataflow. The detectors that use dataflow analysis are the most complex, taking

both control and data flow into account. The main limitation of FindBugs is that

it largely ignores style issues. The main distinction between a style checker and

a bug checker is that violations of style guidelines only cause problems for the

developers working on the software. Whereas, warnings produced by a bug checker

may represent bugs that will cause problems for the users of the software.

Valgrind [22] is one of the most widespread and used dynamic analyzer tools.

One of the great features of Valgrind is support for shadow values, which can be used

to create instrumentation tools that are difficult to build without this feature. An

example of this is a tool that tracks the initialization of every bit in the program’s

data in order to show when the program accesses uninitialized data [23]. A Valgrind

tool is created as a plugin, written in C Language, added to Valgrind’s core. A tool
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F igure 2 .1 : The differences between variadic and non-variadic functions of
Average function in GCC x86

plugin’s main task is to instrument code fragments that the core passes to it. Due to

this modular architecture, it is easy to develop a new tool to add to the Valgrind’s

core and extend its functionalities. While incredibly useful, supporting shadow

values entails a more heavyweight approach to instrumentation that is unsatisfactory

when efficiency is the primary goal. Also, Valgrind fails to detect dangling pointers

to re-allocated data locations. The reason is that Valgrind tries to detect use-after-
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F igure 2 .2 : Arguments on the stack
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free bugs by marking locations which were de-allocated in a shadow memory space.

Accessing a newly de-allocated location can be detected this way. However, it fails to

detect errors after the area is re-allocated for another pointer: the area is registered

again and the invalid access remains undetected. Another limitation is that there is

no support for Windows platforms.

Dr. Memory [15] is a dynamic analyzer tool to monitor and identify memory-

related errors based on binary instrumentation. Unlike Valgrind, however, it runs

on both Linux and Windows platforms and has less runtime. Dr. Memory wraps

heap functions and checks for addressability of accesses. In addition, it propagates

definedness through registers as well as memory, and raises errors for undefined

accesses of consequence such as dereferencing an undefined pointer. One important

limitation with tools such as Dr. Memory and Valgrind is that these tools only find

out-of-bounds and use-after-free bugs for heap memory with (typically) no false

positives [24]. The tools based on binary instrumentation cannot find out-of-bounds

bugs in the stack variables (other than beyond the top of the stack) or globals.

PinOS [25] is an extension to Pin for whole-system instrumentation. Pin is a

dynamic binary analysis tool that provides a high-level API for run-time instrumen-

tation of programs. PinOS can be used to instrument both kernel and user-level

code. To achieve whole-system instrumentation, PinOS is built on top of the Xen

[14] hypervisor with Intel VT technology. Transparency is an important concern in

dynamic binary instrumentation frameworks. For example, position-independent

code calculates relative offsets and uses address modes when relative offsets are

within supporting ranges. Therefore, a dynamic binary instrumentation framework

may break such assumptions when relocating basic blocks, so it must change some

instructions in the program to create an illusion that every address is the same as in a

native run [26]. To achieve transparency, PinOS make use of hardware virtualization.

Chucky [27] is a method to expose missing checks in C source code by combining

static tainting and techniques for anomaly detection. Instead of struggling with the

limits of automatic approaches, Chucky is mainly useful at assisting a human analyst

by providing information about missing security checks and potential problems.

Additionally, it does not require external information and additional annotations
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to identify missing checks. A bit more concretely, Chucky includes a five-step proce-

dure, which can be executed for each source and sink referenced by a selected func-

tion: Robust parsing, Neighborhood discovery, Lightweight tainting, Embedding

of functions, and Anomaly Detection. The robust parser first extracts conditions,

assignments and API symbols from the source code. Then, functions in the code

base operating in a similar context to that of the selected function using techniques

inspired by natural language processing are identified. Lightweight tainting is then

performed for the function under examination and all its neighbors in top-down and

bottom-up direction to determine only those checks associated with a given source

or sink. Next, the selected function and its neighbors are embedded in a vector space

using the tainted conditions such that they can be analyzed using machine learning

techniques. Finally, model of normality over the functions is computed, such that

anomalous checks can be identified by large distances from this model. Chucky

suffers from a few limitations: it cannot verify whether missing security checks

truly lead to vulnerabilities in practice and therefore is better suited for finding

vulnerabilities in stable code; it makes no attempts to evaluate expressions and

semantically equivalent checks; it is opaque to the practitioner and thus a control

or refinement of the detection process is impossible.

BitBlaze [28] combines virtualization and symbolic execution for software analy-

sis available in an open-source release. One of the main advantages of BitBlaze is

supporting unified binary analysis. This is particularly a useful feature for using

common off-the-shelf (COTS) programs where source code is not attached. Not

to mention that analyzing low-level code such as assembly or binary code is more

difficult than analyzing source code due to the lack of structured information [29].

BitBlaze, however, is capable of doing so by means of root-cause analysis. BitBlaze

is composed of three main components namely Vine, TEMU, and the Rudder. Vine

is the static module of BitBlaze to translate the assembly instructions into a simple,

formally specified intermediate language (IL). Additionally, a set of common static

utilities such as control flow, data flow, optimization, symbolic execution, and weak-

est precondition calculation are provided by Vine. TEMU is the dynamic analysis

module of BitBlaze, which provides a set of core utilities for extracting OS-level
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semantics, user-defined dynamic taint analysis, and a clean plug-in interface for

user-defined activities. Rudder enables mixed concrete and symbolic execution at

the binary level, using the aforementioned utilities provided by Vine and TEMU. In

Rudder, a solver (or decision procedure) is used to recognize the range of the mem-

ory region with a symbolic address. BitBlaze is a great and powerful analysis tool.

However, similar to other available tools, it has some minor limitations such as lack

of formal semantics for the IL itself and it does not handle bi-endian architectures

such as ARM correctly [30].

DARWIN [31] is a automated and scalable debugging methodology for root

causes of errors using software regressions. Software regression testing is a well-

known concept in most software development projects. In its simplest form, it

involves re-testing a test suite as a program changes from one version to another.

Mathematically speaking, given two program versions P, P′, and a test t which

passes in P while failing in P′- the aim is to find a bug report explaining the root

cause of the failure of t in P′. DARWIN constructs and composes the path conditions

of test t in program versions P, P′ in trying to come up with a bug report explaining

an observed regression. A notable feature of DARWIN approach is that it handles

hard-to-explain bugs, like code missing errors, by pointing to code in the reference

program. DARWIN is built on top of the BitBlaze platform. Unlike BitBlaze, it has

dedicated modules for formula manipulation and optimization. The only known

limitation with DARWIN is running time. On a test-case performed by the authors

in [32], DARWIN took 543 minutes (or 9 hours) to perform the debugging.

A Binary Analysis Platform, aka BAP [30], is a complete re-design of Vine with

some additional features. It provides platform-independent utilities to extract con-

trol flow graphs and program dependence graphs, to perform symbolic execution

and to perform precondition calculations. Unlike BitBlaze, BAP is designed with the

BAP Intermediate Language (BIL) which is a small and formally specified language

to model instruction evaluation as compositions of variable reads and writes in a

functional style. BAP is equipped with a front-end component for lifting binary

code for the supported architectures to the BIL, and a back-end component which

is the implementation of program analyses and verifications for low-level code. The
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prominent features of BAP include: common code representations such as program

dependence graphs, value set analysis, verification capabilities using Dijkstra and

Flanagan-Saxe style weakest pre-conditions and interfaces with several SMT solvers,

and code optimization. Limitations of BAP’s front-end are [33]: it supports only

ARMv4, it does not manage the processor status registers, and it does not handle

banked registers for the privileged modes and coprocessor management.

Similar to PinOS, SPIDER [26] is a stealthy program instrumentation framework

based on hardware virtualization technique. In order to provide sufficient transpar-

ent trapping, a novel primitive called invisible breakpoint is proposed. As opposed

to traditional breakpoints, all the side-effects of an invisible breakpoint are hidden

from the guest to guarantee transparency. SPIDER uses Extended Page Tables (EPT)

to implement such invisible breakpoints at the hypervisor level to avoid any unex-

pected in-guest execution. Additionally, Spider provides data watch point which

enables the monitoring of memory read/write at any address. Having set invisible

breakpoints, SPIDER is able to trap the execution of program at arbitrary guest

physical address. However, since paging is enabled in majority of modern operating

systems, the processor often uses virtual address instead of physical address to

reference memory. This means, it is more desirable to have the ability to trap the

execution of program at arbitrary guest virtual address in the program’s address

space. Instead of monitoring every change of virtual-to-physical mapping, SPIDER

only needs to monitor the change of virtual-to-physical mapping at each breakpoint

address. This avoids using heavy-weight techniques such as shadow page tables.

The main limitation of SPIDER is its scalability. This is because determining where

to place breakpoints with SPIDER is a manual process and requires either manual

action or an in-guest agent, which either prohibits scalability or hinders the stealth

capability of the system.

Peach fuzzing platform [34] is a popular fuzzer for vulnerability discovery. As

already mentioned, fuzzing is a dynamic technique in which malformed input is

provided to an application in an attempt to trigger a crash or other undesired

behavior. Peach was originally released in 2004 by the IOACTIVE, implemented

in Python language. Being more of a black-box fuzzer, PEACH forgoes any analysis
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of the program under test and simply generates lots of inputs to be executed against

the program under test. The input of Peach fuzzer is a Peach-pit file that describes

the targeted input format to be able to produce syntactically valid inputs. The

main limitation of Peach and other fuzzing tools which construct malformed input

data from predefined format specifications (such as Peach-pit) is that the cost of

generating production rules used by fuzzing tools is difficult especially when the

format specifications are undocumented and the source code of the application is

not available [35].

Automatic Exploit Generation (AEG) [36] was the first system to tackle the prob-

lem of both identifying bugs (memory corruption vulnerabilities) and automatically

generating exploits. More specifically, AEG introduced preconditioned symbolic

execution as a way to focus symbolic execution towards a particular part of the

search space. As already explained in previous section, symbolic execution tech-

niques bridge the gap between static and dynamic analysis and provide a solution

to cope with the limited semantic insight of fuzzing. The key idea is to use symbolic

values as input instead of actual data, and to represent values of program variables

as symbolic expressions [37]. As a result, the outputs computed by a program are

expressed as a function of the symbolic inputs. The initial AEG system worked solely

on source code to find bugs, then used dynamic binary analysis to generate control-

flow hijack exploits. Later on (in 2010), Mayhem was introduced as an AEG tool

on executable code. Mayhem was able to manage symbolically executed program

paths, reasoning about symbolic memory addresses without exhausting memory.

AEG worked solely on source code. The power of symbolic execution provided by

both AEG and Mayhem, however, comes at a price: The analysis often suffers from a

vast space of possible execution paths, in particular for large programs. This means

automatic exploit generation by means of semantic execution techniques is far from

being solved. Table 2.1 briefly summarizes the mentioned tools.
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Table 2 .1 : Summary of tools for binary analysis

Name Method Language
Support

Main Features Limitations

AEG Dynamic
(Sym-
bolic)

Both
source
and
binary
codes

Automatically finds bugs
and generates working
exploits, providing
actionable information to
help developers decide
which bugs to fix first.

Scalability issues (not
practical for programs
with deep bugs).

BAP Dynamic Assembly Common code
representations (e.g.,
static single assignment, a
dataflow framework with
constant folding, dead
code elimination),
Verification capabilities
via Dijkstra and
Flanagan-Saxe style
proofs.
Precise modeling of x86

instructions, which
includes updating of CPU
flags

Does not manage the
processor status registers.
Does not handle banked
registers for the
privileged modes
co-processor
management.

BitBlaze Fusion
of static
and
dynamic
tech-
niques

Assembly Semantics based
Binary centric approach
Handling packed/en-
crypted/obfuscated
code

Lack of a formal
semantics for the IL.
Some reported instruction
issues in Vine such as
dealing with big-endian
memory operations.

Chucky Static C Identification of missing
checks.
Anomaly detection on
conditions.
Top-down and bottom-up
analysis.

Makes no attempts to
evaluate expressions and
semantically equivalent
checks.
Opaque to the
practitioner and thus
control or refinement of
the detection process is
impossible.

DARWIN Dynamic Assembly Identifying
failure-inducing code
changes for evolving
softwares.

Long processing time.

Continued on next page
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Table 2.1 – Continued from previous page
Name Method Language

Support
Main Features Limitations

Dr. Mem-
ory

Dynamic NA Monitoring and
identifying
memory-related errors
based on binary
instrumentation.

Does not handle
out-of-bounds errors for
most stack variables and
globals.

FindBugs Static Java Searching simple bug
patterns.
Bug detectors are
implemented using BCEL

Uses existing patterns.

Peach Dynamic
(Fuzzing)

NA Generates malformed
inputs and feeding them
to the test program that
result in undesired
behavior.

Difficulty in generating
malformed inputs that
provide sufficient
program coverage.

PinOS Dynamic NA Performs pervasive
fine-grain
instrumentation
(whole-system
instrumentation)
Uses hardware
virtualization (Xen
hypervisor).

Insufficient transparency
Lack of support for
OS-level semantics
extraction and layered
annotative execution.

SPIDER Dynamic NA Flexible instruction-level
trapping based on
hardware virtualization.
Transparent (by
implementing invisible
breakpoints).
Does not introduce high
overhead on the target
program

Manual intervention to
set invisible breakpoints
as would normally be
done with debugging.

Valgrind Dynamic C Support for shadow
values.
Easy to write new
plugins.

Fails to detect dangling
pointers to reallocated
data locations.
Does not handle
out-of-bounds for most
stack variables and
globals.
Runtime overhead (in
excess of 10x).
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2.2.2 Existing Mechanisms for Mitigating Vulnerabilities of Variadic Functions

There are some existing mechanisms which have the ability to mitigate vulnera-

bilities in both source code and binary code of variadic functions. Some of these

mechanisms are introduced in this section.

Format Guard [5] prevents format vulnerabilities in the program by using a

variation on argument counting in the source code. Format Guard uses specific

properties of GNU CPP (the C Pre-processor) to extract the number of arguments

then send the number of arguments to the safe printf wrapper. The safe wrapper

parses the format string and compares the number of arguments. Format Guard has

capability to alert and kill the process if the format string calls more arguments than

the wrapper has.

Memory corruption can occur by attackers. First, the attackers identify the

memory layout and reveal the information then execute the actual exploit of memory

that can be stack, heap, or libraries [38]. Address Space Layout Randomization

(ASLR) [6] does not let attackers jump to the exploited function in memory by

randomly changing the start of the address space. Therefore, the attackers cannot

recognize the location of the libraries, stack and heap because the memory layout is

randomized for each execution.

Data Execution Prevention (DEP) [39] has the capability to stop attackers who try

to insert and execute the code in non-executable memory by marking all memory

locations in a process as non-executable unless the location contains executable code.

Modern operating systems use data execution prevention as a security feature since

DEP lets only data [40] in executable location to be executed by programs. DEP does

not have the capability to prevent attacks that do not rely on executed instruction in

the data area.

Control Flow Integrity (CFI) [41] protects applications from attackers who want

to control the behavior of the program by redirecting the flow of execution arbitrarily,

controlling the program behavior. It cannot stop all variadic function attacks though,

since a huge number of variadic function prototypes exist and CFI relies on the

function prototypes, and therefore it can only catch a subset of them. CFI needs an
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accurate control flow graph (CFG) of the source code to detect the advanced code-

reuse attacks where attackers misuse the executable code which is already present

in the memory.

2.2.3 Existing Tools for Detecting Functions in Binary Code

There are some tools that have been designed to detect functions in binary code.

These tools have been introduced in the following.

Bao et al. [42] proposed BYTEWEIGHT which is a new automatic function identi-

fication algorithm. This approach automatically learns key features for recognizing

functions and can therefore easily be adapted to different platforms, new compilers,

and new optimizations. They evaluated their tool against three well-known tools

that feature function identification: IDA, BAP, and Dyninst. Function boundary

results of BYTEWEIGHT were evaluated on the data set which includes benchmarks

of SPEC CPU 2017 compiled with GCC and ICC compilers, from no optimization to

the highest optimization level for both Intel x86 and x64 architectures. For the Intel

x86 architecture, the average precision of BYTEWEIGHT is around 92.78%, and the

recall average is 92.29%. The F1 score is around 92.53%. For the Intel x64 architecture,

the average precision of BYTEWEIGHT is around 93.22%, and the recall average is

95.52%. The F1 score is around 92.87%.

Shin et al. [43] proposed a new approach for recognizing Functions in Binaries

using Neural Networks. Binary analysis facilitates many important applications like

malware detection and automatically fixing vulnerable software. In this paper, the

authors propose applying artificial neural networks to solve important yet difficult

problems in binary analysis. Specifically, the authors tackle the problem of function

identification, the crucial first step in many binary analysis techniques. Function

boundary results of Shin et al. were evaluated on the data set which includes

benchmarks of SPEC CPU 2017 compiled with GCC and ICC compilers, from no

optimization to the highest optimization level for both Intel x86 and x64 architectures.

For the Intel x86 architecture, the average precision of the proposed approach is

around 97.75%, and the recall average is 95.34%. The F1 score is around 96.53%. For
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the Intel x64 architecture, the average precision of Shin et al. is around 94.85%, and

the recall average is 89.91%. The F1 score is around 96.53%.

Andriesse et al. [44] introduced Nucleus, a "compiler-agnostic" function detection

algorithm for binaries. The authors use linear disassembly coupled with in-line data

and padding code detection followed by basic block detection. These blocks are

then connected into control flow graphs. Based on the premise that intraprocedural

control flow instructions tend to be different than interprocedural instructions, they

isolate subgraphs of basic blocks for each function. The function detection code

of Nucleus is publicly available [45] and therefore was used in our comparisons.

Function boundary results of Nucleus were evaluated on the data set which includes

benchmarks of SPEC CPU 2017 compiled with GCC, Clang, and ICC compilers,

from no optimization to the highest optimization level for both Intel x86 and x64

architectures. For the Intel x86 architecture, the average precision of Nucleus is

around 97.75%, and the recall average is 95.34%. The F1 score is around 96.53%. For

the Intel x64 architecture, the average precision of Nucleus is around 94.85%, and

the recall average is 89.91%. The F1 score is around 96.53%.

Qiao et al. [16] presented an approach that recovers high-level information of

the function in COTS binaries. This information includes calls, return values, types

and numbers of function parameters. Accuracy of recovering this information is

important to identify function boundaries. Their approach recovers function calls

and return values by static analysis. The static analysis lets the approach have both

forward and backward views. Then, the system recovers the entry and exit points of

the function by checking control flow and data flow techniques. The entry and exit

points of function help traverse a function body. The approach checks all possible

paths until control flow exits the function. Function boundary results of Qiao et

al. were evaluated on the data set which includes benchmarks of SPEC CPU 2006

with GCC and ICC compilers, from no optimization to the highest optimization level

for both Intelx86 and x64 architectures. For the Intel x86 architecture, the average

precision of Qiao et al. is around 98.65%, and the recall average is 98.09%. The F1

score is around 98.37%. For the Intel x64 architecture, the average precision of Qiao
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et al. is around 99.12%, and the recall average is 99.00%. The F1 score is around

99.06%.

Alves-Foss et al. [18] introduced JIMA which takes stripped binaries and returns

a list of possible function boundary locations. JIMA starts the process of detecting

functions in binary code by sorting list of possible function addresses. JIMA finds

all control flow operations such as calls and jumps in linear disassembly generated

by objdump. It then sets the first address as a possible function start address and

the next one as the next function address. The algorithm processes instructions from

the start address until it reaches the next function address or exit of the function.

Function boundary results of JIMA were evaluated on the data set which includes

benchmarks of SPEC CPU 2017 compiled with GCC, Clang, and ICC compilers,

from no optimization to the highest optimization level for both Intel x86 and x64

architectures. For the Intel x86 architecture, the average precision of JIMA is around

99.60%, and the recall average is 99.79%. The F1 score is around 99.70%. For the

Intel x64 architecture, the average precision of JIMA is around 99.89%, and the recall

average is 99.92%. The F1 score is around 99.90%. As the results show, JIMA detects

function starts and bounds better than other existing tools.

2.2.4 Existing Tools for Extracting Information about Functions in Binary Code

There have been several research efforts on inference and extraction of high-level

information such as variable types, data structures, and object-oriented entities and

functions from executable binaries using both static and dynamic analysis tech-

niques. Some tools built for binary analysis provide function identification as part

of their functionality, usually using relatively simple heuristics or hand-coded sig-

natures such as Dyninst [46] which provides a high-level platform-independent

interface for dynamic binary analysis and uses the signatures to recognize function

starts in ELF x86 binaries.

Alrabaee et al. [47] proposed Semantic Integrated Graph (SIG) which is a novel

representation of binary code to identify reused functions by matching traces of

control flow graph, register flow graph, and function call graph. These program

analysis methods have been merged with each other in a joint data structure. SIG
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consists of different types of traces such as normal traces, AND-traces, and OR traces

to analyze the matching of control flow graphs, register flow graphs, and function

call graphs. If the result exactly matches it means that the function was reused in

binary code, but if the result demonstrates the inexact matching, this approach uses

the graph edit distance algorithm to measure the degree of similarity between the

result and the actual function definition.

Li and Wang [48] developed a unified framework to support both cross-platform

analysis and interactive analysis in binary codes by applying symbolic execution

and taint tracking techniques upon the popular IDA Pro tool. Interactive analysis

lets users mark some sources such as memory locations or registers based on their

assumptions to check quickly the targeted instructions. Cross-platform analysis

works in different instructions without depending on architectures and platforms.

They support the cross-platform analysis by adopting a unified binary code interme-

diate representation (IR) and implementing the core analysis algorithms of symbolic

execution and taint tracking on this IR. Cross-platform analysis performs a symbolic

execution engine on the platform-independent REIL IR [49] which has been designed

for static code analysis. Taint analysis lets the user mark the targeted source and

then symbolizes the value of that source. The user can analyze different inputs to

detect the vulnerabilities or use the input of the program as a tainted source. Since

this approach supports the interactive analysis, the user has the ability to follow the

taint sinks to mark different memory locations or registers.

2.2.5 Existing Tools for Detecting Variadic Functions in Binary Code

There are two tools that have been designed for detecting variadic functions. They

are described in this section.

Biswas et al. [11] proposed Hexvasan which detects vulnerable variadic functions

at runtime by counting and checking the number and type of the arguments in

variadic functions. Hexvasan was implemented on top of the LLVM compiler frame-

work. Hexvasan consists of two main components: static analysis and dynamic

analysis. Static analysis works on LLVM IR and it targets variadic functions by

parsing the source code files. Based on the prototype of functions, Hexvasan will
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Table 2 .2 : Summary of tools for detecting variadic functions

Tools Architecture Compiler Requirement
TypeArmor x64 GCC-

Clang
Non- stripped binary code

Hexvasan x64 Clang Source code and Non-
stripped binary code

Detector x86 – x64 GCC-
Clang-
ICC

Stripped binary code

decide which instrumentation should be run on LLVM IR. By applying dynamic

analysis, Hexvasan can verify a mismatch of the number and type of the arguments

at runtime. Hexvasan has the capability to capture and store the information from

the call sites into the metadata. This metadata compares and verifies the number

and type of arguments that they have passed from the caller with the extracted

arguments of the callee. If Hexvasan recognizes mismatching number or type of the

arguments then it will abort the program.

Veen et al. [50] proposed TypeArmor which recovers the call site signatures and

callee prototypes to prevent code-reuse attacks in binaries, without accessing the

source code. TypeArmor uses static analysis to capture the number of arguments

between the call sites. It recovers call site information by mapping caller to callee

with data flow abstractions such as reaching definition and liveness analysis to count

the arguments. For this purpose, the authors leverage the Dyninst binary analysis

framework.

Table 2.2 shows the differences between the existing tools for detecting variadic

functions and our tool Detector. Both TypeArmor and Hexvasan support only the

Intel X64 architectures but the Detector can recognize the variadic functions in binary

code in both Intel X86 and X64 architecture. TypeArmor can detect variadic functions

in C and C++ source code that has been compiled by GCC and Clang. Hexvasan

can support the C and C++ source code that has been compiled by Clang. Our tool,

Detector, is different and can analyze C and C++ code which has been compiled by

GCC, Clang, or ICC. The requirement of Detector and TypeArmor is just the binary

code but Hexvasan needs the source code besides the binary code.



32

chapter 3

Design of The Detector

3 .1 overview of approach

This chapter of the dissertation presents a new approach for automatically identify

the variadic functions in stripped binaries by using a combination of reverse engi-

neering and static binary analysis techniques. Specifically this chapter focuses on

applying this technique to our proof of concept tool, Detector. The approach focuses

on stripped Intel x86 and x64 instruction set architectures from C/C++ progress that

are compiled by GCC, Clang, or ICC. Analyzing stripped binary code is very chal-

lenging since stripped binary code only includes the low-level information such as

instructions and register uses. The approach applies syntactic and semantic analysis

to recognize the behavior of the variadic functions. Static analysis allows Detector to

determine variadic functions without executing the code. Detector identifies variadic

functions with patterns that have been defined as the syntax of the variadic functions.

Each compiler and architecture has its own syntax of variadic functions. Therefore,

the Detector uses semantic analysis to track the valid path of syntax in different

compilers.

Figure 3.1 shows the components of Detector in a high-level design. The input of

Detector is the stripped binary code without the source code, debugging information,

or a Symbol table. For Detector to work, some features of the binary must be

defined such as the boundary of the functions in the program, type of the compiler,

and optimization level (-O0 to -O3) as discussed in Section 3.2. We assume we get

function boundaries from JIMA, as discussed in Section 2.2.3 and we also assume

the programs use one of the standard calling conventions. First, Detector maps

stripped binary code to the defined data representation. Since Detector needs to

know the type of the compiler and architecture, it uses tags based on the low-

level information of the data representation to determine them. This low-level

information includes register type, size, and the prologue of the function in the
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F igure 3 .1 : Detector design in high-level abstraction

binary code. Syntactic analysis with pattern matching allows Detector to identify

variadic functions statically in stripped binary code.

These patterns include patterns of argument registers, floating-point arguments,

offset of the argument registers, last non-variadic argument, and the va_arg section.

Then, Detector uses semantic analysis to track the valid path of patterns. When a

match is found, Detector captures the call side of the variadic functions. Variadic

functions can be called directly and indirectly from other functions. Developers

can use this information to know which functions are affected by calling variadic

functions.

The approach consists of the following main components for identifying variadic

functions in stripped binary code that are compiled with GCC, Clang, and ICC with

different optimization levels.

• Static analysis



34

• Designing new data representation

• Map processing

• Syntactic analysis

• Identifying type of compiler and architecture

• Pattern matching

• Semantic analysis

• Capturing call-side information

We performed enhanced static analysis by pattern matching to observe the be-

haviour of the variadic functions. First we designed a new abstract data representa-

tion to define the syntax of variadic functions. Then, we applied semantic analysis to

track the valid paths of patterns based on the type of the compiler and architecture.

3 .2 assumptions

The prerequisites and assumptions for Detector are addressed as follows:

• Function boundaries: Function boundaries give the start address and end ad-

dress of all functions in the program. This information is necessary for Detector

to distinguish variadic functions from all other functions in the program. The

Detector uses JIMA [18] to access the function boundaries in the program.

JIMA takes stripped binary code and returns a list of function boundaries

by using both static and behavioral analysis. Detector uses JIMA since the

precision and accuracy of it is better than the other available tools such as IDA

7.0 [51], Ghidra 9.0.1 [52], and Nucleus [44].

• Compiler type and optimization level: This dissertation focuses on three com-

pilers GCC, Clang, and ICC in both Intel x86 and x64 architectures. Therefore,

the input to the Detector should be stripped binary code that is the output of

one of the GCC, Clang, and ICC compilers, in one of four optimization levels.

The performance for other compilers is not studied.
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• Standard calling convention: The C program uses two primary calling con-

ventions. Detector requires that the programs use one of these CDECL or

STDCALL. The first calling convention is CDECL [53] which passes the argu-

ments through the registers or stack in right-to-left order, and the returned

values are stored in the register eax. The calling function cleans the stack. This

allows CDECL functions to have variable-length argument lists (aka variadic

functions). For this reason, the number of arguments is not appended to the

name of the function by the compiler, and the assembler and the linker are

therefore unable to determine if an incorrect number of arguments is used [54].

The second calling convention is STDCALL, which passes the arguments the

same way as in CDECL on the stack in right-to-left order or registers [55]. C++

programs use the THISCALL standard calling convention where the pointer

points to the class object that is passed in ecx, the arguments are passed right-to-

left on the stack or registers, and the return value is stored in eax register [56].

3 .3 static analysis

The main goal of this dissertation is to design a process to detect variadic functions

from C and C++ programs compiled by GCC, Clang, and ICC compilers, and im-

plement a proof of concept tool. Static analysis allows us to determine variadic

functions without executing the programs. Static analysis techniques can analyze

all possible control flows of a program, achieving a significantly higher coverage of

program vulnerabilities and, as a result, produce a significantly lower false-negative

rate compared to dynamic analysis approaches.

Our approach applies static analysis to automatically identify variadic functions

in binary code. Static analysis consists of two main sections, Syntactic analysis and

Semantic analysis. Syntactic analysis helps to identify the patterns of the variadic

functions, and semantic analysis helps to track the valid path of patterns.

Because of the absence of source code, analyzing the stripped binary file is

very challenging, and there is no information about size, location, layout of the

function, function parameters, or local variables. Therefore, we defined a new data
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representation to analyze the stripped binary code. This new data representation is

described in Section 3.4.

3 .4 abstract data representation

As mentioned in Section 2.1, some binary analysis tools designed a new language

representation such as BAP [30] and Valgrind[22], or some of them adopted the avail-

able language representations such as Hexvasan [11] and SecondWrite[57] which

used LLVM IR.

Our approach describes a new data representation to analyze the stripped binary

code. The data representation lets Detector analyze the stripped binary code by ap-

plying syntactic analysis. That means the instructions of binary code can have more

meaning than just address, data, source, and destination in binary code. This data

representation has been designed based on the specific requirements that describe

the syntax of the variadic functions. In the following, more information has been

described for designing and analyzing this data representation.

3.4.1 Syntactic Analysis of Variadic Functions

Syntactic analysis determines how the symbols or characters of the language can be

combined with each other [58]. The Intel x86 assembly language has been used

in two main syntax branches, namely, Intel and AT&T. Our approach defines the

grammar of data representation based on the AT&T syntax. The order of parameters

in AT&T is source before destination, and also, the size of the operator is included in

the opcode and can be b for byte, q for qword, l for long (dword), and finally w for

word. Syntactic analysis with data representation grammar maps all instructions in

the stripped binary code to a specific instruction format(Id, Address, Opcode [Args]).

Table 3.1 describes the symbols with the “::= ” read as “is defined to be” and “|”

which means the symbols can be replaced based on the rules. The syntax of the

grammar has been defined by the permutations of the Intel x86 and x64 instructions

in Table 3.1. In the next section, permutations of the symbols of Opcodes and Args

are described.
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Table 3 .1 : Symbolic definition of the AT&T syntax

Symbols Definitions

<Id>::= <0>|<1>| . . . |<N>

Ids help to track and find instructions easily.
The numbers are based on the number of
instructions in the decoded executable binary
file.

<Address>::=<Address0>|
<Address1>|. . . <AddressN>

Address shows all the instruction addresses.

<Opcode>::=
<mov>|<push>|<pop>|<lea>|
<add>|<sub>|<inc>|<dec>|
<imul>|<idiv>|<and>|<or>|
<xor>|<not> |<neg> |<shl>| <shr>
|<jmp>|<jconditions> | <cmp> |
<call>

<mov> copies the data item from one operand
to another.
<push> places the data item on the top of the
stack.
<pop> removes the data item from the top of
the stack.
<lea> load effective address places the address
specified by the source to destination.
<add> adds the two operands and stores the
result in the second one.
<sub> subtracts the first operand from the
second one and stores the result in the second
one.
<inc> increments the value of the operand.
<dec> decrements the value of the operand.
<imul> multiplies two operands or three
operands.
<idiv> divides the contents of the second
operand by the second one and stores the
result in the second operand.
<and><or><xor> used for specified logical
operations.
<not> negates logically the contents of the
operand.
<neg> negates the contents of the operand.
<shl> shift left.
<shr> shift right.
<jmp> jumps to another instruction.
<jconditions> jump based on the conditions
equal, not equal, grater than, less than, etc..
<cmp> compares the operands with each other.
<call> is the subroutine of the calling instruc-
tions.

Continued on next page
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Table 3.1 – Continued from previous page
Symbols Definitions

<Args>::= <[reg,reg]>|<[reg,mem]>|
<[mem,reg]>|<[const,reg]>|
<[const,mem]>|<[reg]>|
<[mem]>|<[const]>|
[<reg><reg><const>]
|[<reg><mem><const>|<Address>

Reg means registers, Mem means memory
locations , Const means constant numbers

3.4.2 Context-Sensitive Grammar

The new language of the approach which has been defined to read and analyze the

stripped binary code is based on context-sensitive grammar (CSG) [59]. Since the

approach just focuses on AT&T syntax, the permutations of the symbols of assembly

Intel x86 and x64 in grammar are very important. In the following, the permutations

of the critical Opcodes and Args symbols have been demonstrated. Map processing,

which is described in the next section, extracts the required information and makes

the data representation from compilers. Note that we only focus on Opcodes that

are relevant for detecting variadic functions.

• <mov><Args> ::= <mov><[reg,reg]>| <mov><[reg,mem]>| <mov><[mem,reg]>|

<mov><[const,reg]>| <mov><[const,mem]>

• <push><Args> ::= <push><[reg]> |<push><[mem]>| <push><[const]>

• <pop><Args> ::= <pop><[reg]> |<pop><[mem]>

• <lea><Args> ::= <lea><[mem,reg]>

• <add><Args> ::= <add><[reg,reg]>| <add><[reg,mem]>| <add><[mem,reg]>|

<add><[const,reg]>| <add><[const,mem]>

• <sub><Args> ::= <sub><[reg,reg]>| <sub><[reg,mem]>| <sub><[mem,reg]>|

<sub><[const,reg]>| <sub><[const,mem]>

• <imul><Args> ::= <imul>< [reg,reg,const] | <imul> [reg,mem,const]
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• <idiv><Args >::= <idiv><reg> | <idiv><mem>

• <and><Args> ::= <and><[reg,reg]>| <and><[reg,mem]>| <and><[mem,reg]>|

<and><[const,reg]>| <and><[const,mem]>

• <or><Args> ::= <or><[reg,reg]>| <or><[reg,mem]>| <or><[mem,reg]>|

<or><[const,reg]>| <or><[const,mem]>

• <xor><Args> ::= <xor><[reg,reg]>| <xor><[reg,mem]>| <xor><[mem,reg]>|

<xor><[const,reg]>| <xor><[const,mem]>

• <not><Args> ::= <not><reg> | <not><mem>

• <neg><Args> ::= <neg><reg> | <neg><mem>

• <shl><Args> ::= <shl><[reg,reg]>| <shl><[reg,mem]>| <shl><[const,reg]>|

<shl><[const,mem]>

• <shr><Args> ::= <shr><[reg,reg]>| <shr><[reg,mem]>| <shr><[const,reg]>|

<shr><[const,mem]>

• <jmp><Args> ::= <jmp><Address>

• <jcondition> ::= <je><Address>| <jne><Address>|<jz><Address>|<jg><Address>

|<jl><Address> |<jge><Address> |<jle><Address>

• <cmp><Args> ::= <cmp><[reg,reg]>| <cmp><[reg,mem]>| <cmp><[mem,reg]>|

<cmp><[const,reg]

• <call> <Args> :: = <call> <Address>

3 .5 map processing

Map processing is responsible for building a map from native structures in Intel

x86 and x64 binary code to defined abstract representation. Map processing gives

the capability to Detector to detect patterns of variadic functions syntactically. Our
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Table 3 .2 : Example of mapping from binary x86 to abstract representation

binary Instruction (x86) Abstract Representation Instruction

0x4008fa movl $0x8,0xd0(%rbp)
inst (131 0x4008fa movl [(imm 0x8),(mem

[(offset -0xd0),(base rbp)])])

0x400904 movl $0x30,0xcc(%rbp)
inst (132 0x400904 movl [(imm 0x30),(mem

[(offset -0xcc),(base rbp)])])

0x40090e lea 0x10(%rbp),%rax
inst (133 0x40090e leaq [(mem [(offset

0x10),(base rbp)]),(reg rax)])

0x400912 mov %rax,-0xc8(%rbp)
inst (134 0x400912 movq [(reg rax),(mem

[(offset -0xc8),(base rbp)])])

0x400919 lea -0xb0(%rbp),%rax
inst (135 0x400919 leaq [(mem [(offset

-0xb0),(base rbp)]),(reg rax)])

0x400920 mov %rax,-0xc0(%rbp)
inst (136 0x400920 movq [(reg rax),(mem

[(offset -0xc0),(base rbp)])])

approach maps all the lines in the stripped binary code to the specific list of abstract

instructions (Id, Address, Opcode [Args]). Table 3.2 shows the mapping from a few

instructions used by the average function, which is a variadic function, to abstract

representation. In this table, the native Intel x86 instructions are shown in the first

column, and the corresponding abstract representation instruction is shown in the

second column. After mapping the binary code to our abstract representation, the

detection of the sequence patterns of the variadic function will be started.

3 .6 identifying the type of compiler and

architecture

Detector needs to know the type of the compilers and the level of optimization

because the compilers have different structures for translating the source code to

binary code in different levels of optimization. Therefore, recognizing the patterns

of syntax and tracking the semantic valid path of patterns depends on the type and

level of compiler optimization. Detector detects the type of compiler and architecture

based on the type of temporary registers, sizes of integers and memories, and the

prologue of the function call. As an example, the size of registers and memory on

Intel x86 architecture is 32 bits while it is 64 bits on Intel x64. The prologue of

the function without optimization uses base pointer (rbp) and with optimization
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Table 3 .3 : Tags and the type of compilers with their architectures

Tags Compilers & Architectures
MV GCC (X64)
CL Clang (X64)
IC ICC (X64)
GS GCC (X86)

uses stack pointer (rsp) in x64 architecture. The prologue of the function without

optimization uses base pointer (ebp) and with optimization uses stack pointer (esp)

in Intel x86 architecture. Detector uses a label which is called “tag” in the program

to categorize the type of compilers and the architectures. Table 3.3 shows the tags

and the type of compilers with their architectures.

3 .7 pattern matching

The main goal of Detector’s syntactic analysis is to statically detect the variadic func-

tions. To achieve this purpose, the behavior of these functions should be considered.

The variadic function takes arguments and then stores them on the stack. Some key

features such as existing argument registers, floating-point arguments, and passing

and storing the arguments on the stack can help to determine whether the function

is a variadic function or not.

3.7.1 Status of the Registers

Analyzing the status of the registers helps to recognize and capture the transactions

and dependency of the registers with each other [60]. Detector records the value

and address of the registers that demonstrates the variadic function behavior to

distinguish between the local variables and the arguments based on the assembly

instructions which include the following four classes:

• Arithmetic: add, sub, mul, imul, div, idiv, etc.

• Logical: and, or, xor, test, shl.

• Generic: mov, lea, call, jmp, jle, etc.
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L isting 3 .1 : Argument registers in variadic function of benchmark XZ-R
1 400891: mov %rdi ,-0xe4(%rbp)

2 400897: mov %rsi ,-0xa8(%rbp)

3 40089e: mov %rdx ,-0xa0(%rbp)

4 4008a5: mov %rcx ,-0x98(%rbp)

5 4008ac: mov %r8 ,-0x90(%rbp)

6 4008b3: mov %r9 ,-0x88(%rbp)

• Stack: : push, pop.

Paying attention to the Generic and Stack classes is important for analyzing the

behavior of the variadic function in binary code. Generic class which includes call or

jump might show the function calls. Also, the variadic function uses the stack class

to push the arguments on the stack; therefore, following these two classes increases

the precision of detecting variadic functions. Registers generally have three statuses

in assembly code: read-before-write, write-before-read and clear. Based on their

status, Detector can guess the number of arguments. Listing 3.1 demonstrates the

argument registers in one of the variadic functions in benchmark XZ-R, which is

compiled by GCC x64. If rdi, rsi, and rdx have read-before-write statuses, then

the function has at least three arguments. But if the last one, r9, has read-before-

write status, then Detector can assume this function at least takes six arguments. A

variadic function has to assume six or more argument where a non-variadic function

may not. Some other published approaches assume six or more arguments implies

variadic functions, resulting in false positives.

3.7.2 Tracking Patterns of Argument Registers

As one of the features of a variadic function, Detector should detect the registers

which take arguments. The System V ABI uses rdi, rsi, rdx, rcx, r8, and r9 as

argument registers in CDECL [61]. The argument registers can be from the following

list in compilers GCC, Clang, and ICC in both Intel x64 and x86 architectures.

Argument register list = [rdi, rsi, rdx, rbx, rcx, r8, r9, r8d, r9d, edi, esi, edx, ecx,

r10, r11, r12, r13, r14, r15]
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L isting 3 .2 : Argument registers in data representation
1 inst (39538 , 0x425eeb , movq , [reg(rdi),mem([ offset(-0xd8),base(

rbp)])]),

2 inst (39539 , 0x425ef2 , movq , [reg(rsi),mem([ offset(-0xa8),base(

rbp)])]),

3 inst (39540 , 0x425ef9 , movq , [reg(rdx),mem([ offset(-0xa0),base(

rbp)])]),

4 inst (39541 , 0x425f00 , movq , [reg(rcx),mem([ offset(-0x98),base(

rbp)])]),

5 inst (39542 , 0x425f07 , movq , [reg(r8),mem([ offset(-0x90),base(rbp

)])]),

6 inst (39543 , 0x425f0e , movq , [reg(r9),mem([ offset(-0x88),base(rbp

)])]),

L isting 3 .3 : Patterns of argument registers
1 <Argument -Registers >:: = <movlist > <Source -Reg > <Destination -Reg

> | <pushlist > <Source -Reg > <Destination -Reg >

2 <movlist >:: = <mov > | <movl > | <movq >

3 <pushlist >:: = <push > | <pushl > | <pushq >

4 <Source -Reg >:: = <rdi > |<rsi > | <rdx >| <rbx > | <rcx > | <r8> | <

r9> | <r8d > | <r9d > | <edi > | <esi > | <edx >| <ecx > | <r10 > |

<r11 > | <r12 > | <r13 > | <r14 > | <r15 >

5 <Destination -Reg >:: = <offset > <rbp > | <offset > <rsp > | <offset >

<ebp > | <offset > <esp >

Listing 3.2 demonstrates the patterns of argument registers in our data represen-

tation. These argument registers have been stored in the local variables section in the

stack. Listing 3.2 is a piece of average() code from Listing 1.1 that has been compiled

by GCC for the Intel x64 architecture.

Each compiler has its own syntax of argument registers in different levels of op-

timization. Listing 3.3 describes the general grammar of argument register patterns.

The argument registers can push or move on the stack so both pushlist and movlist

opcodes have been used in the grammar. The Source-Reg is all possible argument

registers in the list. Destination-Reg shows that the argument registers can store on

the stack with both stack pointer and base pointer.

If the type of the variadic arguments is float, then the variadic function follows

the patterns which have been described in the next section.
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L isting 3 .4 : Float-point argument registers in variadic function of benchmark XZ-
R

1 inst (39421 , 0x425c83 , vmovaps , [reg(xmm0),mem([ offset (-128),base

(rbp)])]),

2 inst (39422 , 0x425c88 , vmovaps , [reg(xmm1),mem([ offset (-112),base

(rbp)])]),

3 inst (39423 , 0x425c8d , vmovaps , [reg(xmm2),mem([ offset (-96),base(

rbp)])]),

4 inst (39424 , 0x425c92 , vmovaps , [reg(xmm3),mem([ offset (-80),base(

rbp)])]),

5 inst (39425 , 0x425c97 , vmovaps , [reg(xmm4),mem([ offset (-64),base(

rbp)])]),

6 inst (39426 , 0x425c9c , vmovaps , [reg(xmm5),mem([ offset (-48),base(

rbp)])]),

7 inst (39427 , 0x425ca1 , vmovaps , [reg(xmm6),mem([ offset (-32),base(

rbp)])]),

8 inst (39428 , 0x425ca6 , vmovaps , [reg(xmm7),mem([ offset (-16),base(

rbp)])]),

L isting 3 .5 : Patterns of float-point argument registers
1 <Floiting -point -Arguments >:: = <vmovapslist > <xmm -Reg > <

Destination -Reg >

2 <vmovapslist >:: = <movaps > | <vmovaps >

3 <xmm -Reg >:: = <xmm0 ><xmm1 ><xmm2 ><xmm3 ><xmm4 ><xmm5 ><xmm6 ><xmm7 > |

<xmm7 ><xmm6 ><xmm5 ><xmm4 ><xmm3 ><xmm2 ><xmm1 ><xmm0 >

4 <Destination -Reg >:: = <offset > <rbp > | <offset > <rsp > | <offset >

<rax >

3.7.3 Tracking Patterns of Floating-point Arguments

The floating-point arguments are passed by xmm registers. Listing 3.4 demonstrates

the section of floating-point arguments in our data representation. This listing is

from the code of one of the variadic functions in benchmark XZR that was compiled

by GCC for the Intel x64 architecture.

Each compiler has its own syntax for using xmm registers to pass floating point

arguments. Listing 3.5 describes the general syntax of floating-point arguments.

The sequences of the xmm numbers are different in compilers GCC, Clang, and ICC.

Both compilers GCC and Clang, use the base pointer and stack pointer for storing

the floating-point arguments in local variables. The ICC uses the register rax for this

task.
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Table 3 .4 : Different last non-variadic pattern organization between GCC and
Clang

GCC (va_start) Clang (va_start)

40090e:lea 0x10(%rbp),%rax

400912:mov %rax,-0xc8(%rbp)

400919:lea -0xb0(%rbp),%rax

400920:mov %rax,-0xc0(%rbp)

4009c2:lea -0x20(%rbp),%r9

4009c6:mov %r8d,-0x4(%rbp)

4009ca:movl $0x0,-0x24(%rbp)

4009d1:lea -0xe0(%rbp),%r10

4009d8:mov %r10,0x10(%r9)

4009dc:lea 0x10(%rbp),%r10

4009e0:mov %r10,0x8(%r9)

3.7.4 Tracking Patterns of last non-variadic argument

Before taking the variadic arguments, the variadic function takes and stores the last

non-variadic argument of the program through the va_start macro. The Detector

follows the patterns of finding the address of the last non-variadic argument to

increase the chance of identifying variadic functions in binary code. Same as the

previous patterns, each compiler and optimization level has its own structure for

taking and storing the last non-variadic argument. Table 3.4 shows the va_start

section of the average() function from Section 1.1. In this piece of code, the last non-

variadic is “num” parameter. The code was compiled by GCC for Intel x64 in the first

column and by Clang for Intel x64 in the second column. In GCC, at address 40090e,

the lea instruction finds the effective address of the last non-variadic argument. This

is stored in rax, which is a temporary variable. Then at address 400912, the last

non-variadic argument is stored in a local variable.

Clang has different organization for taking and storing the last non-variadic

argument. First at address 4009c2, Clang stores an address of local variable in r9 and

then Clang uses r9 as a reference to the va_start data structure. Again at addresses

4009d1 and 4009d8, Clang takes an address of local variable and stores it in r9 + 0x10.

Finally, at address 4009dc, Clang finds the address of the last non-variadic argument

and stores the address in r9 + 0x8.
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Table 3 .5 : Argument registers save area offsets

0 rdi

0x8 rsi

0x10 rdx

0x18 rcx

0x20 r8

0x28 r9

0x30 xmm0

0x40 xmm1

0x48 xmm2

... ...

L isting 3 .6 : Patterns of argument register offset
1 inst (39554 , 0x425f41 , movq , [segreg(fs), value (0x28),reg(rax)]),

2 inst (39555 , 0x425f4a , movq , [reg(rax),mem([ offset(-0xb8),base(

rbp)])]),

3 inst (39556 , 0x425f51 , xorl , [reg(eax),reg(eax)])

3.7.5 Tracking Patterns of Argument Registers offset

As mentioned before, the argument registers take variadic arguments in the program.

Based on the prologue of the function, the registers which take the arguments need

to be saved in the register save area. Since the variadic arguments are taken by

argument registers, Detector needs to know the offset of the register save area of the

argument registers.

The register save area is space which allocates only those registers that need

to be saved for a function [62]. The offset of the register save area is fixed for

each argument register. Table 3.5 shows the argument registers save area offsets

in variadic functions.

Listing 3.6 is an example of a variadic function. It demonstrates the patterns of

the register save area for the argument register r9, since this register is stored at

location 0x28 in the save area (see Table 3.5).

3.7.6 Tracking Patterns of starting va_arg

Relying just on detecting argument registers and float arguments is not sufficient

to prove that the function is variadic. Because in the Intel x86 architecture using
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F igure 3 .2 : Patterns of va_arg in variadic function

the STDCALL calling convention, there are no argument registers. Based on the

behavior of the variadic function, recognizing patterns of passing and location of

the arguments is very important. The main task of va_arg is retrieving the variadic

arguments from the va_list. Figure 3.2 shows tracking the arguments via va_arg.

This binary code is for va_arg section of the average() function from Section 1.1. The

code was compiled by GCC for Intel x64. Taking and storing the arguments with

va_arg is different from taking and storing the arguments in non-variadic functions.

At address 400945, register eax is compared with 0x30. The eax register is used to

keep track of how many argument bytes have been used by va_arg. The first 0x30

bytes are assumed to be passed in registers and are stored in local variables. The

rest of the arguments are passed on the stack, controlled by the caller.

Table 3.6 shows the relationship between location and the argument’s number.

In section 3.7.7 the location of the variadic arguments in Intel x64 and x86 has been

described. Therefore, the 0x30 is the location of the seventh argument and this

address is going to store in the CPU register. Because it was passed as a CPU register,

the argument was stored in the local variable. Now, the va_arg starts walking on the

stack to locate and update the local variables.
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Table 3 .6 : Locations and the argument’s number in va_arg

Location Argument’s number
0x0 First Argument
0x8 Second Argument
0x10 Third Argument
0x18 Fourth Argument
0x20 Fifth Argument
0x28 Sixth Argument
0x30 Seventh Argument

Table 3 .7 : Location of the variadic arguments in x86 and x64 architectures

Architectures Function Parameters Locations
X64 Just First six non-floating-point arguments

and the first eight floating-point arguments
CPU Registers

X86 All of the variadic arguments Stack

3.7.7 Location of the variadic arguments in Intel x64 and x86

Considering the location of the variadic arguments can be one of the methods to

recognize the variadic functions. Detector needs to figure out the location of all

the arguments. Depending on the ABI, the location of the variadic arguments is

different in the Intel x86 and x64 architectures. Table 3.7 shows that the first six non-

floating-point arguments and the first eight floating-point arguments in the Intel x64

architecture are passed to the registers and the remaining arguments are passed on

the stack [50]. All variadic arguments in the Intel x86 must be passed on the stack.

3 .8 semantic analysis

The syntactic analysis describes the set of patterns of the main sections of variadic

functions. Detector uses semantic analysis which reveals the meaning of syntax. The

semantic analysis allows Detector to recognize the valid paths of defined patterns to

detect variadic functions with more accuracy. These paths demonstrate the behavior

of the variadic function based on the type of compiler and architecture. By using

semantic analysis, Detector has the capability to follow the valid paths of patterns for
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Table 3 .8 : Parameters of the semantic analysis

Semantic Names Patterns Tasks
Arg-Reg Argument Regis-

ters
Track the set of patterns Argument Registers

Float-Reg Floating-point Ar-
guments

Track the set of patterns Floating-point Argu-
ments

LNV Last non-variadic-
Argument

Track the set of patterns of last non-variadic
argument

FS Offset of
Argument
Registers

Track the set of last saving register area of
argument register

Va-Arg Taking variadic ar-
guments in va_arg
section

Track the set of taking and locating argument
in va_arg section

TAG Type of Compiler
and Architecture

Look at the low- level information such as
memory size and integers of the first range of
the function boundaries in the program

different compilers and architectures. Table 3.8 shows the names used in semantic

analysis of detecting variadic functions.

Listing 3.7 shows the semantic logics for each compiler tag. In principle,
∧

denotes AND operation and
∨

denotes OR operation. Each tag has its own orga-

nization of the patterns. The MV tag used for the GCC x64, first comes up with

the argument register patterns. Then Detector looks for the floating-point argument

patterns. After these two patterns, the MV can have an offset of the last argument

register pattern or last non-variadic argument. For the CL tag used in Clang x64,

first Detector follows the floating-point argument patterns. Then Detector tracks

the argument register patterns. After these two patterns, CL can have the last non-

variadic argument or offset of the last argument register patterns. For the IC tag

used in ICC x64, first Detector should follow the argument register patterns. Then

Detector tracks the floating-point argument patterns. After these two patterns, IC

can have the last non-variadic argument patterns. The GS tag used in GCC x86,

does not have argument register and floating-point register patterns. It just comes

up with the last non-variadic argument and va_arg patterns.

Figure 3.3 demonstrates the organization of the patterns in each compiler. The

first step is identifying the type of compiler and architecture. Based on the type of
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L isting 3 .7 : Semantic logic for each compiler tag
1 MV -> (Arg -Reg)

∧
(Float -Reg)

∨
(FS)

∨
(LNV)

2 CL -> (Float -Reg)
∧

(Arg -Reg)
∨

(LNV)
∨

(FS)

3 IC -> (Arg -Reg)
∧

(Float -Reg)
∨
(LNV)

4 GS -> (LNV)
∧

(Va-Arg)

compiler and architecture, Detector tracks the patterns which have been defined for

each tag. The green nodes demonstrate the patterns which should be detected in the

data representation. In contrast, blue nodes may not exist in the data representation.

3 .9 capturing call side of variadic functions

Function boundaries are beneficial for Detector since the functions are related to

each other by the direct and indirect function calls. If Detector identifies a variadic

function, then it can determine which functions have been affected by that variadic

function. This feature gives Detector the capability to inform the developer to check

which functions are calling variadic function and also, the variadic function is calling

which functions in the stripped binary code. Knowing the functions which call

variadic functions in the program directly or indirectly is very useful for detecting

possible attacks. These functions push their parameters and return addresses on to

the stack. The attackers can exploit the variadic functions by changing the number or

type of arguments. Detecting vulnerabilities to these kind of attacks needs a dynamic

analysis of the binary code. The program should be executed to recognize the

changing of number and type of the arguments in variadic functions. In section 2.2,

dynamic analysis methods and vulnerable variadic functions have been discussed.
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F igure 3 .3 : An overview of the steps of patterns organization for each tag of the
compiler for detecting variadic functions
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chapter 4

Implementation Of Detector

This chapter summarizes the implementation of Detector which identifies variadic

functions in stripped binary code. This stripped binary code can be compiled by one

of the compilers GCC, Clang, and ICC in different levels (O0 to O3) on both Intel x86

and x64 architectures. Figure 4.1 demonstrates the inputs and outputs of Detector

in a high-level design. The input files include only the stripped binary code and

function boundaries generated by JIMA [18], which gives a list of possible function

boundaries of the program. Detector uses these input files and detects variadic func-

tions in the program automatically. The output of Detector is all possible variadic

functions in the program and the call-side information for each detected variadic

function.

4 .1 algorithm of the detector

Detector was written in Python3. The high level description of the algorithm used

by Detector for detecting variadic functions is presented in Listing 4.1. Detector is

implemented in different phases described in a high-level as follows. First, Detector

uses stripped binary code and function boundaries as inputs. Based on the function

boundaries, Detector selects the first function boundary range as a subset of instruc-

tions in the program. Detector identifies the tag of this subset of instructions based

on the memory size and the prologue of the unknown function. Next, Detector looks

at the valid path of variadic functions in all ranges of function boundaries by using

semantic analysis to detect variadic functions in the whole program. If Detector

recognizes variadic functions in the program, then for each of the variadic functions

it calculates some useful information. This information includes the number of

argument registers, the address of the last non-variadic argument and offset of the

argument register. In addition to this information, Detector captures the call side

information for each variadic function in the program.



53

L isting 4 .1 : Pseudocode of detecting variadic functions by Detector
1 get stripped binary code

2 mapmapmap stripped binary code to instructions

3 get function boundaries

4

5 forforfor the first rangerangerange ininin function boundaries

6 detect the tag of compiler

7

8 ififif the tag isisis MV then

9 forforfor allallall ranges ininin function boundaries

10 get instruction subsets within instruction subset

11 ififif patterns of MV isisis ininin subset then

12 This function isisis variadic function

13

14 elseelseelse ififif the tag isisis CL then

15 forforfor allallall ranges ininin function boundaries

16 get instruction subsets within instruction subset

17 ififif patterns of CL isisis ininin subset then

18 This function isisis variadic function

19

20 elseelseelse ififif the tag isisis IC then

21 forforfor allallall ranges ininin function boundaries

22 get instruction subsets within instruction subset

23 ififif patterns of IC isisis ininin subset then

24 This function isisis variadic function

25

26 elseelseelse ififif the tag isisis GS then

27 forforfor allallall ranges ininin function boundaries

28 get instruction subsets within instruction subset

29 ififif patterns of GS isisis ininin subset then

30 This function isisis variadic function

31

32 ififif this subset isisis variadic function then

33 retrieve information:

34 address of last non variadic

35 argument registers

36 save - registers

37 generate callsite forforfor variadic function
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F igure 4 .1 : Implementation of Detector in High-Level Design

4 .2 different phases of detector operation

The main phases of Detector are shown in Figure 4.2. First, the syntactic analysis

phase determines the organization of the symbols and characters based on our data

representation. The map processing phase uses syntax analysis to map all the lines

in stripped binary code to our data representation instructions. Detector selects the

first range from the function boundaries. Tag identification phase recognizes the

type of compiler which compiled the program. Next, the semantic analysis phase

determines which patterns should be recognized based on the tag of the compiler.

The pattern matching phase uses semantic analysis rules to enable Detector to follow

the valid path of patterns to identify the variadic function. Detector is able to show

number and address range of variadic functions in the program. Capturing call side

phase uses these address ranges and retrieves the caller of the variadic function.

4 .3 output of the detector

Not only can Detector detect variadic functions in the program, but also it can

retrieve useful information to help programmers detect the vulnerable variadic func-

tions in the future. Listing 4.2 shows the result of a variadic function compiled by

GCC x64 architecture. The start address of this variadic function is 0x425c4b and the

end address is 0x425d22. This variadic function uses six argument registers which

include r9, edi, rsi, r8, rdx, and rcx. The offset is for the argument register r9. The

memory address which includes 0x10 is for the last non-variadic argument in the

program. The variadic function calls two functions with start addresses of 0x425c39
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F igure 4 .2 : Different phases of the Detector Operation
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L isting 4 .2 : Output of the Detector for a variadic function in benchmark XZR
1 0x425c4b ---> 0x425d22:

2 -------------

3 Number of arg registers: 6

4 Arg registers: {'r9', 'edi', 'rsi', 'r8', 'rdx', 'rcx'}

5 Offset registerregisterregister: ('fs', '0x28', 'r9')

6 Last non -variadic addr: 0x10

7 This VF calls: ['0x425c39 ', '0x400b10 ']

8 This VF is called by: [('0x421e29 ', 1), ('0x421e71 ', 4), ('0

x426058 ', 2), ('0x42665b ', 1), ('0x426fe8 ', 1)]

9 -------------

and 0x400b10. This variadic function is called by five functions in the program. The

tuple used in the call side shows the number of times that the variadic function was

called by other functions in the program. For example, (’0x421e71’, 4) means that the

function with the start address of 0x421e71 calls the variadic function in the program

four times.
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chapter 5

EXPERIMENTAL RESULTS

This chapter details experimental results for detecting variadic functions in SPEC

CPU 2006 and SPEC CPU 2017 benchmarks. These benchmarks have been chosen as

a case study to execute and calculate the precision, recall, and F1 of Detector. These

benchmarks consist of both variadic and non-variadic functions. We compared our

experiments results with other tools, namely Type Armor [50] and Hexvasan [11].

• Type Armor can identify variadic functions in C and C++ programs that are

compiled by GCC and Clang compilers. Type Armor does not have access to

the source code but it needs to access the non-stripped binaries as requirement.

The results of Type Armor analysis show that Type Armor has access to the

symbol table because the name of the functions is available beside the function

ranges. Type Armor can capture the number of arguments in the call site. It just

relies on the argument register, not the float-point arguments in the program.

Type Armor focuses on just detecting variadic functions in x64 architecture.

• Hexvasan identifies variadic functions in C and C++ programs that are com-

piled by Clang compiler. Hexvasan needs to access both source code and binary

code to detect the variadic functions. Hexvasan has access to the source code

so it can detect variadic functions which are defined in the headers. Some of

these functions do not exist in the binary code since they are not executed in the

program. Hexvasan can detect vulnerable variadic functions in the program.

Hexvasan focuses on detecting just the variadic functions in x64 architecture.

As can be seen by this comparison, Detector has more capabilities than these

available tools for detecting variadic functions. Detector can identify variadic func-

tions in C and C++ programs that are compiled by GCC, Clang, and ICC. Detector

does not need to access the source code or the symbol table, but uses JIMA for

function boundaries [18]. Detector can detect variadic functions in both Intel x86

and x64 architectures.
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Ground Truth The ground truth for each benchmark was determined by manually

counting the number of variadic and non-variadic functions in the source code. Then,

we calculated the precision, recall, and F1 by comparing results to the generated

ground truth.

We compare the precision, recall, and F1 metrics of Detector compared with other

tools. For calculating them, we need true negative, false positive, false negative, and

finally true positive results of variadic function identification. These metrics for the

tools are described as follows:

• True Negative (TN) means the function is a non-variadic function and the tool

detects it as non-variadic function.

• False Negative (FN) means the function is a variadic function but the tool

detects it as non-variadic function.

• False Positive (FP) means the function is a non-variadic function but the tool

detects it as variadic function.

• True Positive (TP) means the function is a variadic function and the tool detects

it as variadic function.

Precision (P): For comparing the tools with each other, we need to know when

the tools have correct results. Precision means the percentage of reported variadic

functions that are correctly reported, not false positive. The precision is the ratio of

the true positive as the numerator and the sum of true positive and false positive

results as the denominator.
|TP|

(|TP|+ |FP|)

Recall (R): Recall denotes the percentage of true variadic functions detected by the

tools. The recall is the ratio of the true positive as the numerator and and the sum

of true positive and false negative results as the denominator.
|TP|

(|TP|+ |FN|)
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F1: F1 is a weighted average of precision and recall. F1 is calculated by the follow-

ing formula. This is used to give a balanced comparison between tools, addressing

both false positives and false negatives.
(2 ∗ P ∗ R)
(P + R)

5 .1 spec cpu 2017

SPEC CPU 2017 [63] has been chosen to compare the results of the tools with each

other. The benchmarks selected from SPEC CPU 2017 have both variadic and non-

variadic functions in their programs. Detector was compared just with TypeArmor in

SPEC CPU 2017. We downloaded TypeArmor and ran it for the selected benchmarks.

For the number of variadic detections, we show that Detector works better than

TypeArmor.

5.1.1 Detecting Variadic Functions in GCC x64

Detector was compared with TypeArmor for the number of detected variadic func-

tions in the binary code compiled by GCC compiler and x64 architecture. Figure 5.1

demonstrates the differences in precision between Detector and TypeArmor. The

blue columns show the precision of Detector and red columns show the precision

of TypeArmor. Detector identifies some non-variadic functions as variadic functions

since some non-variadic functions use argument registers to take arguments and

store them on the stack. Some of the TypeArmor benchmarks do not have results

because TypeArmor has segmentation fault errors when running them. As Figure

5.1 shows, Detector has more precision than TypeArmor. The precision average for

Detector is 98.70% while for the TypeArmor it is 28.53%. This means TypeArmor

mislabeled many non-variadic functions as being variadic.

Figure 5.2 demonstrates the differences in recall between Detector and TypeAr-

mor. The blue columns show the recall of Detector and the red columns show the

recall of TypeArmor. The averages of Detector and TypeArmor for the recall score

are 100%. That means both of them find all variadic functions.
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F igure 5 .1 : Precision of GCC x64 for comparing Detector and TypeArmor in SPEC
CPU 2017

F igure 5 .2 : Recall of GCC x64 for comparing Detector and TypeArmor in SPEC
CPU 2017

Figure 5.3 demonstrates the differences in F1 between Detector and TypeArmor.

The blue columns show the F1 of the Detector and red columns show the F1 of

the TypeArmor. Some benchmarks do not have results because TypeArmor has

segmentation fault errors in them. As Figure 5.3 shows, Detector has a higher F1

score than TypeArmor. The average of F1 score for the Detector is 99.26% while for

the TypeArmor it is 42.11%.

Table 5.1 summarizes the average of precision, recall, and F1 for both TypeAr-

mor and Detector. Detector increases precision over TypeArmor by around 70.17%.

That means Detector reports less non-variadic functions as variadic functions than

TypeArmor. There is no difference between the average of recall in the TypeArmor
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F igure 5 .3 : F1 of GCC x64 for comparing Detector and TypeArmor in SPEC CPU
2017

Table 5 .1 : The average of precision, recall, and F1 for both TypeArmor and the
Detector in GCC x64

Precision Recall F1

TypeArmor 28.53% 100.00% 42.11%
Detector 98.70% 100.00% 99.26%

Improvement +70.17% - +57.15%

and Detector. Due to increased precision, Detector increases the average of F1 score

around 57.15%.

Table 5.2 gives detailed precision, recall, and F1 score of Detector for detecting

the variadic functions in code that is compiled by GCC x64 compiler.

5.1.2 Detecting Variadic Functions in Clang x64

Detector was compared with TypeArmor for the number of detected variadic func-

tions in binary code compiled by the Clang compiler and x64 architecture. Figure 5.4

demonstrates the differences in precision between Detector and TypeArmor. The

blue columns show the precision of Detector and red columns are for TypeArmor.

Detector identifies some non-variadic functions as variadic functions for Imagick

benchmark. Some TypeArmor benchmarks do not have results because TypeArmor

has segmentation fault errors in them. As Figure 5.4 shows Detector has more

precision than TypeArmor. The average precision of the Detector is 98.68% while

for the TypeArmor it is 27.60%.
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Table 5 .2 : The average precision, recall, and F1 for the Detector in GCC x64

SPEC 2017

Benchmarks
TN TP FN FP Precision Recall F1

XZR -O0 545 5 0 0 100.00% 100.00% 100.00%
XZR -O1 402 1 0 0 100.00% 100.00% 100.00%
XZR -O2 400 1 0 0 100.00% 100.00% 100.00%
XZR -O3 378 1 0 0 100.00% 100.00% 100.00%
Perlbench -O0 5125 31 0 0 100.00% 100.00% 100.00%
Perlbench -O1 2625 23 0 0 100.00% 100.00% 100.00%
Perlbench -O2 2531 23 0 0 100.00% 100.00% 100.00%
Perlbench -O3 2396 23 0 0 100.00% 100.00% 100.00%
Blender -O0 50719 26 0 0 100.00% 100.00% 100.00%
Blender -O1 39547 23 0 0 100.00% 100.00% 100.00%
Blender -O2 39758 23 0 2 92.00% 100.00% 95.83%
Blender -O3 39758 23 0 2 92.00% 100.00% 95.83%
Povray -O0 2105 16 0 0 100.00% 100.00% 100.00%
Povray -O1 1679 16 0 0 100.00% 100.00% 100.00%
Povray -O2 1689 15 0 0 100.00% 100.00% 100.00%
Povray -O3 1616 18 0 0 100.00% 100.00% 100.00%
Wrf -O0 7600 2 0 0 100.00% 100.00% 100.00%
Wrf -O1 7231 2 0 0 100.00% 100.00% 100.00%
Wrf -O2 7222 2 0 0 100.00% 100.00% 100.00%
Wrf -O3 7185 2 0 0 100.00% 100.00% 100.00%
Gcc -O0 26830 61 0 0 100.00% 100.00% 100.00%
Gcc -O1 13060 41 0 0 100.00% 100.00% 100.00%
Gcc -O2 12925 41 0 0 100.00% 100.00% 100.00%
Gcc -O3 12219 41 0 0 100.00% 100.00% 100.00%
Cactu -O0 3435 24 0 0 100.00% 100.00% 100.00%
Cactu -O1 2714 9 0 0 100.00% 100.00% 100.00%
Cactu -O2 2744 9 0 0 100.00% 100.00% 100.00%
Cactu -O3 2677 9 0 0 100.00% 100.00% 100.00%
Cam4 -O0 4574 3 0 0 100.00% 100.00% 100.00%
Cam4 -O1 4011 3 0 0 100.00% 100.00% 100.00%
Cam4 -O2 4019 3 0 0 100.00% 100.00% 100.00%
Cam4 -O3 3975 3 0 0 100.00% 100.00% 100.00%
Imagick -O0 2962 9 0 0 100.00% 100.00% 100.00%
Imagick -O1 2194 9 0 4 69.23% 100.00% 81.82%
Imagick -O2 2205 9 0 0 100.00% 100.00% 100.00%
Imagick -O3 2282 9 0 0 100.00% 100.00% 100.00%

Figure 5.5 demonstrates the differences in recall between Detector and TypeAr-

mor. The blue columns show the recall of the Detector and the red columns show

the recall of the TypeArmor. The recall average of TypeArmor is 100%, but it
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F igure 5 .4 : Precision of Clang x64 for comparing Detector and TypeArmor in
SPEC CPU 2017

F igure 5 .5 : Recall of Clang x64 for comparing Detector and TypeArmor in SPEC
CPU 2017

had segmentation fault for three benchmarks. The recall average of the Detector

is 97.79% since it missed detection some variadic functions in Perlbench, Gcc, and

Cactu benchmarks.

Figure 5.6 demonstrates the differences in F1 scores between Detector and Ty-

peArmor. The blue columns show the F1 score of the Detector and red columns

show the F1 of the TypeArmor. Some benchmarks do not have results because

TypeArmor had segmentation fault errors when running them. As Figure 5.6 shows,

Detector has a higher F1 score than TypeArmor. The F1 average of the Detector is

97.99% while for the TypeArmor it is 44.67%.

Table 5.3 summarizes the average of precision, recall, and F1 for both TypeArmor

and Detector. Detector increases the precision over TypeArmor by around 71.08%
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F igure 5 .6 : F1 of Clang x64 for comparing Detector and TypeArmor in SPEC CPU
2017

Table 5 .3 : The average of precision, recall, and F1 for both TypeArmor and
Detector in Clang x64

Precision Recall F1

TypeArmor 27.60% 100.00% 44.67%
Detector 98.68% 97.79% 97.99%

Improvement +71.08% -2.21% +53.32%

but decreases the recall around 2.21%. That means the Detector missed some vari-

adic functions but mislabled a lot less non-variadic functions when compared to

TypeArmor. Detector increases the average of F1 score over TypeArmor by around

53.32%.

Table 5.4 demonstrates the precision, recall, and F1 score of Detector for detecting

the variadic functions in code that is compiled by Clang x64 compiler.

5.1.3 Detecting Variadic Functions in ICC x64

Table 5.6 demonstrates the precision, recall, and F1 score for detecting the variadic

functions in code that is compiled by ICC x64 compiler. TypeArmor and Hexvasan

cannot detect the variadic functions which are compiled by ICC x64. Detector

identifies all the variadic functions in the program. However, it also detects some

non-variadic functions as variadic functions. Figure 5.7 demonstrates the precision,

recall, and F1 score of Detector for detecting the variadic functions in code that is

compiled by ICC x64 compiler.
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F igure 5 .7 : Precision, recall, and F1 score of ICC x64 in SPEC CPU 2017
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F igure 5 .8 : Precision, recall, and F1 score of GCC x86 in SPEC CPU 2017

Table 5.5 summarizes the average of precision, recall, and F1 for Detector. The

average precision of Detector is around 87.43% and the recall average is 100%. The

F1 score is around 93.29%.

5.1.4 Detecting Variadic Functions in GCC x86

Table 5.7 demonstrates the precision, recall, and F1 score for detecting the variadic

functions in code that is compiled by GCC x86 compiler. TypeArmor and Hexvasan

do not support the GCC x86 compiler for detecting variadic functions. Detector

identifies all variadic functions in the program. However, it also detects some non-

variadic functions as variadic functions. Figure 5.8 demonstrates the precision, recall,

and F1 score of Detector for detecting the variadic functions in code that is compiled

by GCC x86 compiler. The average precision of the Detector is around 99.80% and

the recall average is 100%. The F1 score is around 99.90%.
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5 .2 spec cpu 2006

Hexvasan can identify variadic functions in programs compiled by the Clang x64

compiler. The authors of Hexvasan did not publish their tool completely, so we used

their published results. Therefore, we compiled the SPEC CPU 2006 benchmarks for

Detector and TypeArmor to compare with the results of Hexvasan. Since Hexvasan

accesses source code, it detects some variadic functions in headers that are not in the

executable files.

Detecting Variadic Functions in Clang x64: Table 5.8 demonstrates the number of

variadic functions that the tools detect in the program. The total number of variadic

functions column shows the exact number of variadic functions in the program. This

table helps compare the tools with each other. For example, there is no variadic

function in the benchmark astar. Detector detects one non-variadic function as

a variadic function, but Hexvasan detects four non-variadic functions as variadic

functions. The number of non-variadic functions detected by Detector is less than

both TypeArmor and Hexvasan. The second example, there is no variadic function

in the benchmark soplex. Detector does not detect any variadic functions in the

program. TypeArmor detects seven non-variadic functions as variadic functions and

Hexvasan detects two non-variadic functions as variadic functions.
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Table 5 .4 : The average precision, recall, and F1 for the Detector in Clang x64

SPEC 2017

Benchmarks
TN TP FN FP Precision Recall F1

XZR -O0 545 5 0 0 100.00% 100.00% 100.00%
XZR -O1 547 1 0 0 100.00% 100.00% 100.00%
XZR -O2 373 1 0 0 100.00% 100.00% 100.00%
XZR -O3 374 1 0 0 100.00% 100.00% 100.00%
Perlbench -O0 3002 29 2 0 100.00% 93.55% 96.67%
Perlbench -O1 2995 29 2 0 100.00% 93.55% 96.67%
Perlbench -O2 2313 29 2 0 100.00% 93.55% 96.67%
Perlbench -O3 2299 29 0 0 100.00% 100.00% 100.00%
Povray -O0 2028 16 0 0 100.00% 100.00% 100.00%
Povray -O1 2023 16 0 0 100.00% 100.00% 100.00%
Povray -O2 1532 16 0 0 100.00% 100.00% 100.00%
Povray -O3 1525 16 0 0 100.00% 100.00% 100.00%
Wrf -O0 7592 2 0 0 100.00% 100.00% 100.00%
Wrf -O1 7406 2 0 0 100.00% 100.00% 100.00%
Wrf -O2 7224 2 0 0 100.00% 100.00% 100.00%
Gcc -O0 26677 53 9 0 100.00% 85.48% 92.17%
Gcc -O1 26553 62 0 0 100.00% 100.00% 100.00%
Gcc -O2 11797 61 0 0 100.00% 100.00% 100.00%
Gcc -O3 11756 61 0 0 100.00% 100.00% 100.00%
Cactu -O0 3435 17 9 0 100.00% 65.38% 79.07%
Cactu -O1 3262 26 0 0 100.00% 100.00% 100.00%
Cactu -O2 2596 25 0 0 100.00% 100.00% 100.00%
Cactu -O3 2588 25 0 0 100.00% 100.00% 100.00%
Cam4 -O0 4622 2 0 0 100.00% 100.00% 100.00%
Cam4 -O1 4321 2 0 0 100.00% 100.00% 100.00%
Cam4 -O2 4002 2 0 0 100.00% 100.00% 100.00%
Cam4 -O3 4040 2 0 0 100.00% 100.00% 100.00%
Imagick -O0 2962 9 0 0 100.00% 100.00% 100.00%
Imagick -O1 2194 9 0 4 69.23% 100.00% 81.82%
Imagick -O2 2205 9 0 1 90.00% 100.00% 81.82%
Imagick -O3 2282 9 0 0 100.00% 100.00% 100.00%



69

Table 5 .5 : The average of precision, recall, and F1 for the Detector in ICC x64

Precision Recall F1

Detector 87.43% 100.00% 93.29%
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Table 5 .6 : The average precision, recall, and F1 for the Detector in ICC x64

SPEC 2017

Benchmarks
TN TP FN FP Precision Recall F1

XZR -O0 544 5 0 0 100.00% 100.00% 100.00%
XZR -O1 436 5 0 2 71.43% 100.00% 83.33%
XZR -O2 407 5 0 2 71.43% 100.00% 83.33%
XZR -O3 407 5 0 2 71.43% 100.00% 83.33%
Perlbench -O0 3113 31 0 1 96.88% 100.00% 98.41%
Perlbench -O1 2854 31 0 3 91.18% 100.00% 95.38%
Perlbench -O2 2654 31 0 3 91.18% 100.00% 95.38%
Perlbench -O3 2654 31 0 3 91.18% 100.00% 95.38%
Povray -O0 2250 16 0 1 94.12% 100.00% 96.97%
Povray -O1 1917 16 0 3 84.21% 100.00% 91.43%
Povray -O2 1883 16 0 4 80.00% 100.00% 88.89%
Povray -O3 1883 16 0 4 80.00% 100.00% 88.89%
Gcc -O0 26768 61 0 1 98.39% 100.00% 99.19%
Gcc -O1 14864 61 0 3 95.31% 100.00% 97.60%
Gcc -O2 12512 61 0 6 91.04% 100.00% 95.31%
Gcc -O3 12512 61 0 6 91.04% 100.00% 95.31%
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Table 5 .7 : The average precision, recall, and F1 for Detector in GCC x86

SPEC 2017

Benchmarks
TN TP FN FP Precision Recall F1

XZR 549 5 0 0 100.00% 100.00% 100.00%
Perlbench 5111 31 0 0 100.00% 100.00% 100.00%
Povray 2026 16 0 0 100.00% 100.00% 100.00%
wrf 6400 2 0 0 100.00% 100.00% 100.00%
Gcc 26893 61 0 1 98.39% 100.00% 99.19%
Cactu 3279 25 0 0 100.00% 100.00% 100.00%
Cam4 4576 2 0 0 100.00% 100.00% 100.00%
Imagick 2964 9 0 0 100.00% 100.00% 100.00%
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Table 5 .8 : Differences between Detector, TypeArmor, and Hexvasan in Clang x64

SPEC 2006

Benchmarks
Detector TypeArmor Hexvasan Total Number of

Variadic
Functions

astar 1 0 4 0

soplex 0 7 2 0

sjeng 2 0 4 0

omnetpp 20 21 48 20

namd 0 0 24 0

milc 1 3 21 0

mcf 0 0 3 0

libquantum 2 2 91 2

lbm 0 0 3 0

hmmer 2 13 9 2

h264ref 2 16 85 2

gobmk 14 31 35 14

bzip2 1 0 3 0



73

chapter 6

Conclusions and Future Works

This chapter concludes the findings of this dissertation and highlights future work.

Our research goal was to develop a theory and prototype automatic tool called

Detector for identifying variadic functions in stripped binary code of C and C++

programs. Detector uses syntactic analysis and semantic analysis to recognize the

behavior of the variadic functions in the binary code. We used SPEC CPU 2017 and

2006 benchmarks to evaluate Detector compared with other existing tools. By using

measures of precision, recall, and F1, we demonstrate that Detector works better

than the other tools.

6 .1 research contributions

Detecting variadic functions in binary code without existing source code and high-

level information is very difficult. We began our research by reviewing the existing

binary analysis tools to be aware of methods for analyzing stripped binary code. We

designed Detector to statically recognize variadic functions in stripped binary code.

That means Detector does not need to execute the program to check the variadic

functions, so it considers all the paths in the program.

By reviewing existing variadic function detection tools for binary code, we choose

to detect variadic functions in the program with behavior analysis. Detector analyzes

the behavior of the functions to check whether they are variadic functions or not. The

behavior of the variadic functions can be recognized by tracking some patterns of

instructions. These patterns define the main tasks of the variadic functions that are

taking the variable number of arguments and store them on the stack for the caller.

We defined new abstract data representation which lets Detector analyze the

stripped binary code easier. Detector applies syntactic analysis and map processing

which converts all lines of the binary code to our data representation. Detector uses
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semantic analysis to find valid paths of variadic function patterns in our abstract

data representation.

We choose code compiled by GCC, Clang, and ICC compilers as the input to

Detector. Since each compiler has its own organization for compiling the source

code, the patterns of variadic functions are different in these compilers. Detector

assigns a tag for each compiler and defines the path of patterns based on the tag of

the compiler. Detector uses tag identification for recognizing the type of compiler

and architecture. Finally, Detector was compared with two available existing tools,

Type Armor and Hexvasan. We evaluated the number of variadic functions that are

detected by these tools.

For C and C++ source code that was compiled by GCC x64, Detector was only

compared with Type Armor since Hexvasan does not accept GCC compiled code.

The results show that Detector has more accuracy than the Type Armor for recogniz-

ing their variadic functions, with an F1 score of 99.26% compared to 42.11%.

For C and C++ source code that was compiled by Clang x64, Detector was

compared with Type Armor and Hexvasan in both SPEC CPU 2006 and 2017. The

differences between the number of variadic functions of Detector and the real num-

ber of them in the code was less than the other tools, with an F1 score of 97.99%

compared to 44.67%.

For C and C++ source code that was compiled by ICC x64, Detector is the

novel tool which works with this compiler. Both Type Armor and Hexvasan cannot

support the compiled code by ICC x64. Therefore, we compared the results of the

Detector with the exact number of the variadic functions in the source code. The F1

score was 93.29%.

Again for C and C++ source code that were compiled by GCC x86, Detector is

the novel tool that works with this compiler. Both Type Armor and Hexvasan cannot

support the compiled code by GCC x86. Therefore, we compared the results of the

Detector with the exact number of the variadic functions in the source code. The F1

score was 99.90%.
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6 .2 future works

Static and dynamic binary analysis techniques could be combined for detecting

vulnerable variadic functions without accessing the source code. Currently, Detector

can identify variadic functions in binary code which are compiled by GCC, Clang,

and ICC. Detecting the most number of variadic functions in stripped binary code

allows the security team to investigate vulnerable variadic functions with more

accuracy. It also sets the stage for automated analysis and repair. The following

are some future works.

• Ideally, one of the future goals can be designing an algorithm that shows the

list of arguments with their types. This algorithm can be designed by data

flow analysis methods to give us the view of the contract between callee and

caller. The contract between the caller and callee for passing the arguments

is implicit, so misusing the variadic function is an attractive case for attackers.

The attacker can take advantage of this situation and change the number and

type of arguments. This algorithm can help developers to improve the security

of their programs by understanding the number and type of arguments.

• Can we detect if variadic function uses a good boundary check? Variadic

functions are flexible. They allow the caller to pass an unbounded number of

arguments. Designing a boundary check does not let the functions pass more

arguments than the caller wanted. This boundary check makes tolerance for

the number of arguments that are passed between the caller and callee. This

boundary check needs to be designed with dynamic analysis methods since

the number of arguments should be checked at run time.

• Can we use call-site information to find the maximum number of arguments?

Calculating the maximum number of arguments helps to know the locations

where the variadic function’s arguments have been filled on the stack. This area

of the arguments and local variables in the stack should be protective of the

attacker. Since the attacker can read sensitive data from the stack, read data

from anywhere in memory or overwrite function pointers, return addresses,
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and counters. Protecting this location of the stack from the attacker lets variadic

functions send the correct arguments to the other functions.

• If we know it is variadic function, can we pass a new argument as the number

of arguments? Now Detector can find the variadic functions in the programs.

If the number of arguments calculates and reports to the programmer, then the

programmer can follow any sign of a changing number of arguments in the pro-

grams. Some of the variadic functions have been defined by one non-variadic

argument to show the number of variadic arguments. The programmer can

compare the reported number of arguments with this non-variadic argument.

• How we can prevent the attack in vulnerable variadic functions? There are

different types of vulnerabilities for variadic functions such as buffer overflow,

format string attack, or mismatching the number of arguments. The buffer

overflow can happen if the attacker can overwrite extra data on the stack.

Another common vulnerability is a format string attack, which can happen

mostly with printf. As we know, the first argument of printf is the format string.

If the attacker accesses to this argument, which is used to define remaining

arguments, then it is called format string attack. Finally, mismatching vulnera-

bility is the difference of the number and type of the arguments between caller

and callee. The goal is to design a tool to patch these types of vulnerabilities in

variadic functions at runtime. After detecting the vulnerable variadic functions,

the tool can report the type of vulnerability and provide the proper security

mechanisms.

Patching vulnerable variadic functions Variadic functions are attractive for attack-

ers since the contract between the caller and callee is implicit. Therefore, attackers

can change the type or number of arguments in the variadic functions. Future work

involves automatically patching vulnerable detected variadic functions.

• Predicting Vulnerable variadic functions: Predicting Vulnerable variadic func-

tions by using dynamic analysis methods such as reaching definition analysis

and liveness analysis. Reaching definition analysis determines who can assign



77

the value to the variable or memory location, while Liveness analysis lets us

have backward view for following the variables. Through this analysis, we can

detect the source of values to see if they are bounded by the code or not.

• Format string attack: The vulnerability of changing the type of arguments

refers to a format string attack. Finding solutions for detecting format string

attacks in binary code is an important security issues. This attack gives the

attacker the capability to manage and control the program. It can cause chang-

ing the functionality or behavior of the program. Changing the type of the

arguments can be prevented by checking the characters between the arguments

and the output of the function.

• Mismatching the number of arguments: This type of attack can be detected by

counting the byte of arguments in different compilers. Designing the counter

for checking Check the number of arguments passed and used in the program.

The number of arguments can be calculated from the memory address of the

first argument to the last memory address of the local variable.
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