
Automating the Creation of Virtual Educational Environments to Enhance

Cybersecurity and Information Technology Education

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Christopher E. Goes

Major Professor: Daniel Conte de Leon, Ph.D.

Committee Members: Michael Haney, Ph.D.; Axel Krings, Ph.D.

Department Administrator: Frederick Sheldon, Ph.D.

May 2017



ii

Authorization to Submit Thesis

This thesis of Christopher E. Goes, submitted for the degree of Master of Science with a Major in

Computer Science and titled “Automating the Creation of Virtual Educational Environments to Enhance

Cybersecurity and Information Technology Education,” has been reviewed in final form. Permission, as

indicated by the signatures and dates below is now granted to submit final copies for the College of

Graduate Studies for approval.

Advisor:
Daniel Conte de Leon, Ph.D. Date

Committee Members:
Michael Haney, Ph.D. Date

Axel Krings, Ph.D. Date

Department Chair:
Frederick Sheldon, Ph.D. Date



iii

Abstract

Hands-on exercises utilizing virtual environments have been demonstrated as an effective means of

teaching cybersecurity. These exercises are currently built manually by educators, and require significant

time and Information Technology (IT) knowledge. Manual setup also leads to inconsistencies, especially

when sharing or reuse is desired.

ADLES seeks to solve these problems by enabling educators to easily design, specify, and build portable

virtual environments for their courses. This automation, and its associated specification language, can

save significant time and effort and ensures the creation and deployment of deterministic, repeatable,

and shareable instructional environments. In this thesis, the design and implementation of ADLES is

described, and its capabilities are demonstrated using real-world scenarios. In the future, ADLES can

serve as a framework for sharing these environments, possibly through an open-source repository of

pre-built exercises, competitions, and classes, helping schools that lack the resources for high-quality

cybersecurity education.



iv

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Daniel Conte de Leon, for his constant

support and guidance during my graduate studies. His passion for security and teaching, and genuine

care for his students, continues to inspire me.

I would like to thank Dr. Alton Campbell, for his excellent mentorship and guidance during my

undergraduate studies at this University. Without his support, I would not be where I am today.

I graciously acknowledge the support of the National Science Foundation Scholarship for Service

CyberCorp program for their financial support of my graduate studies and a portion of my undergraduate

studies.

Much of this work would not have been possible without the support of the Spring 2017 CS 439

Applied Security Concepts course. I would like to thank them for providing their tutorials and for their

honest feedback during this research.

I would like to thank Victor House for his assistance with running RADICL, helping me hash out

ideas, and setting up the testbeds. I would like to thank Keith Drew, for his valuable feedback and

for keeping me inspired. I am grateful to Antonius Stalick, Zachery Lontz, and the other SFS students

for their invaluable input and feedback while working on this, and to Matthew Brown, for graciously

providing his thesis LATEXtemplate. Finally, I would like to thank Christopher Waltrip, for being one of

the initial inspirations of this work.



v

Dedication
Thank you to my family, for your unconditional and continuous love and support through my college

career. This would not have been remotely possible without you all.



vi

Table of Contents

Authorization to Submit Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Competitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Virtualization Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The RADICL lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 3: Description of the ADLES system . . . . . . . . . . . . . . . . . . . . . . 10

System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 4: Formal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Specification Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . 17

Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Exercise Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Infrastructure Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 5: Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Implementation Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The vSphere Platform Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 32

System Execution using the vSphere Platform Interface . . . . . . . . . . . . . 33

vSphere scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



vii

ADLES Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 6: Example Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Example 1: Penetration Testing Tutorial . . . . . . . . . . . . . . . . . . . . . 37

Example 2: Cyber Defense Competition . . . . . . . . . . . . . . . . . . . . . . 41

Additional examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 7: Application and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Description of Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . 48

Results for Penetration Testing Tutorial . . . . . . . . . . . . . . . . . . . . 49

Results for Cyber Defense Competition . . . . . . . . . . . . . . . . . . . . . . 53

Results for Other Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 8: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Provisioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

EduRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Open Cyber Challenge Platform . . . . . . . . . . . . . . . . . . . . . . . . . 61

NICE Challenge Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

DETERLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Vagrant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

SEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 9: Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Project Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Specification Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

System Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 10: Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix A: Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Appendix B: Exercise Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendix C: Infrastructure Specification . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix D: Penetration Testing Tutorial Specification . . . . . . . . . . . . . . . . 82

Appendix E: Competition Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix F: Network Firewalls Tutorial Specification . . . . . . . . . . . . . . . . . 89



viii

Appendix G: Spoofing Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendix H: Experiment Example Specification . . . . . . . . . . . . . . . . . . . . . 93

Appendix I: vsphere-info Script Source Code . . . . . . . . . . . . . . . . . . . . . . . 96



ix

List of Figures

2.1 Generalized network design of RADICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Server hardware setup of RADICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Overview of how ADLES is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Usage flowchart for ADLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Generic platform interface design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Structure of the contents of an exercise package . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Colored output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Commandline Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 vSphere platform interface design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Network diagram of the penetration testing tutorial . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Network diagram of the cyber defense competition scenario . . . . . . . . . . . . . . . . . . . 42

7.1 Commandline output from pentest tutorial mastering phase . . . . . . . . . . . . . . . . . . . 49

7.2 Commandline output from pentest tutorial deployment phase . . . . . . . . . . . . . . . . . . 50

7.3 Environment results from penetration testing tutorial . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Comparison of master template and one of the generated pentest routers . . . . . . . . . . . 52

7.5 Two examples of generated virtual machines for the pentest tutorial . . . . . . . . . . . . . . 52

7.6 Mastering commandline output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.7 Deployment commandline output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.8 Pre-deployment and post-deployment Masters for the competition . . . . . . . . . . . . . . . 55

7.9 Environment results from competition example . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.10 Comparison of Blue Team gateway template with deployed edge router instance . . . . . . . 56

7.11 Commandline output for network firewalls mastering phase . . . . . . . . . . . . . . . . . . . 57

7.12 Commandline output for network firewalls deployment phase . . . . . . . . . . . . . . . . . . 57

7.13 Commandline output for spoofing mastering phase . . . . . . . . . . . . . . . . . . . . . . . . 58

7.14 Commandline output for spoofing deployment phase . . . . . . . . . . . . . . . . . . . . . . . 58

9.1 Network architecture of an ideal cybersecurity educational laboratory . . . . . . . . . . . . . 66



x

List of Code Listings

4.1 Package Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Package Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Exercise Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Exercise Services - Platform-agnostic configurations . . . . . . . . . . . . . . . . . . . . . 23

4.6 Exercise Services - Platform-dependent configurations . . . . . . . . . . . . . . . . . . . . 23

4.7 Exercise Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.8 Exercise Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.9 Exercise Parent Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.10 Exercise Base Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.11 vSphere Infrastructure Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.12 Docker Infrastructure Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.13 Other Infrastructure Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Script Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Pentest Tutorial - metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Pentest Tutorial - groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Pentest Tutorial - services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Pentest Tutorial - networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Pentest Tutorial - student-workstations folder . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 Pentest Tutorial exercise-environment folder . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.7 Competition - groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.8 Competition - services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.9 Competition - networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.10 Competition - external folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.11 Competition - blue-team folder - hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.12 Competition - blue-team folder - web services . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.13 Competition - red-team folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.1 Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.1 Exercise Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.1 Infrastructure Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.1 Penetration Testing Tutorial Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xi

E.1 Competition Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

F.1 Network Firewalls Tutorial Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

G.1 Spoofing Tutorial Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

H.1 Experiment Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

I.1 vsphere-info script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xii

List of Acronyms

ADLES Automated Deployment of Lab Environments System

AD Microsoft Active Directory

API Application Programming Interface

CCDC Collegiate Cyber Defense Competition

CDC Cyber Defense Competition

CTF Capture the Flag

CS Computer Science

FOSS Free and Open-Source Software

ICS Industrial Control System

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

NSA National Security Agency

NIST National Institute of Standards and Technology

NICE National Initiative for Cybersecurity Education

NIC Network Interface Card

NSF National Science Foundation

OS Operating System

OCCP Open Cyber Challenge Platform

OVF Open Virtualization Format

PRCCDC Pacific Rim Collegiate Cyber Defense Competition

PyPI Python Package Index

RADICL Reconfigurable Attack-Defend Instructional Computing Laboratory



xiii

SDK Software Development Kit

VM Virtual Machine

VMI Virtual Machine Introspection

VLAN Virtual Local Area Network

VMOMI Virtualization Management Object Management Infrastructure

YAML YAML Ain’t Markup Language



1

Chapter 1: Introduction

If we adopt a picture that ignores practice, our field (computing) will end up like the failed

”new math” of the 1960s - all concepts, no practice, lifeless; dead. - Peter Denning

Cybersecurity is a broad and rapidly changing field. That nature has historically made it difficult to

teach effectively using traditional educational methods. The explosion of innovation and communication

ability in the past decade, and the resultant threat landscape, has posed many new challenges that these

methods were ill-equipped to deal with. The continued prevalence of vulnerabilities in software and

systems[27, 60, 54], combined with a shortage of skilled security workers[40, 61], underscores the need

for security education to be more tightly integrated into Computer Science and Information Systems

curricula[49, 16]. Hands-on methods of education are well known as an effective means of teaching and

training.[32, 39, 57] Their application to the teaching of cybersecurity in recent years has shown great

promise[14] in tackling this lack of integration.

1.1 Problem

Teaching cybersecurity effectively using hands-on methods requires secure, dynamic, and reproducible

virtual environments[29, 45]. At present, creating these environments is difficult, requiring specialized

Information Technology (IT) knowledge and significant amounts of time and effort[58]. They are often

limited to the platform they were created on, making it difficult or impossible to share with other

institutions, leading to duplication of work. Lessons can be difficult to reproduce in the same way

semester after semester, let alone shared with other educators or students. Finally, the mapping of

curricula learning outcomes or objectives to the environments created is often complicated or unclear.

These issues are due to the setup process being non-deterministic. This makes it difficult to re-create

the exercise in subsequent semesters if the original environment is lost, and for any research done using

the exercise to be replicated. Moreover, last-minute changes to deployed environments are effectively

impossible, as any change requires applying the change to all of the systems deployed.

The difficulties in the exercise setup process mean security and safety often become secondary con-

siderations. Educators, system administrators, and students take shortcuts to get things to ”just work,”

possibly jeopardizing security (Psychological acceptability). Additionally, due to knowledge gaps and

lack of experience, implementations are often imperfect, raising further safety and security concerns for

educational networks and IT resources.

For classes that require students to make their own tutorials, excessive amounts of time (dozens of

hours) are spent on environment setup, detracting from learning. For competitive environments, that



2

usually have large and complicated networks, setup time can be in the thousands of hours. Finally,

grading and scoring these environments is very difficult, and it is often simple for students to cheat.

1.2 Solution

The approach to solving this problem is twofold: the creation of formal specifications to describe

virtual educational environments and the development of a system to create the environments described

by the specifications.

The objectives of this approach are as follows:

• Reduce the need for educators to be specialized in IT to teach using hands-on methods.

• Reduce the time and effort of environment setup by automating workloads and providing a user-

friendly interface.

• Introduce determinism to improve the repeatability and research quality of hands-on educational

methods and improve mapping of curricula to the created environments.

• Improve portability of environments, in order to facilitate the building of a collaborative security

education community.

• Maintain flexibility and extensibility to accommodate future requirements.

• Maintain platform independence where possible, and ensure supporting additional platforms is

relatively painless.

• Improve the data collection capabilities of educators. This aids educators ensure that educational

objectives are being met, mitigates issues such as cheating and academic dishonesty, and provides

definitive and reliable results when conducting research.

Since a deterministic model is one in which there is no randomness involved in the development of

future states of the model, a created virtual learning exercise should always produce the same environment

(satisfying the desired learning objectives) from a given starting condition or initial state. It then follows

that this initial starting state should be a formal specification of the environment that will be produced.

To accomplish this for virtual educational exercises, three formal specifications were developed: the

package specification, the exercise specification, and the infrastructure specification.

Complementing and implementing the specifications is the Automated Deployment of Lab Envi-

ronments System (ADLES), a platform-independent system using self-contained exercise ”packages” to

automatically and deterministically create virtual environments. Using these specifications and ADLES,



3

an educator can easily build the environments they require for a tutorial or competition, and be able to

share what they have created with other educators at their school or in the academic community.

1.3 Thesis Overview

Chapter 2 describes the two types of hands-on cybersecurity educational exercises ADLES is being

designed to support, tutorials and competitions. It also provides some background on virtualization

technologies, including provisioning systems, and describes the target environment, the Reconfigurable

Attack-Defend Instructional Computing Laboratory (RADICL) lab.

Chapter 3 discusses requirements for the system and describes the design of ADLES and its components,

including the deployment phases, platform-independent interface, and specification parser.

Chapter 4 describes the three formal specifications in detail. These include the package specification, the

exercise specification, and the infrastructure specification.

Chapter 5 discusses the implementation of ADLES. This includes implementation choices such as pro-

gramming language, the vSphere interface implementation, and the development process.

Chapter 6 describes in detail two primary example scenarios used to test and demonstrate the system’s

capabilities: a hands-on penetration testing tutorial and a cyber defense competition. Additionally, it

briefly discusses three additional examples: two tutorials, and a research experiment.

Chapter 7 briefly describes the testing environment, then presents and discusses the results of using

ADLES to generate the examples on those testing environments.

Chapter 8 discusses related works that are solving similar problems, some of their limitations, and com-

pares several to ADLES.

Chapter 9 discusses future work for ADLES, including the project’s ”grand vision”, expansions of the

specifications, new platforms the system could support, and next steps for improving and expanding upon

the work done in this thesis.

Chapter 10 summarizes and concludes the thesis.



4

Chapter 2: Background

I hear and I forget. I see and I remember. I do and I understand - Confucius

Hands-on cybersecurity educational exercises teach students important security concepts by allowing

them to experience how these concepts are applied in practice. These exercises are usually performed

on Virtual Machines (VMs) created by an instructor, running on a workstation or a shared virtual

environment. During an exercise, students access the VMs and perform tasks as they would on normal

systems.

2.1 Tutorials

Tutorials are a structured approach to hands-on cybersecurity education. They generally begin with

a short background on the topic of the tutorial, followed by a series of tasks students perform. The level

of guidance and instruction during the task phase varies by tutorial and instructor. Grading is typically

done using lab reports on or direct verification of the results of actions performed by students during the

tutorial.

Typical examples of tutorials include the following:

• Write rules for the Snort intrusion detection system to detect an Nmap port scan and a directory

traversal in a URL[65].

• Perform a Cross-Site Request Forgery attack on a vulnerable application, then implement mitiga-

tions for the attack[23].

• Learn how the Set-UID security mechanism works in Linux, exploit an improper use of it, and

implement proper use of it[24].

• How to use Microsoft Active Directory (AD) and Group Policy management tools to manage the

security of Windows workstations on network. Students implement safe password policies, configure

workstations to be secure, and lock down applications that run on the workstations[41].

2.2 Competitions

Competitions are a less structured, ”real-world” approach to cybersecurity education. Common ex-

amples are Capture the Flag (CTF) and Cyber Defense competitions. These are usually run on a shared

server or a virtualized environment that students log in to. Scoring is performed by awarding points for

solving problems, maintaining availability of services, or preventing attacks.



5

The following are some real-world examples of these competitions:

• PicoCTF: Traditional CTF geared toward high school students. Consists of a series of security

problems to solve that are assigned point values[12].

• OverTheWire: Publicly accessible website and Linux server that has sequences of challenges to

overcome. Problem difficulties range from solving Caesar Ciphers to exploiting the Linux kernel[15].

• CCDC: The Collegiate Cyber Defense Competition (CCDC) is an attack/defend scenario-based

exercise that emulates a real business IT network with a wide variety of systems[11]. Students

(the Blue team) have to defend this network against experienced attackers (the Red team), while

preserving up-time for their services and performing business tasks (”injects”) throughout.

• TracerFIRE: Forensic and incident response exercise that simulates an industrial complex network,

including typical business IT systems and Industrial Control Systems (ICSs). Malware from real-

world cyber attack or espionage campaigns and physical models of the complex are utilized to add

realism to the exercise[1].

• ThunderBird Cup: Cybersecurity awareness exercise for 6-12th grade students that utilizes a com-

bination of training and competition over the span of a three-day workshop[43].

• DEFCON: World-renowned annual CTF competition hosted by the infamous hacker conference.

Consists of teams attacking services and solving challenges to get flags, while also sabotaging the

other teams attempting to do the same[18].

2.3 Virtualization Platforms

Historically, networks were emulated using large numbers of physical machines connected in a tangle of

cables to numerous switches with complicated configurations[44]. This was unwieldy and expensive, to say

the least, and changing configurations was notoriously difficult. Today, Virtualization technology enables

these emulations of networks to be performed on a single physical server.1There are a number of platforms

that provide this technology, including the open-source Xen and KVM, and proprietary Microsoft Hyper-

V and VMware vSphere. The capabilities of these platforms to dynamically create realistic networks

of machines with limited hardware resources makes them ideal for conducting cybersecurity and IT

educational exercises. As a result, almost all hands-on cybersecurity educational exercises developed in

the past decade have utilized virtualization to some extent, with many being completely virtualized.

1Virtualization technology is a complex subject that is beyond the scope of this thesis to discuss in depth. Refer to
Barham[5] for an introduction to the modern techniques and technologies used in this thesis.



6

The VMware vSphere Platform

VMware vSphere is a robust virtualization platform with a broad range of capabilities. Notably, these

include emulation support for most x86-based Operating Systems (OSs), saving and recovery of a VM’s

state at any point in time using snapshots, virtual networking, and abstraction of hardware resources

using host clustering and storage networking technologies. VMs on the platform are essentially the same

as their hardware counterparts, and can be configured with networking, video, sound, etc. Access to the

platform is provided through a web or workstation-based graphical interface, or programmatically through

the Virtualization Management Object Management Infrastructure (VMOMI) Application Programming

Interface (API).

The ESXi hypervisor, also known as ”the host,” runs on server hardware (”bare metal”) and provides

the virtualization capabilities of vSphere. These hosts generally do not have their own storage, instead

relying on abstracted hard disk arrays known as Datastores. At the heart of the platform is the vCenter

server, which enables centralized management of the platform through a unified interface and the VMOMI

API. Using vCenter, hosts and Datastores can be grouped into Clusters, which enable effective use of and

load balancing between hardware resources. Finally, these Clusters and individual hosts and Datastores

can be grouped together into Datacenters[35].

Cloud Platforms

Cloud platforms are services that provide Internet-accessible virtualization resources for a nominal fee.

Some examples include Microsoft Azure, Amazon AWS, DigitalOcean and the Google Cloud Platform.

Due to intense competition between the providers the past several years, the cost to use these platforms

has become very economical. This opens up new possibilities for schools without the resources, money,

or technical expertise to build out their own infrastructure. These schools, using a system like ADLES,

would only have to pay for time spent conducting exercises on a cloud platform, enabling educational

exercises that would otherwise not be possible under constrained budgets.

Provisioning Tools

Configuration of newly created VMs is often done using provisioning and configuration management

tools, known as ”provisioners”, that automate the configuration of a system to match a given specification.

Some examples of these are Ansible[2], Puppet[52], and Chef[13]. Configuration is accomplished using

either a specialized software agent that runs on the system being configured (Puppet, Chef) or common

tools already included with the system (Ansible). ADLES can utilize these provisioners to perform



7

configurations of services in lieu of a user.

Some provisioners also have the ability to manage and create virtualization infrastructure, such as

VMware vSphere VMs or Docker containers. Unlike ADLES, their configurations are fairly complex and

generally not platform-agnostic. Refer to Chapter 8 for further discussion of this.

2.4 The RADICL lab

The Reconfigurable Attack-Defend Instructional Computing Laboratory (RADICL) is a cybersecurity

educational lab created in 2004 by the University of Idaho Computer Science (CS) department[10, 9, 42].

Since then, it has gone through a number of iterations that improved its capabilities by utilizing new

technological advances, the most recent of which was in 2014. Its primary objective is to provide the

ability for students to do exercises and experiments in a safe, controlled, and isolated environment. It

is utilized by several cybersecurity courses at the University for hands-on exercises, and is the type of

environment that ADLES is designed to assist.

Figure 2.1: Generalized network design of RADICL

Software

RADICL fully emulates real networked computing environments through virtualization technology

using the VMware vSphere platform described in the previous section. Instructors can set up and run

hundreds of networked VMs that can be accessed by dozens of students simultaneously during an exercise.



8

These VMs run on one of two sides of the lab: the isolated Red, and the Internet-connected Blue. Red is

isolated from Blue, preventing mistargeted attacks or malware from affecting the University network or

the Internet at large. As part of this isolation, students access the environment from the Purple network

using specialized ”thin clients” that run only the software needed to access the environment, with no

access to the Internet. Additionally, lab infrastructure, including routing, AD, DHCP, DNS, and other

services, is completely virtualized, further improving isolation.

Hardware

The lab is built on exclusively Dell hardware and resides in a single half-height portable server rack

(See figure 2.2). The Blue and Red sides of the lab each have their own Dell VRTX chassis with two

servers and a number of storage drives, as well as a Dell R310 blade server that hosts the infrastructure

VMs for that side. Blue side’s VRTX has a Dell M630 and a Dell M520 server, while Red side has two

M520 servers. Purple’s infrastructure is housed on the R310 between Blue and Red. Each VRTX has 32

physical and 64 logical cores across the two servers and four processor sockets, giving the lab a total of 64

physical and 128 logical cores of computation power. In addition, each chassis has 192GB of RAM, for

a lab total of 384GB. Each side has approximately 7TB of RAID 10 redundant shared storage that can

be used for storing OS images, VM templates, and payloads for exercises. Finally, networking between

devices in the lab is done using a Pica8 Layer-3 managed switch, featuring 48 Gigabit Ethernet ports, and

four 10G fiber sockets. These hardware capabilities enable the lab to effectively run most cybersecurity

exercises, with limitations only recently beginning to be reached.

The thin clients students use are low-spec Dell WYSE machines that connect to the Pica8 switch to

access the Purple network. Each client has two 24-inch monitors, allowing students to work in both sides

of the lab simultaneously. In fact, the common use case is to have exercise materials pulled up in an

Internet-connected Blue-side VM on one monitor while performing exercises in Red on the other monitor.

Additionally, the lab is equipped with two 60-inch wide-screen HDTVs, enabling instructors and students

to effectively teach concepts or walk through tutorials. Finally, all equipment in the lab, from the servers

to the thin clients, is attached to backup batteries. This provides protection from surges, brownouts, and

blackouts, and ensures lab activities are not impacted by power issues.

Usage

During the current semester, RADICL is used to teach two CS courses at the University: CS 439/539:

Applied Security Concepts in the Spring, and CS 499/502 Cyber Defense I/II in Fall/Spring. CS 439

consists of hands-on tutorials constructed by students covering a wide range of security concepts, while



9

Figure 2.2: Server hardware setup of RADICL

CS 499’s focus is on learning how to secure diverse systems in preparation for the Pacific Rim Collegiate

Cyber Defense Competition (PRCCDC). Out of the two, CS 439 is the heaviest user, with two-hour

tutorials two days a week. These tutorials often involve potentially dangerous activities, such as exploiting

vulnerabilities in systems or handling malware, and therefore are run on the Red side of the lab.

The average tutorial takes a significant amount of time to prepare. According to students who use the

lab, this preparation time varies from 10 to 40 hours for a team of two students, including research time,

experimentation, and creation of the exercise. This has led to students being in the lab during other

meetings and classes, late hours, over weekends, and even during academic breaks. There are a number

of factors causing this, including manual creation and deployment of environments, and configuration of

networking for environments. Additionally, these issues are compounded by student’s (understandable)

lack of knowledge about vSphere, especially at the beginning of the semester. ADLES is intended to

help address these issues through the use of automation by reducing the amount of esoteric platform

knowledge students must know to create these environments, and significantly reducing the time spent

on deployment and configuration.



10

Chapter 3: Description of the ADLES system

The ADLES system requirements, design, and components will be explained and discussed in this

chapter. This includes an overview of how the system works from the perspective of its users and how

the specifications play into the system operation, laying the groundwork for Chapter 4’s description of

the specifications themselves.

3.1 System Requirements

The system requirements serve to codify in software terms what is outlined in the objectives discussed

previously. They are the following:

1. Deterministic. Specifications should build the same environment every time, regardless of platforms

used. Furthermore, the same specification should be able to tear down and cleanup an environment,

even if the creation was performed from a different workstation with a different version of the system.

2. Platform-agnostic. The system should be able to interface with multiple different platforms in the

same manner. Likewise, the system should be able to run on a wide variety of systems, and not be

locked to a specific OS. Both of these improve the portability and versatility of the system.

3. Versatile. New functionality should be straightforward to add to the specifications and implement in

the system. Components should be modular and loosely coupled, so they can be added or removed

as needed.

4. Portable. Sharing of packages and their components with others should be relatively easy to do. This

facilitates improvement and reduction of repeated work through ease of collaboration. Educators

and students can generate new ideas, build on existing ones and fix bugs, enabling a cohesive

community around hands-on cybersecurity education.

5. Self-contained. All the components to build and run an exercise using the system should be able to

be packaged into a single compressed file or Git repository. This is closely related to the portability

requirement, as requiring external dependencies (that a user may not have access to) greatly hinders

the portability of the system.

6. User-centric. The system should abstract away unnecessary details for students/instructors, while

retaining their ability to customize and fine-tune if desired.

7. Data-aware. The system should be aware of data being generated by an exercise, and make efforts



11

to ensure it is preserved intact. This is critical for grading student work, scoring competitions, and

conducting accurate research.

3.2 System Design

Figure 3.1: Overview of how ADLES is used

The ADLES is designed from the ground-up to be platform-agnostic, extensible, and user-friendly.

The idealized version of the system workflow is the following:

1. The instructor writes and inputs an exercise specification into the system.

2. The system interacts with virtualization platform(s) to create the exercise.

3. Students access the virtual environment running on the platform(s) and conduct the exercise.

4. The system saves results from the exercise upon its conclusion.

5. The system cleans up the environment and frees platform resources.

In practice, this process looks a bit different. The creation of an environment is done in two phases:

the Mastering phase, and the Deployment phase. During the Mastering phase, Master instances of the

base services that will be used in the final environment are created and configured. This configuration

is performed by the educators putting together the exercise or a provisioning system such as Ansible.



12

These instances are then used during the Deployment phaseto build (”deploy”) the exercise environment.

Therefore, changes to a deployed environment simply require un-freezing the Master instance(s), making

the change, and re-running the deployment phase.

Figure 3.2: Usage flowchart for ADLES

The complete process flow of the system, then, is the following:

1. Instructor writes the exercise specifications and inputs them to the system running on a machine

with network access to the platforms desired.

2. System reads the specifications and validates their syntax and semantics.

3. System instantiates the platform interfaces for the platforms defined in the specifications.

4. System creates Master instances on the platforms.

5. Instructor (or a provisioning system) configures the Master instances.

6. System verifies and freezes the Master instances.

7. System uses the Master instances to deploy the full exercise environment on the platforms.



13

8. Students access the environment and perform the exercise.

9. System saves results from the exercise, log files from system operation and the Master instances, if

desired.

10. System cleans up the environment and frees platform resources.

3.3 System Components

ADLES is made up of a number of components that are used to perform the process described in the

previous section. These include parsing and syntax validation, interacting with platforms in a generalized

manner, saving the results of exercises, and cleaning up of environments post-exercise.

Parsing and Syntax Verification

The validation component of ADLES handles parsing and validation of an exercise specification’s

syntax, and verification of any files or other content needed for the exercise. Humans are fallible, and

even cybersecurity educators make mistakes. The purpose of the syntax checker is to both ensure these

mistakes are caught before an environment is deployed, and aid those new to the specification syntax by

providing a way to check if what they made is canonical.

The Platform Interface

The PlatformInterface class is a generic API that is used to interact with infrastructure platforms

in a generalized and consistent manner. This abstraction separates the core logic of ADLES from the

platform implementations by providing a small set of well-defined interface functions.

These interfaces contain only the logic needed to implement the functions they provide, such as the

creation and destruction of environments. In order to preserve this purity of logic, platform management

and interfacing is done through specialized platform wrapper classes. These classes provide an abstraction

”wrapping” the low-level API for a given platform, reducing the complexity of the interface logic and

improving the ability to add new interface functionality. They manage platform state, handle errors,

and provide the interfaces with methods to perform the necessary environment creation actions on the

platform.

At initialization, the PlatformInterface ingests the parsed infrastructure specification, initializes of any

user groups that are required, and initializes the platform-specific interfaces using the specification and

groups. Once initialized, the application can call the desired functions presented by PlatformInterface,

and it will dutifully make the requested call to each platform-specific interface it has instantiated.



14

One advantage afforded by this design is the ability to easily extend the platform’s functionality. For

instance, to add the ability to freeze an in-progress exercise, a function ”freezeExercise()” can be added

to a platform’s interface. Then, this functionality can be utilized by a new entry-point, the addition of a

command line argument to the main entry-point, or by a extension to the exercise specification.

Figure 3.3: Generic platform interface design

Saving Results

The system is designed to be able to accurately save the results of exercises. These results are packaged

and included with the other exercise materials in the package. When the results are later examined, all

the components that were used in the generation of them are already present and accessible, making the

mapping from a given result, to the object that produced it, relatively simple and straightforward.

There are a variety of methods that could be used for result collection. An additional network

interface could be added to VMs and attached to a network isolated from the exercise, for the purposes

of aggregating logs to a centralized logging server. Virtual switches could be set to promiscuous mode,

and the resulting network capture data saved. System calls performed by the VMs could be captured



15

and saved using Virtual Machine Introspection. While not all of these methods will be implemented, the

system is designed to be able to accommodate them without requiring significant modifications.

Logs from application runs are sent to a centralized logging server, such as Splunk or ELK, or a local

system logging interface. This protects the logs from tampering by students or instructors, as system

utilities or logging servers are usually subject to strict access controls, and enables analysis using existing

logging tools. If the system is installed properly, users should not be able to modify the its code without

administrator privileges, preventing tampering with the logging system and contamination of its output.

The purpose of this is two-fold: to fulfill the requirement of keeping a complete and unaltered history of

a given run, and to aid users and platform administrators in debugging issues with the system.

Cleanup

Cleanup is involves shutting down and removing any instances, networks, files, or other materials

created by the deployment of or during an exercise. The cleanup process can be run from any workstation

with network access to the platforms and requires only the specification used to generate the environment.

This makes the instructors’ task of freeing up resources after the completion of an exercise far less daunting

and time-consuming. Furthermore, the automation ensures only the objects used for the exercise are

removed, preventing the occasional accidental deletions done by tired instructors after a long day of

teaching.



16

Chapter 4: Formal Specifications

Virtual educational environments should be described in a formalized manner that is repeatable,

portable, extensible, and approachable. These desired characteristics should be like the blueprint of a

building, and ideally as rigorous as one. Therefore, the requirements for the specification design are as

follows:

1. After reading the description of an environment, it should be simple to determine what will be

built, with the sole purpose of ADLES being to manifest the environment defined.

2. The description should be able to be shared easily, read by anyone with a basic text editor, and

annotated in a users’ native language.

3. Addition of new features should be straightforward and able to be done in such a way that the

extensions do not impact the base functionality of systems not running the extensions.

4. The description should be defined in such a way that anyone with basic technical background can

both understand the syntax and be able to write a new description for a environment without

specialized knowledge or training.

There are many excellent examples of this sort of specification, two of which are Docker Compose[22]

files and Ansible Playbooks[3]. Docker Compose files describe the setup of a web-based application

in terms of its services, networks, and storage volumes. Anyone that reads it can easily determine

what will be created, thanks to its concise syntax and the ability to add human-readable labels and

names, so the only purpose of running Docker Compose on the file is simply to manifest the environment

described. Ansible Playbooks work in a similar manner, using a declarative syntax to describe the

desired configuration. They differ in that Playbooks are specialized for provisioning systems, regardless

of hardware or virtual platform they are running on. This difference is most notable in the concepts

of user-specifiable ”tasks”. These enable customization and extensibility of the Playbook for specialized

usages without having to modify Ansible’s code, adding flexibility to the language and system.

Both of these examples are easy to share, requiring only the file and the tool to generate the environ-

ment. They are also both based on YAML Ain’t Markup Language (YAML). YAML[6] was selected as

the base language for the specifications for similar reasons the previous two examples were: it’s human-

friendly, it’s ubiquitous, and it’s portable. Since its syntax is similar to that of many programming and

scripting languages, technical students should be able to use it without having to learn yet another lan-

guage. High-quality and well-supported parser implementations exist for many programming languages,



17

improving portability of the specifications to systems other than ADLES.1

This ideal description is the guidance for the development of the specifications for ADLES. There are

three primary specifications that were developed:

• The Package specification, which describes the contents of a ”package” and contains metadata for

the package itself.

• The Exercise specification, which describes the virtual environment for an educational exercise.

• The Infrastructure specification, which describes the hardware and software infrastructure that will

be hosting the environments.

The specification descriptions that follow contain selected portions of the specifications being dis-

cussed. For the full specifications, refer to the appendices or the ADLES project repository[33].

4.1 Specification Syntax and Semantics

Labels

Labels are given for each semantic component as a comment in a specification. Children do not have

to be specified if their parent is not required or defined. If no label is given, then context will determine

label. The labels for components are as follows:

• REQUIRED : Must be defined. Not doing so is an parse-time error.

• Suggested : Should be defined. Not doing so will result in a parse-time warning.

• Optional : Does not have to be specified.

• Option X : One of the options specified at that level of nesting must be defined, ’X’ being the

identifier for that option. Not doing so is a parse-time error.

Extensions to the Specifications

Extensions are relatively simple to implement for most aspects of the specifications. Simply add the

desired functionality to the specification, increase the version number, and provide an example using the

new functionality. Since the version number of each specification is tracked using Semantic Versioning[51],

the extension writer only has to state what version of the specification had the extensions added when

1YAML 1.1 is used due to lack of support for 1.2 by PyYAML’s underlying C library, LibYAML[59]. However, since
YAML 1.2 only adds full JavaScript Object Notation (JSON) compatibility, the trade-off is acceptable[26].



18

instructing users about their extension. Additionally, most of the configurations can be extended without

breaking other versions or implementations of ADLES. Anything that is not required or supported by a

given version or implementation will simply be skipped over, providing backward compatibility. Refer to

Future Work (Chapter 9) for examples demonstrating the extensibility of these specifications.

4.2 Package Specification

The package specification describes the contents and layout of an exercise package. This ”exercise

package” is a self-contained bundle of the elements needed to run an educational exercise. The only

required component is the environment specification, any further contents will vary by exercise. In

practice, this package is a directory consisting of various files and sub-directories. To share the package,

the package itself and its sub-directories can be recursively compressed into a single small file using any

number of free compression tools. The package structure and elements can be seen in figure 4.1.

Figure 4.1: Structure of the contents of an exercise package

There are three main directories in an exercise Package: results, materials and templates. The results

directory is used to contain results from exercise runs. Each time the exercise is run, results are saved

and timestamped with the time and date the exercise was begun. These results can be used for research

purposes, as well as to formulate improvements of future exercises. Additionally, they can be included

when sharing the exercise, enabling others to view and compare the results with their own runs of the



19

exercise. The materials directory holds any materials needed for the exercise, such as scripts, tutorial

walk-throughs, task ”injects” for a competition, or presentation materials. Finally, the Templates direc-

tory contains templates needed for the exercise’s services. These can include vSphere VMs in the Open

Virtualization Format (OVF), Docker images, Dockerfiles, and virtual disks. It can also contain scripts

used for configuration provisioners (e.g Puppet or Ansible) and payloads used for some competition task

”injects” (e.g a malicious or obfuscated binary).

Package Metadata

The metadata section describes metadata for the package as a whole. The two required fields are the

timestamp and the tag. Timestamp is the date the package was created and tag is unique tag for the

package, e.g ”uidaho-cs439”. They are required to provide a uniqueness property to differentiate packages

with similar names and purposes. For example, it would be easy to confuse two tutorials published by

different institutions named ”Nmap Tutorial” without a uniqueness property. version

25 metadata:

26 timestamp: "date" # REQUIRED Date package was created in UTC

↪→ format: YYYY -MM -DD

27 tag: "tag -name" # REQUIRED Unique identifier for this package

28 name: "name of package" # Suggested Human -readable name for the

↪→ package [default: filename]

29 description: "description" # Suggested Human -readable detailed

↪→ description of package

30 version: "0.0.0" # Suggested Semantic version of the

↪→ package: major.minor.bugfix

Listing 4.1: Package Metadata

Package Contents

The contents section is where the contents of an exercise package are defined. The only required

element is the exercise environment specification. Beyond that, there are a number of possibilities,

depending on the desired exercise package layout as discussed earlier. Also, note that configurations made

at the ”package level” will override configurations made elsewhere. For instance, while the infrastructure

configuration file for a exercise can be specified in the exercise file itself, it will be overridden by the the

one specified in the package.



20

32 contents:

33 environment: "enviro -spec.yaml" # REQUIRED Name of the file

↪→ containing the environment specification

34 infrastructure: "infra -spec.yaml" # Suggested Infrastructure

↪→ configuration (This can be specified in environment spec as well)

35 scoring: "scoring -criteria.yaml" # Suggested Scoring criteria (This

↪→ can be specified in environment spec as well)

36 results: "path/to/dir" # Suggested Relative path to directory

↪→ containing: Network PCAPs , Collected logfiles , Quiz/test results ,

↪→ Scoring results , Student & Instructor feedback , and Chat Logs

37 templates: "path/to/dir" # Suggested Relative path to directory

↪→ containing: VM OVFs , Docker Images/Dockerfiles , provisioning

↪→ scripts/packages , other payloads

38 materials: "path/to/dir" # Suggested Relative path to directory

↪→ containing: presentations , exercise scripts , instructions/guides/

↪→ documentation

Listing 4.2: Package Contents

4.3 Exercise Specification

The exercise specification is the format used to describe the virtual environment for an educational

exercise. It defines and describes all aspects of an educational exercise, such as a competition or tutorial.

Some examples are the instances that make up the exercise, user permissions and access to instances or

resources, the number of instances, and network connections.

There are a few things to note about the specification. Instances is assumed to be one unless specified

otherwise, and cannot be negative or zero. The top-level definitions that will be described are only

required if used. For instance, if there is no networking or resources required for a given exercise, the

networks and resources sections do not have to be specified.

Metadata

Name is the human-readable name of the tutorial. Description is a short human-readable description

of what the tutorial will be doing. Activity is the name of the class that the tutorial is for, in this case

CS 439. The prefix is a concatenation of the course number, the tutorial round, and the tutorial number,

and will be used to uniquely identify this course from others in the same class or different classes when

needed on a given platform. The version is the current Semantic Version of the tutorial. Examples of

minor revisions are changes such as editing configurations or removing notes, and bug-fix revisions are

changes to comments or wording of descriptions. The folder-name specifies the path to the folder where

the tutorial should reside on the environment. This path will be generated if it does not yet exist in

the environment. Finally, since the metadata for all of the examples is roughly the same, it will not be

discussed in the next two examples.



21

The Metadata section is composed of metadata and configurations for the specification. The important

features are the name, a globally unique prefix to distinguish the exercise from others on the same

infrastructure, and the infra-config, which contains the infrastructure configuration. In the future, if the

infrastructure configuration file is specified in the package, then specifying it here is redundant and not

required.

57 metadata:

58 name: "name" # Suggested Human -readable title for the

↪→ specification [default: filename]

59 description: "description" # Suggested Human -readable detailed

↪→ description of the specification

60 activity: "the activity" # Optional The activity the

↪→ specification is being used for , e.g "CS 439" or "PRCCDC"

61 prefix: "GLOBAL -PREFIX" # REQUIRED Globally unique prefix that

↪→ distinguishes this exercise ’s environments from others on the same

↪→ infrastructure

62 date -created: "date" # Optional UTC format: YYYY -MM -DD (

↪→ Example: 2016 -10 -12)

63 version: "0.0.0" # Suggested Semantic version of the

↪→ document: major.minor.bugfix (Refer to: http :// semver.org/)

64 infra -file: "filename.yaml" # REQUIRED YAML file

↪→ specifying the infrastructure used to create the exercise

↪→ environment (See: infrastructure -specification.yaml for syntax)

65 folder -name: "/Path/To/Folder -Name" # Suggested Path of the folder

↪→ that will contain the exercise , relative to root defined in the

↪→ infrastructure configuration

Listing 4.3: Exercise Metadata

Groups

The Groups section consists of definitions of user groups, such as instructors, students, and competitive

teams. The definitions are used to apply permissions and restrict access to the resources and machines

in the generated environment. There are two types of groups: regular and template.

Users for regular groups can be specified using an AD user group, a JSON file containing the users,

or a simple list of the users. Since only permissions are being applied, passwords are not required, but

can be added if a given platform or an extension requires it.

Template groups are batch groups created from a common template base, and are usually used for

teams in a competition or for group work in a class. The number of group instances must be specified,

and users can only be specified using AD groups or file names.



22

71 groups:

72 Group Regular Example:

73 # The three different methods of specifying users for a regular

↪→ group

74 ad -group: "Users" # Option A AD group must exist

75 filename: "a-file.json" # Option B File format: specifications/user

↪→ -json -specification.json

76 user -list: [ "user -a", "user -b" ] # Option C List of usernames

77

78 # For creating batch groups from a common template base , the "template

↪→ " type can be used

79 Group Template Example:

80 instances: 10 # REQUIRED Number of groups created from

↪→ this template. This marks a group as a template.

81 ad -group: "Group [X]" # Option A ’[X]’ is the instance number. AD

↪→ group must exist

82 filename: "users.json" # Option B File format: specifications/user

↪→ -json -specification.json

Listing 4.4: Groups

Services

Services are the instances that will be created in the exercise environment, such as hosts, servers,

and routers, and are defined in the services section of the specification. These definitions serve as the

primary point of configuration for the services being instantiated in the folders section. Each definition’s

configurations are based on the platform being targeted. While some configurations are shared between

services regardless of platform, most are dependent on the platform being configured. It should also be

noted that multiple platforms cannot be configured for a service. The increase in complexity for the

common use case that this imposes was determined to not be worth the minor gain in flexibility. The

same outcome can be accomplished by defining multiple instances of a service, one for each platform, and

simply changing which one is used prior to environment creation.

The following configurations are shared between platforms: network interfaces, notes, provisioner, and

resource-config. Network interfaces is a list of networks and their optional configurations, with the actual

interface configuration being done ”under the hood” per-platform. Notes are human-readable annotations

that can be added to a service, such as the default password used to access that service. Provisioner is

the specification of a provisioning tool, such as Puppet or Ansible, and its configuration for that service.

Resource-config enables configuration of resources allocated to the service, including number of CPU

cores, amount of memory, and amount of disk storage space. If more platform-agnostic configurations

are desired, they can easily be added, provided the requisite functionality has been implemented in the

platform’s interface.



23

93 services:

94 all -service -types: # Configurations that can appear in any service

↪→ definition

95 note: "A note" # Optional Human -readable note visible by

↪→ end -user , such as default username/password

96 network -interfaces: [] # Optional List of network interfaces and

↪→ their optional configurations [default: template or container

↪→ specific]

97 provisioner: # Optional

98 name: "name" # REQUIRED Name of provisioning tool , e.g Ansible ,

↪→ Chef , Puppet

99 file: "file" # REQUIRED File to use for provisioner , e.g

↪→ Playbook , Cookbook , Manifest

100 resource -config: # Optional Resource allocation configurations for

↪→ the service

101 cores: 0 # Optional Number of CPU cores

102 memory: 0 # Optional Amount of RAM in MB

103 storage: 0 # Optional Amount of persistent storage in GB

Listing 4.5: Exercise Services - Platform-agnostic configurations

Currently, there are three formalized service definitions: vSphere template, Docker container image[19],

and Docker Compose file[20]. Each has its own specialized configurations, which are outlined in its formal

definition in the specification. Adding new configurations to a service or defining a new service for a new

platform simply requires adding them to the specification.

104 template -based -service: # Option A

105 template: "name" # REQUIRED

106 template -config: # Optional Configuration of Template settings

↪→ using key -value pairs

107 key: "value"

108 guest -extensions: no # Optional Guest extensions will be

↪→ installed or enabled (e.g VMware Tools)

109 container -based -service: # Option B

110 dockerfile: "file" # Option A Dockerfile to build a image

111 image: "name/tag" # Option B Name and Tag of a pre -built image

112 compose -based -service: # Option C

113 compose -file: "filename.yml" # REQUIRED

Listing 4.6: Exercise Services - Platform-dependent configurations

Resources

The resources section describes cyber-physical resources and labs/testbeds that are potentially avail-

able to a virtual environment, such as SCADA systems, a wireless testbed, a USB device interconnect, a

car computer or an electrical power grid testbed. In a manner similar to services, they are defined here,

and then attached to folders, networks, or groups as needed. The access to the resource is managed using

some form of federation, the implementation of which is platform and resource-specific.



24

What this looks like in practice depends heavily on the resource, the platform(s), and the item being

”attached” to. Attaching to folders makes the resource available to objects in that folder, including

the groups. Attaching to groups allows that group to access the resource, regardless of folder context.

Attaching to networks makes the resource available to devices on that network. These attachments are

loosely defined by design, which enable a wide range of devices and labs to be specified and used with

the same specification. That being said, there is definitely room to expand this, the details of which will

be discussed in Future Work.

119 resources:

120 resource -p:

121 lab: "power -lab" # REQUIRED Name of the lab the resource

↪→ is associated with

122 resource: "transformer" # REQUIRED Name of the specific

↪→ resource

Listing 4.7: Exercise Resources

Networks

The networks section defines the networks2that are used to connect instances in a virtual environment.

There are two types of networks that can be formally defined: unique and generic. Unique networks are

the equivalent of Singleton classes in object-oriented programming: they can only have a single instance,

and all references to a given unique-type network will point to the same instance. They are typically

used to specify shared networks, such as to provide Internet access, or for a King of the Hill competition.

Generic networks create new network instances with identical configurations for each base folder instance

that is made of them. This instance counter is global across folders. Each instance of a given folder will

refer to the ”global” value of the base at that index. For example: a generic network for instance 5 of

folder ”hidden” will be the same network as instance 5 of folder ”workstations”.

Networks currently can have the following configurations: description, subnet, vlan, and vswitch.

These configurations will vary by the type of network and the platform being used. For instance, the

vswitch configuration only applies for networks that will be used on the vSphere platform, not other

platforms. In addition, some configurations, like Virtual Local Area Network (VLAN) tags, do not apply

to all network types.

The description is a human-readable description of the network, though how it is used is platform-

dependent. The vlan manually specifies the VLAN tag of a network, which is normally automatically

generated. This only applies to unique-type networks, and must be a value less than 2000 to prevent

2Networks in this context are virtual networks at layers 2 or 3 of the OSI model[17]. It is assumed the reader has basic
knowledge of modern Internet Protocol (IP) networking and Virtual LANs.



25

clashing with the generated tags. The vswitch specifies the vSwitch that will be used for that network,

and only applies to the vSphere platform. Finally, the subnet number for each instance of a generic-

type network will be incremented if increment is set to true. Cyber Defense Competition (CDC)s are

the primary use case of this final configuration, as each Blue Team instance requires the same network

configuration, just with a subnet bump.

The subnet configuration is used to specify the IP subnet that will be used for that network. It is

specified using the standard notation for the IP version being used, which is dotted decimal for IP version

4 and hexadecimal octets for IP version 6. The notation used will implicitly determine the IP version of

the subnet. The subnet is specified using standard CIDR notation, which consists of a slash followed by

the number of bits for the subnet. Currently, subnets that are not in private[56] IP range will result in a

warning, to prevent accidental use of public IP ranges when they are not intended.

129 networks:

130 unique -networks: # Networks that are instantiated once and only

↪→ once. Think of them as singletons.

131 network -label: # REQUIRED Unique label used to identify

↪→ the network (Replace "network -label" with the name of the network)

132 description: "blah" # Optional Human -readable description of

↪→ network

133 subnet: "x.x.x.x/x" # Suggested IP network address and mask:

↪→ SUBNET -IP/CIDR

134 vlan: 0 # Optional VLAN tag of the network. Must

↪→ be a value < 2000. [default: globally unique value > 2000]

135 vswitch: "name" # Optional Name of virtual switch used

↪→ for the network [default: set in infrastructure -config or

↪→ VsphereInterface]

136 generic -networks: # New networks are created per instance of a

↪→ folder

137 # This instance counter is global across folders. Each instance of a

↪→ given folder will refer to the "global" value of the base at that

↪→ index.

138 # Example: a generic network for instance 5 of folder "hidden" will

↪→ be the same network as instance 5 of folder "workstations"

139 network -label:

140 description: "description"

141 subnet: "x.x.x.x/x"

142 vswitch: "vswitch name"

143 increment: no # Optional Increment the subnet value for

↪→ each unique instance created [default: no]

Listing 4.8: Exercise Networks



26

Folders

Folders are an hierarchical assemblage of objects used to construct an exercise. These objects can be

instances of services, resources, or folders. A given folder can have a number of configurations applied to

it, with those not being supported simply skipped over, making extending this section trivial. There are

two types of folders: parent and base. Parents are folders that contain other folders. Base folders contain

services and resources.

For both types of folders, there are the following configurations: group, master-group, description,

enabled, and instances. The group configuration gives the specified group permissions to view and use

the folder and its contents, including any sub-folders. The master-group configuration is the same as for

group with the addition of an edit permission, and is intended to specify the group that will be setting up

the environment instances. The description is a human-readable description of the folder, the use of which

is platform-dependent. Enabled is a flag that allows selective disabling of specific folders without having

to comment them out, which is useful for large folders or for programmatic editing of specifications.

152 folders:

153 parent -folder: # Folders that contain other folders (replace "parent -

↪→ folder" with name of the folder)

154 group: group -label # Optional User group that will have

↪→ permissions to the folder

155 master -group: group -label # Optional User group for the pre -

↪→ deployment masters [default: group specified for the folder]

156 description: "description" # Optional Human -readable description

↪→ of folder

157 enabled: yes # Optional Flag to selectivly disable

↪→ a folder , so changes can be easily tested [default: yes]

158 instances: 10 # Optional Same configurations as for

↪→ base -type folders

Listing 4.9: Exercise Parent Folders

Instances is used to specify if multiple instances of a folder should be created. This essentially creates

multiple copies of the folder in its entirety, including any sub-folders. The number of copies can be

specified with an integer, or the size of the group configured for that folder. Finally, a prefix prepended

to the names of the copies can be specified if desired.

Base folders have one additional configuration that differentiate them from parents: services. This

configuration is a list of service instances that the folder will contain. Each instance has a required service

configuration that specifies which service defined in the top-level services section will be used for that

instance. In addition, there are three other configurations that can be specified: instances, networks,

and scoring. Instances is the same as was described for folders. Networks is used to attach networks



27

configured in the networks top-level section to the service’s network interfaces. Finally, scoring is used

to configure how that service will be scored or graded by a scoring engine. Scoring consists of ports and

protocols to score, as well as a criteria file that contains a specification of how the service should be

scored. This is as-yet undefined, but it was inspired by, and could easily derive from the syntax used by

the Open Cyber Challenge Platform (OCCP)[64].

159 base -folder: # Folders that contain services (replace "base -folder"

↪→ with name of the folder)

160 group: group -label # REQUIRED User group that will

↪→ have permissions to the folder

161 master -group: group -label # Optional User group for the pre -

↪→ deployment masters [default: group specified for the folder]

162 description: "description" # Optional Human -readable

↪→ description of folder

163 enabled: yes # Optional Flag to selectivly

↪→ disable a folder , so changes can be easily tested [default: yes]

164 instances: # Optional Makes folder a template that is copied N

↪→ -times (NOTE: instances can also simply be an integer representing

↪→ N)

165 number: 10 # OPTION A Number of instances =

↪→ integer

166 size -of: group -label # OPTION B Number of instances = Size

↪→ of named group

167 prefix: "prefix" # Optional String to prepend to named

↪→ instance numbers [default: name of folder]

168 services: # REQUIRED Define services that the base folder

↪→ will contain

169 service -instance -name:

170 service: service -label # REQUIRED Label as defined in

↪→ services

171 instances: 10 # Optional Same configurations as

↪→ for base -type folders

172 networks: ["subnet -a", "subnet -b"] # Optional Networks

↪→ to attach the service instance to (Case sensitive !)

173 provisioner -file: "file" # Optional Override provisioner

↪→ configuration file for a service

174 scoring: # Optional Scoring for the service (e.g a

↪→ competition , or verification of homework)

175 ports: [0] # Suggested Ports used for scoring

176 protocols: ["proto"] # Suggested Protocols used for

↪→ scoring

177 criteria: "file.yaml" # REQUIRED Criteria used to score

↪→ the service

Listing 4.10: Exercise Base Folders



28

4.4 Infrastructure Specification

The infrastructure specification describes the infrastructure platform that will be used to create an

environment. It consists of the list of platforms that will be used, and their corresponding configurations.

Specifying the infrastructure configuration separately from the exercise improves portability, as a given

user of the system can swap out their own configuration with the platforms they wish to use configured

the way they want. There are two platforms currently specified: vmware-vsphere, and docker.

vSphere Configurations

The configurations specified in the vmware-vsphere section apply to the VMware vSphere platform.

The datacenter configuration specifies what Datacenter in vSphere the environment will be created on.

Datastore specifies the Datastore to use for the environment’s VMs. The template-folder configuration

specifies the path to the folder in the vSphere inventory containing the templates used to build the

exercise. The server-root configuration specifies the path to a folder that should be considered the top-

level folder for the server, which can be useful for large or multi-organization vSphere environments.

Finally, vswitch specifies the name of a vSwitch that should be used as default for exercise networks that

do not specify one.

19 vmware -vsphere:

20 hostname: "hostname" # REQUIRED Hostname of the vCenter

↪→ server

21 port: 0 # Suggested Port used to connect to

↪→ the vCenter server [default: 443]

22 login -file: "vsphere.json" # Suggested Login information used

↪→ to connect to the vCenter server [default: prompt user]

23 datacenter: "datacenter name" # Suggested Name of the Datacenter

↪→ on which to create environment

24 datastore: "datastore name" # Suggested Name of Datastore to use

↪→ for environment VMs

25 template -folder: "folder path" # REQUIRED Path from server root to

↪→ folder that contains VM templates

26 server -root: "folder name" # Suggested Name of folder

↪→ considored to be "root" for the platform

27 vswitch: "vswitch name" # Suggested Name of vSwitch to use

↪→ as default

28 host -list: ["a", "b"] # Optional List of names of ESXi

↪→ hosts to use [default: first host found in the datacenter]

Listing 4.11: vSphere Infrastructure Configurations



29

Docker Configurations

The docker section of the specification contains configurations for the Docker platform. While this

platform is not yet implemented in a fully working fashion yet, the configurations are still defined as an

example of how another platform would look in the infrastructure specification. The url configuration

specifies how to connect to the Docker Engine client that will be managing and creating the Docker

containers. TLS specifies whether Transport-Layer Security should be used to connect to the docker

server. This option is exposed to deal with certificate signing issues commonly encountered when doing

testing of a new environment, or with isolated labs such as RADICL. Finally, registry allows a Docker

Registry server to be specified and configured. This has two options, url and login-file, that are used to

specify the server and its login information. This is useful if a instructor wishes to load custom or cached

images from a local Registry, or as an alternative to needing access to the Internet-located Docker Hub.

31 docker:

32 url: "host:port" # Suggested URL to the Docker server [

↪→ default: unix :/// var/run/docker.sock]

33 tls: true # Optional Use TLS to connect to the Docker

↪→ server [default: True]

34 registry: # Optional

35 url: "url://" # REQUIRED URL of the registry

36 login -file: "r.json" # REQUIRED JSON file containing login

↪→ information for the Docker registry server

Listing 4.12: Docker Infrastructure Configurations

Other Platforms

There are a few other platforms that have been roughly defined to demonstrate the use and flexibility

of the specification. Amazon AWS as amazon-aws and Digital Ocean as digital-ocean are cloud platforms,

while Microsoft Hyper-V as hyper-v is hardware-based virtualization (much like vSphere).



30

38 # Amazon Web Services

39 amazon -aws:

40 cred -file: "path" # REQUIRED Path to file with AWS access

↪→ credentials

41 config -file: "path" # Suggested Path to file with service

↪→ configurations

42

43 # Digital Ocean

44 digital -ocean:

45 token -file: "path" # REQUIRED Path to file containing access token

46

47 # Microsoft Hyper -V Server

48 hyper -v:

49 hostname: "hostname" # REQUIRED Hostname of the Hyper -V server

50 port: 0 # Suggested Port used to connect to Hyper -V

↪→ server

51 login -file: "path" # REQUIRED Path to file containing login

↪→ information for the Hyper -V server

52 version: "v2" # Suggested Version of the Hyper -V API to

↪→ use

53 vswitch: "name" # Suggested Name of VirtualEthernetSwitch to

↪→ use as default

Listing 4.13: Other Infrastructure Configurations



31

Chapter 5: Implementation

This chapter discusses the implementation of ADLES. It includes technology and design choices made,

the design of the platform interface for vSphere, the execution process for the system when using the

vSphere interface, and scripts developed to use the vSphere wrapper class. Finally, the discussion of the

distribution and development of the ADLES project closes out the chapter.

5.1 Implementation Choices

Language selection: Python

The Python language[62] is used to implement the ADLES system. It was selected for the following

reasons:

• Platform-independence, which maps to the portability requirement.

• Extensive library ecosystem, which prevents duplication of work for tasks like parsing.

• Excellent documentation and strong community support.

• Strong Unicode support, mapping to the sharing requirement.

• Simple and easy to learn syntax, improving the ability to implement extensions.

User Interface

The user interface is exclusively command-line. Usage for ADLES and the scripts is easily accessible

by users with the ”–help” command line argument. (fig. 5.2) Examples and specifications are bundled

with the application, and can be output using the appropriate flags. Output is colored to aid usability by

making errors or potential mistakes obvious, separate important output from debugging messages, and

improve general look and feel. (fig. 5.1)

Figure 5.1: Colored output



32

Figure 5.2: Commandline Help

5.2 The vSphere Platform Interface

The design of the vSphere platform interface follows the generic platform interface design outlined

in section 3.3. Upon initialization, the VsphereInterface instantiates a Vsphere object, which makes the

necessary calls to pyVmomi to connect to a vCenter server instance that manages the environment. Once

initialized, calls to the Interface’s functions will result in the desired operations being performed on the

vSphere environment. These will be described in detail in the following section on system execution.

The vSphere Python Library

The pyVmomi Software Development Kit (SDK) is a library for vSphere that allows management of

a vSphere environment using native Python bindings[63]. The bindings it provides are a thin wrapper

around vSphere’s VMOMI API, essentially performing the task of converting Python objects and function

calls into HTTP requests to vSphere, and vice-versa. It is fast, reliable, and well-supported by both the

community and VMware itself, making it the library of choice for ADLES interface with VMOMI.



33

Figure 5.3: vSphere platform interface design

The vSphere class

The implementation of ADLES requires a level of abstraction that pyVmomi does not provide. There-

fore, a wrapper API for pyVmomi had to be developed to provide this abstraction and simplify ADLES

development. This was accomplished by means of a class representing the vSphere environment. Class

instances maintain the vSphere environment state and status, and provide a robust set of methods to

perform actions in the environment.

5.3 System Execution using the vSphere Platform Interface

Mastering Phase

1. Virtual networks are checked, and created if necessary. Base and generic networks are treated the

same as unique networks during this phase.

2. Folder structure for the Master instances is created.

3. Permissions for specified group and master-group are applied to folder structure.

4. Instances are created from the specified templates.



34

5. A Snapshot is taken of the instance immediately post-clone, to allow those configuring the Master

instances to roll back to a ”clean” start if mistakes are made.

6. Network interfaces on the newly cloned VMs are configured per the specification.

7. Other configurations are performed, if specified in the services’ definition.

Deployment Phase

1. Master instances are verified and prepared for deployment. For each instance:

(a) Existence of the instance is verified.

(b) If the instance is powered on, it is cleanly powered off.

(c) A Snapshot of the instance is taken. This enables users to reset machines to the start of the

exercise, in case of catastrophic failure or compromise by a Red Team.

(d) The instance is converted to an immutable template. This prevents accidental changes to the

master instances during or after the deployment stage. It also ensures they are not modified for

the purposes of saving the exercise for future reuse, and for storage with the exercise results.

2. Folder structure for the exercise is created.

3. Permissions are applied.

4. Instances are cloned from their respective Master instances, multiple times if the instances field is

configured as such.

5. If generic networks are set, they are checked and created if necessary, and the corresponding virtual

Network Interface Card (NIC)s on the instance are updated.

5.4 vSphere scripts

As part of the development process, a number of basic scripts were developed using the vSphere

wrapper API. The original purpose of these scripts was to provide basic automation for a number of

tasks in RADICL. This was to get real-world testing of many of the core facilities ADLES relies on,

garner user feedback, and make improvements before the core of ADLES was fully implemented. This

follows the UNIX philosophy[55] of many small tools that each specialize in a single or small set of tasks

in lieu of one monolithic tool that does many tasks. This ensures modularity of the system and that loose

coupling of components is maintained throughout the development process. The following scripts were

developed:



35

• cleanup-vms: Removes and destroys the files of VMs.

• clone-vms: Clones of VMs.

• vm-power: Performs power operations on VMs.

• vsphere-info: Provides information about objects in a vSphere environment, including VMs, folders,

datastores, and vsphere itself.

The script implementations are designed to be simple and straightforward, and utilize library func-

tionality wherever possible. Several examples can be found in the appendices. Here is an example of

what the start of a typical script looks like:

1 def main():

2 args = docopt(__doc__ , version=__version__ , help=True)

3 server = script_setup(’vsphere_info.log’, args , (__file__ ,

↪→ __version__))

Listing 5.1: Script Setup

5.5 ADLES Project

The system is designed to be used, modified, and extended by anyone in the educational community.

Simply dumping the source code for ADLES on a public FTP server with no documentation will not

effectively enable that. The goal is to setup the project such that future contributors to the project can

focus on extending the system, and not setting up tests, development environments, user input/output,

and the like.

Project License: Apache 2.0

The goal of ADLES is to allow the widest possible use, to establish a large user base and drive creation

of exercises. With this in mind, the Apache License[4], version 2.0, was chosen to license ADLES code,

specifications, documentation, and examples. This well-known open-source license enables educators to

freely use the project, while still requiring attribution, protecting the University’s patent rights, and

encouraging contribution of any improvements or extensions back to the community. Furthermore, the

license’s commercial use provisions provide flexibility for institutions with proprietary platforms or strict

institutional requirements that still wish to use the system.

Source code repository

Since this project has the possibility of future development, version control and cloud-based hosting

were implemented from the beginning. Version control is managed using a git repository, and this



36

repository is publicly available on the open-source hosting service, GitHub[33]. This version control and

hosting method was selected for the following reasons:

1. Cross-platform and cloud-hosted.

2. Well-known and respected in academia and industry.

3. Useful third-party integrations. (Travis CI automated testing, CodeClimate static code analysis,

VersionEye dependency version checking)

4. Author’s personal experience with the tool and platform.

Setup and Installation

Setup and installation of ADLES is accomplished using the ”pip” tool included in most Python

installations. Pip utilizes a public repository of Python packages that can be installed using the tool

called Python Package Index (PyPI)[53]. Using pip to install a package will download the package and

its dependencies from PyPI, unpack it into the Python module index, and compile and provide system

links to any scripts specified, regardless of platform. This makes installation of complicated libraries

and scripts simple and painless for users and developers. Publishing ADLES to PyPI as a package[34],

therefore, matches the portability and ease-of-use requirements with aplomb.



37

Chapter 6: Example Scenarios

This chapter describes several real-world examples of hands-on educational scenarios that illustrate

how the specifications are used. Two examples, a tutorial and a competition, will be discussed in detail.

Two more tutorials will be touched on briefly. Note that for all scenarios, the examples given are only

snippets taken from the full specification, and are therefore missing some details. Refer to the appendices

for complete versions of the specifications.

6.1 Example 1: Penetration Testing Tutorial

Figure 6.1: Network diagram of the penetration testing tutorial

This tutorial teaches students how to properly perform a legal penetration test[8]. The tutorial

begins with background on history, legality, and pre-engagement customer contact. Then, students login

to the environment and begin the exercise. The goal is a heavily-firewalled ICS network. The first stage

consists of information gathering using tools such as ls, Nmap, cat, whois, nslookup, and Google, then

threat modeling and vulnerability analysis to determine weaknesses that can be exploited. The second

stage has students exploit the identified weaknesses, establish persistence, extract useful information, and

continue pivoting around the network until the goal is reached.

Setup of this exercise was extremely time-consuming, taking over 120 hours total. Furthermore, when

a bug was discovered in the deployed system, it took one of the authors several hours of intense effort

to get it fixed on all the instances before the tutorial was scheduled to begin.1Deploying this tutorial

using ADLES would have saved at least 10-20 hours of the student’s time, if not more. Using ADLES,

the last-minute bug-fix would have simply involved un-templating a master instance, fixing the bug, then

re-running the deployment, taking only minutes instead of hours.

1This information comes from my personal discussions with the authors of the exercise. It is not in the document cited
for this tutorial.



38

Specification

Metadata for the examples are simple and straightforward. Since the metadata for all of the examples

is roughly the same, it will not be shown or discussed in the next two examples.

1 metadata:

2 name: "Penetration Testing"

3 description: "Tutorial on properly conducting a penetration test"

4 activity: "CS 439 - Applied Security Concepts"

5 prefix: "CS439 -TR03 -TU16"

6 date -created: "2017 -03 -29"

7 version: "0.3.4"

8 infra -file: "infra.yaml"

9 folder -name: "CS -439/TR -03/TU -16" # CS 439, Tutorial Round 3,

↪→ Tutorial 16

Listing 6.1: Pentest Tutorial - metadata

There are two groups defined: an AD group of students in CS439, and a list of the user names of the

instructors (and TAs) creating the tutorial. These will be used to apply permissions in the folders section

later on.

11 groups:

12 Students:

13 ad -group: "CS439 Students"

14 Instructors:

15 user -list: ["brau", "ocke"]

Listing 6.2: Pentest Tutorial - groups

For the services, it should be noted that since the default note is preserved from the base template,

notes do not have to be defined here with default credentials. Additionally, since the students directly

interact with only one service during the tutorial, they do not have the ability to view the other services,

and thus the notes for those services are of no use to them.

18 services:

19 kali: # What the students will be using

20 template: "Kali Linux 2016.2 (64-bit)"

21 ics: # Industrial Control System

22 template: "Windows XP SP0"

23 web: # Apache webserver

24 template: "Ubuntu Server 14.04 (64-bit)"

25 laptop: # Walter ’s Laptop

26 template: "Windows XP SP2"

27 phone: # Planted phone

28 template: "Android 4.4"

Listing 6.3: Pentest Tutorial - services



39

There are seven networks defined for this example, all of them generic-type. The subnets for the

networks associated with the fictitious company are all in the 192.168/16 range, while the subnet for

the ”cellular network” is in the 172.16/16 range. The cellular network is changed from its value in the

original tutorial, which was a publicly routable IP address. This was changed for simplicity and security.

36 networks:

37 generic -networks:

38 Attacker -net:

39 description: "Used by the attacker"

40 subnet: "192.168.0.0/24"

41 increment: yes

42 Mobile -ISP:

43 description: "Attacker <-> Phone"

44 subnet: "172.16.0.0/19" # Unusual subnet mask is intended to make

↪→ subnets more "random"

45 increment: yes

46 Workstations:

47 description: "This is the internal corporate network"

48 subnet: "192.168.1.0/24"

Listing 6.4: Pentest Tutorial - networks

The students each have a Kali Linux workstation they will use for the entirety of the tutorial. These

are located in the student-workstations folder.

62 folders:

63 student -workstations:

64 description: "Workstations visible to and used by students during

↪→ the tutorial"

65 group: Students

66 master -group: Instructors

67 instances:

68 number: 15

69 prefix: "WS -"

70 services:

71 attacker:

72 service: kali

73 networks: ["Attacker -net", "Mobile -ISP"]

Listing 6.5: Pentest Tutorial - student-workstations folder



40

Since the students are not supposed to know the layout of the network at the start of the tutorial,

these folders are kept separate from the workstation folders. By limiting the permissions of the folder to

only the Instructors, the folder and its services are essentially hidden from the students, preventing them

from ”peeking” at the VMs they are supposed to find through network reconnaissance.

74 exercise -environemnt:

75 description: "Systems the students will explore during the exercise ,

↪→ but should not see"

76 group: Instructors

77 systems:

78 group: Instructors

79 instances:

80 number: 15

81 prefix: "HIDDEN -ENVIRONMENT -"

82 services:

83 exercise -router:

84 service: router

85 networks: ["Attacker -net", "Workstations", "IT", "ICS", "Web -

↪→ Services", "WiFi"]

86 sysad:

87 service: kali

88 networks: ["IT"]

Listing 6.6: Pentest Tutorial exercise-environment folder



41

6.2 Example 2: Cyber Defense Competition

This example replicates a real-world cyber defense competition. Specifically, it attempts to replicate

the 2016 PRCCDC[50]. The setup roughly follows the network setup of competition, based on the author’s

personal experience attending the competition. Blue Teams receive points for service up-time, which is

scored approximately every minute by a scoring engine known as the ”score-bot”. Successful attacks by

Red Team will impact this up-time, and instill penalty points on the Blue Team attacked.

Specification

There are three groups defined for the competition: Blue Teams, which are student competitors, Red

Team, which are the attacking experienced industry professionals, and Black Team, which is in charge of

managing the competition infrastructure. The Blue Teams are Template groups, and will be used later

when the folders for the teams are described.

11 groups:

12 Blue Team: # Defenders

13 instances: 14

14 filename: "examples/blue -teams.json"

15 Red Team: # Attackers

16 ad -group: "Red Team"

17 Black Team: # Infrastructure team

18 ad -group: "Black Team"

Listing 6.7: Competition - groups

The services for the competition are defined in the same manner as the tutorial example. There are

several types of ”host” workstations the competitors will use to access and interact with the competition

environment. There are also a number of different services, such as the scoring engine, router, and various

services the Blue Teams will be defending.

21 services:

22 score -bot:

23 template: "PRCCDC Score Bot"

24 evil -host:

25 template: "Kali 2.0 (64-bit)"

26 host -type -a:

27 template: "Windows 7 (64-bit)"

Listing 6.8: Competition - services

There are a number of networks defined for the competition, three of which are unique, and two of

which are generic. The competition unique network is the backbone that connects the Red Teams, Blue

Teams, score-bots, competition services, and the Internet.



42

Figure 6.2: Network diagram of the cyber defense competition scenario



43

48 networks:

49 unique -networks:

50 competition:

51 subnet: "172.30.0.0/16"

52 vswitch: "competition_vswitch"

Listing 6.9: Competition - networks

The external folder contains the infrastructure needed for the competition, and is managed by the

Black Team. Of note is the score-bot service. It has fourteen instances, equal to the number of Blue Teams

competing, and has two network interfaces: competition and management. The management network

enables reliable and secure collection of scoring information, as well as a back-channel method for the

score-bots to communicate. To prevent Blue Teams from white-listing, the score-bots will randomly

change IP addresses and the team they are scoring every minute, and that coordination is done over the

management network.

66 folders:

67 external:

68 group: "Black Team"

69 description: "The open competition network with red teams and

↪→ scorebots"

70 services:

71 edge -router:

72 description: "Connection to Internet"

73 service: firewall

74 networks: ["outside -world", "competition", "management"]

75 score -bot:

76 description: "Used to score teams"

77 service: score -bot

78 networks: ["competition", "management"]

79 instances:

80 number: 14

81 prefix: "Scorebot "

Listing 6.10: Competition - external folder

Each student Blue Team has an instance of the blue-team folder that matches their team number. This

folder contains the services they must keep running and protect from the Red Team, and the workstations

they use to access the environment and manage the services. There are eight workstations, six Windows

and two Linux, along with a gateway router running VyOS, and corucorpia of OSes that make up their

services. The gateway has three network connections, linking the Blue Team’s hosts with their services,

and both to the wider competition network and the Internet.



44

89 blue -team:

90 instances:

91 number: 14

92 prefix: "Blue Team "

93 group: "Blue Team"

94 services:

95 gateway:

96 description: "Gateway connecting Blue teams to main competition

↪→ network"

97 service: firewall

98 networks: ["competition", "blue -hosts", "blue -services"]

99 windows -hosts:

100 description: "Windows hosts that the blue team members use to

↪→ access their services"

101 instances:

102 prefix: "Host "

103 number: 6

104 service: host -type -a

105 networks: ["blue -hosts"]

Listing 6.11: Competition - blue-team folder - hosts

The website and database services (fig. 6.12) are prime examples of the Blue Team’s services. The

website is directly scored by the score-bot, hence the scoring criteria. The database is not scored directly,

but must remain up for the website to access when providing the required content for scoring.

117 web:

118 description: "Web server hosting the team’s page"

119 service: web -server

120 networks: ["blue -services"]

121 scoring:

122 ports: [80, 443]

123 protocols: ["http", "https"]

124 criteria: "criteria -file.yaml"

125 db:

126 description: "Database"

127 service: database -server

128 networks: ["blue -services"]

Listing 6.12: Competition - blue-team folder - web services

The attacking Red Team has two members dedicated to a Blue Team, ten ”meta” team members

that apply the same attacks to all Blue Teams, and two members, a captain and co-captain, that lead

the team. Each member has a Kali Linux workstation from which to launch attacks, and access to a

collaboration server. The collaboration server has a text communication server the team can use to

communicate, along with a special server the ”meta” Red Team can use to share persistence gained on

Blue Teams.



45

153 red -team:

154 group: "Red Team"

155 services:

156 attacker -hosts:

157 instances:

158 number: 40

159 prefix: "Attacker "

160 description: "Host used by Red Team to attack Blue teams"

161 service: evil -host

162 networks: ["competition"]

163 collaboration -server:

164 description: "Server for Red Team collaboration , including

↪→ Armitage , SFTP , and IRC"

165 service: web -server

166 networks: ["competition"]

Listing 6.13: Competition - red-team folder



46

6.3 Additional examples

There are three additional examples that further demonstrate the capabilities of ADLES: Network

Firewalls tutorial, Spoofing tutorial, and Network Security Visualization experiment. The tutorials are

derived from real tutorials created and performed by students in the CS 439: Applied Security Concepts

course at the University of Idaho, while the experiment is a made-up example of data collection for

security visualization research. Since their specifications are similar to the tutorial described earlier,

only the content of the examples will be discussed in this section. Refer to the appendices for the full

specification for each tutorial.

Network Firewalls

The learning objectives of the Network Firewalls tutorial are to teach students how to manage firewalls

through both graphical and command-line interfaces, and how to write good firewall rules[30]. The

firewalls used are PFSense, which is configured through a graphical user interface, and VyOS, which is

configured using a command-line interface. There are Windows and Linux servers and hosts that are

used to test configurations and rules applied to the firewalls.

Interestingly, the scenario was connected to the same layer 2 network, with two subnets configured to

share that network. (With each student having their own network, of course) The authors were asked why

they used this setup for firewalls, which typically have at least two separate layer 2 networks. The reason

given was difficulties configuring port-groups on the vSphere infrastructure. Adding and configuring a

second port-group for each student and on each VM would have taken several hours, given the students’

limited experience with the platform and sluggishness of the lab’s clients. Having two interfaces on the

same port-group, just with different subnets, significantly reduced the time it took to setup the tutorial.

This is an example of where corners are understandably being cut, sacrificing fidelity and realism. Using

ADLES, having two separate networks for this tutorial simply involves adding an extra generic-type

network, which takes about a minute to change in the specification. This is an example of where use of

ADLES can save significant educator burden and improve educational value.

Spoofing

The learning objectives of the Spoofing tutorial are to teach students how to perform ARP and DNS

spoofing Man-in-the-Middle attacks to steal credentials and exploit machines, and how to implement

effective mitigations preventing them[67]. It consists of a Windows host, a Kali Linux workstation, a

Ubuntu server, and a VyOS router. Students use the Kali workstation to attack the Windows host using



47

ARP spoofing, and spoof the DNS provided by the Ubuntu server.

Experiment

This example’s purpose is to generate a sizable corpus of realistic network traffic for network security

visualization research. There are three main groups of services: clients, servers, and Internet. The

services group consists of Windows IIS and Linux Apache web servers that are load balanced by an

NGINX instance. The clients are Windows and Linux clients that access the web services hosted by the

servers. Finally, the Internet is a simulation of services found on the Internet, such as network time and

domain name resolution.



48

Chapter 7: Application and Results

In this chapter, the results of the application of ADLES to the example scenarios described in the

previous chapter will be presented and discussed. It begins with a description of the testing environment

used, presents the results of using ADLES to create and deploy the competition and three tutorial

scenarios, and closes with a discussion of the results. For the two primary tutorials, the truncated

commandline output will be shown, followed by the resulting environment in vSphere.

7.1 Description of Testing Environment

The tests runs of ADLES using the example scenarios described earlier were run on a Dell R620 server

hosted by the University of Idaho CS department. This server is equipped with a six-core Intel Xeon

processor, sixteen gigabytes of RAM, and one terabyte of disk storage. It is running VMware ESXi 6.5

as the hypervisor for vSphere, and vCenter Server 6.5 in a VM on the hypervisor. Screen shots are of

the resulting views displayed using the HTML5 Web Client included with vCenter 6.5.

The tests were executed from a desktop computer running Windows 10 x64 build 14393, and connected

to the testing server over a high-speed Ethernet link. There were two environments and versions of Python

used for testing:

• Bash on Ubuntu on Windows environment, which will be referred to as the ”Bash environment”,

running Python 3.4.3. This essentially a Ubuntu 14.04 sandbox, and acted as a fast equivalent of a

Linux machine for testing purposes. The environment is the prompt with orange text and a black

background.

• The standard Windows 10 environment, which will be referred to as the ”Windows environment”,

running Python 3.6.0. The Windows CMD prompt (green text, transparent-black background) and

Windows PowerShell (blue background) terminal interfaces were both used to test this environment,

to ensure the system worked as expected under a variety of usage scenarios.

Finally, it should be noted that some testing not shown here was done using Python 2.7.6, to ensure the

system has reasonable backward compatibility with the older version of the language. Efforts have been

made throughout development to maintain compatibility, but it is not a priority, and will be deprecated

in the future when multi-lingual specifications are supported and performance enhancements are made.



49

7.2 Results for Penetration Testing Tutorial

The test runs for the penetration testing tutorial were run using Bash environment, with ”verbose”

debugging output enabled. Figure 7.1 is the command line output from ADLES while creating the Master

instances during the Mastering phase. The addition of virtual NICs to the final VM can be seen, followed

by a snapshot once configuration is complete. The resulting file structure is output to debugging, so the

user can see what was created if they desire. Even if verbose output is disabled, the user can simply open

the log file and examine the results, without having to connect to a vSphere console.

Figure 7.1: Commandline output from pentest tutorial mastering phase

Figure 7.2 is the output from the Deployment phase. Since this example uses generic networks,

these are created as portgroups on vSphere. Once the Master VMs are cloned, their virtual NICs are

reconfigured to use the configured generic networks instead of the dummy networks used during the

Mastering phase. The ”traversing path” output is ADLES ensuring the proper instances are being used,

since vSphere will by default grab the first instance with the given name anywhere on the infrastructure.



50

Figure 7.2: Commandline output from pentest tutorial deployment phase

The resulting environment

Figure 7.3 contains snips of the environment folders in the vSphere console. On the far left, the

directory structure ”CS-439/TR-03/TU-16”, is the same as that listed in the specification. The exercise-

environment and student-workstations parent-type folders can be seen, in addition to the folder containing

the Master instances. Second from the left are the Master instances converted to templates. Templates

are denoted in vSphere with a light blue icon instead of the white squares used for regular VMs. Third

from the left is the expanded systems parent-type folder. This has fifteen ”HIDDEN-ENVIRONMENT-

XX” folders, each of which contain eight instances, which matches the specification. Finally, fourth from

the left is the expanded student-workstations parent-type folder. This contains fifteen ”WS-XX” folders,

each of which has a single Kali instance, matching what was defined in the specification for the scenario.

If all went well, the deployed instances should match their Master instances in all aspects except their

names, network configurations, their template status, and potentially the host they are deployed on. In

Figure 7.4, a deployed instance (left) is compared with the Master template instance it came from (right).

The Guest OS, VM hardware version, number of CPUs and RAM, and tools status are all the same. The

only differences are the name, network configurations, and template status. Template status can be seen

by the status window to the left of the system information, with the template being a light blue icon, and

the VM being a window with the text ”powered off”. The Master instance has the ”(MASTER)” prefix,

while the deployed instance has the name defined in the folder in the specification. The Master’s network

configurations are attached to portgroups matching the networks defined in the networks section of the



51

Figure 7.3: Environment results from penetration testing tutorial

specification. The deployed instance instead has the GENERIC portgroups that were created during

deployment, based on the configurations in networks.

Figure 7.5 shows two deployed instances, an attacker Kali VM, and a planted-phone Android VM.

These are further examples of what deployed instances look like.



52

Figure 7.4: Comparison of master template and one of the generated pentest routers

Figure 7.5: Two examples of generated virtual machines for the pentest tutorial



53

7.3 Results for Cyber Defense Competition

The tests for the Cyber Defense Competition scenario were run using PowerShell on the Windows

environment. In Figure 7.6, the Mastering phase steps can be followed: syntax check, connect to platform,

initialize groups (which fails due to no AD instance setup), creation of folder for Master instances, and

creation of portgroups for networks. The cloning of the base instances from their defined templates then

occurs for all services defined in folders, and snapshots are taken once cloning is complete.

Figure 7.6: Mastering commandline output

In Figure 7.7, the output from the beginning of the deployment phase is seen. Master instances have a

snapshot taken and are converted to Templates. Then the deployment starts, with each service instance

being cloned from its respective Master instance and reconfigured to use Generic version of networks if

necessary. The network reconfiguration is not seen due to verbose output being disabled for brevity. It

is similar to what is seen in the previous scenario’s deployment phase output.



54

Figure 7.7: Deployment commandline output

The resulting environment

In figure 7.8, the image on the left is the instances created during the Mastering phase. On the right

are the same instances converted into Template VMs during the deployment phase, meaning they cannot

be modified, powered on, configured, or otherwise changed. This is the expected result from running the

deployment phase, as it converts all the Master instances to templates before deploying the environment.

Figure 7.9 shows the resulting instances from deploying the competition example. The competition

infrastructure with scorebots (far left), blue teams with their hosts and services (middle), and red team

hosts (far right) can all be seen, and match up with what was defined in the specification for the exercise.

The comparison being done in Figure 7.10 is similar to that done in the previous scenario: Template

on the left generated the instance on the right, and their networks differ. In this case, the instance

generated uses unique-type networks, which is different from the generic networks used in the previous

scenario.



55

Figure 7.8: Pre-deployment and post-deployment Masters for the competition

Figure 7.9: Environment results from competition example



56

Figure 7.10: Comparison of Blue Team gateway template with deployed edge router instance



57

7.4 Results for Other Tutorials

The commandline output from the two example tutorial scenarios is shown here to provide further

illustration of what the execution of ADLES looks like.

Network Firewalls

Figure 7.11: Commandline output for network firewalls mastering phase

Figure 7.12: Commandline output for network firewalls deployment phase



58

Spoofing

Figure 7.13: Commandline output for spoofing mastering phase

Figure 7.14: Commandline output for spoofing deployment phase



59

7.5 Discussion

Performance

Overall, while overall performance of the system is decent, there are a few obvious bottlenecks. The

API calls made to vCenter, while fast on a local network, slowed runtime by 5-10 times when connecting

over a remote VPN connection from off-campus. The impact of this is significantly lessened by the time

spent cloning instances, but it is still noticeable, especially for small instances. The other bottleneck is

the time it takes to clone instances. Each clone takes anywhere from a few seconds to several minutes

depending on the size of the Template’s disk, making the cloning of 250 VMs quite slow. One solution to

this is to parallelize the cloning, enabling more efficient use of resources, especially in environments with

clustered datastores. However, care must be taken during implementation, as it would be easy to start

15 clones of the same Template, which would severely contest the disk hosting the Template’s files and

significantly worsen performance.

Application in RADICL

The system has already seen some use in RADICL this semester with several of the scripts that

utilize the vSphere wrapper. Next year, it will be utilized by students in CS439 for the creation of their

tutorials. The course teacher will introduce students to the specification in the first week of class, along

with the introduction to virtualization, the vSphere platform and how the course is run. At the end

of the semester, the specifications they write for those tutorials will be bundled with the tutorial itself,

licenced CC BY SA, and uploaded to a public GitHub repository, making them accessible to educators

globally.



60

Chapter 8: Related Work

8.1 Terraform

Terraform is an open-source tool developed by Hashicorp to safely and predictably manage infrastructure[36].

At its core, it is ”infrastructure as code”. Declarative configuration files are used to describe the de-

sired infrastructure. These files are used by Terraform to automatically build or change the platform(s)

described to match the desired configuration. It supports a wide variety of cloud and virtualization

platforms, including Docker, Amazon AWS, Microsoft Azure, and beta support for vSphere.

Terraform is designed for companies running distributed web applications and services. Common

local platforms, such as vSphere, Microsoft Hyper-V, and Xen, are either not supported or have limited

community support. This limits its usefulness for solving the problem of creating education environments,

because it does not provide the flexibility to use local platforms or the adaptability to make use of the

infrastructure and resources already in place at a school.

8.2 Provisioners

As was discussed in the background, some provisioners have the ability to manage and create infras-

tructure, similar to ADLES. One of these is Puppet, a system and software configuration management

tool made by Puppet[52]. The basic version of Puppet is free and open-source, while the feature-rich

Puppet Enterprise is paid and proprietary. Some platforms, such as Docker, KVM and vSphere, can

be managed using Puppet. However, some of these are locked to the Enterprise version, while others

are supported only by the community. Additionally, most configurations are not platform-agnostic, and

complexity can vary by platform. While this works fine for large enterprises with experienced developers

and administrators, it is not ideal for educators, let alone students. This fact gets to the heart of the

issue: provisioning systems are designed for enterprises, not education. Their design focus is on the

deployment of large environments with well-defined configurations that see little change once written.

This contrasts sharply with educational use cases, such as duplicated student environments seen in the

tutorial examples, or the constant changes in configurations that are often seen between (or even during)

semesters.

8.3 EduRange

EduRange is a National Science Foundation (NSF)-funded Evergreen State College project that aims

to create a cloud-hosted collection of cybersecurity exercises to supplement classroom lectures, labs,



61

and other activities[7, 66]. The project is building an open-source cybersecurity education platform

utilizing Amazon’s AWS platform to create exercises. This platform, similar to ADLES, uses YAML

specifications to define exercises that are then instantiated on AWS. Once instantiated, students can

login to the environment and carry out the exercise.

Although EduRange is cloud-based and features a unique competitive ”puzzle” environment to fa-

cilitate learning major cybersecurity concepts, it has some major drawbacks that limit its educational

flexibility. First, the system is limited to the exercises provided by the EduRange team. There is cur-

rently no capability of defining specifications so that instructors can use to design and create their own

exercises based on their unique teaching objectives. Second, networking configurations and choice of host

OSs are limited, restricting the types of exercises that can be created. Finally, the scope of the design of

the system and specification only includes tutorials, precluding the possibility of using the platform to

conduct cybersecurity competitions.

8.4 Open Cyber Challenge Platform

The OCCP is a NSF-funded University of Rhode Island project to create a low-cost attack/defend

cybersecurity education platform[64]. It was developed because their background research revealed that

there was no low-cost and suitable option (or platform) on which colleges or high schools could conduct

cyber challenges (e.g Cyber Defense, CTFs). The platform is designed around challenges, and consists

of four ”teams”: a Red team that attacks the network, a Blue team that defends the network, a Gray

team representing normal traffic, and a White team that scores and manages the platform. These are

specified using a custom XML configuration file, similar to how ADLES uses YAML specifications. Once

instantiated on a machine running VMware, the platform consists of a scoring server and a virtualized

network, including switching, routing, and services. Students (the Blue team) connect to the environment

using a virtual-private network from their own VMs or workstations. The Red and Gray teams are

automated scripts, configured using the same file used to instantiate the infrastructure. This design

closely aligns to what was originally envisioned for ADLES, and even influenced early development of the

system.

There are some limitations to this platform. It is designed to be used by schools with limited resources,

and thus is restricted to using host-based virtualization platforms such as VMware Workstation and

VirtualBox. While it is somewhat generalized through its use of the OVF VM format, it cannot make

effective use of lab infrastructure or cloud platforms, as the networking configuration and VM creation

is designed around host-based hypervisors. This also limits its use for live CDC events, as they require

infrastructure for hundreds of students, and dozens of human (non-scripted) Red team members. Finally,



62

the capabilities of the implementation are limited, only supporting VMware Workstation and a handful

of configurations. The platform does not appear to be under active development, so its capabilities are

likely to stay in this limited state for some time.

8.5 NICE Challenge Project

The National Initiative for Cybersecurity Education (NICE) Challenge Project is designed to create

a flexible set of challenge environments and supporting infrastructure with a low barrier of use[48]. It

is sponsored by the National Institute of Standards and Technology (NIST) and the National Security

Agency (NSA), and is managed by California State University, San Bernardino. It is a cloud-based

platform that hosts a variety of pre-built cybersecurity educational tutorials spanning a variety of topics.

Instructors can request a free account and set up access for their class. Their students can then log in and

carry out the tutorial exercise. Once the students complete the exercise, the platform will automatically

verify the actions the students performed, and assign a score the instructor can use to grade the student.

There are a number of issues that prevent this project from having the educational flexibility and

support as ADLES. The project code is proprietary and closed-source, with no way to locally set up

an environment to teach with, making schools restricted to the resources NICE has available. Custom

scenarios are an impossibility, limiting the topics instructors can teach, and making competitions impos-

sible. Instructors cannot run several classes in parallel, severely limiting the ability for a school to teach

multiple classes.

8.6 DETERLab

Started by the University of Southern California in 2004, DETERLab is a cybersecurity research

testbed that now spans dozens of institutions[47, 46]. It is a secure and generalized platform for running

security research experiments. The capabilities of the testbed include multi-resolution virtualization of

experiment resources, federation capabilities to connect disparate resources from partner institutions,

multi-party experimentation, and the ability to safely connect risky experiments to the Internet. Finally,

its orchestration of experiments provides deterministic control over various components in an experiment.

It enables researchers to collaborate with colleagues spread around the country and conduct realistic large-

scale cybersecurity experiments. Additionally, the platform is available to teachers to use for running

tutorials for their classes.

There are some limitations that limit DETERLab’s use for hands-on cybersecurity education. The

design of the system and its features are geared toward research and experimentation. While it has the

ability to be used for education, it’s a secondary objective. Furthermore, only Windows XP and older



63

Ubuntu Linux hosts can be used for experiments, significantly limiting it’s use to represent diverse or

specialized environments.

8.7 Vagrant

Vagrant is an open-source tool by Hashicorp to create reproducible development environments[37]. It

uses an easy-to-distribute specification file in Ruby-syntax to describe the configuration of a VM. This is

then used to deterministically create and configure a VM that matches the described configuration. The

creation is performed using a single command, ”vagrant up”, and the tear down process is performed

using ”vagrant destroy.” It is very similar to ADLES in a number of respects, and was actually the original

inspiration for the project.

However, there are limitations that precludes its use for educational environments. It is designed

for single virtual machines, with multi-machine configurations being possible, but very difficult to set

up.1 Only desktop virtualization platforms are supported, restricting its use to individual workstations

and preventing the use of any hardware infrastructure or resources available to an institution. Finally,

networking between various independent instances on different workstations is difficult to set up properly,

and depends heavily on the network configuration of the workstations and infrastructure being used.

8.8 SEED

SEED is an NSF-funded project started in 2002 to develop hands-on cybersecurity and IT educational

exercises[25, 23, 24]. These exercises, known as SEED labs, consist of a pre-packaged VM, a file containing

a step-by-step tutorial walking students through the exercise, and any additional materials needed to

conduct the exercise, such as source code or binaries. They are freely available for anyone to download

and use, and are compatible with the VirtualBox and VMware virtualization platforms, making them

accessible to educators globally. There are currently over 30 labs available, with subjects ranging from

System and Network security to Cryptography.

An instructor with access to a cloud platform or local infrastructure, such as those that use RADICL,

would want to create instances of these machines for each student, instead of requiring students to create

their own VMs. Using ADLES, they could easily create these instances by simply specifying the SEED

machine template, the desired exercise materials, perhaps some scoring criteria, and what infrastructure

to use. Additionally, the instructor could easily recycle the instances for another exercise by using ADLES

to reset the environment to the start of an exercise.

1The author can personally attest to this, having spent an entire summer attempting to do such a configuration.



64

Chapter 9: Future Work

9.1 Project Vision

The ”grand vision” of ADLES is to serve as the framework for a public Free and Open-Source Software

(FOSS) repository of pre-built exercises, competitions, and classes. This repository would enable many

schools that would otherwise not have the required talent or resources, such as high schools, community

colleges, and elementary schools, to bring high-quality cybersecurity and IT education to their students

and communities. This could serve to make great strides in resolving the shortage of skilled security

workers, and increase the number of software developers and IT specialists knowledgeable about security.

A sizable area of future work, then, is designing and establishing this repository. Successful examples

of this idea in practice are GitHub[31], the Docker Hub[21], Hashicorp’s Atlas repository of Vagrant

boxes[38], and FossHub[28].

Another area is the creation of more examples, including tutorials, competitions, and other creative

uses of the platform, such as cybersecurity research experiments.

9.2 Specification Extensions

This section discusses potential extensions to the specifications, including monitoring, resource feder-

ation, and several other potential extensions.

Monitoring Extensions

Monitoring extensions would add data collection configurations to relevant areas of the specifications,

enabling the implementation of high-fidelity data collection. This would greatly enhance the system’s

research applicability and enable other extensions, such as fully automated grading of results, visualization

of exercises, collection of research data, data analytics, and generation of corpora. Some examples of these

configurations are:

1. Secondary interfaces on services for aggregating their log data, such as Windows Event Logs, Unix

Syslog, application logs, etc.

2. Network packet captures. These could be obtained by enabling promiscuous mode on a vSwitch,

or enabling a SPAN monitoring port to aggregate the network traffic.

3. Configuration of a centralized logging server to collect data, such as Splunk or ELK, including

specifying how the data aggregated should be ”frozen” for inclusion with a package.



65

4. Configuration of Virtual Machine Introspection (VMI) on supported platforms for a high-fidelity

view of exercises during execution.

5. Instrumentation of the platforms and aggregation of the resulting log data, including the logs created

by ADLES itself.

Cyber-physical Resource and Lab Environment Federation

1. Further Resource extensions for cyber-physical testbeds, and integration of Resources into more

aspects of the exercise and package specifications. Examples of resources include testbeds for: ICS,

Wireless, USB devices, and car computers.

2. Addition of ability to federate connections between separate lab environments, enabling the sharing

of testbed resources, virtualization infrastructure, and collaboration between educational institu-

tions. This could be implemented by extending the current Resources section or the addition of a

new section.

TracerFIRE is a good example of how these extensions could be utilized in the real-world[1]. An ideal

lab design that makes use of these extensions is shown in figure 9.1.

Other extensions

1. Visualization of an exercise in progress, notably for competitive environments.

2. Define and implement automated scoring or grading of exercises. The ”scoring criteria” defined for

instances in folders is an initial stab at this.

3. Extension of the Groups section in the exercise specification with explicit specification of user roles

and permissions.

4. Fully integrate and clearly define the role of exercise materials and other aspects of the Package

specification.

5. Collaboration and communications for an exercise, e.g video conferencing, TeamSpeak, IRC channel,

or a Discord server.

9.3 System Improvements

Improvements to current system

1. Improved documentation on how to make a package, how to setup a platform for system, etc.



66

Figure 9.1: Network architecture of an ideal cybersecurity educational laboratory

2. Finish the implementation of groups and permissions for the vSphere platform interface.

3. Redo the syntax verification component. Currently, any changes in spec involve a non-trivial number

of changes to the source code of the component. This is brittle and makes verifying new extensions

difficult, as most implementers will not bother updating the component with the new syntax of

their extensions.

4. Two-way transformation. Scan an existing environment and generate the specification for it.

5. Graphical user interface. This would improve the experience for users who are not familiar with

commandline interfaces or for systems that restrict access to a commandline. Ideally, this would be

web-based for portability and to enable easy hosting on a remote server. However, in the short term,

this could be accomplished with a minimal amount of work using the EasyGUI Python module.



67

Support for additional platforms

Expanding ADLES to platforms other than vSphere is paramount to its success, and therefore an

important area of future work. Adding capability to use a platform involves the following:

• Design and implement an Interface class for the platform, and put its hooks into PlatformInterface

• Design and implement a wrapper class, if necessary

• Add a new configuration to the services section of the exercise specification

• Add a new entry for configuring the platform in the infrastructure specification

• Add any relevant materials required for the service to the package specification

Examples of platforms that would be the most critical to implement for educational purposes are the

following:

1. Docker: good for simulating large environments, with low resource overhead and quick load times[19].

(a) Docker Machine

(b) Docker Compose

(c) Docker Swarm

2. Hyper-V server: free academic license, good for schools invested in the Microsoft ecosystem.

3. Vagrant: brings the platform to workstations and personal machines. Enables interaction with

VirtualBox, desktop Hyper-V, and VMware Workstation.

4. Xen: free and open-source, scalable, robust. Rich introspection possibilities for monitoring exten-

sions using VMI provided by the Xen API[5].

5. KVM: free and open-source, good for schools with a strong Linux background. LibVMI provides

rich VMI possibilities here, as well.

6. Various cloud platforms, such as Microsoft Azure, Amazon AWS, Google Cloud Platform, or Digi-

talOcean. Clouds are dynamic, scalable, and cost only for the time utilized, making them perfect

for short-lived tutorials or competitions.



68

Other Improvements

1. Visualization of what the network and service structure of a given exercise or package specification

will look like without actually building the environment, including any cyber-physical testbeds,

connected labs, and monitoring components if their corresponding extensions are implemented.

2. Ability to pause/freeze an in-progress exercise, ideally as a simple commandline argument.

3. Public repository of packages.

4. More examples:

(a) Examples of other types of competitions, notably CTFs

(b) Experiment examples

(c) Greater variety of tutorials

5. Simplify system setup for educators beyond what a Python package provides

(a) Vagrantfile that builds a lightweight VM running the system

(b) Dockerfile that builds a lightweight Docker image running the system



69

Chapter 10: Summary and Conclusions

The field of cybersecurity is difficult to teach, due to the wide breadth of possible topics and the

nuances that cannot possibly be captured in lectures. Hands-on exercises have been proven to be a very

effective method of teaching cybersecurity that both engages learners and provides them with a skill-set

immediately applicable in the real-world. These exercises usually run using virtualization technologies,

such as VMware vSphere, and are configured and constructed manually by educators. However, creating

these exercises often requires specialized IT knowledge and a significant amount of time and effort to

build. This has cascaded to cause further issues with a lack of security, portability, and determinism.

In this thesis, a system that could potentially solve these problems was described: ADLES. The system

uses formal declarative ”specifications” describing an educational exercise to build an environment in a

deterministic manner. These specifications are portable, making the sharing of exercises a possibility, and

the system is platform-agnostic and extensible, enabling others to build the same environments utilizing

their own platform infrastructure. Educators who previously had to manually build exercises can now

use the automation provided by ADLES to construct these exercises with a minimal amount of effort.

The ”grand vision” of this work is to enable high schools, community colleges, and elementary schools,

regardless of technical skill and hardware capabilities, to provide high-quality cybersecurity and IT educa-

tion to their students and communities. While today such education is a rarity, it is possible to envision a

future where this education is as commonplace as traditional science and literary education. This would

make great strides toward resolving the current shortage of skilled security workers, and increase the

number of software developers and IT specialists knowledgeable about security.



70

References

[1] Benjamin Anderson, Kevin Nauer, Wellington Lee, J.T. McClain, and Rob Abbott. Tracer FIRE

cyberforensic training platform. https://www.osti.gov/scitech/servlets/purl/1251138, 2015.

[2] Ansible. https://www.ansible.com/.

[3] Ansible documentation - YAML syntax. https://docs.ansible.com/ansible/playbooks.html.

[4] Apache license, Jan 2004.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,

Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.,

37(5):164–177, October 2003.

[6] Oren Ben-Kiki, Clark Evans, and Ingy dot Net. YAML Ain’t Markup Language (YAML) Version

1.1. http://yaml.org/spec/1.1/, Jan 2005.

[7] Stefan Boesen, Richard Weiss, James Sullivan, Michael E. Locasto, Jens Mache, and Erik Nilsen.

EDURange: Meeting the pedagogical challenges of student participation in cybertraining environ-

ments. In Proceedings of the 7th USENIX Conference on Cyber Security Experimentation and Test,

CSET’14, pages 9–9. USENIX Association, 2014.

[8] Michael Braun and Chris Ocker. Penetration testing, Mar 2017. CS 439: Applied Security Concepts.

[9] S. Caltagirone, P. Ortman, S. Melton, D. Manz, K. King, and P. Oman. Design and implementa-

tion of a multi-use attack-defend computer security lab. In Proceedings of the 39th Annual Hawaii

International Conference on System Sciences (HICSS’06), volume 9, pages 220c–220c, Jan 2006.

[10] Sergio Caltagirone, Paul Ortman, Sean Melton, David Manz, Kyle King, and Paul W Oman.

RADICL: A Reconfigurable Attack-Defend Instructional Computing Laboratory. In Security and

Management, pages 97–103, 2005.

[11] National Collegiate Cyber Defense Competition. http://www.nationalccdc.org.

[12] Peter Chapman, Jonathan Burket, and David Brumley. Picoctf: A game-based computer security

competition for high school students. In 3GSE, 2014.

[13] Chef. https://www.chef.io/chef/.

https://www.osti.gov/scitech/servlets/purl/1251138
https://www.ansible.com/
https://docs.ansible.com/ansible/playbooks.html
http://yaml.org/spec/1.1/
http://www.nationalccdc.org
https://www.chef.io/chef/


71

[14] Jessica A. Chisholm. Analysis on the perceived usefulness of hands-on virtual labs in cybersecurity

classes, 2015.

[15] OverTheWire community. OverTheWire Wargames. www.overthewire.org/wargames.

[16] W. A. Conklin, R. E. Cline, and T. Roosa. Re-engineering cybersecurity education in the us: An

analysis of the critical factors. In 2014 47th Hawaii International Conference on System Sciences,

pages 2006–2014, Jan 2014.

[17] J. D. Day and H. Zimmermann. The OSI reference model. Proceedings of the IEEE, 71(12):1334–

1340, Dec 1983.

[18] DEFCON CTF archive. https://www.defcon.org/html/links/dc-ctf.html.

[19] Docker. https://docs.docker.com/.

[20] Docker Compose - overview. https://docs.docker.com/compose/overview/.

[21] Docker Hub. https://hub.docker.com/.

[22] Compose file version 3 reference. https://docs.docker.com/compose/compose-file/.

[23] Wenliang Du. Summary of the seed labs - for authors and publishers. http://www.cis.syr.edu/

~wedu/seed/Documentation/Textbook_Author_Publisher.pdf.

[24] Wenliang Du. SEED: A Suite of Instructional Laboratories for Computer SEcurity EDucation.

Syracuse University, Jan 2011.

[25] Wenliang Du. SEED: Hands-on lab exercises for computer security education. IEEE Security &

Privacy Magazine, 9(5):70–73, 2011.

[26] Oren en Kiki, Clark Evans, and Ingy dot Net. YAML Ain’t Markup Language (YAML) Version 1.2.

http://www.yaml.org/spec/1.2/spec.html, Oct 2009.

[27] Verizon Enterprise. 2016 data breach investigations report. Technical report, Verizon Enterprise,

Apr 2016.

[28] FossHub. https://www.fosshub.com/about.html.

[29] Alessio Gaspar, Sarah Langevin, William Armitage, R. Sekar, and T. Daniels. The role of virtualiza-

tion in computing education. In Proceedings of the 39th SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’08, pages 131–132. ACM, 2008.

www.overthewire.org/wargames
https://www.defcon.org/html/links/dc-ctf.html
https://docs.docker.com/
https://docs.docker.com/compose/overview/
https://hub.docker.com/
https://docs.docker.com/compose/compose-file/
http://www.cis.syr.edu/~wedu/seed/Documentation/Textbook_Author_Publisher.pdf
http://www.cis.syr.edu/~wedu/seed/Documentation/Textbook_Author_Publisher.pdf
http://www.yaml.org/spec/1.2/spec.html
https://www.fosshub.com/about.html


72

[30] Gabe Gibler and Colton Hotchkiss. Network firewalls, Feb 2017. CS 439: Applied Security Concepts.

[31] GitHub. https://github.com/.

[32] George E. Glasson. The effects of hands-on and teacher demonstration laboratory methods on science

achievement in relation to reasoning ability and prior knowledge. Journal of Research in Science

Teaching, 26(2):121–131, 1989.

[33] Christopher Goes. ADLES: GitHub. https://github.com/GhostofGoes/ADLES, 2017.

[34] Christopher Goes. ADLES: Python Package Index. https://pypi.python.org/pypi/ADLES, 2017.

[35] Forbes Guthrie, Scott Lowe, and Kendrick Coleman. VMware vSphere design. John Wiley & Sons,

2013.

[36] HashiCorp. Terraform. https://www.terraform.io/intro/.

[37] HashiCorp. Vagrant. https://www.vagrantup.com/.

[38] Atlas. https://atlas.hashicorp.com/boxes/search.

[39] David L Haury and Peter Rillero. Perspectives of Hands-On Science Teaching. ERIC, 1994.

[40] ISACA. State of cybersecurity implications for 2016. Technical report, ISACA, Feb 2016.

[41] Ananth Jillepalli, Nagarjuna Nuthalapati, Matt Kirkland, and Jonathan Buch. Domain controlling,

Feb 2017. CS 439: Applied Security Concepts.

[42] Kyle King, David Manz, Paul Ortman, Doug Shikashio, and Paul Oman. A rapidly reconfigurable

computer lab for software engineering security experiments and exercises. In Proceedings of the 19th

Conference on Software Engineering Education and Training Workshops, CSEETW ’06, pages 24–.

IEEE Computer Society, Apr 2006.

[43] Wellington K. Lee, Tyler Morris, Andrew Chu, Katrina Gilmore, Joshua Russ, and Aliyah Carter.

ABQ ThunderBird Cup v3.0 Alpha Worksop: Workshop Analysis 2016. Sandia National Labs, Nov

2016.

[44] L. F. Ludwig and D. F. Dunn. Laboratory for emulation and study of integrated and coordinated

media communication. In Proceedings of the ACM Workshop on Frontiers in Computer Communi-

cations Technology, SIGCOMM ’87, pages 283–291. ACM, 1988.

https://github.com/
https://github.com/GhostofGoes/ADLES
https://pypi.python.org/pypi/ADLES
https://www.terraform.io/intro/
https://www.vagrantup.com/
https://atlas.hashicorp.com/boxes/search


73

[45] Dale L. Lunsford. Virtualization technologies in information systems education. Journal of Infor-

mation Systems Education, 20(3):339–348, Fall 2009.

[46] J. Mirkovic and T. Benzel. Teaching cybersecurity with deterlab. IEEE Security Privacy, 10(1):73–

76, Jan 2012.

[47] Jelena Mirkovic, Terry V Benzel, Ted Faber, Robert Braden, John T Wroclawski, and Stephen

Schwab. The DETER project: Advancing the science of cyber security experimentation and test. In

Technologies for Homeland Security (HST), 2010 IEEE International Conference on. IEEE, 2010.

[48] NICE challenge project. https://www.nice-challenge.com/.

[49] Commission on Enhancing National Cybersecurity. Report on securing and growing the digital

economy. Technical report, National Institute of Standards and Technology, Dec 2016.

[50] Pacific Rim Collegiate Cyber Defense Competition. https://www.prccdc.org/.

[51] Tom Preston-Werner. Semantic versioning 2.0.0. http://semver.org/.

[52] Puppet. https://puppet.com/.

[53] PyPI: Python Package Index. https://pypi.python.org/pypi.

[54] Tim Rains, Matt Miller, and David Weston. Exploitation trends: From potential risk to actual risk.

In RSA Conference, Apr 2015.

[55] Eric Steven Raymond. The Art of Unix Programming. Pearson Education, Inc, Sep 2003.

[56] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address allocation for

private internets. RFC 1918, IETF, Feb 1996.

[57] Ammar H. Safar and Fahad A. AlKhezzi. Beyond computer literacy: Technology integration and

curriculum transformation. College Student Journal, 47(4):614–626, 12 2013.

[58] Sushil K Sharma and Joshua Sefchek. Teaching information systems security courses: A hands-on

approach. Computers & Security, 26(4):290–299, Jun 2007.

[59] Kirill Simonav. PyYAML. http://pyyaml.org/wiki/PyYAML.

[60] Flexera Software. Vulnerability review 2016. Technical report, Flexera Software, Mar 2016.

[61] Michael Suby and Frank Dickson. The 2015 (ISC)2 global information security workforce study.

Technical report, (ISC)2, Apr 2015.

https://www.nice-challenge.com/
https://www.prccdc.org/
http://semver.org/
https://puppet.com/
https://pypi.python.org/pypi
http://pyyaml.org/wiki/PyYAML


74

[62] Guido van Rossum. Python programming language. https://www.python.org/.

[63] VMware. pyVmomi. https://github.com/vmware/pyvmomi, 2014.

[64] Richard H Wagner. Designing a network defense scenario using the open cyber challenge platform.

http://digitalcommons.uri.edu/theses/73, 2013.

[65] Richard Weiss, Jens Mache, and Erik Nilsen. Top 10 hands-on cybersecurity exercises. J. Comput.

Sci. Coll., 29(1):140–147, October 2013.

[66] Richard S. Weiss, Stefan Boesen, James F. Sullivan, Michael E. Locasto, Jens Mache, and Erik

Nilsen. Teaching cybersecurity analysis skills in the cloud. In Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, SIGCSE ’15, pages 332–337. ACM, 2015.

[67] Tyler Wittreich. Spoofing tutorial, Mar 2015. CS 439: Applied Security Concepts.

https://www.python.org/
https://github.com/vmware/pyvmomi
http://digitalcommons.uri.edu/theses/73


75

Appendix A: Package Specification

1 metadata:

2 timestamp: "date" # REQUIRED Date package was created in UTC

↪→ format: YYYY -MM -DD

3 tag: "tag -name" # REQUIRED Unique identifier for this package

4 name: "name of package" # Suggested Human -readable name for the

↪→ package [default: filename]

5 description: "description" # Suggested Human -readable detailed

↪→ description of package

6 version: "0.0.0" # Suggested Semantic version of the

↪→ package: major.minor.bugfix

7

8 contents:

9 environment: "enviro -spec.yaml" # REQUIRED Name of the file

↪→ containing the environment specification

10 infrastructure: "infra -spec.yaml" # Suggested Infrastructure

↪→ configuration (This can be specified in environment spec as well)

11 scoring: "scoring -criteria.yaml" # Suggested Scoring criteria (This

↪→ can be specified in environment spec as well)

12 results: "path/to/dir" # Suggested Relative path to directory

↪→ containing: Network PCAPs , Collected logfiles , Quiz/test results ,

↪→ Scoring results , Student & Instructor feedback , and Chat Logs

13 templates: "path/to/dir" # Suggested Relative path to directory

↪→ containing: VM OVFs , Docker Images/Dockerfiles , provisioning

↪→ scripts/packages , other payloads

14 materials: "path/to/dir" # Suggested Relative path to directory

↪→ containing: presentations , exercise scripts , instructions/guides/

↪→ documentation

Listing A.1: Package Specification



76

Appendix B: Exercise Specification

1 # ** Document Metadata **

2 metadata:

3 name: "name" # Suggested Human -readable title for the

↪→ specification [default: filename]

4 description: "description" # Suggested Human -readable detailed

↪→ description of the specification

5 activity: "the activity" # Optional The activity the

↪→ specification is being used for , e.g "CS 439" or "PRCCDC"

6 prefix: "GLOBAL -PREFIX" # REQUIRED Globally unique prefix that

↪→ distinguishes this exercise ’s environments from others on the same

↪→ infrastructure

7 date -created: "date" # Optional UTC format: YYYY -MM -DD (

↪→ Example: 2016 -10 -12)

8 version: "0.0.0" # Suggested Semantic version of the

↪→ document: major.minor.bugfix (Refer to: http :// semver.org/)

9 infra -file: "filename.yaml" # REQUIRED YAML file

↪→ specifying the infrastructure used to create the exercise

↪→ environment (See: infrastructure -specification.yaml for syntax)

10 folder -name: "/Path/To/Folder -Name" # Suggested Path of the folder

↪→ that will contain the exercise , relative to root defined in the

↪→ infrastructure configuration

11

12

13 # ** Groups/Teams **

14 # User groups , such as teams , students or instructors

15 # These are used to apply permissions to the resources and machines in

↪→ the generated virtual exercise environment

16 groups:

17 Group Regular Example:

18 # The three different methods of specifying users for a regular

↪→ group

19 ad -group: "Users" # Option A AD group must exist

20 filename: "a-file.json" # Option B File format: specifications/user

↪→ -json -specification.json

21 user -list: [ "user -a", "user -b" ] # Option C List of usernames

22

23 # For creating batch groups from a common template base , the "template

↪→ " type can be used

24 Group Template Example:

25 instances: 10 # REQUIRED Number of groups created from

↪→ this template. This marks a group as a template.

26 ad -group: "Group [X]" # Option A ’[X]’ is the instance number. AD

↪→ group must exist

27 filename: "users.json" # Option B File format: specifications/user

↪→ -json -specification.json

28

29

30 # ** Services **



77

31 # Definition of the services that will be created in the exercise

↪→ environment , such as hosts , servers , and routers

32 # Case insensitive EXCEPT for names of sources , such as templates or

↪→ images

33 # Networks are attached to interfaces in order of their definition ,

↪→ unless explicitly mapped

34 # Three types of services: template , container , compose

35 # template: Templatized VM in vSphere

36 # container: Docker container

37 # compose: Docker Compose file

38 services:

39 all -service -types: # Configurations that can appear in any service

↪→ definition

40 note: "A note" # Optional Human -readable note visible by

↪→ end -user , such as default username/password

41 network -interfaces: [] # Optional List of network interfaces and

↪→ their optional configurations [default: template or container

↪→ specific]

42 provisioner: # Optional

43 name: "name" # REQUIRED Name of provisioning tool , e.g Ansible ,

↪→ Chef , Puppet

44 file: "file" # REQUIRED File to use for provisioner , e.g

↪→ Playbook , Cookbook , Manifest

45 resource -config: # Optional Resource allocation configurations for

↪→ the service

46 cores: 0 # Optional Number of CPU cores

47 memory: 0 # Optional Amount of RAM in MB

48 storage: 0 # Optional Amount of persistent storage in GB

49 template -based -service: # Option A

50 template: "name" # REQUIRED

51 template -config: # Optional Configuration of Template settings

↪→ using key -value pairs

52 key: "value"

53 guest -extensions: no # Optional Guest extensions will be

↪→ installed or enabled (e.g VMware Tools)

54 container -based -service: # Option B

55 dockerfile: "file" # Option A Dockerfile to build a image

56 image: "name/tag" # Option B Name and Tag of a pre -built image

57 compose -based -service: # Option C

58 compose -file: "filename.yml" # REQUIRED

59

60

61 # ** Resources **

62 # Cyber -physical resources that are to be utilized. These will be

↪→ attached to folders , networks , or groups as needed.

63 # Examples: A wireless testbed or SCADA testbed in RADICL , a transformer

↪→ in the power lab.

64 resources:

65 resource -p:

66 lab: "power -lab" # REQUIRED Name of the lab the resource

↪→ is associated with

67 resource: "transformer" # REQUIRED Name of the specific



78

↪→ resource

68

69

70 # ** Networks **

71 # Definitions of virtual networks (Layers 2 and 3 of the OSI model)

72 # Non -Private (RFC 1918) networks will result in a warning

73 # IP version (IPv4/IPv6) is implicitly defined by subnet address format

74 networks:

75 unique -networks: # Networks that are instantiated once and only

↪→ once. Think of them as singletons.

76 network -label: # REQUIRED Unique label used to identify

↪→ the network (Replace "network -label" with the name of the network)

77 description: "blah" # Optional Human -readable description of

↪→ network

78 subnet: "x.x.x.x/x" # Suggested IP network address and mask:

↪→ SUBNET -IP/CIDR

79 vlan: 0 # Optional VLAN tag of the network. Must

↪→ be a value < 2000. [default: globally unique value > 2000]

80 vswitch: "name" # Optional Name of virtual switch used

↪→ for the network [default: set in infrastructure -config or

↪→ VsphereInterface]

81 generic -networks: # New networks are created per instance of a

↪→ folder

82 # This instance counter is global across folders. Each instance of a

↪→ given folder will refer to the "global" value of the base at that

↪→ index.

83 # Example: a generic network for instance 5 of folder "hidden" will

↪→ be the same network as instance 5 of folder "workstations"

84 network -label:

85 description: "description"

86 subnet: "x.x.x.x/x"

87 vswitch: "vswitch name"

88 increment: no # Optional Increment the subnet value for

↪→ each unique instance created [default: no]

89

90

91 # ** Folders **

92 # Assemblages of objects in a hierarchical structure

93 # PHASES - Usually , there are two phases to creation of an exercise

↪→ environment

94 # Mastering "Master" instances are created and configured by

↪→ humans

95 # Deployment Full deployment of envrionment , using the Master

↪→ instances created in the Mastering phase

96 # PERMISSIONS - Permissions are applied hierarchically. Groups with

↪→ permissions to a given folder will have permissions for all of it’

↪→ s children as well.

97 folders:

98 parent -folder: # Folders that contain other folders (replace "parent -

↪→ folder" with name of the folder)

99 group: group -label # Optional User group that will have

↪→ permissions to the folder



79

100 master -group: group -label # Optional User group for the pre -

↪→ deployment masters [default: group specified for the folder]

101 description: "description" # Optional Human -readable description

↪→ of folder

102 enabled: yes # Optional Flag to selectivly disable

↪→ a folder , so changes can be easily tested [default: yes]

103 instances: 10 # Optional Same configurations as for

↪→ base -type folders

104 base -folder: # Folders that contain services (replace "base -folder"

↪→ with name of the folder)

105 group: group -label # REQUIRED User group that will

↪→ have permissions to the folder

106 master -group: group -label # Optional User group for the pre -

↪→ deployment masters [default: group specified for the folder]

107 description: "description" # Optional Human -readable

↪→ description of folder

108 enabled: yes # Optional Flag to selectivly

↪→ disable a folder , so changes can be easily tested [default: yes]

109 instances: # Optional Makes folder a template that is copied N

↪→ -times (NOTE: instances can also simply be an integer representing

↪→ N)

110 number: 10 # OPTION A Number of instances =

↪→ integer

111 size -of: group -label # OPTION B Number of instances = Size

↪→ of named group

112 prefix: "prefix" # Optional String to prepend to named

↪→ instance numbers [default: name of folder]

113 services: # REQUIRED Define services that the base folder

↪→ will contain

114 service -instance -name:

115 service: service -label # REQUIRED Label as defined in

↪→ services

116 instances: 10 # Optional Same configurations as

↪→ for base -type folders

117 networks: ["subnet -a", "subnet -b"] # Optional Networks

↪→ to attach the service instance to (Case sensitive !)

118 provisioner -file: "file" # Optional Override provisioner

↪→ configuration file for a service

119 scoring: # Optional Scoring for the service (e.g a

↪→ competition , or verification of homework)

120 ports: [0] # Suggested Ports used for scoring

121 protocols: ["proto"] # Suggested Protocols used for

↪→ scoring

122 criteria: "file.yaml" # REQUIRED Criteria used to score

↪→ the service

Listing B.1: Exercise Specification



80

Appendix C: Infrastructure Specification

1 # VMware vSphere

2 vmware -vsphere:

3 hostname: "hostname" # REQUIRED Hostname of the vCenter

↪→ server

4 port: 0 # Suggested Port used to connect to

↪→ the vCenter server [default: 443]

5 login -file: "vsphere.json" # Suggested Login information used

↪→ to connect to the vCenter server [default: prompt user]

6 datacenter: "datacenter name" # Suggested Name of the Datacenter

↪→ on which to create environment

7 datastore: "datastore name" # Suggested Name of Datastore to use

↪→ for environment VMs

8 template -folder: "folder path" # REQUIRED Path from server root to

↪→ folder that contains VM templates

9 server -root: "folder name" # Suggested Name of folder

↪→ considored to be "root" for the platform

10 vswitch: "vswitch name" # Suggested Name of vSwitch to use

↪→ as default

11 host -list: ["a", "b"] # Optional List of names of ESXi

↪→ hosts to use [default: first host found in the datacenter]

12

13 # Docker

14 docker:

15 url: "host:port" # Suggested URL to the Docker server [

↪→ default: unix :/// var/run/docker.sock]

16 tls: true # Optional Use TLS to connect to the Docker

↪→ server [default: True]

17 registry: # Optional

18 url: "url://" # REQUIRED URL of the registry

19 login -file: "r.json" # REQUIRED JSON file containing login

↪→ information for the Docker registry server

20

21 # Amazon Web Services

22 amazon -aws:

23 cred -file: "path" # REQUIRED Path to file with AWS access

↪→ credentials

24 config -file: "path" # Suggested Path to file with service

↪→ configurations

25

26 # Digital Ocean

27 digital -ocean:

28 token -file: "path" # REQUIRED Path to file containing access token

29

30 # Microsoft Hyper -V Server

31 hyper -v:

32 hostname: "hostname" # REQUIRED Hostname of the Hyper -V server

33 port: 0 # Suggested Port used to connect to Hyper -V

↪→ server



81

34 login -file: "path" # REQUIRED Path to file containing login

↪→ information for the Hyper -V server

35 version: "v2" # Suggested Version of the Hyper -V API to

↪→ use

36 vswitch: "name" # Suggested Name of VirtualEthernetSwitch to

↪→ use as default

Listing C.1: Infrastructure Specification



82

Appendix D: Penetration Testing Tutorial

Specification

1 metadata:

2 name: "Penetration Testing"

3 description: "Tutorial on properly conducting a penetration test"

4 activity: "CS 439 - Applied Security Concepts"

5 prefix: "CS439 -TR03 -TU16"

6 date -created: "2017 -03 -29"

7 version: "0.3.4"

8 infra -file: "infra.yaml"

9 folder -name: "CS -439/TR -03/TU -16" # CS 439, Tutorial Round 3,

↪→ Tutorial 16

10

11 groups:

12 Students:

13 ad -group: "CS439 Students"

14 Instructors:

15 user -list: ["brau", "ocke"]

16

17 # Note with default credentials needed for exercise setup is preserved

↪→ from template

18 services:

19 kali: # What the students will be using

20 template: "Kali Linux 2016.2 (64-bit)"

21 ics: # Industrial Control System

22 template: "Windows XP SP0"

23 web: # Apache webserver

24 template: "Ubuntu Server 14.04 (64-bit)"

25 laptop: # Walter ’s Laptop

26 template: "Windows XP SP2"

27 phone: # Planted phone

28 template: "Android 4.4"

29 workstation: # Walter ’s workstation

30 template: "Windows 7 SP2 (64-bit)"

31 dc: # Domain Controller

32 template: "Windows Server 2012 (64-bit)"

33 router: # Router

34 template: "VyOS 1.1.7 (64-bit)"

35

36 networks:

37 generic -networks:

38 Attacker -net:

39 description: "Used by the attacker"

40 subnet: "192.168.0.0/24"

41 increment: yes

42 Mobile -ISP:

43 description: "Attacker <-> Phone"



83

44 subnet: "172.16.0.0/19" # Unusual subnet mask is intended to make

↪→ subnets more "random"

45 increment: yes

46 Workstations:

47 description: "This is the internal corporate network"

48 subnet: "192.168.1.0/24"

49 WiFi:

50 description: "Wireless access for company employees"

51 subnet: "192.168.5.0/24"

52 Web -Services:

53 description: "Internet services for the company"

54 subnet: "192.168.4.0/24"

55 ICS:

56 description: "SCADA communication and management network"

57 subnet: "192.168.3.0/24"

58 IT:

59 description: "Where the system administrator lives"

60 subnet: "192.168.2.0/24"

61

62 folders:

63 student -workstations:

64 description: "Workstations visible to and used by students during

↪→ the tutorial"

65 group: Students

66 master -group: Instructors

67 instances:

68 number: 15

69 prefix: "WS -"

70 services:

71 attacker:

72 service: kali

73 networks: ["Attacker -net", "Mobile -ISP"]

74 exercise -environemnt:

75 description: "Systems the students will explore during the exercise ,

↪→ but should not see"

76 group: Instructors

77 systems:

78 group: Instructors

79 instances:

80 number: 15

81 prefix: "HIDDEN -ENVIRONMENT -"

82 services:

83 exercise -router:

84 service: router

85 networks: ["Attacker -net", "Workstations", "IT", "ICS", "Web -

↪→ Services", "WiFi"]

86 sysad:

87 service: kali

88 networks: ["IT"]

89 ics -system:

90 service: ics

91 networks: ["ICS"]



84

92 web -server:

93 service: web

94 networks: ["Web -Services"]

95 walter -workstation:

96 service: workstation

97 networks: ["Workstations"]

98 domain -controller:

99 service: dc

100 networks: ["Workstations"]

101 planted -phone:

102 service: phone

103 networks: ["WiFi", "Mobile -ISP"]

104 walter -laptop:

105 service: laptop

106 networks: ["WiFi"]

Listing D.1: Penetration Testing Tutorial Specification



85

Appendix E: Competition Specification

1 metadata:

2 name: "PRCCDC 2016 Competition Scenario definition"

3 description: "The competition scenario environment"

4 activity: "Pacific Rim Collegiate Cyber Defense Competition"

5 prefix: "PRCCDC"

6 date -created: "2016 -11 -01"

7 version: "2.11.2"

8 infra -file: "infra.yaml"

9 folder -name: "Competitions/PRCCDC/prccdc -2016"

10

11 groups:

12 Blue Team: # Defenders

13 instances: 14

14 filename: "examples/blue -teams.json"

15 Red Team: # Attackers

16 ad -group: "Red Team"

17 Black Team: # Infrastructure team

18 ad -group: "Black Team"

19

20 # Blue and Red teams know from their team packets what the default

↪→ logins are for all services

21 services:

22 score -bot:

23 template: "PRCCDC Score Bot"

24 evil -host:

25 template: "Kali 2.0 (64-bit)"

26 host -type -a:

27 template: "Windows 7 (64-bit)"

28 host -type -b:

29 template: "Windows 10 (64-bit)"

30 host -type -c:

31 template: "Ubuntu Desktop 14.04 (64-bit)"

32 firewall:

33 template: "VyOS 1.1.7 (64-bit)"

34 note: "Default Username: vyos Password: vyos"

35 domain -controller:

36 template: "Windows Server 2012 R2 (64-bit)"

37 web -server:

38 template: "Ubuntu Server 14.04 (64-bit)"

39 database -server:

40 template: "Fedora 22 (64-bit)"

41 file -server:

42 template: "Windows Server 2008 R2 (64-bit)"

43 mail -server:

44 template: "Windows Server 2003 (32-bit)"

45 hvac -server:

46 template: "Solaris 9 (32-bit)"

47



86

48 networks:

49 unique -networks:

50 competition:

51 subnet: "172.30.0.0/16"

52 vswitch: "competition_vswitch"

53 outside -world:

54 subnet: "172.20.0.0/16"

55 vswitch: "competition_vswitch"

56 management:

57 subnet: "10.10.10.0/24"

58 vswitch: "competition_vswitch"

59 generic -networks:

60 blue -hosts:

61 subnet: "10.0.0.0/24"

62 vswitch: "competition_vswitch"

63 blue -services:

64 subnet: "192.168.0.0/24"

65 vswitch: "competition_vswitch"

66 increment: yes

67

68 folders:

69 external:

70 group: "Black Team"

71 description: "The open competition network with red teams and

↪→ scorebots"

72 services:

73 edge -router:

74 description: "Connection to Internet"

75 service: firewall

76 networks: ["outside -world", "competition", "management"]

77 competition -dc:

78 description: "Provides DNS and DHCP"

79 service: domain -controller

80 networks: ["competition", "management"]

81 # Scorebots communicate over management network to randomly select

↪→ which team gets pinged from which scorebot

82 score -bot:

83 description: "Used to score teams"

84 service: score -bot

85 networks: ["competition", "management"]

86 instances:

87 number: 14

88 prefix: "Scorebot "

89 blue -team:

90 instances:

91 number: 14

92 prefix: "Blue Team "

93 group: "Blue Team"

94 services:

95 gateway:

96 description: "Gateway connecting Blue teams to main competition

↪→ network"



87

97 service: firewall

98 networks: ["competition", "blue -hosts", "blue -services"]

99 windows -hosts:

100 description: "Windows hosts that the blue team members use to

↪→ access their services"

101 instances:

102 prefix: "Host "

103 number: 6

104 service: host -type -a

105 networks: ["blue -hosts"]

106 linux -hosts:

107 description: "Linux hosts that the Blue team members use to

↪→ access their services"

108 instances:

109 prefix: "Linux Host "

110 number: 2

111 service: host -type -b

112 networks: ["blue -hosts"]

113 dc:

114 description: "Domain Controller for Blue Team network. Runs DNS ,

↪→ DHCP , and Active Directory."

115 service: domain -controller

116 networks: ["blue -services"]

117 web:

118 description: "Web server hosting the team’s page"

119 service: web -server

120 networks: ["blue -services"]

121 scoring:

122 ports: [80, 443]

123 protocols: ["http", "https"]

124 criteria: "criteria -file.yaml"

125 db:

126 description: "Database"

127 service: database -server

128 networks: ["blue -services"]

129 mail:

130 description: "Mail Server"

131 service: mail -server

132 networks: ["blue -services"]

133 scoring:

134 ports: [25]

135 protocols: ["smtp"]

136 criteria: "criteria -file.yaml"

137 hvac:

138 description: "HVAC Server"

139 service: hvac -server

140 networks: ["blue -services"]

141 scoring:

142 ports: [22]

143 protocols: ["ssh"]

144 criteria: "criteria -file.yaml"

145 file:



88

146 description: "File Server"

147 service: file -server

148 networks: ["blue -services"]

149 scoring:

150 ports: [21, 445]

151 protocols: ["sftp", "smb"]

152 criteria: "criteria -file.yaml"

153 red -team:

154 group: "Red Team"

155 services:

156 attacker -hosts:

157 instances:

158 number: 40

159 prefix: "Attacker "

160 description: "Host used by Red Team to attack Blue teams"

161 service: evil -host

162 networks: ["competition"]

163 collaboration -server:

164 description: "Server for Red Team collaboration , including

↪→ Armitage , SFTP , and IRC"

165 service: web -server

166 networks: ["competition"]

Listing E.1: Competition Specification



89

Appendix F: Network Firewalls Tutorial

Specification

1 metadata:

2 name: "Network Firewalls"

3 description: "A tutorial on the usage and configuration of network

↪→ firewalls"

4 activity: "CS 439 - Applied Security Concepts"

5 prefix: "CS439 -TR03 -TU16"

6 version: "0.3.0"

7 infra -file: "infra.yaml"

8 folder -name: "CS -439/TR -02/TU -11" # CS 439, Tutorial Round 2,

↪→ Tutorial 11

9

10 groups:

11 Students:

12 ad -group: "CS439 Students"

13 Instructors:

14 user -list: ["gibl", "hotc"]

15

16 # Default passwords are preserved from templates

17 services:

18 pfsense:

19 template: "PFSense 2.2.3 (64-bit)"

20 ubuntu:

21 template: "Ubuntu 16.04 (64-bit)"

22 vyos:

23 template: "VyOS 1.1.7 (64-bit)"

24 win -workstation:

25 template: "Windows 10 (64-bit)"

26 win -server:

27 template: "Windows Server 2012 R2 (64-bit)"

28 seed:

29 template: "Ubuntu 12.04 SEED (32-bit)"

30

31 networks:

32 generic -networks:

33 Internal:

34 description: "Internal ’Local ’ network that is being protected"

35 subnet: "192.168.0.0/24"

36 vswitch: "cs439_vswitch"

37 External:

38 description: "External untrusted network that is treated as the ’

↪→ Internet ’ for this exercise"

39 subnet: "172.16.0.0/16"

40 vswitch: "cs439_vswitch"

41

42 folders:



90

43 workstations:

44 group: Students

45 master -group: Instructors

46 instances:

47 number: 15

48 prefix: "WS -"

49 services:

50 PFSense Firewall:

51 service: pfsense

52 networks: ["Internal", "External"]

53 VyOS Firewall:

54 service: vyos

55 networks: ["Internal", "External"]

56 Linux Server:

57 service: ubuntu

58 networks: ["Internal"]

59 Windows Server:

60 service: win -server

61 networks: ["Internal"]

62 Windows Workstation:

63 service: win -workstation

64 networks: ["Internal"]

65 SEED Workstation:

66 service: seed

67 networks: ["Internal"]

Listing F.1: Network Firewalls Tutorial Specification



91

Appendix G: Spoofing Tutorial

1 metadata:

2 name: "Spoofing Tutorial"

3 description: "Learning about ARP spoofing and DNS spoofing , and

↪→ implementing DNSSEC and DNSCrypt"

4 activity: "CS 439 - Applied Security Concepts"

5 prefix: "CS439"

6 date -created: "2016 -11 -06"

7 version: "0.6.1"

8 infra -file: "infra.yaml"

9 folder -name: "CS -439/TR -01/TU -03" # CS 439, Tutorial Round 1,Tutorial

↪→ 03

10

11 groups:

12 Students:

13 ad -group: "CS 439 Students"

14 Instructors:

15 filename: "examples/tutorial_instructors.json"

16

17 services:

18 windows:

19 note: "Username: User Password: Windows1"

20 template: "Windows 7 SP2 (64-bit)"

21 kalibox:

22 note: "Username: root Password: toor"

23 template: "Kali 2.0 (64-bit)"

24 server:

25 template: "Ubuntu Server 14.04 (64-bit)"

26 router:

27 template: "VyOS 1.1.7 (64-bit)"

28

29 networks:

30 generic -networks:

31 SPOOFING -LAN:

32 description: "Used for spoofing tutorial"

33 subnet: "192.168.1.0/24"

34 vswitch: "cs439_vswitch"

35

36 folders:

37 hidden:

38 description: "Services for each student that they do not see"

39 group: Instructors

40 hidden -services:

41 group: Instructors

42 instances:

43 number: 15 # size -of: Students

44 prefix: "HIDDEN -SERVICE -"

45 services:

46 server:



92

47 service: server

48 networks: ["SPOOFING -LAN"]

49 router:

50 service: router

51 networks: ["SPOOFING -LAN"]

52 workstations:

53 description: "Workstations students use for the tutorial"

54 group: Students

55 master -group: Instructors

56 instances:

57 number: 15 # size -of: Students

58 prefix: "WS -"

59 services:

60 host:

61 service: windows

62 networks: ["SPOOFING -LAN"]

63 attacker:

64 service: kalibox

65 networks: ["SPOOFING -LAN"]

Listing G.1: Spoofing Tutorial Specification



93

Appendix H: Experiment Example Specification

1 metadata:

2 name: "Network Security Visualization Test Data Collection"

3 description: "Testbed for collection of realistic network data for

↪→ Network Security Visualization research"

4 activity: "Experiments -2017"

5 prefix: "EXPERIMENT"

6 date -created: "2017 -02 -10"

7 version: "0.3.0"

8 infra -file: "infra.yaml"

9 folder -name: "NSV -Research/nsv -experiment"

10

11 groups:

12 Researchers:

13 ad -group: "NSV Research Team"

14

15 services:

16 vyos:

17 template: "VyOS 1.1.7 (64-bit)"

18 note: "Username: vyos Password: vyos"

19 pfsense:

20 template: "PFSense 2.2.3 (64-bit)"

21 note: "Web Interface is used to configure this. Username: admin

↪→ Password: pfsense"

22 dc:

23 template: "Windows Server 2012 R2 (64-bit)"

24 note: "Domain Controller"

25 dns:

26 template: "RHEL 6 (32-bit)"

27 note: "DNS server"

28 ntp:

29 template: "FreeBSD 10 (32-bit)"

30 note: "NTP server"

31 server2012:

32 template: "Windows Server 2012 R2 (64-bit)"

33 apache:

34 template: "Ubuntu Server 16.10 LAMP (64-bit)"

35 note: "Linux Apache MySQL PHP (LAMP) server"

36 nginx:

37 template: "NGINX"

38 note: "NGINX load balancer for servers"

39 windows:

40 template: "Windows 7 SP2 (64-bit)"

41 note: "Username: Tester Password: Windows1"

42 kali:

43 template: "Kali 2016.2 (64-bit)"

44 note: "Username: root Password: toor"

45

46 networks:



94

47 unique -networks:

48 SERVER -NET:

49 description: "Network for testbed servers hosting data accessed by

↪→ clients"

50 subnet: "10.0.0.0/24"

51 CLIENT -NET:

52 description: "Network for testbed clients accessing the server

↪→ data"

53 subnet: "192.168.0.0/24"

54 WAN -NET:

55 description: "In-between network that acts as the internet for

↪→ this simulation"

56 subnet: "172.16.0.0/16"

57 SERVER -WAN:

58 description: "Network that connects the SERVER -NET router with the

↪→ WAN -NET router"

59 subnet: "192.168.100.0/30"

60 CLIENT -WAN:

61 description: "Network that connects the CLIENT -NET router with the

↪→ WAN -NET router"

62 subnet: "192.168.200.0/30"

63

64 folders:

65 clients:

66 description: "Clients for the testbed"

67 group: Researchers

68 services:

69 windows -client:

70 service: windows

71 instances: 40

72 networks: ["CLIENT -NET"]

73 linux -client:

74 service: kali

75 instances: 5

76 networks: ["CLIENT -NET"]

77 domain -controller:

78 service: dc

79 networks: ["CLIENT -NET"]

80 servers:

81 description: "Servers for the testbed"

82 group: Researchers

83 services:

84 windows -web:

85 service: server2012

86 instances: 15

87 networks: ["SERVER -NET"]

88 apache -web:

89 service: apache

90 instances: 20

91 networks: ["SERVER -NET"]

92 nginix -server:

93 service: nginx



95

94 networks: ["SERVER -NET"]

95 domain -controller:

96 service: dc

97 networks: ["SERVER -NET"]

98 wan:

99 description: "Simulation of services on the Internet , such as DNS

↪→ and NTP"

100 group: Researchers

101 services:

102 dns -server:

103 service: dns

104 instances: 3

105 networks: ["WAN -NET"]

106 ntp -server:

107 service: ntp

108 instances: 3

109 networks: ["WAN -NET"]

110 routers: # Ideally , these would use RIPv2 to share routing

↪→ information

111 description: "Routers connecting clients and servers"

112 group: Researchers

113 services:

114 client -router:

115 service: pfsense

116 networks: ["CLIENT -NET", "CLIENT -WAN"]

117 server -router:

118 service: vyos

119 networks: ["SERVER -NET", "SERVER -WAN"]

120 wan -router:

121 service: vyos

122 networks: ["WAN -NET", "CLIENT -WAN", "SERVER -WAN"]

Listing H.1: Experiment Example



96

Appendix I: vsphere-info Script Source Code

1 """ Query information about a vSphere environment and objects within it.

2

3 Usage:

4 vsphere -info [options]

5

6 Options:

7 -h, --help Prints this page

8 --version Prints current version

9 -n, -no -color Do not color terminal output

10 -v, --verbose Emit debugging logs to terminal

11 -f, --file FILE Name of JSON file with server connection

↪→ information

12

13 Examples:

14 vsphere -info -vf logins.json

15

16 """

17

18 import logging

19

20 from docopt import docopt

21

22 from adles.vsphere import vm_utils , vsphere_utils

23 from adles.utils import script_setup , resolve_path , prompt_y_n_question

24 from adles.vsphere.folder_utils import enumerate_folder ,

↪→ format_structure

25

26 __version__ = "0.6.1"

27

28

29 def main():

30 args = docopt(__doc__ , version=__version__ , help=True)

31 server = script_setup(’vsphere_info.log’, args , (__file__ ,

↪→ __version__))

32

33 thing_type = str(input("What type of thing do you want to get

↪→ information on?"

34 " (vm | datastore | vsphere | folder) "))

35

36 # Single Virtual Machine

37 if thing_type == "vm":

38 vm, vm_name = resolve_path(server , "vm", "you want to get

↪→ information on")

39 logging.info(vm_utils.get_vm_info(vm , detailed=True , uuids=True ,

↪→ snapshot=True , vnics=True))

40

41 # Datastore

42 elif thing_type == "datastore":



97

43 ds = server.get_datastore(str(input("Enter name of the Datastore

↪→ [leave blank "

44 "for first datastore found ]:

↪→ ")))

45 logging.info(vsphere_utils.get_datastore_info(ds))

46

47 # vCenter server

48 elif thing_type == "vsphere":

49 logging.info("%s", str(server))

50

51 # Folder

52 elif thing_type == "folder":

53 folder , folder_name = resolve_path(server , "folder")

54 if "VirtualMachine" in folder.childType \

55 and prompt_y_n_question("Want to see power state of VMs

↪→ in the folder?"):

56 contents = enumerate_folder(folder , recursive=True ,

↪→ power_status=True)

57 else:

58 contents = enumerate_folder(folder , recursive=True ,

↪→ power_status=False)

59 logging.info("Information for Folder %s\nTypes of items folder

↪→ can contain: %s\n%s",

60 folder_name , str(folder.childType),

↪→ format_structure(contents))

61

62 # That’s not a thing!

63 else:

64 logging.info("Invalid thing: %s", thing_type)

65

66

67 if __name__ == ’__main__ ’:

68 main()

Listing I.1: vsphere-info script


	Authorization to Submit Thesis
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Code Listings
	List of Acronyms
	Introduction
	Problem
	Solution
	Thesis Overview

	Background
	Tutorials
	Competitions
	Virtualization Platforms
	The RADICL lab

	Description of the ADLES system
	System Requirements
	System Design
	System Components

	Formal Specifications
	Specification Syntax and Semantics
	Package Specification
	Exercise Specification
	Infrastructure Specification

	Implementation
	Implementation Choices
	The vSphere Platform Interface
	System Execution using the vSphere Platform Interface
	vSphere scripts
	ADLES Project

	Example Scenarios
	Example 1: Penetration Testing Tutorial
	Example 2: Cyber Defense Competition
	Additional examples

	Application and Results
	Description of Testing Environment
	Results for Penetration Testing Tutorial
	Results for Cyber Defense Competition
	Results for Other Tutorials
	Discussion

	Related Work
	Terraform
	Provisioners
	EduRange
	Open Cyber Challenge Platform
	NICE Challenge Project
	DETERLab
	Vagrant
	SEED

	Future Work
	Project Vision
	Specification Extensions
	System Improvements

	Summary and Conclusions
	References
	Package Specification
	Exercise Specification
	Infrastructure Specification
	Penetration Testing Tutorial Specification
	Competition Specification
	Network Firewalls Tutorial Specification
	Spoofing Tutorial
	Experiment Example Specification
	vsphere-info Script Source Code

