
Integrating Pattern Matching Within String Scanning

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

John H. Goettsche

Major Professor: Clinton Jeffery, Ph.D.

Committee Members: Robert Heckendorn, Ph.D.; Robert Rinker, Ph.D.

Department Administrator: Gregory Donohoe, Ph.D.

July 2015

ii

Authorization to Submit Thesis

This Thesis of John H. Goettsche, submitted for the degree of Master of Science

with a Major in Computer Science and titled “Integrating Pattern Matching Within

String Scanning,” has been reviewed in final form. Permission, as indicated by the

signatures and dates below, is now granted to submit final copies to the College of

Graduate Studies for approval.

Major Professor: Date:
Clinton Jeffery, Ph.D.

Committee Members: Date:
Robert Heckendorn, Ph.D.

Date:
Robert Rinker, Ph.D.

Department Administrator: Date:
Gregory Donohoe, Ph.D.

iii

Abstract

A SNOBOL4 like pattern data type and pattern matching operation were

introduced to the Unicon language in 2005, but patterns were not integrated with

the Unicon string scanning control structure and hence, the SNOBOL style patterns

were not adopted as part of the language at that time. The goal of this project is to

make the pattern data type accessible to the Unicon string scanning control structure

and vice versa; and also make the pattern operators and functions lexically consistent

with Unicon. To accomplish these goals, a Unicon string matching operator was

changed to allow the execution of a pattern match in the anchored mode, pattern

matching unevaluated expressions were revised to handle complex string scanning

functions, and the pattern matching lexemes were revised to be more consistent with

the Unicon language.

iv

Acknowledgements

I would like to acknowledge my major professor Clinton Jeffery who guided my

research on this project. I would also like to acknowledge the Special Information

Services department of the National Library of Medicine for the financial support

that made my research possible.

v

Dedication

To all my fellow Land Surveyors who have searched for or sought to develop software

that is used the way surveyors actually work.

vi

Table of Contents

Authorization to Submit Thesis . ii

Abstract . iii

Acknowledgements . iv

Dedication . v

Table of Contents . vi

List of Tables . x

List of Figures . xi

1 Introduction . 1

2 Background . 3

2.1 SNOBOL . 3

2.2 Icon and Unicon . 4

2.3 Pattern Matching . 5

2.4 Summary . 7

3 Design Considerations . 9

3.1 Pattern matching statements . 9

3.1.1 Pattern matching within String Scanning 11

3.1.2 String Scanning within Patterns 12

vii

3.2 SNOBOL4 and Unicon pattern operators 12

3.3 SNOBOL4 and Unicon pattern functions 14

3.3.1 Complements with functions 15

3.3.2 Index Related Functions . 15

3.4 Summary . 16

4 Implementation . 18

4.1 Pattern matching statements . 20

4.1.1 Anchored mode from string scanning 20

4.1.2 String Scanning Functions as Unevaluated Expressions 21

4.1.3 Procedure and Method calls in Unevaluated Expressions . . . 23

4.1.4 String and Pattern Concatenation Operators 26

4.2 Index Related Functions . 27

4.3 Summary . 27

5 Evaluation . 28

5.1 Benchmarks . 28

5.1.1 Decomposing phone numbers 29

5.1.2 Detecting words with double letters 33

5.1.3 Strings of the form AnBnCn 36

5.1.4 Number of times a word is used 39

5.2 Working Example . 43

5.3 Functional Integration . 46

5.3.1 Reduced Pattern Function Set 47

viii

5.3.2 Pattern and String Scanning Integration 48

5.3.3 More on Unevaluated Expressions 49

5.3.4 Nested Patterns . 53

5.3.5 Unanchored pattern matches in string scanning 54

5.4 Testing . 54

5.5 Summary . 55

6 Conclusions . 57

7 Future Work . 60

Bibliography . 62

Appendix A: Implementation Code . 63

A.1: Unary Operator = (tabmat) . 63

A.2: Gaikaiwari’s Unevaluated Expression List Generation 64

A.3 Unevaluated Expression: List Generation 65

A.4: Resolving Unevaluated Expression List 67

A.5: getkeyword() function . 69

A.6: ConvertPatternArgumentCset() macro 70

A.7: ConvertPatternArgumentInt() macro 71

A.8: Gaikaiwari’s GetResultFromFuncCall() macro 72

A.9: GetResultFromFuncCall() macro . 73

A.10: GetResultFromMethodCall() macro 75

A.11: isMethod() function . 78

ix

A.12: Concatenation Operator . 78

A.13: Pos() pattern function . 80

A.14: Tab() pattern function . 80

Appendix B: Sample Code - Deed Reader 82

B.1: deedreader.icn . 82

B.2: description.txt . 86

Appendix C: Pattern Facilities Language Reference 87

x

List of Tables

1 Pattern Operators . 13

2 Pattern Functions . 15

3 Decomposing phone numbers . 33

4 Detecting words with double letters 36

5 Strings of the form AnBnCn . 39

6 Number of times a word occurs in a file 42

7 Sum to string scanning ratio . 43

xi

List of Figures

1 Pattern Example . 6

2 Unicon tools organization . 19

.

1

1 Introduction

Many different string scanning and pattern matching systems have been de-

veloped in order to enhance programmers’ productivity in analyzing strings. Modern

high level languages tend to offer regular expressions and context free grammars for

their string processing. Analysis of strings often requires functionality beyond what

these classes of languages offer. SNOBOL4 was the most successful of the early string

processing languages [1, 2]. A pattern data type was employed in SNOBOL4 along

with pattern operators and functions to perform the analysis.

Icon is a successor to SNOBOL4, which expanded upon the goal directed

evaluation with generators and backtracking that was implicit in SNOBOL4’s pattern

matching [2, 3]. It uses a string scanning control structure that passes through the

subject string with a set of commands to manipulate and analyze its contents. When

Unicon was developed, its core elements came directly from Icon, including its string

scanning facilities [4]. Many of the Icon string scanning functions resemble SNOBOL4

patterns, but they are different in both how they are processed as well as their

functionality. Many Icon programmers have expressed a desire for the functionality

of SNOBOL4 patterns [5].

While SNOBOL patterns are instances of a structured data type that are

used deductively to test whether the pattern exists within a subject string, a string

scanning environment uses a set of functions to inductively analyze or extract data

from the subject string. Patterns are pre-defined and applied later, while string

scanning is performed as string scanning functions are executed. Patterns allow

2

composition and re-use in more flexible ways than is the case for code, which only

has procedure and co-expression granularity. A co-expression is an independent,

encapsulated thread-like context, allowing the results of an expression to be retrieved

one at a time [4].

This paper briefly explores the background of SNOBOL4 patterns and Uni-

con string scanning functions. It discusses design considerations for integrating

SNOBOL4 patterns within Unicon string scanning environments, a description of

how proposed changes were implemented, evaluation of the integration and a review

of benchmark problems, and the success of the integration.

.

3

2 Background

String processing languages have evolved over the years, using various meth-

ods of string analysis including pattern matching, string scanning and regular ex-

pressions. The pattern data type and the pattern matching system was developed

with SNOBOL. Later, Icon included a string scanning system for string analysis.

This section reviews the development of patterns and string scanning.

2.1 SNOBOL

SNOBOL was developed by David Farber, Ralph Griswold and Ivan Polon-

sky at Bell Telephone Laboratories in 1962. SNOBOL4 was developed in 1967 and

had many of the features that are included in popular dynamic programming lan-

guages including dynamic typing, eval and garbage collection. In this thesis the

terms SNOBOL and SNOBOL4 are used interchangeably; SNOBOL always refers to

SNOBOL4 rather than its predicessors.

SNOBOL control flow employs the use of labels and gotos. A line may begin

with a label such as LOOP in the example below. A goto at the end of a line directs

the flow during execution by going to the line with the corresponding label. The

goto can be made conditional with either an S for success or F for failure [1]. This

1960’s-era control flow system is flexible but awkward and error-prone for those who

primarily work with languages that have modern control flow systems.

4

&TRIM = 1

P = (’B’ | ’R’) (’E’ | ’EA’) (’D’ | ’DS’)

PATTERN = @X P @Y

LOOP OUTPUT = INPUT :F(END)

OUTPUT PATTERN :F(NOPAT)

OUTPUT = DUPL(’ ’, X) DUPL(’-’, Y { X)

BLLINE OUTPUT = :(LOOP)

NOPAT OUTPUT = ’P FAILED TO MATCH.’ :(BLLINE)

END

SNOBOL’s pattern data type was its most important contribution to string

processing. Patterns could be as simple as a single character or a set of characters in a

particular order, or they could be a complex arrangement with alternative character

sets and pattern functions. The pattern data type enabled the user to define and

store patterns in variables to be used later when they were desired [1].

2.2 Icon and Unicon

One of the developers of SNOBOL4, Ralph Griswold, joined the faculty of the

University of Arizona and developed the Icon programming language which was more

readable and simpler to use than SNOBOL [4]. Griswold used his experience with

SNOBOL4’s generators and backtracking in its pattern matching to develop goal

directed evaluation [2]. SNOBOL4 patterns were not incorporated in Icon. Instead

Griswold developed an extensive string scanning system where a variety of functions

and operations are executed in order to analyze and extract information from a

subject string as the cursor location advances. Unlike most other languages, Icon

considers the string as a primitive data type in its own right, rather than an array

of characters [3]. Icon also has a cset data type which contains a set of characters; it

is heavely used in string string scanning. Icon also uses control flow which is similar

5

to most of the popular modern languages.

Using the same Icon source code, Unicon was developed to include modern

software features such as objects, networks and databases [4]. The string scanning

control structure of Icon is a part of the Unicon programming language, yet the desire

of developers for SNOBOL4’s pattern data type and pattern matching facilities has

persisted. The Specialized Information Services Edit/Update System (SSEUS) was

developed for the National Library of Medicine in Unicon [6].

Sudarshan Gaikaiwari adopted SNOBOL4 patterns to the Unicon language

for his master’s thesis in 2005. In his thesis, he added the pattern data type, and pro-

vided pattern matching functions and operators to execute the pattern searches [2].

The pattern data type was kept separate from the string scanning control structure,

which may not execute pattern matching operations. This thesis refines Gaikaiwari’s

work to be more naturally incorporated in the Unicon language, allowing string

scanning environments to utilize the pattern matching functionality and vice-versa.

2.3 Pattern Matching

The purpose of pattern matching is to determine the presence of a predefined

pattern within a subject string. The pattern matching operation is executed in Uni-

con by using the ?? operator [2]. The following expression results in the subject

having a pattern match performed with pattern:

subject ?? pattern

If the pattern is found in subject then the expression succeeds and the first substring

matching the pattern is returned; otherwise it fails.

6

A pattern is constructed by assigning it to a series of pattern components and

pattern operators. The pattern can be as simple as a string or a primitive pattern

function. More complex patterns contain pattern elements which can be strings,

pattern functions, pattern operators and other patterns. A pattern may not include

itself in a pattern definition. In constructing complex patterns, pattern operators

such as alternation .| and concatenation || are used to define the relationship

between the pattern elements. An alternation operation succeeds if either of the

patterns on each side of the operator is found. A concatenation operation succeeds

if the pattern on the left is immediately followed by the pattern on the right.

For example, if the user wanted to define a pattern called "pat" that iden-

tifies whether "bean" or "been" is in a subject string. The following code would

produce that result:

pat := "be" || ("a" .| "e") || "n"

This example uses strings that are converted to the pattern data type when the

pattern operators are being evaluated during runtime. Figure 1 below illustrates the

pattern definition. when the pattern match is performed on a subject string, it will

Figure 1: Pattern Example

7

first search for ”be”. When it finds "be", it will then check to see if it is followed

by an "a". If it fails it will backtrack to the successful "be" and check to see if it is

followed by "e". If it fails again, it will backtrack again. There not being another

option, it will backtrack again past the "be" and will search for another "be" and

do the process again until it succeeds at each of the three parts of the pattern.

Consider the string "I’ve been there!". The pattern will iterate through

each of the letters until it reaches the "be". Then it will not match "a" and then

try "e" where it succeeds. Then it will check for an "n". The check succeeds at the

end of the pattern and will suspend "been".

Suppose the expression been subject ?? "been". In this case, when the

pattern match is evaluated during runtime, the string "been" would be converted to

a pattern type. It is possible to have a string do a pattern match on itself. Such a

trivial example results in the string.

2.4 Summary

This section reviewed the various methods of string analysis, including pat-

tern matching, string scanning and regular expressions. The purpose of this project

8

is to integrate pattern matching within string scanning in the Unicon programming

language.

.

9

3 Design Considerations

To integrate pattern matching with Unicon string scanning required consid-

eration of how a user would execute a pattern match in the string scanning environ-

ment and string scanning functions in the pattern matching operation. This section

considers the following questions that need to be addressed to integrate pattern

matching with string scanning. What parameters are necessary for their execution?

From what environment are they being called? How are they going to be utilized

and under what conditions for each implementation? Also, the pattern functions

and operators will have to be consistent lexically and functionally with the Unicon

language while maintaining the functionality of SNOBOL type patterns.

3.1 Pattern matching statements

SNOBOL pattern matching can be executed in either anchored or non-

anchored mode. The anchored mode requires the match to start on the first character

of the subject string while in the non-anchored mode the match can start at any loca-

tion in the subject string [1]. The pattern matching operation adapted by Gaikaiwari

operates in the non-anchored mode [2]. Gaikaiwari’s pattern matches only produce

one value at a time, but since they suspend instead of return that value, the cursor

position is stored so the next pattern can be applied to the remainder of the string

to produce the next value [4].

10

The pattern matching statements in SNOBOL4 and Gaikaiwari’s Unicon im-

plementation are in the following form:

SNOBOL4 Gaikaiwari’s Unicon
SUBJECT PATTERN subject ?? pattern

In both examples, the subject is scanned to see if it contains the pattern. If it

succeeds, then a substring of the subject that fits the pattern is produced. Gaikai-

wari’s syntax starts the pattern matching operation with the use of the ?? operator

while in SNOBOL4 the operation is implicit with the subject followed by the pat-

tern. Since the Unicon string scanning operator is ? and used in the following syntax:

subject ? expr

Gaikaiwari’s operator is intended to match Unicon lexically and syntactically,

and its explicit form is arguably easier to read than separating the subject and pattern

with white space.

To integrate pattern matching into the Unicon language, it is necessary to

consider which mode is appropriate for the current environment. If it is being exe-

cuted outside of a Unicon string scanning environment, the cursor position or index

of the string has not been established. Therefore the non-anchored mode is appro-

priate for basic pattern matching operations. This allows a pattern to be matched

anywhere within the subject string.

In the anchored mode the pattern match begins at the current cursor or

index location. If the pattern fails at the first character then the entire pattern will

11

fail to match and will not look for an alternate match later in the subject string.

Sometimes the user wishes to start the pattern match at the first location in the

subject string, as though it was in the anchored mode. In these situations, defining

the pattern with a first element of Pos(1) has the desired effect.

3.1.1 Pattern matching within String Scanning

In the Unicon string scanning environment the functions operate in relation

to the cursor position of the subject string. It is an inductive process where the

data is analysed by executing a series of functions on the subject string. The cursor

location or index is adjusted depending on the success or failure of each expression.

When executing pattern matching from within a Unicon string scanning environment,

the cursor or index location is established. Therefore, in order to maintain this

indexing process in the string scanning environment, pattern matching executes in

the anchored mode.

Unicon’s ? operator sets the cursor location to the first position in the subject

string and then the scanning expression, usually a block expression containing a series

of calls to scanning functions, is executed. Scanning functions move() and tab() as

well as the unary operator =, move the cursor upon success. For this reason anchored

mode was introduced by extending the unary = operator. Given a pattern operand,

=p employs the anchored mode, with the cursor being advanced to the end of the

match if there is success. If the user wishes the pattern to be found at the end of

the subject string. In these situations, defining the pattern with a final element of

Pos(0) has the desired effect.

12

3.1.2 String Scanning within Patterns

Patterns are pre-defined and are used deductively to search a subject string

for the pattern. A regular pattern match is performed in the un-anchored mode and

establishes the cursor locations for the beginning and end of a pattern when it is

found. This is done by iterating through the subject string until a match is found.

It is possible for a string scanning function to be performed as the pattern matching

process iterates through the cursor or index locations.

Gaikaiwari’s pattern matching facilities allow simple single depth function

calls to be made with an unevaluated expression enclosed in backquotes. His uneval-

uated expressions can handle procedure calls such as ‘foo(2 , "bar")‘ but can

not handle nested function calls like tab(upto(somecset)) [2]. Therefore the un-

evaluated expressions implementation needed to be revised to handle more complex

functions calls which are common when performing string scanning operations.

3.2 SNOBOL4 and Unicon pattern operators

The pattern operators for Unicon were defined by Gaikaiwari in his Mas-

ter’s Thesis. Although they are lexically different, they are functionally identical to

SNOBOL4 pattern operators. The pattern concatenation operator is similar to the

string concatenation operator in that it has the end result of the first pattern or

string being followed by the second pattern or string. But, they differ in that string

concatenation joins two strings, while pattern concatenation constructs a pattern

13

that, when applied, finds a match for the first pattern in the subject string that is

followed by the second pattern.

The Unicon operator for string concatenation was modified to recognize

whether the expression contains a pattern. Since Gaikaiwari’s pattern concatena-

tion and Unicon’s string concatenation operators did not have the same order of

precedence, the assignment operators’ order of precedence was adjusted to maintain

their semantics.

Intermediate assignment => operator assigns the result of the subpattern

match to a variable on the right of the operator. A conditional assignment -> is sim-

ilar, except it does not assign the value unless the entire pattern succeeds. A cursor

assignment .> operator assigns the index location to the variable to the right. These

assignment operators were changed lexically to use the > symbol in the right position

of the lexeme to represent an assignment within patterns. This makes them more

consistent lexically. The SNOBOL4 lexemes appear almost random in their selection

and Gaikaiwari’s also lacked consistency. The Immediate Assignment, Conditional

Assignment and Cursor assignment are =>, -> and .> respectively. The assignment

operators to not support assignments to the object variables.

Table 1: Pattern Operators

Operation SNOBOL4 Gaikaiwari New
Concatenation <<implicit>> && ||
Alternation | .| .|
Immediate Assignment $ $$ =>

Conditional Assignment . -> ->

Cursor Assignment @ .$.>

Unevaluated Expression ∗x ‘x‘ ‘x‘

14

3.3 SNOBOL4 and Unicon pattern functions

Since the demand for SNOBOL4 patterns to be added to Unicon is coming

from SNOBOL4 users, it is important that the Unicon pattern functions appear as

similar to SNOBOL4 pattern functions as possible, while being lexically consistent

with Unicon. Gaikaiwari’s pattern functions are functionally the same as SNOBOL4

patterns, but appear somewhat disconnected from Unicon lexically. The way in

which Unicon handles its csets and strings makes some functions redundant or in-

consistent with Unicon, therefore some of the pattern functions are not active with

the implementation, but can be turned on if so desired.

Table 2 shows the SNOBOL4 primitive functions and the new Unicon pat-

tern functions. In most cases, the function is lexically similar to SNOBOL4 with

the first character being capitalized and the following letters in lower-case. Most

Unicon functions are in lower case, but string scanning fucntions any(), bal(),

pos(), and tab() would be in conflict had the pattern function not started with a

capital letter. Other changes are described in the example uses of the functions below:

15

Table 2: Pattern Functions

SNOBOL4 Gaikaiwari New
ABORT PAbort() Abort()
ANY(c) PAny(c) Any(c)*
ARB PArb() Arb()
ARBNO(p) PArbno(p) Arbno(p)
BAL PBal() Bal()
BREAK(c) PBreak(c) Break(c)
FAIL PFail() Fail()
FENCE PFence() Fence()
LEN(n) PLen(n) Len(n)
NOTANY(c) PNotAny(c) *
POS(n) PPos(n) Pos(n)**
REM PRest() Rem()
RPOS(n) PRpos(n) **
RTAB(n) PRtab(n) **
SPAN(c) PSpan(c) Span(c)
TAB(n) PTab(n) Tab(n)**

see Appendix C: Pattern Facilities Lan-
guage Reference for function descriptions

∗ see 3.3.1 complements with functions
∗∗ see 3.3.2 index related functions

3.3.1 Complements with functions

The complement operator allows the user to get the complement of a given

cset, or a cset containing all the characters not included in the given cset. Therefore

the functionality of the NotAny(c) function can be achieved by using the complement

operator with a cset in the Any function as Any(∼c). The run time for each method

is the same on average.

3.3.2 Index Related Functions

The POS(n), RPOS(n), TAB(n) and RTAB(n) SNOBOL4 functions all work

directly with the cursor location or index. In Unicon the index value is the number

of spaces to the right from the left end of string with the first position being 1 or

starting at the right end of the string starting with zero and subtracting the number

of spaces to the right end of the string [4]. The illustration below demonstrates the

16

Unicon cursor position values for the string "Unicon" with the vertical bars repre-

senting the index locations:

-6 -5 -4 -3 -2 -1 0

| U | n | i | c | o | n |

1 2 3 4 5 6 7

The SNOBOL4 cursor locations for the RPOS(n) and RTAB(n) functions the

cursor locations are as follows:

RPOS(n) & RTAB(n) 6 5 4 3 2 1 0

| S | N | O | B | O | L |

POS(n) & TAB(n) 1 2 3 4 5 6 7

Integration of the SNOBOL4 RPOS(n) and RTAB(n) functions with the Uni-

con string indexes can be achieved with Pos(-n) and Tab(-n) functions, making

RPOS(n) and RTAB(n) redundant.

3.4 Summary

This section considered many questions that are necessary for integrating

pattern matching with string scanning. These questions included the context in

which pattern matching is performed from within the string scanning environment,

how string scanning functions are to be accessed in pattern construction, lexical and

functional considerations of pattern operators and pattern functions. Consistency

17

with Unicon was a priority in considering the lexical representation of pattern oper-

ators and functions, while maintaining consistency with SNOBOL.

.

18

4 Implementation

The integration of pattern matching within string scanning required changes

to the Unicon compiler and runtime system. These changes resulting in modifying

the unary = operator, the processing of unevaluated expressions, the use of &subject

and &pos in pattern matching, minor functional changes to pattern functions and

modifications to the concatenation operator. In this section, there is a brief review

of the Unicon compiler and runtime system, and the changes that were necessary for

integrating pattern matching with string scanning. A more detailed look the edits

necessary for pattern matching statements and index related functions.

Figure 2 shows the relationship of the Unicon tools for translation, compiling

and execution of a Unicon program. The front-end compiler, called unicon, translates

the unicon code into icon code [7]. This is where the pattern definitions and their

component parts are identified and converted to their respective pattern function

calls for the runtime system [7]. A list is generated for each unevaluated expression

for future computation [2]. These lists are similar to Lisp symbolic expresions. Icont

compiles Icon code down to virtual machine code [7]. Iconx is the Icon and Unicon

virtual machine [7], where the pattern match is performed. The pattern match()

function is an internal Unicon function that is used by the generated code to imple-

ment ?? operator. It sets up the pattern match and calls the ResolveReferences()

function which calls the ResolveList() function to resolve the list generated for the

unevaluated expression.

19

Unicon icont iconx

Figure 2: Unicon tools organization

To implement the integration of patterns and string scanning, this section

discusses the following changes to the Unicon language were made:

• Modify Unicon’s runtime to execute pattern matching in the anchored mode

when a pattern operand is used with the unary = operator in a string scanning

environment. See Section 4.1.1 Anchored mode from string scanning below.

• Modify the unevaluated expression operand in the pattern matching operation

to handle nested function calls within parameters, as used in string scanning

function calls and use the &subject and &pos keywords. See Section 4.1.2 String

Scanning Functions as Unevaluated Expressions below.

• Modify the unevaluated expression operand in the pattern matching operation

to handle procedure and method call. See Section 4.1.3 Procedure and Method

calls in Unevaluated Expressions below.

• Modify the string concatenation operator to handle patterns. See Section 4.1.4

String and Pattern Concatenation Operators below.

• Modify the pattern source files to address the functional changes for Pos(n)

and Tab(n). See Section 4.1.5 Index Related Functions below.

20

4.1 Pattern matching statements

The pattern matching operation && in Gaikaiwari’s 2005 Master’s thesis was

performed in the non-anchored mode. The anchored pattern matching operation was

defined in the pattern C library code as a part of the internal match operation, but

the Anchored Mode identifier was set to false. The default location of the index was

set to 1. The arguments for the internal match operation were changed to include

both the mode and cursor location. This allows the internal match to be called

and initiated from any location of the subject string.

4.1.1 Anchored mode from string scanning

Integrating the pattern matching system into the Unicon string scanning en-

vironment requires that the pattern matching be performed in the anchored mode,

since the string scanning functions operate from the index or cursor position. As

described in section 3.1.1 Pattern matching within String Scanning, the unary oper-

ator = was determined to be an ideal choice for initiating a pattern match in a string

scanning environment. The use of an equals = before a pattern variable triggers the

anchored mode pattern matching operation. The sample code below is of executing

a string scan on subjectString where some stuff is done, then the variable match is

assinged the results of an anchored pattern match using somePattern as the pattern

definition, and then followed by more stuff.

21

subjectString ?

... do some stuff ...

match := =somePattern

... do some more stuff ...

The unary = operator was modified to accept operands of type pattern. In

the event that a pattern is identified as its operand, tabmat initializes a pattern

match in the anchored mode, otherwise it functions normally. The pattern match is

initialized by calling CURTSTATE(), pattern subject being assigned &subject, the

index location is maintained with k pos and is initially assigned &pos and a pattern

is constructed. The pattern is evaluated with an internal match() function call. If

this is successful then the matching substring is suspended and the index or cursor

location is updated. If it failed then it would revert to the previous index or cursor

location. The RTL (Run Time Language) [8] code for the tabmat operator is found

in omisc.r in Unicon’s runtime system and Appendix A.1.

4.1.2 String Scanning Functions as Unevaluated Expressions

In Gaikaiwari’s implementation of patterns, functions can be called in a pat-

tern using the unevaluated expression notation by placing the function call in back

quotes, for example: pattern := ‘tab(3)‘. This allows the user to place simple

Unicon string scanning function calls and procedure calls in the pattern definition,

but only if tab(3) impacts subsequent pattern match operations.

The first phase of the analysis of an unevaluated expression occurs during

compile time. In this process, the process uneval() procedure calls the

emit code for uneval() procedure which generates a list to be interpreted dur-

22

ing runtime. Both of these procedures are found in the tree.icn file of the Unicon

implementation. Gaikaiwari’s emit code for uneval() can be found in Appendix

A.2.

The list generated in this process is similar to LISP in that the first element

is the function to be called and the remaining elements are the parameters. Unfortu-

nately, Gaikaiwari’s implementation could not handle functions or procedure calls as

parameters within another function or procedure call as is common with some string

scanning functions. For example tab(upto(’e’)), the tab() function requires an

integer value which is acquired by the upto() function that scans a string until

it reaches an ’e’ character. Gaikaiwari’s procedure would generate a list ["tab",

"upto", "e"], where upto would not be a function call, but instead treated as a

string. This procedure had to be revised to handle function calls as parameters in

a function call. To navigate nested function calls, a recursive procedure generates

the list for each function that is used as a parameter in the parent function. It was

implemented with the procedures in Appendix A.3.

It is necessary that variables, strings and csets be differentiated. This was

achieved by including within the generated string double quotes around strings and

single quotes around csets, and no quotes for variables. In this case, when a the

string scanning function tab(upto(’e’)) is called, it will generate the list: ["tab",

["upto", "’e’"]], which then can be interpreted with a list with the tab() function

along with a parameter containing a list with the upto() function with the parameter

being the cset containing ’e’.

23

To evaluate this list of lists during runtime a ResolveList() function was

added to the fxpattrn.ri file in the Unicon runtime implementation. Its code

is found in Appendix A.4. It identifies the procedure to be called, along with its

parameters. In the event a parameter is a list then the function is recursively called.

If it is a string then it first removes the outside quotation marks. Then it checks for

a tilde ~ as a complement operator. If there is one, then a complement is tagged and

the tilde is removed from the string. Then it identifies the parameter type as either a

string, cset, reserved word or numeric value, by identifying the first character in the

string. A " signifies a string, a ’ is used for a cset, a & denotes a reserved word, a digit

begins a numeric literal value and all other values must denote a legal user defined

variable. In the event of a user defined variable or reserved word, ResolveList()

replaces it with its current value.

To get the values of the reserved words, a getkeyword() function was added

to the rmisc.r file in the runtime environment of the Unicon implementation. It

connects the keyword with its appropriate cset value. Its code can be found in

Appendix A.5.

4.1.3 Procedure and Method calls in Unevaluated Expressions

During runtime a pattern is implemented in two phases, the first being its

construction where the arguments and variables are assigned, followed by pattern

execution. The values for the arguments and variables are set during its construction.

This static nature of pattern components is inefficient and a possible maintenance

24

nightmare. The unevaluated expression facility allows the use of the current values

of variables and arguments during execution [2].

In the pattern pat := Len(n) the value of n is assigned during pattern

construction. Every time the pat is used, n will have the value it was assigned when

it was dereferenced and passed on to Len(). Had n not been assigned a value then it

would be &null which would produce an error in the Len() pattern function. On the

other hand, had the pattern been defined with n being an unevaluated expression,

such as pat := Len(‘n‘), then the current value of n would be used each time

pat was used. If the value of n changed, then the next time pat is used, it would

use the new value for n. Similar to SNOBOL, the evaluation of the contents of an

unevaluated expression is postponed until pattern evaluation time [1].

The same is true with making procedure and method calls within unevaluated

expressions. To get the full advantage of making such calls, pattern functions were

revised to support unevaluated procedure and function calls as arguments. Functions

that require an integer argument call the ConvertPatternArgumentInt macro and

those that require a cset argument call the ConvertPatternArgumentCset macro.

These macros required the defined values PC Pred Func and PC Pred MF be added to

the switch(pe->pcode) code block. These changes can be seen in Appendices A.6

and A.7. By adding PC Pred Func and PC Pred MF, the macro is able to recognize

unevaluated procedure and method calls and use the appropriate arguments when

calling the pattern make() function.

During pattern evaluation, pattern functions that require an integer or cset

argument, call either the GetResultFromFuncCall() function or the

25

GetResultFromMethodCall() function. Again, Gaikaiwari’s version of these func-

tions are in Appendix A.8. They do not support nested lists. By changing the

processFuncCallList() function to be recursive, method and procedure calls can

be used as arguments in the unevaluated function call. The revised code for these

functions are available in Appendix A.9.

A pattern is defined as pat := Len(‘foo(bar(arg))‘), would produce a

list for the unevaluated expression foo(bar(arg)) in the form (["foo", ["bar",

"arg"]]). The value "foo" would be recognized as the name of the procedure

being called. The first argument of foo would be the list ["bar", "arg"]. After

discovering that "bar" is also a procedure, the processFuncCallList() would be

recursively called with "arg" as its argument.

The GetResultFromMethodCall() macro was handled in a similar man-

ner and its code is available in Appendix A.10. It calls the recursive function

processMethodCallList() to handle the analysis of the list. But, there are some

differences in how the data for method calls of objects are stored in the lists gener-

ated by emit code for uneval(). In the procedure call list, the first cell is the

name of the procedure. In method call lists, the first cell is the name of the

object and the second cell is the method name. A pattern defined as pat :=

Span(‘foo.bar(arg)‘), would result in the list (["foo", "bar", "arg"]. The

GetResultFromMethodCall() macro calls the recursive function

processMethodCallList().

It is possible to have nested procedures and methods in an unevaluated ex-

pression. There are differences in how to interpret the lists. With a procedure

26

call the first cell is for the procedure name, while with the method call the first

two cells are for the object name and the method name respectively. Take the list

(["foo", "bar", "arg"], it could also be a procedure call with two arguments.

The isMethod() function checks to see if there is a method matching the parame-

ters given. Its code is available in Appendix A.11. In this case, the method checks

to see if there is an object called foo and a method in that object called bar. If

it succeeds then it will return its field number, otherwise it will return a -1. This

helper function is used in processFuncCallList() and processMethodCallList()

to determine if a list is for a method call.

4.1.4 String and Pattern Concatenation Operators

Both string concatenation and pattern concatenation result in the joining

of any two values that can be converted into strings. In the case of string con-

catenation the values are defined when the concatenation executes, while in pattern

concatenation, a pattern is constructed and the actual strng values matched by the

concatenation are not determined until pattern match time. Pattern concatenation

accepts values that can be converted into patterns, such as strings, csets and pat-

terns. As patterns and strings are different data types, string concatenation and

pattern concatenation are handled as separate operations. Therefore the concatena-

tion operator must identify whether a pattern is being used. If a pattern is identified,

then the body of the function will attempt to convert each operand into a pattern

and call the pattern concatenation constructor, otherwise it will proceed to string

concatenation.

27

The code that identifies the pattern and calls the pattern concatenation constructor

is available in Appendix A.12.

4.2 Index Related Functions

The pattern cursor location representation in the pattern functions have been

revised to match the Unicon index location of strings as shown in section 3.3.2 of

this paper. Pos(n) and Tab(n) are passed a position which is a descriptor in the

Unicon virtual machine that is defined to be an integer. The details of the descriptor

can be found in Implementation of Icon and Unicon [7]. Pos(n) and Tab(n) were

changed to accept negative values for their arguments. If the argument is negative,

then it is changed to a positive value and the reverse pattern label to identify the

pattern function; PC RPos for Pos() and PC RTag for Tab(). This change made the

Rpos(n) and Rtab(n) functions redundant, but they are still available for the user

who may be more comfortable with SNOBOL. When using Rpos(n) and Rtab(n),

the user has to be aware that they are based on the SNOBOL4 pattern matching

cursor location system.

4.3 Summary

This section examined modifications to the unary = operator, the processing

of unevaluated expressions, the use of &subject and &pos in pattern matching,

minor functional changes to pattern functions and modifications to the concatenation

operator. Most of these changes were made to the Unicon runtime system while

others required changes to the Unicon compiler.
.

28

5 Evaluation

In Gaikaiwari’s thesis the performance of pattern type was examined. It was

found that pattern matching generally beats string scanning, with typical speedups

ranging from 80 percent to 240 percent [2]. In this section, the success of the in-

tegration of SNOBOL4 style patterns with Unicon’s string scanning environment is

evaluated by reviewing of the improved options for the user and how thorough the

implementation is functionally. A set of benchmark problems were used to examine

the improved efficiency and flexibility of using pattern matching in Unicon. The

development of a working example problem is discussed. This problem is a real life

problem of analyzing a property description.

5.1 Benchmarks

Four benchmark problems were used to demonstrate the efficiency and flexi-

bility of pattern matching. The solutions to the benchmark problems were done using

Unicon string scanning environment, Gaikaiwari’s pattern statements, current pat-

tern statements, an anchored pattern match from the string scanning environment,

and pattern definitions with unevaluated expressions with string scanning functions.

The solutions for each problem were evaluated for their clarity and simplicity. Clarity

is based on the readability and clarity of the solution. Can the user or programmer

read the code without any ambiguity as to what it is attempting to achieve? Sim-

plicity was measured by the number of lines, words and characters used to achieve

each benchmark problem. Functionally all the solutions produced the same result.

Of the benchmark problems listed below the first three were used by Gaikaiwari.

29

• Decomposing phone numbers

• Detecting words with double letters

• Strings of the form AnBnCn

• Number of times a word is used in a file

5.1.1 Decomposing phone numbers

For the purpose of decomposing phone numbers in North America, each piece

of example code must identify the following:

1. area code is three digits with or without parentheses.

2. optional separator

3. trunk is three digits

4. optional separator

5. remaining four digits of the number

The following example phone numbers should be recognizable:

1. 800-555-1212

2. 800 555 1212

3. 800.555.1212

4. (800) 555-1212

An input fragment of "Home: (800) 555-1212" should result in identifying

the area code as 800, the trunk as 555, the remainder of the number as being 1212.

A string scanning environment solution can be achieved with the following

code:

30

procedure digits(N)

if N = 0 then return ""

else return tab(any(&digits)) || digits(N - 1)

end

procedure main()

line := "Uncle Sam: (800)555-1212 or uncle.sam@us.gov"

sep := ""

a := 0

line ? {

tab(upto(&digits))

areaCode := digits(3)

sep := tab(any(’ -.’))

tab(upto(&digits))

trunk := digits(3)

if sep === "" then sep := tab(any(’ -.’))

else tab(any(sep))

number := digits(4)

}

write("(" || areaCode || ")" || trunk || sep || number)

end

In this example, the phone number is found inductively. It starts by skipping all the

text up to the point where the digits begin, then it starts extracting each section of

digits; the first being for the area code; the second for the trunk; then identifying

the character for the separation between the trunk and the remainder of the number;

and finally the remainder of the number. This requires more coding than most of

the other options described below, and will give erroneous answers if the length of

the area code or trunk is not three characters in length. A couple more lines of code

and the length of each part of the phone number can be defined.

In the pattern matching environment as implemented by Gaikaiwari, the

problem can be resolved with the following code:

procedure main()

line := "Uncle Sam: (800)555-1212 or uncle.sam@us.gov"

threedigit := PAny(&digits) && PAny(&digits) && PAny(&digits)

31

fourdigit := threedigit && PAny(&digits)

area := ("(" && threedigit => areaCode && ")")

pattern := (threedigit => areaCode && PAny(’ -.’) => sep

&& threedigit => trunk && ‘sep‘

&& fourdigit => number)

.| (area && threedigit => trunk

&& PAny(’ -.’) => sep && fourdigit => number)

line ?? pattern

write("(" || areaCode || ")" || trunk || sep || number)

end

The current implementation of patterns the code is as follows:

procedure main()

line := "Uncle Sam: (800)555-1212 or uncle.sam@us.gov"

threedigit := Any(&digits) || Any(&digits) || Any(&digits)

fourdigit := threedigit || Any(&digits)

area := "(" || threedigit => areaCode || ")"

pattern := (threedigit => areaCode || Any(’ -.’) => sep ||

threedigit => trunk || ‘sep‘ ||

fourdigit => number)

.| (area || threedigit => trunk ||

Any(’ -.’) => sep || fourdigit => number)

line ?? pattern

write("(" || areaCode || ")" || trunk || sep || number)

end

In both of the pattern matching examples, the pattern is defined near the beginning

of the code and allows the phone number to be found deductively.

When using patterns within the string scanning environment, a solution to

the phone number decomposition problem can be achieved with the following code:

procedure main()

out := &output

line := "Uncle Sam: (800)555-1212 or uncle.sam@us.gov"

threedigit := Any(&digits) || Any(&digits) || Any(&digits)

fourdigit := threedigit || Any(&digits)

area := threedigit =>areaCode

areab := "(" || threedigit => areaCode || ")"

number := Any(’ -.’) => sep || threedigit => trunk ||

Any(‘sep‘) || fourdigit => num

numberb := threedigit => trunk || Any(’ -.’) => sep ||

32

fourdigit => num

line ? {

tab(upto(&digits ++ ’(’))

if =areab then =numberb

else{

=area

=number

}

}

write("(" || areaCode || ")" || trunk || sep || num)

end

This is the longest of the solutions to the phone number decomposition problem. It

utilizes the control flow of the string scanning option while using anchored pattern

matches with the unary = operator.

The following solution uses an unevaluated expression of string scanning

functions. It also illustrates the added efficiency of defining a pattern and using it

repeatedly; as is shown with the digit pattern definition, when it is used three times

in threedigit and once in fourdigit.

procedure main()

line := "Uncle Sam: (800)555-1212 or uncle.sam@us.gov"

digit := ‘tab(any(&digits))‘

threedigit := digit || digit || digit

fourdigit := threedigit || digit

area := ("(" || threedigit => areaCode || ")")

pattern := (threedigit => areaCode || Any(’ -.’) => sep ||

threedigit => trunk || ‘sep‘ || fourdigit => number)

.| (area || threedigit => trunk || Any(’ -.’) => sep ||

fourdigit => number)

line ?? pattern

write("(" || areaCode || ")" || trunk || sep || number)

end

The following table shows the number of lines, words and characters that

were used in these solutions.

33

Table 3: Decomposing phone numbers

Lines Words Chars Chars less white space
String scanning 21 74 510 364
Gaikaiwari’s Patterns 9 81 532 409
Patterns 9 80 504 401
Pattern in string scanning 19 94 634 465
Unevaluated expression 11 89 515 401

In this first benchmark the string scanning solution used more lines of code,

but used fewer words and characters to accomplish the same result as the other

solutions. The string scanning solution used the fewest number of words with 74,

next was the the pattern solution with 80 words. The solution with the least number

of characters was the pattern solution with 504 characters compared with 510 for

the string scanning solution; but when white space removed the string scanning

solution uses fewer characters with 364 compared 401 for the pattern and unevaluated

expression solutions.

5.1.2 Detecting words with double letters

In order to identify each word from a source file that has double letters, the

procedure must be able to identify words like

• tooth

• small

• tomorrow

The string scanning example was used in [2] and is shown below.

procedure main()

in := open("mtent12.txt", "r") | stop("open failed")

out := open("mtentpatternOut.txt", "w")

while line := read(in) do {

34

line ? {

while tab(upto(&letters)) do {

word := tab(many(&letters))

word ? {

while c := move(1) do {

if move(1) == c then {

write(out, word)

break

}

}

}

}

}

}

end

It uses a nested call to the string scanning environment, the first to identify a word

and the second to test to see if the word contains a double letter. If it is successful

then it outputs the word.

The next example provided in [2] shows how the problem can be solved using

Gaikaiwari’s pattern data type and matching system.

procedure main()

in := open("mtent12.txt", "r") | stop("open failed")

out := open("mtentpatternOut.txt, "w")

double := PArbno(&letters) && PAny(&letters) $$ x && ‘x‘ &&

(PSpan(&letters) .| "")

every write(out, (line := !in) ?? double)

end

The sample code below is the same as Gaikaiwari’s, but it has been revised

for this integration of Unicon patterns.

procedure main()

in := open("mtent12.txt", "r") | stop("open failed")

out := open("mtentpatternOut.txt", "w")

double := Arbno(&letters) || Any(&letters) => x || ‘x‘ ||

(Span(&letters) .| "")

every write(out, (line := !in) ?? double)

end

35

In both cases the code is much shorter than the string scanning example. In this

example the order of operations for the concatenation operator || require the assign-

ments and alternations to be defined within parentheses.

In the following example the string scanning environment is initialized to

identify each word, then each word is tested for any double letters, using a pattern

sequence which is simpler than the combination of a while loop with a comparison

as shown in the first example for this problem.

procedure main()

in := open("mtent12.txt", "r") | stop("open failed")

out := open("mtentpatternOut.txt", "w")

double := Arb() || Any(&letters) => x || ‘x‘

while line := read(in) do {

line ? {

while(tab(upto(&letters))) do {

word := tab(many(&letters))

if word ? =double then write(out, word)

}

}

}

end

The following is similar to the pattern example in that it replaces the Any()

pattern function with the tab(any()) string scanning functions as an unevaluated

expression.

procedure main()

in := open("mtent12.txt", "r") | stop("open failed")

out := open("mtentpatternOut.txt", "w")

double := Arbno(&letters) || ‘tab(any(&letters))‘ => x ||

‘x‘ || (Span(&letters) .| "")

every write(out, (line := !in) ?? double)

end

36

Table 4: Detecting words with double letters

Lines Words Chars Chars less white space
String scanning 18 53 468 248
Gaikaiwari’s Patterns 6 34 245 205
Patterns 6 34 255 203
Pattern and string scanning 13 48 371 254
Unevaluated expression 6 34 256 210

The pattern examples had the fewest number of lines, words and characters

used. The pattern and unevaluated expression examples had the fewest number of

words with 34 words.

When a pattern match was performed using the tabmat operator in the string

scanning environment, it resulted in fewer lines, words and characters as compared

with using the string scanning environment alone. It also condensed the string anal-

ysis of each individual word to a single line testing for the presence of a double letter.

For novice users of Unicon, this last example would be the easiest to understand.

5.1.3 Strings of the form AnBnCn

The third benchmark problem is the common language that cannot be parsed

by a CFG grammar as was shown in [2]. The programs write accepted when the

string of characters containing a’s, b’s and c’s is in the form of anbncn and write

rejected when any other string is provided.

The string scanning example shown below is from [2] and [9]. It is able to

resolve the problem with 12 lines of code.

procedure ABC(s)

suspend =s | (="a" || ABC("b" || s) || ="c")

end

procedure main()

37

while write(line := read()) do

if line ? {

ABC("") & pos(0)

}

then write("accepted")

else write("rejected")

end

The program defines a procedure ABC which is called in a string scanning envi-

ronment to see if it contains the form anbncn and no other characters following.

Defining a procedure to test for a pattern is a common way to handle patterns when

the pattern data type is not available.

Below is the example code Gaikaiwari provided to solve this problem using

his implementation of patterns.

procedure test(a, b, c)

return ((a - 1) = (b - a)) & ((a - 1) = (c - b))

end

procedure main()

pattern := PPos(1) && PSpan("a") && .$ a && PSpan("b") && .$ b &&

PSpan("c") && .$ c && PRpos(0) && ‘test(a, b, c)‘

while write(line := read()) do {

if(line ?? pattern) then write("accepted")

else write("rejected")

}

end

A test procedure was used to determine if the number of A’s, B’s and C’s are equal.

This test was called at the end of the pattern definition causing the pattern succeed

when they were all equal and fail when they were not.

The following is another example how this problem can be solved using pat-

terns.

38

procedure main()

pattern := Pos(1) || Span("a") || .> a || Span("b") || .> b ||

Span("c") || .> c || Rem() .> r

while write(line := read()) do {

if(line ?? pattern) then {

if (a - 1 == b - a == c - b & c == r) then write("accepted")

else write("rejected")

}

}

end

This example defines a pattern that defines the cursor location for the end of

a, b and c respectively. It then tests those values to see if they are a mathematical

match for the language. The grammar requires the index location assignments to be

made as a concatenation to an element in the pattern. Again the && operator for

concatenation can be hard to distinguish while reading a pattern definition.

The following example uses the pattern matching environment within the

string scanning environment and is able to resolve the problem with 9 lines of code.

procedure main()

pattern := Span(‘let‘)

while write(line := read()) do

line ? {

let := ’a’

a := *=pattern

let := ’b’

b := *=pattern

let := ’c’

c := *=pattern

if ((a == b == c) & (a + b + c == pos(0) - 1)) then

write(" accepted")

else write(" rejected")

}

end

39

This example assigns the length of a pattern match of a Span() of ’a’s, ’b’s and ’c’s

respectively to the corresponding variable. It then checks the value of those variables

to see if they are the same and a mathematical match for the language.

procedure main()

pattern := Pos(1) || ‘tab(many(’a’))‘ || .> a ||

‘tab(many(’b’))‘ || .> b ||‘tab(many(’c’))‘ ||

.> c || Rem() || .> r

while write(line := read()) do {

if line ?? pattern then {

if ((a - 1 == b - a == c - b) & c == r) then

write(" accepted")

else write(" rejected")

}

}

end

Table 5: Strings of the form AnBnCn

Lines Words Chars Chars less white space
String scanning 12 35 226 162
Gaikaiwari’s Patterns 12 64 349 253
Patterns 9 59 317 210
Pattern and string scanning 14 55 348 204
Unevaluated expression 9 60 328 229

The string scanning example required fewer words or characters than all the

other solutions. The string scanning example used 35 words, the pattern with string

scanning was next with 53 words.

Of the pattern examples, the || concatenation operator is more consistent

lexically than the && concatenation operator for the Unicon language.

5.1.4 Number of times a word is used

To count the number of times a word is used in a block of text you need the

algorithm to count every time the word is used, but not when the word is a part of

some other word. When counting the number of times the word the is used, counting

40

they, them, there and so forth would not get the desired result. So the algorithm

must be refined enough to recognize the difference.

The following sample code solves this problem using a string scanning envi-

ronment by examining blocks of letters and testing to see if the block of text matches

the test word.

procedure main(args)

in := open("test.txt", "r") | stop("open failed")

test := read()

count := 0

while line := read(in) do {

line ? {

while(tab(upto(&letters))) do {

word := tab(many(&letters))

if word === test then count +:= 1

}

}

}

write(count)

end

The following pattern matching examples show how they would appear in

Gaikaiwari’s and the current Unicon implementation respectively.

procedure main(args)

in := open("test.txt", "r") | stop("open failed")

word := read()

pattern := PNotAny(&letters) && word && PNotAny(&letters)

count := 0

every w := !in ?? pattern do count +:= 1

write(count)

end

procedure main(args)

in := open("test.txt", "r") | stop("open failed")

word := read()

pattern := Any(~&letters) || word || Any(~&letters)

41

count := 0

every w := !in ?? pattern do count +:= 1

write(count)

end

Both are the same solution to the problem. There are slight gains in typing in the

second. This is a result of not having to use the PNotAny() function as the same

result can be achieved with the Any() function while using the ~ before the cset.

Finally, the following code resolves the problem using pattern matching from

the string scanning environment.

procedure main(args)

in := open("test.txt", "r") | stop("open failed")

word := read()

pattern := Arb() || Any(~&letters) || word || Any(~&letters)

count := 0

every line := !in do {

line ? {

while =pattern do count +:= 1

}

}

write(count)

end

In this example the pattern begins with an Arb() element. Since the pattern match

is carried out in the anchored mode, matching some arbitrary junk before the word

is matched is necessary otherwise the matching operation will not make the match

unless the word starts at the current cursor location. This can cause the pattern

match to get hung up in an endless loop.

In the following example, the Any() pattern functions were replaced with

tab(any()) string scanning functions. This requires more characters but essentially

42

works the same as the pattern examples. It is shown as a demonstration of how the

unevaluated expression can be used to make string scanning function calls.

procedure main(args)

in := open("test.txt", "r") | stop("open failed")

word := read()

pattern := ‘tab(any(~&letters))‘ || "test" || ‘tab(any(~&letters))‘

count := 0

every w := !in ?? pattern do count +:= 1

write(count)

end

Table 6: Number of times a word occurs in a file
Lines Words Chars Chars less white space

String scanning 14 43 309 208
Gaikaiwari’s Patterns 8 34 223 179
Patterns 8 34 217 173
Pattern and string scanning 12 43 271 198
Unevaluated expression 8 34 240 189

The pattern examples require the fewest lines and characters. Their solutions

required 34 words while the solutions including string scanning required 43 words.

The pattern solution used the fewest characters with 217. These results demonstrate

that patterns are more efficient for the user to generate a solution. By allowing the

use of Any() function in place of the PNotAny() function, reduces the number of

pattern functions required for the same functionality.

In summary, the patterns solutions were shorter than the string scanning

solutions in two of the four benchmark problems. Variation in the efficiency of so-

lutions for each benchmark problem may be the result of what types of problems

lend themselves to inductive or deductive reasoning for the solution. The bench-

mark problems also demonstrate many alternative options in solving string analysis

43

problems. The most efficient solution may not always be the most effective method

in solving a problem. Users that prefer SNOBOL4 type patterns are now able to use

patterns in Unicon.

Table 7: Sum to string scanning ratio

Lines Words Chars Chars less white space
Gaikaiwari’s Patterns 0.53 1.03 0.89 1.07
Patterns 0.49 1.01 0.85 1.01
Pattern and string scanning 0.89 1.17 1.03 1.14
Unevaluated expression 0.52 1.06 0.88 1.05

The table above shows the ratio of the sum of each solution type to the sum

of the string scanning solutions in each of the criteria. Overall, the pattern solutions

were the shortest and made the most significant improvement over string scanning.

while the pattern and string scanning solutions were the longest in the number of

words and characters, but showed some improvement in the number of lines used.

This indicates that the most efficient solution for the user on average is likely to

be the pattern solution. But, not everything that can be counted counts and not

everything that counts can be counted. The working example demonstrates that the

longer, less efficient for the user solution can be more effective for the user.

5.2 Working Example

After working with the benchmark problems, a more complicated program-

ming exercise was performed. This author chose an exercise from his previous career

as a professional land surveyor. The exercise was to develop a Unicon program to

read a legal description from a file, parse out each bearing and distance call and

calculate the closure error of the description.

44

The closure error is calculated in the process of calculating the coordinates

of the property corners. A coordinate is calculated for the Point of Beginning, each

subsequent property corner, and a the terminating property corner which should

have the same coordinates as the Point of Beginning. This terminating property

corner is usually described with the statement ”and the Point of Beginning.” The

coordinates of this location does not always calculate to the exact coordinates of

the Point of Beginning due to rounding or blunders by the author. The difference

between this terminating point and the Point of Beginning is known as the closure

error. This closure error is used to find blunders in the description.

This problem has many parts. The body of a legal description is prone to

be a run on sentence containing descriptions of each boundary. The program had to

identify where each boundary description begins and ends, then it had to identify the

bearing and distance call for each boundary. It also had to identify the beginning and

terminus to the description. When it accomplishes those tasks, it had to calculate the

position of each property corner and compare the location of beginning and terminus

corners in order to determine the description’s closure error.

Although there is no specific way to write a boundary description, there are

certain patterns they follow. When beginning a description of a specific boundary, it

begins with the word ”thence”, such as ”thence along the south boundary of the road

right of way...”. The string scanning environment is ideal for tokenizing the string.

The following code identifies each block of letters and tests to see if it matches the

thence pattern:

45

line ? {

while tab(upto(tokenChars)) do {

#is it a thence pattern

if token := =thence then {

l +:= 1

th := 1

}

else { #not a "thence"

token := tab(many(tokenChars))

}

Next comes the identification of bearings and distances. These can be written

in many ways, creating a procedure to handle all those variations could take up a lot

of code, be very complex, and or be difficult to append for other unforeseen options.

The sample code for a deed reader program in Appendix B demonstrates patterns of

great complexity can be defined with relative simplicity. It would be simple to add

additional options that identify a degree symbol in the middle of a bearing definition.

To test if the next token in the description is a bearing, the following code can be used:

if th = 1 then {

direction := &null

dist := &null

while there are more tokens and the distance has not

been determined.

while (tab(upto(tokenChars)) & /dist) do {

if \direction then #get the distance

dist := =distance

else #get the bearing

direction := =bearing

tab(find(" "))

}

In this example, if the direction has been determined it will test the next token to

see if it is a distance and assign it to dist if it succeeds, otherwise it will test to see

46

if it is a bearing and assign it to direction if it succeeds. Should that fail, then it

will try on the next token.

Once all the bearing and distance has been determined for each boundary

line, the property corners locations are calculated. The difference in the location of

the Point of Beginning and the terminating property corner is the closure error.

The author found resolving this problem with string scanning alone to be

much more difficult to solve than using the integrated string scanning and pattern

matching options. While working on the string scanning solution, an attempt to write

a procedure to identify a bearing was performed. This quickly developed into writing

an assortment of procedures for each of the component parts of a bearing. To simplify

the problem for the author decided to use patterns instead. The development of these

patterns took a lot less time than the incomplete process of preparing numerous

procedures. Therefore the solution to this problem, at least on an anecdotal level,

using string scanning along with pattern matching to be more convenient than string

scanning alone. In the business world of billable hours, this can be a significant cost

savings to a project.

5.3 Functional Integration

To further evaluate the success of the integration, the following were consid-

ered: improvements to the pattern function set, the completeness pattern and string

scanning integration, and the improvements to the unevaluated expressions.

47

5.3.1 Reduced Pattern Function Set

The use of the complement operator ~ allows the user execute the NOTANY(),

RTAB() and RPOS pattern functions with Any(), Tab() and Pos() respectively. The

pattern functions with the complement operator were against their complementary

operator and it was found that they performed their tasks at the same speed. There-

fore it was concluded that the NOTANY(), RTAB() and RPOS pattern functions were

redundant.

The use of the cset complement operator was tested with Any() and it was

found that it produced an identical result to what NOTANY() would produce. When

the following code was compiled and run:

procedure main()

line := "abc123"

pat := Any(~&letters) || Rem()

write(line ?? pat)

end

it produced: 123 as expected.

The use of negative values as arguments in Pos() and Tab() it was found

that it produced the identical result to what RPOS() AND RTAB() would produce

respectively. When the following code was compiled and run:

procedure main()

line := "abc123"

pat := Pos(-4) || Tab(-1)

write(line ?? pat)

end

it produced: c12 as expected.

48

In the first benchmark problem, there were several examples of how to extract

a phone number from a body of text. A pattern function allowing the user to identify

the number of times a pattern is replicated would have been very useful in defining

the number of digits in each portion of the number. If a user was looking for a

pattern that is repeated several times, the Repl() pattern function would make the

code shorter and cleaner.

5.3.2 Pattern and String Scanning Integration

The integration of Gaikaiwari’s pattern matching environment and the Uni-

con string scanning environment resulted in allowing users to utilize the pattern

matching facilities from a string scanning environment. The tabmat operator = is

used to make a pattern match within a string scanning operation. The use of the

pattern match ?? operator in the string scanning environment is not supported, as

it performs an unanchored pattern match.

When combined with an evaluation, it allows the user to easily make com-

parisons to complex patterns. If the user wants to test whether a complex pat-

tern comes next, the code would be if =complexPattern then. With such an

expression the index location in the subject string would be advanced to the end of

the matched pattern, to save the content of the pattern the code to use would be

if mat := =complexPattern then. The string scanning with pattern matching so-

lutioins to the benchmark problems demonstrate the success in implementing the

changes to the unary = operator.

49

By rewriting the emit code for uneval() function, the utilization of string

scanning functions within a pattern definition is possible as an unevaluated expres-

sion. Prior to this change, nested function calls within an unevaluated expressions

were not possible. When a user wants to use string scanning function calls as a part of

pattern, it can be done with an unevaluated expression.

pat := ‘pos(upto(&letters))‘ || Len(5) results in a string containing five char-

acters beginning at the first letter in the subject string. Resolving the issue of

allowing nested string scanning function calls from within a pattern definition, ex-

panded the capabilities of making function calls from within unevaluated expressions.

The unevaluated expression solutions to the benchmark problems demonstrate the

success in implementing these changes to the unevaluated expressions.

5.3.3 More on Unevaluated Expressions

Procedure, method and variable call can still be a part of a pattern definition.

With a pattern definition of pat := foo(arg), the procedure foo() would be called

with the value of arg being passed as an argument. If arg is not defined during

compilation, then foo() will be passed &null and foo() resulting in an error. If

arg is in an unevaluated expression as follows: pat := foo(‘arg‘). foo() will be

evaluated before arg is established which will also result in a &null error. To avoid

the &null error, the function along with its arguments must all be included in the

unevaluated expression as follows: pat := ‘foo(arg)‘.

The use of procedure calls in unevaluated expressions was tested with the

following code:

50

procedure strLength(word)

return *word

end

procedure main()

line := "tooth toothbrush too many"

pattern := Span(&letters) => w || Len(‘strLength(w)‘)

write(line ?? pattern)

end

It produced tooth toot as expected:

The use of method calls and object variable calls in unevaluated expressions

were tested with the following code:

procedure main()

test := foo()

line := "abcdefghijklmnopqrstuvwxyz"

pattern := Len(‘test.bar(3)‘)

pattern2 := Len(‘test.y‘)

write(line ?? pattern)

write(line ?? pattern2)

end

class foo(y)

method bar(n)

return 2 * n

end

initially

y := 3

end

It produced the following as expected:

abcdef

abc

51

The changes made to the list generated at compile time for unevaluated

expressions allows nested procedure calls similar to pat := ‘foo(bar(arg))‘ and

method calls such as pat := ‘foo.bar(arg)‘. It does not, however, support sub-

string notation. Consider the following program:

procedure main()

line := "abcdefghijklmnopqrstuvwxyz"

pattern := Len(‘foo(line[3:5])‘)

write(line ?? pattern)

end

procedure foo(str)

return *str

end

When it is compiled, a list will be generated for the unevaluated expression

foo(line[3:5]) resulting in ([”foo”, ”line”, ”3”, ”5”]). When foo() is evaluated in

runtime, it will recognize that there is only one argument for the procedure foo(),

and will use the value of line for that argument. The subscript will be ignored. A

full eval() function is not available for Unicon as it was for SNOBOL, extending

the current unevaluated expressions capabilities to handle operators is feasable and

recomended for future work. A solution to this problem is:

procedure main()

line := "abcdefghijklmnopqrstuvwxyz"

sub := Pos(‘n‘) || Len(‘m‘)

pat := Len(‘foo(subline)‘)

n := 3

m := 5 - n

subline := line ?? sub

write(line ?? pat)

end

52

procedure foo(str)54

return *str

end

In this example, a pattern called sub is constructed with the pattern func-

tion Pos() setting the index location for the beginning of the match. Although

mathematical operations can be used within pattern functions, such as Len(5 - 3),

they do not work with unevaluated expressions such as Len(‘m‘ - ‘n‘). Therefore

this example performs the mathematical operations for Len() elsewhere, in this case

during the assignment of m. In the assignment of subline a pattern match is per-

formed on line with the pattern sub resulting in the value "cd". This is passed to

the procedure foo() when a pattern match of line is performed with the pattern

pat and the value 2 is returned for the pattern function Len(). This finally produces

and writes the substring "ab".

Unevaluated expressions can be used in pattern definitions to perform string

scanning functions and make nested procedure and method calls, but cannot be used

with operators, nor can they be used as operands in mathematical operations. This

expansion of the unevaluated expression gives the user greater flexibility in deciding

how to solve a particular problem.

Using an object variable to access a pattern definition for a pattern match

operator is not supported. For example calling subject ?? object.pattern will

produce an error resulting it failing to find the pattern in the object.

53

5.3.4 Nested Patterns

Nested pattern matches can be performed if the second pattern match is part

of an unevaluated procedure or method call in the pattern definition as shown in the

example below.

procedure extend(w)

line := "hairbursh toothbrush"

pat := w || Span(&letters)

return line ?? pat

end

procedure main()

line := "too toothbrush too many"

word := Span(&letters)

pattern := word => thisWord|| " " || ‘extend(thisWord)‘

write(line ?? pattern)

end

In this example a pattern match is performed where pattern is defined having the un-

evaluated expression ‘extend(thisWord)‘. When the pattern match in the write()

function is performed, the procedure extend() is called and evaluated where returns

the result of another pattern match. The result being the substring "toothbrush".

The first pattern match can now complete its operation with the substring value.

The string "too toothbrush" is sent to standard output.

A nested pattern match as a part of a pattern definition is not supported.

The following code will result in a runtime error 114, invalid type to subscript oper-

ation at the pattern match line2 ?? word.

procedure main()

line := "tooth toothbrush tooth"

54

line2 := "toothbrush"

word := Span(&letters)

pattern := word || " " || line2 ?? word

write(line ?? pattern)

end

5.3.5 Unanchored pattern matches in string scanning

The use of the pattern match ?? operator inside a string scanning environ-

ment is not supported. The current state of the &subject and &pos is stored when

a nested string scan is initiated. Pattern matches do not store and restore the state

of the current string scan. When the pattern match is performed the &subject and

&pos gets altered which produces unintended results.

procedure main()

line1 := "there are many cats"

line2 := "a cat in a bag"

pat := "c" || Span(&letters)

line1 ? {

tab(upto(line2 ?? pat))

write(move(4))

}

end

The above code results in "t in" while the intended result was "cats". Resolving

this issue is recomended for future work.

5.4 Testing

The testing of this implementation occured in phases. The first set of tests

was designed to direct the initial development of the integration. These tests executed

a single aspect of the integration. The existing code was analyzed based on its

behavior in order to identify changes that would be required to achive the goals of

the integration. Edits to the existing code were made until the desired results were

55

produced.

Additional tests were developed for diagnostic purposes. They were used to

check for any oversights and to test the limits of the changes. If additional changes

to the integration were required to achieve the integration goals, then additional

changes were made and additional tests were added. This process was repeated until

the goals of this integration were achieved.

Other tests identified problems areas that would be beneficial to address as

future work or to identify the behavior when unsupported features are encountered.

These tests have been mentioned in other sections of this paper.

At least 66 documented validation tests were performed on this integration.

Fifteen of these tests demonstrate correct pattern matching behavior delivered orig-

inally by Gaikaiwari, 44 validation tests that demonstrate new or changed features

were introduced for this thesis, and 7 limitation tests show the behavior of bugs or

limitations in the current implementation. From those 66 tests comprising of 963

lines of code, we can conclude that substantial progress has been made toward a

complete integration of pattern matching within string scanning.

5.5 Summary

This section reviewed a set of benchmark problems to demonstrate the flex-

ibility of using either string scanning, pattern matching or both to resolve string

analysis problems. They also demonstrated some problems can be solved with less

code with pattern matching than string scanning. A real life or working problem was

used to examine some advantages of using pattern matching with string scanning in

solving a complex problem. Finally, the scope of the integration was discussed in

56

order to get an assesment of how thorough the integration is. Overall patterns do

provide more options for string analysis, whether it is within the string scanning

environment or performed independently. This integration allows users to perform

SNOBOL4 style pattern matching independently or from the string scanning envi-

ronment.

.

57

6 Conclusions

The integration of patterns and string scanning has been successful. Al-

though not complete, it provides some promising benefits for string analysis. It

does allow users to perform pattern matching operations without having to resort to

developing programs separately in both Unicon and SNOBOL. The use of pattern

matching with string scanning enhances the users’ options when performing string

analysis.

In each of the benchmark problems it was shown that pattern matching in

Unicon is a viable option in string analysis. Although, the modified pattern type

developed for this thesis did not produce significantly improved code lengths as

compared to Gaikaiwari’s patterns, it still produced a significant improvement over

the string scanning environment of Unicon in two of the four benchmark problems.

The benchmark problems demonstrated how these problems can be resolved in a

variety of ways that are now available to the user.

Pattern matching does not always result in shorter and therefore simpler

code. It is however a useful improvement to the Unicon language. It allows those

users that prefer the functionality of SNOBOL4 patterns to use a similar system of

string analysis.

Lexical changes to Gaikaiwari’s pattern matching are an improvement, as it

is more consistent with the Unicon language. The pattern function set has been

58

reduced to address some redundancy issues. Additional pattern functions such as

Repl() will further improve the functionality of patterns in Unicon.

It is possible to perform pattern matching operations from within the string

scanning environment by using the tabmat = operator, as well as make string scanning

function calls from a pattern definition with the use of unevaluated expressions.

Unevaluated expressions can handle nested function and method calls, but have not

been updated to handle operators such as substrings or mathematical equations.

The assignment operators: immediate assignment, conditional assignment

and cursor assignment do not support assignments to object variables. It is possible

to get around this with the use of local variables or making the assignment outside

the pattern definition. The following code illustrates one such solution for assigning

the value of f in a PTest() object:

class PTest(pat, f)

method SetPattern()

pat := ("a" .| "b")

end

end

procedure main()

p := PTest()

p.SetPattern()

p.f := "aaa" ?? p.pat;

write(p.f)

end

Had the assignment of f been made in the pattern definition an error would occure

during the runtime execution of the program.

59

With these improvements, integration of patterns with string scanning has

been successfully accomplished and provides the benefit of the option of using

SNOBOL4 style patterns for string analysis in the Unicon language. Unicon users

now have more string analysis options. Users will discover in what string analysis

problems it is simpler to use either string scanning or pattern matching.

.

60

7 Future Work

Although the pattern matching and string scanning have been integrated,

there are areas that need improvement. More work can be done with unevaluated

expressions and additional pattern functions.

The use of unevaluated expressions allows the user to move beyond the static

nature of pattern matching functions. Capitalizing on Unicon’s operators will further

enhance versatility of unevaluated expressions in the pattern matching facilities.

The assignment operators do not support assignments to object variables.

There is a way to get around this problem with the use of local variables. Making

these assignments directly will further add to the flexability in using patterns in

string analysis.

Additional primitive pattern functions would also reduce the complexity of

many pattern definitions. For example: in the first benchmark problem, to identify

three digits in a row required Any(&digits) to be repeated three times. A primitive

Repl(p, n) which allows the user to identify a pattern that has been duplicated for

a fixed number of times would be useful. Had the user been repeating a pattern

several dozen times, it would prove to be a great improvement in functionality in

defining the pattern. There could be other such primitives that add to the flexibility

and improve the functionality of defining patterns.

In the area of readability, more studies need to be done on the selection of

lexemes for functions and operators in programming languages. There has been work

done in Cartography on the use of symbols in thematic maps, and what fonts are

61

the most readable in a variety of languages. In the area of programming languages,

some questions that can to be studied include: How does the use of standard math-

ematical expressions help a user read and comprehend a computer language? How

do lexically consistent symbol selection help users read and comprehend expressions

in a computer language? What is the effect of having many lexemes? Are longer or

shorter lexemes more effective at communicating the purpose of the functions and

operators they represent?

62

Bibliography

[1] R. E. Griswold, I. P. Polonsky, and J. Poage, The SNOBOL4 Programming Lan-

guage. Prentice-Hall, 1971.

[2] S. Gaikaiwari, “Adapting SNOBOL-style Patterns to the Unicon Language,”

Master’s thesis, New Mexico State University, 2005.

[3] R. E. Griswold and M. T. Griswold, The Icon Programming Language. Prentice-

Hall Englewood Cliffs, NJ, 3 ed., 1983.

[4] C. Jeffery, S. Mohamed, R. Pereda, and R. Parlett, Programming with Unicon.

2004.

[5] R. E. Griswold, Pattern Matching in Icon. The Univ. of Arizona Computer

Science Technical Report TR 80-25, 1980.

[6] S. Jeffery, C. Jeffery, and P. Thomas, “Lessons from the development of sseus: a

system for entry and management of peer-reviewed data,” in in the 43rd Hawaii

International Conference on System Sciences (HICSS), pp. 1–8, IEEE, 2010.

[7] C. Jeffery, Implementation of Icon and Unicon. unicon.org, 2014.

[8] K. Walker, The run-time implementation language for Icon. The Univ. of Arizona

Icon Project Document IPD 261, 1994.

[9] R. E. Griswold, “Extensible Pattern Matching in SNOBOL4,” in Proceedings of

the 1975 Annual Conference, ACM ’75, (New York, NY, USA), pp. 248–252,

ACM, 1975.

63

Appendix A: Implementation Code

All code additions were to Unicon’s src/runtime/fxpattrn.ri runtime system

file except were noted.

A.1: Unary Operator = (tabmat)

The unary = operator or tabmat operator was revised to identify when a pattern is

being used as an operand. In that event, an anchored pattern match is initialized and

performed. The following code is in Unicon’s src/runtime/omisc.r runtime system

file.

operator{*} = tabmat(x)

if is:pattern(x) then { //is it a pattern?

abstract {
return string

}
body {

int oldpos, start, stop, subject_len, new_len;

struct b_pattern *pattern = NULL;

tended struct b_pelem *phead = NULL;

char * pattern_subject;

CURTSTATE();

/*

* set cursor position, and subject to match

*/

oldpos = k_pos;

pattern_subject = StrLoc(k_subject);

subject_len = StrLen(k_subject);

pattern = (struct b_pattern *)BlkD(x, Pattern);

phead = (struct b_pelem *)ResolvePattern(pattern);

/*

* runs a pattern match in the Anchored Mode and returns

* a sub-string if it succeeds.

*/

if (internal_match(pattern_subject, subject_len,

64

pattern->stck_size, phead, &start, &stop,

k_pos - 1, 1)){
/*

* Set new &pos.

*/

k_pos = stop + 1;

EVVal(k_pos, E_Spos);

oldpos = k_pos;

/*

* Suspend sub-string that matches pattern.

*/

suspend string(stop - start, StrLoc(k_subject)+ start);

pattern_subject = StrLoc(k_subject);

if (subject_len != StrLen(k_subject)) {
k_pos += StrLen(k_subject) - subject_len;

subject_len = StrLen(k_subject);

}
}

/*

* If tab is resumed, restore the old position and fail.

*/

if (oldpos > StrLen(k_subject) + 1){
runerr(205, kywd_pos);

}
else {

k_pos = oldpos;

EVVal(k_pos, E_Spos);

}
fail;

}
}

A.2: Gaikaiwari’s Unevaluated Expression List Generation

The emit code for uneval() procedure from Gaikaiwari’s pattern implementation.

It supports simple function or method calls that are not nested.

procedure emit_code_for_uneval(funcname)

L := []

tab(many(’‘’))

65

temp := tab(upto(’(.’))

if \temp == "\\" then temp := "\\\\"

put(L,\temp)

while tab(upto(&letters)) do {

temp := tab(many(&letters))

put(L,temp)

}

writes(yyout,funcname, "(")

writes(yyout, "[")

every temp := !L\ (*L -1) do {

writes(yyout, "\"", temp,"\",")

}

writes(yyout, "\"", L[*L], "\"")

writes(yyout, "])")

return

end

A.3: Unevaluated Expression List Generation

A set of procedures that revised Gaikaiwari’s emit code for uneval() procedure.

These procedures can handle nested procedure and method calls. The list of invocables

is used to make the procedures and methods invocable. The recursive procedures

writes code for uneval() and make list for uneval() make nested procedure

and method calls possible.

global list_of_invocables

/*

* A recursive procedure that writes a list in

* a format that can be used for analysis during

* runtime.

*/

procedure writes_code_for_uneval(L)

local i

writes(yyout, "[")

every temp := L[i := 1 to *L] do {

if type(temp) == "list" then {

writes_code_for_uneval(temp)

}

66

else {

writes(yyout, image(temp))

if i = 1 then {

/list_of_invocables := []

put(list_of_invocables, temp)

}

if i < *L then {

writes(yyout, ", ")

}

}

}

writes(yyout, "]")

return

end

/*

* A recursive procedure that analyzes the text within

* the unevaluated expression and generates a list to

* be processed in writes_code_for_uneval().

*/

procedure make_list_for_uneval(L, word)

while tab(upto(word)) do {

temp := tab(many(word))

//is a procedure or method?

if proc(temp) | move(1) === "." then {

L1 := []

put(L1, temp)

L1 := make_list_for_uneval(L1, word)

put(L, L1)

}

else { //not a procedure or method.

put(L, temp)

}

}

return L

end

procedure emit_code_for_uneval(funcname)

L := []

tab(many(’‘’))

temp := tab(upto(’(.’))

if \temp == "\\" then temp := "\\\\"

put(L, \temp)

word := &letters ++ &digits ++ ’\’\"&~’

L := make_list_for_uneval(L, word)

67

writes(yyout, funcname, "(")

writes_code_for_uneval(L)

writes(yyout, ")")

return

end

A.4: Resolving Unevaluated Expression List

The recursive ResolveList() function processes an unevaluated expression list dur-

ing pattern construction.

struct b_list *ResolveList(struct b_list *lp)

{

struct descrip proc;

struct descrip var;

tended struct b_lelem *elsrc;

tended struct b_lelem *eldest;

int i, b, nargs;

tended struct b_list *lpsrc;

tended struct b_list *lpdest;

struct b_list *lptemp;

tended char *temp;

int complement;

struct b_cset *cp, *cpx;

lpsrc = lp;

lpdest = alclist(lpsrc->size,lpsrc->size);

nargs = lpsrc->size -1;

elsrc = (struct b_lelem *)lpsrc->listhead;

proc.dword = D_Proc;

/*

* convert string in to process and store in proc

*/

BlkLoc(proc)= (union block *)strprc(&elsrc->lslots[0],nargs);

if (BlkLoc(proc) == NULL) {

fprintf(stderr, "Unable to find proc1\n");fflush(stdout);

fatalerr(0, NULL);

}

eldest = (struct b_lelem *)lpdest->listhead;

eldest->lslots[0] = proc;

/*

* iterate through the arguments

68

*/

for (i = 1; i < elsrc->nused; i++) {

tended char * varname;

struct descrip parm;

dptr pvar;

if (is:string(elsrc->lslots[i])) {

/* if a string constant, drop double quotes,

else lookup using getvar() */

cnv:C_string(elsrc->lslots[i], varname);

if (StrLen(elsrc->lslots[i])>0) {

complement = 0;

if (strcspn(varname, "~") == 0) {

/* resolve complement and drop tilde*/

StrLoc(elsrc->lslots[i]) =

StrLoc(elsrc->lslots[i]) + 1;

StrLen(elsrc->lslots[i]) =

StrLen(elsrc->lslots[i]) - 1;

cnv:C_string(elsrc->lslots[i], varname);

complement = 1;

}

if (strcspn(varname, "\"") == 0) {

/* drop the quotes, but pass string as a string */

StrLoc(elsrc->lslots[i]) =

StrLoc(elsrc->lslots[i]) + 1;

StrLen(elsrc->lslots[i]) =

StrLen(elsrc->lslots[i]) - 2;

cnv:string(elsrc->lslots[i], elsrc->lslots[i]);

}

else if (strcspn(varname, "\’") == 0) {

/* drop the quotes, but pass string as a cset */

StrLoc(elsrc->lslots[i]) =

StrLoc(elsrc->lslots[i]) + 1;

StrLen(elsrc->lslots[i]) =

StrLen(elsrc->lslots[i]) - 2;

cnv:cset(elsrc->lslots[i], elsrc->lslots[i]);

}

else if (strcspn(varname, "&") == 0) {

/* find keyword and convert it to cset */

if (getkeyword(varname, &parm) == Failed) {

VariableLookupFailed(varname);

}

cnv:cset(parm, elsrc->lslots[i]);

if(complement) { //is complement?

Protect(cp = alccset(), fatalerr(0,NULL));

cpx = (struct b_cset *)

69

BlkD(elsrc->lslots[i], Cset);

for (b = 0; b < CsetSize; b++)

cp->bits[b] = ~cpx->bits[b];

elsrc->lslots[i].vword.bptr = (union block *)cp;

}

}

else if (strcspn(varname, "1234567890") == 0) {

/* process numeric value, make it an integer */

cnv:integer(elsrc->lslots[i], elsrc->lslots[i]);

}

else {

/* process variable */

if (getvar(varname, &parm) == Failed) {

VariableLookupFailed(varname);

}

pvar = VarLoc(parm);

elsrc->lslots[i] = parm;

if(complement) { //is complement?

Protect(cp = alccset(), fatalerr(0,NULL));

cpx = (struct b_cset *)StrLoc(elsrc->lslots[i]);

for (b = 0; b < CsetSize; b++)

cp->bits[b] = ~cpx->bits[b];

elsrc->lslots[i].vword.bptr = (union block *)cp;

}

}

/* assign argument to parm */

parm = elsrc->lslots[i];

}

}

else if (is:list(elsrc->lslots[i])) {

/* recursively visit sublists, do same stuff */

lptemp = (struct b_list *)BlkD(elsrc->lslots[i], List);

parm.dword = D_List;

parm.vword.bptr = (union block *)ResolveList(lptemp);

}

else {

/* cset, integer constant, ... */

parm = elsrc->lslots[i];

}

eldest->lslots[i] = parm;

}

return lpdest;

}

70

A.5: getkeyword() function

getkeyword() function finds and returns the cset associated with a keyword.

The following code is in Unicon’s src/runtime/rmisc.r runtime system file.

int getkeyword(char *s, dptr vp)

{

if (*s++ == ’&’) {

switch(*s++) {

case ’a’:

if (!strcmp(s, "scii")) {

Kascii(vp);

return Succeeded; }

break;

case ’c’:

if (!strcmp(s, "set")) {

Kcset(vp);

return Succeeded; }

break;

case ’d’:

if (!strcmp(s, "igits")) {

Kdigits(vp);

return Succeeded; }

break;

case ’l’:

if (!strcmp(s, "etters")) {

Kletters(vp);

return Succeeded; }

else if (!strcmp(s, "case")) {

Klcase(vp);

return Succeeded; }

break;

case ’u’:

if (!strcmp(s, "case")) {

Kucase(vp);

return Succeeded; }

break;

}

}

return Failed;

}

71

A.6: ConvertPatternArgumentCset() macro

ConvertPatternArgumentCset() macro converts an argument to an expected cset

value. Underlined code was added as part of this implementation.

#begdef ConvertPatternArgumentCset(arg, bp, ptype)

type_case arg of {
pattern: {
struct b_pattern *pat = (struct b_pattern *)BlkLoc(arg);

struct b_pelem *pe = (struct b_pelem *)pat->pe;

switch(pe->pcode) {
case PC_Rpat: {

bp = pattern_make(0, &EOP,ptype ## _VP,1,

pe->parameter);

break;

}
case PC_Pred_Func: // case of an unevaluated procedure

case PC_String_VF: {
bp = pattern_make(0, &EOP,ptype ## _VF,1,

pe->parameter);

break;

}
case PC_Pred_MF: // case of an unevaluated method

case PC_String_MF: {
bp = pattern_make(0, &EOP,ptype ## _MF,1,

pe->parameter);

break;

}
default: {

runerr(127);

}
}

}
default: {

if (!cnv_cset(&arg, &arg))

runerr(104, arg);

bp = pattern_make(0, &EOP, ptype ## _CS,1, arg);

}
}

#enddef

72

A.7: ConvertPatternArgumentInt() macro

ConvertPatternArgumentInt() macro converts an argument to an expected integer

value. Underlined code was added as part of this implementation.

#begdef ConvertPatternArgumentInt(arg, bp, ptype)

type_case arg of

pattern:

struct b_pattern *pat = (struct b_pattern *)BlkLoc(arg);

struct b_pelem *pe = (struct b_pelem *)pat->pe;

switch(pe->pcode)

case PC_Rpat:

bp = (union block *)pattern_make(0, &EOP,ptype ## _NP,

1, pe->parameter);

break;

case PC_Pred_Func: // case of an unevaluated procedure

case PC_String_VF:

bp = (union block *)pattern_make(0, &EOP,ptype ## _NF,

1, pe->parameter);

break;

case PC_Pred_MF: // case of an unevaluated method

case PC_String_MF:

bp = (union block *)pattern_make(0, &EOP,ptype ## _NMF,

1, pe->parameter);

break;

default:

runerr(128);

default:

if (!cnv_int(&arg, &arg))

runerr(103,arg);

bp = (union block *)pattern_make(0, &EOP, ptype ## _Nat,1, arg);

#enddef

73

A.8: Gaikaiwari’s GetResultFromFuncCall() macro
#begdef GetResultFromFuncCall()

int nargs;

struct descrip procargs[10];

struct descrip proc;

tended struct b_lelem *ep;

int i;

tended struct descrip cresult;

dptr call_result;

tended struct b_list *lp = (struct b_list *)

BlkLoc(Node->parameter);

nargs = lp->size -1;

ep = (struct b_lelem *)lp->listhead;

proc = ep->lslots[0];

for (; BlkType(ep) == T_Lelem;

ep = (struct b_lelem *)ep->listnext) {

for (i = 1; i < ep->nused; i++) {

procargs[i - 1] = ep->lslots[i];

}

}

call_result = calliconproc(proc,procargs,nargs);

if (call_result == 0)

goto Node_Fail;

cresult = *call_result;

#enddef

A.9: GetResultFromFuncCall() macro
/*

* Evaluates an unevaluated procedure call and returns its value.

*/

#begdef GetResultFromFuncCall()

tended struct descrip cresult;

dptr call_result;

tended struct b_list *lp = (struct b_list *)

BlkLoc(Node->parameter);

call_result = processFuncCallList(lp, Cursor);

if (call_result != 0) {

cresult = *call_result;

if(is:integer(cresult) || is:cset(cresult)) {

internalStorage = cresult.vword.bptr;

}

}

#enddef

74

/*

* Recursive function that processes the list of an

* unevaluated procedure call.

*/

dptr processFuncCallList(struct b_list *lp, int csr){

int nargs;

tended struct b_lelem *ep;

struct descrip proc;

int i;

dptr rv;

struct descrip procargs[ARGSIZE];

tended struct descrip cresult;

dptr call_result;

tended char *temp;

int Cursor = csr;

int oldPos = k_pos;

nargs = lp->size -1;

ep = (struct b_lelem *)lp->listhead;

proc = ep->lslots[0];

for (i = 1; i < ep->nused; i++) {

if(i == 1 && is:list(ep->lslots[i])) {

/*check for method call else function call*/

if(isMethod(ep) >= 0) {

rv = processMethodCallList(BlkD(ep->lslots[i], List),

Cursor);

}

else {

rv = processFuncCallList(BlkD(ep->lslots[i], List),

Cursor);

}

if (rv == 0) return 0;

procargs[i - 1] = *rv;

}

else if (is:variable(ep->lslots[i])) {

procargs[i - 1] = *(ep->lslots[i].vword.descptr);

}

else {

procargs[i - 1] = ep->lslots[i];

}

}

k_pos = Cursor + 1;

// get result of procedure

call_result = (dptr)calliconproc(proc,procargs,nargs);

k_pos = oldPos;

return call_result;

75

}

A.10: GetResultFromMethodCall() macro
/*

* Evaluates an unevaluated method call and returns its value.

*/

#begdef GetResultFromMethodCall()

int nargs;

tended struct descrip cresult;

dptr call_result;

tended struct b_list *lp = (struct b_list *)

BlkLoc(Node->parameter);

nargs = lp->size -1;

if (is:list(Node->parameter)) {

call_result = processMethodCallList(lp, Cursor);

if (call_result != 0) {

cresult = *call_result;

if(is:integer(cresult) || is:cset(cresult)) {

internalStorage = cresult.vword.bptr;

}

}

}

else {

ErrorDuringPatternMatch("error in method call parameters");

}

#enddef

/*

* Recursive function that processes the list of an

* unevaluated method call.

*/

dptr processMethodCallList(struct b_list *lp, int csr){

int nargs;

tended struct b_lelem *ep;

tended struct b_record *rp;

union block *bptr;

struct descrip methodptr;

struct descrip proc;

struct descrip self;

struct descrip argmnt;

dptr rv;

int Cursor;

struct descrip procargs[ARGSIZE];

dptr call_result;

76

struct descrip var;

tended char *varname;

tended char *classname;

int nfields, fnum, cnlen;

int oldPos = k_pos;

int i, found__m = 0;

Cursor = csr;

nargs = lp->size;

ep = (struct b_lelem *)lp->listhead;

cnv:C_string(ep->lslots[0], varname);

if (getvar(varname, &var) == Failed) {

VariableLookupFailed(varname);

}

procargs[0] = var;

deref(&var,&var);

if (!is:record(var)) {

err_msg(107, &var);

return NULL; /* was: RunErr(107, &var); */

}

ep->lslots[0] = var;

self = var;

classname = var.vword.bptr->Record.recdesc->Proc.pname.vword.sptr;

cnlen = strcspn(classname, "_");

classname = strncpy(classname, classname, cnlen);

classname[cnlen] = ’_’;

classname[cnlen + 1] = ’\0’;

methodptr = ep->lslots[1];

rp = (struct b_record *)BlkLoc(var);

bptr = rp->recdesc;

found__m = isMethod(ep);

if (found__m == -1) {

fprintf(stderr, "Trying to lookup method from a non object");

fatalerr(0, NULL);

}

var = rp->fields[found__m];

rp = (struct b_record *)BlkLoc(var);

bptr = rp->recdesc;

nfields = bptr->Proc.nfields;

for (i=0; i<nfields; i++) {

if ((StrLen(methodptr) == StrLen(bptr->Proc.lnames[i])) &&

!strncmp(StrLoc(methodptr),

StrLoc(bptr->Proc.lnames[i]),StrLen(methodptr)))

break;

}

if (i<nfields)

77

fnum = i;

nfields = bptr->Proc.nfields;

proc = rp->fields[fnum];

bptr = rp->recdesc;

for (i = 1; i < ep->nused; i++) {

if(is:list(ep->lslots[i])) {

/* check for method call else function call*/

if(isMethod(ep) >= 0) {

rv = processMethodCallList(BlkD(ep->lslots[i], List),

Cursor);

}

else {

rv = processFuncCallList(BlkD(ep->lslots[i], List),

Cursor);

}

if (rv == 0) return 0;

procargs[i - 1] = *rv;

}

else if (is:variable(ep->lslots[i])) {

procargs[i - 1] = *(ep->lslots[i].vword.descptr);

}

else {

if (i == 1) procargs[i - 1] = self;

if(strpbrk(ep->lslots[i].vword.sptr,

"abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ_") == NULL) {

cnv:integer(ep->lslots[i], argmnt);

procargs[i - 1] = argmnt;

}

else {

tended char * varname;

tended char * varstring;

struct descrip parm;

cnv:C_string(ep->lslots[i], varname);

varstring = calloc((strlen(classname) +

strlen(varname)), sizeof(char));

strcat(varstring, classname);

strcat(varstring, varname);

if (getvar(varstring,&parm)== Failed) {

VariableLookupFailed(varstring);

}

free(varstring);

procargs[i -1] = parm;

}

}

78

}

k_pos = Cursor + 1;

call_result = (dptr)calliconproc(proc,procargs,nargs);

k_pos = oldPos;

return call_result;

}

A.11: isMethod() function
/*

* determines if the b_lelem is a method. If it is it returns

* list location where it was found, otherwise it returns -1

*/

int isMethod(struct b_lelem *ep){

tended struct b_record *rp;

union block *bptr;

struct descrip var;

int i, found__m = -1;

if (is:record(ep->lslots[0])){

rp = (struct b_record *)BlkLoc(ep->lslots[0]);

bptr = rp->recdesc;

}

else if (is:proc(ep->lslots[0])){

bptr = ep->lslots[0].vword.bptr;

}

else RunErr(107, &var);

for(i = 0; i < bptr->Proc.nfields;i++) {

if (StrLoc(bptr->Proc.lnames[i]) != NULL &&

!strcmp(StrLoc(bptr->Proc.lnames[i]), "__m")) {

found__m = i;

break;

}

}/* for ... nfields */

return found__m;

}

A.12: Concatenation Operator

The following code is in Unicon’s src/runtime/ocat.r runtime system file.

declare {

int isPat = 0;

}

79

if is:pattern(x) then {

inline {

isPat = 1;

}

abstract {

return pattern;

}

}

else if is:pattern(y) then {

inline {

isPat = 1;

}

abstract {

return pattern;

}

}

else {

if !cnv:string(x) then runerr(103, x)

if !cnv:string(y) then runerr(103, y)

abstract {

return string;

}

}

body {

if (isPat == 1) {

union block *bp;

/* convert strings to pattern blocks */

struct b_pattern *lp;

struct b_pattern *rp;

struct b_pelem *pe;

type_case x of {

string:

cnv_str_pattern(&x,&x);

cset:

cnv_cset_pattern(&x,&x);

pattern: {

}

default:{

runerr(127);

}

}

type_case y of {

string:

cnv_str_pattern(&y,&y);

80

cset:

cnv_cset_pattern(&y,&y);

pattern: {

}

default:{

runerr(127);

}

}

lp = (struct b_pattern *)BlkLoc(x);

rp = (struct b_pattern *)BlkLoc(y);

/* perform concatenation in patterns */

pe = Concat(Copy((struct b_pelem *)lp->pe),

Copy((struct b_pelem *)rp->pe), rp->stck_size);

bp = pattern_make_pelem(lp->stck_size + rp->stck_size,pe);

return pattern(bp);

}

else {...

A.13: Pos() pattern function
function {1} Pos(position)

abstract {

return pattern;

}

body {

union block *bp;

/*

* check if position is negative

*/

if(position.vword.integr < 1) {

/* change position to a positive value and use RPos */

position.vword.integr = -position.vword.integr;

ConvertPatternArgumentInt(position,bp,PC_RPos);

} else {

ConvertPatternArgumentInt(position,bp,PC_Pos);

}

return pattern(bp);

}

end

A.14: Tab() pattern function
function {1} Tab(count)

abstract {

return pattern;

}

81

body {

union block *bp;

/*

* check if position is negative

*/

if(position.vword.integr < 1) {

/* change position to a positive value and use RTab */

count.vword.integr = -count.vword.integr;

ConvertPatternArgumentInt(count,bp,PC_RTab);

} else {

ConvertPatternArgumentInt(count,bp,PC_Tab);

}

return pattern(bp);

}

end

82

Appendix B: Sample Code - Deed Reader

B.1: deedreader.icn
global

north, south, east, west, northsouth, eastwest,

ns, ew, sixty, ninety, digitx, digit2, #digit3,

degrees, minutes, seconds, degree, bearing,

units, distance, thence

procedure main(args)

local

tokenChars, points, bDist, file, line, l,

th, token, direction, dist, direc, bound,

newPoint, distError, error

tokenChars := &letters ++ &digits ++ ’\’\"%.,’

initializePatterns()

points := []

put(points, Point())

bDist := 0

file := open(args[1], "r") | stop("open failed")

write("N " || points[1].northing || "\tE " || points[1].easting)

every line := !file do {

l := 0

th := 0

line ? {

while tab(upto(tokenChars)) do {

if token := =thence then {

l +:= 1

th := 1

}

else {

token := tab(many(tokenChars))

}

if th = 1 then {

direction := &null

dist := &null

while (tab(upto(tokenChars)) & /dist) do {

if \direction then dist := =distance

else direction := =bearing

tab(upto(" "))

}

write(l || "\t" || direction || "\t" || dist)

83

direc := Bearing(ns, degrees, minutes, seconds, ew)

bound := Boundary(direc, dist)

newPoint := Point()

newPoint.calcLocation(points[l], bound)

put(points, newPoint)

bDist +:= bound.dist

write("N " || points[l + 1].northing ||

"\tE " || points[l + 1].easting)

th := 0

}

}

}

}

distError := sqrt((points[1].northing -

points[*points].northing) ^ 2 +

(points[1].easting - points[*points].easting) ^ 2)

error := 1 / (distError / bDist)

write("\nDistance Error: " || distError)

write("Relative Error: 1:" || error)

end

procedure initializePatterns()

#initializes the global pattern definitions

#bearing patterns

north := "North" .| Any("Nn")

south := "South" .| Any("Ss")

east := "East" .| Any("Ee")

west := "West" .| Any("Ww")

northsouth := north .| south

eastwest := east .| west

sixty := (Any("012345")) || Any(&digits)

ninety := (Any(" 012345678") || Any(&digits)) .| "90"

degree := "%%d" .| "d" .| "\xf8"

bearing := northsouth => ns || " " || ninety => degrees || degree ||

sixty => minutes || "\’" || sixty => seconds || "\" " ||

eastwest => ew

#distance patterns

units := "feet" .| "rods" .| "chains" .| "links" .| "meters"

digitx := Span(&digits)

digit2 := Any(&digits) || Any(&digits)

84

distance := (digitx || "." || digit2 || " " || units) .|

(digitx || "." || Any(&digits) || " " || units) .|

(digitx || " " || units) .|

("0." || digit2 || " " || units) .|

("0." || Any(&digits) || " " || units) .|

("." || digit2 || " " || units) .|

("." || Any(&digits) || " " || units)

#word patterns

thence := "thence" .| "Thence"

end

procedure bearingToRad(bearng)

#converts a bearing object into degrees, minutes

#and seconds then calls the toRad() procedure to

#obtain a radian value.

local

degr

bearng.ns ? {

if =north then {

degr := 0.0

bearng.ew ?

if =east then degr := bearng.deg

else degr -:= bearng.deg

}

else {

degr := 180.0

bearng.ew ?

if =east then degr -:= bearng.deg

else degr +:= bearng.deg

}

}

return toRad(degr, minutes, seconds)

end

procedure toRad(deg, mins, secs)

#converts degrees minutes and seconds to a radian value

local

degr,

minutes,

seconds

if /mins then mins := 0.0

if /secs then secs := 0.0

85

degr := 90.0 - deg

if degr < 0.0 then degr +:= 360.0

minutes := 60.0 - mins

if minutes = 60.0 then minutes := 0.0

seconds := 60.0 - secs

if seconds = 60 then seconds := 0.0

if \minutes then degr +:= minutes / 60.0

if \seconds then degr +:= seconds / 3600.0

return (degr / 180.0) * &pi

end

class Boundary(bearing, radians, dist)

method getDist(d)

local

ch,

distan

ch := &digits ++ ’.’

d ? distan := tab(many(ch))

dist := integer(distan)

end

initially(bearng, d)

bearing := bearng

radians := bearingToRad(bearing)

dist := getDist(d)

end

class Bearing(ns, deg, min, sec, ew)

initially(norsou, degr, mins, secs, easwes)

ns := norsou

deg := degr

min := mins

sec := secs

ew := easwes

end

class Point(northing, easting)

method calcLocation(parent, bound)

#calculates the northing and easting of the point

northing := parent.northing + bound.dist * cos(bound.radians)

easting := parent.easting + bound.dist * sin(bound.radians)

end

initially()

86

northing := 10000.00

easting := 5000.00

end

B.2: description.txt

This is a sample description for demonstration purposes only. It is not a description

of an actual piece of property.

Sample Description

A parcel of land situated in the Southwest Corner of Section 5,

Township 39 South, Range 2 West, Boise Meridian, Nevada County,

State of Idaho, and more particularly described as follows:

Beginning at a brass cap monument marking the Southwest Corner

of said Section 5; thence North 89%%d57’23" East, along the West

Boundary of said Section 5, a distance of 152.32 feet to an iron

pin; thence North 00%%d02’13" East a distance of 217.58 feet to

an iron pin; thence South 89%%d57’21" West a distance of 152.33

feet to an iron pin marking the South Boundary of said Section 5;

thence South 00%%d02’15" West along the South Boundary of said

Section 5, a distance of 217.55 feet to a brass cap monument

marking the Southwest Corner of said Section 5 and the Point of

beginning.

Containing 0.75 acres, more or less.

Subject to any existing easements of recorded or unrecorded.

87

Appendix C: Pattern Facilities Language Reference

Pattern Variables

variable

a variable in a pattern definition that may not be changed during a pattern match

operation.

‘variable‘

an unevaluated variable in a pattern definition that can be changed in a pattern

match operation.

Pattern Operators

pattern1 || pattern2 pattern concatenation

pattern concatenation operator produces a new pattern containing the left operand

followed the right operand.

pattern1 .| pattern2 pattern alteration

pattern alternation operator produces a pattern containing either the left operand

or the right operand.

substring -> variable conditional assignment

assigns the substring on the left to the variable on the right if the pattern match is

successful.

88

result => variable immediate assignment

assigns the immediate result on the left to a variable on the right within a pattern.

.> variable cursor position assignment

assigns the cursor position of the string to a variable on the right within a pattern.

string ?? pattern comparison operator

compares the string on the left to see if there are any matches of the pattern on the

right in the un-anchored mode.

=pattern comparison operator

compares the current string in the string scanning environment to see if there is a

match of the pattern on the right in the anchored mode.

Pattern Built-In Functions

Abort() pattern cancel

causes an immediate failure of the entire pattern match.

Any(s) match any

matches any single character contained in s appearing in the subject string.

89

Arb() arbitrary pattern

matches zero or more characters in the subject string.

Arbno(p) repetitive arbitrary pattern

matches repetitive sequences of p in the subject string.

Bal() balanced parentheses

matches the shortest non-null string which parentheses are balanced in the subject

string.

Break(s) pattern break

matches any characters in the subject string up to but not including any of the

characters in s.

Breakx(s) extended pattern break

matches any characters up to any of the subject characters in s, and will search

beyond the break position for a possible larger match.

Fail() pattern back

signals a failure in the current portion of the pattern match and sends an instruction

to go back and try a different alternative.

90

Fence() pattern fence

signals a failure in the current portion of the pattern match if it is trying to backing

up to try other alternatives.

Len(n) match fixed-length string

matches a string of a length of n characters in the subject string. It fails if n is

greater than the number of characters remaining in the subject string.

Pos(n) cursor position

sets the cursor or index position of the subject string to the position n according the

Unicon index system shown bellow:
-6 -5 -4 -3 -2 -1 0

| U | n | i | c | o | n |

1 2 3 4 5 6 7

Rem() remainder pattern

matches the remainder of the subject string.

Span(s) pattern span

matches one or more characters from the subject string that are contained in s. It

must match at least one character.

91

Tab(n) pattern tab

matches any characters from the current cursor or index position up to the specified

position of the subject string. Tab() uses the Unicon index system shown in Pos()

and position n must be to the right of the current position.

Rpos(n) reverse cursor position

sets the cursor or index position of the subject string to the position n according the

SNOBOL4 index system shown bellow:

6 5 4 3 2 1 0

| S | N | O | B | O | L |

1 2 3 4 5 6 7

Rtab(n) pattern reverse tab

matches any characters from the current cursor or index position up to the specified

position of the subject string. Rtab() uses the SNOBOL4 index system shown in

Rpos() and position n must be to the right of the current position.

