
Analysis of Software Defined Networks as a Mechanism for Enforcing Corporate Security

Policies in OT Networks

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor in Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Sandeep Gogineni Ravindrababu

Approved by

Major Professor: Jim Alves-Foss, Ph.D.

Committee Members: Jia Song, Ph.D.; Daniel Conte de Leon, Ph.D.;

Yacine Chakhchoukh, Ph.D.

Department Administrator: Terry Soule, Ph.D.

May 2022

ii

Abstract

Cyber Security has been given a high priority for operational technology systems in recent

years after specific cyber-incidents targeting them. Previously, these systems were primarily

concerned with reliability; however, cyber security is now viewed as a critical aspect in avoiding

production damage and financial losses. According to certain studies, replacing traditional net-

works in OT systems with software-defined networks (SDN) minimizes cyber-attacks due to the

features provided by these networks. SDN networks have various advantages over traditional

networks, due to the separation of the data plane and control plane. The concern is whether

SDN networks are more dependable than existing traditional networks, and whether we can

take advantage of all of SDN’s characteristics when connecting with OT systems. Furthermore,

deploying cyber security on a network infrastructure necessitates the creation and implemen-

tation of security policies that define the authorized communication between network devices.

There is, however, a distinction to be made between security policies and the technologies that

implement them. There is also often a distinction between intended policy and deployed or

configured policy. Therefore there is a need to confirm compliance between policy and reality

in a network. This is especially true in operational technology systems where there is a lot of

network infrastructure and special purpose devices which can not be scanned or analyzed using

traditional cyber security tools.

To address the cyber security issues in operational technology systems, this dissertation

reviews cyber-incidents reported on them and summarizes possible attacks on each of their

sub-systems to gain broader insight into vulnerabilities present in them and uses the common

vulnerability exposure database to enumerate trends. Then, a process is formally developed

and evaluated through a proof of concept tool to detect the security policy implemented in the

control rules of an SDN switch deployed in an industrial control system network. These rules

were analyzed to determine if this security policy is compliant with the organization’s high-level

policies.

iii

Acknowledgments

I would first like to thank wholeheartedly to my advisor, Dr. Jim Alves-Foss, for his support,

encouragement, and guidance throughout my graduate studies. I wouldn’t have traveled this

far if he hadn’t put his faith in me. He continues to inspire me in numerous ways and has helped

me become the person I am today. I would also like to thank my other committee members,

Dr. Jia Song, Dr. Daniel Conte de Leon, and Dr. Yacine Chakhchoukh for their valuable insights

on my dissertation work.

I would like to thank all my instructors for their hard work and dedication in providing

me with a comprehensive and valuable education. I would like to thank the department chair

Dr. Terry Soule, Ms. Arvilla Daffin and other staff in department of Computer Science for their

help during my study in the department. I also thank all the staff of the College of Graduate

Studies for their help and support throughout my study at UI.

I would like to thank my dear friends Shashi A, Sharath C, Preethi T, Ranjitha R, and

Harshitha K who supported me at difficult times and instilled confidence in me to achieve my

dream. I will always be indebted to Shashi A, it was her advice for me to apply for PhD and

without her support this would’nt have come true. She has always been a support system and

backbone for me and i wish she continues to be that in future too.

I would also like to thank my UofI friends Aman G, Chaithanya B, Charmi G, Tushar A,

Varsha V and others for giving me wonderful memories during my studies. I wish to acknowledge

the Funding Agency Schweitzer Engineering Laboratories (SEL), for supporting me during the

course of my graduate studies.

Last, but certainly not least, I would like to thank Shashikala V (Mom), Ravindrababu G

(Dad), Kavya O.R (Wife), Santosh K (Uncle), Varalakshmi M (Aunt), Indrani (Aunt) and other

family members for their understanding, support, encouragement, patience and unconditional

love which have helped me make this dissertation a reality.

I firmly believe in GOD and thank GOD for giving me an opportunity to get educated, and

also for his blessings on everyone.

iv

Dedication

To my best friend Shashi AswathnarayanaReddy........

v

Table of Contents

Abstract . ii

Acknowledgments . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

1 Introduction . 1

1.1 Background . 2

1.1.1 Operational Technology Systems . 2

1.1.2 Software Defined Networks . 3

1.1.3 High-Level Policies . 3

1.2 Problems . 3

1.3 Motivation . 4

1.4 Dissertation Overview . 5

2 Background . 6

2.1 Operational Technology Systems . 6

2.1.1 Industrial Control Systems (ICS) . 7

2.1.2 Cyber Physical Systems . 8

2.1.3 Smart Grid Power Systems . 9

2.1.4 Supervisory Control and Data Acquistion Systems 11

2.1.5 Embedded and Firmware Systems . 16

2.1.6 Programmable Logic Controller (PLC) 20

3 Software-defined Networks (SDN) . 22

3.1 SDN Architecture . 23

3.1.1 Workflow of SDN . 24

3.1.2 SDN Flow Controller . 25

3.2 Classification of SDN Vulnerabilities . 26

3.2.1 Vulnerabilities Based on SDN Architecture 27

3.2.2 Vulnerabilities Based on Control Flow Operations 27

3.3 Summary . 31

vi

4 Security Properties for SCADA Systems Using Traditional and Software-

Defined Networks . 32

4.1 SCADA SYSTEMS . 32

4.1.1 Vulnerability Assessment of SCADA Systems 34

4.2 Comparison of SDN Networks vs Traditional Networks for SCADA Systems . . . 35

4.3 Summary . 39

5 High-Level Policies . 40

5.1 Policy-Based Network Management . 40

5.2 Ponder . 41

5.3 Extensible Access Control Markup Language (XACML) 42

5.4 High Fidelity Policy: High-level, Easily Reconfigurable Machine Environment

Specification (HERMES) . 44

5.5 Summary . 48

6 Automated Detection of Configured SDN Security Policies for ICS Networks 49

6.1 Analysis of Configuration Data File Generated By Flow Controller 50

6.1.1 Analysis of Flow Rules Retrieved From Configuration Backup File using

tabular format . 54

6.2 Converting Flows into Ponder policies . 54

6.2.1 Generating Ponder Policies . 54

6.2.2 Using Ponder Policies . 57

6.3 Summary . 57

7 Validating Security Policies in an SDN Switch Across ICS Networks 58

7.1 Conversion of CSP to Low-level FLow Rules . 59

7.2 Formal Approach for Deriving Consistency . 63

7.3 Analysis of Configuration File Generated by Flow Controller to Determine Con-

sistency . 66

7.4 Summary . 68

8 Conclusion and Future Work . 69

8.1 Conclusion . 69

8.2 Future Work . 70

Bibliography . 70

A Case Studies . 80

A.1 Case 1 . 80

A.2 Case 2 . 80

vii

List of Figures

2.1 Cyber-Attacks On Operational Technology Systems 7

2.2 Vulnerabilities Reported On Operational Technology Systems 8

2.3 SCADA System Vulnerabilities Reported In CVE Database 12

2.4 RTU Vulnerabilities Reported In CVE Database 13

2.5 Embedded Device And Firmware Vulnerabilities Reported In CVE Database . . 17

2.6 PLC Vulnerabilities Reported In CVE Database 18

2.7 Comparison Of Incidents Reported In CVE Database On SCADA, Embedded,

PLCs and RTUs . 19

3.1 Depicting The Basic Workflow Of SDN Switch. 24

3.2 Workflow Of SDN Switch Across OT Networks 25

3.3 Vulnerabilities And Attacks In Application Plane, Control Plane And Data Plane 29

3.4 Vulnerabilities And Attacks Based On SDN Symmetric Flows, Assymetric Flows

and Intra-Controller Flows . 30

4.1 Attacks On SCADA Systems . 35

6.1 Application-level View Of Communication . 51

6.2 ICS Network-Level View Of Communication . 51

6.3 Process To Retrieve Low-Level Information From Backup File. 52

6.4 Syntax Of Ponder Authorization Policies. 55

6.5 Creating An SDN Domain To Store Authorization Policies. 55

6.6 Authorization Policy generated for a single flow from the flow table. 56

6.7 Dynamic Addition Of Nodes For Generating Authorization Policy. 56

7.1 Conversion Of CSP to Low-Level Flow Rules . 59

7.2 Configuring Devices And Ports For Domains App1, App2 60

7.3 Step By Step Process For Coverting CSP To Scenarios 61

7.4 Sample Scenario Document . 62

7.5 Low-Level Network Configuration Before Policy Implementation 63

7.6 Low-Level Network Configuration After Implementation Of CSP 64

7.7 Verbose Output Generated Based On ISP And CSP 66

7.8 Matrix Output Generated Based On ISP And CSP 67

A.1 Verbose Output Generated Based On ISP And CSP 83

A.2 Matrix Output Generated Based On ISP And CSP 83

A.3 Verbose Output Generated Based On ISP And CSP 84

A.4 Matrix Output Generated Based On ISP And CSP 84

viii

List of Tables

3.1 Vulnerabilities On SDN Architecture . 28

3.2 Vulnerabilities On Control Flow Operations . 29

4.1 SCADA System Vulnerabilities And Attacks . 36

4.2 Security Properties Of SCADA Network Using SDN And Traditional Networks. . 37

5.1 Comparison Of Ponder, XACML, And HERMES 45

6.1 Flow Table Generated From The Backup File. 53

6.2 Additional Information For Active Polices Of Flow 4. 54

7.1 Flow Table Generated Based On The Scenarios File. 61

A.1 Flow Table For 2nd Backup Configuration File Generated By SDN Controller. . 81

A.2 Flow Table For 3rd Backup Configuration File Generated By SDN Controller. . . 82

1

Chapter 1

Introduction

The advancement of technology in operational technology systems (OT), which includes indus-

trial control systems (ICS) and their sub-systems, has overcome the nature of standalone and

isolated networks by integrating the systems with Information Technology (IT) systems, result-

ing in increased accuracy and performance in terms of results and reliability. This progress has

ramifications in terms of cyber-attacks, which have been on the rise in recent years. Because

of this, ICS systems are recommended to follow standard procedures, protocols, or guidelines

developed by the government or organizations to protect against cyber-attacks. The National

Institute of Standards and Technology (NIST) has proposed guidance for securing ICS networks

consisting of supervisory control and data acquisition (SCADA) systems, distributed control

systems (DCS), and programmable logic controllers (PLC) [SFS11]. This guide clearly states

that system vulnerabilities in ICS can occur in hardware or software due to misconfigurations

and poor maintenance of devices deployed across complex ICS networks.

In ICS networks, security misconfigurations are security policies that are incorrectly con-

figured across networking devices. A security policy is a collection of rules that specify what

actions are permitted or prohibited in the system. In general, organizations develop policies to

achieve their objectives and defend themselves from cyber threats. The network administra-

tor enforces these policies through the organization’s networking equipment, such as switches

and routers. As a result, how well these policies are enforced within the networking devices

determines the level of security of an ICS network.

Misconfigurations often contribute to the disclosure of confidential data or enable unautho-

rized naccess, which aids adversaries in compromising the network. Misconfiguration problems

can be mitigated in several ways, one of which is to adopt SDN technology. Due to the versa-

tility of SDN networking, which includes dynamic reconfiguration, unified policy management,

flow control, fault tolerance, programmability, and more, it is easy to configure SDN devices

in complex environments [NS17]. However, Venugopal et al., [VAFR19a] specify that poor

configuration using SDN technology will still result in insecure networks.

In order to address security misconfiguration issues in ICS networks using SDN technology,

there is a need to develop a formal process to check whether the implemented policy is in line

2

with the organization’s policy, and this is our primary research objective. This dissertation

examines the concept of a policy-driven method, which retrieves the implemented high-level

policies in a SDN switch, analyzes them, and compares them to corporate security policies

defined by the organization. This will aid in the development of a general solution for handling

critical features in operational technology systems without requiring a complete revamp of

current systems.

Section 1.1 of this chapter introduces core concepts related to this work. The problems

that this study aims to solve are presented in Section 1.2. The motivation for this project is

discussed in Section 1.3. The remainder of the dissertation is summarized in Section 1.4.

1.1 Background

This section briefly introduces the basic concepts of OT systems, SDNs, and High-level Policies.

1.1.1 Operational Technology Systems

OT systems are computing systems that manage industrial operations and monitor or control

physical devices. This category includes systems such as oil and gas monitoring, power usage

on energy networks, and hydropower plant management, among others. OT systems process

operational data and employ a variety of hardware and communication protocol technologies.

DNP3, MODBUS, and Profibus are standard protocols used by OT systems. Due to advance-

ments in technology, the standalone nature of OT systems has dwindled over time, resulting

in their integration with corporate networks, which provides dynamic feedback to respond in

realtime, raising cyber threats.

ICS components, such as SCADA, DCS, and PLCs, are intended to be used for monitoring

and controlling critical infrastructure systems . By combining commercial-off-the-shelf (COTS)

components for better business operations, ICS systems have evolved from isolated to highly

interconnected networks. As a result of this evolution, the number of computer-network-based

attacks has increased.

Several researchers have demonstrated the vulnerabilities, attacks, and countermeasures

for the sub-systems in ICS systems (e.g., [DSMF08], [NFCMT09], [HCPS08]) have analyzed

that SCADA protocols and architectures used in the various critical infrastructure sectors have

security vulnerabilities. Yan et al. identified vulnerabilities and develop cyberattack scenarios

in the wind farm SCADA system. Mallouhi [MANC+11a] describes a set of SCADA cyber

attacks against a MODBUS TCP testbed. Yang et al. [YLS+11] have described the impact

of cyberattacks on the smart grid. Liu et al. [LNR11] described false data injection attacks

against state estimation algorithms in electric power systems. These findings support the need

to take action to identify classes of vulnerabilities and attacks affecting operational technology

systems, as well as the necessity to provide a general solution for preventing cyberattacks on

OT systems.

3

1.1.2 Software Defined Networks

Traditional networks are being phased out in favor of SDN, which offer significant capabilities

such as policy administration, flow control, fault tolerance, programmability, and more. The

benefits of integrating SDN with OT systems are numerous, and the handling of policies is

regarded as one of the most significant aspects of sophisticated OT systems. Policies are kept

in SDN in terms of logical connections or flows, rather than being stored directly.

SDNs have a number of advantages over traditional networks, and because the data plane

and control plane are separated, there are reduced vulnerabilities and threats. ICS systems,

SCADA systems, embedded devices, and other OT components are increasingly being con-

nected with IT networks, which has both advantages and downsides in terms of production and

cyber security.To date there hasn’t been much written about the vulnerabilities of OT systems

adopting SDN. An initial focus of this study was on reviewing potential or existing vulnerabil-

ities in SCADA systems and SDN networks. The detailed review of SDN and its architecture

is presented in Chapter 3, with a comparison with traditional SCADA systems in Chapter 4.

1.1.3 High-Level Policies

One strategy to mitigate cyber-attacks is to use a policy-driven approach, in which high-level

policies are specified and implemented to provide a generic solution without changing the com-

plete implementation of existing systems. Some works conducted by researchers with respect

to policies are as follows: Guel [Gue10] provided the overview for developing security poli-

cies, Machalo et al. [MGSFW14a] worked on QoS and policy management in SDN, Lara and

Ramamurthy [LR14] implemented the security policies using OpenFlow and Ben-Itzhak et

al. [BIBC+15a] have created a framework called EnforSDN for specifying the network poli-

cies with SDN. Chapter 5 outlines the details about Policies, different policy languages, and

comparisons between them.

1.2 Problems

Any complex OT system requires a thorough understanding of its design and implementation.

A complex system is made up of multiple sub-systems, and how the sub-systems are configured

is crucial to the system’s overall security. The policy-driven approach is used to configure this.

Traditional networks, SDNs, or a combination of both can make up a sub-system. These sub-

systems components can be configured manually or automatically. One issue with the automatic

approach is that there is no formal method for verifying network configurations and whether

or not modifications to those configurations are in accordance with corporate security policies

specified by the organizations.

The research presented in this dissertation is concerned with two issues: Is it possible to

create a technique for mapping Implemented Security Policies (ISP) to Corporate Security

4

Policies (CSP) and determining whether ISP satisfies CSP? Is it possible to examine the effort

of formal verification of policies in an ICS using this technique?

To summarize, a formal study of SDN as a technique for enforcing CSPs in OT networks is

a difficult procedure that has not been explored previously, and this research offers a practical

solution to this problem.

1.3 Motivation

The purpose of this dissertation is to develop a methodology for analyzing and validating

security policies deployed throughout ICS networks via SDN technology, as well as comparing

them to high-level corporate security policies.

In achieving this goal, this dissertation has achieved the specific objectives:

� Analysis of vulnerability trends and attacks in OT systems.

� Analysis of SCADA system security properties using traditional and SDN networks.

� Development of a proof-of concept tool to extract implemented policies from an SDN

switch. SDN Controller generates a backup configuration file which consists information

about system. The details of the systems are stored as logical flows. Retrieving the logical

flows and mapping them to policies is the primary objective.

� Development of a theory to map the ISP and CSP into the formal model.

� Extension of the proof-of concept tool’s capabilities to convert the high-level policies de-

fined at the organization level to the low-level flow rules using a scenario-based approach.

� Development of a formal model to map the ISP with the policies specified by the organi-

zation using mathematical and relational operations.

� Demonstration of how to analyze if ISP in an SDN switch is consistent with respect to

CSP.

In conclusion, the work provided in this dissertation leads to a practical technique that will

assist product owners in determining whether policy requirements or objectives are correctly

implemented in sub-systems. Using SDN technology, network administrators will be able to

analyze and validate the policies applied in sub-systems without the need for manual interven-

tion. Finally, network configurations and modifications to those configurations can be checked

to see if they comply with corporate security policies.

5

1.4 Dissertation Overview

Chapter 2 presents a brief review of the relevant research on OT Systems, including ICS systems,

SCADA systems, power and smart grid systems, embedded devices, PLC’s and outlines the

vulnerabilities and attacks reported in CVE database.

SDN networks, their workflow, and the vulnerabilities and attacks based on SDN architec-

ture and control flow operations are all covered in Chapter 3

The investigation of SCADA system security properties utilizing traditional and SDN net-

works is presented in Chapter 4

Policy-Based Network Management (PBNM) is discussed in Chapter 5, along with its ben-

efits, several types of policy languages, and a comparison of three different policy languages:

Ponder, XACML, and HERMES.

Chapter 6 illustrates how to retrieve data from the backup configuration file generated by

SDN controller automatically and store it as flow rules in the database. The final section of

this chapter explains how the retrieved flow rules are transformed into ponder authorization

policies for further analysis.

Chapter 7 validates the security policies implemented in SDN switch deployed across ICS

network.

Finally, in Chapter 8, the work is summarized and a number of objectives for further research

in the fields of ICS system security and SDN technology are proposed.

6

Chapter 2

Background

The material in this chapter was originally published as ”Analysis of Vulnerability Trends and

Attacks in OT Systems.” [GRAF22], and has been slightly edited for content and presentation.

Cyber Security has been given an high priority for OT systems in recent years after spe-

cific cyber-incidents targeting them. Earlier, these systems were focused mainly on reliability

and at present security is also considered as an important factor to avoid production damage

and financial losses. To improve the cyber security in industrial systems, it is necessary to

understand the flaws and provide countermeasures to mitigate the cyber-attacks.

2.1 Operational Technology Systems

OT systems are computing systems that can manage industrial operations which monitors or

controls physical devices. Systems like oil and gas monitoring, power consumption on electricity

grids, hydropower plant management, etc. falls in this category. OT systems process operational

data and use various technologies for hardware design. Standard network protocols used by

OT systems are DNP3, MODBUS, and Profibus. The standalone nature of OT systems has

diminished over the years due to the integration with corporate networks. This integration

provides dynamic feedback for network operators to respond in realtime, consequently reducing

the security. ICS, SCADA, Control Systems, Embedded Systems, Smart Grid Sytems, and

Power systems are all part of OT systems.

OT systems have transformed from isolated to highly interconnected networks and this

development has led to increase in computer network-based attacks [Cze16]. Several significant

cyber-incidents on OT systems were listed by Hemsley, et al. [HF+18]. Figure 2.1 depicts

the list of cyber-attacks on OT systems from the year 2000 to present. These incidents on

critical and safety infrastructure have caused huge financial losses to industries and government.

Vulnerabilities that were reported in Common Vulnerabilities and Exposures (CVE) database

on OT systems or shown in Figure 2.2. To secure OT systems it is very important to develop an

understanding the causes of these vulnerabilities and ways to mitigate them. The main focus of

7

Figure 2.1: Cyber-Attacks On Operational Technology Systems

this chapter is to present the evolution of cyber-incidents reported on OT systems in the CVE

database. Primarily we focus on Smart Grid and Power systems, SCADA systems, Embedded

systems, PLCs, and Remote Terminal Units (RTUs). In subsequent sections we present the

trends and attacks on these systems individually, which will help to give a broader insight on

the causes of cyber-attacks in these systems.

2.1.1 Industrial Control Systems (ICS)

ICS components are designed for monitoring, controlling the industrial control systems or crit-

ical infrastructure systems, including SCADA, DCS, and PLC. ICS systems have transformed

from isolated to highly interconnected networks by incorporating COTS components for im-

proving the business processes. The consequence of this development has increased computer-

network based attacks.

Several researchers demonstrated the vulnerabilities, attacks, and countermeasures for the

subsystems in ICS systems (e.g., [DSMF08], [NFGMS11], [HCPS08]) have that SCADA pro-

tocols and architectures used in the various critical infrastructure sectors have security vul-

nerabilities. Yan et al. identify vulnerabilities and develop cyberattack scenarios in the wind

farm SCADA system. Mallouhi [MANC+11a] describes a set of SCADA cyber attacks against

a MODBUS TCP testbed. Yang et al. [YLS+11] have described the impact of cyberattacks on

the smart grid. Liu et al. [LNR11] described false data injection attacks against state estima-

tion algorithms in electric power systems. This research justifies the need for action to identify

8

Figure 2.2: Vulnerabilities Reported On Operational Technology Systems

classes of vulnerabilities and attacks for operational technology systems.

2.1.2 Cyber Physical Systems

A CPS is a mechanism of monitoring, controlling or integrating the operations based on com-

puter algorithms and communication core. In CPS, both physical and software components are

deeply integrated to exhibit unique behavior while interacting with each other. Smart Grids,

Autonomous Automobile Systems, Process Control Systems, Robotics Systems, Automatic Pi-

lot are some of the examples that are considered to be CPS.

In CPS, process control is often referred as embedded systems, which mainly focuses on

computation and CPS is considered to be similar to Internet of Things (IoT) with similar

architecture. CPS brings together the discrete and powerful logic of computing to monitor and

control the continuous dynamics of physical and engineered systems for tolerating the failures

in both physical and cyber domains [RLSS10].

Some of the common failures of CPS are described by Mitchell and Chen [MC16] like,

� Attrition Failure: This kind of failure occurs when the CPS doesn’t have enough control

nodes or actuators to accomplish its intended functions.

� Pervasion Failure: This occurs when the density of compromised control nodes or actua-

tors is too high.

9

� Exfiltration Failure: This occurs when the attacker secretly monitors the network and

then leaks data for financial benefits.

2.1.3 Smart Grid Power Systems

The Smart Grid and Power Systems have enhanced the reliability and efficiency of supplying

electricity through broadband and distribution, resulting in a cost-effective approach for power

infrastructures, which impacts economic stability and development of power grids. The Smart

Grid Power Systems are considered critical in terms of economy and security because of ad-

vancements in distributed intelligence technologies. However, appropriate security enforcement

does not get supported by these techniques and create new vulnerabilities in power networks,

leaving them open to a wide range of cyber-physical attacks. One such attack is described in

detail by E-ISAC [EI16].

Security in smart grid power systems are composed of two main aspects: physical security

and cyber security [LZL+17]. physical security tries to overcome the disturbances caused by

natural disasters or any other physical attacks and helps to prevent the power systems from a

complete blackout. Cyber security tries to overcome the weakness caused by the integration

of physical systems with cyber systems. Earlier, people believed that the cyber-attacks were

incapable of threatening the security of industrial operations. However, cyber-attacks have

resulted in many security problems in recent years and have become a critical concern for

both industrial control system users and clients [Boo]. Smart Grid Power Systems introduce

enhancements and improved capabilities to the conventional power networking making it more

complicated and vulnerable to different types of attacks. These vulnerabilities allow attackers

to access the network.

According to the CVE database, four cyber-incidents were reported on smart grids in the

year 2016. There are several other incidents on smart grids that are not made publicly available

because of security constraints. Several researchers have exposed vulnerabilities of these systems

that are briefly described by Aloul et al. [Alo12] and some of them are as follows:

� Customer Security.

� The number of devices (IEDs) has increased.

� Physical Security.

� There are no trust mechanisms implemented between power devices.

� There are compatibility issues between IT protocols and ICS protocols.

Based on these vulnerabilities, Hahn et al. [HG11] described attacks like CPU exhausting

carried out on the application Layer. Data flooding and buffer overflow attacks took on net-

work and transport layers, man-in-the-middle attacks on MAC layer, and jamming attacks on

the physical layer targeting the availability of smart grids and power systems. Attackers can

10

also launch Denial-of-Service (DoS) attacks targeting the topology of the smart-grid [Alo12],

preventing operators from making appropriate decisions. General attacks on smart grid power

systems are:

� Malware Spreading

� Accessing Database

� Compromising the communication equipment

� Injecting False Information

� Network Availability

� Eavesdropping

� Utilizing the vulnerabilities present in industrial control protocols (MODBUS, DNP3,

Profibus.).

Specific attacks on smart grid power systems described are as follows [APMR18], [MCHL14],

[MRLG11], [YQST12], [YLR11]:

Load-Altering attacks attempt to control or change certain load types that are accessible

through the internet to damage the grid through circuit overflow or disturbing the balance

between the power supply and demand.

Denial-of-Service on smart grids is an attack where an adversary disrupts some or all the

remote control system components.

Random attack are attacks used to overcome the detection mechanism implemented by

the central system.

False Data Injection attack In this, the attacker knows the system model, including

parameters that lead to the control of a subset of sensors and sends false inputs to the primary

system.

Load Redistribution attack attempts to maximize the system operation cost subject to

attacking resource limitation under the logical assumption that the control center implements

practical corrective actions to minimize the operation cost based on the false state estimation

outcome.

Economic attack is where an adversary intends to buy virtual power at the lower-priced

node and sell at the higher-priced node.

Energy Deceiving is an attack where an adversary can inject either the forged energy

information or forged link state information into the energy request and response message

among nodes.

Open-loop Dynamic Load Altering is an attack where an adversary tries to manipulate

vulnerable load without monitoring the grid conditions causing the grid to be impacted while

implementing the attack.

11

Closed-loop Dynamic Load Altering is an attack where an adversary continuously

monitors the grid conditions by hacking into a power system monitor infrastructure to control

the trajectory on the target load buses based on the grid operating conditions.

Sphear Phishing is a cyber-attack method used to compromise systems and networks and

gather information using social engineering techniques. A phishing email is designed to prompt

a response from the recipient, such as clicking on a link or opening an attachment. Through

the answer, the recipient may download malware or be redirected to a website prompting them

to provide sensitive information, such as login credentials.

Credential Theft is an attack where an adversary tries to retrieve vital information like

login details, etc.

Data Exfiltration is an attack where an adversary tries to exfiltrate the necessary infor-

mation by discovering hosts and devices and plans an attacking concept to cause the power

outage.

VPN Access is an attack where an adversary looks for existing point-to-point VPN imple-

mentations at trusted third-party networks or through remote support employee connections

where split tunneling is enabled.

For the attacks mentioned above, researchers have proposed the following countermeasures:

� Metke et al. [ME10] proposed countermeasures for cyber attacks by introducing mecha-

nisms like PKI standards, automated trust anchor security, certificate attributes, smart

grid PKI tools, and Trusted Computing.

� Manandhar et al. [MCHL14] described a mathematical model and designed a robust

framework that uses the Kalman filter with X2 detector and euclidean detector to detect

the DoS attacks, random attacks, and false data-injection attacks.

� Electricity Information Sharing and Analysis Center (E-ISAC) mentioned how to over-

come the power system’s vulnerabilities based on the attack on the Ukrainian Grid [EI16].

� Liang et al. [LZL+17] proposed mechanisms like protecting a set of necessary measure-

ments and PMU-based protection mechanisms for defending against economic, load dis-

tribution, and energy deceiving attacks.

2.1.4 Supervisory Control and Data Acquistion Systems

SCADA Systems are typically used to monitor, gather and process real-time data or operational

data to perform specific industrial organizations operations. SCADA system consists of com-

ponents like PLC, RTU, Human-Machine Interfaces (HMI), end-devices, control servers, and

sensors. These components communicate internally to process data and network administra-

tors analyzes the processed data to make meaningful decisions. Earlier, the traditional SCADA

system goal was to perform reliable operations from isolated locations using data historians

or other proprietary technologies to handle data. This would make the process operations

12

Figure 2.3: SCADA System Vulnerabilities Reported In CVE Database

complicated and inefficient. Modern SCADA systems solve this problem by leveraging with

IT systems. This integration has reduced the gap between IT and SCADA systems. Modern

SCADA systems allow real-time data to be accessed remotely through the internet. Due to

this, the interconnectivity and remote accessibility of the systems have increased in SCADA

networks, making them vulnerable to cyber-attacks.

According to vulnerabilities reported in the CVE database [CVE], since 2007, around 948

incidents have been reported. Figure 2.3 depicts the number of vulnerability incidents reported

every year on SCADA systems. The incidents reported peaked during the years 2011 to 2016

and decreased in later years. The graph represents the analysis to the best of our knowledge,

based on the CVE database. The vulnerabilities like buffer overflow, XSS, improper access

control and authentication, privilege escalation, SQL injection, CSRF, remote code execution,

hard-coded credential, and untrusted search path were found in these incidents.

RTUs are integral part of SCADA systems which monitors field data and sends to SCADA

control servers. There are specific incidents which were reported against RTUs in CVE database.

Figure 2.4 depicts the number of incidents reported on RTUs, where 43 incidents were reported

in the CVE database on RTUs from 2010 to 2020. The maximum number of incidents were

reported during the years 2018 to 2020. From the two figures Fig 2.3, Fig 2.4 we can see

that incidents reported on SCADA systems from 2018 to 2020 were mostly based on RTUs.

Interdependency between SCADA components will be one of the important aspects that should

be considered in the future and it is necessary to develop countermeasures for SCADA internal

components like RTUs and PLCs.

Based on these Vulnerabilities, the possible attacks on the SCADA systems are as fol-

13

Figure 2.4: RTU Vulnerabilities Reported In CVE Database

lows [CRS09a], [CDF+06], [GKR+08], [KLKP09a], [MG13], [TLM08a]:

RADIUS Remote Authentication Dial-In User Service DoS attack causes damage by lim-

iting or denying access to its resources by denying the service to authorized users.

ICT Worm Infection occurs because of the vulnerabilities found in the software installed

on SCADA servers. Worms try to replicate and spread throughout the network. Then, by

closing all the network connections, it isolates the SCADA systems.

Process Network Malware Infection attack is carried out by injecting the worm into

the process network like RTUs, communicating using protocols like MODBUS or DNP3. Worms

carry malware code in the payload by spreading themselves using resource hosts and executing

malicious code on SCADA systems.

Phishing attack in SCADA systems are carried out by creating a fake website with a

malicious code. This makes the user believe that they are connected to the legitimate website.

When entered with their credentials, the adversary steals the credentials to get the SCADA

system’s direct access.

War Dialing Scanning attack executes the scripts on the surrounding numbers to detect

potential connections once the main phone number is determined. Then the subsequent attacks

are performed to penetrate into the SCADA control server.

Traffic Sniffing is used to capture the packets traversing within the network through a

network analyzer.

Password Cracking is a software program that repeatedly tries to guess a password to

gain unauthorized access to a network. An adversary can also use brute force or dictionary

techniques to crack the password.

14

Warm Restart is an attack where a command is sent from the master controller to PLC,

forcing it to execute an immediate reboot. Warm restart belongs to a family of DoS attacks

and occurs on the DNP3 protocol. Multiple WarmRestart commands stop the PLC operations

and result in DoS of the PLC.

Man-in-the-Middle attack is accomplished by first gaining unauthorized access to data.

Next, communication between the Human Machine Interface (HMI) and the MODBUS server

is spoofed to send attacks to either device and finally send busy exceptions to the HMI.

TCP SYN Flooding attack opens many connections on the target device. It leaves the

connections open for the system to allocate resources for each connection. By sending multiple

SYN packets, the target resources are exhausted, forcing the system’s shutdown.

TCP ACK Flooding attack is carried out by sending multiple TCP packets with ACK

enabled on it. The ACK packets indicate the target system has received the data. Continually

performing this, an adversary can shut down the system.

Buffer Flooding attack is performed by sending multiple events to a device that tem-

porarily buffers SCADA data before retrieving it in the control station. This limits the buffering

of critical alerts from authorized devices, negatively impacting the control station’s situational

awareness.

Integrity attack is carried out by sending wrong inputs to other devices in the SCADA

systems, which results in the corruption of data.

Reconnaissance attack are performed to gather control system network information, map

the network architecture, and identify the device characteristics such as a manufacturer, model

number, supported network protocols, system address, and system memory map. Example:

Discovering vulnerable ports by using software like port scanning.

Response injection attack take three forms; first, response injection attack originate

from the control of a PLC or RTU or network endpoints, which are servers that respond to

queries from network clients. Second, response injection attack capture network packets and

alter contents during transmission from server to client. Finally, response injections may be

crafted and transmitted by a third-party device to the network. These attacks occur because

of a lack of authentication features in ICS network protocols to validate packets origin, thus

enabling attackers to capture, modify, and send response packets.

Command Injection attack injects false control and configuration commands into a

control system.

Format String attack is performed against user data to compromise the root privilege

account without inserting any external code.

Spoofing attack is carried out by jamming the devices across the network through inter-

ference with the device radiofrequency.

Replay attack is carried out by transmitting the malicious packets repeatedly.

Destroying a Node attack occurrs because of a lack of physical access security, which is

beneficial for an attacker to destroy the nodes or devices, especially in sensor networks.

15

Environment Tampering is where an attacker can change the sensor readings by tam-

pering in the deployment area.

Cryptanalysis attack refers to transforming encrypted data into plain text without having

prior knowledge of encryption processes.

Exploit attack An attacker becomes accustomed to the system’s vulnerabilities and launches

an attack based on those vulnerabilities.

Sybil attack In this attack, a malicious device pretends to have multiple identities to

impersonate other legitimated devices across the network. This attack is carried out in Sensor

Networks.

Replication attack Here, an attacker attempts to add one or more devices with the same

name as current device. Routing attacks decrease the availability of the system as the attacker

tries to create false routes.

Time Synchronization Attacks resluts in mainly devices out of sync with each other.

Sensor networks rely on synchronization to perform correctly using time-synchronized protocols.

Attack on these protocols results in out of sync between devices.

Slander attack can cause each device to accuse the other if misbehavior occurs across

the network. This is possible to detect if there is a implementation of distributed detection

mechanism.

For the attacks mentioned above, researchers have proposed the following countermeasures:

� Fovino et al. [NFCMT09] proposed mitigation strategies for RADIUS, ICT Worm infec-

tion, Process Network Malware Infection, Phishing attacks, and DNS poisoning attacks,

through the process of filtering and monitoring, and by specifying rules for TCP/IP and

SCADA protocols.

� Three steps for intrusion detection were developed and proposed by Cheung et al. [CDF+06]

for Model-based intrusion detection.

� Vulnerability assessment framework consisting of three levels, system vulnerability, sce-

nario vulnerability, and access point vulnerability to detect attacks like directed attacks

and intelligent attacks, is presented by Chee-Wooi et al. [TLM08a].

� Mallouhi et al. [MANC+11a] developed a module with a 100 percent detection rate to

detect TCP protocol attacks (TCP SYN, TCP ACK, Man-in-the-middle) with low false-

positive alerts.

� Jin et al. [JNY11a] proposed to use a rule-based policy approach to overcome the Buffer-

overflow attacks.

� Giani et al. [GKR+08] have developed mathematical and computational models for the

interaction between the physical and infrastructure processes to overcome Integrity attacks

in SCADA systems.

16

These mitigation strategies are confined to a particular testbed of SCADA architecture and

cannot be considered universal. With the advancement of modern SCADA systems, many more

new vulnerabilities are expected in the future. It is necessary to understand the trends and

attacks of the incidents reported to build a secure and robust SCADA system.

2.1.5 Embedded and Firmware Systems

Advancement in hardware devices and communication technology has led to an increase in

many embedded devices in critical communication infrastructures. Embedded systems are

computing systems built into an extensive network, designed for dedicated functions to interact

with general-purpose systems. These systems include hardware, software, and other mechanical

parts [YLR11], [APMR18]. Extensive use of Embedded devices in the Internet of things (IoT)

has caused security breaches in OT systems.

One of many problems associated with embedded devices is firmware. Firmware is the

software for the embedded device that is loaded and run when the device starts. It is usually

stored in permananent storage in the device. Microprocessors are considered the core of elec-

tronic systems, and firmware software can effectively use various hardware interfaces associated

with them. Firmware has become the primary component of any automated method instead of

many custom made hardware. For each equipment we can use more general purpose micropro-

cessor and specialized software. Due to this advancement, securing this has become an essential

aspect in the real-world [PMB15].

Analysis of Embedded Systems vulnerabilities from CVE database are provided by Kocher

et al. [KLMR04], and some of them are as follows:

� Programming Errors: Control flow attacks like input parsing vulnerabilities leads to buffer

overflow attacks. Memory management problems such as pointer exception occur because

of not following coding standards while developing software programs.

� Web-Based Vulnerability: Lack of updates or patches for web applications used by em-

bedded devices are exposed to specific attacks because of the vulnerabilities existing in

the web interfaces.

� Weak Access Control or Authentication: Use of default or weak passwords. Some systems

have hard-coded passwords to keep them simple. This provides backdoor access to those

who know, makes it easier for attackers to bypass.

� Improper use of Cryptography: Use of random generators for generating cryptographic

keys or vulnerabilities in protocols have a severe impact on embedded devices.

According to vulnerabilities reported in the CVE database, since 2000, around 843 incidents

have been reported. Figure 2.5 depicts the number of vulnerability incidents reported every

year on embedded systems. Until the year 2012, there were not may incidents reported in

17

Figure 2.5: Embedded Device And Firmware Vulnerabilities Reported In CVE Database

CVE database. From the year 2013 to 2018, maximum number of incidents were reported

and in the years 2019 and 2020 incidents reported were less than the year 2018. The graph in

Figure 2.5 represents the analysis to the best of our knowledge, based on the CVE database. The

vulnerabilities like buffer overflow, XSS, improper access control and authentication, privilege

escalation, SQL injection, CSRF, remote code execution, hard-coded credential, and untrusted

search path were found in these incidents.

The effect of these vulnerabilities causes a different type of attacks on Embedded and

Firmware Systems as mentioned in several papers [PMB15], [BA01], [CCS13], [Mil11]:

Control Hijacking attack is where an adversary tries to divert the program’s normal

flow running on the embedded device, resulting in executing the code injected by the attacker.

Reverse Engineering is a process of obtaining sensitive information by analyzing the software

in the embedded device. Using this technique, the attacker can find the vulnerabilities of code

like input parsing errors.

Malware attack is where an adversary tries to infect an embedded system with malicious

software known as malware, which can modify the device’s behavior, resulting in severe conse-

quences. Brute-force search attacks like exhaustive key search can occur because of the weak

cryptography and weak authentication methods in embedded devices. An adversary bypasses

the system with brute force search attacks by using random credentials to login.

Eavesdropping or Sniffing is a passive attack, where an attacker observes the messages

sent and received by an embedded device.

Injecting Crafted Packets or Input is an attack method against the protocols used by

embedding devices. Both packet and input crafting attacks exploit parsing vulnerabilities in

18

Figure 2.6: PLC Vulnerabilities Reported In CVE Database

protocol implementations or other programs. Also, replaying previously observed packets or

packet fragments is considered a particular form of packet crafting, which can be an effective

method to cause protocol failures.

Known-key attack occurs because of the vulnerability in the standard protocols. An

adversary takes old key and supplies it twice in the second transaction, resulting in a known

terminal key. They are considered the core of all zeroes, as the key is exclusive- or’ ed with

itself. Thus, it enables an attacker to encrypt the PIN key under a terminal master key so that

an ATM can verify customer PINs while the network is down. So now the attacker can obtain

the PIN key encrypted under the all-zero key. Decrypt it using his computer and is then able

to compute any customer’s PIN.

Two-Time Type attack is carried out by writing a program that maps the possible key

and data transformations between different vital types, computing the transitive closure, and

scanning the composite operations for undesirable properties.

Meet-in-the-Middle attack exploits try to abuse all the keys of a particular type. It is

usually only necessary to get one of them and leads to a natural time-memory tradeoff in a key

search. Firmware Modification attacks like reprogramming the battery affect devices consisting

of design flaws, operating systems of different versions, and instruction set architectures.

CIH Virus rewrites the BIOS firmware online, causing BIOS firmware program to crash

and fail while loading the systems.

Control-Flow attack occurs when information like return addresses are stored together

with functions. These function variables come from untrustworthy sources, and sufficient checks

are not in place, leading to memory corruption. This corruption allows an adversary to corrupt

19

Figure 2.7: Comparison Of Incidents Reported In CVE Database On SCADA, Embedded,
PLCs and RTUs

the control flow information stored on the stack.

Stack-overflow attack occurs while allocating too much data on the stack or when the

stack’s depth grows large. In both cases, the stack exhausts its available memory. It overlaps

with other memory sections like the BSS section causing both a reliability problem and a

security problem.

Configuration Manipulation attack allows an attacker to modify an embedded device’s

critical configuration parameters to force it to misbehave. These attacks are concerned with

programmable devices such as PLCs, which can control the programming logic process.

For some of the attacks mentioned above, researchers have proposed the following counter-

measures:

� Hou et al. [HLC17] proposed Automatic Binary Structure Randomization (ABSR), which

disables unnecessary features and removes the unused binary from the firmware image to

overcome the firmware modification attack.

� The CIH virus were peak during the years 1996 and 1998 [CJ03]. Numerous solutions

to overcome this attack are given, like implementing fuzzy testing, behavioral analysis,

homology analysis, etc.

� Split Stack and instruction-based memory control techniques were developed by Francillon

et al. [FPC09] to overcome the control-flow and stack-overflow attacks in embedded and

firmware devices.

20

� Memory verification and control-flow integrity techniques are used as countermeasures

to overcome configuration manipulation attacks and control-flow attacks on embedded

systems [Abb16].

2.1.6 Programmable Logic Controller (PLC)

Programmable Logic Controllers [McL11] are real-time systems that closely monitor and control

plant devices to keep the process functioning correctly. In general, PLC receives information

from input devices, processes the data, and triggers outputs based on the preprogrammed

parameters. This program in PLC considers as logic and executes within the control flows.

Research work on PLCs like detection of vulnerabilities and attacks on PLC’s concerning

embedded systems are investigated by Abbasi et al. [Abb16]. In this work, the authors have

described the different attack techniques used by an adversary to tamper the I/O operations in

PLC and also showed how certain detection mechanisms implemented in PLCs can be evaded.

Sandaruwan et al. [SRO13] have revealed the vulnerabilities of PLCs through attack vectors

affecting critical infrastructure, described Stuxnet attacks and proposed solutions to overcome

the weaknessess in PLCs. McLaughlin [McL11] constructed an dynamic payload, based on the

process observation in control system and claimed that this process will significatly lowers the

attacks agains PLCs. Gonzalez and Hinton [AGH14] have demonstrated the feasibility of power

fingerprinting technology to monitor PLC and detect malicious software using Siemens S7 PLC.

According to vulnerabilities reported in the CVE database, since 2011, around 132 incidents

have been reported. Figure 2.6 depicts the number of vulnerability incidents reported every

year on PLCs. The peak of incidents were reported from 2012 to 2014 and again there was a

rise from 2018 to 2020. The above graph represents the analysis to the best of our knowledge,

based on the CVE database.

Some of the attacks on PLC are described as follows; Pin Control attack consists of

misusing the pin control functionalities of the embedded systems at runtime, causing physical

damage, communication block, and manipulation of reading or writing values from a device, to

be a legal process. Because of the vulnerability embedded system, an attacker can modify the

multiplexing registers, which leads to the disconnect of the legitimate device.

PLC Malware Stuxnet is considered to be the PLC malware, and Stuxnet intends to

reach the nodes in the SCADA systems that connect to the PLC’s operating the target plant

MTUs. Once executing on an MTU, Stuxnet uploads its payload of static code blocking the

PLC, resulting in the process to be under malicious control.

By-Pass Logic attack In general PLCs contains main memory and register memory.

Register memory contains some variables assosiacted with main logic. This register memory

are allowed to access by other PC’s in industrial plants with read and write operations across

PLC networks. When an adversary gains access to one of these machines, he can change the

values arbitarily and cause the system to collapse.

Brute-Force Output attack In PLCs, an PLC operator can remotely change the output

forcefully by connecting to the PLC through a network or internet with out any authentication.

21

When an adversary gain the access to PLC, he can force the output to shutdown some valves

etc, which will lead to awful concequences.

Replay attack In this attack, an adversary gets some information about PLC and uses

the same information to compromise the system later.

S7 Authentication Bypass attack In this attack, an adversary can easily bypass the au-

thentication by intercepting the valid user packet and replay that packet at later to authenticate

himslef. This is because of lack of security in the protocol.

The comparison of cyber-attacks on SCADA, embedded systems, PLCs, and RTUs are given

in Fig 2.7. From the graph, the incidents reported on all four of the systems were at peak during

the years 2010 to 2018. Even if there is a decrease in the number of incidents reported in past

two years, still it is important to understand these trends and address the vulnerabilities in

these systems.

22

Chapter 3

Software-defined Networks (SDN)

SDNs have been used for years by information technology (IT) systems to provide quick re-

sponses to meet the organization’s changing needs. The same concept has been applied to

Operational Technology (OT) systems to increase the performance and enable fault-tolerance

capabilities for networked control systems. Features like secure communication and fault toler-

ance can be achieved through the use of SDN. This approach has significant advantages such

as securing the control plane, restricting unauthorized access, and enabling the visibility to

monitor devices across the network.

OT Systems using SDN are considered a modern approach to build secure and reliable sys-

tems. Researchers have shown that it is a dynamic technology for building secure and reliable

systems. The SANS 2019 survey report on OT/ICS systems [FWD19] have mentioned that

the adoption of SDN in an OT domain enables the flexibility and dynamic logical segmenta-

tion of contemporary ICS. By complementing Network Access Contol (NAC), SDN technology

enhances network resiliency and provides segmentation when more devices are connected to

ICS.

There are several publications regarding the architecture of SDN, features of SDN, advan-

tages of SDN, performance measurement of SDN, challenges of SDN and difference between

traditional and SDN networking. Machado et al. [MGSFW14b] worked on QoS and policy

management in SDN, and Lara [LR14] have implemented the security policies using Open-

Flow and Ben-Itzhak et al. [BIBC+15b] created a framework called EnforSDN for specifying

the network policies. Scenario-based programming for SDN has been developed by Yifei et

al. [YLA+18]. Most of the research publications primarily focused on behavior and implemen-

tation of SDN technology. Minimal research has been conducted on how to retrieve the logical

flows implemented on the SDN switch. This gap has motivated us to describe a process and

develop a tool for retrieving the implemented logical flows on SDN switch for formal analysis

and verification purposes.

Other works have proven that SDN technology can increase operational performance and ef-

ficiency of OT systems. Cruz et al. [CQSM16] illustrated how interoperability and performance

using SDN can be achieved in real-time networks. Hadley et al. [HNS17] have summarized the

23

advantages of SDN on control systems. Thubert et al. [TPE15] proposed SDN-based centralized

methods for global optimizations on the Internet of Things (IoT). And a survey on SDN for IoT

has been conducted by Bizanis et al. [BK16] emphasizing the impacts of SDN on 5G networks.

A framework for network resilience using SDN has been designed by Modarresi et al. [MGS17],

and Clements et al. [CSNN20] have proposed solutions by evaluating SDN to reduce the digital

attack surface of nuclear security systems.

3.1 SDN Architecture

SDN is a network architecture, which enables the system to be programmable using software

applications to improve the performance of the network. The goal of SDN is to enable cloud

and network engineers and administrators to respond quickly to changing business requirements

via a centralized control console [KAL+18]. The four key features of SDN architecture are:

� Centralized View : In SDN, controller is centralized by maintaining the configuration

details of all the devices, which enables to view across the entire network.

� Dynamic Configuration: In SDN, network administrators can configure and optimize the

traffic flows dynamically through built-in programs without depending on third-party

software.

� Flexibility : Separation of the control plane from the data plane enable network adminis-

trators to configure the traffic flow to meet changing demands.

� Programmability : In SDN, network controls are programmable because it is decoupled

from the data plane.

SDN Architecture consists of Data Plane, Control Plane, Application Layer, and protocols

for communication between them. Communication between controller and data plane is carried

out through a southbound application programming interface (API) like OpenFlow protocol,

widely used in SDN networks. The communication between controller and application layer is

carried out using northbound API like procera or frenetic.

The Data plane is responsible for forwarding Ethernet data packets. In contrast, the Control

plane located in the flow controller will program and configure all the switches in the network

to provide benefits like flexibility, speed, and security. The Application layer simplifies the

network configuration process. It enables the user to configure their interfaces using abstraction,

a mechanism to interact with the low-level programming rules and actions, to control the flow

of the packet.

An SDN has two main components, the Flow controller and the network appliance (SDN

Switch). Being placed centrally, the controller will have a global view of the network to im-

prove its decision-making process. It facilitates network administrators to program the entire

network easily. Problems that had previously taken a long time to detect and resolve, such as

24

Figure 3.1: Depicting The Basic Workflow Of SDN Switch.

configuration issues, the detection and mitigation of attacks, and new protocol implementation

for legacy network devices, can now be fixed in a matter of hours with SDN [RS16]. For this

research, we focus on the rules programmed into the switch by the controller. It is important

to note that in data centers and cloud infrastructures, the flow controller is an integral part

of the network, dynamically installing new rules and re-configuring the network. In an ICS

system, which requires consistency, reliability, and resilience, it is more common to use the

flow controller to configure the network and then take it offline, reverting to a static network

configuration. It is this static configuration that is the focus of this research.

3.1.1 Workflow of SDN

The basic workflow of a traditional SDN switch is depicted in Fig. 3.1. The default nature of

the SDN is that upon receiving a data packet at the switch, the switch checks the entries in its

flow table. If there is any flow associated with that particular packet, it processes the packet

according to the flow rules in the table. In a dynamic configuration, such as that found in a

traditional IT network, if there are no flows related to the received packet, the switch forwards

the packet to the controller. This is the significant difference between an SDN switch and a

traditional switch, where the latter broadcasts the received packet to all the nodes connected

to the switch, hoping to find one that responds. The SDN Flow Controller then checks if there

are any rules associated with the received packet. If any rules are present in the controller flow

table, it sends the packet back to the switch with the appropriate rules by adding the flow rules

to the switch flow table. If there are no rules in the controller flow table, then the packet is

dropped. This nature of SDN is known as deny-by-default.

In a static configuration, such as an ICS network where there is no flow controller present,

25

Figure 3.2: Workflow Of SDN Switch Across OT Networks

the switch will just drop the packet. It is recommended that ICS networks create a default rule

that forwards the unrecognized packet to a logging station for analysis, since static networks

should never receive unknown data packets. Since the rules are all defined statically, it makes

sense to evaluate the configuration data that is used to configure the SDN swtich. For this

research, our experiments were based on the Schweitzer Engineering Labs SEL-5056 SDN Flow

controller and switch SEL-2740S [Sch19]. The workflow of SDN switch across OT networks is

shown in Fig 3.2. The static configuration of OT networks allows network administrators to

pre-define the flow rules. In this case, the SDN switch will automatically detect the nodes across

the network. And when the packet arrives at the switch ingress port, it checks its internal flow

table, and if entry is found, it forwards the packet to the appropriate destination through an

egress port. For unexpected traffic or flow rules that are not pre-defined, SDN switch drops the

packet at its ingress port.

3.1.2 SDN Flow Controller

A flow controller is software that constitutes a control plane and configures all the network

appliances on how to forward data packets. It has three components [Sch19]: match, actions

and counters.

The Match component determines which control plane rules to apply to each packet entering

the switch port. The match rules are applied to data packet headers, such as source and

destination IP addresses and TCP/UDP ports, or similar header fields in other protocols, such

as GOOSE. The match rules are searched in-order, with the first successful match being used

26

to select the action for the packet. The Action component instructs the switch what to do with

the packet, such as forward, modify or drop the packet. The Counter component is used to

monitor the overall status and health of the network by updating log counters concerning the

packet.

A typical SDN controller will maintain an internal control flow table specifying all of the rules

for the network components it controls. This will typically involve several network switches. The

controller then pushes out the appropriate subset of rules to each SDN switch. A secure network

will utilize digital signatures and other encryption technology to authenticate this programming

of the switches. Attacks against the controller and the authentication to the switches are beyond

the scope of this dissertation. Rather the scope of this work is understanding the network as

configured.

In a normal network design, high-level policies are defined at the organization level and

implemented across all the network components by a network administrator. For example,

the policy that communication between two end-devices should consist of authorized mes-

sages [VAFR19b] is considered as high-level policy. This is converted to low-level policies and

implemented in the switches. The SEL-5056 Flow controller has an internal database that is

used to store the control flow information of the network. The flow controller stores the high-

level policies as logical connections in the database for security purposes and can automatically

generates and exports a configuration backup file. For this dissertation, the backup file gener-

ated by the SEL 5056 Flow controller is called backup.db. This file consists of configuration

and security certificates of all switches and hosts in the system. It can be stored on the same

computer where the controller is running, or on backup media. The latter case is recommended

so that if the controller running the system fails or is corrupted, the user can import the ex-

ternal backup file to restore the network configuration. Deleting the database removes all of

the certificates and credentials from the controller, and the SDN switches will no longer be

accessible across the network.

3.2 Classification of SDN Vulnerabilities

The vulnerabilities in SDN are outlined by several researchers are [ACP+17], [DMSK16], [FP18],

[KAL+18], [RS16]:

� Communication bottleneck between the data and control planes can easily overload the

control traffic in many situations.

� Hardware-Based challenge, like the controller, might be the primary choice for attackers

because the controller is the logically centralized device, which functions as the brain of a

network. Therefore, many traditional attack approaches and several new attack behaviors

are instrumental in making a controller disabled.

� Protocol-Based Challenges. Different OpenFlow versions except the first edition make

27

mutual authentication optional between controller and switches, which can lead to a

data information leak. Because of this, man-in-the-middle attacks have occurred, and

attackers can steal network information and modify flow rules in the switches to take

control of the whole network. Because of these vulnerabilities, Denial of Service (DoS)

attacks are possible. A DoS attack is an attempt made by a malicious user to compromise

the regular functioning of a network. If this attack comes in a group of hosts, instead of

one host, then this is called a distributed denial of service (DDoS) attack.

3.2.1 Vulnerabilities Based on SDN Architecture

SDN architecture consists of three planes: application plane, control plane and data plane. The

list of vulnerabilities concerning SDN architecture is described briefly in Table 3.1, and Fig 3.3

outlines the attacks that can be exploited based on the vulnerabilities listed in Table 3.1.

The innermost area is segregated into three sections: application, control, and data plane.

The middle area represents the possible vulnerabilities associated with each section, and the

outermost area represents the potential attacks carried out by exploiting these vulnerabilities.

Application Plane consumes SDN communications and networking services for end-user

business requirements and does not provide authentication, authorization, and accountability

mechanisms. Exploration of this vulnerability by the adversary in the application plane will

lead to an access control attack. The different attacks viable on the application plane are DDos

attack, storage attack, malicious attack, and control message attack.

Control Plane provides control functionality and supervises the packet-forwarding behav-

ior through an open interface. Misconfiguration of controllers leads to unauthorized control

access vulnerability, and when exploited by an adversary, they can change the controller’s in-

ternal implementation leading to hash collison attack. Other possible attacks on the control

plane are, link spoofing attack, availability attack, software hack attack, saturated and single

point of failure attack, and inference attack.

Data Plane consists of forwarding elements, including physical switches and virtual switches,

is accessible via an open interface to forward packets. As mentioned in Fig 3.3, attacks like

unbounded Flow state memory allocation and device attack are performed by exploiting the

specific vulnerabilities concerning protocols and flow table mechanisms used.

The classification of vulnerabilities and attacks on SDN architecture helps to determine if it

impacts SCADA systems. For example, most ICS using SCADA systems are static, and when

SDN technology is implemented on these systems, the controller has limited scope. Therefore,

the control plane’s vulnerabilities do not significantly impact SCADA systems performance or

security.

3.2.2 Vulnerabilities Based on Control Flow Operations

The control flow operations inside SDN switches determine the communication between end-

devices. There are three types of control flow operations:

28

Table 3.1: Vulnerabilities On SDN Architecture

SDN Architecture Vulnerabilities
Application Plane Exhausting CPU, memory, bandwidth, and socket resources.

Lack of authentication, authorization, and accountability mechanisms.
Access to the shared storage is permitted.
Fraudulent Rule Insertion.
Lack of monitoring systems which helps to check for unauthorized changes
or malicious attemp.t
Can send control messages continuously at any time.
Allowance of executing System EXIT command and can disconnect all
the controller instances.
Security rules and configuration conflicts.

Control Plane No mechanism to ensure integrity and originality of LLDP packets.
Able to flood the controller with packet-in messages.
System variable such as time can be altered to turn the controller offline.
Scalability issues.
Flow table capacity is limited.
Parsing errors results in buffer overflow vulnerability on controller.
Unauthorized controller access leads to change the internal implementa-
tion of the controller causes hash collision attack.
Attack Traffic can be mixed with normal traffic and is hard to differenti-
ate.
Limited computing and storage resources of the controller.
Distribution of access-control in multi-controllers leads to DoS attacks.
Inconsistent configuration of multiple Controllers causes DDoS attacks.
Flow rule modification vulnerability to modify packets.
Improper message configuration exchange vulnerability.
Lack Of TLS mechanisms in controllers.

Data Plane Can identify rules using input buffer to analyze the forwarding policy.
Prone to hardware and software bugs.
Inconsistency in flow rules.
Requirement of a large memory space for each switch causes an adversary
to exhaust the memory of the device.
Network protocol vulnerabilities.
Forward policy discovery vulnerability.
Switch flow table flooding.
If the listener Mode is activated on the switch, there is the possibility to
establish a connection from the controller to the switch with no built-in
authentication and access control.
Lack of authentication mechanisms in the data plane.
Enormous number of packets can be sent in short time

29

Figure 3.3: Vulnerabilities And Attacks In Application Plane, Control Plane And Data Plane

Table 3.2: Vulnerabilities On Control Flow Operations

SDN Control Flow
Operations

Vulnerabilities

Symmetric Flows Weak authentication during the handshake step
The adversary can persistently replay meaningless handshake messages
to exhaust the internal storage of the controller.
An adversary can alter the message carrying OpenFlow version informa-
tion.
An adversary can alter the message carrying OpenFlow header informa-
tion.

Asymmetric
Flows

A listener mechanism allows applications to register to receive specific
messages from the data plane. The attackers can interfere to cause the
applications to drop the message.
Malicious applications can alternatively implement an infinite loop to
prevent other apps from acting on the message.
Control messages between the controller and the switch are unencrypted,
an attacker located between them can guess what topology is constructed
by sniffing control messages in a passive manner.
An adversary can intercept the control message and then change some
field values of the control messages with malicious intent.

Intra-controller
control flows

No access control mechanisms to limit API usage among applications.

Exploiting the vulnerability of the mechanism that dynamically controls
applications running on the controller. For example, the malicious appli-
cation can dynamically unload a Firewall application.
Notifications can be turned off dynamically.

30

Figure 3.4: Vulnerabilities And Attacks Based On SDN Symmetric Flows, Assymetric Flows
and Intra-Controller Flows

� Symmetric Flows: In this operation the SDN component sends a request to another

component and receives a reply. These are often termed as bi-directional flows. Since

it waits for the response, an adversary can reply with meaningless messages to exhaust

the controller’s internal storage, leading to switch table flooding attack. Other attacks

concerning to Symmetric flows are switch identification spoofing attack, malformed control

message attack, and control message manipulation attack.

� Asymmetric Flows: Operations involving unidirectional flows, i.e., components that do

not require a reply, are considered asymmetric control flow operations. The possible

attacks on asymmetric flows are control message drop attack, control message infinite

loop attack, and man-in-the-middle attack.

� Intra-Controller Control Flows: In this, the flow operations are initiated by applications

running on a controller. When applications interact with one another or uses the con-

troller’s internal services, the controller exposes API’s. This limits the API usage among

applications and leads to internal storage misuse attack. Other attacks are the application

eviction attack and event listener unsubscription attack.

The Vulnerabilities for SDN control flow operations are summarized in Table 3.2, and the

attacks concerning them are outlined in Fig 3.4. The innermost section is segregated into

three parts: symmetric, asymmetric, and intra-controller control flows. The middle section

represents the possible vulnerabilities concerning each part, and the outermost section refers

31

to the potential attacks carried out by exploiting specific vulnerabilities. For example, in

symmetric flows, altering message vulnerability leads to malformed message vulnerability attack

and listener mechanism vulnerability in asymmetric flows leads to control message drop attack.

3.3 Summary

In this Chapter, introduction to SDN and its workflow are presented. Then, the vulnerabilities

based on the SDN architecture and its control flow operations are summarized. These threats

on SDN warrants research to determine if any of the vulnerabilities influence the security and

performance of OT sytems integrated with SDN technology. This is examined in detail in

Chapter 4.

32

Chapter 4

Security Properties for SCADA

Systems Using Traditional and

Software-Defined Networks

Software-defined Networks (SDN) have several advantages over traditional networks, and since

the data plane and control plane are separated, there are few vulnerabilities and attacks that

exist. Operational Technology (OT) systems like Industrial Control Systems (ICS), SCADA

systems, Embedded Systems, etc. integrated with Information Technology (IT) networks are

increasing, which has both advantages in terms of production and disadvantages in terms of

cyber-attacks. Some researchers have shown that replacing SDN networks with traditional

networks in OT systems reduces the cyber-attacks based on the features offered by SDN net-

works. The question here is, how reliable are SDN networks when compared with existing

traditional networks, and can we utilize all the features provided by SDN when integrating

with OT systems. This chapter addresses these questions by analyzing the standard security

features incorporated by the SDN and Traditional networks.

4.1 SCADA SYSTEMS

SCADA systems are used to control or monitor critical infrastructure systems, electric power

generation transmission, water management systems, oil and gas systems, and other distributed

processes. Originally SCADA systems were built for standalone systems or isolated networks

without much connectivity to external networks. Things have changed over the years as new

technologies like “Smart Grids” have been active in advanced computing and have made power

grids operate effectively. Consequently, SCADA systems have become a primary target for

cyber attacks for numerous reasons. Still, there are no practical solutions to protect against

these attacks, which is reasonable since SCADA systems with in process networks or corporate

networks are heterogenous and the operating systems used by these systems are old. To protect

33

these systems using anti-virus, one should have the latest updated version of the operating

system. By their nature, SCADA systems are not suitable for up-gradation as, to install

updates, all of the production units that SCADA system manages should be off, which may

lead to loss of service. Even if somehow SCADA systems operate to migrate, there is no

guarantee that the new software supports all the control system features.

SCADA systems collect data from remote facilities and send commands to the physical

process creating a feedback control loop. There are three components in the SCADA System:

� Remote Terminal Units (RTU’s): In RTU, the collection of data is achieved by connecting

to a physical system.

� Human-Machine Interface (HMI): The data collected in the RTU’s are compiled and

formatted in HMI’s; network operators can make supervisory control decisions.

� Communication Infrastructure: This is responsible for connecting the SCADA compo-

nents through the internet.

Commonly used standard communication protocols in SCADA systems are MODBUS,

DNP3, and Profibus. There are several vulnerabilities found in these protocols when com-

bined with TCP/IP [FCMT09], [JNY11b]. The encapsulation of MODBUS over TCP/IP is

known as MODBUS TCP/IP protocol.

TCP/IP application data unit consists of a header and MODBUS Protocol Data Unit. This

migration of TCP/IP network for MODBUS client makes the systems vulnerable to specific

attacks against the operating system, even if they are not against standard MODBUS Protocol

[FCMT09]. DNP3 protocol is considered to be reliable in terms of performance, but it has

many vulnerabilities that can cause the failure of the control system [JNY11b], [MANC+11b].

New DNP3 controlled devices use TCP/IP-based connections, and ensure security mechanisms

by encrypting the DNP3 communications. Enhanced versions like DNP3 secure authentication

or DNPSec are still in the evaluation phase, and the majority of the DNP3 controlled devices

are working with little security.

The communication protocols designed for Industrial Control SCADA systems considered

the nature of the standalone system and isolated networks. Rebuilding the protocols, taking

security into consideration is an infeasible approach as most of the systems are deployed with

MODBUS and DNP3 protocols.

The types of attacks the SCADA system is vulnerable to and the countermeasures for

these attacks have been examined by researchers. For example, the security properties, threat

models, and the design space in SCADA systems is illustrated by Cardenas et al. [CRS09b].

Fovino et al. [FCMT09] investigated malware attacks on SCADA systems. Analysis of cyber

threats on SCADA systems was done by Kang et al. [KLKP09b]. Cheung et al. [CDF+07]

developed model-based intrusion detection systems for SCADA networks. A detailed study

of Vulnerability Assessment of Cybersecurity for SCADA Systems was conducted by Ten et

al. [TLM08b].

34

4.1.1 Vulnerability Assessment of SCADA Systems

Identifying vulnerabilities of any network are essential, and vulnerabilities in SCADA System

are as follows:

� Lack of authentication and authorization mechanisms in protocols (e.g., MODBUS, DNP3,

and Profibus).

� SCADA system protocols are different from IT systems, and they have not been built

considering IT scenarios, which have led to massive cyber-attacks over the years.

� SCADA system protocols use the master and slave concept, but they lack mechanisms to

check the integrity of the packets sent from master to slave and vice-versa.

� An attacker can easily get access to the devices because of the lack of authentication

among sensor networks and SCADA system components like actuators, SCADA servers,

and RTU’s.

� Network segregation between SCADA networks and IT networks are inefficient.

� Lack of physical access security.

� Susceptible to a single point of failure.

For example, when there is no authentication between SCADA components, with minimal

effort, an adversary can quickly get access to the SCADA system and perform a read and

write operation. Exploiting this vulnerability leads to a DNS Forgery attack [ZJS11]. Standard

protocols like MODBUS and DNP3 are integrated with TCP/IP protocol, which enables the

blind port scan feature by default, and this helps the adversary to take advantage and perform

Idle Scan Attack. Once the adversary enters the system, he can start injecting malicious packets

and try to saturate the system resources by sending TCP connection requests faster than the

system can process. This process leads to a TCP SYN attack, and if this is successful, the

adversary may gain control and shut down the system [CDF+07].

In this chapter, we classify the vulnerabilities and attacks of SCADA systems based on the

SCADA hardware, SCADA software, Protocols, and some layers of Open System Interconnec-

tion (OSI) stack. Table 4.1 presents the vulnerabilities based on Network Layer, Transport

Layer, Application Layer, SCADA software, SCADA Hardware, MODBUS TCP/IP protocol,

and DNP3 Protocol. When the adversary exploits the vulnerabilities, it leads to attacks like

Smurf attack, TCP SYN attack, DNS Forgery Attack, Integrity Attack, Buffer Overflow At-

tack, etc. Fig 4.1 presents the list of attacks on SCADA systems that an adversary can perform

by exploiting the vulnerabilities. For example, an adversary can exploit the network layer’s

vulnerability by sending the fake ARP messages. This confuses the switches connected across

the network, leading to Arp Spoofing/Poisoning attack. The vulnerability exists because of the

lack of access-control mechanisms among SCADA components.

35

Figure 4.1: Attacks On SCADA Systems

4.2 Comparison of SDN Networks vs Traditional Networks for

SCADA Systems

This chapter categorizes the security properties of SCADA systems based on the confidentiality,

integrity, availability, authentication, authorization, accountability, scalability, visibility, flex-

ibility, consistency, performance, robustness, and threat management system. These security

criteria are compared with SDN switches and modern industrial control ethernet switches used

in traditional networks as shown in Table 4.2, and from this comparison, one can easily derive

the better technology to use for SCADA Systems.

Confidentiality refers to the prevention of disclosing information to unauthorized entities.

Confidentiality in terms of SCADA systems is maintained by limiting the access to the infor-

mation computed by the SCADA interfaces to the outside world. Only SCADA administrators

are allowed to access the data. When the SCADA networks uses SDN, two standard methods,

encryption and access control ensure confidentiality, [SAB14]. Modern based industrial stan-

dard ethernet switches also provide the features for secure access to networking devices while

communicating with the SCADA components.

In Table 4.1, under the SCADA software section, there is a brief description of Buffer

Overflow and SQL injection attacks on SCADA systems. The impact of confidentiality of

SCADA systems with SDN networks and traditional networks is shown in Table 4.2. There

are several mechanisms for SDN to encrypt network communication channels and to apply

36

Table 4.1: SCADA System Vulnerabilities And Attacks

SCADA
System

Vulnerabilities

Network
Layer

Debugging Tools used in SCADA systems are available online

Debug service which runs on UDP port is enabled by default.
RPC based protocol that uses UDP can be explored on the internet.
Adversary need not have any coding knowledge to exploit the vulnerabilities.
Blind port scan is possible in Modbus and DNP3 when they are encapsulated for
running over TCP/IP.
An adversary can send ICMP Packets to the target machine by spoofing one of the
systems present in the network.
An Adversary can send fake ARP messages by confusing the switches connected to
the network.
An adversary can hide his origin and identity by compromising any one of the
components present in the SCADA system.

Transport
Layer

An adversary can saturate resources by sending TCP connection requests faster than
a system can process and injects malicious packets to gain control of the device.
An adversary can send multiple TCP packets with ACK enableed on it.

Application
Layer

Lack of authentication mechanism allows read and write operations from an outsider
who has access to the SCADA system.

SCADA
Software

The widely used industrial automation software has a heap overflow vulnerability,
which can be exploited by an adversary.
An adversary can manipulate data input into a web application, which fails to
sanitize user-supplied input.
Fixed memory allocation time requirement vulnerability in field devices can be
exploited.

SCADA
Hardware

In RTU firmware, corrupted data cannot be detected.

An adversary may gain unauthorized remote access to devices and change their data
set points.
Another vulnerability is that attacker may change the operator display values to
turn off the alarm after gaining unauthorized access.
Attacks targeting at MAC level cause flooding attacks.

Modbus
TCP/IP
protocol

An adversary using Modbus TCP/IP protocol can reboot Modbus servers, config-
uring them to provide no service (Listen only mode).

An adversary can send large-sized requests resulting in the crashing of servers.
Modbus does not have any encryption or security measures, and an adversary can
exploit weakness on the function code level.
Unauthorized writes can be accomplished using 0x06 and 0x06.
An adversary can gather information about remote devices like controller descrip-
tions using the 0x11 function code.
Using function code0x05 and 0x0F, an attacker can turn on and off the remote
device, which results in sending the false results to SCADA HMI.
Slave port can be restarted using the function code 0x08 with 0x01 and clear out
the communication.

SCADA
using
DNP3
protocol

During reinitialization to default values, many devices will clear all queues, and
this can be exploited by an attacker to cause a delay before they start accepting
the requests again.

Using function code 0x13, an attacker can manipulate the remote devices and sup-
press outputs or create false alarms.
Function code 0x0D forces to reset and reconfigure DNP3 outstations.

37

Table 4.2: Security Properties Of SCADA Network Using SDN And Traditional Networks.
3Indicates the feature is enabled or Available

—Indicates Not Applicable

Security Properties Features SDN Traditional

Confidentiality Data Encryption 3 3
Access Control for SCADA Interfaces 3

Integrity WRT Field Devices, RTU, and HMI
Availability SCADA Devices 3

Network Devices 3 3
Authentication SCADA Network Devices 3

SDN Controllers —
Application —

Authorization Unauthorized Remote Access 3
Accountability SCADA system Software users 3
Scalability Adding new devices 3
Visibility Centralized view 3
Flexibility Maintenance and Reconfiguration 3
Consistency Change in Configuration 7
Performance Processing information and communica-

tion in SCADA Systems
3

Robustness Single point of Failure 3 3
Threat Management
System

Detection/Mitigation 3

access control mechanisms. In contrast, SCADA systems using traditional networks are limited,

because the protocols designed on the traditional networks were not considered to be built

with security mechanisms. Even if we upgrade the traditional networking protocols with a

security feature, there is no guarantee that the SCADA system will support due to the internal

dependency of SCADA components. Modern based industrial standard ethernet switches also

provide the features for secure access to networking devices while communicating with the

SCADA components.

Integrity refers to the correctness and trustworthiness of data. In SCADA systems, modi-

fying the information while computing has to be restricted. Both SDN and traditional networks

do not provide any countermeasures for this feature. In Table 4.1, there is a brief description of

integrity attacks on SCADA systems. The attacks in SCADA systems show that the attackers

first tries to modify the input or data that has been computed between the devices and sent

across SCADA components to exploit the vulnerability present in them. If using SDN, integrity

of flow rules and messages transferred between the layers has to be ensured [SAB14].

Availability is the property to access data, devices, and services whenever they are needed

[SAB14]. In SCADA systems, access to SCADA and networking devices is critical because of the

tightly coupled nature of the systems. The warm restart attack in Table 4.1, occurs when the

adversary sends large size requests to crash the servers. SCADA systems using SDN provide

38

several solutions to mitigate the DoS attacks outlined by [KKS13]. In traditional networks,

the availability is limited to networking devices, and to achieve this, network flows must be

predefined and unchanged.

Authentication describes the property that entities are who claim to be [SAB14]. The

authentication mechanism for SCADA networking devices is not provided; hence attacks like

DNS forgery mentioned in Table 4.1 are possible. In SCADA systems, using a traditional

network gives access to everyone, whereas in SDN, we can restrict it to the SCADA networking

devices.

Authorization property describes the users or admins having authorized access to perform

specific operations in SCADA systems. SDN networks providing authentication services, by

default, ensures the authorization service to overcome the outsider attacks.

Accountability describes the actions performed by the authorized users. If there is any

change in the expected behavior of the network, it lead to detect the possible attacks by

constantly monitoring the log files. SCADA systems using SDN networks can keep track of every

device present in the network by continuously analyzing the log files. In traditional networks,

because of no proper authentication mechanisms, accountability property is not affected since

the adversary modifies the Log files to hide there identity.

Scalability is a property where the networks or systems should be adaptable for changing

needs. This property applies to the entire system, which consists of different components

like SCADA software, SCADA hardware, networking devices, field devices, HMI, etc. Even

though there are several publications concerning scalable SCADA systems, in this dissertation,

we measure this property in terms of ease. Because of the programmability nature in SDN

networks, restricting to flows, SDN networks are straightforward to configure and are more

adaptable to meet the traffic demands. In traditional networks, this option is limited.

Visibility ensures the process of data collection, aggregation, and distribution across the

SCADA system to monitor and interpret everything happening on a network. Visibility en-

compasses device discovery, network performance, security issues, and topology mapping. No

matter how large and complicated the SCADA system gets, full visibility is provided by the

SDN networks because of the centralized view approach described in Chapter 3. Flooding

Attacks mentioned in Table 4.1 can be overcome if we use SDN networks for SCADA systems.

Consistency in SDN can be defined in three aspects:

� a consistent network view and control decisions made by the control plane.

� consistency and efficiency during data plane update.

� maintaining constant flow tables in the data plane. The fundamental causes of consistency

issues, the potential inconsistency problems, and the state-of-art solutions are discussed

in detail by [SWL19].

The SCADA system using traditional network has a considerable disadvantage concerning

consistency since it lacks features like traffic programmability, network automation, and so on.

39

Performance can be measured in different aspects, and in this scenario, we consider in-

formation processing between SCADA devices and networking devices. In SDN, because of its

design, i.e., the separation between the control plane and data plane, the SDN switch has to

communicate with the controller whenever it receives the packet from an unknown source. This

requires additional time to process incoming packets. This does not impact SCADA systems’

performance because of their static configuration and pre-defined flow rules across the network.

Robustness of SCADA systems refers to the ability to withstand failures. In general,

Information Technology (IT) systems using SDN networks are prone to a single point of failure

attack because they rely on a centralized view with full network visibility. The controller

maintains all the information about the entire network, which allows the adversary to influence

any part of the system [CRS09b]. In traditional networks, adversaries can only tamper with

the topology by convincing a set of switches or routers of a specific topology. Integrating SDN

with SCADA systems, the controller plays a little or no part across the network. This gains

the ability to withstand the single point of failure attack.

Threat Management System, SCADA system with SDN networks are supported by

various attack detection and mitigation technologies, and some of the network threat defense

mechanisms are mentioned in [SAB14]. Since this dissertation is concerned in presenting the

security features, we are not describing the different attack detection and mitigation systems

that are available both in SDN and Traditional networks.

4.3 Summary

This chapter presents a detail review of vulnerabilities present in SCADA system. Also, the

comparison of SDN Networks vs Traditional Networks for SCADA Systems is analyzed. This

analysis helps in two ways. First, it theoretically justifies that SDN network vulnerabilities

do not significantly impact SCADA systems compared with traditional networks. Second,

configuring the SDN networks by integrating the security property features improves the overall

SCADA system security and performance.

40

Chapter 5

High-Level Policies

5.1 Policy-Based Network Management

In order to mitigate cyber attacks in Operational Technology Systems, we choose a policy-driven

approach or Policy-Based Network Management (PBNM). Policy-based network management

simplifies the administration of a large scale system. Traditional network management requires

configuring many networking elements, and any problems present in the network should be

solved manually, and policies are hardcoded. PBNM has been able to change the contents of the

manual system dynamically without modifying the implementation of the managed system. The

general PBNM is derived from the IETF policy framework and consists of four elements [BF14b],

� Policy Management Tool (PMT): This is a graphical tool to define which policies on the

network are applied.

� Policy Repository (PR): Policies are stored in the form of a relational database or directory

using Policy Repositories.

� Policy Decision Point (PDP): It parses the policy, checks the authorization and validity

before communicating them to PEP.

� Policy Enforcement Point (PEP): Applies and executes different policies into the net-

working devices.

Advantages of a policy-driven approach over traditional management are,

� Policies are predefined and stored in the Policy Repository.

� PBNM approach implements automated analysis and verification of policies ensuring con-

sistency in the majority of the policy languages.

� Policies can be changed dynamically at run time without changing the underlying imple-

mentation due to its abstract nature.

41

There are several policy languages like PDL, Ponder, Rei, XACML, EPAL, P3P/APPEL, ASL,

and HERMES for specifying policies. This chapter describes and compares three policy lan-

guages Ponder, XACML, and HERMES by presenting a comparison table. The reason we

choose these three languages out of others is because of their different natures. Ponder is based

on object-oriented language; XACML, which stands for Extensible Access Control Markup

Language, derived from XML; and HERMES is based on YAML.

Some of the terms used in when discussing policies are:

Policies A Policy is a rule that defines the choice in the behavior of the system [DDLS01a].

Policy Conflicts Conflicts may arise when the system administrator specifies the policies with

errors and conflicting requirements [BF14b].

Subject A subject refers to users, principals, or automated manager components with man-

agement responsibility.

Target A subject accesses target objects (resources or service providers) by invoking methods

visible on the target’s interface.

Domain The Domain provides a means of grouping objects to which policies apply and can be

used to partition the objects in an extensive system according to geographical boundaries,

object type, responsibility, and authority or for convenience of managers.

Action Actions are activities which a subject can carry out [YLL02].

5.2 Ponder

Ponder is declarative, strongly-typed, and object-oriented, which makes the language flexible,

extensible, and adaptable to a wide range of management requirements [DDLS01b].

Ponder is suitable for specifying many different types of policies [DDLS01a,BF14b,YLL02]

including the following. Our ultimate project goal is to classify which of these are appropriate

for ICS system, and to utilize them in our analysis. For now, we primarily focus on authorization

poliices.

Authorization policies define the activities that a member of the subject domain can per-

form on the set of objects in the target domain are known as authorization policies.

Information Filtering Policies are used to transform the input or output information pa-

rameters.

Delegation Policies transfer the temporary access rights of a control system.

Refrain Policies define the actions that subjects must refrain from performing on target

subjects even though they may be permitted to act.

42

Obligation Policies define what a manager must or must not do and hence guide the decision-

making process under changing circumstances.

Privacy Policies define the privacy of an operation that subjects perform and confidentiality

of information that subjects share. They can specify the privacy for the subject to create

a new policy and decide the privacy of the information delivered on the internet.

Collaborative Policies are written using composite policy type and are used to group and

inter-relate policies together to model the management structure within collaborative

systems. There are four types of composite or collaborative policies.

Role provides a semantic grouping of policies, and can also specify the policies that apply

to a mechanical component acting as a subject in the system.

Relationships are a group of policies that define the right and duties of roles towards

each other.

Management Structure is a group of roles and relationship policies, which define the

policy hierarchy of organization structure.

Group Policies are constructs that permit policymakers to group related policies to-

gether to instantiate all the policies at the same time, to share standard definitions

between the policies, or to apply constraints in the set of policies.

There are few limitations of Ponder mentioned in the literature [HL12,CO08,PHS+08], some

of them are:

� Lack of generality.

� Ponder only partially supports business-oriented specifications (Business process logic).

Business-oriented specification come under Service Oriented Architecture (SOA)-specific

requirements, in which the services are identified and implemented as primary business

activities, and applications are formed based on the organization’s core business processes.

� Ponder uses a low-level approach.

� There are no well-defined semantics for Ponder. A policy language is said to well-defined if

that policy language written is independent of the particular information of that language.

5.3 Extensible Access Control Markup Language (XACML)

XACML [Oo19] is an OASIS standard that describes both a policy language and an access

control decision request or response language. The Policy language is used to describe general

access control requirements and has standard extension points for defining new functions, data

types, combining logic, etc. The request-response language leads to farm a query to ask whether

or not given action should be allowed and interpret the result. The response always includes

43

the answer about whether the request should be enabled using one of the four values: permit,

deny, indeterminate, or not applicable.

In addition to providing request-response and policy languages, XACML also provides other

pieces of information like a relationship, namely finding a policy that applies to a given request

and evaluating the request against the policy to come up with yes or no answer. In an application

deployed with XACML based access control, before a principal can perform an action on a

particular resource, a Policy Enforcement Point (PEP) sends a request formulated in XACML

to the Policy Decision Point (PDP) that stores principal specific XACML ACP rules. The

PDP determines whether the request should be permitted or denied by evaluating the policies

whose subject, action, and resource elements match the request. Finally, the PDP formulates its

decision in the XACML response language and sends it to the PEP, which enforces the decision.

[KEV05] Some of the terms to define with respect to XACML are [MBCS06], [MXT06], [Oo19],

� Policy set: Policy set is a container that can hold other policies or policy sets as well as

references to policies found in remote locations.

� Rule: This is the fundamental element of the policy and identifies a complete and creates

atomic authorization constraint that exists wrt policy.

� Target: A target element contains a set of constraints on the resources and actions of

the subject. A target specifies what kind of requests a policy can be applied, and if the

request does not satisfy the constraints in the target, then the whole policy element can

be skipped without further examining its risks.

� Condition: A condition is associated with the rule which evaluates, and if evaluation

returns true, then the rule can be permitted or denied, or else returns Not Applicable.

� Attributes: are the characteristics of the subject, resources, action, or environment.

� Attribute Values: Values associated with the attributes.

� Policy-Combining algorithm: The policy combining algorithm specifies the procedure by

which the results of evaluating the component policies combine when evaluating the policy

set, i.e., the Decision value placed in the response context by the PDP is the result of the

evaluating the policy set, as defined by the policy-combining algorithm. A policy set may

have combining parameters that affect the operation of the policy-combining algorithm.

� Obligations: There can be obligations in the policy set, and when PDP evaluates a

policy set containing obligations, it returns certain of those obligations to the PEP in its

response context.

XACML language is used in any environment without trying to provide access control

for a particular environment or a specific kind of resource. In other terms, one policy can

be written and used in different applications where policy management becomes much more

44

accessible. This language has been reviewed by a large community of users, and it will be

easier to interoperate with other applications using the same standard language. In XACML,

a policy can be written, which in turn refers to other policies kept in arbitrary locations known

as a distributed policy. XACML can correctly combine the results from the different policies

generated by different groups into one decision.

Limitations of XACML are [DKW07], [KEV05], [CO08], [SS10],

� XACML does not have the control to manage security in large distributed systems: Con-

sidering if a two policies can integrate, because the combination policies specified by

XACML are not enough to integrate the policies specified by two parties. This is because

XACML assumes all Points of Enforcement (POE’s) are available to enforce any policy

set by any party in the enterprise, and there are always enterprise administrators who

can solve conflicts.

� XACML fails to incorporate built-in-trust and privacy-enhancing mechanisms: The possi-

ble attacks identified that could potentially breach the security of a system using XACML

are:

– Unauthorized Disclosure

– Message replay

– Message insertion

– Message Deletion and Message Modification.

� XACML specifications lack the necessary syntax to specify exclusive access to resources,

and the XACML policy framework does not enforce them. For example, services are built

based on the content distribution network on a P2P- network in which Data Owner (DO)

can store the data and Resource Owner(RO) can host the data. Therefore both DO and

RO can specify there own XACML Policies.

� The problem of Conflicting polices faced by the administrator when XACML policies are

specified manually or automatically using tools. XACML does not have a well-defined

semantics to resolve these.

5.4 High Fidelity Policy: High-level, Easily Reconfigurable Ma-

chine Environment Specification (HERMES)

HERMES was developed by Jillepalli et al. [JCdL16] for implementing high-level browser

security policy specifications, and it requires a language parser. HERMES is a High-level

(Human-friendly) application policy specification language and supports, domain information

like groups, sub-groups, users, roles, and devices specifying policy information as a parent,

target, status, field, and rationale.

45

Table 5.1 provides a comparison between Ponder, XACML, and HERMES with there fea-

tures and descriptions [And19], [HL12], [CO08], [PHS+08].

Table 5.1: Comparison Of Ponder, XACML, And HERMES

Features Description Ponder XACML HERMES

Language Specification

XML XML refers to whether the representation of
the language is encoded in the XML format.

7 3 7

Formalization Formalization refers to whether a policy lan-
guage can directly express in terms of pol-
icy rules in formulas of some logic (first-order
logic) or translations to formal language

3 3 N/A

Policy Specifi-
cation

Policy language is said to be complete if it
has policy specification language, policy de-
ployment model, policy analysis mechanisms,
policy verification, and monitoring, conflict
detection and a resolution mechanism to en-
sure the correctness and quality of the poli-
cies specified.

3 3 3

Extensibility A policy language should be easily extensible
to support new types of policy expressions.

Partial 3 3

High-Level
Specification

The high-level specification refers to the pol-
icy system which needs to stay at a reason-
able level of abstraction so that precise policy
requirements can be specified independently
of the implementation details.

3 3 3

Well-Defined
Semantics

Well-Defined Semantics is based on rich for-
malisms such as description logic, or event
calculus, which make it easier to perform au-
tomatic policy analysis than those that are
not.

3

Mutual Exclu-
siveness

Prohibiting to disclose valuable information
to the same party is referred to as mutual
exclusiveness.

3 N/A

Supporting Types

46

Obligation Obligation refers to whether the policy lan-
guage can trigger tasks that must perform
when some Event occurs, and meets the re-
lated Condition.

3 3 3

Domains Domain refers to the support of the group-
ing of elements in a managed system so that
policy can be systematically applied to them.
The support for domain allows for the hier-
archical grouping of objects.

3 3 3

Meta-Policies Meta policy allows rules and constraints to be
placed on policies themselves thereby facili-
tating policy analysis and conflict resolution.

3 3

Methods of Operation

ECA Event-Condition-Action paradigm refers to
whether a language follows the ON (Event)
IF (Condition) THEN (Action) to express its
policies. If the language is not ECA, then it
is based on the Condition–Action paradigm.

3 3

Index Index refers to whether there exists a partic-
ular item for a policy engine to retrieve the
required policies more efficiently.

3 3

RBAC Role-Based Access Control used in policy-
based access control management uses roles
to bridge subjects and permissions. A sub-
ject can be assigned roles, and roles can be
assigned permissions.

3 3

47

Dependability

Minimal infor-
mation disclo-
sure

Minimal information disclosure in the con-
text of policies refers to choosing privacy
while disclosing the information.

3 3

Protect sensi-
tive policies

These allow policies to be accessed by only
network administrators.

3 3 3

Possible At-
tacks found

XACML is prone to following attacks: Unau-
thorized Disclosure, Message replay, Mes-
sage insertion, Message Deletion and Mes-
sage Modification

N/A 3 N/A

Structure

Distributed
Policy En-
forcement

Distributed policy enforcement increases the
flexibility and scalability of the framework

3 3

Change sup-
port

It refers to changes in the policies themselves
based on updates in rules and regulations and
also supports the change in business logic.

3

Push Control Push control anticipates possible deadlocks
due to sensitive policies.

3 N/A

Usage Control Usage control refers to limiting the opera-
tions like specifying restrictions on the infor-
mation provided to the target system.

3 N/A

Hierarchy Hierarchy refers to where parents consist of
the collection of their children, and where
prohibitions are inherited upward and down-
ward, but permissions are inherited only
downward.

3 3

Others

Platform inde-
pendent

Platform independent refers to support for
executing policies in multiple systems.

3 3 3

48

Policy Deriva-
tion

Policy Derivation is the ability to automati-
cally derive individual policies from the pol-
icy of service orchestration and vice versa by
saving the policy editors from codifying poli-
cies, which is time-consuming and manually
error-prone.

Negotiation Negotiation is considered to happen when,
1. Both peers are allowed to define a pol-

icy.

2. Both policies are taken into account
when processing a request.

3. The evaluation of the request must be
distributed.

5.5 Summary

This chapter presents a review of three different policy languages. First, it outlines the pro’s and

con’s of ponder, XACML, and HERMES. Next, comparison is made between three to describe

the differences between them and based on this comparison, i choose ponder policy language

as a primary source to specify security policies.

49

Chapter 6

Automated Detection of Configured

SDN Security Policies for ICS

Networks

The material in this chapter was originally published as ”Automated Detection of Configured

SDN Security Policies for ICS Networks.” [GRAF20], and has been slightly edited for content

and presentation.

The best thing in SDN is the flexibility of managing High-level policies with ease and

implementing the policies as logical flows. The policy-based network management approach

simplifies the task of the network administrator. In SDN, it is further simplified in a way

that the network operator can control and monitor network traffic through controller software.

Because of this, the flow of traffic can be controlled and changed based on traffic demands.

Even though the primary objective of this research is to retrieve the implemented logical flows

from the SDN configuration files, the next aim is to convert the logical flows into policies

using a policy specification language. This can help the network administrator to analyze

the traffic flow of a network using the logic of the specification language. There are several

policy languages like PDL, Ponder, Rei, XACML, EPAL, P3P/APPEL, ASL, and HERMES

for specifying policies. For this research, we chose the Ponder policy language for two reasons.

First, Ponder is declarative, strongly-typed, and object-oriented policy language. Since SDN

switches are programmable, we can express the polices retrieved from the SDN switch using

Ponder in an abstract and hierarchical model. Second, there is already an existing tool called

PonderFlow [BF14a], which is derived from the Ponder policy language and is used to specify

the policies for OpenFlow networks.

50

6.1 Analysis of Configuration Data File Generated By Flow

Controller

As mentioned in Section 3.1.2 configuration data can be stored in a backup file. This file is

essential because it saves all of the details of the current running configuration (Policies) of

the existing network. This research focuses on analyzing this configuration backup file and

retrieving the low-level information stored and mapping it to the network as configured in an

ICS system. The goal is to eventually create a tool that can compare the system security policy

to the system, as configured. The tool could be a formal analysis of the correspondence or used

to query and test the configuration.

To generate a backup file, we established communication between client and server using the

SEL-5056 Flow Controller and SEL SDN switch. We also defined the flow of communication

between client and server using different routes or paths. Most OpenFlow switches allow this

type of communication, and the configuration backup file generated is vendor-specific. The

simple ICS server application we deployed is shown in Fig 6.1. We have two applications, App1

that receives and responds to request from a client application App2, running on separate ma-

chines. This high-level representation of autohorized communication can be refined by mapping

the abstract machine name to the network address of the device hosting the application and

the transport of the communication [VAFR19b]. For this example, we used TCP/IP commu-

nication; however, MODBUS, DNP3, NTP, GOOSE, etc. can be used. The communication

between App1 and App2 can be defined as a Flow across the ICS network shown in Fig 3. This

is one of the several flow rules we defined for the communication between App1 and App2. To

further understand this analysis, it is essential to define the following terms:

Node A Node in the backup file is defined as hosts or end devices or SDN switches where the

communication happens from one end to another.

Source Node This is defined as the node that initiates the communication and sends it to the

other nodes.

Destination Node This is defined as the node that receives the information and does not

transmit it further.

Ports In general, SDN switches contain physical network ports through which the flow of data

is carried from the source node to the destination node.

Flow Rules or Paths These specify the authorized flow or path from source to the destina-

tion using ports.

The overall process for retrieving low-level information from the backup file is depicted in

Fig 6.3. The process starts by taking the backup file as input and retrieves the total number

of active flow rules. The active flow rules refer to the paths established for the communication

51

Figure 6.1: Application-level View Of Communication

Figure 6.2: ICS Network-Level View Of Communication

52

Figure 6.3: Process To Retrieve Low-Level Information From Backup File.

between App1 and App2. Next, for each flow rule, we retrieve the information about the

source node, destination node, and the port information like through which port number the

communication should occur. The next steps retrieve the high-level details like display name, IP

address, MAC address, and communication protocol used for the source node and destination

node. This information helps us analyze the low-level flow rules at a higher level with precise

configuration details. The results are stored in an SQLite database and displayed in a tabular

format.

The process described here was implemented in a prototype Java program, integrating with

an SQLite Database. Firstly, we retrieved the information from the backup file by querying.

The backup file, backup.db (and SQL Database), consists of 107 rows, where each row consists

of precise details about the network. Then, results from this query are stored in JSON format.

These are then deserialized into plain old java object (POJO) classes. From these POJO class

objects, we retrieve the Source Port, Destination Port, Ingress Port, Egress Port for each flow.

Using the Port values, we extract the nodes corresponding to the ports and additional node

information, such as the display name of each node. With this information, we retrieved the IP

address and MAC address by mapping the confignode configtree element and operationalnet-

worknode operationaltree element. The communication protocol used between the source and

destination node is retrieved by mapping the flow configtree element and Logical connection id

from the plannedpathsets configtree element. In short, the tool takes the backup file as input

and dynamically generates the retrieved flow details in a tabular form, stores the information

in SQLite DB for further analysis, and generates Ponder p2 policy files by converting flows into

Ponder policies. The goal is to help the network/security administrator to monitor the policies

and check if they are implemented as defined.

53

T
ab

le
6.

1:
F

lo
w

T
ab

le
G

en
er

at
ed

F
ro

m
T

h
e

B
ac

k
u

p
F

il
e.

F
lo

w
S

ou
rc

e
D

es
t.

P
ro

to
co

l
S

o
u

rc
e

D
es

ti
n

a
ti

o
n

S
o
u

rc
e

D
es

ti
n

a
ti

o
n

F
lo

w
P

o
li

cy
N

u
m

.
U

se
d

M
A

C
M

A
C

IP
IP

T
y
p

e
T

y
p

e
1

A
li

ce
2

B
ob

IP
v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
2

A
li

ce
2

B
ob

A
R

P
0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
3

A
li

ce
B

ob
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
4

A
li

ce
B

ob
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
5

A
li

ce
B

ob
IP

v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
6

A
li

ce
30

B
ob

50
0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
7

B
ob

50
A

li
ce

30
0
8
0
0
2
7
E
4
6
0
D
6

0
8
0
0
2
7
8
8
7
1
0
6

1
9
2
.1

6
8
.1

.4
0

1
9
2
.1

6
8
.1

.2
0

U
n

iD
ir

ec
ti

o
n

a
l

A
u

th
8

A
li

ce
2

B
ob

IP
v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

U
n

iD
ir

ec
ti

o
n

a
l

A
u

th
9

B
ob

A
li

ce
2

IP
v
4

0
8
0
0
2
7
E
4
6
0
D
6

0
8
0
0
2
7
8
8
7
1
0
6

1
9
2
.1

6
8
.1

.4
0

1
9
2
.1

6
8
.1

.2
0

U
n

iD
ir

ec
ti

o
n

a
l

A
u

th
10

A
li

ce
2

B
ob

A
R

P
0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
11

A
li

ce
30

B
ob

50
0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

U
n

iD
ir

ec
ti

o
n

a
l

A
u

th
12

A
li

ce
30

B
ob

50
IP

v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

U
n

iD
ir

ec
ti

o
n

a
l

A
u

th
13

A
li

ce
30

B
ob

50
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
14

B
ob

50
A

li
ce

30
IP

v
4

0
8
0
0
2
7
E
4
6
0
D
6

0
8
0
0
2
7
8
8
7
1
0
6

1
9
2
.1

6
8
.1

.4
0

1
9
2
.1

6
8
.1

.2
0

U
n

iD
ir

ec
ti

o
n

a
l

A
u

th

54

Table 6.2: Additional Information For Active Polices Of Flow 4.
Policy / Ingress Egress Policy
Flow No. Port Port Type

4 Bob OscarB1 Auth
4 OscarE1 NormaE1 Auth
4 NormalB1 Alice Auth
4 Alice NormaB1 Auth
4 NormalE1 OscarE1 Auth
4 OscarE1 Bob Auth

6.1.1 Analysis of Flow Rules Retrieved From Configuration Backup File

using tabular format

Table 6.1 depicts the output of the configuration backup file, which contains information about

flow rules generated by the SDN controller for our example ICS network. This summarizes the

overall configuration of the network at a high level by displaying information like Source Name,

Destination Name, Source MAC, Destination MAC, Source IP, and Destination IP, Flow type,

and Policy Type. For each flow rule, additional details like information about the ports and

direction of travel are shown in Table 6.2.

The flow rule defined in Fig 6.2 can be mapped to flow 4 in Tables 6.1. The detailed

information with respect to this flow rule is generated in Table 6.2. Communication between

client and server occurs through the SDN switch named Norma and Oscar using ports B1 and

E1 (from Table I). This flow rule is considered to be bidirectional since the communication

can happen from both sides. The communication protocol used for this flow rule is Address

Resolution Protocol (ARP). The next section describes the process for converting the flow rules

retrieved from the backup file to Ponder authorization policies.

6.2 Converting Flows into Ponder policies

For this chapter, we use the Ponder Policy language, a declarative, strongly-typed, and object-

oriented language, which makes it flexible, extensible, and adaptable to a wide range of man-

agement requirements [DDLS01a]. Ponder is the most expressive language for addressing user

privacy requirements. It can implement all scenarios. However, Ponder does not support a full-

fledged ontology for specifying resources. Conditions and actions used by Ponder are applied in

an imperative language (e.g., C or Java). The policy is thus closely interwoven with the code

controlling the resource [DHS07].

6.2.1 Generating Ponder Policies

For our purposes, flow rules retrieved from the configuration backup file are converted into

Ponder authorization policies. This helps the network/security administrator foresee issues

55

Figure 6.4: Syntax Of Ponder Authorization Policies.

Figure 6.5: Creating An SDN Domain To Store Authorization Policies.

56

Figure 6.6: Authorization Policy generated for a single flow from the flow table.

Figure 6.7: Dynamic Addition Of Nodes For Generating Authorization Policy.

57

by examining the traffic flows across the network. There are some simple tools that allow

visualization of all authorized actions using Ponder and will be beenfiical in integrating into a

complete system. The general syntax of a Ponder authorization policy is given in Figure 6.4.

We have mapped SDN hosts to entities and SDN flows to actions. Any flow rule that is not

specified as an action is assumed to be disallowed.

To generate any Ponder policy file, we first set up a domain using domain generation code

(Figure 6.5). The domain element defines the path or the environment where the policies are

stored. Here the node is considered the root element, and flows are established for each node

through switches and ports. The SDN switches and end-devices, which act as nodes, are in a

separate file (Figure 6.7). The number of nodes we retrieved from the file has been generated

automatically by the tool to define the authorization policies. The policy generation code

generated is stored in Nodeauth.p2 (Fig 6.6). The p2 files are executed using an ant build file.

Finally, we create an authorization policy for each flow, and the goal here is to define actions

as flow rules for the current network. The authorization policies are set to active by default. We

can make them inactive while the Ponder files are in process. The Sample authorization policy

generated by the tool is depicted in Figures 6.5-6.6 for the ICS system show in Fig 6.2. The

authorization policy in Fig 6.6 is generated by specifying the actions for the subject and target.

The focus keyword specifies if the policy should be applicable for the subject (s) or target (t).

In this case, we have enabled for both subject and target. This authorization policy allows the

packets to flow between end devices using the SDN switch, as mentioned in Section 6.1.1. The

authorization policy status can be set to true or false at run time. This serves the purpose of

controlling the traffic flow based on the demand by the network administrator.

6.2.2 Using Ponder Policies

We can now query the Ponder authorization policies and graphically display what is allowed

and not allowed. The next step of this work is to set up queries of the Ponder system based on

a high-level security policy. The goal to find out how under what circumstances different nodes

can communicate with each other, which protocols are allowed and how those maps to ports.

6.3 Summary

This chapter describes a process to retrieve the flow rules from the configuration backup file

generated by an SDN flow controller. The overall process involves retrieving the policies which

are stored as logical flows in the database, adding them to an SQliteDB for further analysis, and

converting them to the Ponder policies for verification. The process is implemented as a tool

and results are presented. In the next chapter, we present a process to compare the retrieved

flow rules from the backup file with the policies defined by the organization to determine the

consistency. This will help the network administrators to check for security misconfigurations

across the network.

58

Chapter 7

Validating Security Policies in an

SDN Switch Across ICS Networks

The material in this chapter was originally published as ”Validating the Security Policies in

SDN Switch Across ICS Networks.” [GRAF21], and has been slightly edited for content and

presentation.

Industrial Control Systems (ICS) are recommended to follow standard procedures, protocols,

or guidelines developed by the government or organizations to protect against cyber-attacks.

The National Institute of Standards and Technology (NIST) has provided guidance for secur-

ing ICS networks consisting of supervisory control and data acquisition (SCADA) systems,

distributed control systems (DCS), and programmable logic controllers (PLC) [SFS11]. This

guide has clearly stated that system vulnerabilities in ICS can occur in hardware or software

due to the misconfiguration and poor maintenance of devices deployed across the complex ICS

networks.

In ICS networks, security misconfigurations are security policies that are incorrectly config-

ured across networking devices. A security policy is a collection of rules that are permitted or

prohibited in the system. In general, organizations develop policies to achieve their objectives

and defend themselves from cyber threats. The network administrator enforces these policies

through the organization’s networking equipment, such as switches and routers. As a result,

how well these policies are enforced within the networking devices determines the security of

an ICS network.

Misconfigurations often contribute to the disclosure of confidential data, which aids adver-

saries in compromising the network. Misconfiguration problems can be mitigated in several

ways, one of which is to adopt software-defined networking (SDN) technology.

The main aim of this work is to develop a tool that can take configuration files and high-level

policy documents as input and perform a systematic review that tests the implemented security

policy (ISP) for compliance with the defined security policy (CSP) as well as contradictions

59

Figure 7.1: Conversion Of CSP to Low-Level Flow Rules

and inconsistencies. To achieve this, we must first extract the policies that have been enforced

from the software-defined networking switch, as described in Chapter 6. In this chapter, our

focus is to:

� Design a tool to convert the high-level policies defined at the organization level to the

low-level flow rules using a scenario-based approach.

� Develop a formal model to map the ISP with the policies specified by the organization

using mathematical and relational operations.

� And to analyze if ISP in an SDN switch is consistent with respect to CSP.

7.1 Conversion of CSP to Low-level FLow Rules

In Chapter 6, we developed a tool to automatically detect the security policy as implemented

in the control rules of an SDN switch deployed in an industrial control system network. Using a

scenario-based approach, this chapter expands the tool’s capabilities to automatically convert

the CSP to low-level flow rules. The scenario-based programming approach allows network

operators to specify security policies using example behaviors [YLAL15]. The network operator

sets the required security policy using scenarios consisting of packet traces and the actions

taken for each packet. The tool takes these scenarios as input and generates the flow table.

The process used for converting the CSP to low-level flow rules is shown in Fig 7.1.

60

Figure 7.2: Configuring Devices And Ports For Domains App1, App2

First and foremost, the network administrator must describe the security policy’s behavior

in the document. Following that, the tool takes this document as input and translates the

scenarios into flow rules. Finally, these flow rules are stored in a database and translated

into authorization policies for further investigation. To illustrate the process, we consider the

example of a sample CSP defined for a simple ICS server application. App1 receives and

responds to request from a client application App2 (Fig 6.2) defines the rules at high-level as,

� Communication between App1 and App2 should consist only of the set of authorized

messages between the applications.

� App1 is identified by a specific transport layer port (in this case, TCP port 1062).

� App1 and App2 run on authorized machines (as defined by their IP addresses and poten-

tially MAC addresses).

� No other device on the network is authorized to participate in the Flow (no reading or

writing of messages along with the flow).

Converting CSP into scenarios is done in three steps,

� Establishing the domain: We consider App1 and App2 as a set of domains, where each

consists of multiple devices associated with unique IP and MAC addresses. This implies

that no other device apart from App1 and App2 should communicate across the network,

as shown in Fig 7.2(a).

61

Figure 7.3: Step By Step Process For Coverting CSP To Scenarios

The scenario diagram for this is shown in Fig 7.3 (Scenario 1). We are defining a single

tuple to denote the packet, with fields defining the domain. M1 and M2 specify the

messages concerning the specified domains.

� Defining Ports: In this step, we define the ports for each device as shown in Fig 7.2(b).

This implies that the communication between any device in with the domain must happen

through the defined ports. The scenario diagram for this is shown in Fig 7.3 (Scenario2).

We use two tuples to denote the packet for this step, with the fields defining the domain

and a set of ports.This scenario ensures that both domains App1 and App2 have a set

of ports devoted to them, with each port designated for a specific device. This prevents

Table 7.1: Flow Table Generated Based On The Scenarios File.

Flow Source Destination Protocol Source Destination Source Policy
Num Used MAC MAC IP Type

1 Alice Bob Web-based MAC1 MAC5 IP1 Auth
2 Bob Alice Web-based MAC5 MAC1 IP4 Auth
3 Bob50 Alice30 Web-based MAC6 MAC2 IP5 Auth
4 Alice30 Bob50 Web-based MAC2 MAC6 IP2 Auth
5 Alice2 Bob Web-based MAC3 MAC5 IP3 Auth
6 Bob Alice2 Web-based MAC5 MAC3 IP4 Auth
7 Alice20 Bob40 Web-based MAC7 MAC8 IP7 Auth
8 Bob40 Alice20 Web-based MAC8 MAC7 IP8 Auth

62

Figure 7.4: Sample Scenario Document

overlapping and establishes a secure channel.

� Defining Scenarios : Based on the CSP provided, the network administrator can define

a multiple scenarios for the devices associated within the domain. For example, con-

sider that communication is allowed between the end-devices Alice and Bob. Alice is

in the App1 domain, associated with IP address IP1 and Port P1. Bob is in the App2

domain associated with IP address IP5 and Port P2. The scenario for this is shown in

Fig 7.3(Scenario3). We use 4 tuples to denote a packet for this step, with the fields be-

coming device name, MAC address, IP address, and port used for sending and receiving

packets.

For this research, we have defined several scenarios as outlined in Fig 7.4. This scenario

document is given as input to the tool which automatically converts the scenarios into low-level

flow rules as show in Table 7.1. These flow rules are documented and stored in a database.

The flow rules are then converted to ponder policies for further investigation. Our prior paper

[RAF20] discusses the importance of expressing flow rules as ponder policies in detail. The

conversion of CSP to low-level flow rules is necessary because it allows network administrators

to map flow rules without having to implement them in SDN switches, allowing for a comparison

with existing configuration and quick analysis.

63

Figure 7.5: Low-Level Network Configuration Before Policy Implementation

7.2 Formal Approach for Deriving Consistency

Our main purpose in this research is to see if the ISP is consistent with the CSP. To do this, we

transformed the high-level CSP into low-level flow rules in the previous section. In this section,

we’ll map the CSP and ISP to demonstrate that they have a valid relationship. This mapping

is crucial because it allows network administrators to see if the high-level policies are being

properly enforced on the low-level devices. The following definitions are provided to formally

specify the mapping process,

Definition1: A policy is a function that maps the subject and target to a set of authorized

operations. It is represented as P:S×T�P(R), where P refers to policies, S refers to the subject,

T refers to the target, and P(R) is considered as the power set of operations. For each policy,

there are multiple low-level flow rules. These rules are defined by the network administrator

while implementing the policies on the networking devices. The low-level flow rule is represented

as PL = < SL, TL, O,R >, Where PL refers to the low-level flow rules, SL refers to the subject,

TL refers to the target, O refers to operations performed by the subject on target (Request,

Send, and Receive messages). R refers to rules to be applied for each operation.

Based on Definition1, we present the following definitions for Corporate Security Policies

(CSP) and Implemented Security Policies (ISP).

Definition2: We define CSP as a finite non-empty set consisting of elements CSP = {c1,
c2, c3 ,c4 cm }, where for all c in CSP represents the low-level implementation of CSP such

64

Figure 7.6: Low-Level Network Configuration After Implementation Of CSP

that c = < Sc, Tc, Rq >. Sc is subject, Tc is Target, and Rq is requirements that both subject

and target must follow to communicate. To illustrate this with an example, let us consider a

sample high-level CSP as follows:

’Communication between two devices is achieved using specific protocols and designated

ports’.

The low-level implementation of the above policy is represented as c1 = {Device1, De-

vice2, (Web-based Protocols and Specified Ports)}. This means that Device1 and Device2 can

communicate with each other using web-based protocols through a set of ports.

Definition3: We define ISP as a finite non-empty set consisting of elements ISP = {i1, i2,
i3 ,i4 in}, where for all i in ISP represents the low-level implementation of ISP such that i

= < Si, Ti, O,R >. Si is subject, Ti is Target, O is operations performed by subject on target,

and R is the rules that must be defined for each operation.

For the above sample CSP, the low-level ISP is represented as i1 = < Bob,Alice, {Sm, Rm}, {ARP,B1} >.

Bob and Alice indicate device names, Sm and Rm refer to the specific operations that the source

Bob can perform on Target. In this case, Bob is allowed to send or receive messages from target

Alice using ARP as a communication protocol through port B1.

From these definitions, we derive mapping relation as,

Definition4: The relation M: ISP�CSP is consistent mapping if m = (i,c) ∈ M ⇒
i<Si,Ti,O,R> satisfies c<Sc,Tc,Rq> and ∀ i ∈ ISP ∃ c ∈ CSP such that (i,c) ∈ M. And, ∀ c ∈
CSP ∃ i ∈ ISP, (i,c) ∈ M.

65

This definition states that the requirements specified by the organization must stricty be

implemented across networking devices. If this condition is satisfied then we are considering as

both the CSP and ISP are consistent. In other words, the rules and operations implemented

on networking devices must be derived from the requirements specifed in CSP. Although, this

might not be possible in complex environments, but one should strictly implement the policies to

avoid misconfigurations and enhance security. If the requirement specified by the organization

cannot be enforced or applied, then there must be an alternative while configuring appliances.

Also, there are chances of network being partially consistent, i.e., some policies are skipped

during implementation for various reasons like lack of resources or dependency issues, but there

are not any additional policies implemented that does not exists with CSP. These will not effect

the system in short term but cannot be termed as secure.

To understand how the mapping process works at network level, let us consider Flow Num

1 from Table 7.1. This flow rule clearly states that Alice can communicate with Bob us-

ing web-based protocols. Figure 7.5 depicts the low-level network configuration before policy

implementation. Figure 7.6 depicts the low-level network configuration after the policy imple-

mentation. From the Fig 7.6, we can see that communication at low-level is allowed only from

Alice to Bob through the switches Oscar and Norma. The SDN switches block other devices

trying to communicate. So we conclude that the flow rule implemented on the network complies

with the flow rule specified in Table 7.1. Hence we consider this as a valid mapping relation.

In general, a network is said to be consistent if all flow rules are applied in accordance with

the organization’s policies. In our context, we define consistency as behavioral equality among

two states, in this case it is between ISP and CSP. This equality between any two states or

two processes can be determined using the bisimilarity property. Bisimilarity is a behavioral

equivalency notion that is frequently used on processes. It is also known as robust equality

because it solely considers the interaction that the processes may or may not have [San11].

Let us define a sample set ISP consisting of elements from i1 to i7 and set CSP consisting

of elements from c1 to c5. According to Definition4, M is a mapping relation consisting of

matching elements from both ISP and CSP. i.e., M = {(i1, c1), (i2, c1), (i3, c2), (i4, c3), (i5,

c4), (i6, c5), (i7, c5)}
The M is considered as bisimilar, iff

� For all i ∈ ISP, there must be atleast one c such that c ∈ CSP,

� The converse, on the rules from ISP.

This implies that for all implemented flow rules i should be matched to the specified policy c

and if a pair of flow rules (i, c) is true for the above conditions, then it satisfies the bisimilarity

conditions on single flow rule as a single flow rule is considered here. As a result, if all of

the flow rules implemented at low-level networking devices fulfill the organization’s standards,

the mapping relation M is bisimilar. Inconsistency and security misconfiguration arise if any

improper flow rules are implemented on these devices that were not defined by the organization

66

Figure 7.7: Verbose Output Generated Based On ISP And CSP

or if the specified flow rule is not implemented.

7.3 Analysis of Configuration File Generated by Flow Con-

troller to Determine Consistency

A flow controller is a software that constitutes a control plane and configures all the network

appliances on how to forward data packets. It also keeps track of all the rules for the network

components and controls them in an internal control flow table. This will usually require the

use of many network switches. Each SDN switch receives the proper subset of rules from the

controller. To authenticate this switch programming, a secure network will use digital signatures

and other encryption technology.

Configuration data is typically saved in a backup file generated by the SDN flow controller.

This file is necessary because it maintains all of the details of the existing network’s current op-

erational configuration (Policies). This study examines this configuration backup file, retrieving

the low-level information contained inside it, and mapping it to the network as configured in an

ICS system to see how consistent it is. The main objective is to extend the tool’s capabilities

so that it can compare the system security policy to the system as it is now configured. The

tool could be used to perform a formal analysis of the correspondence or to query and test the

setup.

We used the SEL-5056 Flow Controller and SEL SDN switch to establish connection between

the client and the server in order to create a backup file. We also defined several routes or

67

Figure 7.8: Matrix Output Generated Based On ISP And CSP

paths to describe the communication flow between the client and the server. This sort of

communication is supported by most OpenFlow switches, and the configuration backup file

generated is vendor-specific. The simple ICS server application we configured is shown in

Fig 6.2. We have two applications, App1 that receives and responds to request from a client

application App2, running on separate machines. This high-level representation of authorized

communication can be refined by mapping the abstract machine name to the network address

of the device hosting the application and the transport of the communication [RAF20]. For

this example, we used TCP/IP communication; however, MODBUS, DNP3, NTP, GOOSE,

etc. can be used. The communication between App1 and App2 can be defined as a Flow across

the ICS network. This is one of the several flow rules we defined for the communication between

App1 and App2.

Table 6.1 depicts the output of the configuration file, which contains information about

flow rules generated by the SDN controller for our example ICS network. This summarizes

the overall configuration of the network at a high level by displaying information like Source

Name, Destination Name, Source MAC, Destination MAC, Source IP, and Destination IP, Flow

type, and Policy Type. Next using Table 7.1 as reference, the tool maps the flow rules from

Table 6.1. This mapping was created using a Java prototype that integrated with a SQLite

database. To start, we queried the database to collect the flow rules for both ISP and CSP.

In ISP flow table, the rows and columns specify the actual details applied across networking

devices, while in CSP flow table, the low-level version of high-level rules is presented. The

query’s results are then saved separately as Java objects. Following that, Java Data Structures

68

are used to map these entities. The tool produced verbose output for mapping between ISP

and CSP (outlined in Fig 7.7), as well as matrix output for determining how many policies

from ISP are in line with CSP (presented in Fig 7.8). We can see from the output that there

are additional policies enforced in addition to the ones listed and some policies specified are

not enforced, implying that the configuration file is inconsistent. The network administrator

can use this tool to identify any additional policies that have been applied and dynamically

remove them due to the programmability of SDN switches and safeguard the network. Now,

the network/security administrator will be able to monitor the policies and check if they are

implemented as defined.

7.4 Summary

This chapter describes the consistency check process by analyzing the backup configuration file

and high-level policy document. As a result, the overall process for evaluating the configuration

file generated by SDN controller to ensure that it complies with the organization’s policies is

presented. First, the tool takes the scenario document as input and translates the high-level

policies into low-level flow rules using scenario based approach is outlined. Second, a formal

approach for ISP and CSP using the bisimilarity property to determine the consistency between

ISP and CSP is achieved. This work forms the basis for network administrators to monitor for

security misconfigurations across networking devices.

69

Chapter 8

Conclusion and Future Work

8.1 Conclusion

The development of applications with security features in SDN has focused on either security as

an afterthought or security as a decentralized requirement of a large part of the control plane.

Successful development of highly secure critical infrastructure or ICS systems must occur from

the beginning of the design by configuring the policies based on organization needs. However,

standard ICS system design requires that all security enforcing parts of the system enforce the

full security policies. This requires a tremendous amount of time and effort to verify that the

policy is correct and usually requires analysis of the system as a whole.

This dissertation applies the well-known concept of bisimilarity to verifying policies de-

ployed on SDN switches. The work presented here addresses the validation of security policies

specified by the organization to policies deployed in the network by the network administrator.

In this work, I have presented the list of attacks on different sub-systems of OT and analyzed

the cyber incidents reported in the CVE database to determine the trends. This list will in-

spire and help the research community to develop countermeasures to the weaknesses present in

these systems. I have also outlined the vulnerabilities of SCADA Systems and SDN networks.

This vulnerability assessment helps in two ways. First, it theoretically justifies that SDN net-

work vulnerabilities do not significantly impact the performance of SCADA systems compared

with traditional networks. Second, configuring the SDN networks by integrating the security

property features improves the overall SCADA system security.

To check if the policies deployed or implemented on an SDN switch are consistent with the

high-level policies defined by the organization, there is a need to develop formal models. To

achieve this, I have described a process and developed a tool to retrieve the flow rules from

the configuration backup file generated by an SDN flow controller. The overall process involves

retrieving the policies stored as logical flows in the database, adding them to an SQliteDB for

further analysis, and converting them to the Ponder policies for verification.

Next, I have automated the consistency check process by analyzing the backup configura-

tion file and high-level policy document. As a result, the overall process for evaluating the

70

configuration file generated by the SDN controller to ensure that it complies with the organi-

zation’s policies is described. First, the tool takes the controller’s configuration file as input,

extracts the low-level flow rules, and stores them in a database. Next, it inputs the scenario

document and translates the high-level policies into low-level flow rules. Lastly, it maps ISP

and CSP using the bisimilarity property to decide whether they are consistent or not. Analysis

of multiple backup configuration files were tested and the details are given in Appendix A.

The work presented in this dissertation leads to a practical security tool or framework, which

will benefit network administrators by providing policies deployment guidance and reducing

overall system misconfigurations.

8.2 Future Work

The previous section has summarized the results of this dissertation. However, as in every

research effort, the results have indicated some areas where further work could lead to other

important conclusions. For example, I have looked at a single controller’s backup configuration

file in this work. However, more than one controller will be in complex ICS system design. It is

essential to develop a formal methodology for evaluating the consistency of numerous backup

configuration files generated by different controllers. This will aid network administrators in

detecting and mitigating misconfigurations throughout the complex ICS network at a high-level.

Using NIST principles, it is also essential to create a testbed for each OT subsystem that

integrates with software-defined networking technologies. And try to exploit all the vulnerabili-

ties and attacks on SCADA Systems by incorporating security features outlined in this research

work to analyze them in terms of performance, safety, security, and reliability properties.

The research problem in this dissertation work focused on is specific to SEL SDN switches

and flow controllers. In the market, there are various vendor-specific SDN switches. Comparison

of different vendor-specific SDN switches can be a research topic in and of itself, leading to

an examination of the various security features used as well as an analysis of the backup

configuration file which determines the security of ICS systems.

In conclusion, securing critical infrastructure and OT systems is a field loaded with intriguing

challenges. We will continue our efforts to secure the OT and its sub-systems.

71

Bibliography

[Abb16] Ali Abbasi. Ghost in the plc: Designing an undetectable programmable logic

controller rootkit via pin control attack. University of Twente Research Infor-

mation, pages 1–35, 2016.

[ACP+17] Adel Alshamrani, Ankur Chowdhary, Sandeep Pisharody, Duo Lu, and Dijiang

Huang. A defense system for defeating ddos attacks in sdn based networks. In

Proceedings of the 15th ACM International Symposium on Mobility Management

and Wireless Access, pages 83–92, 2017.

[AGH14] Carlos Aguayo Gonzalez and Alan Hinton. Detecting malicious software exe-

cution in programmable logic controllers using power fingerprinting. Technical

report, 2014.

[Alo12] Aloul,Fadi and Al-Ali, A R and Al-Dalky, Rami and Al-Mardini, Mamoun and

El-Hajj, Wassim. International journal of smart grid and clean energy smart

grid security: Threats, vulnerabilities and solutions. Technical report, 2012.

[And19] Anne Anderson. A comparison of two privacy policy languages: Epal and xacml.

2019.

[APMR18] Sajjad Amini, Fabio Pasqualetti, and Hamed Mohsenian-Rad. Dynamic load

altering attacks against power system stability: Attack models and protection

schemes. IEEE Transactions on Smart Grid, 9(4):2862–2872, jul 2018.

[BA01] M. Bond and R. Anderson. Api-level attacks on embedded systems. Computer,

34(10):67–75, 2001.

[BF14a] Bruno Lopes Alcantara Batista and Marcial P Fernandez. Ponderflow: A policy

specification language for openflow networks. In Proc. ICN, page 215, 2014.

[BF14b] Bruno Lopes Alcantara Batista and Marcial Porto Fernandez. Ponderflow: A

new policy specification language to sdn openflow-based networks. International

Journal on Advances in Networks and Services, 7(3 & 4), 2014.

72

[BIBC+15a] Yaniv Ben-Itzhak, Katherine Barabash, Rami Cohen, Anna Levin, and Eran

Raichstein. Enforsdn: Network policies enforcement with sdn. 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM), may 2015.

[BIBC+15b] Yaniv Ben-Itzhak, Katherine Barabash, Rami Cohen, Anna Levin, and Eran

Raichstein. Enforsdn: Network policies enforcement with sdn. In 2015

IFIP/IEEE International Symposium on Integrated Network Management (IM),

pages 80–88. IEEE, 2015.

[BK16] Nikos Bizanis and Fernando A Kuipers. Sdn and virtualization solutions for the

internet of things: A survey. IEEE Access, 4:5591–5606, 2016.

[Boo] Cyber Security for Industrial Automation and Control Systems (IACS) EDI-

TION 2 Open Government status Open.

[CCS13] Ang Cui, Michael Costello, and Salvatore Stolfo. When firmware modifications

attack: A case study of embedded exploitation. 2013.

[CDF+06] Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner,

and Alfonso Valdes. Using model-based intrusion detection for scada networks.

pages 209–237, 2006.

[CDF+07] Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner,

and Alfonso Valdes. Using model-based intrusion detection for scada networks.

In Proceedings of the SCADA security scientific symposium, volume 46, pages

1–12. Citeseer, 2007.

[CJ03] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect

malicious patterns. In 12th USENIX Security Symposium (USENIX Security

03), 2003.

[CO08] Juri Luca De Coi and Daniel Olmedilla. A review of trust management, security

and privacy policy languages. In SECRYPT, 2008.

[CQSM16] Tiago Cruz, Rui Queiroz, Paulo Simões, and Edmundo Monteiro. Security im-

plications of scada ics virtualization: survey and future trends. In ECCWS2016-

Proceedings fo the 15th European Conference on Cyber Warfare and Security,

page 74. Academic Conferences and publishing limited, 2016.

[CRS09a] Alvaro A. Cardenas, Tanya Roosta, and Shankar Sastry. Rethinking security

properties, threat models, and the design space in sensor networks: A case

study in scada systems. Ad Hoc Networks, 7(8):1434–1447, November 2009.

[CRS09b] Alvaro A Cardenas, Tanya Roosta, and Shankar Sastry. Rethinking security

properties, threat models, and the design space in sensor networks: A case

study in scada systems. Ad Hoc Networks, 7(8):1434–1447, 2009.

73

[CSNN20] Samuel L Clements, Cameron T Smith, William K Nickless, and Charles Nick-

erson. Evaluating software defined networking solutions to reduce the digital

attack surface of nuclear security systems. Technical report, Pacific Northwest

National Lab.(PNNL), Richland, WA (United States), 2020.

[CVE] CVE-2014-0160. Available from MITRE.”.

[Cze16] Robert Czechowski. Security policy and good practice for implementation of

smart grid solutions. Przeglad Elektrotechniczny, 92(3):177–181, 2016.

[DDLS01a] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

Ponder policy specification language. In Proc. of the International Workshop on

Policies for Distributed Systems and Networks, POLICY ’01, page 18–38, 2001.

[DDLS01b] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

ponder policy specification language. Lecture Notes in Computer Science, pages

18–38, 2001.

[DHS07] C. Duma, A. Herzog, and N. Shahmehri. Privacy in the semantic web: What pol-

icy languages have to offer. In Eighth IEEE International Workshop on Policies

for Distributed Systems and Networks (POLICY’07), pages 109–118, 2007.

[DKW07] Vijayant Dhankhar, Saket Kaushik, and Duminda Wijesekera. Xacml policies

for exclusive resource usage. Technical report, 2007.

[DMSK16] Neelam Dayal, Prasenjit Maity, Shashank Srivastava, and Rahamatullah Khon-

doker. Research trends in security and ddos in sdn. Security and Communication

Networks, 9(18):6386–6411, 2016.

[DSMF08] Giovanna Dondossola, Judit Szanto, Marcelo Masera, and Igor Nai Fovino. Ef-

fects of intentional threats to power substation control systems. International

Journal of Critical Infrastructures, 4(1/2):129, 2008.

[EI16] E-ISAC11. Analysis of the cyber attack on the ukrainian power grid. 2016.

[FCMT09] Igor Nai Fovino, Andrea Carcano, Marcelo Masera, and Alberto Trombetta. An

experimental investigation of malware attacks on scada systems. International

Journal of Critical Infrastructure Protection, 2(4):139–145, 2009.

[FP18] Andry Putra Fajar and Tito Waluyo Purboyo. A survey paper of distributed

denial-of-service attack in software defined networking (sdn). International Jour-

nal of Applied Engineering Research, 13(1):476–482, 2018.

[FPC09] Aurelien Francillon, Daniele Perito, and Claude Castelluccia. Defending embed-

ded systems against control flow attacks. 2009.

74

[FWD19] Barbara Filkins, Doug Wylie, and AJ Dely. Sans 2019 state of ot/ics cyberse-

curity survey. SANS Technology Institute, 2019.

[GKR+08] Annarita Giani, Gabor Karsai, Tanya Roosta, Aakash Shah, Bruno Sinopoli,

and Jon Wiley. A testbed for secure and robust scada systems. ACM SIGBED

Review, 5(2):1–4, jul 2008.

[GRAF20] Sandeep Gogineni Ravindrababu and Jim Alves-Foss. Automated detection of

configured sdn security policies for ics networks. In Sixth Annual Industrial

Control System Security (ICSS) Workshop, pages 31–38, 2020.

[GRAF21] Sandeep Gogineni Ravindrababu and Jim Alves-Foss. Validating the security

policies in sdn switch across ics networks. In Seventh Annual Industrial Control

System Security (ICSS) Workshop, 2021.

[GRAF22] Sandeep Gogineni Ravindrababu and Jim Alves-Foss. Analysis of vulnerabil-

ity trends and attacks in ot systems. In Proceedings of Seventh International

Congress on Information and Communication Technology. Springer, 2022.

[Gue10] M. D. Guel. A short primer for developing security policies. 2010.

[HCPS08] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and Sujeet Shenoi. Attack

taxonomies for the modbus protocols. International Journal of Critical Infras-

tructure Protection, 1:37–44, dec 2008.

[HF+18] Kevin E Hemsley, E Fisher, et al. History of industrial control system cyber

incidents. Technical report, Idaho National Lab.(INL), Idaho Falls, ID (United

States), 2018.

[HG11] Adam Hahn and Manimaran Govindarasu. Cyber attack exposure evaluation

framework for the smart grid. IEEE Transactions on Smart Grid, 2(4):835–843,

dec 2011.

[HL12] Weili Han and Chang Lei. Survey paper: A survey on policy languages in

network and security management. Comput. Netw., 56(1):477–489, jan 2012.

[HLC17] Jin-bing Hou, Tong Li, and Cheng Chang. Research for vulnerability detection

of embedded system firmware. Procedia Computer Science, 107:814–818, 2017.

[HNS17] Mark Hadley, David Nicol, and Rhett Smith. Software-defined networking rede-

fines performance for ethernet control systems. In Power and Energy Automation

Conference, 2017.

[JCdL16] Ananth A. Jillepalli and Daniel Conte de Leon. An architecture for a policy-

oriented web browser management system: Hifipol: Browser. Technical report,

2016.

75

[JNY11a] Dong Jin, David M. Nicol, and Guanhua Yan. An event buffer flooding attack

in dnp3 controlled scada systems. 2011.

[JNY11b] Dong Jin, David M Nicol, and Guanhua Yan. An event buffer flooding attack

in dnp3 controlled scada systems. In Proceedings of the 2011 Winter Simulation

Conference (WSC), pages 2614–2626. IEEE, 2011.

[KAL+18] Mutaz HH Khairi, Sharifah HS Ariffin, NM Abdul Latiff, AS Abdullah, and

MK Hassan. A review of anomaly detection techniques and distributed denial

of service (ddos) on software defined network (sdn). Engineering, Technology &

Applied Science Research, 8(2):2724–2730, 2018.

[KEV05] Yared Keleta, J Eloff, and H Venter. Proposing a secure xacml architecture

ensuring privacy and trust. Technical report, 2005.

[KKS13] Rowan Klöti, Vasileios Kotronis, and Paul Smith. Openflow: A security analy-

sis. In 2013 21st IEEE International Conference on Network Protocols (ICNP),

pages 1–6. IEEE, 2013.

[KLKP09a] Dong-Joo Kang, Jong-Joo Lee, Seog-Joo Kim, and Jong-Hyuk Park. Analysis on

cyber threats to scada systems. 2009 Transmission & Distribution Conference

& Exposition: Asia and Pacific, October 2009.

[KLKP09b] Dong-Joo Kang, Jong-Joo Lee, Seog-Joo Kim, and Jong-Hyuk Park. Analysis on

cyber threats to scada systems. In 2009 Transmission & Distribution Conference

& Exposition: Asia and Pacific, pages 1–4. IEEE, 2009.

[KLMR04] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. Security as

a new dimension in embedded system design. In Proceedings of the 41st annual

Design Automation Conference, pages 753–760, 2004.

[LNR11] Yao Liu, Peng Ning, and Michael K. Reiter. False data injection attacks against

state estimation in electric power grids. ACM Transactions on Information and

System Security, 14(1):1–33, may 2011.

[LR14] Adrian Lara and Byrav Ramamurthy. Opensec: A framework for implementing

security policies using openflow. 2014 IEEE Global Communications Conference,

dec 2014.

[LZL+17] Gaoqi Liang, Junhua Zhao, Fengji Luo, Steven R. Weller, and Zhao Yang Dong.

A review of false data injection attacks against modern power systems. IEEE

Transactions on Smart Grid, 8(4):1630–1638, jul 2017.

[MANC+11a] Malaz Mallouhi, Youssif Al-Nashif, Don Cox, Tejaswini Chadaga, and Salim

Hariri. A testbed for analyzing security of scada control systems (tasscs). ISGT

2011, jan 2011.

76

[MANC+11b] Malaz Mallouhi, Youssif Al-Nashif, Don Cox, Tejaswini Chadaga, and Salim

Hariri. A testbed for analyzing security of scada control systems (tasscs). In

ISGT 2011, pages 1–7. IEEE, 2011.

[MBCS06] P. Mazzoleni, E. Bertino, B. Crispo, and S. Sivasubramanian. Xacml policy

integration algorithms. Proceedings of the eleventh ACM symposium on Access

control models and technologies - SACMAT ’06, 2006.

[MC16] Robert Mitchell and Ing-Ray Chen. Modeling and analysis of attacks and counter

defense mechanisms for cyber physical systems. IEEE Transactions on Reliabil-

ity, pages 350–358, 2016.

[MCHL14] Kebina Manandhar, Xiaojun Cao, Fei Hu, and Yao Liu. Detection of faults and

attacks including false data injection attack in smart grid using kalman filter.

IEEE Transactions on Control of Network Systems, 1(4):370–379, dec 2014.

[McL11] Stephen McLaughlin. On dynamic malware payloads aimed at programmable

logic controllers. Proceedings of the 6th USENIX conference on Hot topics in

security, pages 10–10, 2011.

[ME10] Anthony R. Metke and Randy Ekl. Security technology for smart grid networks.

IEEE Transactions on Smart Grid, 1(1):99–107, june 2010.

[MG13] Thomas H Morris and Wei Gao. Industrial control system cyber attacks. In

1st International Symposium for ICS & SCADA Cyber Security Research 2013

(ICS-CSR 2013) 1, pages 22–29, 2013.

[MGS17] Amir Modarresi, Siddharth Gangadhar, and James PG Sterbenz. A framework

for improving network resilience using sdn and fog nodes. In 2017 9th Inter-

national Workshop on Resilient Networks Design and Modeling (RNDM), pages

1–7. IEEE, 2017.

[MGSFW14a] Cristian Cleder Machado, Lisandro Zambenedetti Granville, Alberto Schaeffer-

Filho, and Juliano Araujo Wickboldt. Towards sla policy refinement for qos

management in software-defined networking. 2014 IEEE 28th International Con-

ference on Advanced Information Networking and Applications, may 2014.

[MGSFW14b] Cristian Cleder Machado, Lisandro Zambenedetti Granville, Alberto Schaeffer-

Filho, and Juliano Araujo Wickboldt. Towards sla policy refinement for qos

management in software-defined networking. In 2014 IEEE 28th International

Conference on Advanced Information Networking and Applications, pages 397–

404. IEEE, 2014.

[Mil11] Charlie Miller. Battery firmware hacking. Black Hat USA, pages 3–4, 2011.

77

[MRLG11] Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia. Distributed internet-

based load altering attacks against smart power grids. IEEE Transactions on

Smart Grid, 2(4):667–674, dec 2011.

[MXT06] Evan Martin, Tao Xie, and Yu Ting. Defining and measuring policy coverage in

testing access control policies. Information and Communications Security, pages

139–158, 2006.

[NFCMT09] Igor Nai Fovino, Andrea Carcano, Marcelo Masera, and Alberto Trombetta. An

experimental investigation of malware attacks on scada systems. International

Journal of Critical Infrastructure Protection, 2(4):139–145, dec 2009.

[NFGMS11] Igor Nai Fovino, Luca Guidi, Marcelo Masera, and Alberto Stefanini. Cyber se-

curity assessment of a power plant. Electric Power Systems Research, 81(2):518–

526, feb 2011.

[NS17] Gorby Kabasele Ndonda and Ramin Sadre. A low-delay sdn-based counter-

measure to eavesdropping attacks in industrial control systems. In 2017 IEEE

Conference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), pages 1–7. IEEE, 2017.

[Oo19] Oasis-open.org. A brief introduction to xacml. 2019.

[PHS+08] T. Phan, J. Han, J. Schneider, T. Ebringer, and T. Rogers. A survey of policy-

based management approaches for service oriented systems. In 19th Australian

Conference on Software Engineering (aswec 2008), pages 392–401, 2008.

[PMB15] Dorottya Papp, Zhendong Ma, and Levente Buttyan. Embedded systems se-

curity: Threats, vulnerabilities, and attack taxonomy. In 2015 13th Annual

Conference on Privacy, Security and Trust (PST), pages 145–152. ieee, 2015.

[RAF20] Sandeep Gogineni Ravindrababu and Jim Alves-Foss. Automated detection of

configured sdn security policies for ics networks. In Sixth Annual Industrial

Control System Security (ICSS) Workshop, pages 31–38, 2020.

[RLSS10] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical

systems. Proceedings of the 47th Design Automation Conference on - DAC ’10,

2010.

[RS16] V KRISHNA Reddy and D Sreenivasulu. Software-defined networking with ddos

attacks in cloud computing. International Journal of innovative Technologies

(IJIT), 4(19):3779–3783, 2016.

[SAB14] Lisa Schehlmann, Sebastian Abt, and Harald Baier. Blessing or curse? revisiting

security aspects of software-defined networking. In 10th International Conference

78

on Network and Service Management (CNSM) and Workshop, pages 382–387.

IEEE, 2014.

[San11] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cambridge

University Press, 2011.

[Sch19] Schweitzer Engineering Lab. SEL-2740S Software-Defined Network (SDN)

Switch SEL-5056 SDN Flow Controller, 2019.

[SFS11] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control sys-

tems (ics) security. NIST special publication, 800(82):16–16, 2011.

[SRO13] G Sandaruwan, P. H., P. Ranaweera, S., and Vladimir Oleshchuk, A. Plc security

and critical infrastructure protection. 2013 IEEE 8th International Conference

on Industrial and Informat, 2013.

[SS10] Kamalbir Singh and Sarbjeet Singh. Design and evaluation of xacml conflict

policies detection mechanism. Core.ac.uk, 2010.

[SWL19] Jinshu Su, Wen Wang, and Cong Liu. A survey of control consistency in software-

defined networking. CCF Transactions on Networking, 2(3-4):137–152, 2019.

[TLM08a] Chee-Wooi Ten, Chen-Ching Liu, and Govindarasu Manimaran. Vulnerability

assessment of cybersecurity for scada systems. IEEE Transactions on Power

Systems, 23(4):1836–1846, November 2008.

[TLM08b] Chee-Wooi Ten, Chen-Ching Liu, and Govindarasu Manimaran. Vulnerability

assessment of cybersecurity for scada systems. IEEE Transactions on Power

Systems, 23(4):1836–1846, 2008.

[TPE15] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. 6tisch centralized

scheduling: When sdn meet iot. In 2015 IEEE conference on standards for

communications and networking (CSCN), pages 42–47. IEEE, 2015.

[VAFR19a] Varsha Venugopal, Jim Alves-Foss, and Sandeep Gogineni Ravindrababu. Use

of an sdn switch in support of nist ics security recommendations and least priv-

ilege networking. In Proceedings of the Fifth Annual Industrial Control System

Security (ICSS) Workshop, pages 11–20, 2019.

[VAFR19b] Varsha Venugopal, Jim Alves-Foss, and Sandeep Gogineni Ravindrababu. Use

of an sdn switch in support of nist ics security recommendations and least priv-

ilege networking. In Proceedings of the Fifth Annual Industrial Control System

Security (ICSS) Workshop, pages 11–20, 2019.

79

[YLA+18] Yifei Yuan, Dong Lin, Siri Anil, Harsh Verma, Anirudh Chelluri, Rajeev Alur,

and Boon Thau Loo. Netegg: A scenario-based programming toolkit for sdn

policies. IEEE/ACM Transactions on Networking, 26(5):2104–2117, 2018.

[YLAL15] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. Scenario-based pro-

gramming for sdn policies. In Proceedings of the 11th ACM Conference on

Emerging Networking Experiments and Technologies, pages 1–13, 2015.

[YLL02] Chunsheng Yang, Fuhua Oscar Lin, and Hong Lin. Policy-based privacy and se-

curity management for collaborative e-education systems. In Proceedings of the

5th IASTED International Multi-Conference Computers and Advanced Technol-

ogy in Education (CATE 2002), volume 1, pages 501–501. Citeseer, 2002.

[YLR11] Yanling Yuan, Zuyi Li, and Kui Ren. Modeling load redistribution attacks in

power systems. IEEE Transactions on Smart Grid, 2(2):382–390, june 2011.

[YLS+11] Y. Yang, Tim Littler, S. Sezer, K. McLaughlin, and H. F. Wang. Impact of cyber-

security issues on smart grid. 2011 2nd IEEE PES International Conference and

Exhibition on Innovative Smart Grid Technologies, dec 2011.

[YQST12] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on cyber security

for smart grid communications. IEEE Communications Surveys and Tutorials,

14(4):998–1010, 2012.

[ZJS11] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. A taxonomy of cyber attacks

on scada systems. In 2011 International conference on internet of things and 4th

international conference on cyber, physical and social computing, pages 380–388.

IEEE, 2011.

80

Appendix A

Case Studies

This section provides the analysis and validation of different backup configuration files generated

by the SDN controller.

A.1 Case 1

Using the process described in Chapter 6, flow rules based on the backup configuartion file

generated by the SDN controller are depicted in Table A.1. For the validation purpose, i have

used mapping definition defined in the Chapter 7, section 7.2. The flow table outlined in

Table 7.1 represents the low-level flow rules defined at the corporate level and is used for this

comparison. The output for the validation of flow rules or policies between ISP and CSP is

shown in Fig A.1 (Verbose output) and Fig A.2 (Matrix output). We can see from the output

that there are some policies enforced are not actually specified at high-level (i.e., flow rules in

ISP 1-5, 7, 8, 11, 12). Also the policies listed by the organization are not enforced (i.e., flow

rules from CSP 1, 2, 5, 6, 7, 8), implying that the configuration file is inconsistent.

A.2 Case 2

Table A.2 depicts the output of another backup configuartion file generated by the SDN con-

troller. For validation, same procedure is used. The output for the validation of flow rules

between ISP and CSP is shown in Fig A.3 (Verbose output) and Fig A.4 (Matrix output). We

can see from the output that there are some policies listed by the organization are not enforced

(i.e., flow rules from CSP 2, 3, 6, 7, 8), but there are no additional policies implemented and

we can consider this configuartion file as partial consistent.

81

T
ab

le
A

.1
:

F
lo

w
T

ab
le

F
or

2n
d

B
ac

k
u

p
C

on
fi

gu
ra

ti
on

F
il

e
G

en
er

at
ed

B
y

S
D

N
C

on
tr

ol
le

r.
F

lo
w

S
ou

rc
e

D
es

t.
P

ro
to

co
l

S
o
u

rc
e

D
es

ti
n

a
ti

o
n

S
o
u

rc
e

D
es

ti
n

a
ti

o
n

F
lo

w
P

o
li

cy
N

u
m

.
U

se
d

M
A

C
M

A
C

IP
IP

T
y
p

e
T

y
p

e
1

A
li

ce
2

B
ob

40
IP

v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
2

A
li

ce
2

B
ob

40
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
3

A
li

ce
B

ob
40

A
R

P
0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.1
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
4

A
li

ce
B

ob
40

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.1
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
5

A
li

ce
B

ob
40

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.1
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
6

B
ob

50
A

li
ce

30
IP

v
4

0
8
0
0
2
7
E
4
6
0
D
6

0
8
0
0
2
7
8
8
7
1
0
6

1
9
2
.1

6
8
.1

.5
0

1
9
2
.1

6
8
.1

.3
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
7

A
li

ce
20

B
ob

40
IP

v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
8

A
li

ce
20

B
ob

40
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
B

i-
D

ir
ec

ti
o
n

a
l

A
u

th
9

A
li

ce
30

B
ob

50
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.3
0

1
9
2
.1

6
8
.1

.5
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
10

A
li

ce
30

B
ob

50
IP

V
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.3
0

1
9
2
.1

6
8
.1

.5
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
11

A
li

ce
20

B
ob

50
IP

v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.5
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
12

A
li

ce
20

B
ob

50
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.5
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th

82

T
ab

le
A

.2
:

F
lo

w
T

ab
le

F
or

3r
d

B
ac

k
u

p
C

on
fi

gu
ra

ti
on

F
il

e
G

en
er

at
ed

B
y

S
D

N
C

on
tr

ol
le

r.
F

lo
w

S
ou

rc
e

D
es

t.
P

ro
to

co
l

S
o
u

rc
e

D
es

ti
n

a
ti

o
n

S
o
u

rc
e

D
es

ti
n

a
ti

o
n

F
lo

w
P

o
li

cy
N

u
m

.
U

se
d

M
A

C
M

A
C

IP
IP

T
y
p

e
T

y
p

e
1

A
li

ce
2

B
ob

IP
v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
2

A
li

ce
2

B
ob

A
R

P
0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
3

A
li

ce
B

ob
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.1
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
4

A
li

ce
B

ob
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.1
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
5

A
li

ce
B

ob
IP

v
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.1
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
6

A
li

ce
2

B
ob

IP
v
4

0
8
0
0
2
7
E
4
6
0
D
6

0
8
0
0
2
7
8
8
7
1
0
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
7

A
li

ce
2

B
ob

A
R

P
0
8
0
0
2
7
E
4
6
0
D
6

0
8
0
0
2
7
8
8
7
1
0
6

1
9
2
.1

6
8
.1

.2
0

1
9
2
.1

6
8
.1

.4
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
8

A
li

ce
30

B
ob

50
IP

V
4

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.3
0

1
9
2
.1

6
8
.1

.5
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th
9

A
li

ce
30

B
ob

50
A

R
P

0
8
0
0
2
7
8
8
7
1
0
6

0
8
0
0
2
7
E
4
6
0
D
6

1
9
2
.1

6
8
.1

.3
0

1
9
2
.1

6
8
.1

.5
0

B
i-

D
ir

ec
ti

o
n

a
l

A
u

th

83

Figure A.1: Verbose Output Generated Based On ISP And CSP

Figure A.2: Matrix Output Generated Based On ISP And CSP

84

Figure A.3: Verbose Output Generated Based On ISP And CSP

Figure A.4: Matrix Output Generated Based On ISP And CSP

