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ABSTRACT 

Wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.) are two important small 

grains crops that fulfill important human caloric and nutritional requirements globally. More 

efficient small grain production systems are required to meet increasing grain demand while 

minimizing adverse environmental impacts associated with production. The purpose of this 

dissertation was to identify novel germplasm, traits, and associated quantitative trait loci 

(QTL) in the National Small Grains Collection (NSGC) through genome-wide association 

studies (GWAS).  The specific objectives were to: 1) identify novel accessions and QTLs 

associated with dwarf bunt resistance; and 2) characterize barley accessions and identify 

QTLs associated with drought tolerance and agronomic traits. In objective 1, 292 winter 

bread wheat accessions were tested for dwarf bunt (Tilletia controversa J.G. Kühn) 

resistance over a three year trial period in Logan, UT. Ninety-eight accessions were 

identified as resistant with disease incidence ≤10%, of which 28 accessions were highly 

resistant with an incidence ≤1% across all three trials. Two genetic loci on chromosome 6D 

were found to be associated with resistance across three trials. In objective 2, 480 two-row 

spring barley accessions were assessed for terminal drought tolerance in Aberdeen, ID over 

two years. Agronomic traits including yield, test weight and protein were measured when 

the accessions were grown and harvested under regular irrigation and terminal drought 

treatments. Twenty accessions were highlighted for use in the malting industry and ten 

accessions were highlighted for use in the food industry. Fifteen genetic loci were associated 

with at least one agronomic trait across treatments. Accessions and genetic loci identified in 

these studies can be used to enhance locally adapted wheat and barley cultivars.  
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CHAPTER 1: 

LITERATURE REVIEW 

 

WHEAT AND BARLEY PRODUCTION 

 

Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are important cereal staples 

and wheat alone fulfills about 20% of global caloric and protein requirements (Braun, et al., 

2010; Shiferaw, et al., 2013). In 2017 an estimated 771.7 and 147.4 of wheat and barley 

were harvested, respectively, out of 215 and 54.4 million ha planted (FAOSTAT, 2019). 

Forecasts for future agricultural demands estimate that a 100-110% increase in global crop 

production will be required by 2050 to accommodate a projected increase of 2.3 billion 

people while maintaining current consumption trends (Tilman, et al., 2011). However, 

annual cereal production gains of only 1-2% have been realized over the past several 

decades, and annual gains of 3-4% would be required to meet the 2050 consumption demand 

estimate (Alston, et al., 2009; Fischer and Edmeades, 2010). Additionally, existing 

agriculture practices contribute to greenhouse gas emissions, loss of biodiversity, water 

degradation, and deforestation (West, et al., 2014). Better cereal production systems are 

required to attain increases in yield and quality while minimizing environmental impacts 

(Alston, et al., 2009; Tester and Langridge, 2010). 

 

GERMPLASM COLLECTIONS: A RESOURCE FOR ADDRESSING EVOLVING 

PRODUCTION CONSTRAINTS 

Addressing evolving constraints in cereal crop production requires a multi-pronged breeding 

approach that encompasses the assistance of farmers, extension consultants, breeding 
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programs, end-users and international research centers. One of the underlying foundations of 

this approach is access and assessment of germplasm with important traits, such as yield, 

early maturity, and tolerance to biotic and abiotic stresses. These traits can be introgressed 

into adapted germplasm for cultivation and generation of new cultivars with improved 

characteristics. Germplasm pools consist of any living tissue from which new plants can be 

grown, including seeds, leaves, stems, and pollen. Preservation of these resources can be in 

situ, ex situ or both with the primary goal of preserving the genetic variability within a crop 

species, genus or family. Ex situ conservation, which includes storage of germplasm in gene 

banks, allows for systematic storage, data acquisition, and release of accessions for 

evaluation and introgression.  

 

History of germplasm conservation 

Several individuals were instrumental in introducing the theory of germplasm conservation 

in the early 1900s. The founder of many of these principals was Nikolai Vavilov (1887-

1943). Vavilov was a Russian biologist and geographer who dedicated his life to 

understanding crop diversity and genetics. From 1921 to 1940, Vavilov worked as the 

Director of the All-Union Institute of Plant Industry, an organization that would eventually 

be known as N.I. Vavilov Research Institute of Plant Industry (Vavilov, 1992). Early in his 

tenure, drought along the Volga River led to five million Russian deaths due to starvation. 

This tragedy focused Vavilov’s interest in genetics and crop diversity. Drawing from the 

theories of De Candolle, Darwin, and Mendel, Vavilov formulated ideas about crop origins 

that would help alleviate the cycles of hunger and famine in Russia and the world. 

Impressed with Vavilov’s agricultural prowess, and struggling after years of war and 
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famine, the Bolshevik government directed Vavilov to lead the Lenin All-Union Academy 

of Agricultural Sciences. In this capacity Vavilov and his teams traveled to 40 countries on 

five continents and systematically collected 250,000 plant specimens for the newly 

established germplasm bank in St. Petersburg (Vavilov, 1992). These genetic resources 

provided Vavilov with abundant material from which to frame and test his hypotheses of 

homologous variation, plant immunity, and phyto-geography. They also greatly increased 

the agricultural potential in Russia: barley and potatoes could be established along the Arctic 

Circle, cotton was grown in the droughty conditions east of the Caspian Sea, and tea, citrus, 

and quinine plantations were expanded along the Black Sea. Sadly, Vavilov was sent to a 

gulag as a political prisoner, but his legacy continues to provide genetic resources to counter 

evolving crop threats through germplasm collections.  

Other important contributors to germplasm conservation as an interdisciplinary field 

of scientific inquiry were Harry Harlan (1882-1944) and his son Jack Harlan (1917-1998). 

Harry Harlan was a barley breeder who used Vavilov’s theories to target the collection of 

thousands of barley accessions from their centers of origin for the USDA Bureau of Plant 

Industry. He realized the importance and urgency of collecting genetic diversity and storing 

it for the foundation of future crop breeding efforts (Harlan, 1957). Jack Harlan, like his 

father, collected plant accessions extensively and refined Vavilov’s theory of crop origins 

with the concept of primary, secondary, and tertiary gene pools from which to prioritize 

breeding and collection efforts (Harlan, 1971). As an example of the importance of 

conserving plant germplasm he described one of his collected accessions from Hakkari 

Province, Turkey in Practical Problems of Exploration: Seed Crops (1975): 
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“The potential value of a collection cannot be assessed in the field. Perhaps this 

statement could best be illustrated by PI 178383, a wheat I collected in a remote part of 

Eastern Turkey in 1948. It is a miserable looking wheat, tall, thin-stemmed, lodges badly, is 

susceptible to leaf rust, lacks winter hardiness yet is difficult to vernalize, and has poor 

baking qualities. Understandably, no one paid any attention to it for some 15 years. 

Suddenly, stripe rust became serious in the northwestern states and PI 178383 turned out to 

be resistant to four races of stripe rust, 35 races of common bunt, ten races of dwarf bunt and 

to have good tolerance to flag smut and snow mold. The improved cultivars based on PI 

178383 are reducing losses by a matter of some millions of dollars per year.” 

 

Organizations, policies, and locations for germplasm conservation 

The Food and Agriculture Organization of the United Nations (FAO) reports there are 1,750 

gene bank facilities that store a total of 7.4 million accessions, two million of which are 

considered unique (FAO, 2010). Most countries, including the United States, have a national 

gene bank or germplasm collection. In the United States, the U.S. National Plant Germplasm 

System (NPGS) supports agricultural production by acquiring, conserving, and evaluating, 

documenting, and distributing crop germplasm. Managed by the Agricultural Research 

Service (ARS), the NPGS aims to safeguard genetic diversity of important crops (Williams, 

2005). In addition to national gene banks, a global system of eleven Consultative Group on 

International Agricultural Research (CGIAR) gene banks conserves and enables plant 

researcher access to unique sources of crop diversity. CGIAR centers are recognized by the 

International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) and 

funded by the Crop Diversity Endowment Fund. The eleven CGIAR centers include 
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AfricaRice, Bioversity International, International Center for Tropical Agriculture (CIAT), 

International Maize and Wheat Improvement Center (CIMMYT), International Potato 

Center (CIP), International Center for Agricultural Research in the Dry Areas (ICARDA), 

World Agroforestry (ICRAF), International Crop Research Institute for the Semi-Arid 

Tropics (ICRISAT), International Institute for Tropical Agriculture (IITA), International 

Livestock Research Institute (ILRI), and International Rice Research Institute (IRRI).  

Backup samples of worldwide gene bank accessions exist at the Svalbard Global 

Seed Vault as a type of germplasm conservation insurance policy. The Svalbard Global Seed 

Vault was built halfway between Norway and the North Pole as a storage facility meant to 

safeguard important plant genetic material from around the world. The Seed Vault stores 

germplasm collections from the CGIAR gene banks as well as national gene banks. Because 

back-up samples of plant germplasm are stored at Svalbard, valuable genetic diversity will 

not be lost to natural disasters or accidents at the contributing germplasm banks. Funding for 

the Svalbard Global Seed Vault comes from the Global Crop Diversity Trust (FAO, 2001), 

which provides financial support for work associated with the International Treaty on Plant 

Genetic Resources for Food and Agriculture (IT PGRFA).  

The IT PGRFA was signed by the Food and Agriculture Organization of the United 

Nations in 2001 and became effective in 2004. The treaty has several goals, including those 

of recognizing farmers' contributions to crop diversity, creating a global system for involved 

parties to have access to plant genetic materials, and sharing any derived benefits from 

genetic materials with their countries of origin (FAO, 2001). In 1983, leading up to the 

adoption of the IT PGRFA, the Commission of Genetic Resources for Food and Agriculture 

was established as a long-standing, cross-governmental organization to target biological 
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diversity in relation to food and agriculture. Every ten years the Commission assesses the 

current state of the global system for access to and use of plant genetic resources as well as 

gaps and challenges in the system.  

The most recent global assessment, entitled the Second Report on the State of the 

World's Plant Genetic Resources for Food and Agriculture (SoWPGR-2), was completed in 

2010. The SoWPGR-2 reports the status of conservation and utilization of plant diversity in 

terms of global, regional, and national achievements, important scientific and technical 

progress, and pertinent issues (FAO, 2010). According to the SoWPGR-2 findings, there has 

been progress in securing germplasm diversity ex situ. Similarly, more minor crop and crop 

wild relative accessions have been conserved yet they continue to be underrepresented in 

germplasm collections (FAO, 2010). The SoWPGR-2 further details information on crop 

accession numbers stored at various institutions. For instance, 14 percent of wheat 

accessions are stored at CIMMYT, seven percent are stored at the USDA-ARS National 

Small Grains Collection (NSGC), and five percent are stored at the Institute for Commercial 

Forestry Research (ICFR-CAAS) in South Africa. Remaining institutions store between 1 to 

4 percent of wheat accessions. For barley, 9% of accessions are stored at the Plant Gene 

Resources of Canada 6% at NSGC, 6% at Embrapa Genetic Resources & Biotechnology and 

6% at ICARDA. Remaining institutions store between 1 to 5 percent of barley accessions 

(FAO, 2010). 

 

Use of germplasm resources  

Germplasm resources have been used extensively to enhance crop production and respond to 

evolving climate or disease pressures. The value of these genetic resources support 
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continued conservation efforts. Some striking examples of this utility can be found in 

research to identify new sources of resistance to plant diseases. Cereal rusts encompass an 

important group of plant diseases that affect wheat, barley and oats, and have plagued small 

grain production since early cultivation of these crops in the Bronze Age (Kislev, 1982). 

Rust diseases spread rapidly, severely reduce grain yield and quality, and the rust pathogens 

can evolve quickly to overcome known sources of genetic resistance (Roelfs, et al., 1992; 

McIntosh, et al., 1995). New races of the stem rust pathogen (Puccinia graminis f.sp. tritici 

Eriks. & E. Henn.) emerged in Eastern Africa within the past two decades (Pretorius, et al., 

2000) and have overcome widely adopted resistance genes in wheat including Sr24, Sr31, 

Sr36, and SrTmp (Pretorius, et al., 2010; Newcomb, et al., 2016). Screening for novel 

sources of resistance to these emerging races has become an international priority (Singh, et 

al., 2008), and gene banks have provided a source of wheat landraces (Rouse, et al., 2011a; 

Newcomb, et al., 2013; Babiker, et al., 2017) and wild relatives (Xu, et al., 2009; Rouse, et 

al., 2011b; Edae, et al., 2016) to test for resistance to the new races.   

Fusarium head blight (Fusarium graminearum Schwabe) is another serious disease 

of wheat and barley that can reduce grain yields and quality, and also produces 

deoxynivalennol (DON), a mycotoxin that adversely affects human and animal health 

(McMullen, et al., 1997). Researchers have screened thousands of bread wheat (Yu, et al., 

2008; He, et al., 2014), tetraploid wheat (Oliver, et al., 2008) and barley (Mamo and 

Steffenson, 2015) accessions from gene banks for resistance to fusarium head blight 

infection and DON accumulation. Resistance is rare, but is present in bread wheat landrace 

accessions originating from China (Zhang, et al., 2012), tetraploid wheat accessions 
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originating from Tunisia, Georgia, and Ethiopia (Elias, et al., 2005; Oliver, et al., 2008) and 

barley landrace accessions originating from Ethiopia (Mamo and Steffenson, 2015).  

 Rising global temperatures exacerbate small grain yield and quality losses associated 

with drought and heat stress (Lesk, et al., 2016; Zhao, et al., 2017; Xie, et al., 2018). 

Discovering drought and heat tolerant accessions and dissecting the genetic basis of their 

tolerance to these stressors will help plant breeders address challenges associated with rising 

global temperatures (Sachs, 2012). Drought and heat tolerance are complex traits that can be 

measured in a variety of ways either by direct measurements of stomatal conductance 

(Fischer, et al., 1998) or indirect methods such as near-infrared reflectance (Mwadzingeni, et 

al., 2016a), integrated water-use efficiency (Araus, et al., 2002), biochemical markers 

(Yang, et al., 2010), thermometers (Araus and Cairns, 2014), and drought selection indices 

(Fischer and Maurer, 1978). The combination of these inferential methods with genotyping 

arrays has been proposed as a way to identify genetic loci associated with stress tolerance in 

targeted environments (Fleury, et al., 2010). Some of these methods have been used to 

identify accessions from germplasm collections with drought and heat tolerance. Several 

examples include wheat accessions from the NSGC (Bowman, et al., 2015; Liu, et al., 

2017b) and CIMMYT drought nurseries (Mwadzingeni, et al., 2016b), barley landraces 

accessions from ICARDA (Acevedo, et al., 1991; Zhao, et al., 2010), and oat accessions 

from Spain (Sánchez-Martín, et al., 2012; Sánchez-Martín, et al., 2017).  
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GENOMIC TOOLS FOR GERMPLASM EXPLORATION 

 

Recent advances in cereal genotyping arrays (Wang, et al., 2014; Chaffin, et al., 2016; 

Bayer, et al., 2017) and genomic sequences (Mascher, et al., 2017; IWGSC, 2018) have 

increased the efficiency and power of plant crop trait detection using previously established 

statistical models. Genetic mapping refers generally to the identification of genomic regions 

associated with specific traits of interest. Mapping was first reported in 1923 (Sax, 1923) to 

detect linkage between pigmentation and seed size in common bean (Phaseolus vulgaris L.). 

Since then, the techniques have evolved to include dense molecular marker arrays and 

sophisticated statistical procedures, but the goals of mapping have been consistent: identify 

and locate important traits that can be introgressed into modern cultivars. Two popular 

mapping procedures used today are linkage mapping and association mapping. Linkage 

mapping draws inferences between markers and traits through recent recombination in bi-

parental populations, while association mapping utilizes natural populations and historical 

recombination events to find associations between markers and traits of interest (Kruglyak, 

2008).  

 

Molecular markers 

Molecular markers can be thought of as genome-wide road markers: the chromosome 

location of trait variations can be inferred by how closely the trait is associated with these 

small genomic fragments. This is analogous to inferring the location of Pocatello, Idaho by 

reading the mile marker on Interstate 84. There are many types of molecular markers, and 

they broadly fall into three categories including: hybridization, polymerase chain reaction 
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(PCR) and next generation sequencing (NGS) (Amom and Nongdam, 2017). Restriction 

fragment length polymorphisms (RFLPs) use restriction enzymes to cleave certain genomic 

sites and the resulting fragments of interest are hybridized with chemically labeled probes 

(Lander and Botstein, 1989). Variations in fragment sizes between genotypes can be 

differentiated through Southern blots (Amom and Nongdam, 2017). Single nucleotide 

polymorphisms (SNPs) are the most common type of genomic variation, and the allelic 

diversity of SNPs can be detected using PCR or NGS strategies (Rafalski, 2002). In the 

PCR-based approach, SNPs are identified by amplifying genomic regions of interest, then 

sequencing the products in order to find variations among genotypes (Rafalski, 2002). 

Genotyping-by-sequencing (GBS) utilizes a different method of SNP discovery where 

methylation-sensitive restriction enzymes with sample-specific barcodes are used to excise 

specific genomic regions in a set of genotypes which then undergo a round of target-specific 

amplification and sequencing (Elshire, et al., 2011). Genomic polymorphisms identified 

through any of these methods allow for linkage and trait mapping, but the SNP-based 

approaches typically have the most dense marker profiles which can provide better trait 

location estimates.   

 

Linkage mapping 

There are several types of linkage mapping including single marker analysis, interval 

mapping, composite interval mapping, and multiple interval mapping. The single marker 

analysis approach  uses a t-test or ANOVA to infer a QTL (Thoday, 1961; Soller, et al., 

1976), Interval mapping (IM) uses a pair of markers and the likelihood ratio test statistic to 

infer QTL relationships through mixed models (Lander and Botstein, 1989; Jansen, 1993). 
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While IM can estimate QTL positions and effects more accurately than the single marker 

analysis, requires fewer individuals, and can differentiate recombination from the effect of 

the QTL, it has several notable limitations. For instance, the IM procedure can bias results 

when there are more than one QTL on a chromosome, and only two markers can be tested 

simultaneously, which limits the efficiency of the model (Zeng, 1994). Composite Interval 

Mapping (CIM) was first proposed by Zeng (1993; 1994) as a statistical procedure to 

separate multiple, linked quantitative trait loci (QTL). CIM added a partial regression 

equation to the interval mapping model, which simultaneously confines the model to one 

dimension, while allowing for stepwise introgression of multiple marker information. This 

increases sensitivity and precision of the QTL result. CIM has been broadly used to map 

many cereal crops traits (Babiker, et al., 2015; Babiker, et al., 2017; Huang, et al., 2018; 

Solis, et al., 2018; Wang, et al., 2019). 

Practically, the CIM procedure uses molecular marker and trait information derived 

from a cross between two parents. Polymorphic markers are ordered and assigned positions 

on chromosomes or linkage groups. First, a single marker analysis procedure is performed, 

and the significant QTL are discovered and used to calculate a multiple regression equation. 

Another round of single marker analysis is performed after removing the first round QTL 

from the data. If additional QTL are discovered, they are included in the multiple regression 

equation as cofactors. Interval mapping is performed to determine whether the QTL exists 

either in the interval or near the cofactors.  

The underlying assumptions for the phenotypic data are that the traits are 

quantitative, normally distributed, heritable, and lack epistatic effects (Zeng, 1994; Doerge, 

2002). Even with the advantages that CIM affords over IM, the model has difficulty locating 
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two QTL in adjacent marker intervals. Four properties of CIM established by Zeng (1994) 

include: 1) partial regression coefficient of the trait depends only on the QTLs located on the 

interval bracketed by the neighboring markers; 2) unlinked markers can be used in the 

regression and reduce sampling variance thereby increasing the power of the test; 3) linked 

markers used in the regression will reduce interference from multiple linked QTL, but may 

decrease the power of the test by increasing sampling variance; and 4) test statistics 

calculated for two different intervals should not be correlated.  

When phenotypic data is not normally distributed (Shapiro and Wilk, 1965), as in the 

case for many Mendelian traits, the test statistic used to determine significance can also be 

affected. Skewness is a measure of distribution symmetry where a normal curve would give 

the value 0, negative values would indicate skewness to the left, and positive values would 

indicate skewness to the right. Kurtosis is a measure of the distribution tails where the 

kurtosis value of a normal curve is three, excessive kurtosis would have a value beyond 

three. Normality assumptions can be visually inspected using a quantile-quantile (Q-Q) plot, 

or formally measured with a Shapiro-Wilk test of normality (Razali and Wah, 2011). Several 

methods have been recommended for testing non-normal phenotypic distributions including: 

simulation of significance thresholds (Lander and Botstein, 1989), permutations (Doerge 

and Churchill, 1996), transformations (Bajgain, et al., 2016; Braun, et al., 2017; Jia, et al., 

2018), and nonparametric statistical tests (Kruglyak and Lander, 1995).  

Output for CIM includes a likelihood profile expressed as the logarithm of the odds 

(LOD), phenotypic variation explained by the QTL (R2), allelic effect, and QTL position. 

LOD expresses the log of the likelihood ratio of there being a QTL at a marker. The 

phenotypic variation (R2) calculation is based on the partial correlation of the marker with 
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the phenotype and indicates how well a marker explains the phenotype. The allelic effect is 

calculated by taking the average difference in trait scores between those individuals in the 

population that are homozygous AA and homozygous BB.  

An appropriate LOD significance threshold for a genome-wide analysis will depend 

on the size of the genome and number of markers. After performing extensive simulations 

on the IM model, Lander and Botstein (1989) determined that an LOD threshold between 2 

and 3 would ensure an overall false positive rate of 0.05. Piepho (2001) proposed another 

method for approximating QTL statistical thresholds. This method uses experimentally 

calculated CIM LOD values and can be used when accepted thresholds are not available, 

and phenotypic distributions are not normal. A later review (Ott, et al., 2015) noted that an 

LOD of 3.3 would correspond to a genome-wide significance level of α = 0.05.  

Some linkage mapping refinements include QTL by environment interactions (QEI) 

proposed by Li et al. (2015) and multiple interval mapping (MIM) which uses multiple 

regression to detect main and epistatic QTL effects in the population (Kao, et al., 1999). 

Both techniques have been used extensively in plant research to refine the search for the 

genetic basis of complex traits (Mauricio, 2001; Maccaferri, et al., 2008; Jia, et al., 2018; 

Kolmer, et al., 2018). 

 

Genome-wide association studies 

Genome-wide association studies (GWAS) have been used to locate genetic variants 

associated with traits of interest using existing populations coupled with expansive 

molecular marker arrays (Kraakman, et al., 2004; Hirschhorn and Daly, 2005; Breseghello 

and Sorrells, 2006; Zhao, et al., 2011; Bush and Moore, 2012). GWAS have several 
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advantages over linkage mapping studies including the potential to localize the trait of 

interest to a smaller genetic region, and the ability to use available populations instead of 

having to develop them. One potential problem with GWAS is not having enough markers 

to adequately cover the genome, as markers need to be highly correlated with the trait causal 

allele to detect the association. Hirschhorn and Daly (2005) indicate that even 100,000 

markers in the human genome would place 1 marker at every 30 kb which would provide 

adequate information for only 50% of the common variants.  

Both quantitative and qualitative phenotypes have been used in GWAS (Zhao, et al., 

2011; Bush and Moore, 2012). Analysis of quantitative traits is usually conducted with an 

ANOVA with these assumptions: 1) the trait is normally distributed, 2) each group has a 

similar level of variance, and 3) the groups are independent (Bush and Moore, 2012).  

Output for an association analysis is like the output for CIM. It includes the marker 

position and a P-value often reported as the negative logarithm of the P-value where a larger 

number indicates a more significant response. Additionally, the phenotypic variation 

explained by the QTL (R2) is reported. As in CIM, the phenotypic variation (R2) calculation 

is based on the partial correlation of the marker with the phenotype and indicates how well a 

marker explains the phenotype. 

There can be significant effects of cryptic population stratification and kinship 

relatedness in GWAS (Yu, et al., 2006). Well-matched case-control reduces the effects of 

population stratification (Hirschhorn and Daly, 2005). Population stratification can also be 

introduced into the GWAS model as a cofactor by correcting ancestor correlations through 

the use of principal component analysis or a Q matrix (Price, et al., 2006; Yu, et al., 2006). 

Kinship or relatedness measures (K) can be introduced into a mixed model as a random 



 15 

 

 

effect calculated through identity by state (IBS) or identity by descent (IBD) matrices, which 

calculate an allele sharing matrix between individuals (Yu, et al., 2006). Compensating for 

population structure and relatedness in a mixed association model adequately controls Type 

I errors, but can introduce Type II errors (i.e. false negatives) (Zhao, et al., 2011). A QK 

mixed model for structured association was proposed by Yu et al. (2006): 

Y = Xβ + Qυ + Zu + e 

Y is the phenotypic vector,  

X is the molecular marker matrix,  

β is the unknown vector of allele effects to be estimated,  

Q is the posterior probabilities matrix of belonging to each population obtained from a 

population structure (PCA) analysis 

υ is the vector of population effects (parameters),  

Z is a matrix that relates each measurement to the individual from which it was obtained, a 

relationship matrix 

u is the vector of random background polygenic effects  

e is the residual error. 

Only fixed effect factors are included as parameters for general linear models, while 

both fixed and random factors are included in general mixed linear models (Breslow and 

Clayton, 1993). A fixed factor is the specific factor of interest (i.e. treatments or genotypes) 

and is expected to be correlated with the independent variable. Interpretation of the fixed 

effect comes from the differences in the mean treatment responses, and the residual variance 

is the error term in the resulting F-test (Moore and Dixon, 2015). Fixed-effects linear 

models assume the variance components sum to zero across the levels of the experiment.  
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Random effect factors, on the other hand, are intended to be representative of the 

population in general terms and are not expected to be correlated with the independent 

variable. Interpretation of the random effect comes from the factor variance, and the random 

treatment interaction is used as the error term in the F-test (Moore and Dixon, 2015). In 

mixed model association analyses covariance matrices included for population structure (Q) 

and relatedness (K) are typically included as fixed and random factors, respectively.  

In addition to controlling for cryptic population structure and relationships, a 

multiple testing correction should also be included as a post-hoc transformation on the 

resulting GWAS P-values. Lander and Botstein (1989) proposed the use of a Bonferroni 

multiple testing correction where each individual test is given a comparison-wise 

significance level of α/M (M is the number of tests performed.) Although the Bonferroni 

multiple-testing correction calculation is straightforward, several groups have shown it to be 

overly conservative (Hirschhorn and Daly, 2005; Bush and Moore, 2012), giving rise to 

Type II errors, because the independence assumption between tests is violated.  

 Bush and Moore (2012) used the false discovery rate (FDR) multiple testing 

correction reported by Benjamini and Hochberg (1995) for multiple allele testing correction 

in GWAS. The FDR multiple correction sorts the P-values in ascending order, then each P-

value ranked percentile is multiplied by the α level. These values can be converted to FDR-

adjusted P-values, called q-values where tests below the critical value are rejected (Storey 

and Tibshirani, 2003). The FDR correction procedure is easy to implement using either 

Excel or other software programs and is less conservative than the Bonferroni correction.  

Instead of a P-value adjustment, some propose a permutation testing method to 

empirically determine an appropriate P-value threshold (Hirschhorn and Daly, 2005; Pe'er, 
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et al., 2008). In the permutation testing method, the phenotypic values are shuffled with 

respect to their genotypes and run through the association mapping algorithm to find a 

threshold that does not reliably detect significance in these randomly generated phenotype-

genotype pairs. While the permutation method is empirically derived, it does not preserve 

population structure dynamics within the genotype set (Hayes, 2013), and often thousands of 

permutations are required to find a reliable significance threshold (Pe'er, et al., 2008; 

Backes, et al., 2014).  

Quantile-quantile (Q-Q) plots of the observed and expected P-values provide a visual 

inspection of the association analysis output. If the observed values fall on the expected 

significance line there is little evidence of association or population structure, whereas an 

indication of population structure or association is observed when values deviate from the 

expected line (McCarthy, et al., 2008).  

Akaike information criterion (AIC) or Bayesian information criterion (BIC) values 

(Akaike, 1974; Schwarz, 1978), and/or the mean squared deviation (MSD) can be used to 

formally compare various association models with one another. The AIC and BIC use the 

number of parameters in the model combined with the maximum likelihood for each model 

to identify the model with the lowest value. MSD, however, calculates the residual sum of 

squares of the observed values compared to those expected from the model, the lower the 

MSD value the better the model fits the expectation (Wallach and Goffinet, 1989; Mamidi, 

et al., 2011).    

True marker-trait association identification is the primary objective of most GWAS. 

However, the power and reproducibility of the results is contingent on several factors 

including variation explained by the marker nearest the mutations of interest, mutation effect 
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size, and mutation frequency within the GWAS population. Rare variant alleles (those with 

less penetrance) or those alleles with relatively small effects are difficult to detect especially 

in GWAS with small population size (Gibson, 2012; Korte and Farlow, 2013). Nevertheless, 

GWAS offers a complementary approach to linkage mapping, and has been used in 

numerous small grain studies to identify common variants linked with traits that are 

important for global crop production (Korte and Farlow, 2013; Bajgain, et al., 2015; 

Pantalião, et al., 2016; Shi, et al., 2017).  

Specifically, the NSGC has been a resource that provides germplasm for GWAS 

studies with the aim of identifying resistance to diseases including stripe rust (Bulli, et al., 

2016; Liu, et al., 2017a), stem rust (Bajgain, et al., 2015), FHB (Mamo and Steffenson, 

2015) and insect pests including Russian wheat aphids (Valdez, et al., 2012) and stem 

sawfly (Varella, et al., 2017). GWAS has also been used to identify genetic regions 

associated with important small grain agronomic characteristics within the NSGC including 

yield, test weight and drought tolerance (Bowman, et al., 2015; Winkler, et al., 2016; Liu, et 

al., 2017b).  
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CHAPTER 2: 

GENETIC CHARACTERIZATION AND GENOME-WIDE ASSOCIATION 

MAPPING FOR DWARF BUNT RESISTANCE IN BREAD WHEAT ACCESSIONS 

FROM THE USDA NATIONAL SMALL GRAINS COLLECTION 

ABSTRACT 

Dwarf bunt (DB), caused by Tilletia controversa J.G. Kühn, can significantly reduce grain 

yield and quality on autumn-sown wheat in regions with prolonged snow cover. DB can be 

managed with the use of resistant cultivars. The objectives of the present study were to 

characterize DB resistance in a large set of bread wheat accessions from the National Small 

Grains Collection (NSGC) and use a genome-wide association study (GWAS) approach to 

identify genetic loci associated with DB resistance. A total of 292 accessions were selected 

using historical DB resistance data recorded across many trials and years in the Germplasm 

Resources Information Network (GRIN) and re-tested for DB resistance in replicated field 

nurseries in Logan, UT, in 2017, 2018 and 2019. Ninety-eight accessions were resistant with 

DB normalized incidence ≤10%, and twenty-eight of these were highly resistant with DB 

normalized incidence ≤1% in both GRIN and the field nurseries. Based on the presence of 

marker haplotypes of the four published dwarf bunt QTL on 6DS, 6DL, 7AL, and 7DS, 

highly resistant accessions identified in this study may provide novel resistance and should 

be further evaluated. This study validated one previously identified QTL on 6DS and 

identified an additional locus on 6DS. These loci explained 9-15% of the observed 

phenotypic variation. The resistant accessions and molecular markers identified in the 
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present study may provide valuable resources for characterization and deployment of DB 

resistance in bread wheat.  

INTRODUCTION 

 

Bread wheat (T. aestivum L.) is an important food staple and 772 million t were harvested in 

2017 globally (FAOSTAT 2019). Dwarf bunt (DB), caused by the basidiomycete Tilletia 

controversa J.G. Kühn [as 'contraversa'] in L. Rabenhorst (Kühn 1874), and common bunt 

(CB), caused by two closely related fungi Tilletia caries (DC.) Tul. & C. Tul. [syn. T. tritici 

(Bjerk.) G. Wint.] and Tilletia laevis J. G. Kühn [syn. T. foetida (Wallr.) Liro], are 

destructive diseases of bread wheat and durum wheat (T. turgidum subsp. durum Desf.) 

(Goates 1996). While these three pathogens vary slightly in their spore morphology and 

etiology, they are closely related with similar modes of infection and means of control. DB 

and CB differ slightly in that T. controversa infects autumn-sown wheat and requires several 

months of snow cover for teliospore germination on the soil surface, whereas T. caries and 

T. laevis primarily infect spring planted wheat from spores in the soil.  

Initiation of DB and CB begins when dikaryotic infection hyphae penetrate emerging 

seedlings thereby infecting the developing apical meristem (Kollmorgen and Ballinger 

1987). The resulting systemic infection is often cryptic until flowering, when the fungal 

hyphae invades and replaces developing ovaries with darkly pigmented teliospores that 

comprise a fungal sorus or bunt ball (Goates 1996; Castlebury et al. 2005). Yield losses due 

to DB and CB can exceed 80% and trimethylamine emitted by the teliospores causes a fetid, 

rotting fish odor which reduces flour quality (Goates 1996; Castlebury et al. 2005).  
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  Difenoconazole, a seed treatment fungicide, effectively controls both diseases without 

causing yield reductions or phytotoxicity (Keener et al. 1995; Goates 1996) though genetic 

resistance offers a cost effective compliment to seed treatments particularly in organic 

production systems. Most of the wheat landraces in the USDA National Small Grains 

Collection (NSGC) were screened for bunt resistance over the past 30 years and resistance 

was found primarily in germplasm originating from regions in Iran, Macedonia, 

Montenegro, Serbia, and Turkey (Bonman et al. 2006). However, resistance was relatively 

rare. Among 10,759 landrace accessions tested for CB resistance only 597 (5.5%) were 

resistant, and of 8,167 landrace accessions tested for DB resistance only 104 (1.3%) were 

resistant (Bonman et al. 2006).  

DB and CB resistance is putatively controlled by gene-for-gene interactions and it is 

assumed that the same genes confer resistance to both diseases (Hoffman and Metzger 1976; 

Goates 2012). An expanded set of bunt differential wheat accessions representing 16 Bt 

genes was developed to elucidate host-pathogen interactions (Goates 2012). Using these Bt 

differentials, Goates (2012) found 19 pathogenic races of T. controversa, 36 races of T. 

caries, and 15 races of T. laevis, and determined that Bt8 (PI 554120), Bt11 (PI 554119), and 

Bt12 (PI 119333) were broadly effective against most races of DB and CB.  

Genomic tools in wheat including dense molecular marker arrays with annotations 

(Wang et al. 2014), genotyping-by-sequencing, and reference genome sequences (IWGSC 

2018) have enabled the identification of genetic loci underpinning DB and CB resistance 

(Table A2.1). Linkage mapping (Chen et al. 2016; Singh et al. 2016; Steffan et al. 2017) and 

association mapping techniques (Bhatta et al. 2018; Mourad et al. 2018) have located bunt 
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resistance loci on 19 wheat chromosomes. Identifying markers tightly linked to resistance 

will enable the discovery of additional resistance genes and introgression of multiple 

resistance genes into adapted cultivars.  

The NSGC is a worldwide collection of the small grains and contains 42,544 bread 

wheat accessions. Of these, 19,378 accessions have been systematically characterized for 

DB resistance since the early 1980s, and only 129 (0.7%) are classified as resistant based on 

a DB incidence threshold of ≤10% proposed by Goates (2012). The purpose of this study 

was to: 1) verify the DB resistance in the NSGC bread wheat accessions with replicated field 

trials, and 2) identify genetic loci associated with DB resistance using a genome-wide 

association study (GWAS) approach. 

 

MATERIALS AND METHODS 

 

Plant materials  

DB resistant and susceptible accessions were selected for this panel based on data from the 

U.S. National Germplasm System online database: Germplasm Resources Information 

Network (GRIN), accessed at https://npgsweb.ars-grin.gov/gringlobal/search.aspx. Using a 

resistance threshold of ≤10% disease incidence relative to the susceptible check (Goates 

2012), only 129 GRIN accessions were classified as DB resistant. An additional seven 

accessions with DB incidence below 13% were also included in the panel for a total of 136 

bread wheat accessions classified as resistant for the GWAS. In an attempt to mitigate the 

effects of population structure on the GWAS, one susceptible accession from the same 



33 

 

 

 

geographic region as each resistant accession was selected. For example, PI 470452 was 

classified as resistant and originated in Agri Province, Turkey; therefore, a susceptible 

accession from Agri Province, Turkey, PI 470470, was also selected. Additionally, the bunt 

differentials (Goates 2012), including Bt0 through Bt15, Btp, and PI 173438 (unknown Bt), 

and two known susceptible winter cultivars ‘Wanser’ (CItr 13844) and ‘Cheyenne’ (CItr 

8885), were also included in the GWAS panel. Supplementary File A2.1 lists the accession 

number, name, taxon, geographic origin, improvement status, pedigree, and DB incidence 

for each of the 292 accessions. 

 

Field trials 

Since the 1980’s, GRIN DB normalized incidence (NI) relative to the susceptible 

check cultivar ‘Cheyenne’ in each trial was collected from NSGC accessions grown at the 

Green Canyon USDA-ARS disease screening nursery in Logan, UT (approximately 3 km 

east of Logan: 41°46’21.05”N, 111°46’52.68”W. elevation 1450 m). DB field trials 

conducted in 2017, 2018, and 2019 were evaluated near the Green Canyon site at the Utah 

State University (USU) Research Farm in Logan, UT (41°45’46.46”N, 111°48’54.98”W, 

elevation 1400 m). USU field trials were sown with a head row planter on October 10, 2016, 

September 27, 2017 and September 18, 2018 with one accession per 1-m row and two 

replications in 2017 and 2018 and one replication in 2019. Each row was inoculated after 

seedling emergence on November 4, 2016, October 24, 2017, and November 6, 2018 with 

approximately 100 ml of a concentrated DB teliospore suspension (2x106 spores ml-1 water). 

A composite of teliospores from infected spikes previously collected in the USU DB nursery 
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were used for the inoculations. Disease incidence was assessed on fully mature adult plants, 

Zadoks stage 94 (Zadoks et al. 1974), on August 3, 2017, July 26, 2018, and August 6, 2019 

by counting the number of spikes where at least one floret was infected, and dividing by the 

total number of spikes in the row. DB incidence per replicate was normalized to the average 

of the six plots of the susceptible cultivar, Wanser. Accession DB incidence and NI are 

reported in Supplementary File A2.1, and the mean DB NI for each field trial can be 

accessed through GRIN.  

 

Molecular marker assessment 

A modified DNA CTAB protocol was used to extract genomic DNA from seedlings 

at the 2-3 leaf stage (Babiker et al. 2015). A 2 cm segment of leaf tissue was placed into 96 

well Corning® Costar® tubes (Corning, NY, U.S.) and macerated in CTAB extraction 

buffer with a bead grinder. The aqueous layer was separated in chloroform, extracted, and 

the precipitate was washed with isopropanol and then ethanol. Resulting DNA pellets were 

suspended in Tris (10 mM) and sent to the USDA-ARS Small Grains Genotyping 

Laboratory in Fargo, ND where samples were genotyped using the 90K iSelect SNP assay as 

described by the manufacturer (Illumina, San Diego, CA). Allele clustering was completed 

using Genome Studio v.2.0.2 (Illumina) and the resulting set of 41,511 polymorphic SNPs 

were exported to JMP Genomics v.9.0 (SAS Institute Inc., Cary, NC, USA) for filtering. 

Markers were excluded if minor allele frequency (MAF) was <4%, or missing data was 

>10%. Heterozygous calls were also removed. Accessions were classified as duplicates and 

removed if they were ≥ 99.7% identical across all polymorphic SNPs. A final group of 246 
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bread wheat accessions was selected and 19,281 SNP markers were aligned with the 

physical wheat annotation (IWGSC 2018) and used for subsequent marker-trait associations. 

  

Statistical analyses 

Unless stated otherwise, all statistical analyses were conducted using JMP® 

Genomics v. 9.0. By design, the DB NI had a bimodal distribution, and a Shipiro-Wilk 

normality test (Shapiro and Wilk 1965) of trial residuals indicated a significant (P < 0.0001) 

shift from normality. Similarly, square root and log10 transformations of the trials indicated 

significant (P < 0.0001) deviations from normality, and the untransformed DB NI data was 

used in all further analyses. A mixed model with genotype set as a fixed effect and trial as a 

random effect was used to calculate best linear unbiased estimates (BLUEs) for DB NI 

across trials and replications (Henderson 1975). Broad sense heritability (H2) was calculated 

using the formula: H2 = σ2
G/[σ2

G + σ2
ExG/r+ σ2

e/r] where σ2
G is the genotypic variance, σ2

ExG 

is the interaction variance between trial and genotype, σ2
e is the residual variance, and r is 

the number of data sets (Hanson et al. 1956). Correlation coefficient estimates between trials 

were calculated using a Spearman’s Rho nonparametric rank-sum correlation procedure. 

Genome-wide linkage disequilibrium (LD) was calculated as r2 values between each 

marker within chromosome groups (Figure A2.1). An IBS familial relationship matrix (k 

matrix) and heat map were generated using the Ward hierarchical clustering method (Ward 

Jr and Hook 1963) to explore potential subpopulations within the panel. STRUCTURE 

v.2.3.4 (Pritchard et al. 2000) and STRUCTURE HARVESTER (Earl and vonHoldt 2012) 

software packages were used to optimize the number of subpopulations (k). In 
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STRUCTURE, the burn-in iterations and Markov-chain Monte Carlo replications were set to 

10,000, the admixture correlated model was selected, and five replicate iterations were 

performed. Proposed subpopulations with k between 1 and 10 were evaluated in 

STRUCTURE HARVESTER using the Evanno method (Evanno et al. 2005), and the 

number of subpopulations that corresponded with the highest  Δk value was selected as the 

optimal model.  

A principal component analysis with 10 principal components (PCs) was generated 

(Q matrix) to explore population stratification , and the resulting scree plot was used to 

estimate the optimal number of PCs that would explain the most variation in the models 

(Price et al. 2006). Bayesian information content (BIC) assessments (Burnham and 

Anderson 2004) were used to formally test the various association analysis models. Tested 

models included a general linear model (GLM) without corrections for K or Q (the naïve 

model), a GLM that corrected for population stratification with 2, 3 or 5 PCs, and mixed 

linear models (MLMs) that controlled for both familial relationships, as a random effect, and 

population stratification with 2, 3 or 5 PCs as a fixed effect (Yu et al. 2006). All models 

correcting for familial relationships performed better than the naïve model. A MLM with a 

kinship covariate matrix and 2 PCs had the lowest BIC value and was therefore chosen for 

further marker-trait association analysis.  

Marker-trait associations between DB NI and SNP markers were conducted on trial 

means, and BLUEs. Resulting P-values were adjusted using an FDR multiple testing 

procedure (Benjamini and Hochberg 1995) and a significance threshold of P ≤ 0.05 on 

FDR-adjusted P-values was used to identify SNP-trait associations for further analysis. 
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SNPs significantly associated with DB NI in any trial or BLUE were aligned with the 

Chinese Spring reference genome sequence v1.0 (IWGSC 2018) using IWGSC BLAST 

(Alaux et al. 2018) with the highest coverage and identity location available. To assess 

potentially linked SNPs, the most significant marker in each putative marker-trait 

association group were included one at a time in the MLM as covariates. Markers in high 

LD with the covariate marker were no longer significantly associated with DB resistance 

and were grouped with the covariate SNP group.  

 

RESULTS 

Field trials 

Two susceptible check cultivars, Cheyenne and Wanser, showed a high incidence of DB in 

both USU field trials. The mean DB incidence for Wanser was 63.9% in 2017, 82.8% in 

2018, and 67.3% in 2019 while Cheyenne had a mean DB incidence of 79.2% in 2017, 

84.6% in 2018 and 88.6% in 2019. Across the three trials, all differentials showed consistent 

responses except for the Bt9 differential, which was classified as resistant in 2017 but 

susceptible in 2018 and 2019, and the Bt5 differential which was classified as susceptible in 

2017 and 2019 but resistant in 2018 (Table 2.1).   

A mixed model ANOVA (Table A2.2) found no significant trial effect, but there was 

a significant genotype and genotype-by-trial effect (P < 0.0001). Broad-sense heritability 

(H2) for DB NI was estimated at 0.93. Best linear unbiased estimates derived from the mixed 

model of DB NI across trials are listed in Supplementary File A2.1. By design, the field 

trials were composed of approximately 50% resistant and 50% susceptible accessions as 
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classified based on GRIN data (Fig. 2.1). USU field trials produced a similar response, with 

50.3% showing resistance in 2017, 50.7% showing resistance in 2018 and 45.2% with 

resistance in 2019  (Table 2.2). Accessions classified as susceptible based on GRIN showed 

a wide array of disease incidence in the field trials (Fig. 2.1). Most of the accessions 

classified as resistant based on GRIN data, yet susceptible in 2017, 2018 or 2019, were 

breeding lines from the U.S. Another group of accessions, about half being landraces from 

Turkey, showed the opposite reaction; they were susceptible based on GRIN data, but 

resistant in the USU field trials (Supplementary File A2.1).  

A Spearman’s rank-sum nonparametric correlation was used to measure the degree 

of similarity between and amongst the GRIN, 2017 2018 and 2019 USU field trial means 

and BLUEs. Correlation coefficients (r2) between data sets ranged from 0.70 and 0.93, and 

all estimates were significant at P < 0.0001. GRIN was correlated with the 2017, 2018 and 

2019 trials, and BLUEs with correlation coefficients of 0.76, 0.77, 0.70 and 0.85, 

respectively. The correlation coefficient between the 2017, 2018 and 2019 USU trials was 

0.88, 0.76 and 0.78, respectively. In the 2017 USU field trials, the r2 between replications 

was 0.86 and in 2018 the r2 was 0.87 between the two replications. 

There were 98 accessions that were resistant with a DB NI ≤10% across GRIN and 

2017, 2018 and 2019 USU trial means (Supplementary File A2.1). Of these, 28 were highly 

resistant with a DB NI ≤1% across all trials (Table 4). These highly resistant accessions 

included eight Turkish landraces, and 14 U.S. lines with Turkish landraces in their pedigree. 

The remaining six highly resistant accessions were landraces from Serbia (1), Montenegro 

(1), Iran (1), and three breeding lines from the U.S (Table 2.3).  
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Population structure 

There were 44 accessions that were ≥99.7% identical across the 19,281 SNPs. These 

duplicate and near-duplicate accessions originated from similar geographic regions and had 

similar DB NI across data sets (Supplementary File A2.1), and were removed for further 

analyses. Genetic similarity among the 246 non-duplicated accessions ranged from 53% to 

99% with a mean similarity of 67%.  

Based on the STRUCTURE HARVESTER Δk values there were six distinct 

subpopulations (k = 6) in the panel, and these groupings were supported by visual 

assessment of the Ward hierarchical clustering heat map and principal component analysis 

(Fig. 2.2A and 2.2B). The first three principal components explained 22.2% of the total 

variation, and 12.7%, 5.8% and 3.7% of the variation was explained by PC1, PC2 and PC3, 

respectively (Fig. 2.2B). Subpopulations based on the marker data corresponded well with 

geographic origin (Table 2.4). Subpopulation 1 and 4 consisted primarily of breeding lines 

and cultivars from the U.S. Subpopulation 2 consisted of accessions from Turkey and 

breeding lines from the U.S. Serbian landraces predominated in subpopulation 3, while 

landraces from Iran were primarily located in subpopulation 5. Landraces from Hakkari 

province, Turkey and breeding lines from the U.S. that had Turkish landraces in their 

pedigree, were grouped into subpopulation 6 (Table 2.4). The bunt differentials were 

distributed across all the subpopulations (Table 2.1). 

The BLUE DB NI estimate for the entire panel was 47.3% (Fig 2C), and BLUE 

values for each subpopulation differed significantly at P < 0.0001. Subpopulation 6 had the 



40 

 

 

 

lowest mean BLUE DB NI of 8.5%, and subpopulation 1 had the highest mean BLUE DB 

NI of 74.0%. Of the 98 accessions that were resistant across trials (Table 2.3), 7% were in 

subpopulation 6, 13% were in subpopulation 2, with the remainder in subpopulations 1, 3, 4, 

and 5. Of the 28 highly resistant accessions, 75% were in subpopulation 6, 7% were in 

subpopulation 2 and 3, and 4% were in each of the subpopulations 1, 4 and 5.  

 

Linkage disequilibrium 

Genome-wide marker-pair r2 correlations between 19,281 SNPs were plotted as a 

function of intrachromosomal inter-marker genetic distance (Fig. A2.1). A median r2 of 1 

was found between SNP markers that were completely linked with an inter-marker physical 

distance of 0 Mbp. LD median r2 decreased to 0.1 at an inter-marker distance of 0.1 to 1 

Mbp indicating an LD decay rate of 90% over the 1 Mbp interval.  

 A smoothing spline curve with lambda equal to 10,000 was fit to the LD scatter plot 

to determine a genome-wide QTL confidence interval (Supplementary File A2.1). Others 

(Maccaferri et al. 2015; Liu et al. 2017), have used an LD of r2 = 0.3 as a threshold for 

genome-wide QTL confidence intervals in wheat. In the present study, the largest spline 

curve r2 value was 0.45. When the smoothing spline curve was set to r2 = 0.3 the physical 

distance was 0.67 Mbp, and when the curve was set to r2 = 0.1 the distance was 6.80 Mbp.  

 

Marker-trait associations 

After controlling for kinship and population stratification, GWAS revealed 4 SNPs 

significantly (FDR-adjusted P < 0.05) associated with DB incidence in at least one trial or 
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BLUE (Table 2.5, Figs. 2.3 and A2.3, and Supplementary File A2.3). FDR-adjusted 

negative log10 P-values for BLUE DB NI from these six marker-trait association groups 

ranged from 1.7 to 5.1, phenotypic variance (R2) ranged from 0.09 to 0.15, and average DB 

NI BLUE values for accessions carrying resistance alleles ranged from 16.1 to 40.8 (Table 

2.5). One marker-trait association group represented by 2 SNPs on chromosome 6DS, was 

significant in three of the data sets (Table 2.5). Marker-trait association groups aligned with 

the 246 bread wheat accessions used for the GWAS (Supplementary File A2.4) show a 

corresponding decrease in DB NI as the number of resistant allele haplotypes increases 

(Table A2.3).  

 

DISCUSSION 

 

Uniform DB infection requires specific environmental conditions that include several weeks 

of stable cool soil temperatures, a moist environment at the soil surface, and low light levels. 

These conditions are most reliably provided by continuous snow cover and are critical for 

teliospore germination (Chen et al. 2016). The two susceptible check cultivars, Wanser and 

Cheyenne, showed high DB incidence in all field trials indicating that the environmental 

conditions in these years favored infection by the DB pathogen.  

There were 28 highly resistant accessions with a DB NI ≤1% across all data sets. 

Twenty-one of these highly resistant accessions either originated in Turkey or have Turkish 

landraces in their pedigrees. Similarly the four bunt differentials that were highly resistant 

across trials, PI 554119 (Bt11), PI 119333 (Bt12), PI 173437 (Btp), and PI 173438 
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(unknown Bt), all either originated in Turkey or had a Turkish landrace in their pedigree. PI 

119333 and PI 173437 had similar haplotype profiles (Table A2.6); and they shared SNP 

marker haplotypes with some of the other highly resistant accessions (Supplementary File 

A2.4). For instance, PI 119333 (Bt12) shares a similar haplotype profile to six other highly 

resistant accessions and PI 173438 (with unknown Bt) shares a similar profile with two other 

highly resistant accessions including PI 476212 (Table 2.6).  

Based on the pedigree analysis (Supplementary File A2.1), many highly resistant 

breeding lines are derived from resistant Turkish landraces. PI 178383 and PI 476212 are in 

the pedigrees of several DB resistant cultivars, such as ‘Weston’, ‘DW’, ‘Golden Spike’, and 

‘UI Silver’ (Hole et al. 2002). However, some highly resistant landraces PI 345106 from 

Serbia, PI 345428 from Montenegro, and PI 627677 from Gilan province, Iran have unique 

haplotypes and geographic origins (Table 2.6). Therefore, mapping the DB resistance within 

these unexploited resistance sources is an important step towards future molecular breeding 

for DB resistance.  

In the present study, accessions were selected based on a DB NI resistance threshold of 

≤10%. Other accessions with intermediate levels of resistance are of interest to geneticists 

and plant breeders as they may contain a complex of minor or partial resistance genes. 

Specifically, PI 362710 from Montenegro, PI 345480 from Serbia, and PI 636153 a breeding 

line from Idaho, U.S., had intermediate levels of DB resistance across data sets. 

Additionally, in the GRIN database, there are 976 bread wheat accessions that have a DB 

incidence recorded between 11 and 30%. Environmental conditions can make bunt disease 

incidence variable from one year to the next. Thus, to confirm the partial resistance that may 
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exist in these accessions, more research is warranted. Single-seed derived lines of each 

accession could be tested for multiple years in the field. Alternatively, molecular marker-

assisted evaluation could be undertaken to identify accessions that do not carry known 

resistance QTL haplotypes. A quantitative PCR assay, like those developed for rust diseases 

(Admassu-Yimer et al. 2019), that reliably measures the degree of tissue colonization by the 

bunt pathogen could also provide a means for assessing partial resistance to the disease 

under greenhouse conditions.   

Six subpopulations were selected in this panel of 246 bread wheat accessions based on 

Δk value optimization using STRUCTURE and STRUCTURE HARVESTER. These six 

subpopulations roughly corresponded to the geographic origins listed in GRIN (Table 2.5). 

We attempted to control for population relatedness by selecting both resistant and 

susceptible accessions from the same geographic area. Unfortunately, the subpopulations 

differed significantly in their levels of DB incidence (Fig. 2.2C) which could affect marker-

trait associations. Specifically, those accessions in subpopulation 6 which corresponded with 

a Hakkari province, Turkey origin, had significantly lower DB NI values than the other five 

subpopulations. Investigators may need to limit the origin of accessions to one region or 

locality to better balance population structure when designing future bunt GWAS. For 

instance, it might be of interest to examine all landrace accessions from Turkey as one study, 

and all landrace accessions from Iran as a separate study.  

Broad-sense heritability, 0.93, was high for DB NI in this panel. Others have also 

reported high broad-sense heritability estimates for bread wheat resistance to dwarf bunt, 

0.88 to 0.93, (Chen et al. 2016) and common bunt, 0.58 to 0.78 (Bhatta et al. 2018; Mourad 
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et al. 2018). Although the broad-sense heritability estimate and correlations between 

replications and years were high in this study, there were no significant SNPs that were 

consistent between data sets and met the FDR-adjusted P-value threshold of 0.05 

(Supplementary File A2.3). Less stringent significance thresholds have been used in other 

bread wheat GWAS panels with small population sizes (Zegeye et al. 2014; Gao et al. 

2016). A less stringent threshold would allow identification of additional marker-trait 

associations in this panel (Supplementary File A2.2), but would increase the likelihood of 

false positive associations.  

Of the two marker-trait associations that were significant in the present study (Table 

2.5), only one corresponds with a previously reported QTL for DB or CB resistance (Table 

A2.1). Menzies et al. (2006) and Singh et al. (2016) found a QTL on 6DS with a peak 

marker at 6.17 Mbp, which is likely the same QTL identified as DB-6D2 in this study. DB-

6D2 is composed of two SNP markers and is most significantly associated with resistance 

identified in the present study (Table 2.5). Accessions containing the resistance alleles had a 

mean DB NI BLUE value of 16.3 (Table 2.5). The Bt10 differential, PI 178383 and another 

30 accessions in this GWAS panel have this resistance-associated haplotype (Supplementary 

File A2.4). Based on the physical position, this QTL spanned a relatively narrow section of 

the chromosome from 6.97 to 7.29 Mbp, which is within the flanking position of the Bt10 

gene (Menzies et al. (2006). Markers in this region can be developed and used in marker 

assisted selection, but must first be validated in bi-parental populations.  

Additionally, Menzies et al. (2006) hypothesized that the Bt10 QTL contributed by the 

bread wheat cultivar ‘AC Cadillac’ was closely linked with  effective Ug99 stem rust 
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resistance genes on 6DS, SrTmp or SrCad (Hiebert et al. 2016; Kassa et al. 2016). To 

determine whether Bt10 confers a stem rust resistance phenotype like SrCad or SrTmp,  PI 

554118 (Bt10) and PI 178383 were screened with several Ug99 stem rust races. These two 

accessions were resistant to many of the same stem rust races as were lines containing 

SrTmp and SrCad (unpublished data). Further studies are needed to determine if the 6DS 

region contains one or more genes that confer resistance to DB, CB and wheat stem rust. 

One of the markers in the DB-6D2 locus group was shown to be on 6A according to the 

Chinese Spring Reference Sequence (Table 2.5, Fig. 2.3). The marker on 6A, IWB64081, 

 and the marker on 6D at 1.77 Mbp, IWB21614, were in high LD with one another and the 

marker on 6A was previously shown to be on 6D (Wang et al, 2014). We therefore assumed 

both of these markers are from the same marker-trait association group and combined them 

into one QTL.   

 Two major QTL, Q.DB.ui-7DS (Chen et al. 2016) and Q.DB-6DL (Steffan et al. 2017; 

Wang et al. 2019) and Q.DB.ui-7AL (Wang et al. 2019), that were previously reported in bi-

parental populations were not detected in this study. The QTL Q.DB.ui-7DS was reported in 

the ‘Rio Blanco’/’IDO444’ population on 7DS with a peak marker, wPt-2565, at 5.9 Mbp 

near the telomere (Chen et al. 2016). Based on pedigree information, the resistance in 

IDO444 was thought to be derived from PI 476212, the same parent contributing resistance 

in cv. ‘Blizzard’. PI 476212 was initially selected for snow mold and DB resistance 

(Sunderman et al. 1986) and is in the pedigree of resistant cultivars ‘DW’ (PI 620629), 

‘Bonneville’ (PI 557015), ‘Golden Spike’ (PI 614813), and ‘UI Silver’ (PI 658467). PI 

476212 was highly resistant in the present study and was 99.99% similar to PI 173438 
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(unknown Bt) across the 19,281 SNPs, but the 7DS QTL reported by Chen et al. (2016) was 

not detected, possibly because too few accessions with this QTL were included in the 

present study. A haplotype analysis using SNPs in the 7DS region indicated that three of the 

highly resistant landraces in addition to the Bt12 differential and PI 476212 may contain the 

7DS QTL (Table 2.6, Supplementary File A2.4) 

Similarly, Bt9 has been mapped to 6DL between 172.8 to 175.9 Mbp in a population 

derived from the Bt9 differential PI 554099 (Steffan et al. 2017). However, our GWAS did 

not detect any markers significantly associated with 6DL in any data sets. Using a bi-

parental mapping population derived from a University of Idaho wheat breeding line 

‘IDO835’, Wang et al. (2019) found two QTL for DB resistance, one on 6DL corresponding 

with the Bt9 locus, and one on 7AL. We used the resistant haplotypes for both loci to find 

accessions that contain these QTL (Table 2.6, Supplementary File A2.4). The Bt9 

differential and PI 178383 contained the haplotype profile for the 6DL locus, but none of the 

highly resistant accessions contained the 6DL or 7AL haplotype (Table 2.6, Supplementary 

File A2.4).  

Aside from the possible low frequency of certain known loci in our GWAS panel, SNP 

maker filtering could also have reduced detection of known loci. SNP markers were filtered 

at a MAF threshold of 4% and any marker with fewer than thirteen individuals in each 

allelic state would have been filtered before analysis. This filtering threshold could mask 

SNP-trait associations that were present at low frequencies. To find such QTL, bi-parental 

populations could be developed using resistant accessions from the panel that lack alleles for 

the previously identified QTL.  
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Several marker-trait groups were associated with specific subpopulations (Table A2.4). 

For instance, 48% of accessions with the QDB-6D2 resistant haplotype are in subpopulation 

4 (Table A2.4 and Supplementary File A2.4). All the highly resistant accessions and 12 of 

the bunt differentials contained the DB-6D1 haplotype group. Conversely, the resistant 

haplotype for DB-6D2 was strongly associated resistance (Table 2.5); however none of the 

highly resistant landrace accessions contained this haplotype (Table 2.6, Supplementary File 

A2.4). 

CONCLUSIONS 

 

The present study evaluated the DB responses recorded in the GRIN database for 292 wheat 

accessions rated in three field trials and identified 98 accessions that were resistant and 28 

accessions that were highly resistant across all three years of USU field trials and in GRIN. 

Additionally, four SNP markers associated with DB resistance were identified, one marker-

trait association group on 6D was consistent across several data sets, and one marker-trait 

association group on chromosome 6D was not previously reported. Of the highly resistant 

landrace accessions, six have novel resistance haplotype profiles. These resistant accessions 

and haplotype regions can be used to confirm resistance loci in bi-parental mapping 

populations for introgression into advanced wheat breeding lines. 
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TABLES AND FIGURES 

Table 2.1  Bunt differential lines and known susceptible and resistant sources showing 

subpopulations, and DB normalized incidence across five data setsa.  

Accession Name Bt gene Subpopulation GRIN 2017 2018 2019 BLUE 

CItr 8885 Cheyenne Susceptible  4 100 119.1 102.2 131.6 116.2 

CItr 13844 Wanser Susceptible  4 
100 100 100 100 104.4 

PI 209794 Heins VII Bt0 1 97 135.3 85.2 130.2 111.2 

PI 554101 
Selection 

2092 
Bt1 1 

. 103.3 92.1 101.7 104.0 

PI 554097 
Selection 

1102 
Bt2 1 

. 121.6 98.1 131.4 119.2 

CItr 6703 Ridit Bt3 3 76 10.5 42.6 67.2 51.2 

PI 11610 CI 1558 Bt4 3 100 150.2 98.9 130.4 120.4 

CItr 11458 Hohenheimer Bt5 1 . 69.4 3.4 26.7 32.1 

CItr 10061 Rio Bt6 3 . 132.0 54.5 144.1 67.4 

PI 554100 
Selection 

50077 
Bt7 1 

100 150.0 93.2 103.7 112.7 

PI 554120 M72-1250 Bt8 2 . 0 3.0 1.9 7.5 

PI 554099 R63-6968 Bt9 2 . 0 44.0 111.1 55.3 

PI 554118 R63-6982 Bt10 2 . 17.9 19.0 69.3 37.0 

PI 554119 M82-2123 Bt11 2 1 0 1.2 2.2 4.5 

PI 119333 1696 Bt12 6 0 0 0 0 3.4 

PI 181463 Thule III Bt13 5 15 2.7 9.6 0.9 11.0 

CItr 13711 Doubbi Bt14 . . . 0.0 2.8 3.7 

CItr 12064 Carleton Bt15 . . . 9.6 15.5 14.8 

PI 173437 7838 Btp 6 0 . 0.7 0 0.1 

PI 173438 7845 Unknown 6 0 . 0 0.9 0.1 

PI 178383 6256 Bt8, 9, 10 6 0 0 2.1 0 4.5 

PI 476212 SM Selection 

4 

Unknown 6 

1 0 0 0 4.0 
aData sets including the germplasm resources information network (GRIN), 2017, 2018 and 2019 

Logan, UT field trials, and best linear unbiased estimates (BLUEs) 
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Table 2.2  Number and percent of resistant and susceptible bread wheat accessions in five data sets 

and number of accessions that were consistent for resistance or susceptibility across all data sets. 

Data seta Resistantb  Susceptiblec  Percent resistant 

GRIN 128 162 44.1% 

2017  146 144 50.3% 

2018  147 143 50.7% 

2019 131 159 45.2% 

BLUE 116 174 40.0% 

Consistent 

across all 

trials 98 116 45.8% 
aData sets including the germplasm resources information network (GRIN), mean 2017, 2018 and 

2019 Logan, UT field trials, and best linear unbiased estimate (BLUE) from across trails  
bResistance based on a DB normalized incidence ≤10%  
cSusceptibility based on a DB normalized incidence >10%  
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Table 2.3  Geographic origin and number of bread wheat accessions highly resistant, resistant, and 

susceptible to DB across all data setsa.  

Accession 

Origin DB resistance category 

Country HRb Rc Sd 

Azerbaijan 0 0 3 (2) 

Germany 0 0 1 

Iran 1 (1) 8 (8) 10 (10) 

Montenegro 1 (1) 1 (1) 2 (2) 

Russia 0 1 1 (1) 

Serbia 1 (1) 6 (6) 9 (9) 

Spain 0 0 1 (1) 

Turkey 8 (8) 26 (25) 17 (13) 

United States 17 56 72 

Total 28 98 116 
aData sets including the germplasm resources information network (GRIN), mean 2017, 2018 and 

2019 Logan, UT field trials; the number of landraces within each group shown in parenthesis 
bHighly resistant accessions with a DB NI ≤1%  
cResistant accessions with a DB NI ≤10% 
dSusceptible accessions with a DB NI >10% 
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Table 2.4 Geographic origin and number of bread wheat accessions in each subpopulation. 

Accession 

Origin Subpopulation 

Country 1 2 3 4 5 6 

Azerbaijan 0 0 1 0 2 0 

Germany 1 0 0 0 0 0 

Iran 0 5 0 0 19 3 

Montenegro 1 0 2 1 0 0 

Russia 0 0 1 0 1 0 

Serbia 2 1 15 0 0 0 

Spain 1 0 0 0 0 0 

Sweden 0 0 0 0 1 0 

Turkey 4 25 1 0 11 42 

United States 24 16 31 43 0 36 

Total 33 47 51 44 34 81 
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Table 2.5  Marker-trait association groups significantly (FDR-adjusted P ≤0.05) associated with dwarf bunt (DB) resistance.  

DB 

Marker-

trait group 

Chr.a QTL 

Range 

(Mbp)b 

SNP 

Indexc 

Markersd  SNPe FDR-

adjusted 

negative 

log10(P) 

R2 RAFf R SNPg S SNPg Significant data 

sets 

DB-6D1 6D 1.77  IWB2

1614 

2 [T/C] 1.8 0.09 0.85 40.8 87.0 BLUE 

DB-6D2 6D 6.97 to 

7.29 

IWB5

9793 

2 [A/G] 5.0 0.15 0.14 16.1 52.2 GRIN, 2018, 

BLUE 
a Physical chromosome locations of each marker trait association group with 99 or 100% identity based on the physical annotation of wheat 

(IWGSC, 2018) 
bPhysical regions in Megabase pairs (Mbp) based on the physical annotation of wheat (IWGSC, 2018) 
cSingle nucleotide polymorphism (SNP) 90K index according to Wang et al., 2014 in each marker-trait association group with the lowest P-value; 

additional associated SNPs are reported in Supplementary file 3 
dAdditional SNPs in the marker-trait association group in high LD ( ≥0.8) with the SNP index 
eSNP with resistance allele in bold and underlined  
fResistance allele frequency (RAF) for each indicator SNP 
gAverage DB normalized incidence values associated with the resistant (R) and susceptible (S) SNP allele; a low value indicates a high level of 

resistance
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Table 2.6  Highly resistant landrace accessions with DB normalized incidence ≤1% across all data 

sets, bunt differentials and several known resistant and susceptible accessions and marker-trait group 

haplotypes detected in this study and three QTL reported in previous studies.  

Accession  Bt gene Origin  BLUE 

DB-

6D1a 

DB-

6D2 

QDB.ui-

6DLb 

QDB.ui-

7ALc 

QDB.ui-

7DSd 

PI 345106  Serbia 3.9 + - - - - 

PI 345428  Montenegro 4 - - - - - 

PI 476212  United States 4 + - - - + 

PI 560601  Turkey 3.8 + - - - - 

PI 560602  Turkey 3.8 + - - - - 

PI 560842  Turkey 3.8 + - - - + 

PI 560843  Turkey 3.8 + - - - - 

PI 560848  Turkey 3.8 + - - - + 

PI 627677  Iran 4.1 + - - - - 

CItr 8885 Susceptible  United States 116.2 - - - - - 

PI 209794 Susceptible  Germany 111.2 + - - - - 

PI 554101 Bt1 United States 104 - - - - - 

PI 554097 Bt2 United States 119.2 - - - - - 

CItr 6703 Bt3 United States 51.2 + - - - - 

PI 11610 Bt4 United States 120.4 + - - - - 

CItr 11458 Bt5 United States 32.1 + - - - - 

CItr 10061 Bt6 United States 67.4 + + - - - 

PI 554100 Bt7 United States 112.7 - - - - - 

PI 554120 Bt8 United States 7.5 + - - - - 

PI 554099 Bt9 United States 55.3 - - + - - 

PI 554118 Bt10 United States 37 + + - - - 

PI 554119 Bt11 United States 4.5 + - - - - 

PI 119333 Bt12 Turkey 3.4 + - - - + 

PI 181463 Bt13 Sweden 11 + - - - - 

PI 173437 Btp Turkey 0.1 + - - - - 

PI 173438 
Bt 

(unknown) 
Turkey 0.1 + - - - + 

PI 178383 Bt8,9,10 Turkey 4.5 + + + - - 

aPresence (+) or absence (-) of the resistant allele haplotypes from each marker-trait association 

group detected in this study 
b6DL haplotype SNP markers are reported in Wang, et al. (2019)  
c7AL haplotype SNP markers are reported in Wang, et al. (2019) 
d7DS haplotype SSR markers are reported in Chen, et al. (2016) and SNP markers for this region 

were provided by Rui Wang (personal communication) 
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Fig. 2.1  DB normalized incidence distributions across 292 wheat accessions from four data sets 

including the germplasm resources information network (GRIN), mean 2017,2018 and 2019 Logan, 

UT field trials, and best linear unbiased estimates (BLUEs) from across trials; left pane: shaded 

accessions with DB normalized incidence ≤10% in GRIN, right pane: shaded accessions with DB 

normalized incidence ≥90% in GRIN. 
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Fig. 2.2  A Genetic similarity heat map derived from an identity-by-state relationship matrix of 246 

by 246 bread wheat accessions, regions of high (red) and low (purple) similarity between accessions; 

and a dendrogram showing six sub-populations (1 to 6) each separated by a dashed line. B 

Accessions plotted with three principal components showing sub-populations: 1 (brown stars), 2 (red 

circles), 3 (green diamonds), 4 (brown triangles), 5 (purple triangles), 6 (blue squares). C Best linear 

unbiased estimate (BLUE) DB normalized incidence quantile box plots, left to right: all 246 

accessions (gray) and subpopulations: 1 (blue), 2 (red), 3 (green), 4 (yellow), 5 (purple), 6 (blue); 

mean BLUE values are listed for each sub-population below their respective box plots, means 

followed by a common letter are not significantly different by Tukey’s HSD at P  ≤ 0.05.  
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Fig. 2.3  Manhattan plot showing associations between 19,281 SNP markers and DB normalized 

incidence best linear unbiased estimates (BLUEs) across 246 bread wheat accessions; the horizontal 

dashed line indicates an FDR-adjusted significance threshold of P = 0.05; A-,B- and D-genome SNP 

markers are represented by yellow, red and black dots, respectively. 
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CHAPTER 3: 

AGRONOMIC AND GENETIC ASSESSMENT OF TERMINAL DROUGHT 

TOLERANCE IN TWO-ROW SPRING BARLEY 

 

ABSTRACT 

Barley, Hordeum vulgare L., ranks fourth in global cereal grain production and is an 

important crop for animal feed, malting and human consumption. Identification of two-row 

barley germplasm with drought tolerance can increase genetic diversity of two-row barley 

germplasm and facilitate future barley breeding efforts. The present study evaluated 480 

two-row spring barley accessions from the USDA National Small Grains Collection across 

two years of irrigated and terminal drought trials for grain yield, test weight, protein content, 

thousand kernel weight, and kernel size. Twenty accessions were identified that showed 

stable high yield, high test weights, and low protein content across trials. Ten of these 

accessions were cultivars or breeding lines originating primarily from North Dakota, and the 

other twenty accessions were landraces originating primarily from central Asia. An 

additional 10 accessions were identified with stable high yield, high test weights and high 

protein across trails. Genome-wide association mapping with 6,366 SNP markers revealed 

15 drought-stable genetic loci significantly (FDR-adjusted P < 0.05) associated with at least 

one agronomic trait across and within treatments. One locus, on chromosome 2H between 

27.2 and 29.8 Mbp, was significantly associated with heading date, plant height, and kernel 

size across treatments in this study, and the PPD-H1 mutation in a previous study. Genetic 

loci on chromosomes 2H and 3H were significantly associated with increased test weight, 

and loci on chromosomes 3H and 5H were significantly associated with decreased grain 
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protein content across treatments. Accessions and SNP markers significantly associated with 

agronomic trait stability across terminal drought and irrigated environments can assist 

development of drought tolerant barley germplasm. 

 

INTRODUCTION 

 

Barley, Hordeum vulgare L., is an important cereal crop with over 147 million t harvested 

globally in 2017 (FAOSTAT, 2019). Barley’s tolerance to drought, cold, and salinity have 

contributed to wide-scale cultivation for use as animal feed, malt, and for human food  

(Ullrich, 2010; Xie, et al., 2018). Recent genomic analyses of barley collections indicate that 

major contributors to barley population structure are geographic origin, annual growth habit, 

and row type (Muñoz-Amatriaín, et al., 2014; Wang, et al., 2017; Milner, et al., 2019). 

Growth habit is differentiated by sowing date in the autumn (winter) or spring (spring), 

whereas row type distinguishes between lateral floret sterility (two-row) and fertility (six-

row). Six-row barley has the potential to produce more seeds and a higher yield.  However, 

two-row types tend to produce larger, more uniform seeds which are often preferred by the 

malting industry.  

Barley must meet strict standards for use as malt. To meet U.S. number 1 grade, two-

row malting barley shipments must have a test weight ≥ 64.35 kg hl-1 and <5% thin kernels 

with widths <2.18 mm (USDA, 2013). Important malting parameters include grain protein 

content, kernel plumpness, thousand kernel weight, malt extract, wort β-glucan, α-amylase, 

diastatic power, soluble/total protein, and free amino nitrogen (Mohammadi, et al., 2015; 
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Belcher, et al., 2018; AMBA, 2019). These agronomic and malting traits can be significantly 

influenced by environmental conditions. For example, applying drought and heat stress to 

two-row spring barley cultivars during heading, i.e. Zadoks (1974) stage 55, resulted in large 

yield losses up to 95%, and reduced grain and malting quality (Law, 2019; Mahalingam and 

Bregitzer, 2019). In another study (Morgan and Riggs, 1981) spring barley cultivars 

subjected to terminal drought at heading had lower yields, fewer plump kernels with widths 

>2.2 mm, lower thousand kernel weights, higher grain protein content, and reduced malting 

quality compared to irrigated controls.  

Global mean surface temperatures have been steadily increasing (Hansen, et al., 

2006; Hansen, et al., 2010) and exacerbate extreme drought and heat events (Xie, et al., 

2018). Fresh water availability is inextricably linked with climate extremes as heat and 

drought require additional water allocation to agricultural production which accounts for 

roughly 92% of fresh water use (Hoekstra and Mekonnen, 2012). Based on current 

production constraints, as the number of extreme weather events increase, agricultural 

outputs including malt barley production are predicted to substantially shrink while prices 

for these products increase (Xie, et al., 2018). Selecting drought and heat tolerant crops and 

varieties and identifying genomic regions associated with extreme-event tolerance has been 

proposed as a way to mitigate these effects in agricultural systems (Varshney, et al., 2018).   

Germplasm collections provide a wealth of unexplored diversity and harbor alleles 

that could be useful for drought and heat tolerance. Collection accessions paired with 

expanded genetic information and physical annotations (Mascher, et al., 2017) can provide a 

platform for novel trait and gene discovery through genome-wide association studies 
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(GWAS) (Milner, et al., 2019). The National Small Grains Collection (NSGC) in Aberdeen, 

Idaho contains the US collection of small grains including over 33,000 barley accessions. A 

previous GWAS study conducted by Muñoz-Amatriaín, et al. (2014) identified 1,860 barley 

accessions of diverse origin, growth habit and row type within the NSGC that were 

characterized as the informative Core or iCore. Their analysis identified SNP markers 

associated with row type, hull cover, and heading date that were coincident with previously 

reported mutations. These results indicated that the iCore could be effectively utilized for 

GWAS.  

In the present study 480 spring habit, two-row barley accessions were selected from 

the NSGC iCore and grown as plots under normal irrigation and terminal drought treatments 

over two growing seasons in Aberdeen, ID. The objectives of the study were to: 1) identify 

terminal drought tolerant accessions and 2) locate genomic regions associated with 

agronomic trait stability in these drought-tolerant accessions through GWAS.  

 

MATERIALS AND METHODS 

 

Plant materials  

Four-hundred and eighty two-row, spring growth habit barley accessions were selected from 

the iCore (Muñoz-Amatriaín, et al., 2014). These 480 accessions were comprised of 84 

breeding lines, 211 cultivars, five genetic stocks, 140 landraces, and 40 of uncertain 

breeding status which originated in 72 countries (Supplemental File A3.1) Additional 

information on the accessions can be found online at the Germplasm Resources Information 
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Network (GRIN website = www.ars-grin.gov). Five barley checks were used including four 

modern malting varieties: ‘Harrington’ (Harvey and Rossnagel, 1984), ‘Lacey’ (Rasmusson, 

et al., 2001), ‘Pinnacle’ released by the North Dakota State University Research Foundation 

in 2007, and ‘Tradition’ released by Busch Agricultural Resources, Inc. in 2003, and one 

feed variety ‘Baronesse’ released by Western Plant Breeders, Inc. in 1991.  

 

Field design 

Trials were sown on 17 April 2014 and 19 April 2017 at the University of Idaho 

Aberdeen Research and Extension Center in Aberdeen, Idaho, U.S. (42°57’36’’ N, 

112°49’12’’ W, elevation 1342 m). The two treatments, irrigated (IR) and terminal drought 

(DR), were planted adjacent to one another and separated by four plots of spring wheat as 

borders. Accessions and checks were sown in 1.5 m by 3.05 m plots and planted in seven 

rows at a rate of approximately 364,500 kernels ha-1. Each treatment was arranged in an 

augmented complete block design (Federer and Raghavarao, 1975), in which the 480 unique 

accessions were planted only once across twelve sub-blocks, with 40 accessions in each sub-

block. Five check varieties were planted once per sub-block, but replicated in all twelve sub-

blocks to account for spatial variation within each treatment. Each of the sub-blocks 

consisted of 45 plots arranged in a rectangle 9 plots by 5 plots and each treatment was two 

sub-blocks by six sub-blocks.  

Trial soils were Declo-loam (coarse-loamy, mixed, superactive, mesic Xeric 

Haplocalcids) with 0 to 2% slopes, pH of 8.1, and high water holding capacity (USDA Web 

Soil Survey, https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed 30 
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May 2019). Soil samples were taken at 10 cm and 20 cm depth in three randomly selected 

blocks within each treatment, and nitrogen was applied in a pelleted 46-0-0 formulation of 

urea to adjust the nitrogen target rate within each treatment. Both the IR and DR treatments 

had target yields of 6.5 t ha-1, which required 202 kg of available N ha-1. 

Spring sown barley grown in Aberdeen, Idaho typically reaches anthesis, Zadoks 

growth stage 60 (Zadoks, et al., 1974), in late June and is harvested in late July. Aberdeen’s 

arid, continental climate has warm and dry summers and provides a conducive environment 

for terminal drought studies. The Aberdeen Experiment Center mean July temperatures were 

22°C in both 2014 and 2017, and total July precipitation was 6 mm in 2014 and 4 mm in 

2017 (US Bureau of Reclamation, Cooperative Agricultural Weather Network ‘AGRIMET’: 

http://www.usbr.gov/pn/agrimet/webarcread.html accessed 29 May 2019).  

Irrigation for all treatments was scheduled using AGRIMET weather data and 

targeted a soil moisture profile half way between field capacity and wilting point in the 

active crop root zone, or 50% management allowable depletion (Qureshi and Neibling, 

2009). In 2014 water was applied using an irrigation drip system spaced every two rows in 

each plot, and in 2017 water was applied using an aluminum pipe system with overhead 

sprinklers spaced every 12.8 m across each treatment. IR treatments were irrigated weekly 

until 50% of plots had reached physiological maturity, Zadoks 85. DR treatments were also 

irrigated weekly; however, irrigation was terminated when 50% of the plots reached 

anthesis, Zadoks 60. Plots were harvested after ripening, Zadoks 93, on 30 July 2014, and on 

16 August 2017.  
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In 2014 the DR treatment received three fewer irrigations totaling 128 mm less water 

than the IR treatment, while in 2017 the DR treatment received two fewer irrigations 

accounting for 97 mm less water than the IR treatment (Supplemental File A3.2). Using 

AGRIMET estimations of water holding capacity based on crop and soil types, the DR 

treatments reached continuous 50% maximum allowable soil water depletion approximately 

11 days before the IR treatment in both years (Supplemental File A3.2).  

 

Agronomic trait evaluation 

In all trials, individual plots were harvested with a Wintersteiger Classic small plot 

combine equipped with a Harvest Master system (Wintersteiger Inc., Ried im Innkreis, 

Austria).  Yield (YLD) was calculated from raw grain weight and converted to kg ha-1. Test 

weight (TWT) was measured after the grains had dried to <10% moisture using a dry pint 

kettle and balance in accordance with USDA Grain Grading Standards (USDA, 2013) and 

converted to kg hl-1. Days to heading (HD) was measured in days from the planting date 

until 50% of the heads in each plot had emerged, Zadoks 55. Plant height (HT) was 

measured in cm at physiological maturity, Zadoks 85, from the soil surface to the top of the 

spike. At physiological maturity a qualitative rating scale (Erickson, et al., 1982) was used 

to determine the severity of relative lodging (LODGE) in each plot with 0 = no 

lodging/upright and 9 = fully lodged/prostrate on the ground and lodging incidence 

(LODGED%) on a scale between 0-100%. Protein percentage (PRO) was calculated using a 

20 g sample processed with a near-infrared Perten Grain Analyzer 9100 (Perten Instruments, 

Hägersten, Sweden) as described by the manufacturer. Individual grain kernel dimensions 



70 

 

 

 

including width in mm (GW), length in mm (GL), diameter in mm (GD), volume in mm3 

(GV), width/length ratio (GWL), and thousand kernel weight in g (TKW) were measured 

using a 5 g sample processed through a Foss Tecator GrainCheck™ 2313 (Foss Analytical, 

Hillerød, Denmark) grain analyzer as described by the manufacturer. All traits were 

measured in both environments and years except the lodging traits were only measured in 

2017, and the PRO and kernel sizes were not measured in the 2014 IR treatment.  

 

Molecular markers 

Single nucleotide polymorphism (SNP) marker acquisition and curation for the entire 

iCore panel was previously described (Muñoz-Amatriaín, et al., 2014) and downloaded from 

T3, the Triticeae Toolbox website available at http://triticeaetoolbox.org/barley/ (Accessed 

29 May 2019). SNPs were excluded if minor allele frequency (MAF) was <4%, or missing 

data >10%; heterozygous calls were also removed. A final group of 480 two-row, spring 

habit barley accessions was selected and 6,366 SNP markers were aligned with the physical 

barley annotation (Mascher, et al., 2017) and used for subsequent marker-trait associations.  

 

Statistical analysis 

All statistical analyses were conducted using JMP® Genomics v. 9.0. A mixed 

model with factors Year, Block, Treatment, Check, Accession, Treatment *Accession, were 

used to extract best linear unbiased predictors (BLUPs) using the restricted maximum 

likelihood (REML) method for all agronomic traits across and among treatments 

(Wolfinger, et al., 1997). Year, Block, and Accession were random effects, while Treatment 
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and Check were fixed effects in the model. Correlation coefficient estimates between 

agronomic trait BLUPs across and among treatments were calculated using a Pearson’s 

correlation procedure (Pearson, 1895). BLUP values for YLD, TWT, and PRO were ranked 

from 1 to 480 across treatments and within each treatment. Two accession summaries were 

generated based on these three trait rankings. One summary was for those interested in 

malting quality: the highest values for YLD and TWT were given the highest rank, while the 

lowest BLUP values for PRO were given the highest rank. The other summary was for those 

interested in food quality: the highest values for YLD, TWT and PRO were given the 

highest ranks. Trait rankings were combined into a single score in order to select those 

accessions with the best ranks across all treatments. A drought susceptibility index (DSI) 

was calculated, as described by Li et al. (2012), derived from Fischer and Maurer (1978), for 

each accession across all measured traits (Supplemental File A3.1) to assess drought 

stability.   

Genome-wide linkage disequilibrium (LD) was calculated as r2 values between each 

marker within chromosome groups. An identity-by-state (IBS) familial relationship matrix 

(K matrix) and heat map (Fig. 3.1A) were generated to explore potential sub-populations 

(Gower, 1971). STRUCTURE (Pritchard, et al., 2000) and STRUCTURE HARVESTER 

(Earl and vonHoldt, 2012) were used to determine optimal subpopulation number and 

identify the subpopulation with the highest Δk value. In STRUCTURE, burn-in iterations 

and Markov chain Monte Carlo replications were set to 10,000, the admixture correlated 

model was selected, and five replicate iterations were performed. A principal component 

analysis with 10 principal components (PCs) was generated (Q matrix) to explore population 
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stratification (Fig. 3.1B), and the resulting scree plot was used to estimate the optimal 

number of PCs in the model (Price, et al., 2006).  

Various association models were formally tested using Bayesian information content 

(BIC) assessments (Burnham and Anderson, 2004). Tested models included a general linear 

model (GLM) with no corrections for K or Q (the naïve model), a GLM that corrected for 

population stratification with 2, 3 or 5 PCs, and mixed linear models (MLMs) controlling for 

both familial relationships, as a random effect, and population stratification with 2, 3 or 5 

PCs as a fixed effect (Yu, et al., 2006). All models correcting for familial relationships 

performed better and had lower BIC values than the naïve model. A MLM with a kinship 

covariate matrix and 3 PCs had the lowest BIC value and was therefore chosen for further 

marker-trait association analysis. An FDR multiple testing correction (Benjamini and 

Hochberg, 1995) was used to adjust all reported SNPs and control for potential type I errors 

(Supplementary File 3). SNPs significantly (FDR-adjusted P ≤ 0.05) associated with any 

agronomic trait BLUP across or within treatments are listed in Supplemental File A3.3. To 

assess potentially linked SNPs, the most significant marker in each putative QTL were 

included one at a time in the MLM as covariates. Markers in high LD with the covariate 

marker were no longer significantly associated with agronomic traits and were grouped with 

the covariate SNP QTL.  

 

 

 

 



73 

 

 

 

RESULTS 

Treatment effects among accessions 

The DR treatment received fewer irrigations than the IR treatment, and stayed continuously 

below the estimated 50% water holding capacity for 11 days longer than the IR treatment in 

both 2014 and 2017 (Supplementary File A3.2). A mixed model was used to test for 

significant parameter effects and random effect variance components. The model indicated a 

significant treatment effect P ≤ 0.001 associated with most of the measured agronomic traits 

(Table 3.1). Specifically, a reduction in YLD, TWT, GW and an increase in PRO HT and 

GL was observed in the DR treatments when compared with the IR treatment (Table 3.1). 

Heading date and lodging severity were the two traits that did not show a significant 

treatment effect (Table 3.1). Variance components generated from the mixed model 

suggested that genetic variability within the accessions accounted for more than 95% of the 

observed phenotypic variation for every measured trait (Table 3.2). Year and the 

Accession*Treatment interaction did not have a significant effect on any trait, and Block 

had a significant effect on some of the measured traits including YLD, PRO, HD, HT, 

LODGE, GV and TKW (Table 3.2).  

  

Correlations among traits 

BLUPs and significance values were extracted for each of the 480 accessions across 

treatments and within each treatment (Supplemental File A3.1). Trait correlations were 

assessed using the extracted accession BLUPs within each treatment and across treatments. 

GW and GWL were positively correlated with YLD (coefficients of 0.43 and 0.48, 
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respectively) and TWT (coefficients of 0.16 and 0.45, respectively) across treatments (Table 

3.3) and within each treatment (Supplemental File A3.4). LODGE% and GL were 

negatively correlated with YLD (coefficients of -0.60 and -0.28, respectively) and TWT 

(coefficients of -0.22 and -0.40) across treatments (Table 3.3) and within each treatment 

(Supplemental File A3.4). GD and GV were highly correlated, 0.98 and 0.74, respectively, 

with GL and were excluded from Table 3, but are shown in Supplemental File A3.4.  

 

Accession identification based on phenotyping data 

Of the five checks, Pinnacle tended to outperform the other four barley checks across 

years and environments. It had the highest test weights and seed dimensions, but also lodged 

less severely and headed earlier than the other checks (Table 3.4). Harrington tended to 

underperform the other checks with low test weights and seed dimensions, and had more 

severe lodging and later heading dates (Table 3.4). These trends were exacerbated in the DR 

treatment, where Pinnacle had significantly higher TWT, GW, and TKW than the other 

check accessions (Table 3.4).   

Accessions with the highest YLD and TWT and lowest PRO were identified by 

ranking BLUP values for these traits across and within each treatment as described 

previously in the Methods. Accessions with the highest rankings for these traits were 

breeding lines or cultivars from the United States or Europe (Table 3.5); whereas accessions 

originating from Central Asia and South American had the highest rankings within the 

landraces (Table 3.5). Table 3.6 highlights ten accessions with high YLD, TWT and high 

PRO content and could be used for food barley development. The highest ranking 
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accessions in this category were from Europe: PI 321770, PI 428113, PI 371102 and 

Ethiopia PI 296455 (Table 3.6). Breeding lines and cultivars composed the majority of the 

accessions with highest YLD rankings, but landraces composed a substantial number of 

accessions with the highest TWT and PRO and lowest DSI values (Supplemental File A3.1).  

PI 643339 was the highest ranked accession based on YLD, TWT and low PRO 

within and across treatments (Table 3.5). This accession is a breeding line from North 

Dakota State University with resistance to barley leaf rust (Puccina hordei Otth.), and 

contains the leaf rust resistance gene Rph15. Malting barley breeders may consider using PI 

643339 as a source of drought tolerance and leaf rust resistance in their programs. The 

second highest ranking accession across treatments was PI 643267, and may also be a good 

line for breeding programs, but it is not listed as having disease resistance in GRIN. The 

highest ranking landrace was PI 422233 from Yemen (Table 3.5). GRIN data indicates that 

this accession may have extreme resistance to barley stripe mosaic virus, and therefore 

would be a good source of resistance to this disease in addition to drought tolerance in 

barley breeding programs. CIho 14395 from Armenia was the second highest ranking 

landrace in this study, and also was resistant to barley stripe mosaic virus in GRIN.  

 

Population structure 

 Accession identity across 6,366 SNPs and between the 480 accessions ranged from 

48% to 99%, with a mean identity of 63% and median of 62%. Genome-wide LD decayed 

from a median r2 of 0.28 at 0 Mbp to 0.16 at 1 Mbp, indicating a nearly 50% decline within 

the first Mbp. Ward hierarchical clustering based on an IBS matrix and PCA (Fig. 3.1) were 
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used to group accessions based on SNP relatedness. The variation explained by the first 

three principal components was 10.7%, 4.4% and 4.0% by PC1, PC2 and PC3, respectively. 

STRUCTURE and STRUCTURE HARVESTER were used to determine the optimal 

number of subpopulations. Subpopulation identity based on SNP data generally matched 

geographic origin descriptor data found on GRIN. More than 50% of the Asian landraces 

were in subpopulation 1, while 80% of the African landraces were in subpopulation 2 (Table 

3.7). A majority (96%) of the accessions in subpopulation 4 were U.S. breeding lines from 

North Dakota, while the lone landrace in subpopulation 4 was PI 422233, originating from 

Yemen, which was also the highest yielding landraces in this study (Table 3.5). 

Subpopulation 5 was composed primarily (83%) of accessions from Europe, while 

subpopulation 3 had representation from all UN regions (Table 3.7). Overall, the highest 

YLD and TWT and lowest PRO across treatments were in subpopulation 4, while the 

inverse was observed in subpopulation 2 (Table 3.8).     

     

Genome-wide trait-associations 

 There were 590 SNPs significantly (FDR-adjusted P ≤ 0.05) associated with at least 

one trait and one treatment (Supplemental File A3.3). Forty-four of these SNPs were 

significant in both IR and DR treatments and across treatments and composed 15 marker-

trait association loci (Table 3.9). These loci had significant SNPs with FDR-adjusted 

negative log P-values ranging from 1.3 to 14.4 and R2 values ranging from 0.03 to 0.15. 

Four of the loci were associated with TWT, three were associated PRO and four were 

associated with GW. Locus groups 3 and 5 were associated with the lowest P-values and 
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minor allele haplotypes from these groups were associated with high YLD and TWT and 

low PRO (Tables 3.9 and 3.10). Locus group 9 was associated with high YLD and very low 

PRO, but also a reduced TWT (Table 3.9). Several of the locus groups were associated with 

specific subpopulations, for example, 93% and 81% of the accessions associated with the 

minor alleles in locus groups 4 and 15, respectively, were from subpopulation 2 (Table 

3.11).  

DISCUSSION 

 

Germplasm collections harbor underexploited genetic resources that can help mitigate future 

global agriculture production constraints when used in breeding for heat and drought 

tolerance. NSGC spring habit, two-row barley accessions were selected from the previously 

developed iCore and planted as plots under regular irrigation and terminal drought 

conditions. Evapotranspiration data generated from AGRIMET provided the basis for 

determining irrigation timing for the various treatments. Significant treatment effects were 

observed using this method (Table 3.1), however, the use of soil moisture probes spread 

throughout the field would have provided additional accuracy for determining soil water 

content and could provide supplementary guidance for irrigation timing.  

BLUP values were extracted from each accession across and within treatments. An 

augmented complete block design was used with check cultivars randomly interspersed 

throughout each block to account for spatial variation in the field (Federer and Raghavarao, 

1975). This design maximized the number of accessions that could fit in each treatment, and 

allowed for the quick determination of accession ranking for each trait under each specified 
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environment. However, the BLUPs are not easy to relate to other published accession data. 

For instance, an accession with a negative yield or test weight BLUP would indicate a poor 

performing individual, but this negative value would mean little outside this set of 

accessions and treatments.  

Trait correlations were similar to those previously reported in barley (Sharma, et al., 

2018). For instance, GL was negatively correlated with YLD and GWL in the present study 

(-0.28 and -0.79, respectively across trials) and -0.11 and -0.82, respectively, in Sharma et 

al. (2018). Similarly, in both studies GW and GWL were positively associated with YLD at 

0.43 and 0.48, respectively. Another GWAS study (Matthies, et al., 2014) also reported a 

strong positive correlation between grain sieve fraction above 2.8 mm and high TWT in 

European malting barley cultivars. Selecting barley lines with uniformly high width would 

be a beneficial strategy for selecting high yields and test weights. Removing barley lines 

with high lodging severity from a breeding program would also have the effect of increasing 

YLD and TWT in the remaining lines. Conversely, some accessions that might otherwise 

have high YLD or TWT would not be detected if lodging severity was high.   

High test weights ≥ 64.35 kg hl-1 and low protein content ≤ 12% are useful 

agronomic benchmarks for two-row malting barley and are associated with price premiums 

(USDA, 2013; AMBA, 2019). In this study accessions with high YLD, high TWT and low 

PRO were identified in Table 3.5 by ranking them for each of these attributes and then 

combining the ranks for a single rank value across and within treatments. Twenty accessions 

were identified that had the highest yield and test weights and lowest protein content (Table 

3.5). Most of the highest ranking accessions across these traits, including the highest ranking 
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accession, PI 643338, were breeding lines from North Dakota, which are already likely in 

the genetic background of many U.S. cultivars. Some of the other accessions in this group 

might not be present in advanced breeding material and therefore would be useful 

germplasm for breeding programs. For example, PI 313113 from Germany was introduced 

in the US National Plant Germplasm System (NPGS) in 1966 and ranked highly for YLD, 

TWT and PRO. Similarly, PI 467811 from Austria, was ranked highly across the treatments, 

shows net blotch resistance based on GRIN data, and may have potential for improving two-

row barley germplasm.  

The highest ranking landrace, PI 422233 from Yemen, was grouped in the same 

subpopulation as the North Dakota breeding lines and its genetic background may already be 

represented in U.S. cultivars (Table 3.5). CIho 14395 from Armenia was added to the U.S. 

NPGS in 1927 and may have unique drought-tolerance attributes that are not currently 

available in adapted germplasm. PI 573687 from Georgia was in subpopulation 1 and was 

the fourth highest ranking landrace and had low stripe rust severity based on GRIN data.   

Other trait weighting schemes would allow selection for additional accessions. The 

American Malting Barley Association (2019) recommends production of  >90% plump 

kernels with widths >2.38 mm and <3% thin kernels with <2.18 mm widths. CIho 16658, a 

genetic stock with large lateral florets, but a late heading date, had the second highest kernel 

widths across treatments and in the IR and DR treatments. PI 151787, an Ethiopian landrace 

received by the U.S. NPGS in 1945, had exceptionally high GW and GWL ratios across 

treatments and could also be selected for kernel plumpness. PI 195319, a landrace from 
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Guatemala, although not a high yielding accession, had the highest test weight across all 

treatments and within each treatment. 

Barley used for food is often selected for high protein content (Rogers, et al., 2017). 

Ten accessions with high YLD, TWT and high PRO content are listed in Table 3.6. PI 

321770 from Slovenia, PI 428413 from France and PI 296455 from Ethiopia could be 

important accessions for development of high protein and food quality barley (Table 3.6). 

Numerous other Ethiopian landraces had high levels of protein. Specifically, CIho 14978 

from Tigray province, had the highest protein content across treatments and could perhaps 

be used to increase protein content in barley grown for livestock or human consumption. 

However, protein content was strongly and negatively correlated with yield; perhaps 

incremental progress could be made in breaking this negative linkage using previously 

unexploited resources such as PI 296455 or CIho 14978. Additional food and malt quality 

characteristics including grain β-glucan, malt extract, wort, α-amylase, diastatic power, 

soluble/total protein, and free amino nitrogen could be measured on selected accessions 

within this panel. Specifically, landraces with exceptional agronomic trait performance 

would make good candidates for additional malt or food quality assessment.  

One major genetic locus for heading date, locus 3, was identified on chromosome 2H 

between 27.2 and 29.8 Mbp (Table 3.9). This locus was associated with increased YLD and 

TWT (Table 3.10) across treatments, and 65% of the accessions with the minor allele for 

this locus were in subpopulation 3 (Table 3.11). This 2H locus is located at the same 

physical position as SNP markers associated with heading date previously identified in the 

iCore (Muñoz-Amatriaín, et al., 2014) on chromosome 2H at 29.1 Mbp and linked with 
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PPD-H1, a photoperiod response regulator involved in long day flowering time (Turner, et 

al., 2005). Spring accessions in the Muñoz-Amatriaín et al (2014) study were planted in the 

fall in Corvallis, Oregon, while in the present study the accessions were planted in the spring 

in Aberdeen, Idaho. Variations in planting date and treatment conditions did not seem to 

affect the robust positive effects of this locus which may warrant inclusion in barley 

breeding programs.  

Another heading date locus reported from the iCore was on chromosome 2H at 519.1 

Mbp (Muñoz-Amatriaín, et al., 2014) and was tightly linked with EPS2, an earliness per se 

flowering determinant mutation (Comadran, et al., 2012). We detected a significant locus on 

chromosome 2H at 559.1 Mbp that was associated with many agronomic traits, but not HD. 

It is likely that these two loci are distinct, and the HD locus reported by Muñoz-Amatriaín et 

al. (2014) was not detected in the present study because of the different growing 

environments and absence of the six-row accessions.  

Two of the agronomic trait genetic loci aligned with previously reported agronomic 

hotspots identified in a nested association mapping study (Sharma, et al., 2018) measuring 

YLD, TKW, GW, GL, grain number per ear, grain area, and grain roundness in 25 wild 

barley (Hordeum vulgare subsp. spontaneum (K. Koch) Thell.) accessions backcrossed into 

the adapted spring barley cultivar ‘Barke’. Locus 3 on chromosome 2H at 29.1 Mbp, and 

locus 15 between 576.3 and 591.6 Mbp were associated with grain size in the present study 

and also the Barke nested association mapping study. Additional barley agronomic trait loci 

that were within 5 Mbp of the loci in this study were detected in a GWAS of 174 European 

malting cultivars including those on 1H associated with TKW, and 5H associated with PRO 
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(Matthies, et al., 2014). One previously reported SNP associated with grain protein content 

in elite North American six-row malting barley, SCRI_RS_147762, was located on 5H at 

559.2 Mbp (Belcher, et al., 2018). This is approximately 86 Mbp proximal to the 5H locus 

associated with PRO in this study, and is likely a distinct locus that controls grain protein 

content.  

Previously reported loci associated with agronomic traits in barley that were also 

detected in the current study indicate the potential durability of these genetic regions across 

environments, and would be important regions to target for barley cultivar development. 

Specifically, the locus on 2H at 29.1 Mbp was significantly associated with HD, HT and 

other grain size traits and was correlated with higher YLD and TWT across treatments in 

this study and other studies (Muñoz-Amatriaín, et al., 2014; Sharma, et al., 2018). 

Unreported genetic loci 6 and 9 that are associated with increased TWT and low PRO across 

treatments in the present study may be novel, and bi-parental populations could be 

developed to validate these loci and explore the effects in additional detail.    

 

CONCLUSIONS 

 

Global temperature increases correspond with an increase in the number and frequency of 

extreme weather events that negatively affect barley yield and quality. Here we highlight 30 

two-row spring barley accessions from the NSGC iCore that can tolerate terminal drought 

conditions and show stable agronomic traits across drought treatments. Fifteen genetic loci 

associated with important agronomic traits across and within drought treatments were 
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identified. Loci on chromosomes 2H, 3H and 7H were associated with higher TWT and loci 

on chromosomes 3H and 5H were associated with lower PRO. Accession trait and genetic 

information can be used to facilitate the improvement of barley cultivars that are resilient to 

drought stress and fulfill an important goal of future barley breeding efforts. 
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TABLES AND FIGURES 

Table 3.1  Trait estimates across treatments and within treatments, and treatment significance across 

accessions and years. 

Traita 

Across 

treatmentsb Irrigated 

Terminal 

drought 

YLD 5.48*** 5.84 5.12 

TWT 65.1*** 65.6 64.5 

PRO 13.4*** 12.1 13.5 

HD 63.5 ns 63.1 63.8 

HT 91.9*** 90.4 93.4 

LODGE  3.0 ns 2.6 3.4 

LODGE% 23.3*** 19.9 26.8 

GW 3.5*** 3.6 3.5 

GL 9.0*** 9.0 9.1 

GD 5.80** 5.81 5.83 

GV 47.5** 49.4 47.3 

GWL 0.40*** 0.41 0.39 

TKW   41.5*** 44.7 40.6 
aYLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein 

percentage; HD is heading date in days; HT is height in cm; LODGE is lodging severity where 0 = 

no lodging and 9 = fully lodged; LODGE% is lodging incidence between 0-100%; GW is grain 

width in mm; GL is grain length in mm; GD is grain diameter in mm; GV is grain volume in mm3; 

GWL is the grain width by grain length ratio; TKW is thousand kernel weight in g 

bMean trait estimate across all treatments; treatment significance: ns = not significant, *≤0.05, 

**≤0.01, and ***≤0.001 
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Table 3.2  Restricted maximum likelihood variance component estimates and significancea for 480 

accessions across two years and 12 blocks. 

Traitb 
Variance component 

Year Block Accession Accession*Treatment Residual Total 

YLD 0.40 ns 0.11* 38.84*** 0.03 ns 0.94 40.32 

TWT 0 ns 0.37 ns 397.56*** 0.22 ns 10.67 408.82 

PRO 2.62 ns 0.13* 124.49*** 0 ns 1.14 128.39 

HD 14.03 ns 0.50* 1802.10*** 0.50 ns 3.71 1820.85 

HT 45.31 ns 23.16* 6651.58*** 2.81 ns 106.42 6826.47 

LODGE  . 0.45* 166.89*** 0.69 ns 1.83 169.86 

LODGE% . 44.4* 35001.8*** 143.6 ns 258.6 35448.6 

GW 0.01 ns 0.01 ns 1.70*** 0.01 ns 0.01 1.72 

GL 0.02 ns 0.01 ns 36.30*** 0.01 ns 0.04 36.37 

GD 0.01 ns 0.01 ns 8.74*** 0.01 ns 0.01 8.76 

GV 5.90 ns 0.32* 2505.89*** 0.10 ns 4.8 2517.02 

GWL 0 ns 0 ns 0.06*** 0 ns 0 0.06 

TKW   10.69 ns 0.79* 1943.96*** 0.38 ns 8.14 1963.96 
aVariance component significance: ns = not significant, *≤0.05, **≤0.01, and ***≤0.001 
bYLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein 

percentage; HD is heading date in days; HT is height in cm; LODGE is lodging severity where 0=no 

lodging and 9=fully lodged; LODGE% is lodging incidence between 0-100%; GW is grain width in 

mm; GL is grain length in mm; GD is grain diameter in mm; GV is grain volume in mm3; GWL is 

the grain width by grain length ratio; TKW is thousand kernel weight in g 
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Table 3.3  Traita correlations and significanceb across all treatment BLUPs. 

 

Trait YLD TWT PRO HD HT LODGE LODGE% GW GL GWL TKW 

YLD 1           

TWT 
0.21 

*** 
1          

PRO 
-0.58 

*** 

-0.02 

ns 
1         

HD 0.01 ns 
-0.27 

*** 

0.09 

* 
1        

HT 
-0.12 

** 

-0.05 

ns 

0.14 

** 

0.56 

*** 
1       

LODGE 
-0.53 

*** 

-0.27 

*** 

0.33 

*** 

0.09 

* 

0.08 

ns 
1      

LODGE% 
-0.60 

*** 

-0.22 

*** 

0.39 

*** 

-0.05  

ns 

0.02  

ns 

0.89 

*** 
1     

GW 
0.43 

*** 

0.16 

*** 

-0.42 

*** 

-0.37 

*** 

-0.14 

** 

-0.40 

*** 

-0.38 

*** 
1    

GL 
-0.28 

*** 

-0.40 

*** 

-0.01  

ns 

-0.32 

*** 

-0.26 

*** 

0.32 

*** 

0.41 

*** 

0.11 

*** 
1   

GWL 
0.48 

*** 

0.45 

*** 

-0.25 

*** 

0.04  

ns 

0.13 

* 

-0.53 

*** 

-0.59 

*** 

0.48 

*** 

-0.79 

*** 
1  

TKW 
0.12  

** 

0.14 

*** 

-0.21 

*** 

-0.60 

*** 

-0.37 

*** 

-0.11  

* 

-0.01  

ns 

0.71 

*** 

0.62 

*** 

-0.09 

* 
1 

a YLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein percentage; HD is heading date in days; HT is height in 

cm; LODGE is lodging intensity where 0=no lodging and 9=fully lodged; LODGE% is lodging incidence between 0-100%; GW is grain width in 

mm; GL is grain length in mm; GD is grain diameter in mm; GV is grain volume in mm3; GWL is the grain width by grain length ratio; TKW is 

thousand kernel weight in g 

bSignificance is denoted below each correlation coefficient as: ns = not significant, *≤0.05, **≤0.01 and ***≤0.001 
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Table 3.4  Barley check traita meansb across environments and years. 

 

Trait 
Irrigated  Terminal drought 

Baronesse Harrington Lacey Pinnacle Tradition Baronesse Harrington Lacey Pinnacle Tradition 

YLD 6.3a 5.4a 6.1a 6.3a 6.4a 5.6a 4.9a 5.6a 5.5a 5.2a 

TWT 67.18a 64.71a 65.12a 66.44a 65.06a 65.9ab 62.8c 64.9b 66.8a 62.5c 

PRO 11.6b 12.4a 12.0ab 11.0c 11.6bc 13.1ab 13.9a 13.3ab 12.3b 13.4ab 

HD 63.8ab 64.9a 60.4c 61.2bc 63.6ab 65.2a 66.3a 60.6c 61.8bc 64.2ab 

HT 86.7a 89.1a 93.3a 90.3a 93.2a 87.3b 95.1 94.3ab 93.6ab 97.5a 

LODGE (0-9) 1.8b 3.1a 2.7ab 1.7b 1.9b 3.5a 3.2a 3.5a 2.1a 3.8a 

LODGE (%) 8.8bc 29.2a 19.6ab 3.8c 9.6bc 20.0ab 24.6ab 28.3ab 9.2b 34.6a 

GW 3.7abc 3.7ab 3.5c 3.8a 3.6bc 3.5b 3.5b 3.4c 3.7a 3.3d 

GL 9.2a 9.2a 8.4c 9.1a 8.6b 9.3a 9.2b 8.6d 9.3a 8.8c 

GD 5.9a 5.9a 5.5b 5.9a 5.6b 5.9b 5.9c 5.6d 6.0a 5.6d 

GV 51.6b 50.7b 45.0c 55.6a 43.6c 49.2a 47.8b 43.9c 54.7a 40.7d 

GWL 0.41d 0.41cd 0.42ab 0.43a 0.41bc 0.38b 0.39b 0.40a 0.40a 0.38b 

TKW   47.2b 43.8c 40.7d 52.4a 40.1d 41.9b 39.6bc 38.3c 48.5a 34.8d 
aYLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein percentage; HD is heading date in days; HT is height in 

cm; LODGE is lodging severity where 0 = no lodging and 9 = fully lodged; LODGE% is lodging incidence between 0-100%; GW is grain width 

in mm; GL is grain length in mm; GD is grain diameter in mm; GV is grain volume in mm3; GWL is the grain width by grain length ratio; TKW is 

thousand kernel weight in g 

bMeans followed by a common letter are not significantly different by Tukey’s HSD at P  ≤ 0.05  
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Table 3.5  Accessions with the highest overall BLUP traita values for highest YLD and TWT and low PRO across all treatments. 

Overall 

Rankb 

IR 

Rank 

DR 

Rank Accession Status COUNTRY STATE YLD TWT PRO 

DSIc 

YLD 

1 1 1 PI 643339 BREEDING United States North Dakota 17.8 95.6 -6.2 1.0 

2 4 2 PI 643267 BREEDING United States North Dakota 14.0 96.4 -5.0 1.7 

3 6 34 PI 643310 BREEDING United States North Dakota 18.8 84.3 -2.6 2.0 

4 22 7 PI 313113 CULTIVAR Germany Baden-Wurttemberg 15.1 90.5 0.3 1.8 

5 5 35 PI 467811 CULTIVAR Austria Vienna 13.4 86.7 -5.0 2.5 

6 3 5 PI 643314 BREEDING United States North Dakota 13.7 98.4 1.3 2.3 

7 24 43 PI 643376 BREEDING United States North Dakota 15.4 85.6 -0.3 0.8 

8 8 9 PI 643274 BREEDING United States North Dakota 13.4 90.4 0.6 3.3 

9 11 8 PI 643383 BREEDING United States North Dakota 16.9 79.2 -6.9 2.7 

10 33 14 PI 428497 CULTIVAR France Yvelines 15.2 78.3 -3.3 1.8 

14 37 11 PI 422233 LANDRACE Yemen  12.2 79.5 -0.9 -1.2 

38 31 65 CIho 14395 LANDRACE Armenia  9.7 82.3 7.0 3.2 

64 126 36 PI 467486 LANDRACE Austria Upper Austria 9.9 79.8 9.9 -0.1 

66 208 60 PI 573687 LANDRACE Georgia  10.0 83.1 11.2 -5.5 

71 82 91 PI 48641 LANDRACE Iran  9.4 90.8 11.9 2.8 

80 103 123 PI 639300 LANDRACE Kazakhstan Alma-Ata 7.6 67.9 -3.9 2.0 

87 80 161 PI 639299 LANDRACE Kazakhstan Alma-Ata 9.7 64.6 3.2 2.4 

88 102 61 PI 250861 LANDRACE Iran Khorasan 5.3 83.8 7.0 -0.9 

112 334 62 PI 328907 LANDRACE Turkey  6.6 73.5 9.0 -0.3 

120 84 144 PI 436149 LANDRACE Chile La Araucania 9.6 78.2 14.8 2.2 
aTraits are reported for BLUP values across treatments: YLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein 

percentage 
bAccession rank was calculated by assigning each accession a rank based on the highest yield, highest test weight values and lowest protein value 

then adding the ranks together for a single value across and among treatments  
cAccession drought susceptibility index (DSI) calculated using the formula provided by Li et al. (2012); numbers close to 1 indicate yield stability 

across treatments  
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Table 3.6  Accessions with the highest overall BLUP traita values for YLD and TWT and high PRO across all treatments. 

 

Overall 

Rankb 

IR 

Rank 

DR 

Rank Accession Status COUNTRY STATE YLD TWT PRO 

DSI-

YLDC 

1 18 1 PI 321770 CULTIVAR Slovenia  10.8 83.2 18.4 2.1 

2 15 6 PI 428413 CULTIVAR France Yvelines 9.8 80.6 19.4 2.4 

3 9 94 PI 296455 LANDRACE Ethiopia Tigray 6.3 87.3 27.5 4.2 

4 5 48 PI 371102 LANDRACE Switzerland Valais 4.1 102.6 36.8 7.0 

5 1 181 PI 399482 CULTIVAR Netherlands South Holland 16.1 69.6 17.5 4.9 

6 6 14 PI 357317 BREEDING Denmark Roskilde 8.9 76.0 20.5 4.1 

7 3 15 PI 392458 BREEDING South Africa Cape Province 6.6 81.0 25.5 2.9 

8 30 157 PI 41250 UNCERTAIN Russian Federation Leningrad 8.9 85.8 15.8 4.0 

9 12 72 PI 342139 LANDRACE Turkey Usak 4.7 80.5 56.6 -0.5 

10 17 40 PI 290234 CULTIVAR Hungary Heves 6.2 78.9 26.3 4.0 
aTraits are reported for BLUP values across treatments: YLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein 

percentage 
bAccession rank was calculated by assigning each accession a rank based on the highest yield, test weight and protein values then adding the ranks 

together for a single value across and among treatments  
cAccession drought susceptibility index (DSI) calculated using the formula provided by Li et al. (2012); numbers close to 1 indicate yield stability 

across treatments
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Table 3.7  Geographic region of accessions within each subpopulation; the total number of 

accessions in each subpopulation is listed with number of landraces shown in parenthesis.  

Origina 
Subpopulation 

1 2 3 4 5 All 

Africa 4 (2) 20 (20) 27 (2) 0 5 (1) 56 (25) 

Americas 8 (2) 0 21 (1) 25 18 (6) 72 (9) 

Asia 29 (23) 5 (5) 15 (11) 1 (1) 6 (1) 56 (41) 

Europe 12 (5) 4 61 (40) 0 199 (14) 276 (59) 

Oceania 0 1 2 0 11 14 

Unknown 2 (2) 1 (1) 3 (3) 0 0 6 (6) 

Total 55 (34) 31 (26) 129 (57) 26 (1) 239 (22) 480 (140) 
aAccession region within each subpopulation is based on UN M49 regional statistical use criteria 

 

 

Table 3.8  Mean traita valuesb within each subpopulation across all treatments.  

Trait 
Subpopulation 

1 2 3 4 5 All 

YLD 1.37d 0.91d 3.48c 12.23a 7.36b 5.48 

TWT 68.4b 58.4c 62.2bc 79.0a 65.2bc 65.1 

PRO 16.4ab 21.0a 16.0b 0.6d 11.8c 13.4 

HD 33.2c 37.4bc 56.6b 17.8c 82.4a 63.5 

HT 49.5b 56.9b 104.5a 63.5b 102.4a 91.9 

LODGE 11.0a 8.7ab 5.7b -12.8d 0.73c 3.0 

LODGE% 177.7a 157.5a 74.0b -229.2d -29.5c 23.3 

GW 3.0c 3.3bc 3.5b 6.0a 3.4bc 3.5 

GL 11.7b 18.1a 11.4b 6.6c 6.2c 9.0 

GWL 0.26c 0.11d 0.30c 0.75a 0.47b 0.40 

TKW 55.2b 82.5a 50.6b 92.8a 22.4c 41.5 
aYLD is yield in metric tons ha-1; TWT is test weight in kg ha-1; PRO is total grain protein 

percentage; HD is heading date in days; HT is height in cm; LODGE is lodging intensity where 0=no 

lodging and 9=fully lodged; LODGE% is lodging severity between 0-100%; GW is grain width in 

mm; GL is grain length in mm; GWL is the grain width and grain length ratio; TKW is thousand 

kernel weight in g 
bMeans followed by a common letter are not significantly different by Tukey’s HSD at P  ≤ 0.05
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Table 3.9  Genetic loci significantly (FDR-adjusted P ≤ 0.05) associated with barley agronomic traits across treatments and in the irrigated and 

terminal drought treatments.  

 

Locus 

Index SNP Indexa Chr.b Range (Mbp)c SNPd SNPse 

FDR-adjusted 

-log10(P) R2f MAFg Trait(s)h 

1 12_30191 1H 522.4 A/G 1 3.29 0.05 0.15 GW, GL, GWL 

2 SCRI_RS_48925 1H 538.5 A/C 1 4.12 0.07 0.38 PRO 

3 BK_12 2H 27.2-29.8 T/G 9 14.4 0.15 0.15 HD, HT, GL, GWL  

4 12_21476 2H 559.1 T/G 1 3.21 0.05 0.06 TWT, GL, GD, GV 

5 12_11414 3H 28.8 T/G 1 1.75 0.04 0.09 GL 

6 SCRI_RS_115045 3H 38.3 A/G 1 9.42 0.12 0.41 

TWT, PRO, GL, GD, GV, GWL, 

TKW 

7 SCRI_RS_235065 3H 538.2 T/C 1 6.67 0.06 0.14 GL, GD, GV, GWL 

8 SCRI_RS_180891 4H 9.7 T/C 1 3.71 0.07 0.32 GW, GL, GD, GV, TKW 

9 SCRI_RS_50995 5H 644.0-648.4 A/G 15 2.53 0.06 0.07 PRO 

10 12_30626 6H 542.83 T/C 1 2.65 0.06 0.20 TWT, GL, GV, GD, GWL 

11 11_10256 7H 217.3 A/G 1 5.51 0.05 0.05 GW, GL, GV, GD, TKW 

12 12_30492 7H 264.3 A/C 1 1.75 0.04 0.20 GL, GD, GV 

13 12_10362 7H 457.2 T/C 1 1.46 0.03 0.09 GL, GD, GV, TKW 

14 12_30996 7H 517.6-554.2 A/G 3 1.34 0.04 0.09 GW, GL, GD, GV, GWL, TKW 

15 12_30335 7H 576.3-591.6 A/C 6 2.07 0.05 0.05 

TWT, GW, GL, GD, GV, GWL, 

TKW 
a Single nucleotide polymorphism (SNP) index in each locus with the lowest FDR-adjusted P-value associated with the first trait listed; additional associated SNPs are reported in 

Supplementary File 3 
bPhysical chromosome location of each locus with 99 or 100% identity based on the physical barley annotation (Mascher et al., 2017) 
cPhysical locus regions in Megabase pairs (Mbp) based on the physical annotation of barley (Mascher et al., 2017) 
dSNP with minor allele in bold and underlined  
eOther covariate SNPs in the locus with the index SNP  
fProportion of phenotypic variation explained by each SNP 
gMinor allele frequency (MAF) 
hTraits include: YLD as yield in metric tons ha-1; TWT as test weight in kg hl-1; PRO as total grain protein percentage; HD as heading date in days; HT as height in cm; LODGE as 

lodging intensity where 0=no lodging and 9=fully lodged; LODGE% as lodging severity between 0-100%; GW as grain width in mm; GL as grain length in mm; GWL as the grain 

width and grain length ratio; TKW as thousand kernel weight in g
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Table 3.10  Mean traita values associated with the minor allele haplotype for each marker-trait locus 

across and within treatments. 

Locus 

Index 

Across treatments Irrigated Terminal drought 

YLDb TWTc PROd YLD TWT YLD TWT PRO 

1 0.65 60.9 19.9 2.41 62.9 3.57 60.5 19.0 

2 5.38 64.3 12.3 5.93 65.1 5.2 63.8 12.5 

3 6.44 75.1 14.9 6.88 68.7 6.07 73.1 13.6 

4 1.70 54.9 18.4 2.70 61.3 4.25 53.5 18.5 

5 1.32 58.9 18.9 2.95 62.8 3.85 57.3 18.5 

6 6.93 65.8 11.4 6.84 66.3 5.88 64.9 11.7 

7 5.92 63.3 11.9 6.07 65.0 5.39 62.6 12.3 

8 4.85 64.4 13.7 5.59 64.9 4.69 63.7 14.0 

9 7.10 60.4 8.3 7.29 62.7 5.73 62.5 8.8 

10 4.07 66.9 16.0 4.93 65.6 4.65 65.6 15.6 

11 0.22 75.2 22.6 1.95 66.4 3.40 80.0 20.7 

12 5.53 74.3 13.0 5.82 68.2 5.43 75.4 12.6 

13 3.43 58.2 14.8 4.06 63.2 4.61 57.9 14.9 

14 3.40 59.1 17.5 4.11 62.3 4.66 58.9 18.0 

15 2.95 60.0 15.1 4.14 62.5 4.11 62.0 14.8 
aYLD is yield in metric tons ha-1; TWT is test weight in kg hl-1; PRO is total grain protein percentage 
bMean YLD across treatments is 5.48; YLD-IR treatment is 5.84 and YLD-DR treatment is 5.12  
cMean TWT across treatments is 65.1; TWT-IR treatment is 65.6 and TWT-DR treatment is 64.5 
dMean PRO across treatments is 13.4; PRO-IR treatment is 12.1 and PRO-DR treatment is 13.5 

 

 

 

 

 

 

 



97 

 

 

 

 

Table 3.11  Proportion of accessions represented by each subpopulation within each marker-trait loci 

minor allele haplotype.  

Locus 

Index 

Subpopulation 

1 2 3 4 5 

1 0.36 0.40 0.24 0 0 

2 0.20 0.09 0.27 0.09 0.34 

3 0.14 0.03 0.65 0 0.19 

4 0.03 0.93 0.03 0 0 

5 0.17 0.71 0.07 0.02 0.02 

6 0.06 0.11 0.16 0.12 0.54 

7 0.07 0 0.52 0.26 0.14 

8 0.12 0 0.41 0 0.47 

9 0.20 0.05 0.05 0 0.70 

10 0.34 0 0.49 0.01 0.16 

11 0.61 0.22 0.13 0 0.04 

12 0.24 0.05 0.34 0.25 0.12 

13 0.02 0.40 0.17 0.02 0.38 

14 0.06 0.56 0.28 0.06 0.03 

15 0.06 0.81 0.13 0 0 

 



98 

 

 

 

 

 

Fig. 3.1  Five two-row spring habit barley subpopulations visualized by A Ward hierarchical 

clustering based on an identity-by-state matrix and B principal component analysis with three 

dimensions where five subpopulations are denoted as 1: blue circles, 2: red squares, 3: green 

triangles, 4: brown Ys, and 5: yellow diamonds.  
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APPENDICIES 

CHAPTER 2 APPENDICIES 

Table A2.1 Previously reported common bunt (CB) and dwarf bunt (DB) resistance loci.  

 

Chromo

some 

Position 

(cM)  
Disease Resistance Source Reference 

1A 74-76 DB CB 
IDO444; PI 

476212 
Chen et al. (2016); Mourad et al. (2018) 

1BS 19-20 CB 

‘AC Domain’; 

‘Blizzard’; PI 

476212 

Fofana et al. (2008); Wang et al. (2009) 

1BS 45 CB ‘Trintella’ Dumalasová et al. (2012) 

1BS 43.8 CB ‘Carberry’ Singh et al. (2016) 

1BS 47-55 CB ‘CDC Go’ Zou et al. (2017) 

1B 76-96 CB ‘AC Domain’ 
Fofana et al. (2008); Bhatta et al. 

(2018); Mourad et al. (2018) 

2A  CB  Bhatta et al. (2018) 

2BS 13-15.2 DB 
IDO444; PI 

476212 
Chen et al. (2016) 

2BL  CB  
Bhatta et al. (2018); Mourad et al. 

(2018) 

3AL 200-206 CB  ‘CDC Go’ Zou et al. (2017); Mourad et al. (2018) 

3BS  CB  Mourad et al. (2018) 

3DL  CB  Bhatta et al. (2018) 

4AL  CB  
Bhatta et al. (2018); Mourad et al. 

(2018) 

4BS 62.3-89.4 CB ‘Carberry’ Singh et al. (2016) 

4DS 7.44 CB ‘Carberry’ Singh et al. (2016) 

5AL  CB  Mourad et al. (2018) 

5BS 0 CB ‘Trintella’ Dumalasová et al. (2012) 

5BL  CB  Mourad et al. (2018) 

5DL  CB  Mourad et al. (2018) 

6AL  CB  Mourad et al. (2018) 

6BL  CB  Mourad et al. (2018) 
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6DS 9.7 CB 

‘AC Cadillac’; 

‘AC Taber’; PI 

178383 

Menzies et al. (2006); Singh et al. 

(2016) 

 

6DL 125-132 CB 
PI 178383; PI 

554099 
Steffen et al. (2017) 

7AS 44 CB ‘Trintella’ Dumalasová et al. (2012); Bhatta (2018) 

7AL 117-120 CB ‘AC Domain’ 
Fofana et al. (2008); Bhatta et al. 

(2018); Mourad et al. (2018) 

7BS 9.6 CB ‘McKenzie’ Knox et al. (2013) 

7BS 13 CB ‘Trintella’ 
Dumalasová et al. (2012); Mourad et al. 

(2018) 

7BL  CB  

Bhatta et al. (2018); Mourad et al. 

(2018) 

7DS 1 DB 

IDO444; PI 

476212 

Chen et al. (2016) 

7DL 46.6 CB ‘Carberry’ Singh et al. (2016) 

7DL  CB  Mourad et al. (2018) 

  

 
 

Table A2.2  Restricted maximum likelihood variance component estimates and significance values for 

292 wheat accessions across four trials. 

 

Effect 

Variance 

ratio 

Variance 

component 

Standard 

error P-value Percent  

Accession 5.02 1601.08 141.43 <.0001 74.91 

Trial 0.24 76.21 63.32 0.2287 3.57 

Accession*Trial 0.44 141.21 27.76 <.0001 6.61 

Residual  318.75 21.97  14.91 

Total  2137.25 155.86  100 
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Table A2.3  Number, mean, standard deviation and range of BLUE values for each marker-trait 

haplotype group combination.  

 

Marker-trait group Number Mean  

Standard 

Deviation Min. Max 

6D1 210 40.5 39.2 0.1 122.1 

6D2 33 16.3 19.8 3.8 82.1 

6D1+6D2 32 16.1 20.1 3.8 82.1 

 

 

Table A2.4  Proportion of 246 bread wheat accessions with resistant allele haplotypes represented by 

each subpopulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DB Marker-trait 

association 

Subpopulation 

1 2 3 4 5 6 

DB-6D1 0.11 0.15 0.22 0.11 0.15 0.24 

DB-6D2 0.09 0.12 0.06 0.48 0.03 0.21 
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Figure A2.1 Genome-wide linkage disequilibrium (LD) scatter plot showing correlations (r2) between 

intrachromosomal SNP marker pairs as a function of inter-marker physical position; a smoothing 

spline (black line) with lambda equal to 10,000 is fit to the data. 
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Figure A2.2 Manhattan plots showing FDR-adjusted associations between 19,281 SNP markers and 

DB normalized incidence in A: GRIN, B: 2017, C: 2018 and D: 2019 data sets across 246 wheat 

accessions; the horizontal dashed line indicates an FDR-adjusted significance threshold of P = 0.05; 

A-,B- and D-genome SNP markers are represented by yellow, red and black dots, respectively. 
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Figure A2.3  Quantile-quantile plots showing expected vs observed negative log10(P) values generated 

from the GWAS for 19,281 SNPs in A: GRIN, B: 2017, C: 2018, D: 2019 and E: BLUE data sets 

across 246 wheat accessions. 
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Supplementary File A2.1 Accessions and their associated descriptors and phenotypes.  

 

Supplementary File A2.2 All 19,281 SNP markers, their associated annotation information, -log10(P), 

FDR-adjusted –log10(P) and R2 values for each DB NI data set.  

 

Supplementary File A2.3 Four SNP markers that were significant at an FDR-adjusted (P < 0.05) in at 

least one trial mean or BLUE with associated annotation information, -log10(P) values, FDR-adjusted 

–log10(P) values and R2 values for each DB NI data set.  

 

Supplementary File A2.4 All 246 accessions with corresponding trial means, BLUE values and 

marker-trait group haplotypes detected in this study and three QTL reported in previous studies. 
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CHAPTER 3 APPENDICIES 

 

Supplementary File A3.1 Accession ID, subpopulation designation, improvement status, origin and 

BLUP values for each measured trait across and within treatments. 

 

Supplementary File A3.2 2014 and 2017 AGRIMET soil water availability from seedling emergence 

to harvest for the irrigated and terminal drought treatments. 

 

Supplementary File A3.3 All SNP markers used in this study, their corresponding negative log10 P-

values, FDR-adjusted P-values and R2 association values, and SNP markers significantly (FDR-

adjusted P < 0.05) associated with two-row spring barley agronomic traits grown under irrigated and 

terminal drought conditions. 

 

Supplementary File A3.4 Two-row spring barley agronomic trait correlation coefficients and 

probabilities across, within and amongst treatments. 

 

 


