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Abstract

In the early 2000s, severe drought and beetle outbreaks brought on by climate

change led to extensive piñon pine mortality in northern New Mexico. Mapping piñon

mortality is critical for understanding and monitoring impacts to ecosystem services. I used

Landsat imagery, finer-resolution reference data, and statistical modeling to predict absolute

within-pixel percent tree mortality (PTM). I found that a balanced random forest model had

the highest accuracy. I applied the model to a time series and assessed spatial and temporal

patterns of the estimated tree mortality. Pixels within the study area experienced a mean

of 42.3% tree mortality, a mean duration of 3 years, and a mean rate of mortality of 22%

per year. From 1987 to 2009, cumulative tree mortality reached 67,190 ha, or 19.8% of

the woodland area, the equivalent of 48.9 million piñons. These results demonstrate the

capability of mapping drought-induced PTM using a Landsat time series.
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1. Introduction

Extensive tree mortality has occurred globally in recent years due to a warming

climate (Breshears et al., 2005; Allen et al., 2010). Climate change increases many forests’

vulnerability to ecosystem changes and tree mortality via drought and other disturbances

(Melillo et al., 2014). Such mortality reduces the ability for forests to deliver ecosystem

goods and services (e.g., timber, recreation, wildlife habitat, and carbon sequestration),

impacts biodiversity, and interacts with other forest disturbances such as insects or fire

(e.g., Clifford et al., 2008; Breshears et al., 2011; Hicke et al., 2012a, 2012b; Anderegg

et al., 2012; IPCC, 2014b; Hurteau et al., 2014). In the early 2000s, the southwestern

United States experienced widespread mortality of two-needle (Pinus edulis Engelmann)

and single-leaf (Pinus monophylla Torrey and Fremont) piñon pines due to drought and

bark beetle outbreaks (Breshears et al., 2005; Williams et al., 2012). The combination

of attributed conditions (i.e., low water availability, high temperatures, and high vapor

pressure deficit) has been termed a “global-change-type” drought (Breshears et al., 2005)

and is predicted to continue or increase in the next century resulting in regional-scale tree

mortality of dominant vegetation (Allen, 2007; Williams et al., 2012; IPCC, 2014b).

Despite the significance of tree mortality, there remains limited quantitative

information available about the spatial and temporal characteristics of climate-related

mortality in woodland ecosystems (Allen et al., 2010; Hansen et al., 2013). For example,

many maps of mortality only document location of die-offs, not severity, extent, or timing

(Allen et al., 2010). Past research has utilized satellite remote sensing to quantify extent

and patterns of die-off (Coops et al., 2006; Huang et al., 2010; Meddens et al., 2011; Garrity

et al., 2013; Krofcheck et al., 2014), yet the majority of this research has focused on assessing

methods to produce categorical classifications of mortality in dense- or closed-canopy forests.

Recent studies in closed-canopy forests have demonstrated that Landsat data can be used to

predict continuous mortality within a 30-m pixel as opposed to a categorical classification,
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providing a more sensitive representation of mortality (Meigs et al., 2011; Meddens and

Hicke, 2014).

In contrast to these forests, however, open canopies characterize semi-arid woodlands.

Thus, soils and understory contribute more to the spectral reflectance, making changes

in vegetation (i.e., mortality) a distinct challenge to detect with satellite-based remote

sensing in these areas (e.g., Huang et al., 2010; Krofcheck et al., 2014; Schwantes et al.,

2016). Furthermore, when there is low mortality (i.e., few trees die within a given satellite

pixel) in open-canopy woodlands, the challenge of detecting its spectral signal becomes more

problematic. Past studies have demonstrated the capability of very high-resolution imagery

(e.g., QuickBird) to map tree mortality in these landscapes (e.g., Garrity et al., 2013).

However, such imagery has limited spatial and temporal coverage and is costly. Providing

spatiotemporal information about tree mortality in woodlands is necessary for understanding

the influences of climate change on these forests as well as assessing impacts to ecosystem

services (Allen et al., 2010; McDowell, 2011). Moderate-resolution (e.g., Landsat) imagery

balances the requirements of large spatial extents, substantial archival imagery, low cost

(i.e., free) user acquisition, and the spatial resolution needed to detect tree mortality in

open-canopy woodlands.

1.1. Climate change, drought, and tree mortality in the Southwest

While piñon pines can form pure stands, they are commonly known to intermix with

one or more juniper species, forming the coniferous piñon-juniper (PJ) woodland, one of the

most widespread plant communities in the United States (Lanner, 1981; Gottfried et al., 1995;

Allen et al., 1998). It is estimated that there is up to 30 million ha of PJ woodland within

the United States (Lanner, 1981; Gottfried et al., 1995; Ferguson, 2006). The semi-arid PJ

woodland is an open forest of low and often bushy or contorted trees and shrubs (Lanner,

1981). The two-needle piñon, also known as the “common” or “Colorado” piñon, is the most

common piñon species found in the PJ woodland of New Mexico (Dick-Peddie, 1993). It
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Figure 1.1. Piñon mortality along Interstate 25, south of Santa Fe, NM in April, 2003 (photo by Bob
Heuer).

produces commercial piñon pine nuts (Lanner, 1981; Breshears et al., 2011). The one-seed

juniper (Juniperus monosperma Engelmann) is the most common juniper species in New

Mexico; however, in northern New Mexico, it may share dominance with Rocky Mountain

juniper (Juniperus scopulorum), and additionally the Utah juniper (Juniperus osteosperma)

in the northwest corner of the state (Dick-Peddie, 1993). While piñon and juniper tree

species generally require the least amount of available moisture of all conifers (Dick-Peddie,

1993), junipers are the more drought tolerant of the two and tend to dominate drier sites

(Gottfried et al., 1995). Likewise, the proportion of piñons found in a PJ woodland will tend

to increase with an increase in elevation and available moisture (Gottfried et al., 1995).

In the early 2000s, more than 50% of the contiguous United States experienced

moderate to severe drought conditions (Lawrimore and Stephens, 2003). In particular,

the southwestern United States experienced rapid, widespread mortality of two-needle and

single-leaf piñon pines due to drought and piñon ips (Ips confusus Leconte) outbreaks

between 2002 and 2004 (Breshears et al., 2005; Williams et al., 2012; Meddens et al.,

2015) (Figure 1.1). While the severe drought of the early 2000s had slightly greater total

precipitation than a previous sub-continental drought in the 1950s, which had induced
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notable Pinus ponderosa mortality within the region (Allen and Breshears, 1998), the

more recent multi-year drought was considerably warmer and the resulting mortality was

subsequently greater in magnitude and extent (Breshears et al., 2005). The low water

availability, high temperatures, and high vapor pressure deficit in the region during the early

2000s drought, since termed a “global-change-type” drought (Breshears et al., 2005, 2009),

led to an increase in stands of stressed trees, allowing for ips populations to erupt (Raffa

et al., 2008; Gaylord et al., 2013). Unlike some other bark beetle species, piñon ips do not

kill healthy trees (Hicke and Zeppel, 2013). Therefore, after the severe drought, the local

supply of stressed trees declined, followed by a sharp decline in ips populations (Raffa et al.,

2008). In a review of 21 observational studies of piñon mortality in the American Southwest

by Meddens et al. (2015), bark beetle outbreaks were cited as a contributing factor of the

mortality and drought was reported as the main factor.

Drought is a phenomenon in which its onset and end are often hard to identify other

than retrospectively (Wilhite and Glantz, 1985). Drought is considered a serious hazard

with the potential for numerous environmental and socioeconomic impacts (Wilhite and

Buchanan-Smith, 2005; NOAA, 2016). Within the United States, annual economic losses

from drought total nearly $9 billion per year, ranking it second in types of phenomena

associated with billion-dollar weather disasters during the past three decades (NOAA, 2016).

Often definitions of drought vary across studies and disciplines, yet they commonly refer to

a deficiency of precipitation within a region resulting in a water shortage necessary for

some activity such as plant growth or clean drinking water (Wilhite and Glantz, 1985;

Hanson and Weltzin, 2000; Redmond, 2002). As a forest disturbance, drought can occur

broadly and typically with no single starting location (unlike fire, insects, or pathogens).

Throughout western North America, drought and warming atmospheric temperatures have

induced extensive insect outbreaks and mortality across a range of forest types, affecting 20

million ha of forest and many tree species since 1997 from Mexico to Alaska (Raffa et al., 2008;

Allen et al., 2010; Bentz et al., 2010). Given that forests and shrublands combined make up
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46% of land cover within the conterminous United States (Homer et al., 2015), the projected

increases in frequency and intensity in drought within some regions have raised concern

about potential impacts to terrestrial ecosystem productivity, biogeochemical cycling, and

the availability of water resources (Hanson and Weltzin, 2000; Melillo et al., 2014).

While the exact mechanisms of drought-induced tree mortality are not well

understood, there are two interdependent mechanisms through which it is hypothesized to

occur: hydraulic failure and carbon starvation (Meddens et al., 2015). Hydraulic failure can

occur when reduced soil water supply combined with high evaporative demand results in

cavitation of water conduits within the xylem, obstructing the transportation of water and

dehydrating the plant (McDowell et al., 2008). Carbon starvation can occur from prolonged

water stress as well, but in this case a plant will close its stomata to prevent hydraulic

failure (McDowell et al., 2008). This avoidance of hydraulic failure also results in decreased

photosynthetic uptake of carbon, and because there remains a continued demand for the

metabolism of carbohydrates for survival, the plant will subsequently starve (McDowell

et al., 2008; McDowell, 2011). During drought, tree mortality can result from a variable

combination of hydraulic failure and carbon starvation depending on the conditions of

the drought (McDowell et al., 2011; Sevanto et al., 2014). Species or plant communities

existing at the margin of their suitable habitat range may experience particularly severe

effects (Dale et al., 2001). Furthermore, multiple (often interrelated) factors associated with

climate (e.g., temperature, precipitation), terrain (e.g., topography), vegetation (e.g., stand

structure), and biotic agents (e.g., bark beetles) may lead to either hydraulic failure or

carbon starvation, or both, resulting in mortality (Meddens et al., 2015). In particular, it is

thought that beetles amplified piñon pine mortality from the early 2000s drought within the

Southwest (Shaw et al., 2005; Raffa et al., 2008). Understanding the precise contributions

of mechanisms underlying mortality remain a knowledge gap for the accurate prediction of

timing and location of vegetation change under future climate projections (McDowell et al.,

2011; Anderegg et al., 2015).
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The global climate is changing and it is largely attributed to anthropogenic forcings

(Oreskes, 2004; IPCC, 2014b; Melillo et al., 2014). Emissions of greenhouse gases have risen

since the pre-industrial era, primarily due to the burning of fossil fuels and deforestation

(Karl et al., 2009; IPCC, 2014a; Melillo et al., 2014). A climate suitable for sustaining

life on Earth is dependent on the functioning of a natural greenhouse effect, which is the

warming that results when certain gases in the atmosphere (i.e., greenhouse gases) such

as water vapor, nitrous oxide, methane, and carbon dioxide trap heat that radiates from

Earth toward space (Karl et al., 2009). However, human activities that release additional

greenhouse gases have intensified the natural greenhouse effect (Karl et al., 2009). Relative

to pre-industrial levels, global carbon dioxide emissions have increased by about 40%, nitrous

oxide has increased by about 20%, and methane has increased by about 250% (Melillo et al.,

2014). In the United States, average temperatures have increased by 1.1 ◦C since the start

of the instrumental record–with most of the increase occurring within the past 50 years–and

are projected to increase an additional 1.1-2.2 ◦C over the next few decades (Melillo et al.,

2014). Over the next century, global temperatures are projected to rise by 1.6-2.8 ◦C under

a low emissions scenario and 2.8-5.6 ◦C under a high emissions scenario (IPCC, 2014a).

Rises in temperatures have already led and will continue to lead to more intense

and frequent extreme climate and weather events such as heat waves, hurricanes, storms,

floods, and drought (Melillo et al., 2014). Often these extreme events are the primary way

through which people experience impacts of climate change (Melillo et al., 2014). While

natural disturbance, by itself, is not always a negative impact to forests (Perry et al., 2008),

it is thought that with human-induced climate change, forests become more vulnerable to

mortality via rapid alterations in the timing, intensity, frequency, and extent of both abiotic

(e.g., drought, fire) and biotic (e.g., insects) disturbances (Melillo et al., 2014; Allen et al.,

2015). A changing climate has the potential to alter landscapes through species migration on

decadal to millennial timescales; however, widespread tree mortality events can drastically

transform the structure and function of ecosystems at the regional scale on a sub-decadal
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timescale (McDowell et al., 2008). Trees grow slowly, taking up to hundreds of years to

mature, and they can be killed by drought relatively fast (i.e., several months or years)

(Allen et al., 2010).

Tree mortality reduces the ability for forests to deliver ecosystem goods and services

such as carbon storage, biodiversity, wildlife habitat, timber yield, soil microbial community

activity, and water quality (e.g., Breshears et al., 2011; Hicke et al., 2012a, 2012b; Anderegg

et al., 2012; IPCC, 2014b; Hurteau et al., 2014; Warnock et al., 2016). For example, it

is estimated that the 2000s drought accompanied by insect and disease outbreak in the

Southwest PJ woodlands is responsible for 5 Tg C of live aboveground woody biomass loss

(Huang et al., 2010). Additionally, several bird species such as the screech owl (Otus asio),

gray flycatcher (Empidonax wrightii), and the plain titmouse (Parus inornatus) are known

to only breed within piñon-juniper habitats (Gottfried et al., 1995). Furthermore, the piñon

pine is the iconic state tree of New Mexico and its mortality within the region bears cultural

significance (Breshears et al., 2011). Severe droughts such as the one in the early 2000s

across the southwestern United States are predicted to continue or increase in the next

century likely resulting in further regional-scale mortality of dominant vegetation (Allen,

2007; Williams et al., 2012; IPCC, 2014b; McDowell et al., 2015b).

1.2. Remote sensing of tree mortality

Satellite and airborne remote sensing provides the ability for unobtrusive, objective,

systematic, and repeatable observations of changes in landscape patterns across broad

temporal and spatial scales (Jensen, 2007). The usefulness of remote sensing in studying

climate-related forest mortality is widely recognized (e.g., Coops et al., 2006; Hicke and

Logan, 2009; Huang et al., 2010; Meddens et al., 2011, 2013; Bright et al., 2012; Clifford

et al., 2013; Zhang et al., 2013; Garrity et al., 2013; Hansen et al., 2013; Meddens and

Hicke, 2014; Krofcheck et al., 2014; Hartmann et al., 2015; McDowell et al., 2015a). There

are multiple satellite platforms and optical sensors that can be used to monitor mortality
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resulting from widespread drought events (Jensen 2007, Zhang et al. 2013). The choice of

satellite sensor is critical, because it determines the spatial extent and spatial detail that

can be measured on the ground (Figure 1.2). The broader the spatial extent a sensor can

record, the coarser the spatial detail of the imagery.

The detectability of forest disturbances from remotely sensed imagery is determined

by a balance of spatial, temporal, and spectral characteristics both of the disturbance and

the imagery (Wulder et al., 2006). For example, monitoring forest die-off on the Earth’s

surface over large spatiotemporal scales can be accomplished with remotely sensed data that

is acquired systematically, globally, and made freely available, such as with the Landsat

series of satellites (Hansen et al., 2013). Landsat imagery cover broad spatial extents, often

provide spatial detail sufficient for mapping trees, and have a long archival record. Hansen

et al. (2013) demonstrated the potential for monitoring forest dynamics (i.e., canopy cover

loss) globally using Landsat imagery, but did not separate disturbance types (e.g., drought).

Disturbance events often result in varying levels of mortality severity (defined here as percent

of tree mortality per area).

While past studies have utilized remote sensing to quantify extent and patterns of

climate-induced forest die-offs, the majority of this research has focused on assessing methods

to produce categorical classifications of mortality in dense- or closed-canopy forests (e.g.,

Meddens et al., 2011, 2013; Hart and Veblen, 2015). Few studies have used Landsat data

in these forests to detect continuous proportions (i.e., percentages) of mortality within 30-m

pixels as opposed to a categorical classification, providing a more sensitive detection of

mortality severity (e.g., Meigs et al., 2011; Meddens and Hicke, 2014; Long and Lawrence,

2016). Fewer studies have assessed Landsat-based methods in open-canopy woodlands

for detecting continuous proportions of tree mortality (e.g., Ferguson, 2006; Huang et al.,

2010; Schwantes et al., 2016). Huang et al. (2010), for example, used Landsat imagery

to map mortality and calculated subsequent biomass loss within the PJ woodlands of

southern Colorado resulting from multi-year drought. However, their work required field
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Figure 1.2. Types of satellite data used in remote sensing studies of tree mortality. Adapted from Meddens
et al. (2009).

measurements of aboveground biomass for model development and evaluation. In addition,

they used SMA to detect sub-pixel proportions of piñon mortality and acknowledged that

challenges remain for more accurately unmixing herbaceous and woody vegetation cover

(Huang et al., 2010). Garrity et al. (2013) mapped drought-induced piñon mortality within

the PJ woodland of northern New Mexico, but focused on a small area and produced a

categorical classification using very fine resolution (0.6-m), commercial (expensive) imagery.

Furthermore, Meddens et al. (2016) developed remote sensing methods for detecting land

cover changes using Garrity et al.’s (2013) fine-resolution classifications of mortality in 2006

and 2011, but focused on forest recovery rather than mortality and did not scale up to 30-m

Landsat resolution to estimates continuous proportions over a broad spatial range.

To statistically model continuous proportions restricted to the closed interval [0, 1],

such as percent tree mortality within a 30-m Landsat pixel, ordinary least squares (linear)
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regression is not an optimal approach, because it can return values for the predicted response

variable that exceed the conceptual lower and upper bounds of zero and one, respectively

(Ferrari and Cribari-Neto, 2004; Savage et al., 2015). For example, Meddens and Hicke

(2014) modeled percent tree mortality within 30-m grid cells using linear regression, but

then required percent tree mortality predictions of <0% or >100% be set to 0% and 100%,

respectively. In addition, Ferguson (2006) mapped percent mortality in the PJ woodlands

of northern New Mexico during the 2000s drought using high-resolution QuickBird imagery

to train a Landsat (4 year) time series. He tested two separate multiple linear regression

models; both of which resulted in limited predictive capability (R2 ≤ 0.47). Moreover, linear

regression models assume a normal distribution of model residuals, typically violated by

zero-inflated datasets, and therefore are not suitable for application to datasets that are

zero-inflated. Modeling percent tree mortality in open-canopy woodlands with moderate or

coarse resolution imagery likely involves working with zero-inflated data because (a) there

can be many pixels with little to no canopy cover and/or (b) of the pixels within the data

that do contain canopy cover, many of them might not experience disturbance resulting

in mortality. Therefore, alternative modeling approaches are needed that are appropriate

for zero-inflated continuous data such as Landsat-derived within-pixel percentages of tree

mortality.

Beta regression has been applied in forestry applications (e.g., Korhonen et al., 2007;

Eskelson et al., 2011; Wing et al., 2012), but few in combination with satellite imagery to

map within-pixel percent live and/or dead canopy cover (e.g., Coulston et al., 2012; Long and

Lawrence, 2016). Only one study (Schwantes et al., 2016) has assessed the use of zero-inflated

beta (ZIB; Ospina and Ferrari, 2010, 2012) regression in combination with Landsat imagery

to detect within-pixel percent tree mortality due to drought for open-canopy woodlands.

Schwantes et al. (2016) used Landsat imagery from before and after a severe drought in

2011 to map and quantify mortality within woodlands across the state of Texas. To do so,

they first created fine-scale (1-m) canopy loss maps by classifying orthophotos from the U.S.
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National Agriculture Imagery Program (NAIP), validated with ground observations. Using

the fine-scale canopy loss maps and coarser scale Landsat imagery (in addition to auxiliary

explanatory variables), they built and evaluated two sets of models: 1) random forest and

2) zero-inflated beta (ZIB) regression. These models were then used to estimate continuous

proportions of post-drought mortality across the study area. To account for misalignment

between the orthophotos and the Landsat imagery, the estimations were aggregated to a

spatial resolution of 60 m. Schwantes et al. (2016) found that the ZIB regression modeling

yielded the highest accuracy for detecting drought-induced mortality within the open-canopy

woodlands of Texas, which are dominated by junipers, oaks, elms, and honey mesquite

trees. Their methods are novel in that ZIB regression together with satellite imagery had

not previously been used, to the best of my knowledge, to map continuous proportions of

mortality in woodlands. However, these methods have yet to be applied to produce a time

series of percent tree mortality maps at a 30-m spatial resolution within the PJ woodlands

of northern New Mexico for the early 2000s drought.

In open-canopy woodland ecosystems, there is a need to develop remote sensing

methods that balance the requirements of utilizing imagery with fine spatial resolution

(to detect mortality), broad spatial coverage, decades of archived records, and low- to

no-cost to the user. Moderate-resolution Landsat imagery has the potential to balance

these requirements for detecting and monitoring climate-related tree mortality within these

ecosystems (e.g., Schwantes et al., 2016). In addition, no method for detecting tree mortality

across all forest types at the global scale is currently available, yet such an algorithm

is highly desirable given the importance of understanding at which spatiotemporal scales

these disturbances occur and the drivers behind them (McDowell et al. 2015a). This

research contributes directly to one component of such efforts: an algorithm for mapping a

continuous measure (percentage) of drought-induced mortality at the 30-m spatial resolution

in open-canopy woodlands. Furthermore, documenting the severity and timing of mortality

in woodlands provides a baseline for further work to understand the influences of climate
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change on these forests and assess impacts to ecosystem services (Allen et al., 2010;

McDowell, 2011; McDowell et al., 2015a).

The overarching goals for this research are to (a) improve methods for mapping

and quantifying drought-induced tree mortality in semi-arid regions using readily available,

remotely sensed data, and (b) provide maps containing information about the timing, extent,

and severity of tree mortality within the piñon-juniper woodlands related to the early 2000s

drought in support of subsequent ecological analyses. Thus, the specific objectives of this

research were to (1) develop and evaluate statistical models for estimating a continuous

measure (percent) of tree mortality due to drought within the open-canopy piñon-juniper

woodlands of northern New Mexico at the 30-m spatial resolution, using (a) Landsat imagery

and (b) finer-resolution reference data, (2) produce a time series of percent tree mortality

maps by applying the optimal statistical model from Objective 1 (developed within the region

of the reference image) to the entire time series of Landsat imagery, and (3) document spatial

and temporal patterns within the time series of drought-induced tree mortality.
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2. Methods

2.1. Study area

The study area is located in northwest New Mexico in the foothills of the southern

Rocky Mountains and spans the spatial extent of Path 34, Row 35 of the Worldwide

Reference System-2 (Figure 2.1). This study area was chosen for several reasons. First, a

global-change-type drought occurred in this region in the early 2000s (Breshears et al., 2005;

Allen, 2007), causing widespread forest mortality and killing up to 350 million piñon pines

Figure 2.1. Study area location in the western United States (upper right; gray polygon) and true color
Landsat path 34, row 35 image from July 4, 2003. The white rectangle within the Landsat scene indicates
the location of the reference data used for model development and evaluation.
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(Meddens et al., 2012; Hicke and Zeppel, 2013). Second, a variety of forest disturbances

have been documented in this area, including wildfire, drought, bark beetles, and insect

defoliators (e.g., Allen and Breshears, 1998; Breshears et al., 2005; Allen, 2007; McDowell

et al., 2008), thereby providing information to assist with attributing observed mortality.

Third, this study is based on prior research within this region by two scientists, Drs. Steven

Garrity (formerly of Los Alamos National Laboratory) and Arjan Meddens (University of

Idaho), who have since moved to other projects, but have provided valuable data sets and

publications (e.g., Garrity et al., 2013). Fourth, the Hicke Lab at the University of Idaho

has existing collaborations with scientists who have extensive field (i.e., Dr. Craig Allen,

USGS; Brian Jacobs, formally of NPS) and remote sensing (i.e., Dr. Meddens) experience

in this region.

Figure 2.2. Frequency distributions of elevation within the entire extent of the Landsat P34/R35 scene
(top panel) and the scene’s piñon-juniper cover (bottom panel). Source: Shuttle Radar Topography Mission
(SRTM) 90-m digital elevation dataset (Jarvis et al., 2008).
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Figure 2.3. Ecological systems within the study area. Ecological systems are groups of plant
community types that tend to co-occur within landscapes with similar ecological processes, substrates and/or
environmental gradients (Comer et al., 2003). Source: National GAP land cover dataset (USGS, 2011).
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The average annual precipitation in the area is 42.0 cm (1971-2000), with average

annual maximum and minimum temperatures of 19.8 and 0.1 ◦C, respectively (Western

Regional Climate Center, Bandelier N.M. station, 35.783 ◦N, 106.267 ◦W, elevation 1848 m;

http://www.wrcc.dri.edu; accessed 19 May 2016). Elevation within the study area ranges

from 1519 to 3515 m with a mean elevation of 2134 m, whereas the PJ woodlands within the

study area have a mean elevation of 2105 m (Figure 2.2). There are 62 documented ecological

systems within the study area (Figure 2.3; USGS, 2011). Of those 62, the Colorado Plateau

Pinyon-Juniper Woodland is the most dominant ecological system documented (∼20% of

total study area). These woodlands are the predominant low elevation woodlands of this

region, occurring on warmer, dry mountain slopes, foothills, mesas, plateaus, and ridges

(USGS, 2011). The two most common tree species found within the overstory of this

ecological system are the two-needle piñon (Pinus edulis) and the Utah juniper (Juniperus

osteosperma), with a variety of shrubs and grasses in the understory (USGS, 2011).

2.2. Landsat data preparation

This study utilized a 25-year time series (1987-2011) of Landsat Climate Data

Record (CDR) images for Path 34, Row 35 (Table 2.1). Landsat CDRs are a high-level

surface reflectance product that are derived from Level 1 terrain-corrected Landsat data

and calibrated to surface reflectances using a digital elevation model (DEM) and the

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS; Masek et al.,

2006). In addition, CDR scenes include associated quality assurance (QA) bands and

an automatically generated cloud, cloud shadow, snow, and water mask (CFmask;

Zhu and Woodcock, 2012). The scenes were obtained from the USGS EarthExplorer

Archive (http://earthexplorer.usgs.gov). They were selected during the summer months

(May-September) and with minimal cloud cover. Considerable cloud cover prevented the

use of anniversary dates for images; however, sixteen of the twenty-five images were acquired
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Table 2.1. Landsat Climate Data Record (CDR; USGS, 2016) imagery used in this study. All CDR scenes
used were derived from the Landsat 5 Thematic Mapper sensor for Path 34, Row 35. Scene cloud cover is
the percent of pixels in an image classified as cloud or cloud shadow. Piñon-juniper (PJ) cloud cover is the
percent of pixels classified as cloud or cloud shadow within the distribution of PJ woodland within the scene.
PJ distribution determined by the National GAP land cover dataset (USGS, 2011).

Year Month/Day Day of year Scene cloud cover (%) PJ cloud cover (%)

1987 June 22 173 0.01 0.01

1988 June 8 160 0.01 0.01

1989 July 5 186 0.02 0.01

1990 June 30 181 4.69 3.14

1991 June 17 168 0.56 0.39

1992 July 5 187 0.11 0.09

1993 June 22 173 0.02 0.01

1994 June 9 160 0.02 0.02

1995 June 12 163 0.25 0.20

1996 May 29 150 0.03 0.02

1997 July 3 184 0.02 0.02

1998 Aug. 7 219 3.69 2.82

1999 June 7 158 0.02 0.02

2000 Sept. 13 257 0.21 0.16

2001 June 12 163 16.09 11.67

2002 June 15 166 0.34 0.24

2003 July 4 185 0.83 0.60

2004 June 4 156 0.35 0.23

2005 June 7 158 0.23 0.16

2006 June 10 161 0.78 0.59

2007 June 29 180 0.99 0.71

2008 May 30 151 0.22 0.16

2009 Aug. 21 233 0.79 0.56

2010 June 5 156 0.16 0.11

2011 June 24 175 0.17 0.12

during the month of June. In addition, cloud cover during summer months prevented the

use of images in years prior to 1987.

The preparation of this time series included several steps (Figure 2.4). First, I masked

pixels containing clouds, cloud shadows, and water areas from each scene in the time series

using the associated CFmask. Non-piñon-juniper vegetation and burned areas were masked

by using geospatial land cover data from the National Gap Analysis Program (GAP; USGS,

2011) and the Monitoring Trends in Burn Severity Project (MTBS; Eidenshink et al., 2007),

respectively. Second, for each image (year) in the time series, I calculated band ratios and

spectral indices that have proven useful in past studies of climate-related tree mortality (e.g.,

Huang et al., 2010; Meigs et al., 2011; Garrity et al., 2013; Meddens et al., 2013; Meddens
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Figure 2.4. Workflow diagram of the methods used in this study for data preparation and each of the three
research objectives. Boxes with solid outlines indicate products and boxes with dashed outlines indicate
tasks. CDR, Climate Data Records; PJ, piñon-juniper; ZIB, zero-inflated beta; and RF, random forest.
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and Hicke, 2014; Hart and Veblen, 2015; Schwantes et al., 2016) (Table 2.2). Third, for each

spectral band, ratio, and index stack, I calculated a multi-date spectral anomaly (hereafter

referred to as a “temporal anomaly” and denoted with a ′) with respect to the per-pixel,

pre-disturbance mean of the stack. A temporal anomaly represents the difference between

a pixel’s value at a given point in time and its pre-disturbance mean (Meddens et al., 2013;

Meddens and Hicke, 2014). Per-pixel temporal anomalies were calculated as follows:

SI ′x,y,t = SIx,y,t −

n∑
t′=1

SIx,y,t′

n
(2.1)

where SI ′ is the temporal anomaly of a given Landsat-derived spectral index (SI) at pixel

location x, y in year t; the first term (SIx,y,t) in the right-hand side of Equation 2.1 is the

value of the spectral index for that pixel in the given year; and the second term in the

right-hand side of Equation 2.1 is the multi-year pre-disturbance mean for that pixel for the

Table 2.2. Landsat-derived spectral ratios and indices used in this study as candidate explanatory variables
for building a statistical model to predict percent tree mortality within 30-m grid cells. Bands (B) refer to
Landsat TM band order and the corresponding portion of the electromagnetic spectrum.

Spectral index Acronym Formula Reference Application

Red-Green Index RGI B3/B2 Coops et al.
(2006)

Identifying the ratio of
green-red foliage

Moisture Stress Index MSI B5/B4 Rock et al.
(1986)

Identifying water-related
conifer forest damage

Normalized Difference
Vegetation Index

NDVI (B4 - B3)/(B4 + B3) Tucker (1979) Identifying amount of
green biomass

Soil-Adjusted
Vegetation Index

SAVI (B4 - B3)/(B4 + B3 + 0.5)∗(1 + 0.5) Huete (1988) Adjust NDVI to account
for background soil noise

Normalized Difference
Water Index

NDWI (B4 - B5)/(B4 + B5) Gao (1996) Identifying canopy water
content

Normalized Burn
Ratio

NBR (B4 - B7)/(B4 + B7) Lutes et al.
(2006)

Identifying fire-caused
mortality severity

Tasseled Cap
Brightness

TCB 0.2043∗B1 + 0.4158∗B2 + 0.5524∗B3 +
0.5741∗B4 + 0.3124∗B5 + 0.2303∗B7

Crist (1985) Identifying surface
brightness

Tasseled Cap
Greenness

TCG -0.1603∗B1 - 0.2819∗B2 - 0.4934∗B3 +
0.7940∗B4 - 0.0002∗B5 - 0.1446∗B7

Crist (1985) Identifying vegetation
greenness

Tasseled Cap Wetness TCW 0.0315∗B1 + 0.2021∗B2 + 0.3102∗B3
+ 0.1594∗B4 - 0.6806∗B5 - 0.6109∗B7

Crist (1985) Identifying water content
indicative of plant vigor

Disturbance Index DI TCB - (TCG + TCW) Healey et al.
(2005)

Identifying gray-stage
mortality
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n undisturbed years (t′). Here, the pre-disturbance mean was calculated from the temporal

period 1990-1999 (i.e., n = 10).

Radiometric correction of satellite imagery is often a prerequisite for producing

high-quality scientific time series and accounting for real changes on the Earth’s surface as

opposed to artifacts of data acquisition. Pons et al. (2014) compared the accuracy between

a CDR and a non-CDR Landsat time series for the production of classified maps. The

non-CDR data was radiometrically corrected using two different techniques: a traditional

manual approach and a proposed automated one. Both techniques resulted in only slightly

improved (<4%) classification accuracy (Pons et al., 2014). Furthermore, Vuolo et al.

(2015) demonstrated that CDR surface reflectances are nearly as accurate as raw Landsat

scenes that have had site-specific, manual atmospheric correction and are thus a suitable

off-the-shelf product for land cover change studies. Therefore, no further radiometric

correction of the CDR imagery was performed in this study.

2.3. Reference data preparation

As the response variable for model development and evaluation, I used Garrity et al.’s

(2013) classification of tree mortality during the 2002 to 2006 drought period, which was

derived from QuickBird satellite imagery pan-sharpened to 0.6-m spatial resolution. The

images were preprocessed and classified as described by Garrity et al. (2013). The mortality

classification was conducted on a 46-km2 area in Bandelier National Monument, within the

spatial extent of Landsat Path 34, Row 35 (Figure 2.1). Classes include live and dead tree

pixels. The overall classification accuracy was 97.9% (Garrity et al., 2013). I aggregated

this classification to a 30-m spatial resolution to match the spatial resolution of the coarser

Landsat imagery and to produce a continuous measure (i.e., percentage) of tree mortality

per Landsat-resolution “superpixel” (Figure 2.5). Here, I define within-pixel percent tree

mortality (PTM) as follows:

PTMx,y =
ndead,x,y

nall,x,y

× 100 (2.2)
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Figure 2.5. (a) Mortality classification (0.6 m), derived from 2002 and 2006 QuickBird imagery within
Bandelier National Monument (Garrity et al., 2013). (b) Percent tree mortality (within 30-m grid cells),
referred to as “reference data” within this study, calculated as the percent of 0.6-m pixels classified as dead
within a Landsat-resolution (30-m) “superpixel”.
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where PTMx,y is the percent tree mortality at the (30-m) superpixel location x, y; ndead

is the number of 0.6-m pixels classified as dead within that x, y superpixel location; and

nall is the number of total (i.e., live, dead, and unclassified) 0.6-m pixels within that x, y

superpixel location. Thus, for this study, PTM is defined as an absolute measure of mortality

area within a superpixel, not relative to the total area of pre-disturbance tree canopy cover

within a superpixel. The QuickBird-derived PTM image (Figure 2.5b) is hereafter referred

to as “reference” data.

Investigating the distribution of PTM within the reference data revealed that only

∼1% of the 30-m pixels contain greater than 50% within-pixel tree mortality (Figure 2.6).

Meddens et al. (2013) showed that classification accuracy increases as percent mortality

within a given 30-m grid cell increases. Conversely, classification accuracy decreases with

decreasing percentages of within-pixel mortality for 30-m pixels. For example, Landsat

pixels with <40% mortality, the classification accuracy reported was <50% (Meddens et al.,

Figure 2.6. Distribution of percent tree mortality (PTM) within QuickBird-derived 30-m pixels used in
this study as reference data for statistical model development and evaluation.
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2013). Since here there are few pixels with high mortality in the reference data for model

development and evaluation, a supervised classification of tree mortality would likely prove

less accurate in predicting mortality. Thus, I chose to develop a statistical model to estimate

severity (i.e., continuous proportions) of piñon mortality within a Landsat (30-m) time series,

a method similar to past studies (Meddens and Hicke, 2014; Long and Lawrence, 2016;

Schwantes et al., 2016). This approach offers a more sensitive representation of tree mortality

within a given 30-m Landsat pixel compared to a binary (live/dead) classification.

2.4. Statistical modeling of percent tree mortality

I developed and evaluated statistical models for estimating continuous proportions

of drought-induced tree mortality within a 30-m Landsat pixel, using zero-inflated beta

(ZIB) regression and both single-step (regression) and two-step (classification–regression)

random forest (RF) models (Table 2.3). As the response variable for all of the regression

models, I used the aggregated reference data, which indicates within-pixel percent tree

mortality (PTM). For the one classification model, the response variable was a binary

presence/absence classification of mortality, where the percent tree mortality threshold for

assigning absence or presence is further described in Section 2.4.2. For all of the statistical

models, candidate explanatory variables consisted of individual Landsat TM bands, band

Table 2.3. Summary of zero-inflated beta (ZIB) regression and random forest (RF) models used in this
study, including the corresponding balanced or unbalanced distribution of within-pixel percent tree mortality
(PTM) used for model training and testing and the QuickBird-derived response variable. See Section 2.4.4. for
a description of the unbalanced and balanced PTM distributions used.

Model framework PTM distribution Response variable

Single-step models

ZIB regression Unbalanced PTM

RF regression Unbalanced PTM

RF regression Balanced PTM

Two-step model

RF classification (step 1) Unbalanced P/A

RF regression (step 2) Unbalanced PTM

P/A, presence/absence of tree mortality within a 900m2 pixel.
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ratios (e.g., RGI, MSI), and vegetation indices such as Tasseled Cap brightness, greenness,

and wetness (Table 2.2). In addition, the temporal anomalies from a 1990-99 pre-disturbance

per-pixel mean of those spectral bands, ratios, and indices were used as candidate explanatory

variables. In total, there were 32 Landsat-derived candidate explanatory variables considered

for each year in the 25-year time series. I focused model development and evaluation on

using the Landsat-derived explanatory variables from the year 2006 to match the spectral

information of the reference image, which is a classification of PJ mortality between 2002

and 2006. All geoprocessing, statistical analyses, and data visualizations were performed

using IDL (Exelis VIS, 2014), R (R Core Team, 2016), or ArcGIS (ESRI, 2015).

2.4.1. Zero-inflated beta regression modeling framework

ZIB regression uses a mixed continuous-discrete distribution: if the response variable

is observed on the open interval (0, 1), then it is modeled with a continuous beta distribution

through either linear or non-linear beta regression, and if the response is observed at

the terminal point of zero, then it is modeled with a discrete component defined by a

degenerate distribution at zero (Ospina and Ferrari, 2010, 2012). Here, the response variable

of within-pixel (percent) tree mortality, y, was modeled with linear beta regression using the

following probability density function under a ZIB distribution:

bi(y;α, µ, φ) =


α, if y = 0,

(1− α)f(y;µ, φ), if y ε (0, 1),

(2.3)

where f(y;µ, φ) is the density function for the beta distribution; α is the probability mass

centered at zero (i.e., the probability of obtaining zero percent mortality in a 30-m grid

cell); µ is the distribution mean if percent mortality is greater than zero; and φ is a

precision parameter (also given that percent mortality is greater than zero) (Ospina and

Ferrari, 2010, 2012). ZIB regression has been implemented in the R statistical software (R

Core Team, 2016) package GAMLSS (Generalized Additive Model for Location, Scale and
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Shape; Rigby and Stasinopoulos, 2005). Under the GAMLSS package modeling framework,

there are output predictions (i.e., predictive maps) for each of the distribution parameters

(e.g., α, µ, φ). Using the outputs for α and µ, I assumed that if α, the probability of

zero percent mortality, was >0.5, then the pixel had zero percent mortality; otherwise,

the proportion of mortality within the pixel was predicted using µ, the distribution mean.

Parameter estimation under GAMLSS is performed by maximum likelihood (Rigby and

Stasinopoulos, 2005). In consideration of the potential nonlinear relationships between the

response and explanatory variables (e.g. Clifford et al., 2013), the GAMLSS package allows

for the parameters of the distribution of the response variable to be modeled as nonlinear

parametric or nonparametric (i.e., smoothing) functions of the explanatory variables (Rigby

and Stasinopoulos, 2005). We considered such relationships (Appendix A), but ultimately

did not use them in the final ZIB regression model.

2.4.2. Random forest modeling framework

In addition to modeling percent tree mortality with ZIB regression, I also tested RF

models. RF is a non-parametric machine learning algorithm that averages the predictions

of multiple regression or classification decision trees (Breiman, 2001). Each decision tree in

the ensemble is constructed using a different bootstrap sample of the input data and also

a random subset of the predictor variables to chose the best split at each node in the tree

(Breiman, 2001; Liaw and Wiener, 2002). Through this bootstrapping approach, RF is less

sensitive to data skew (i.e., zero-inflation) and high dimensional data (in terms of over-fitting)

than traditional parametric statistics (Breiman, 2001; Evans et al., 2011), making it a useful

modeling approach for mapping percent tree mortality (e.g., Schwantes et al., 2016; Long

and Lawrence, 2016). I tested two single-step RF regression models and one two-step RF

(classification–regression) model. The first single-step model used RF in regression mode

with training data as is (i.e., zero-inflated), whereas the second single-step model also used

RF in regression mode, but used training data within the reference image that was sampled
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across bins of percent mortality to create a balanced distribution. The two-step RF model

first ran RF in classification mode to produce a binary classification of mortality presence or

absence (Appendix B). To train this step of the model, the reference PTM response variable,

yi, was converted into a categorical presence/absence (P/A) variable, y∗i , using the following

thresholds:

y∗i =


absence if yi ≤ θ,

presence if yi > θ,

(2.4)

where several different PTM thresholds (θ) for assigning absence or presence were tested

(i.e., θ = 0%, 5%, 10%, or 15%). The second step then runs RF in regression mode for

pixels classified as having presence of mortality to estimate the proportion of that mortality

within a 30-m grid cell. All RF models were run with 501 decision trees and a third of the

total number of input explanatory variables were used to define each split. RF modeling was

performed with the ranger package (Wright and Ziegler, 2015) for R (R Core Team, 2016).

2.4.3. Variable selection

Variable selection was performed to reduce the number of candidate explanatory

variables, creating a more parsimonious model. Increasing parsimony has been seen to result

in improved model fit and predictive performance with RF models (Evans et al., 2011). I

initially sought to use a best subsets regression analysis to determine the optimal subset of

explanatory variables, but was limited by computing power (32 total explanatory variables

with over 23,000 observations in each variable). Thus I applied the variable selection methods

used by Schwantes et al. (2016) for both ZIB regression and RF modeling. For variable

selection with the ZIB regression model, two steps were involved, where (1) each explanatory

variable was run in a separate bivariate ZIB regression model (i.e., one explanatory variable

per model; 32 total models), and (2) a separate full model was run without that explanatory

variable (i.e., 31 total explanatory variables per model; 32 total models). The first step

allows one to infer variable importance while the second step allows one to infer variable
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redundancy. For each of the 64 models, the generalized Akaike information criterion (GAIC)

was calculated as:

GAIC = D̂ + d℘ (2.5)

where D̂ is a measure of the lack of fit and the second term on the right-hand side of

Equation 2.5 is a penalty for adding d parameters (Ospina and Ferrari, 2012). GAIC is

recommended for use over AIC when there may be concern for model misspecification (e.g.,

incorrectly chosen link functions, neglected nonlinearities, omitted variables, etc.) or there

is high skewness (i.e., Figure 2.6) within the data (Bozdogan, 2000; Ospina and Ferrari,

2012). Variables were then ranked by mean GAIC across the ten-times repeated model

development and evaluation. Next, multicollinearity among the 32 candidate explanatory

variables (Landsat TM Bands 1-5 and 7, spectral ratios/indices, and temporal anomalies)

was assessed and redundant variable pairs (|r| ≥ 0.95) were identified across all explanatory

variable pairs for the year 2006 (e.g., Appendix C). For each redundant variable pair, one

variable was removed by preferentially keeping variables with the lowest (i.e., most negative)

mean GAIC value (Symonds and Moussalli, 2011; Schwantes et al., 2016) based on these two

metrics (importance and redundancy). To create a more parsimonious model, the four most

important and non-redundant variables were kept in the final ZIB regression model.

For variable selection with the RF models, a full model was built containing all 32

candidate explanatory variables (Table 2.4) using k-fold cross-validation (where k = 10 for

the models with“unbalanced” training/testing data and k = 7 for the model with “balanced”

training/testing data as further described in Section 2.4.4.). RF variable importance

estimates were obtained for each fold and then averaged by variable. Again, for each

redundant variable pair (|r| > 0.95), one variable was removed by preferentially keeping

variables with the highest mean RF variable importance estimate across folds. Another

model was then built using the remaining non-redundant variables to obtain new measures

of variable importance. To create more parsimonious models, I kept only those variables
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Table 2.4. Range of values for all Landsat-derived candidate explanatory variables in 2006 within the
spatial extent of the reference image compared to the range of values within the study area.

Reference image

Variable Minimum value Maximum value % of pixels in study area outside of range

B1 0.0181 0.2224 0.08

B2 0.0236 0.2548 0.61

B3 0.0265 0.2723 3.13

B4 0.0364 0.3641 0.94

B5 0.0271 0.3893 25.37

B7 0.0181 0.3650 23.04

RGI 0.7029 1.4656 0.23

MSI 0.4115 2.2814 0.03

NDVI -0.0228 0.7958 0.16

SAVI -0.0132 0.5215 0.15

NDWI -0.3905 0.4169 0.03

NBR -0.4793 0.7099 0.01

TCB 0.0670 0.6987 5.79

TCG -0.0242 0.2256 2.93

TCW -0.3504 0.0145 22.66

DI 0.0712 0.9670 19.56

B1′ -0.0495 0.1379 0.09

B2′ -0.0777 0.1431 0.11

B3′ -0.1079 0.1541 0.07

B4′ -0.1892 0.1379 0.11

B5′ -0.2447 0.1551 0.21

B7′ -0.2294 0.1794 0.14

MSI′ -0.5545 1.2897 0.03

NDVI′ -0.3353 0.3039 0.15

SAVI′ -0.1801 0.2169 0.19

NDWI′ -0.4407 0.3249 0.10

RGI′ -4.7499 0.3261 0.07

NBR′ -0.6682 0.4050 0.03

TCB′ -0.3357 0.3082 0.07

TCG′ -0.0951 0.1044 0.21

TCW′ -0.1714 0.2269 0.17

DI′ -0.5340 0.4702 0.10
′ Temporal anomalies calculated from a 1990-99 per-pixel mean.

that were greater than the average measure of variable importance (e.g., Appendix D) in the

final RF models.

2.4.4. Model development and evaluation

Two different approaches were used for model development and evaluation. For the

first approach, I trained and tested models with all available reference data using stratified

k-fold cross-validation, were k = 10. Because these data are zero-inflated, I refer to these
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models as“unbalanced”. Within each 10% mortality bin (i.e., 0-10%, 10-20%, etc.) the 30-m

reference pixels and their corresponding explanatory variable pixels were partitioned into

ten approximately equal-sized subsets for 10-fold cross-validation. Next, subsets of 10% of

the data from each mortality bin were combined into ten separate data partitions. Thus,

the reference data pixels were separated into ten approximately equal-sized data partitions

with similar frequency distributions across bins of percent mortality (Appendix E). Models

were then estimated ten times, each time (fold) using a different data partition for testing

and the remaining nine partitions (one per PTM bin) combined for training. The 10-fold

cross-validation approach was used with both ZIB regression, single-step RF regression, and

two-step RF classification–regression models.

For the second approach, I developed models with training data balanced across bins

of percent tree mortality to reduce the influence of the high-frequency low mortality pixels in

model training and increase the influence of the low-frequency high mortality pixels (Haibo

He and Garcia, 2009), hereafter referred to as the “balanced” model. For the balanced RF

model, the total number of pixels that was sampled within each PTM bin was determined

by the number of pixels available within the highest mortality bin within the reference

image. Binning the reference data by increments of 10% (e.g., 0-10%, 10-20%, and so on),

revealed that the highest mortality bin (70-80%) contained only eight pixels. However, by

binning the data using increments of 15% (e.g., 0-15%, 15-30%, and so on), the highest

mortality bin (60-75%) mortality contained 49 pixels. Therefore, the 15% mortality bins

could be randomly sampled without replacement up to 49 pixels. Seven pixels from each

15% mortality bin were then combined into a data partition (fold), resulting in seven data

partitions with balanced distributions across bins of percent mortality for model development

and evaluation (Appendix F). This cross-validation approach was used with a single-step RF

regression model.

To evaluate model performance for each of the final ZIB regression and RF models,

predicted percent tree mortality was compared to the observed reference data across
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ten- or seven-times repeated model building and evaluation, depending on which k-fold

cross-validation approach was implemented. For regression models, several metrics of model

performance were evaluated, including root mean square error (RMSE), mean absolute error

(MAE), mean error (ME), and R2. Although it is argued that MAE is the most unambiguous

measure of average model performance error (Willmott and Matsuura, 2005), RMSE was

considered more appropriate for model errors that followed a normal distribution (Chai and

Draxler, 2014). RMSE, MAE, and ME were calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.6)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.7)

ME =
1

n

n∑
i=1

(yi − ŷi) (2.8)

where n is the number of model errors; yi is the ith percent tree mortality observation; and ŷi

is the ith percent tree mortality model prediction. For the two-step RF model, observations

and predictions made during the first step (classification) were compared using a confusion

matrix with two classes (presence/absence). Thus, individual class accuracies and overall

classification accuracy metrics were obtained and averaged across ten-times repeated model

development and evaluation.

Often with spatial data some degree of correlation is found between nearby

observations in geographic space. The presence of spatial autocorrelation violates the

assumption that observations in a set of measurements (e.g., a spectral index) are

independent of each other. Two primary types of spatial autocorrelation exist, positive

and negative. We used global Moran’s I statistic to test for the presence of statistically

significant (α = 0.05) spatial autocorrelation within the residuals of the four different model
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types (Moran, 1950). The null hypothesis of this test assumes spatial randomness (i.e., no

spatial autocorrelation) whereas the alternative hypothesis is that there is presence of spatial

dependence (autocorrelation). The global Moran’s I statistic ranges from -1 to +1, whereby

negative values indicate negative spatial autocorrelation and positive values indicate positive

spatial autocorrelation. Final model selection was determined by two components: (1) the

model performance metrics described in this section, and (2) the application of the model to

the entire (spatial and temporal) extent of the Landsat time series, described in Section 2.5.

Furthermore, I tested several other statistical modeling approaches, the results of which are

reported in Appendix A.

2.5. Model application

Using only those pixels sampled within the region of the QuickBird-derived reference

data, I determined the optimal statistical model through k-fold repeated model building and

evaluation, as previously described in Section 2.4.. To apply a single final model to the entire

Landsat time series (Objective 2), I generated a separate model using all available reference

data and applied that model to the entire Landsat scene for each year in the 1987-2011 time

series. The model predicted within-pixel percent tree mortality for only those pixels that were

not masked during Landsat data preparation (described in Section 2.2.). Post-processing of

the time series required several steps. First, I applied a percent tree mortality threshold

value, below which predictions throughout the time series were reassigned to 0% mortality.

This step was performed to account for uncertainty in model predictions associated with the

combination of (a) potential background noise (soil, herbaceous cover, non-PJ woody cover,

etc.) confounding the spectral signature of PJ mortality in a 30-m grid cell, (b) the possible

influences of image-to-image radiometric variation across the Landsat time series, and (c)

model overestimation at low mortality values, important because of the large amount of low

mortality (Figure 2.6). To determine an appropriate threshold value, I tested the impact

to the predicted mortality area time series of applying a series of different thresholds, from
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Figure 2.7. Example of the three-year (current and two subsequent years) moving-window approach for
identifying mortality persistence (bottom panel) within a given pixel’s predicted mortality presence/absence
time series (top panel).

5% mortality to 30% in 5% increments. A threshold that decreased percent tree mortality

predictions in years when no drought-induced tree mortality occurred was then selected.

Once an appropriate threshold value was determined, pixels with percent tree mortality

predictions below the threshold were set to zero and flagged as containing an absence of

mortality. Pixels above the threshold were flagged as having presence of tree mortality.

Second, I masked non-temporally persistent predictions of mortality using a three

year moving window on each pixel’s binary (presence/absence) trajectory determined in the

previous step (Figure 2.7). Beginning in the first year of the time series (1987), if a pixel was

flagged as having presence of mortality, it was reassigned to absence (0% mortality) if it was

not also flagged as presence in the subsequent two years; otherwise, the pixel was flagged as

persistent mortality. Beginning in the second year of the time series (1988), if a pixel was

flagged as presence of mortality, but it was not flagged as presence in the subsequent two
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years, it was reassigned to absence only if the pixel had not also been flagged as persistent

mortality in the previous year. Thus, by identifying persistence within the model-predicted

percent tree mortality time series, false positive predictions were masked from the final time

series. In addition, by applying a three year moving window (current and two subsequent

years), the resulting tree mortality time series was limited temporally to the time period

1987-2009. Third, to ensure that predictions match the expected direction of disturbance

(temporally), I computed cumulative percent tree mortality by requiring that percent tree

mortality within a 30-m pixel only increase over time. Finally, annual percent tree mortality

was calculated as the per-pixel difference in cumulative mortality between a given year and

the subsequent year in the time series.

2.6. Assessing spatial and temporal patterns

Spatial and temporal patterns of the model-predicted tree mortality within the study

area were assessed using several metrics. First, I measured duration of tree mortality, defined

as the period from the start of tree mortality (i.e., ≥15%) to the first year with maximum

cumulative mortality, calculated on a per-pixel basis and then averaged across the study

area. Second, I measured the average rate of mortality, defined as the cumulative percent

tree mortality in 2009 divided by the duration of tree mortality, again calculated on a

per-pixel basis and then averaged across the study area. Third, I measured the average

rate of mortality (units of percent tree mortality per year), assessed across both the entire

distribution of piñon-juniper woodlands within the study area and only those pixels in which

mortality presence was detected.

In addition, using the cumulative percent tree mortality time series (maps), I

computed the total yearly and cumulative predicted mortality, in terms of area affected

(hectares) and number of trees killed. Cumulative mortality area was calculated by summing

cumulative percent tree mortality in 2009. To estimate the number of trees killed, I divided

the area of tree mortality by the mean crown area of mature piñon pine trees (13.73 m2;
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95% confidence interval: 12.91-14.54 m2, n = 482 trees), published by Meddens et al. (2012,

Appendix A). I also assessed mortality patterns across subsets of elevation. I downloaded

the Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) DEM at the 30-m spatial

resolution for the study area from the Google Earth Engine cloud-computing platform

(Google Earth Engine Team, 2015).

Finally, I calculated the percent of PJ woodland area killed by drought. To do so, I

needed to first calculate the total area (in hectares) of PJ woodlands within the study area.

Because no accurate 30-m map of percent tree cover (PTC) for the PJ woodlands across our

study area exists to date, I extrapolated the mean PTC of the reference data (31.82%) to

the entire extent of the study area to estimate the total area of PJ cover within the study

area. Therefore, the percent of PJ woodland area killed by drought estimated here assumes

that the distribution of PTC within the reference data is representative of the distribution

across the entire study area.
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3. Results

3.1. Comparison of statistical models

In general, variables comprised of temporal anomalies in 2006 from a per-pixel

pre-drought (1990-99) mean, were the best predictors of percent tree mortality (Table 3.1).

The only variable that was determined to be important across all of the final regression

(ZIB and RF) models was NDVI′. Tasseled cap indices made up three out of the four final

variables most important to the RF classification model for predicting presence/absence.

NDWI′, TCW′, B5′, and NDVI′ was the variable combination that best predicted percent

tree mortality using either the single-step RF regression model or the second step (regression)

of the two-step RF model, both trained on pixels that were unbalanced across bins of percent

tree mortality.

For the unbalanced two-step RF model, the overall classification accuracy for the first

step (presence/absence) ranged from 76.2 to 96.71% across the different thresholds tested

for assigning reference data pixels to presence/absence classes (Table 3.2). While the 0%

threshold model resulted in the highest overall classification accuracy, the absence class

omission error was 99.59% and the class commission error was 85%. Therefore, 10% was

selected as the optimal threshold, because it resulted in the best balance between overall

accuracy (76.2%) and class commission and omission errors. However, comparison between

the 30-m reference observations and Landsat-derived predictions of percent tree mortality

for the combined (classification–regression) two-step RF model resulted in an overall mean

R2 of 0.45 and an RMSE of 10.58%, the lowest and second highest, respectively, of the four

model types (Table 3.1). Thus, the two-step RF model did not prove useful for predicting

percent tree mortality and I do not report further results using this model.

For the unbalanced single-step RF model, comparison between the 30-m reference

observations and Landsat-derived predictions of percent tree mortality resulted in an overall

mean R2 of 0.50 and an RMSE of 8.97% (Table 3.1). Comparably, the ZIB regression model
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Table 3.2. Averaged confusion matrices for the first step (presence/absence classification) of the two-step
random forest model. I tested different thresholds of percent tree mortality (0%, 5%, 10%, and 15%) for
reassigning observations (less than or equal to) to zero. Class and total pixel values, overall classification
accuracy, and confidence intervals reported are means of a cross-validation of ten classifications.

Reference

Class Absence Presence Total (pixels) User’s accuracy Commission error

0% threshold

Predicted Absence 0.3 1.7 2.0 15.00% 85.00%

Presence 73.2 2202.5 2275.7 96.78% 3.22%

Total (pixels) 73.5 2204.2 2277.7

Producer’s accuracy 0.41% 99.92% Overall accuracy = 96.71%

Omission error 99.59% 0.08% (CIa = 95.9–97.4%)

5% threshold

Predicted Absence 497.1 208.2 705.3 70.48% 29.52%

Presence 324.9 1247.5 1572.4 79.34% 20.66%

Total (pixels) 822.0 1455.7 2277.7

Producer’s accuracy 60.47% 85.70% Overall accuracy = 76.60%

Omission error 39.53% 14.30% (CIa = 74.83–78.29%)

10% threshold

Predicted Absence 930.5 252.2 1182.7 78.68% 21.32%

Presence 290.0 805.0 1095.0 73.52% 26.48%

Total (pixels) 1220.5 1057.2 2277.7

Producer’s accuracy 76.24% 76.14% Overall accuracy = 76.20%

Omission error 23.76% 23.86% (CIa = 74.46–77.86%)

15% threshold

Predicted Absence 1275.3 249.5 1524.8 83.64% 16.36%

Presence 228.6 524.3 752.9 69.64% 30.36%

Total (pixels) 1503.9 773.8 2277.7

Producer’s accuracy 84.80% 67.76% Overall accuracy = 79.01%

Omission error 15.20% 32.24% (CIa = 77.31–80.63%)

a 95% confidence intervals averaged across the ten classifications.

resulted in an overall mean R2 of 0.52 with an RMSE of 8.64%. The balanced single-step

RF model resulted in an overall mean R2 of 0.45, similar to the two-step RF model, and

resulted in the highest mean RMSE (13.71%) of the four model types.

For each of the four types of models, I combined all predictions across the

separate k-fold model evaluations to compare predicted PTM with the reference PTM data

(Figure 3.1). These results reveal that RMSE was highest for the balanced single-step RF

model and lowest for the ZIB regression model. Conversely, R2 was highest for the ZIB
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Figure 3.1. Comparison between reference data and predictions of the (a) ZIB regression model, (b)
single-step unbalanced RF regression model, (c) single-step balanced RF regression model, and (d) two-step
(classification–regression) RF model. Plots represent all predictions of k-fold model evaluation combined.
Solid black lines indicate linear fit. Dashed red lines indicate Loess smoothed fits. Dashed gray lines are
1:1 lines. For (a), (b), and (d), the bivariate density of points was calculated using a bilinear weighted
two-dimensional kernel density estimation.

regression model and lowest for the balanced single-step RF model. However, Figure 3.1

indicates that the single-step RF model resulted in the least amount of underestimation at

higher levels of mortality severity. Furthermore, when the balanced RF model was evaluated

using only those pixels sampled to create a balanced distribution across bins of PTM, RMSE

ranged from 10.13 to 16.36% and R2 ranged from 0.48 to 0.79 (Appendix G). In addition,
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Figure 3.2. Comparison between reference and predicted PTM for the single-step random forest model with
both training and testing data sampled to create a balanced distribution across 15% bins of tree mortality.
Plot represents all predictions of seven-times model evaluation combined. Solid black line indicates linear
fit. Dashed black line indicates Loess smoothed fit. Dashed gray line indicates the 1:1 line.

the frequency distributions of the explanatory variables for those reference pixels sampled

for the balanced model are representative of the corresponding distributions across the entire

reference image (Appendix H).

Statistically significant (α = 0.05) positive spatial autocorrelation was found in

the residuals of all model types (Global Moran’s I ≥ 0.51) evaluated using the entire

reference image (Table 3.1). However, for the balanced single-step RF regression model,

when evaluated using only the smaller sample of balanced pixels, no statistically significant

spatial autocorrelation was found in the model residuals (Global Moran’s I = 0.027, p-value

= 0.69). In addition, when evaluated using only the balanced sample of data, the balanced

RF model resulted in the highest R2 (0.62) of any of the four model types (Figure 3.2). I

selected the balanced single-step RF model as the optimal model for estimating percent tree

mortality due to drought within this study.
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Figure 3.3. Comparisons between (a) reference PTM and the original single-step balanced RF model
predictions of PTM, (b) reference PTM and the post-processed (cumulative) PTM predictions, and (c)
the original single-step balanced RF model-predicted PTM and the post-processed (cumulative) PTM
predictions. Solid blue lines indicate linear fit. Solid red lines indicate Loess smoothed fits. Dashed gray
lines are 1:1 lines. Note, the single-step balanced RF model referenced here was developed using all available
balanced training data and then used to predict PTM across the entire Landsat scene. Therefore, the
model predictions (and the subsequent post-processed predictions) plotted here were not estimated through
cross-validation and thus do not represent a set of independent test results; rather, (a) and (b) indicate
goodness-of-fit between model predictions and the reference data used to train the model.

After model application to the entire Landsat scene (Objective 2), evaluation

of goodness-of-fit between the balanced single-step RF model predictions (using all

reference data) revealed strong agreement (R2 = 0.86) and low prediction error (RMSE =

8.15%; Figure 3.3a). However, the post-processing technique implemented in this study

(re-assigning low and non-temporally persistent predictions of percent tree mortality to

zero) reduced the goodness-of-fit (R2 = 0.59) and increased the prediction error (RMSE

= 16.42%; Figure 3.3b). The decrease in model fit from the model-predicted percent tree

mortality to the post-processed (cumulative) percent tree mortality predictions occurs below

approximately 50% tree mortality (Figure 3.3c). The predicted values and the post-processed

predictions showed good agreement (R2 = 0.71) with a RMSE of 13.82% (Figure 3.3c).

3.2. Estimated tree mortality area

When evaluating thresholds to minimize model overestimation error, the 5% and a

10% tree mortality thresholds did not significantly reduce the overestimation of tree mortality
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area in years prior to the early 2000s drought; however, the 15% mortality threshold did, in

particular for 1996, both across the entire study area (Figure 3.4) and within the geographic

extent of the reference data (Appendix I). Threshold values greater than 15% (i.e., 20-30%)

reduced what we would expect to be overestimated tree mortality area in the years 1987-1990,

2000, and 2006, but did not eliminate the possible overestimation. Because we would not

expect the model to predict drought-induced tree mortality in years prior to the early

2000s drought, I selected 15% as the optimal threshold for reducing model overestimation

while retaining the widest range possible of model-predicted percent tree mortality (i.e.,

15-68.5%). Thus, model predictions ≤15% tree mortality were reassigned to zero, with the

most amount of pixels being re-assigned to zero in 2002 and 2006 (Appendix J). In addition,

the post-processing persistence correction shortened the final tree mortality time series from

1987 to 2009 and reassigned tree mortality predications >15% to zero (Figure 3.3b).

Figure 3.4. Time series of mortality area predictions from the final balanced single-step random forest
model (top panel) and the post-processed mortality area time series using different thresholds (5%, 10%, ...,
30%) for reassigning low mortality severity predictions to 0% (bottom panel).
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Figure 3.5. Within-pixel (percent) tree mortality across the study area for the time period 2001-2004 with
a true color Landsat image from June 7, 1999. Note that year of satellite detection of tree mortality is shown.
Gray pixels indicate areas within the piñon-juniper woodlands where no drought-induced tree mortality was
detected.
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Table 3.3. Cumulative drought-induced tree mortality between 1987 and 2009 across different ranges of
elevation. Area of tree mortality calculated by summing the product of cumulative percent tree mortality in
2009 and 30-m grid cells.

Elevation range (m) Area of tree mortality (1,000 ha) Number of killed treesa (millions)

< 1800 0.33 0.24 (0.23, 0.26)

1800–2000 7.05 5.14 (4.85, 5.46)

2000–2200 27.48 20.02 (18.89, 21.28)

2200–2400 27.44 19.99 (18.87, 21.25)

2400–2600 4.73 3.44 (3.25, 3.66)

≥ 2600 0.15 0.11 (0.10, 0.12)

All elevations 67.19 48.93 (46.19, 52.02)

a Area of tree mortality divided by the mean (and ±95% confidence interval) crown area of mature piñon pines trees (13.73
m2; 95% confidence interval: 12.91-14.54 m2, n = 482 trees), published by Meddens et al. (2012, Appendix A).

The first major impact to the Bandelier National Monument region within the time

series occurred on the eastern side of the Jemez Mountains in 2002 (Figure 3.5). From 1987

to 2009, the northeast portion of the study area experienced the most cumulative percent

tree mortality (Figure 3.6). Cumulative (in space and time) tree mortality in 2009 was

67,190 ha (Figure 3.7), or 19.8% of the piñon-juniper woodlands within the study area.

2002 experienced 20,773 ha of tree mortality, the most mortality area of any one year in

the study period. Per-pixel cumulative percent tree mortality across the time series ranged

from 15% to 68.5%, with an average of 42.3% and a standard deviation of 9.2%. The average

per-pixel duration of mortality was approximately 3 years. The average per-pixel rate of tree

mortality across the time series was 22% per year. However, including those pixels within

the piñon-juniper woodlands for which zero percent tree mortality was predicted, the average

rate of tree mortality decreased to 3.22% per year. Per-pixel maximum cumulative mortality

was reached on average between 2004 and 2005. The predicted distribution of percent tree

mortality within the study area (Figure 3.8) was more normally distributed for pixels >0%

mortality compared to the reference data (Figure 2.6).

The lowest and highest elevation ranges experienced low tree mortality (0.33 × 103

ha and 0.15×103 ha, respectively; Table 3.3). The intermediate elevation ranges (2000-2200

m and 2200-2400 m) resulted in the highest predicted tree mortality (27.48 × 103 ha and

27.44× 103 ha, respectively). Elevations of 1800-2000 m had 7.05× 103 ha of tree mortality



44

Figure 3.6. Cumulative within-pixel (percent) tree mortality for the study area across the time period
1987-2009 with a true color Landsat image from June 7, 1999. Gray pixels indicate areas within the
piñon-juniper woodlands where no drought-induced tree mortality was detected.

and 2400-2600 m resulted in 4.73× 103 ha of mortality. The total estimated number of trees

killed within the study area between 1987 to 2009 was 48.93 million piñon pines with a range

of 46–52 million trees using a 95% confidence interval.
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Figure 3.7. (a) Yearly and (b) cumulative drought-induced tree mortality (calculated by summing the
product of percent mortality and 30-m grid cells) for the Landsat time series in total area (103 ha; left axis)
and number of killed trees (right axes). Note that imagery in time series has varying amounts of cloud cover
and fire burn areas. Year of detection of tree mortality is reported.
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Figure 3.8. Frequency distribution of cumulative percent tree mortality predictions within the study area.
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4. Discussion

The focus of this study was to produce a Landsat-based time series of percent

tree mortality maps due to drought within the semi-arid open-canopy PJ woodlands and

assess spatial and temporal patterns of that tree mortality. The results presented here

corroborate the findings of several recent studies (e.g. Meddens and Hicke, 2014; Long and

Lawrence, 2016; Schwantes et al., 2016) that it is possible to statistically model percent

tree mortality over large areas (Figure 3.5), including drought-related mortality in semi-arid

open-canopy woodlands (Schwantes et al., 2016), using a combination of moderate-resolution

(e.g., Landsat) and finer-resolution (e.g., QuickBird) imagery. I evaluated two statistical

modeling approaches suitable for modeling zero-inflated percent tree mortality data, ZIB

regression and RF.

Based on model comparisons, I found ZIB regression resulted in lower error for

predicting percent tree mortality compared with the RF approach (Table 3.1), similar to

Schwantes et al. (2016). RF, however, resulted in the highest coefficient of determination

among the four different types of models evaluated in this study (Figure 3.2). Schwantes

et al. (2016) found the ZIB regression model to be less computationally demanding (i.e., ∼20

times faster to run; ∼5 times less memory required) than the RF approach. However, they

used the randomForest R package (Liaw and Wiener, 2002) for RF modeling. In 2015 the R

package ranger (Wright and Ziegler, 2015), was created for R to be a faster implementation

of RF modeling for high dimensional data. Therefore, the ranger package was used in this

study for RF modeling and I did not find a significant difference in speed or computational

demand between the RF and ZIB regression models. Thus, computational differences did

not influence final model selection in this study.

I tested two sampling designs (balanced and unbalanced) for model development and

evaluation. I found that balancing the training and testing data sets across bins of percent

tree mortality influenced model performance metrics. While the unbalanced single-step RF
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model resulted in lower error compared with the balanced single-step RF model, balancing

model training and testing data slightly increased the R2. At low mortality, the unbalanced

RF model resulted in reduced overestimation. Conversely, the balanced model resulted in

reduced underestimation for higher percentages of tree mortality. Because of the zero-inflated

nature of the data, the unbalanced RF model’s lower error at low percent tree mortality

resulted in lower RMSE than the balanced RF model. The improved representation of

the balanced model across the range of percent tree mortality led to the higher R2. I

accounted for the overestimate of low percent tree mortality by the balanced model in

post-processing. Furthermore, statistically significant positive spatial autocorrelation was

found in the residuals of all models except for the balanced RF model. Thus, I suggest that

the balanced model is more useful for predicting percent tree mortality compared to the

unbalanced model in this situation. For these reasons, I used the balanced single-step RF

model as the final model for predicting percent tree mortality.

Post-processing the time series of final model predictions was necessary to (a) reduce

error related to relative radiometric variability among the Landsat CDR surface reflectances,

(b) reduce false positives associated with predicting low percentages of tree mortality at the

30-m spatial resolution, and (c) account for model overestimation. Results revealed that

a 15% mortality threshold nearly eliminated yearly mortality predictions in years where

little to no drought-induced tree mortality occurred within the study area during the given

time period. While results indicate that the post-processing steps developed here decreased

goodness-of-fit between model predictions and reference data, they were useful in reducing

error across the predicted tree mortality time series.

The spatial and temporal patterns identified here are similar to those of USDA Forest

Service aerial detection surveys (ADS) (Meddens et al., 2012). For instance, both the maps

produced in this study (Figure 3.5) and piñon pine mortality documented by both ADS

data and Breshears et al. (2005) indicate that the most impacted regions within the study

area are the eastern and northern sides of the Valles Caldera. In addition, studies of tree
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mortality within the region (e.g. Breshears et al., 2005; Meddens et al., 2012) document that

extensive drought-induced piñon pine mortality did not occur within these areas, particularly

around the Jemez Mountains, until around 2002-2003, which is in line with the findings of

this study. ADS data, in particular indicates that 2003 experienced more piñon mortality

than 2002 within the study area, contrary to the results I report; however, the mortality

event in 2002 was incompletely surveyed (Meddens et al., 2012) and likely experienced more

widespread tree mortality than the following year (Breshears et al., 2005).

The 30-m tree mortality maps produced in this study are of a finer spatial resolution

than those produced previously in the same region for the same time period by both Breshears

et al. (2005) (1 km) and Meddens et al. (2012) (1 km), and in a similar open-canopy semi-arid

woodland ecosystem by Schwantes et al. (2016) (60 m). In addition, Breshears et al. (2005)

did not convert reported units of measurement from 2002-03 per-pixel NDVI deviations

(relative to a pre-drought [1989-99] mean) to either percent tree mortality or mortality

area. While Schwantes et al. (2016) used Landsat imagery, they aggregated pixels to the

60-m spatial resolution to minimize the introduction of misalignment errors between Landsat

imagery and finer-resolution reference data. Here, I aggregated the finer-resolution reference

data to align with and match the resolution of the Landsat imagery, resulting in percent tree

mortality predictions at the 30-m spatial resolution as opposed to Schwantes et al.’s (2016)

60-m product.

Tree mortality was highest in 2002 and 2006. By the end of the study period (2009),

cumulative tree mortality was widespread, affecting 19.8% of the PJ woodlands within the

study area. The majority of pixels with PJ cover within the study area experienced <50%

cumulative tree mortality and no pixel reached >70%. The most severely impacted areas

were clustered in the intermediate elevation ranges within the northeast portion of the study

area. The range of percent tree mortality is similar to other studies within the study area (e.g.

Breshears et al., 2005; Clifford et al., 2008), whereas the average per-pixel rate (22% per year)

and duration (3 years) of tree mortality within the study area are similar to other published
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amounts within the beetle-affected lodgepole pine forests of nearby Colorado (Meddens and

Hicke, 2014).

There are several caveats of this methodology for mapping percent tree mortality

in open-canopy semi-arid woodlands with Landsat imagery. First, this approach does not

separate tree, shrub, and plant species, resulting in a mixed-species overall prediction of

percent tree mortality. The reported numbers of killed trees assume that all trees killed were

piñon pines. Second, this approach does not separate drought-related disturbances. For

example, direct drought-induced tree mortality from hydraulic failure and carbon starvation

was not separated from drought-related insect outbreak. Beetle attack within the study

area is thus interpreted as linked to drought. Also, I did not mask the Landsat time series

for forest treatments or clearings within managed lands, which were likely minimal in the

study area. However, I did control for fire-related mortality due to availability of spatially

explicit fire burn area information (Eidenshink et al., 2007). Third, although the Bandelier

National Monument region was one of the most severely impacted areas during the early

2000s drought, less than 1% of pixels within the reference data had >50% tree mortality,

meaning that the statistical relationships established in model development did not include

many observations of high severity mortality and may have been a source of bias in the final

percent tree mortality predictions.

Mapping and assessing tree mortality is critical for understanding and monitoring

its impacts to ecosystems and informing land managers. The maps and analyses presented

here, however, can be used only as a baseline for assessing general spatial and temporal

trends of tree mortality related to drought within the study area and period. These

results increase understanding of the extent, timing, and severity of drought-induced tree

mortality at the regional scale. The results of this study are not appropriate for forming

spatiotemporally-explicit land management decisions without additional validation studies

at the pixel-level.
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Future research should consider several alternative directions that would likely

improve the products of this study. The first is a spectral mixture analysis (SMA) or multiple

endmember spectral mixture analysis (MESMA) approach. In open-canopy forests such as

the semi-arid PJ woodlands, soils contribute more to the spectral reflectance within a given

pixel, making changes in vegetation (i.e., mortality) a distinct challenge to detect with

satellite imagery. SMA and MESMA are ways to overcome the spectral noise at moderate-

to coarse-spatial resolutions (e.g., Huang et al., 2010). With SMA, a satellite image pixel

can be decomposed via linear or nonlinear methods into multiple land cover components

(e.g., woody biomass, herbaceous cover, bare soil, and urban development) expressed as

proportions (i.e., percentages) of that pixel (Somers et al., 2011). SMA relies on collections

(e.g., spectral libraries) of “pure” spectra (endmembers) that correspond to various land

cover classes, collected either in the field or laboratory (Somers et al., 2011). Endmember

selection, however, can be complicated by the inherent spatial and temporal variability

within each of the various land cover classes as well as the scalability of “pure” spectra to

the resolution of the observing sensor (Asner and Heidebrecht, 2002). Often endmembers

can be obtained from “pure” pixels within the actual image, but this is challenging with

moderate-resolution imagery in heterogeneous systems such as the semi-arid PJ woodlands.

MESMA was developed to allow for within endmember variability (Roberts et al., 1998) and

has recently been used in combination with Landsat imagery to separte drought-induced

piñon and juniper mortality within the PJ woodlands of central New Mexico (Brewer et al.,

2017).

Second, predictions of PTM would likely be improved by integrating topography

(Schwantes et al., 2016) and spatial weighting (McCarley et al., 2017) into the statistical

models developed here. Topographic variables (e.g., elevation, slope, and aspect) were

not included as explanatory variables for model development in this study because future

directions of this research include using the tree mortality maps produced here to identify

environmental drivers of the mortality. Using topographic variables here to predict mortality
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would then likely influence the statistical relationships yet-to-be-determined between the

detected mortality and its drivers. It is recommended, however, that other studies consider

including these variables as possible predictors in statistical models of tree mortality. In

addition, simultaneous autoregressive modeling, a form of spatially weighted regression,

can be used to better incorporate the presence of spatial autocorrelation found within the

modeling results.

Finally, only one Landsat scene per year was used within this study. Future research

should increase the number of scenes per year in the Landsat time series to reduce error

associated with inter-seasonal variability. In addition, because it takes an average of nine

months after mortality for piñon pines to drop their needles in semi-arid regions (Clifford

et al., 2008), studies that use a Landsat time series with more than one scene per year will

improve the understanding of the timing of landscape-scale PJ die-off.
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5. Conclusions

I utilized Landsat imagery together with finer-resolution reference data to predict

absolute percent tree mortality within a 30-m pixel, resulting in a representation of tree

mortality more sensitive to patterns of severity, timing, and extent than a typical binary

(live/dead) classification approach. In the semi-arid open-canopy ecosystem, post-processing

model predictions were effective for reducing overestimation of mortality during years without

drought. Drought-induced tree mortality within the study area lasted from around 2000 to

2009, with peaks in 2002 and 2006, resulting in 67,190 ha of cumulative tree mortality, or

19.8% of the PJ woodlands within the study area. On average, within-pixel tree mortality

lasted 3 years, with 22% of a 30-m pixel experiencing tree mortality per year when mortality

presence was detected. Within the study area, the lowest amount of tree mortality was

found at both the lowest and highest elevation ranges, whereas the highest amount of tree

mortality was found at the intermediate elevation ranges. I estimate that 48.9 million trees

were killed within the study area between 1987 to 2009.

The satellite-based methods developed here and the results are useful to resource

managers in the area (e.g., Bandelier National Monument) and scientists in the area (e.g.,

Los Alamos National Laboratory) studying tree mortality. The algorithms developed here

to remotely monitor and map tree mortality with Landsat imagery contribute to the

development of tree mortality mapping and monitoring efforts for open-canopy woodlands

and forests. The maps created here provide a baseline for future research to quantify both

drivers and impacts of this mortality. Furthermore, the spatial and temporal patterns

documented here increase understanding of historical drought impacts to the piñon-juniper

woodlands of northern New Mexico. By mapping tree mortality and documenting spatial and

temporal patterns as this study has done, we can estimate ecological impacts and validate

algorithms used in regional- or global-scale mortality models.
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Appendix B. Workflow of two-step random forest modeling approach

Workflow of the two-step random forest modeling approach used in this study. Boxes with solid outlines

indicate products and boxes with dashed outlines indicate tasks.
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Appendix C. Correlation matrix for variables used in model development

Correlation matrix used to determine correlation between all 32 candidate explanatory variables as indicated

by the correlation coefficient (R). The explanatory variables are derived from 2006 Landsat imagery.

Temporal anomalies (′) are calculated from a given variable’s pre-drought (1990-99) per-pixel mean.
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Appendix D. Variable importance plot for the balanced single-step RF model

Variable importance (VI) plot using increase in node purity as the measure of VI for all non-redundant

variables used in the balanced single-step RF model. The dashed black line indicates the mean VI. Temporal

anomalies (′) were calculated from a 1990-99 per-pixel mean.
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Appendix E. Frequency distributions of PTM used for unbalanced models

Frequency distributions across bins of percent mortality (within a 30-m grid cell) for partitions used during

k-fold cross-validation (k = 10) to develop and evaluate unbalanced models.
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Appendix F. Frequency distributions of PTM used for the balanced model

Frequency distributions across bins of percent mortality (within a 30-m grid cell) for partitions used during

k-fold cross-validation (k = 7) to develop and evaluate the balanced random forest model.
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Appendix G. Balanced RF model performance using 7-fold cross-validation

Comparison of precent tree mortality reference data and predictions for seven-times repeated model building
and evaluation using the balanced single-step random forest model.

Fold R2 RMSE (%) MAE (%) ME (%) Moran’s Ia (p value) Nb Nc

1 0.48 15.64 10.52 -0.31 -0.042 (0.95) 210 35

2 0.65 13.01 10.39 -3.57 0.045 (0.72) 210 35

3 0.77 10.21 8.39 1.15 0.036 (0.76) 210 35

4 0.69 12.21 9.64 1.12 -0.029 (0.99) 210 35

5 0.57 14.40 12.19 0.48 -0.163 (0.52) 210 35

6 0.48 16.36 12.64 -0.01 0.041 (0.73) 210 35

7 0.79 10.13 7.99 1.24 0.302 (0.11) 210 35

Average across all folds 0.63 13.14 10.25 0.48 0.027 (0.69) 210 35

RMSE, root mean square error; MAE, mean absolute error; ME, mean error; N, number of samples.
a Global Moran’s I of the model residuals.
b Number of pixels sampled for model training.
c Number of pixels sampled for model testing.
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Appendix H. Frequency distributions for explanatory variables used in the final

model

Frequency distributions of explanatory variables used in the final random forest model, including (A) DI′,

(B) NBR′, (C) NDVI′, and (D) SAVI′, for the entire reference image (top panels) and the pixels sampled

to create a balanced distribution of percent tree mortality for seven-times repeated model building and

evaluation (bottom panels; n = 49).
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Appendix I. Time series within the reference data region for various PTM

thresholds

Time series of mortality area predictions from the final balanced single-step random forest model within the

geographic extent of the reference data (top panel) and the post-processed mortality area time series using

different thresholds (5%, 10%, ..., 30%) for reassigning low mortality severity predictions to 0% (bottom

panel).
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Appendix J. Time series of model predictions re-assigned to zero PTM

(a) The number of model predictions (pixels) per year re-assigned to zero PTM by applying a 15% mortality

threshold, (b) the sum of mortality area (hectares) per year for those pixels, and (c) the distribution of PTM

per year for those pixels. For (c), the horizontal line within the box indicates the median, the white diamond

indicates the mean, boundaries of the gray box indicate the 25th- and 75th-percentile, the whiskers indicate

the minimum and maximum PTM re-assigned to zero PTM per year, and circles indicate outliers.
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