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ABSTRACT 

The improper use of statistics in research has become a plague to science; several 

publications show that more than 50% of papers have at least one statistical error. These 

may be through a lack of knowledge, misapplication of statistics, or misconduct. The 

epidemic has caused many journals to implement sections devoted to teaching basic 

statistical principles to educate both readers and authors. This thesis describes proper 

statistical techniques through case studies. It also seeks to elucidate the effects of 

performance assumptions of equipment through statistical analysis. 
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Chapter 1 

The suitability of statistics to assess extreme fire years: observations via a case study 

evaluating fire-climate interactions in the northern Rocky Mountains 

 

Introduction 

Climate change is predicted in the northwestern United States to lead to a higher 

frequency of extended droughts and heat waves, increasing the likelihood that the region 

will experience disproportionate quantities of area burned in a given year (Pechony and 

Shindell 2010; IPCC 2013). These scenarios described are often as large (Fule et al. 2004), 

regional (Morgan et al. 2008), or extreme (Lannom et al. 2014) fire years. The prediction or 

immediate a posteriori assessment of such extreme fire years could aid in the rapid 

assignment of mitigation actions to maintain or restore critical ecosystem goods and 

services, especially if those ecosystems are vulnerable to regimes shifts or loss of ecosystem 

structure or function (Schefferm and Carpenter 2003; Smith et al. 2014). Many studies have 

sought to identify extreme fire years for a variety of reasons, including assessment of (i) 

atmospheric and climate anomalies are associated with those years (Johnson and Woschuk, 

1992; Gedalof et al. 2005), (ii) fire-climate relationships occurring over across paleo- 

(Drobushev et al. 2014) and centennial-timescales (Fauria and Johnson, 2008; Morgan et al. 

2008; Dillon et al. 2011; Lannom et al. 2014; Higuera et al. 2015), (iii) years that are more 

likely to lead to ecosystem regime shifts (Kasischke et al. 2010; Boiffin and Munson, 2013), 

and (iv) whether potential trends in the frequency and properties (e.g. areas burned with high 

severity) of such extreme fire years exist or have changing rates (Hanson and Odion, 2014). 

The majority of these studies use either geospatial datasets of area burned per year, whether 
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fire atlas or satellite sensor derived, or paleoecology metrics derived from fire scars or cores 

(Morgan et al 2008; Dillon et al 2011; Drobushev et al. 2014).  

 

Multiple definitions of extreme fire years or similar descriptors (e.g. big fire years, large 

fire years, regional fire years, and widespread fire years) already exist in the literature. 

Studies that have defined them include: (a) setting an upper percentile threshold on ranked 

lists of total area burned per year (Morgan et al. 2008), b) identifying outliers using a 

version of the Tukey’s Range test (Dillon et al. 2011; Lannom et al. 2014), c) performing 

two sample t-tests to evaluate whether set years have significantly more burned area than 

other years (Miller et al. 2012), d) selecting the top five years of area burned within a 

temporal series (Gedalof et al. 2005), e) defining set thresholds (e.g., >50%) of area burned 

associated with a subset of years over short temporal series (Vivchar, 2011; Boiffin and 

Munson, 2013), f) non-Gaussian (e.g,., Weibull) parametric tests performed on fire scars, 

lake cores, or tree core data (Fule et al. 2003; Drobyshev et al. 2014), and g) years 

exceeding a set threshold of burned area within a region (Johnson and Wowchuk, 1992; 

Kasischke et al. 2010). In many cases, years have been described as large fire years without 

a qualifying test (Schoennagel et al. 2005; Fauria and Johnson, 2008).  

 

This brief synthesis highlights that various statistical approaches have been performed to 

define such extreme, large, or regional fire years. However, these statistical approaches vary 

widely in their robustness and applicability, with many assumptions and limitations ignored 

and many tests applied inappropriately or without necessary post-hoc tests. Regardless of the 

particular research question under investigation, there exists a clear need to propose 
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standardize approaches to derive such extreme fire years, or where appropriate (depending 

on the science question being asked) to not subset the data to develop relationships. The 

objectives of this study are to: 

1. Identify extreme fire years for a region in the northwestern United States from 1889-

2010 using a combination of fire atlas and satellite sensor data of area burned per 

year, 

2. Independently identify anomalous climatic years over 1895-2013 using PRISM data 

of minimum and maximum temperature, accumulated precipitation, climate water 

deficit, and the Palmer Drought Severity Index, 

3. Evaluate fire-climate relationships using both analysis of these subset years and 

analysis of the entire datasets, and 

4. Demonstrate the impact of using appropriate and inappropriate statistical methods in 

assessing such questions. 

 

Background: Statistical steps to identify extreme fire years 

Identifying a distribution and creating residuals 

Most studies seek to use parametric statistics to analyze their data as they are easier to 

use. Parametric statistics are those applied to any known probability distribution (e.g., 

Gaussian, Wiebull, Poisson). When considering the goal of identifying regional fire years 

from burned area datasets it is quite feasible depending on the regional extent analyzed that 

the data distribution can be matched or transformed to fit a known distribution. For example, 

regional area burned temporal series are often log-transformed to be normal (Higuera et al. 

2015). Residuals are the difference of the observed value and an estimated value (e.g. data 



4 
 

point and a regression line or data and sample mean) and are widely analyzed to assess the 

assumptions required for the various statistical analyses steps.  

 

Testing for independence, normality, and homogeneity of variance 

The first requirement to use most parametric tests is that ideally the data is independent 

and identically distributed, but in reality many tests can be tweaked to permit some degree 

of non-dependence. This is particularly the case as specific tests of independence are 

difficult to come by and most studies use logical arguments to determine independence of 

data (such as fitting two models, where one requires independence and the other allows 

modelling for different kinds of dependence). Importantly, conditional independence is 

necessary; namely, independence of the errors within the data. Usage of statistical 

approaches like semi-variograms and autocorrelation analyses are often applied to infer 

whether data is not dependent (Higuera et al. 2015). If dependence is suspected (e.g., from 

logic, very low p-values) additional tests for dependence can be performed.  

 

The next step of pre-analysis is to assess for conditional normality; although depending 

on the data distribution and the sample size the Central Limit Theorem is often used to 

assume conformity. Alternatively, conformity can also be informally assessed by a bootstrap 

approach using quantile-quantile plots, where users compare the distribution of the estimates 

from a sample of the data with a parameter that exhibits a normal distribution. Although not 

widely used, there exist >40 available tests for normality (Dufour et al. 1998), with the most 

common being Shapiro-Wilk and Kolmogorov-Smirnov. A synthesis study by Razali and 

Wah (2011) determined that the Shapiro-Wilk test is the most powerful, with Kolmogorov-
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Smirnov being the least favorable of four tested. The original Shapiro-Wilk test is valid up 

for sample sizes of 3-50, although a revised version that is commonly applied with most 

statistical software extends the range to 5000 (Roysten, 1995). The two other most common 

methods are the Anderson-Darling and the Lilliefors normality test, which is an adjusted 

version of the Kolmogorov-Smirnov Test that does not require the variance or expected 

value to be known (Razali and Wah, 2011). Graphical methods such as normal quantile-

quantile plots, histogram, box-plots, and stem-and-leaf plots are commonly applied but these 

do not actually perform a test for normality. Likewise, skewness and kurtosis are also often 

applied but are less rigorous than formal normality tests.  

 

Homogeneity of variance is often tested because goodness-of-fit values can be 

overestimated when it is not accounted for and as heterogeneity increases a corresponding 

rise in ANOVA Type I errors often occur (McGuinness, 2002). Homogeneity of variance 

can typically be evaluated using nested models, F-max test, Cochran’s test, Levene’s Test, 

or a Bartlett’s Test (McGuinness, 2002; Jones et al. 2009). However, as outlined by 

McGuinness (2002) if pre-analysis tests are not performed the results of such tests can lead 

to increased errors. Data that do not exhibit homogeneity of variance is described as 

heteroscedastic were examples include datasets whether the variability between two 

variables changes, potentially due to an unknown third factor. For data with more than one 

factor, the assumption tests should be performed on the residuals or on a continuous 

predictor. If any of these three assumptions are violated, the data should be transformed and 

the transformed data re-tested; conversely a different distribution should be used (e.g., 
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Wiebull). Subsequent analysis should then be performed on the transformed data or other 

distribution.  

 

Tests to Detect Potential Outliers 

The assessment of extreme fire years could be done without the use of statistical tests 

through the use of arbitrary decisions. However, we would contend that if the goal is to use a 

defensible statistical approach, then arguably the most appreciate suite of approaches to 

assess extreme values would be outlier detection and verification methods. Other approaches 

do exist, such as generalized extreme value theory where a tail of a distribution is fitted to 

values that are assumed to be extreme (CITE). Importantly, two steps are needed to assess 

for outliers: (i) identifying potential outliers followed by (ii) formal outlier tests conducted 

as part of a post-hoc analysis (described below). To identify potential outliers or extreme 

values within a normal dataset, common tests can include Tukey’s Range Test, the Modified 

Z-score, and analysis of standard deviations about a mean (Table 1). Percentile breaks can 

be used on both parametric and non-parametric data.  

 

The Tukey’s Range Test identifiers potential upper outliers as all values > third quartile 

+ 2.2 IQR and potential lower outliers for all values < first quartile – 2.2 IQR, where, IQR 

denotes the interquartile range (Tukey, 1977; Hoaglin et al. 1986). This method is 

commonly applied with the original multiplier of 1.5 times the IQR, however, analysis by 

Tukey and others subsequently determined that a multiplier of 2.2 was preferred (Hoaglin 

and Iglewicz, 1987). Another common test is the Modified Z-Score that defines potential 

outliers as having absolute calculated index values exceeding 3.5 (Table 1). The Modified Z-
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Score is preferred over the original as it is a more robust test and the index values are easier 

to interpret as they extend over a larger range (Iglewicz and Hoaglin, 1993). Caution should 

be applied when using either percentile breaks or standard deviations above mean as a 

normal distribution will always tend to have some values above any set threshold. For 

example, a mean plus two standard deviation threshold will still have ~2.5% of the data 

above that value, where the data above that threshold could exhibit multiple orders of 

magnitude difference in size. This is similarly applicable to a percentile threshold as by 

default ~2.5% of the data points will be present following a 97.5% percentile threshold. 

Identification of potential outliers within non-parametric data distributions include the use of 

an adjusted box plot or other complex methods as described in the statistics literature 

(Gnanadesikan and Kattenring, 1972; Rousseeuw and Leroy, 2005; Rousseeuw and Hubert, 

2011).  

 

Post-hoc tests to test for actual outliers 

To assess whether potential outliers in parametric data are actual outliers, various tests 

are available, where examples include the Grubb’s Test, the Tietjan-Moore Test, the 

Generalized Extreme Studentized Deviate (ESD) Test, and the Dixon’s Q Test. The Grubb’s 

Test is an appropriate test for assessing single outliers within parametric data, where a 

generalization of the Grubb’s Test a known number of for more than one outlier is provided 

by the Tietjen-Moore Test (Tietjan and Moore, 1972). The Generalized Extreme Studentized 

Deviate (ESD) Test is most appropriate when the precise number of outliers in unknown 

(Rosner, 1983). The Dixon’s Q Test is only appropriate when seeking to evaluate a single 

outlier within a small (<40) sample size (Dixon, 1950). Although many non-parametric tests 
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exist, the majority of commonly applied tests focus on cases where there are more than one 

set of data (e.g., Mann-Whitney Test, Wilcoxon-Paired Sample Test, Kruskal-Wallis Test, 

Spearman Test). There are limited examples of univariate non-parametric rank tests but 

these require repeated measures. Given the assessment of regional fire years within a burned 

area temporal series is a univariate problem, hereafter, the primary focus of this paper will 

be on parametric tests, where non-parametric statistics are referenced only as appropriate.  

 

Correlation Analysis  

The assessment of fire – climate relationships will require correlation or regression 

analysis. The most commonly applied correlation analysis methods are Spearman, Pearson, 

and Kendall, where none of these approaches require normal data (CITE). Although Pearson 

does not require normality it works better when the data is normal and of equal variances 

(CITE). The Spearman and Kendall tests are more robust to outliers. However, in each case 

these methods both rank the data from highest to lowest, where the highest is given a value 

of 1, the next a values of 2, and so on. Consequently, sensitivity in the data that would alert 

the user to patterns and trends is lowered. Furthermore, Spearman and Kendal are not 

appropriate for use on truncated data, such as where a sub-sample or percentile threshold has 

been applied (CITE).  

 

Methods 

Burned Area Data  

Our study focused on annual burned area data from two Level III Ecoregions that prior 

studies have evaluated (Morgan et al., 2008; Dillon et al., 2011; Lannom et al., 2014). The 
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current study uses both fire atlas data and MTBS fire perimeter polygons from the Columbia 

Mountains / Northern Rockies, Canadian Rockies, and Idaho Batholith ecoregions (Figure 

1). The Fire Atlas data, which is described in detail in past studies (Holden et al., 2005; 

Morgan et al., 2008), extends from 1889 to 1983, after which point we replaced it with 

MTBS fire perimeter data from 1984 to 2010. These datasets report total burned area per 

year making it an ideal univariate case study for this paper. The uncertainties within these 

two datasets are well documented in the literature (Morgan et al., 2008; Kolden et al., 2012; 

Lannom et al., 2014; Sparks et al., 2015). 

 

Climate Data  

Climate data was acquired via the PRISM project (PRISM, 2015). Datasets included at 

monthly time-steps, average maximum temperature (°C), average minimum temperature 

(°C), accumulated precipitation (mm), the Palmer Drought Severity Index (PDSI), and the 

climatic water deficit (CWD, mm). Each dataset covers the range 1895 to 2013 and was 

calculated as areal averages from area encompassing the two ecoregions. Following past 

studies, we evaluated the August PDSI value as a proxy for soil moisture at the end of 

August, annual climate water deficit to account for the relative difference of precipitation 

minus potential evapo-transpiration. In the analysis of precipitation and temperature 

datasets, we followed past studies and evaluated different monthly date ranges of winter, 

spring, and summer (Morgan et al. 2008; Higuera et al. 2015). Autocorrelation analysis was 

performed between the precipitation and temperature data and between CWD and 

temperature data.  
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Statistical Tests  

To demonstrate the impact of using appropriate and inappropriate statistical methods, 

this paper will demonstrate four scenarios to identifying extreme fire years from time series 

of annual area burned data: 

1. Appropriate 1: (i) conduct normality test, (ii) if non-normal, transform and retest for 

normality, (iii) if normal detect potential outliers, and (iv) test potential outliers.  

2. Appropriate 2: (i) conduct normality test, and (ii) if non-normal, but fits another 

distribution (e.g., Wiebull) performs appropriate parametric tests to detect potential 

outliers, and (iii) test potential outliers.  

3. Inappropriate A: (i) no normality test conducted, (ii) detect, but not test potential 

outliers. 

4. Inappropriate B: (ii) transform for normality or identify another distribution model, 

and (ii) detect but not test potential outliers. 

 

In terms of the Appropriate 2 Scenario, it is not possible to test for true outliers on data 

where the distribution is not known as all the true outlier tests evaluate the values against a 

given distribution. The subsequent analysis of the appropriate scenarios will be used to 

answer the question to characterize the fire return interval of these extreme fire years for this 

study area.  

 

To test for normality we performed the Shapiro-Wilk Test within SPSS version 22 

(IBM, Armonk, NY). The data was not-normally distributed and therefore for the purposes 

of the Appropriate Scenario 1 it was log-transformed and re-rested for normality. To test for 
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potential outliers within the dataset we performed the following tests within the open source 

statistical software package, R (R Development Core Team, 2014) and as available were 

cross-checked in SPSS: Tukey’s Boxplot Method, Modified Z-Score, Percentile, Standard 

Deviation (Z-Score), and Adjusted Box Plot. To test whether potential outliers are true 

outliers the Generalized Extreme Studentized Deviate (ESD) Test was performed in R. We 

acknowledge that parametric tests can be used on other distributions (e.g., Poisson, Poreta), 

but selected Gaussian and Weibull given their widespread usage in identifying large fire 

years.  

 

Results 

Identifying distributions  

Using the Shaprio-Wilk Test the raw burned area data did not exhibit a normal 

distribution (p<0.001). We also tested and determined that the burned area data somewhat 

fitted a Weibull distribution (p=0.209) under shape parameter of 0.49 and a scale parameter 

of 18,103. However, the burned area data was determined to be normally distributed 

following a log-transformation (p=0.536). Excluding the years with zero burned area only 

slightly changed the significance (p=0.526). Using the Shaprio-Wilk Test the PRISM 

average maximum temperature (p=0.427) and accumulated precipitation (p=0.625) datasets 

both exhibited normal distributions. Table 3 presents the descriptive statistics of the PRISM 

data. Excluding the years with zero burned area increases the significance to 0.901 and 

0.651 for the temperature and precipitation data respectively. Annual CWD and PDSI 

August values both exhibit normal distributions, with significance of 0.315 and 0.241 

respectively.  
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Identifying and verifying outliers 

In terms of the appropriate scenarios, at most only four years are identified as outliers 

and thus are potentially extreme, large, or regional fire years in this study region. In terms of 

the ESD test no outlier’s were identified, although 1910 only marginally failed the test. The 

years identified as outliers by the ADJ Box Plot were 2007, 2000, 1919, and 1910. The 1910 

fire, commonly referred to as The Big Burn (Egan, 2014), burned in excess of 1 million 

hectares, whereas the 1919, 2000, and 2007 fires consumed between 471,000 and 551,000 

hectares (Table 4). This is in sharp contrast to some years identified when using the 

inappropriate scenarios that were as low as 100,000 hectares. When analyzing the data by 

separate ecoregion, no potential outliers on the normalized data were identified. 

Inappropriately identifying outliers on the non-normal data yielded 12 potential outliers in 

the Columbia Northern Rockies, 17 in the Idaho Batholith, and 9 within the Canadian 

Rockies ecoregion.  

 

Fire-Climate Relationships 

Table 5 presents linear regressions between the natural logarithm of area burned and 

various climate variables. In terms of single variable regressions, the average maximum 

temperature (July-August) and the total summer precipitation (June to August) produced the 

best regressions with r
2
=0.34 and 0.30, respectively. With two independent variables used 

with the regression, the average maximum temperature (July-August) coupled with the 

annual total climate water deficit accounted for ~10% more variance with a r
2
=0.43. Only a 

minimal improvement was achieved when incorporating three or four independent variables.  
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Discussion 

Impacts of inappropriate statistics 

The results from Inappropriate Scenarios A and B highlight two problems that can result 

by using incorrect methods: (1) any percentile or standard deviation threshold will produce 

an arbitrary separation of data where the separated data can contain either similar values or 

values ranging over several orders of magnitude; and (2) potential detected outliers are not 

necessarily true outliers. In terms of (1), a fixed 90
th

 percentile will always give you the top 

10% values from a ranked list regardless of the actual sizes of the values in that list. For 

example, data could conceivably be near-identical over an analysis period, but the fixed 90
th

 

percentile would nevertheless still report the top 10% as being outliers. Conversely, the top 

10% of data entries could equally arise from a highly skewed distribution and exhibit a wide 

range of values. The latter is apparent in this case study, as the 90
th

 percentile identifies fire 

years with area burned greater than 135, 347 ha at the lower end and 1,031, 812 ha at the 

upper end. In terms of (2), not testing potential outliers as actual outliers clearly leads to 

many extreme fire years being erroneously identified (Table 2).  

 

Comparing the results of the Tukey’s method applied to the raw data and the 

transformed data highlights a problem that can arise with the incorrect usage of these tests. 

Namely, they detect outliers based on the data points distance from the whole distribution; 

thus it will be expected that non-normally distributed data would not fall within the normal 

distribution and instead be erroneously identified as outliers. In the case study, the Tukey’s 

approaches applied to the raw (non-normal data) identified 12-14 potential outliers as 

compared to no identified outliers on the log-normal transformed data. 
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Comparison with previously detected extreme fire years 

The number of outliers identified via the appropriate scenarios (i.e. maximum of 4) is 

considerably lower than previously reported by other studies assessing extreme fire years 

within the broadly representative ecoregions of our case study. The four years that were 

identified as potential outliers in the current study where 1910, 1919, 2000, and 2007. Table 

3 contains the average and ranges of all the climate data for the region and Table 4 is data 

just for the potential 4 outlier years. Comparing these tables demonstrate that although not 

verified statistical outliers, each of these years (1910, 1919, 2000, and 2007) exhibit values 

that in most cases exceed two standard deviations above the mean.  

 

Morgan et al. (2008) identified 11 years between 1900 and 2003 using a 90
th

 percentile 

approach. All the extreme fires years identified by the appropriate scenario in the current 

case study were also identified by Morgan et al. (2008) as regional fire years; were arguably 

the current study places more stringent criteria. The additional identified extreme year of 

2007 from the current case study was outside the temporal series analyzed by Morgan et al. 

(2008). However, the other 7 regional fires years identified by Morgan et al (2008) were not 

determined to be outliers within the appropriate scenarios evaluated within the current case 

study. In comparison to the current case study, the data from Morgan et al. (2008) 

geographically constrained the ecoregion data to the State of Idaho and parts of Montana 

that intersected with the Level III ecoregions of the Northern Rockies and the Canadian 

Rockies. In each of the current case study and Morgan et al., (2008) no fires were included 

from the Snake River Plain Level III ecoregion and Morgan et al. (2008) only included a 

small number of fires from the Blue Mountains Ecoregion. We contend that these slight 
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differences between the datasets would not overly impact the results. Although Lannom et 

al. (2014) evaluated a wider study region, this prior study identified 2007 as being a 

statistically extreme burned area year using the Tukey’s 1.5 IQR test, with 2006, 2000, and 

1988 as outliers. Dillon et al. (2011) identified 5 widespread fire years between 1984 and 

2006 using the Tukey’s 1.5 IQR test, where none of these years matched the two outliers 

(i.e., 2000 and 2007) identified by the appropriate scenarios in the current study. Dillon et 

al. (2011) analyzed the Northern Rockies ecoregion, which differenced from the current 

study as it encompassed the Level III ecoregion of the Middle Rockies that included the 

1988 Yellowstone fires, which could account for some of the differences in the analyzed 

distributions.  

 

Comparison with previously assessed fire-climate relationships 

Table 5 highlights the relationships that were also evaluated within this study region in 

two prior studies (Morgan et al. 2008; Higuera et al. 2015). In Morgan et al. (2008) the 

analysis was conducted on the non-log transformed are burned data and only on the 

truncated dataset of identified regional fire years. Consequently, these prior results were 

likely not correct and this likely explains why the correlation values are significantly lower 

than that observed in the current study and in Higuera et al. (2015). Higuera et al. (2015) 

observed similarly strong, although slight better, regression coefficients with the current 

study. The slight improvements observed by Higuera et al. (2015) likely arise as rather than 

excluding data with no area burned; this study set these values to 10 hectares to 

accommodate the log transformation.  
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Conclusions 

On balance, the adjusted box plot or a Z-score would be the most appropriate tests to 

evaluate extreme years of area burned, as detection of true outlier years may be too 

constrained for the purposes of elucidating fire-climate interactions. Therefore, future 

studies avoid descriptors that imply that they are assessing statistical outliers and they 

should not be treated as such in the subsequent analysis (i.e. excluding them or truncating 

the data to just include them). When using rank correlations such as Spearman’s or 

Kendall’s usage of arbitrary percentiles and similar descriptive-statistics thresholds should 

be avoided. When thresholds are used for other analysis, these should be selected that match 

ecologically relevant phenomena; such as annual burned area sizes associated with increased 

probability of ecosystem regime shifts (Smith et al. 2014).  

 

A common science question in wildland fire science is to evaluate how inter-annual 

climate variability impacts annual area burned (Higuera et al. 2015). It could be argued that 

such an analysis does not require the formal detection of anomalously large years as fire-

climate relationships should ideally be transferable regardless whether or not the year 

experiences extreme large quantities of annual area burned. However, there could be 

nonlinearities and thresholds in such relationships whereby extreme fire years as discussed 

in this paper do occur under novel conditions. However in such approaches, care should still 

be taken to ensure that the subset maintains sufficient data points and meets the assumptions 

for statistical regression analysis. In these studies the detection of outlier annual burned area 

years as presented in this paper would be prudent to isolate true outliers when conducting 

the regressions.  
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Table 1. Common statistical methods used in the assessment of outliers 

Analysis Step Statistical Test Assumptions Common Software 

Normality
 

Shapiro-Wilk
1  

Sample Size: 3 ≤ n ≤ 5000 
SPSS, SAS, STATA, R: nortest 

Anderson-Darling
2 

 SAS, STATA, R: nortest 

Lilliefors  SPSS, SAS, STATA, R: nortest 

Kolmogorov-

Smirnov 
 SAS, STATA, R: nortest 

Homogeneity of 

variance 

Levene  SPSS, SAS, STATA, R: car 

Bartlett  SPSS, SAS, STATA, R 

Detect Potential 

Outliers 

Tukey’s Boxplot 

Method 

Normally Distributed 

Independent and Identically 

Distributed 

Homoscedastic 

SPSS, SAS, STATA, R 

Modified Z-Score 
Relatively Normally 

Distributed 
SAS, STATA, R 

Percentile  
 

SPSS, SAS, STATA, R 

Standard Deviation 

(Z-Score) 
Normally Distributed SPSS, SAS, STATA, R 

Adjusted Box Plot  SAS, R: robustbase 

Formal Outlier 

Tests 

Grubb’s Test 
Single Outlier 

Normally Distributed 
SAS, STATA, R: outliers 

Tietjen-Moore Test Known Number of Outliers SAS, STATA, R: outliers 

Generalized 

Extreme 

Studentized Deviate 

(ESD) 

Upper Bound for Number of 

Outliers 
SAS, STATA, R: outliers 

Dixon’s Q Test Single Outlier SAS, STATA, R: outliers 
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Table 2 Potential outliers as identified on both the original (non-paramedic data) and data transformed to be normally distributed.  

   

  Inappropriate A: Analysis on raw 

non-normal data where all 

potentials are assumed to be 

outliers 

Inappropriate B: Analysis on data 

transformed to be normal where all 

potentials are assumed to be outliers 

Appropriate 1 and 2: Analysis on 

data transformed to be normal (or 

non-parametric tests used) where 

potential outliers are tested 

 

Year 

 

Total Area 

Burned 

(ha) 

90
th
 

Percentile 

Tukey 

Outlier 

Tukey 

Extreme 

S

D 

> 

2 

 

90
th
 

Percentile 

Tukey 

Outlie

r 

Tukey 

Extreme 

SD 

> 2 

 

 

Appropriate 

1 

ESD
1,2,3

 

Appropriate 

2 

ADJ Box 

Plot  

2007 551,488 y y y Y  y   y   y 

2006 135,347 y y y   y       

2005 82,806             

2003 210,168 y y y   y       

2000 471,056 y y y y  y   y   y 

1994 241,869 y y y   y       

1992 105,685  y           

1988 128,909  y y          

1934 

138,158 y y y   y     

  

1931 93,232  y           

1929 158,730 y y y   y       

1926 157,589 y y y   y       

1919 507,772 y y y y  y   y   y 

1910 1,031,812 y y y y  y   y   y 

1889 298,185 y y y   y       
1
 ESD is a formal outlier detection test (as opposed to identifying “potential” outliers) 

   

2
 Analysis performed on transformed data 

3
 Analysis performed on log-normal data

 



 

 

2
3

 
 

 

Table 3 Descriptive statistics of PRISM datasets (1895-2010) used within this study. Temperature data in units of °C and precipitation in units of 

mm. CWD – climate water deficit, PDSI – Palmer Drought Severity Index.  

 

PRISM Variable mean s.d. min max Potential Outliers 

Annual Max Temperature (Jan -  Dec) 26.2 1.4 22.1 29.7 1912 (22.1 °C) 

Average Spring Max Temperature (Mar - May)
 

10.5 1.5 6.8 15.6 1934 (15.6 °C) 
 

Average Summer Max Temperature (July - Aug) 23.5 1.0 21.3 26.9 1961 (26.9 °C)  

Annual Total Precipitation (previous Aug -  current July) 820.6 124.8 557.9 1157.8 1997 (1157.8 mm) 

Total Spring Precipitation (June – Aug) 209.9 46.8 75.6 341.9 2011 (341.9 mm) 

1924 (75.6 mm) 

Total Summer Precipitation (June – Aug) 
 

120.4 38.2 31.5 217.2 none 

Annual Total CWD 975.7 71.4 777.7 1148.0 none 

PDSI (Aug) -0.1 1.6 -0.4 4.8 1983 (4.8) 

1984 (4.7) 
1
 Identified as outliers using the Adjusted box plot method.       

 



 

 

2
4 

 

 

Table 4. PRISM Properties of the four potential Adjusted Box Plot area burned years. Temperature data in units of °C and precipitation in units of 

mm. CWD – climate water deficit, PDSI – Palmer Drought Severity Index. 

  

Year  

Total 

Area 

Burned 

(ha) 

 

 

Annual Max 

Temperature 

(Jan -  Dec) 

 

Average 

Spring Max 

Temperature 

(Mar - May) 

Average 

Summer 

Max 

Temperature 

(July - Aug) 

 

Annual 

Total 

Precipitation 

(Aug -  July) 

 

 

Total Spring 

Precipitation 

(June – Aug) 

 

Total 

Summer 

Precipitation 

(June – Aug) 

 

 

Annual 

Total 

CWD 

 

 

 

PDSI 

(Aug) 

1910 1031811.6 27.0 14.0 23.8 835.8 179.1 42.2 1115.0 -2.4 

1919
 

507772.0 27.5 11.3 25.2 712.9 199.9 31.5 1045.4 -2.2 

2000 471055.9 26.2 11.2 24.0 798.4 197.5 70.5 1051.9 -2.3 

2007 551487.9 29.7 12.4 25.3 752.1 154.3 73.7 1120.2 -3.0 
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Table 5 Fire-climate relationships on all non-zero data predicting the natural logarithm of 

area burned.  Regressions were all tested at the 0.05 level. 

Independent Variable(s) r
2
 

Annual Max Temperature (Jan -  Dec) 0.20 

Average Summer Max Temperature (July - Aug) 
1 0.34 

Average Spring Max Temperature (Mar - May) 
2 0.14 

Annual Total Precipitation (previous Aug -  current July) 0.15 

Total Summer Precipitation (June – Aug) 
1, 2 0.30 

PDSI (Aug) 0.19 

Annual Total CWD 0.25 

Average Spring Max Temperature (Mar – May) 

Annual Total CWD 

0.30 

Average Summer Max Temperature (July – August) 
1, 2 

Summer Precipitation (July - Aug) 

0.38 

Average Spring Max Temperature (Mar – May) 
2
 

Average Summer Max Temperature (July – August) 

0.40 

Average Summer Maximum Temperature (July – Aug) 

Annual Total CWD 

0.43 

Annual Max Temperature (Jan -  Dec) 

Annual Total CWD 

0.36 

Average Spring Max Temperature (Mar – May) 

Average Summer Maximum Temperature (July – Aug) 

Annual Total CWD 

0.46 

Average Spring Max Temperature (Mar – May) 

Average Summer Maximum Temperature (July – Aug) 

Annual Max Temperature (Jan -  Dec) 

0.40 

Average Spring Max Temperature (Mar – May) 

Average Summer Maximum Temperature (July – Aug) 

Total Spring Precipitation (March – May) 

Total Summer Precipitation (July – Aug) 

0.44 

1
 Relationships also assessed in Higuera et al. (2015).  

2
 Relationships also assessed in Morgan et al. (2008). 
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Chapter 2 

Assessing extreme fires: observations via a case study evaluating extreme fires in the 

intermountain West 

 

Abstract 

Wildfires play a significant role in natural, political, social, and economical trends 

around the world. As the effects of climate change become more severe and apparent, many 

believe wildfire events are becoming more extreme or frequent. However, the definition and 

evaluation of ‘extreme’ events is ambiguous at best and misleading at worst. This study 

assesses the classification of extreme wildfire events with a focus on physical metrics. Using 

a case study of the MTBS era intermountain west, we compared previously utilized 

statistical methods determining extreme fires with a novel approach, Mahalanobis distance. 

Fewer ‘extreme’ events were discovered with our methods (~1%); most of these were also 

identified as extreme events by the other analyses.  

 

Introduction 

 Wildfires are a natural cycle throughout many ecosystems and ecosystem services. A 

combination of humans spreading into previously uninhabited areas and fire regime shifts 

means that wildfires are increasingly likely to affect human activity and interests. As climate 

change becomes more severe, the effects on fire regimes will likely become more 

pronounced. It is widely believed that extreme fires are becoming more common. However, 
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there is little consensus as to what defined an ‘extreme’ wildfire event. There is also only a 

short time’s worth of reliable satellite data available for fires. This short time series greatly 

hampers efforts to assess long term trends such as an increase in extreme wildfire events. 

Either more years will have to be added to the temporal series, or the increase in extreme 

events must be severe enough to overcome the brevity of the timescale. 

 

Studies have sought to classify extreme wildfire events in several ways. Some focus 

on the effects an event has on natural cycles of the area or consider an extreme event to be 

the combination of several fires (Strauss et al.. 1989). Others evaluate a fire’s economic, 

social, or political impacts on the region (Calkin et al.. 2005; Gerbert et al.. 2007; Liang et 

al.. 2008). This approach may well be most appropriate for social sciences. Physical metrics 

collected through the Monitoring Trends in Burn Severity (MTBS) project are more 

consistent, more accurate, and require only access to the database to utilize. 

 

Background: Statistical steps to identify extreme fire years 

Multivariate analyses and tests of their assumptions are generally more convoluted 

than their univariate counterparts (Tabachnick and Fidell, 2001). Testing for normality can 

become particularly difficult. It is easiest to first assess whether the variables are 

conditionally independent. This can be done through logical arguments or through statistical 

methods such as semivariograms or autocorrelation analyses. Should the variables be 

conditionally independent and both normal, the multivariate distribution will also be normal. 

However, if the data are not conditionally independent, multivariate normality must be 
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tested as they will not necessarily follow a joint multivariate normal distribution. This can be 

done via several statistical tests (e.g. Mardia’s test) or through graphical methods (Mardia, 

1970). Where a dependent variable is involved, it can also be done by creating a regression 

of the variables and examining the residuals. If the residuals are normal, the joint 

multivariate distribution is normal as well. The residuals can also be used to determine 

possible outliers. 

 

It is not uncommon for data sets, particularly large ones such as these, to not pass a 

goodness-of-fit test for a Gaussian distribution despite transformations. Large sample sizes 

make these tests, such as the Shapiro-Wilk test or the Kolmogorov-Smirnov test, very 

sensitive to even small departures from the distribution (Oztuna et al, 2006). Additional 

methods, particularly graphical ones such as histograms or Normal Q-Q plots, may be 

necessary to determine if the data are normal. When datasets with large sample sizes exhibit 

a significant digression from the distribution, yet form a tight line around a Q-Q plot and 

appears normal upon visual inspection, it may be possible to utilize parametric methods. 

Additionally, by the Central Limit Theorem, sufficiently large samples (as here, with 1956 

samples) which depart from normality should not be an issue in parametric tests (Elliott and 

Woodward 2007, Altman and Bland 1995). Robust analyses may still be utilized if the data 

are ‘normal enough’, though this entails personal judgment and results should be taken with 

a degree caution (Pallant 2007, Ghasemi and Zahediasl 2012).  
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 Lannom et al. (2014) developed a method for determining extreme fire events by 

selecting those fires which met three or four of the following criteria: 1) Over the 90
th

 

percentile in size, 2) Over the 90
th

 percentile in the percent of the fire which burned 

severely, 3) Over the 90
th

 percentile in fire durations, and 4) Less than the 10
th

 percentile in 

distance to Wildlife Urban Interfaces (WUI). This process is representative of more aspects 

of fires than any single metric, such as area burned, would be. 

 

Mahalanobis distance measures the distance between a point and a multivariate 

distribution, essentially an n dimensional expansion of how many standard deviations away 

from the distribution a point is, to locate multivariate extreme values (Mahalanobis, 1936). 

Values which are outliers of multiple variables may not be outliers of the multivariate 

dataset. It is particularly useful in that it accounts for correlations between variables and can 

be used when the variables have different scales and units. It can be utilized in its traditional 

form when the data follow a Gaussian distribution or expanded to identify outliers in other 

distributions (Ekstrom, 2011). When the data are normally distributed, the Mahalanobis 

distance follows a Chi-Square distribution (Mahalanobis, 1936). Then any point above the 

standard p-value for Mahalanobis distance (p=0.001) is statistically significant and an 

extreme value. Non-normal data which do not fit another known distribution may still be 

ranked through Mahalanobis distance.  
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Methods 

Fire Data 

The raw data used here are described in detail by Lannom et al. (2014). The study area 

involved two Level I ecoregions, the Northwest (NW) Forested Mountains and North 

American Deserts. Area burned, percent burned severely, and duration were collected using 

MTBS data for the study region. Issues in the wildlands fire area and burn severity data sets 

are well known and documented both in general and in these data in particular (Lannom et 

al.. 2014). However, duration is perhaps the most inconsistent fire metric and its problems 

rarely discussed (Moritz. 1997). First, it is often difficult to determine exactly when a fire 

started or has been completely extinguished. Second, the end date of a fire is frequently an 

artifact of management practices. It may refer to the end of active burning, the end of 

smoldering and hot spot activity, or the date when personnel are sent back. Additionally, the 

allocation of resources during ‘active’ fires makes it beneficial to maintain active status for a 

mitigation period after the fire is seemingly extinguished (Abt. 2009). Incident commanders 

of each event should be contacted to assess his or her method of determining the start and 

end dates of an event. 

 

Care must also be taken in data configuration. Many fires have multiple polygons 

which must be joined so that each fire is represented only once. Failure to do so will 

artificially skew the data right, with many more small fires than actually exist and fewer 

large fires. This may also affect which fires are seen as extreme; some fires are comprised of 

several nearly equal size patches and will thus become many times larger when these 
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uniqueness issues are resolved. Difficulties in obtaining accurate data may result in events 

which are missing metrics. It is imperative that these are recognized as no data and not as 

zeroes or another numerical placeholder. Failure to do so will again result in data artificially 

skewed right. 

 

Statistical Tests 

The assessments were performed using either two or three variables: area burned and 

percent severely burned or area burned, percent severely burned, and duration. Normality 

was assessed using the Shapiro-Wilk test, histogram, and Normal Q-Q plot via SPSS version 

22 (IBM, Armonk, NY). Correlation was assessed with a Kendall tau test in SPSS. The data 

were not normally distributed and were significantly correlated. They were subsequently 

transformed and the residuals plotted. Normality tests via SPSS were performed on these 

residuals. 

 

Results and Discussion 

None of the data were normally distributed in their raw form. Additionally, there was 

significant correlation between area burned, duration, and percent severely burned (Kendall 

tau correlation, p<0.001 for all), thus assessments of univariate normality were not sufficient 

to determine distribution (Newson, 2002). Each variable was transformed to make it more 

normal. Residuals were then plotted to further determine goodness-of-fit to a Gaussian 

distribution. Statistical tests showed a significant difference from normal (Shapiro-Wilk, 
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p<0.01). However, the plotted data reasonably fit a Normal Q-Q plot and its histogram 

followed a normal distribution relatively well. It was thus used in a traditional Mahalanobis 

distance calculation with caution.  

 

Standard outlier values found via Mahalanobis distance are at p<0.001. The ranking 

abilities of Mahalanobis distance used on non normal data are acceptable and cutoffs can be 

made arbitrarily. These were chosen as and p=0.01. Mahalanobis distance finds extreme 

values at both ends of the distribution. Since this study sought high severity, large fires, fires 

which were less than the sum of the mean and one standard deviation were removed as well 

as those with a percent severely burned less than the sum of the mean and one standard 

deviation. The two variable Mahalanobis distance (area burned and percent burned severely) 

found 7 outliers (p<0.001) and 15 extreme values. Three variable Mahalanobis distance 

found 10 outliers and 20 extreme values. Most of the fires identified by both the two 

variable and the three variable Mahalanobis distance were also found to be extreme fires by 

Lannom et al. (2014) (Table 1). Those that were not were almost exclusively medium sized 

fires that had not burned near WUI areas. The number of extreme events per year and total 

hectares burned per year were plotted (Chart 1). There was no significant trend in either. 

 

Conclusions 

Mahalanobis distance is a useful method in classifying and ranking extreme fires. It can 

be used on data that are normal or on those that are not normal while still providing relevant 

results. Subsequent analysis could include economic losses, distance to urban areas, 
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encroachment into sensitive areas, and fire return interval. It is not currently possible to say 

that fires are becoming more extreme or that extreme fires are becoming more common. One 

of the biggest reasons for this is the short time series the data are over. A longer time series 

of data would allow long term trends to show. There is also an inherent lack of sample size 

when looking at time series of extreme events. If the threshold for ‘extreme’ is too low, the 

events can hardly be considered extreme. However, with a high threshold to truly qualify an 

event as extreme, very few events will be in the data set. More years of data are thus 

necessary to determine whether or not the frequency extreme wildfire events are increasing. 
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Table 1 Showing those fires classified as 'extreme' for each method. Mahalanobis distance fires are ranked by severity. 

Those fires which are extreme but not outliers are denoted with an asterisk (*). 

Fire Name Year 

Lannom 

et al. 

2014 

2 Variable 

Mahalanobis 

Distance 

3 Variable 

Mahalanobis 

Distance 

Area (ha) 
% Burned 

Severely 

Duration 

(days) 

Davis 2003 1 5 7 8369.93 57.59 126 

Canyon Creek 1988 2 2 5 67936.6 49.83 108 

Lincoln 

Complex 

(Snowbank) 

2003 3 11* 19* 14968.1 48.05 92 

Dooley 

Mountain 
1989 4 

  
7586.68 42.60 93 

Cascade 

Complex 

(Monumental) 

2007 5 3 6 128348.8 37.27 107 

Grizzly Complex 

(Winter) 
2002 6 

  
13754.1 38.08 112 

Fool Creek 2007 7 13* 2 21817.5 45.04 155 

North Fork 1988 8 1 1 228694 45.20 115 

Mussigbrod 

Complex 

(Mussigbrod) 

2000 9 8* 12* 26227.76 48.95 92 

Little Blue 2000 10 
  

1832.72 52.78 103 

East Zone 

Complex 

(Raines) 

2007 11 7 8 128983.3 29.47 112 

Lake Creek 1988 12 
  

229047.7 20.46 106 

Murphy 

Complex 
2007 13 

  
229622 12.87 97 

Flossie Complex 2000 14 
 

16* 36669.1 29.80 115 

Sawmill 

Complex 

(Wyman #2) 

2007 15 
  

27614.09 28.39 112 

Canyon Ferry 

Complex (Cave 

Gulch) 

2000 16 
  

10925.1 41.56 66 

Jungle 2006 17 
  

9650.21 43.82 60 

Red Bench 1988 18 
  

13591.9 40.90 26 

Trail Creek 2000 19 
  

13576.3 34.56 60 

Storm Creek 1988 20 
     

Tower 1996 21 
     

Ahorn 2007 22 
 

3 18466.9 40.98 155 

Fridley 2001 23 6 11* 11159.2 56.24 98 

Sweet-Warrior 

Complex 
1996 24 

  
15982.9 39.07 91 

Snowshoe 2001 25 
  

9504.4 37.70 98 

Red Eagle 2006 26 10* 15* 13177.9 50.97 83 

Confluence 

Complex (Clear 
2007 27 

  
8440.11 8.63 117 



37 
 

 

Sage) 

Meriwether 2007 28 
  

7634.34 29.12 104 

Porphyry South 1992 29 
  

52547.9 14.43 82 

Poe Cabin 2007 30 
  

24161.5 19.26 87 

Burgdorf 

Junction 
2000 31 

  
27229.05 23.53 82 

Canal 1989 32 
  

7525.36 28.4 77 

Upper Nine Mile 

Complex (Nine 

Mile) 

2000 33 
  

7970.15 19.76 85 

Porcupine Creek 1992 34 
  

7207.12 3.00 78 

Burnt Flats 2000 35 
  

3683.86 0 35 

Rosa 1985 36 
  

7867.31 0 2 

Ringer 1986 37 
  

9733.25 0 2 

Coyote Butte 1996 38 
  

12394 26.73 2 

Clover 1988 
 

4 4 143288.7 31.94 12 

Diamond 

Complex 

(Diamond Peak) 

2000 
 

9* 10 109816 29.68 115 

Corbin 1985 
 

12* 9 12934.5 48.48 5 

Skyland 2007 
  

13* 16687.9 24.34 134 

Canyon Creek 

(2) 
1988 

 
14* 14* 10720.1 1.07 75 

Shower Bath 

Complex (Red 

Bluff) 

2007 
  

17* 20277.05 27.74 125 

Sailor Cap 2006 
  

18* 25373.3 34.96 8 

Shower Bath 

Complex 

(Shower Bath) 

2007 
  

20* 20625.6 32.80 121 

Sliver Creek 1988 
 

15* 
    

 

 



 
 

 

3
8 

 

 

Chart 1 The number do extreme events and total hectares burned per year. No significant trend was found. 
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Chapter 3 

Accuracy of WAAS-enabled GPS-VHF warning signal when crossing a terrestrial geofence 

 

Abstract  

 Geofences are geographic coordinate based virtual boundaries that can be static or dynamic, 

when combined with global positioning system (GPS) transmitters, they provide a powerful tool 

for monitoring the location and movements of objects of interest through proximity alarms. 

However, the accuracy of geofence alarms in a GPS-VHF transmitter receiver system has not 

been tested. To achieve these goals, a cart with a GPS-VHF transmitter was run on a straight 

path at three levels of cart speed, angles of the geofence to the track, and distances of the receiver 

from the track. A series of 81 trials showed that, at the ɑ=0.10 level, angle and receiver distance 

affect geofence alarm accuracy (p=0.054 and p=0.000, respectively). With the shortest receiver 

distance and largest geofence crossing angle resulting in the worst and best accuracies 

respectively. 

 

Introduction  

 Geofences are virtual boundaries marked by global positioning system (GPS) coordinates, 

typically set either as a circle of a given radius from a central point, which may or may not be 

dynamically mobile, or as a polygon whose vertices are predetermined by an operator. Many 

disciplines now use GPS tracking to monitor objects or organisms of interest, especially in the 

United States, devices equipped with Wide Area Augmentation System (WAAS) differential 
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correction are considered accurate to within 3 m [1]. Geofences coupled with GPS tracking have 

been deployed in remote monitoring of sites for security purposes, tracking patients with 

Alzheimer’s disease, wildlife encroachment onto farmland, alerting to the escape of prisoners, 

ensuring children stay in a safe area, creating security boundaries for wireless signals, 

transportation management, and tagging animals covering large ranges in remote locations 

[2,3,4,5,6]. An emerging application area is forestry, where multi transmitter GPS systems may 

be useful for logging safety, boundary and silvicultural marking, controlling herbicide 

applications, and production and cost tracking [7, 8].  

 

 Despite its pervasive use, the accuracy of geofence alerts have never been investigated in a 

replicated, designed experiment. This objective of this study is to determine the temporal 

accuracy of a commercially available GPS-VHF unit’s geofence alert system. Specific research 

questions we sought to address include an assessment of how dependent the accuracy is on (i) the 

speed of the tracked object, (ii) the angle of the object to the geofence, and (iii) the distance from 

the receiver. 

 

Methods  

 A series of 81 trials involving a specialized personal recreational vehicle (PRV) designed to 

run on a customizable track were performed at the University of Idaho Forest Operations 

Laboratory in Princeton, Idaho (46.9135 N -116.8325W) to determine which factors affect the 

accuracy of a geofence crossing signal. Trials replicated speeds of 5, 10, and 15 kilometers per 

hour (kph), receiver angles of 30, 60, and 90 degrees, and receiver distances of 4, 100, and 400 
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m. A total of 81 trials were carried out, 27 in each variable class and 3 in each replicate. The 

track was leveled to less than 10 cm height difference along the 120 m extent and aligned to the 

magnetic West/East axis using a total station. The track was flagged at 10 m increments. A 

WAAS-enabled GPS-VHF transmitter (TT 15, Garmin, United States) was attached via its collar 

to the front bumper of the PRV, centered on both the bumper and the track approximately 15 cm 

above the track. The handheld receiver with extended antenna (Alpha 100, Garmin, United 

States) was attached via a cardboard holder and zip-ties at a height of 1.58 m to a PVC pole 

driven into the ground at a set 5 m distance perpendicular to the 80 m point along the track, as 

measured by a total station. The receiver and transmitter were separated only by unobstructed 

flat land to avoid signal interruptions or reroutes that could affect the transmission times. The 

geofence was centered on the track at 80 m, and geofence angles were sighted using a total 

station [9]. For each angle, the end points of the geofence were set to 20 m from the track (Figure 

1). Because the Garmin Alpha handheld unit requires a polygonal or radius geofences, and not 

lines, the extraneous points were set 20 m out, 10 m before the start of the track. Points were 

added to the geofence in the receiver as an average of three waypoints at each location. A 

calibrated speedometer was mounted to the PRV to provide speed feedback to the driver and was 

validated through hand timing. 

  

Trials began with an audio signal given when the front bumper of the PRV crossed the first 

10 m mark, providing the vehicle 10 m to reach a consistent speed, and ended when the vehicle 

crossed the 80 m mark completing the 70 m run. A person standing at the transect through the 

track path manually timed the duration of the 70 m run, with another timing the first 40 m to 
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verify speed over the course of the trial. A third person standing by the receiver timed duration 

from when the signal was heard to when the geofence crossing alarm sounded on the receiver. 

Trials were only run in the West to East direction, with the PRV removed from the track and 

transported via truck back to the starting end for each trial. The time difference between the 

manual timing at the track and the time recorded with the geofence alarm was computed for each 

trial as the global dependent variable, were all statistics are reported in seconds. All statistical 

tests were evaluated at a significance level of ɑ=0.10. 

 

Results  

 At the ɑ=0.10 level, receiver distance and geofence angle significantly affected the time 

difference. Figure 2 shows that the time difference was largest for the 4 m distance 

(Mean=3.225, SE=0.3395) and relatively similar for the 100 m (Mean=1.762, SE=0.2785) and 

400 m (Mean=2.153, SE=0.4050) distances. Time difference was approximately equal for 5 kph, 

10 kph, and 15 kph at Mean=2.041 (SE=0.4515), Mean=2.639 (SE=0.2494), and Mean=1.904 

(SE=0.1452), respectively. Geofence angle exhibited the largest variation in standard error of the 

variables. The trials at 30° were more accurate (Mean=1.631, SE=0.3438), but had a higher 

standard error than those at 60° (Mean=2.682, SE=0.3428) or 90° (Mean=2.272, SE=0.2040), 

which were about the same. This was supported by the comparisons of means done in Table 1. 

Trials run at the 30° geofence showed a lower mean time difference than those at 60° or 90°, 

though a larger standard error. The proximity of the 30° geofence to the approaching side of the 

track may have allowed the geofence alarm to be tripped earlier than for the other geofences 

whose angles did not result in such a close proximity. Because the geofence was only closer to 
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the track and did not alter the true location of the crossing, the earliness of the alarm was more 

variable than in trials where geofence alignment placed a greater distance between the track and 

the approaching transmitter. The increase in time delay between trials at the 4 m receiver 

difference, compared with those at 100 m and 400 m is likely a resultant artifact in how the VHF 

signal is sent or received. It may thus be beneficial to conduct a more detailed analysis over a 

range of relatively short distances in order to determine when the artifact appears, and what 

minimum threshold distance may be needed in order to avoid it. It is possible that, given the rate 

at which VHF signals travel, the artifact is the only cause of the differences in mean timing of 

the distances, and that distance does not in fact play a role in the accuracy of the geofence signal 

above some minimum distance. The full factorial analysis of variance showed that the interaction 

between variables was not significant. 

 

Discussion 

 The higher error observed at close distances has important implications for the applications 

of geofence alerts characterized by loud motorized machinery such as in construction sites or in 

natural resources applications including logging forests. In operational forestry an equipment 

operator could have the receiver in the cab of a motorized vehicle and the excess delay caused by 

the time for the signal transmission could allow the vehicle to travel a notable distance through a 

geofence boundary before being alerted. For example, at 15 kph, the approximately 1.5 second 

extra delay would cause an operator to move a maximum of 6.25 m past the geofence before 

being alerted. Not taking into account reaction time and the time needed to stop a piece of heavy 

machinery, this could easily result in the disturbance of a riparian or sensitive zone, or movement 
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of a harvester well beyond a harvest unit boundary. In safety settings, these implications are even 

more critical. The earlier warning for the 30° geofence indicates that the crossing signal does not 

rely solely on the exact crossing moment, but rather is dynamically sensitive to the proximity of 

the GPS to the geofence. This sensitivity could trigger frequent false alarms when traveling near-

parallel to the geofence. 

  

The TT 15 transmitters currently must be mounted outside of an equipment cab and only 

allow for a vibration or an electric shock to alert that a geofence has been crossed. As the 

receivers are rather small and are unable to communicate with each other, this makes it currently 

difficult to implement on site. However, should the information be fed directly into the onboard 

computers that are currently prevalent in agricultural and forestry machinery, the preexisting 

monitors and hardware could easily also be modified to run GPS and geofence applications.  

 

Conclusions 

 This study has shown that several factors must be considered when deploying geofence alert 

systems in high precision and short duration applications, such as those that occur in operational 

forestry. Geofence angle and the distance between the receiver and transmitter affect the 

accuracy of geofence alarms, though the latter must be investigated more thoroughly to 

determine if this is only so at very close distances. These known time delays could be built into 

geofence polygons to provide additional buffering for known sensitive and safety areas. 
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 The outcomes of this research could be widely used in natural resources from monitoring 

polygons of sensitive site boundaries associated with harvest units to keeping personnel and 

equipment out of machine paths. Many forest operations sites are often poorly marked and new 

personnel are unfamiliar with all inherent risks on site. Accidents caused by thoughtless mistakes 

like walking through an active cable corridor could be avoided if an alert were sent that a worker 

was too close to the machinery. Additionally, accidental site boundary crossings could be 

prevented through the tracking of machinery and hand-fallers around a site marked with 

geofences. In particular, a forester or operator could easily upload a sale shapefile and use the 

polygon data as a geofence. Sensitive sites or riparian zones could be walked as well, with the 

stream classification used to determine how far from the walked path the geofence should be set. 

With transmitters on each piece of equipment and each person on site, anyone with a receiver 

would be warned if a geofence was crossed. 
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Table 1.1: ANOVA with post hoc Tukey's HSD tests run at ɑ = 0.10 

 

 

 

 

 

 

 

 

  

ANOVA with Post hoc Tukey's HSD Test 

Variable 
 

p-value 

Speed 
 

0.209 

5 kph 10 kph 
 

0.363 

5 kph 15 kph 
 

0.947 

10 kph 15 kph 
 

0.219 

Angle 
 

0.054 

30° 60° 
 

0.044 

30° 90° 
 

0.300 

60° 90° 
 

0.609 

Receiver Distance 
 

0.000 

4 m 100 m 
 

0.001 

4 m 400 m 
 

0.000 

100 m 400 m 
 

0.910 
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Figure 1.1: Experimental set up. The track, in red, runs along the magnetic North South axis. 

Trials were exclusively run in the direction of the arrow (N-S). 
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Figure 1.2: Box plot showing the time difference between the actual run time and the time as 

measured with the geofence crossing signal. Twenty-seven runs were completed in each variable 

class. 

 


