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ABSTRACT 

Climate change is disproportionately affecting high northern latitudes, and the extreme 

temperatures, remoteness, and sheer size of the Arctic tundra biome have always posed challenges 

that make application of remote sensing technology especially appropriate. Advances in high-

resolution remote sensing continually improve our ability to measure characteristics of tundra 

vegetation communities, which have been difficult to characterize previously due to their low 

stature and their distribution in complex, heterogeneous patches across large landscapes.  

In this work, I apply terrestrial lidar, airborne lidar, and high-resolution airborne 

multispectral imagery to estimate tundra vegetation characteristics for a research area near Toolik 

Lake, Alaska. Initially, I explored methods for estimating shrub biomass from terrestrial lidar point 

clouds, finding that a canopy-volume based algorithm performed best. Although shrub biomass 

estimates derived from airborne lidar data were less accurate than those from terrestrial lidar data, 

algorithm parameters used to derive biomass estimates were similar for both datasets. Additionally, 

I found that airborne lidar-based shrub biomass estimates were just as accurate whether calibrated 

against terrestrial lidar data or harvested shrub biomass—suggesting that terrestrial lidar potentially 

could replace destructive biomass harvest.  

Along with smoothed Normalized Differenced Vegetation Index (NDVI) derived from 

airborne imagery, airborne lidar-derived canopy volume was an important predictor in a Random 

Forest model trained to estimate shrub biomass across the 12.5 km2 covered by our lidar and 

imagery data. The resulting 0.80 m resolution shrub biomass maps should provide important 

benchmarks for change detection in the Toolik area, especially as deciduous shrubs continue to 

expand in tundra regions. Finally, I applied 33 lidar- and imagery-derived predictor layers in a 

validated Random Forest modeling approach to map vegetation community distribution at 20 cm 

resolution across the data collection area, creating maps that will enable validation of coarser maps, 

as well as study of fine-scale ecological processes in the area.  

These projects have pushed the limits of what can be accomplished for vegetation mapping 

using airborne remote sensing in a challenging but important region; it is my hope that the methods 

explored here will illuminate potential paths forward as landscapes and technologies inevitably 

continue to change. 
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CHAPTER 1: ESTIMATING ABOVEGROUND BIOMASS AND LEAF AREA OF LOW-STATURE ARCTIC SHRUBS WITH 

TERRESTRIAL LIDAR 

Greaves, H.E., Vierling, L.A., Eitel, J.U.H., Boelman, N.T., Magney, T.S., Prager, C.M., and Griffin, K.L. 

“Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR”. 

Remote Sensing of Environment (164), 2015, pp. 26-35. 

Abstract 

Arctic tundra ecosystems are responding to effects of climatic warming via shifts in 

vegetation composition and increased woody biomass. In this sensitive ecosystem, minor increases 

in woody plant biomass may induce significant changes in ecosystem structure and function. 

However, establishing methods for quantifying and potentially scaling woody plant biomass in low-

stature biomes is challenging. In this study, we investigated the potential to use terrestrial laser 

scanning (TLS) to remotely estimate harvested biomass and leaf area of two dominant low-stature 

(<1.5 m tall) Arctic shrub species in 0.64 m2 subplots established in northern Alaskan tundra. We 

explored two biomass estimation approaches (volumetric surface differencing and voxel counting) 

applied to point clouds obtained from close-range (2 m) and variable-range (~50 m) terrestrial laser 

scans. Relationships between harvested biomass and TLS metrics were strong for all combinations of 

approaches, with voxel counting giving a marginally better result than surface differencing for close-

range data (R2 = 0.94 vs 0.92; RMSE = 102 g vs 117 g) and surface differencing proving stronger than 

voxel counting for variable-range data (R2 = 0.91 vs 0.82; RMSE = 119 g vs 169 g). Strong 

relationships between total harvested biomass and total leaf dry mass (R2 = 0.93; RMSE = 13.4 g), 

and between leaf dry mass and leaf wet area (R2 = 0.99; RMSE = 9.01 cm2) justify estimation of shrub 

leaf area from TLS-derived shrub biomass. Our results show that rapidly acquired, repeatable 

terrestrial laser scans taken at multiple ranges can be processed using simple biomass estimation 

approaches to yield aboveground biomass and leaf area estimates for low-stature shrubs at fine 

spatial scales (sub-meter to ~50 meters) with the fidelity required to monitor small but ecologically 

meaningful changes in tundra structure. Further, these data may be employed as ground reference 

data for broader scale remote sensing data collection, such as airborne LiDAR scanning, that would 

enable shrub biomass and leaf-area estimates at fine spatial resolution over large spatial extents. 

1. Introduction 

The Arctic has undergone rapid climatic warming during recent decades (Hinzman et al., 

2005), resulting in increased size, abundance, and range of deciduous shrubs in the treeless Arctic 



2 
 

 

tundra (Myers-Smith et al., 2011; Sturm et al., 2001). Substantial expansion of Arctic shrubs—

especially dwarf birch (Betula nana), willow (Salix spp.), and alder (Alnus viritis)—would represent a 

fundamental transformation of the tundra ecosystem, with potential implications for carbon cycling 

(Mack et al., 2004; Sistla et al., 2013), permafrost dynamics (Blok et al., 2010; Walker et al., 2003), 

and fire regimes (Higuera et al., 2008), as well as wildlife habitat and trophic interactions (Rich et al., 

2013; Tape et al., 2010). Accurate baseline maps of Arctic shrub biomass would facilitate the 

understanding and monitoring of these ongoing changes by permitting more accurate accounting of 

carbon pools and fluxes over space and time. In particular, methods are needed that can accurately 

quantify shrub biomass at fine spatial scales (sub-meter to ~100 m) to allow for high-fidelity ground-

based monitoring of vegetation change over time, while also permitting the accurate translation and 

scalability of these measurements to landscape-level estimates. However, creating broad-extent 

maps that capture the fine biomass gradations and considerable spatial heterogeneity among low-

stature tundra plant communities remains challenging (Beck et al., 2011; Selkowitz, 2010).  

Accurate biomass measurements usually require destructive sampling, which is time-

intensive, costly, impractical to perform at fine spatial resolution over large, remote areas like the 

Arctic tundra, and by definition prohibits repeat monitoring necessary to detect change (Mascaro et 

al., 2014). Consequently, satellite-based optical remote sensing techniques that rely on spectral 

vegetation indices such as the normalized difference vegetation index (NDVI; Tucker 1979) are 

frequently used in the Arctic tundra to estimate biomass (Boelman et al., 2003; Simms and Ward, 

2013; Walker et al., 1995) and other plant community characteristics such as community structure 

(e.g., Boelman et al. 2011) and ecosystem carbon storage and fluxes (e.g., Street et al. 2007; Shaver 

et al. 2013). These studies have been useful for understanding multiyear trends in the greening or 

browning of the arctic; however, using satellite derived passive remote sensing techniques can be 

problematic because such indices can be strongly affected by factors like canopy architecture, 

viewing geometry, and the mixing of reflectance signals from plant leaves, woody stems, 

background soil, and surface water (Boelman et al., 2005; Gamon et al., 2013; Jackson and Huete, 

1991; Jacquemoud and Baret, 1990; Verhoef, 1984). In the Arctic, these effects may be amplified by 

the small dimensions of Arctic tundra plants and their leaves (Vierling et al., 1997). Additionally, 

given the rapid progression of tundra plant phenology and the limited number of cloud-free satellite 

images that can be captured during the short (10-12 weeks) Arctic growing season, it can be difficult 

to obtain satellite data that passively capture spectral information at representative peak greenness 

(Boelman et al., 2011; Stow et al., 2004). Finally, although satellite-based spectral vegetation indices 
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have succeeded in distinguishing biomass differences between the tallest and shortest Arctic shrubs, 

it is currently difficult to remotely discern biomass differences within those extremes (Beck et al., 

2011; Selkowitz, 2010). Yet these differences are of key importance to monitoring and 

understanding tundra plant communities and the wildlife that depend on them, especially given the 

potential for climate-change induced shifts in tundra plant community dominance (Myers-Smith et 

al. 2011 and references therein) and the effect such shifts could have on tundra biodiversity 

(Pajunen et al., 2011), wildlife (Rich et al., 2013; Tape et al., 2010), and carbon and nutrient cycling 

(Mack et al., 2004; Schimel et al., 2004).  

Airborne laser scanning (ALS) is a LiDAR (Light Detection and Ranging) remote-sensing 

technique that may satisfy the need for tools that can distinguish fine gradations in vegetation 

height and density. ALS is well established in forestry research for characterizing three-dimensional 

(3D) variation in tree canopy structure (Lefsky et al., 2002), and has proven to be a highly accurate 

tool for estimating aboveground forest biomass, especially when complemented by additional data 

such as multispectral imaging (Zolkos et al., 2013 and references therein). Its successful application 

in the realm of forestry suggests that ALS holds great promise for biomass estimation in other 

biomes, including the Arctic tundra.   

However, the use of ALS to map biomass in low-stature ecosystems like tundra is relatively 

understudied (Glenn et al., 2011; Mitchell et al., 2011; Riaño et al., 2007). The low areal laser return 

density (<5 points/m2) and relatively large laser footprint (>30 cm diameter) characteristic of much 

ALS data collection can create a detection threshold that causes shrubs to be misclassified as 

ground, or underestimates shrub heights, especially where shrub structure is irregular or complex 

(Nyström et al., 2012; Riaño et al., 2007; Streutker and Glenn, 2006; Lee A Vierling et al., 2013). 

Advancements in the technology such as smaller laser footprints, higher laser return density, and 

the inclusion of auxiliary data like multispectral imagery is improving the accuracy of ALS biomass 

and height estimation (Mitchell et al., 2011; Reese et al., 2014; Zolkos et al., 2013), but there is still a 

need for tools that will allow researchers to rapidly and correctly calibrate ALS biomass estimates in 

low-stature ecosystems, and to quantify the error associated with those estimates. 

Terrestrial laser scanning (TLS) is a ground-based LiDAR technique that may provide the 

valuable link between destructively harvested biomass samples and ALS biomass estimates. While 

ALS generally has a spatial accuracy of up to 5-10 cm (e.g., Streutker & Glenn 2006), TLS accuracy 

can be within millimeters—which is especially beneficial in low-stature ecosystems where a 5 cm 

error may represent 25% or more of average vegetation height. TLS has been used in numerous 
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ecological applications, including quantification of fuelbed characteristics (Loudermilk et al., 2009), 

tree canopy structure (Béland et al., 2011; Hopkinson et al., 2004; Michel et al., 2008; Moorthy et 

al., 2011), and shrub structure and biomass (Ku et al., 2012; Olsoy et al., 2014; Lee A Vierling et al., 

2013). Laser return intensity information contained in TLS data has also been used to estimate both 

structural and physiological characteristics of plants, including chlorophyll content of broadleaf trees 

(Eitel et al., 2010), nitrogen content of crops (Eitel et al., 2014a, 2011), and photosynthetic 

downregulation of various plant species (Magney et al., 2014), as well as leaf area and leaf and 

woody area ratios of shrubs and conifers (Clawges et al., 2007; Olsoy et al., 2014). 

Despite its widespread adoption for measurement of vegetation characteristics at fine 

scales (i.e. sub-centimeter accuracy at ranges of 1 to 100+ meters), there has been relatively little 

investigation into the potential use of TLS as a tool for validating and calibrating ALS low-stature 

vegetation quantification (Lee A Vierling et al., 2013). Hopkinson et al. (2013) used a histogram 

matching approach to calibrate ALS estimates of effective leaf area index in a forested system 

(including understory shrubs) against a waveform TLS system, but such approaches are still 

uncommon. This is partly because established methods relating ALS data to aboveground biomass 

(e.g., Estornell et al. 2012) generally rely on height percentile metrics that are confounded by the 

scan geometry and varying point density of TLS data, making these methods difficult to transfer to 

TLS datasets. As a next step, developing allometric equations and suitable, generalizable algorithms 

to relate destructively harvested biomass samples to TLS metrics could permit simple and accurate 

estimation of aboveground biomass at fine to moderate scales (1 to ~50 m). If relationships among 

aboveground biomass, leaf biomass, and leaf area are strong for the focal species or functional 

group, it may also be possible to indirectly derive vegetation leaf area from total estimated 

vegetation biomass. Pairing these allometric equations with relationships between TLS data and ALS 

data could allow further scaling up of not only aboveground low-stature vegetation biomass, but 

also of other vegetation properties, such as carbon and nitrogen content, that are critical to 

understanding ecosystem structure and function. 

The objective of this study was to test the ability of TLS data to provide accurate biomass 

estimates for two dominant shrub species (dwarf birch [Betula nana L.] and diamond-leaf willow 

[Salix pulchra Cham.]) in small plots in the Arctic tundra. We investigated (1) the strength of 

relationships between destructively harvested shrub biomass and TLS-derived biomass estimates 

from multiple scan distance ranges; (2) the accuracy of two simple post-processing approaches 

(voxel counting and volumetric surface differencing) for deriving shrub biomass from TLS data; and 
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(3) the potential for using allometric relationships to estimate shrub leaf and woody biomass and 

leaf area from TLS-derived aboveground shrub biomass. 

2. Methods 

2.1. Study area 

Field data were collected near Toolik Field Station (68°37’39” N, 149°35’51” W) at Toolik 

Lake, in the northern foothills of the Brooks Range in Alaska, USA (Figure 1.1). Mean precipitation at 

Toolik Lake is approximately 300 mm, with roughly half as snow. Summer temperatures average 

10°C, and the growing season is short (~10-12 weeks), although the sun is above the horizon 

continuously for part of this time. The landscape consists mostly of rolling tussock-tundra hills 

underlain by permafrost and dominated by tussock cottongrass (Eriophorum vaginatum L.) and 

other sedges (mostly Carex spp.), with low-stature deciduous shrubs (especially Betula nana L. and 

Salix spp.) growing among the tussocks and dominating small water tracks. Cottongrass tussocks, 

moss hummocks, and glacial features such as kames create complex topography at fine (<1 m) to 

medium-fine (50 m) spatial scales. Taller shrubs (2-3 m) grow in more deeply thawed riparian zones, 

wet sedge fens and bogs lie in poorly drained areas, and dry heath communities occur on well-

drained, wind-scoured knobs and ridges. 

 

Figure 1.1. Study area in northern Alaska, USA. Crosses indicate location of terrestrial laser scanning plots. 

2.2. Field data collection 

In early summer 2013, we established twenty-four small (0.45 m-radius) subplots, which 

were divided among three larger (25 m-radius) circular field plots in settings that captured a variety 

of shrub morphology around Toolik Lake (Figure 1.1). Scans were conducted with a Riegl VZ-400 

terrestrial laser scanner (RIEGL Laser Measurement Systems GmbH, Austria; hereafter referred to as 

the “TLS”). The Riegl VZ-400 employs a 1550 nm laser (Table 1.1) with onboard waveform processing 

that allows it to record multiple returns for each laser pulse. This reduces occlusion or “shadowing”, 
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in which the first target encountered by a laser pulse prevents that pulse from reaching additional 

targets that may lie behind the first. Plot-level (“variable-range”) TLS scans were performed from 

either four or five exterior scan positions surrounding each plot, depending on local terrain 

complexity, as well as from one position at the center of each plot, for a total of five or six variable-

range scans per plot (Figure 1.2). Reflective targets were placed and scanned at each plot to permit 

subsequent co-registration of point clouds for both variable-range and close-range scans. The 

exterior scans were performed at a nominal point spacing of 1 cm at a distance of 30 m (angular 

step 0.3 milliradians). Central scans were coarser, with a nominal point spacing of 2 cm at 30 m 

(angular step 0.7 milliradians).  

Table 1.1. Riegl VZ-400 technical specifications. 

Wavelength 1550 nm 

Field of view 100° vertical x 360° horizontal 

Effective / maximum measurement rate 42 kHz / 122 kHz 

Minimum / maximum nominal range 1.5 m / 600 m 

Repeatability 3 mm 

Beam divergence 0.35 mrad 

Weight 9.6 kg 

 

 

Figure 1.2. Schematic (not to scale) showing field arrangement of one 25 m-radius plot (pale grey) and eight 0.45 m-
radius subplots (dark grey). Black stars show exterior and central (variable-range) scan positions; white stars show 
close-range scan positions for one subplot. Dashed lines bracket the potential scan coverage for one exterior scan 
position; dotted lines show potential scan coverage for one close-range scan. 
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Within each of these large plots, we subjectively situated eight 0.45 m-radius circular 

subplots, seeking to include individuals and collections of Salix pulchra and Betula nana that 

spanned a wide range of height and density that we visually determined was representative of those 

species in the area. To precisely capture vegetation structure, each of these twenty-four subplots 

and their immediate vicinity was scanned with the TLS from two opposing directions at a distance of 

~2 m and a nominal point spacing of 1 mm at a distance of 2 m (“close-range”; angular step 0.5 

milliradians). Subplots were placed without regard for the locations of the variable-range scan 

positions, and thus occurred at varying distances (“variable-range”, ~2-50 m) from those positions. 

Following close-range scans, shrubs were harvested from each subplot by identifying all B. 

nana and S. pulchra stems that originated within each subplot and clipping or sawing them off at the 

top of the moss layer. Harvested shrubs were transported from the field to the lab in closed plastic 

bags to help maintain leaf water content. To establish leaf dry mass-wet leaf area relationships, 

subsamples of approximately sixty leaves from each of the two focal species in nineteen subplots 

were separated from stems immediately on returning to the lab. These leaf subsamples were run 

through a leaf area meter (LI-3100, LI-COR Inc., Lincoln, Nebraska), then dried at 50°C for at least 48 

hours and weighed. All other harvested material was dried at 50°C for at least 48 hours or until 

weight measurements stabilized. Once dry, leaf material was separated from stems, and leaf and 

stem dry mass were measured. 

2.3. TLS pre-processing 

For each of the twenty-four small subplots, we co-registered and merged the two opposing-

direction close-range point clouds in RiScan Pro (RIEGL Laser Measurement Systems GmbH, Austria) 

to form a single close-range point cloud per subplot (Figure 1.3B). Each of the resulting twenty-four 

point clouds was subsequently clipped to a radius of 0.75 m. The clipping radius was larger than the 

original subplot radius in order to capture shrub stems and leaves that originated within the subplot 

but extended outside of it. The 0.75 m-radius subplot point clouds were then manually edited to 

remove the majority of “mosquito hits”—spurious points in midair occurring as a result of laser 

returns from plentiful airborne mosquitoes. The five or six variable-range scans covering each of the 

three large plots were also co-registered and merged using the software RiScan Pro to form a single 

point cloud per plot. The subplots were clipped from these variable-range point clouds following the 

same process as for close-range point clouds, using the same subplot center coordinates and 0.75 m 

radius used to clip the close-range point clouds (Figure 1.3C). 
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Figure 1.3. Photograph (A) and point clouds (B, C) showing one subplot (shrub biomass 1498 g). Point clouds were 
extracted from scans taken at close range (B; 2 m scan distance) and variable range (C; 2-50 m scan distance). Point 
cloud color indicates relative point height.  



9 
 

 

As part of the data recorded during a TLS scanning session, the Riegl VZ-400 includes a 

dimensionless quality metric for each point called the “deviation”, which represents the probability 

that the point is an air return (also known as a ghost return or mixed-edge return) rather than a 

return from a real target (Pfennigbauer, 2010). This probability increases when a single laser pulse 

encounters multiple targets within a small distance range (less than about 0.50 m; Pfennigbauer, 

2010), which occurs frequently within the dense branching structure of Arctic shrubs. Because of 

this complication, it was not apparent what deviation threshold value we should use to differentiate 

air returns from true target returns; therefore, we ran all analyses multiple times, varying the 

deviation threshold in steps of 2 between 2 and 80 (for close-range scans), and in steps of 20 up to 

1000 (for variable-range scans) to identify the optimum deviation threshold value. Keeping only 

laser returns with a deviation less than the threshold value had the side effect of thinning the point 

clouds during processing. 

2.4. Biomass estimation 

We tested two approaches for deriving aboveground total shrub biomass from TLS point 

clouds: a voxel-counting approach, and a volumetric approach based on surface differencing. Voxel-

based approaches usually increment biomass estimates based on how many voxels (i.e. cubic 

volumes of space, or 3D pixels) of a given size are occupied by laser returns, and such approaches 

have been applied successfully with TLS data to characterize vegetation characteristics including fuel 

bed volume (Loudermilk et al., 2009), leaf area distribution and density (Béland et al., 2011; Hosoi 

and Omasa, 2006), and sagebrush biomass (Olsoy et al., 2014). Volumetric methods such as surface 

differencing, surface modeling, and convex hull analysis have been used successfully in similar 

applications with broadly similar results (Eitel et al., 2014a; Keightley and Bawden, 2010; Loudermilk 

et al., 2009; Olsoy et al., 2014). Although both of these approaches can be applied with accurate 

results, they rely on different assumptions: while voxel-based methods tend to assume that no part 

of the target plant is occluded (i.e., the complete vegetation structure is visible to the TLS), 

volumetric methods assume that vegetation biomass is consistently related to vegetation volume. 

The appropriateness of these assumptions depends on the density and distribution of the target 

vegetation—for example, voxel-based assumptions of complete structural representation may not 

be appropriate in very dense vegetation where the TLS laser cannot penetrate, while the volumetric 

assumption of constant biomass density may be inappropriate in vegetation with irregularly 

distributed canopy gaps.  
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Because there is no prior example of either approach applied to Arctic shrub species, we 

compared versions of both approaches, using point clouds from both close-range and variable-range 

TLS scans. While close-range point clouds represented “best-possible” TLS datasets for very small 

(~1 m) areas, analyzing the coarser (2-50 meters) variable-range scans allowed us to determine how 

well relationships would hold, and which scanning (e.g., point spacing) and processing (e.g., 

deviation threshold) parameters might need to be changed, when applying our approaches to TLS 

point clouds with the irregular point spacing and frequent occlusion characteristic of variable-range 

TLS datasets.  

2.4.1. Volumetric biomass estimation 

The volumetric biomass estimation approach employed a program (available from the 

authors) written in the Interactive Data Language (IDL) software package (Version 8.0, ITT Visual 

Information Solutions) (Eitel et al., 2014a). This program used TLS subplot point clouds to create two 

1 x 1 cm gridded surfaces for each subplot: a digital terrain model (DTM) representing the bare 

earth, and a digital canopy model (DCM) representing the top of the shrub canopy (Figure 1.4 left). 

The value assigned to each surface grid cell was determined by identifying the minimum (DTM) or 

maximum (DCM) height value within a search radius from the center of the grid cell, or by linear 

interpolation of neighboring grid cell values if no height value was found within the search radius. 

The optimal search radius for each surface was found empirically by varying the search radius 

between 1 and 20 cm in intervals of 1 cm. The volume of the point cloud was calculated as the 

difference between the DCM height and the DTM height at each grid cell multiplied by the area of 

the grid cell and summed over all grid cells. 
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Figure 1.4. Visualization of the volumetric biomass estimation approach (left) and the voxel-counting approach (right). 
The same subplot as in Figure 1.3 is shown in both images. 

2.4.2. Voxel-based biomass estimation 

The voxel approach used a simple script (available from the authors) written in the open-

source software package R version 3.0.1 (R Core Team 2014). In this script, the three-dimensional 

space of each subplot point cloud was divided into voxels. The script counted the number of voxels 

that were occupied by at least one laser return, and provided the number of occupied voxels per 

unit ground area (Figure 1.4 right). Using a similar technique as in our volumetric approach, the 

optimal voxel size was empirically determined for each analysis by varying the length of voxel edges 

between 1 and 20 cm in steps of 1 cm.  

2.5. Statistical methods 

Relationships between close-range and variable-range TLS point cloud metrics and 

harvested biomass measurements were evaluated in R, using simple linear regression to find the 

coefficient of determination (R2) and root-mean-square error (RMSE) for each approach. The same 

method was used to determine the strength of relationships among total biomass, leaf biomass, and 

leaf area. To evaluate model performance, we calculated root mean square differences (RMSD; 

Stage and Crookston 2007) to quantify the deviation of each predicted value against the 1:1 line. For 

this, we performed a “leave-one-plot-out” regression analysis, in which the biomass for subplots in 

each of the three large plots was predicted using regression coefficients estimated from TLS-

biomass relationships in the other two plots.  
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3. Results 

Owing to different scan ranges and resolutions, subplot point clouds from close-range and 

variable-range scans had drastically differing numbers of laser returns. Prior to removing low-quality 

laser returns based on a deviation threshold, point clouds from close-range scans had an average of 

30 times more points than variable-range point clouds (minimum of 9 times more; maximum of 104 

times more), and based on visual examination, point distribution in close-range point clouds 

reflected actual branch and stem morphology more precisely than did variable-range point clouds 

(Figure 1.3).  

3.1. Parameter optimization 

3.1.1. Close-range parameter optimization 

Three processing parameters were empirically optimized for the volumetric approach: 

deviation threshold, upper search radius (DCM creation), and lower search radius (DTM creation). 

For regressions using close-range point clouds (Figure 1.5A), the best R2 and RMSE values were 

achieved using a deviation threshold of 20 and an upper and lower search radius both equal to 2 cm. 

Using a deviation threshold of 20 resulted in the removal of an average of 49% of points from 

subplot point clouds. Varying the upper search radius had the strongest effect on the resulting 

regression, with R2 values decreasing steadily as the upper search radius increased from 1 to 16 cm; 

further increases had little effect. The model was less sensitive to changes in the lower search radius 

and the deviation, although the best R2 values corresponded to lower search radii of 2-5 cm and 

deviation thresholds from 10 to 30. In general, the volumetric approach was robust to variations in 

processing parameters, with no R2 values found below 0.70 in the ranges tested for the close-range 

point clouds. 
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Figure 1.5. Optimization results. Top row: Response of biomass estimation R2 to combinations of different upper and 
lower search radii and deviation thresholds in the volumetric approach using close-range (A) and variable-range data 
(B).Bottom row: Response of biomass estimation R2 to combinations of voxel edge length and deviation threshold for 
the voxel-counting approach using close-range (C) and variable-range (D) data. Darker greys indicate higher deviation 
thresholds, ranging from 10-80 in steps of 5 (A and C) or from 100-500 in steps of 100 (B and D). 

For the voxel approach, two processing parameters were optimized: deviation threshold and 

voxel size. The strongest close-range model used a deviation threshold of 4 with a voxel edge length 

of 9 cm (Figure 1.5C). A deviation threshold of 4 led to the removal of an average of 91% of points 

from subplot point clouds. Very small voxel sizes (1-2 cm) performed poorly regardless of deviation 

threshold, yielding model R2 values as low as 0.38. The model was comparatively robust to 

variations in deviation threshold, although the best relationships were found with deviation 

thresholds of less than approximately 30. 

3.1.2. Variable-range parameter optimization 

For the volumetric approach using variable-range point clouds, regression results were 

strongest with small upper search radii; however, changing the lower search radius had a larger 
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impact on regression results (Figure 1.5B), which was not the case for close-range point clouds. 

Small lower search radii performed poorly, and R2 values increased as the lower search radius 

increased from 1 cm to approximately 16 cm, then remained relatively constant. Optimized 

deviation thresholds were much higher for variable-range point clouds than for close-range point 

clouds. The best R2 values were achieved with a lower search radius of 19 cm, an upper search 

radius of 1 cm, and a deviation maximum of 200. For the voxel approach, the best regression 

relationship was with a voxel size of 15 cm and a deviation threshold of 150 (Figure 1.5D). 

3.2. Biomass estimation 

3.2.1. Close-range biomass estimation 

B. nana and S. pulchra samples were pooled for regression analysis, since preliminary 

analysis indicated that species was not a statistically significant predictor (p > 0.40). Relationships 

between harvested dry shrub biomass and TLS metrics were strong for both volumetric surface 

differencing and voxel-counting approaches using close-range scan data (Figure 1.6A and 1.6C). The 

voxel approach yielded a slightly higher coefficient of determination and lower RMSE (R2 = 0.94 and 

RMSE = 102 g) than the volumetric approach (R2 = 0.92 and RMSE = 117 g). A linear relationship 

provided the best fit for the volumetric approach, while a quadratic relationship fit best for the voxel 

approach. Regression error tended to increase with increasing biomass for both estimation 

approaches, although not in a linear fashion (R2 < 0.04, p > 0.18). 
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Figure 1.6. Optimized regression relationships between harvested biomass and TLS metrics for volumetric (top row) and 
voxel counting (bottom row) approaches, using data from close-range scans (left column) and variable-range scans 
(right column). Shaded areas are 95% confidence intervals.  

3.2.2. Variable-range biomass estimation 

Although biomass estimation results were similar for the volumetric and voxel approaches 

when applied to close-range point clouds, the volumetric approach outperformed the voxel 

approach when estimating shrub biomass from variable-range point clouds. Using variable-range 

point clouds, the best model R2 was 0.91 with RMSE = 119 g for the volumetric approach (Figure 

1.6B), compared to an R2 of 0.82 and an RMSE of 169 g for the voxel approach (Figure 1.6D).  

3.3. Close-range leave-one-plot-out analysis 

In leave-one-plot-out volumetric analysis of close-range point clouds, biomass for subplots 

in each plot was well predicted from regression relationships established from subplots in the other 

two plots (Figure 1.7). None of the three regression intercepts differed significantly from zero (p ≥ 
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0.38), and the 1:1 line fell on or within the 95% regression confidence envelope for all regressions, 

with the exception of Plot 1 for subplots with biomass greater than approximately 500 g. 

 

Figure 1.7. Leave-one-plot-out validation regressions. Solid line depicts regression fit; dashed line is 1:1 line. Shaded 
areas represent 95% regression confidence intervals. 

3.4. Leaf mass and leaf area 

Harvested leaf dry mass for S. pulchra and B. nana was strongly correlated with total 

aboveground harvested biomass (R2 = 0.93, RMSE = 13.4 g; Figure 1.8). Because we found that 

species was not a significant predictor in the regression (p = 0.97), for this analysis all samples were 

pooled by subplot, regardless of species. Based on our laboratory analysis of a subset of leaves (with 

species again pooled by subplot), leaf dry mass was also highly correlated with leaf area (R2 = 0.99, 

RMSE = 9.01 cm2). In this case, species was a slightly significant predictor of the relationship 

between leaf mass and leaf area (p = 0.04), but we retained pooled results for consistency. 
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Figure 1.8. Top: Regression relationship between leaf dry biomass and total dry biomass in each plot. Shaded area 
indicates 95% confidence interval. Bottom: Regression relationships between leaf wet area and leaf dry mass for a 
subset of sampled leaves, showing relationship with species pooled (solid line) and separated (dashed and dotted lines). 
Shaded area indicates 95% confidence interval for pooled species regression.  

4. Discussion 

4.1. Biomass estimation 

Our results show that TLS point clouds can be processed and calibrated with simple 

algorithms to yield highly accurate biomass estimates for two dominant, low-stature, deciduous 

shrub species in the Arctic tundra. The strength of the relationship between harvested biomass and 

TLS metrics derived from both our voxel and volumetric approaches indicates that non-destructive, 

TLS-based estimates of shrub biomass can be substituted for destructive sampling whenever 
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destructive sampling would be difficult, impractical, or impossible to conduct. Furthermore, owing 

to the strong relationships between total harvested biomass and total leaf dry mass (R2 = 0.93; 

RMSE = 13.4 g), and between leaf dry mass and leaf wet area (R2 = 0.99; RMSE = 9.01 cm2), we found 

that TLS-derived shrub biomass estimates could also be used to non-destructively estimate shrub 

leaf mass and leaf area for these species.  

Voxel-based and volumetric approaches both performed well, especially for close-range 

scans, and our results were comparable to results from previous studies linking TLS metrics to 

vegetation biomass (Ku et al., 2012; Lin et al., 2010; Olsoy et al., 2014; Lee A Vierling et al., 2013). 

For example, Ku et al. (2012) achieved R2 values of 0.77-0.81 using TLS-derived height bins or 

percentile heights to estimate biomass of mesquite trees, which can have a shrub-like, multi-

stemmed structure. Lin et al. (2010) related relative number of TLS returns to single-tree biomass 

with good results, although biomass proved more difficult to estimate for deciduous trees than for 

coniferous trees (R2 = 0.88 vs. 0.97, respectively), potentially due to the occluding effect of large 

deciduous leaves. In our study, although leaves certainly occluded structure to some extent, the 

small dimensions (1-5 cm length) and relatively sparse distribution of B. nana and S. pulchra leaves 

probably limited occlusion and worked to our advantage.  

For processing variable-range point clouds, which have sparser, more irregular point 

spacing, the volumetric approach proved considerably stronger than the voxel-counting approach, 

and nearly as strong as results obtained with close-range point clouds. This is encouraging for 

several reasons: first, it implies that a small number of co-registered variable-range TLS scans can be 

used to provide biomass estimates that are of similar quality to estimates obtained with a large 

number of close-range scans, which are more time-consuming to collect. It would also be fairly 

simple to use such data to calibrate optical remote sensing data at multiple scales, for example by 

scanning a 30 x 30 m area to relate to a Landsat pixel. Second, our results suggest that the 

volumetric surface-differencing biomass estimation method we employed is quite robust to 

variations in TLS scan range and point cloud quality. Third, the two essential point cloud features 

used in volumetric surface differencing are the top-of-canopy surface model (DCM) and the ground 

surface model (DTM), products that are easily obtainable from airborne laser scanning (ALS) 

datasets. This implies that despite differences between TLS and ALS data in scan angle, point 

density, and canopy penetration, volumetric surface differencing methods may transfer easily from 

TLS data to ALS data, at least in low-stature systems where the distribution of biomass density is 

comparatively uniform, and where the entire shrub is easily visible to a TLS. Indeed, volumetric 
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methods have shown promise for estimating aboveground biomass even in forested systems (Tao et 

al., 2014). Using the same biomass estimation approach to analyze both TLS and ALS data could 

greatly simplify the comparison and calibration of overlapping TLS and ALS datasets. 

Although we show clear evidence that terrestrial LiDAR can be used to quantify 

aboveground shrub biomass in this ecosystem, a few limitations should be considered. For example, 

voxel-based biomass estimation methods, such as the voxel counting method used in this study, 

make intuitive sense as ways of relating patterns of points in 3D space to the biomass they 

represent; however, voxel methods are confounded by occlusion of targets, in which the first target 

encountered by a laser pulse prevents the laser from reaching additional targets that may lie behind 

the first. Effects of occlusion can be decreased by scanning a target from multiple directions (Van 

der Zande et al., 2008) or by employing a full-waveform LiDAR instrument (e.g., Zhao et al. 2011), 

but in dense vegetation the laser may still fail to fully penetrate the canopy, and the resulting point 

cloud may be a “shell” of the canopy rather than a complete representation. Without employing 

techniques such as ray-tracing, transmission ratio calculations, or point cloud modeling to 

compensate (Ashcroft et al., 2014; Béland et al., 2014, 2011; Bittner et al., 2012; Widlowski et al., 

2014), this can result in weaker biomass estimates (Olsoy et al. 2014; voxel-based results from this 

study) but such mitigating strategies can be theoretically and computationally difficult, and could 

prove especially difficult to relate to ALS data.  

On the other hand, while volumetric biomass estimation approaches account for the 

potentially un-scanned interior of a canopy, they instead assume that the biomass-per-volume of 

scanned vegetation is constant, regardless of species and size. Although this assumption also seems 

unappealing, the ability of our surface-differencing technique to accurately estimate a wide range of 

biomass across two species and multiple scan distances suggests that this may be a safe assumption 

in low-stature ecosystems, so long as relationships are sufficiently calibrated for the focal species or 

functional group. It is likely that with the advance of multi-wavelength laser technology, laser return 

intensity from multiple laser wavelengths could be used to improve biomass estimates by enhancing 

our ability to spectrally categorize surveyed objects into classes such as ground, rocks, vegetation 

species, and noise prior to biomass estimation (Brodu and Lague, 2012; Eitel et al., 2014b; Hartzell et 

al., 2014), which could greatly simplify the calibration process. 

4.2. Implications of TLS processing and parameter optimization methods 

The empirical optimization of multiple parameters in these analyses reflects the exploratory 

nature of the study, but also contributes to the growing pool of available information on TLS 
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processing for vegetation research. For example, in the optimization of the DTM ground surface 

creation during volume estimation, a much larger point search radius was required for variable-

range point clouds (19 cm) than for close range point clouds (2 cm), likely reflecting the 

comparatively sparse distribution of ground-level points in variable-range point clouds. This 

indicates that additional variable-range scans may be required to compensate for increasing 

measurement distances, greater vegetation density, and terrain complexity (Glenn et al., 2011). 

Similarly, obtaining strong regression relationships with close-range scans required heavy deviation 

filtering of input point clouds, while variable-range point clouds required much lighter filtering. For 

future datasets, careful consideration and testing should be applied to identify the optimal 

processing parameters for a given scanner and target. 

An additional consideration is the terrestrial laser scanner itself. In results for both of our 

close-range processing approaches, the best regression relationships were achieved with low 

deviation thresholds—20 for the volumetric approach and 4 for the voxel approach—which meant 

that large numbers of laser returns were eliminated during pre-processing. This suggests that for the 

Riegl VZ-400, the benefits of multiple returns may be counterbalanced by the comparatively large 

beam divergence, which leads to a large fraction of air returns (noise) in the raw data, at least for 

close-range scans. Analyses of point clouds acquired simultaneously using a Leica ScanStation2 TLS 

(single return 532 nm, <6 mm beam diameter; Leica Geosystems Inc., Heerbrugg, Switzerland) 

showed that comparable results can be achieved by applying the volumetric surface-differencing 

approach to data from a terrestrial laser scanner with a single return and a smaller beam diameter 

(data not shown). Alternatively, a TLS that returns the full waveform of the reflected laser pulse may 

be able to better resolve the complicated morphology of vegetation (Zhao et al., 2011). 

4.3. Conclusions 

This work has shown that biomass and leaf area of two dominant Arctic deciduous shrubs in 

small plots (1-50 m diameter) can be accurately estimated from TLS point clouds, whether point 

clouds were obtained at a uniform close range or composited from scans taken at multiple 

distances. Perhaps most importantly, our results suggest that TLS-derived shrub biomass may be 

confidently employed as ground reference data to calibrate biomass and leaf area estimates of 

these species from airborne laser scanning (ALS) campaigns that encompass a broader spatial 

extent, potentially improving the accuracy of shrub biomass mapping across the Arctic tundra and 

other remote areas and permitting a more nuanced understanding of aboveground carbon storage, 

biogeochemical cycling, fire potential, and wildlife habitat. Repeated TLS measurements of shrub 
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plots over time could also provide insight into climate-change-induced shrub expansion on the 

North Slope—especially if performed simultaneously with repeated ALS measurements—and allow 

future researchers to understand and predict potential changes in the trajectory of the Arctic 

ecosystem.  
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BIOMASS ESTIMATES IN ARCTIC TUNDRA 

Greaves, H.E., Vierling, L.A., Eitel, J.U.H., Boelman, N.T., Magney, T.S., Prager, C.M., and Griffin, K.L. 

“Applying terrestrial lidar for evaluation and calibration of airborne lidar-derived shrub biomass 

estimates in Arctic tundra”. Remote Sensing Letters (8:2), 2017, pp. 175-184. 

Abstract 

Monitoring of climate-driven expansion of low-stature shrubs in Arctic tundra can be 

improved through application of high-resolution remote sensing. However, the destructive nature of 

harvest sampling that is usually performed for validation of these data is resource intensive and can 

limit future comparisons by destroying benchmark measurements. We compared aboveground 

shrub biomass estimates derived from terrestrial laser scanning (TLS) and airborne laser scanning 

(ALS) with the goal of determining whether TLS data can be used to accurately calibrate ALS 

estimates of shrub biomass in Arctic tundra. We used a leave-one-out cross-validation calibration of 

canopy volume against harvested shrub biomass to establish predictive relationships between TLS 

canopy volume and harvested shrub biomass, and between ALS canopy volume and TLS-derived 

shrub biomass estimates. TLS produced more accurate predictions of shrub biomass (R2 = 0.78; root 

mean square deviation [RMSD] = 102 g) than did ALS, but the accuracy of ALS-derived shrub biomass 

predictions was the same whether they were calibrated directly against harvest biomass or against 

TLS-derived estimates of biomass (R2 = 0.62; RMSD = 140 g). Our results suggest that once the initial 

TLS-harvest relationship is known, TLS can provide valid ground reference data for calibration of 

ALS-derived estimates of shrub biomass without the need for additional destructive harvest. 

1. Introduction 

Across the Arctic tundra, deciduous shrubs are expanding in response to rapid climatic 

warming, with ramifications for the entire ecosystem (Myers-Smith et al., 2011). However, 

quantifying baseline vegetation to permit change detection at a scale relevant to the stature and 

heterogeneity of tundra vegetation communities is challenging (Selkowitz, 2010). Airborne lidar (i.e. 

airborne laser scanning or ALS) provides three-dimensional (3D) vegetation structural data at high 

resolution (1-30+ points/m2) that could be valuable for identifying changes in tundra vegetation 

structure, although such datasets are still rare in Arctic tundra regions (Greaves et al., 2016; Jones et 

al., 2013). 
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Traditionally, ALS data are calibrated against field data for estimation of vegetation traits 

like aboveground biomass. For biomass calibration, destructive harvesting is a simple calibration 

method (e.g. Olsoy et al. 2014), but destructive harvesting precludes multitemporal sampling—an 

especially important consideration in change-detection studies. Terrestrial lidar, or terrestrial laser 

scanning (TLS), provides a potential alternative solution for calibration of ALS data. TLS has been 

used in forested systems to improve ALS estimates of understory vegetation characteristics and leaf 

area (Hilker et al., 2010; Hopkinson et al., 2013), while in a dryland shrub system, Li et al. (2015) 

showed that TLS data could be used in a hierarchical scaling framework to improve sagebrush 

biomass estimates derived from relatively sparse (5 points/m2) ALS data. The tripod-mounted 

viewpoint of TLS makes it especially useful for identifying shrubs (Lee A Vierling et al., 2013) and 

estimating shrub biomass (Olsoy et al., 2014). Previous work (Greaves et al., 2015) has shown that 

TLS-derived canopy volume, which incorporates both horizontal and vertical aspects of vegetation 

canopy structure, provides a robust proxy for shrub biomass in Arctic tundra.  

By developing known relationships between TLS-derived canopy volume and tundra shrub 

biomass, TLS-to-ALS calibration could permit repeated estimates of tundra vegetation canopy 

volume and shrub biomass based on rapid TLS data collection without destructive harvest. Our 

objective was to quantify the accuracy of ALS-derived shrub biomass estimates when calibrated 

against TLS-derived shrub biomass estimates. We also compare the accuracy of these TLS-calibrated 

shrub biomass estimates to ALS estimates calibrated directly against harvest data, using the same 

calibration procedure.  

2. Methods 

2.1. Study area 

Data were collected near Toolik Lake (68°38’ N, 149°36’ W) in the northern foothills of the 

Brooks Range, Alaska, USA (Figure 2.1). The landscape is topographically complex and underlain by 

continuous permafrost, with broad hillslopes of tussock tundra dominated by tussock cottongrass 

(Eriophorum vaginatum L.) and other sedges (especially Carex spp.) and mosses (especially 

Sphagnum spp.), along with low-stature (generally <1 m) deciduous shrubs (e.g. Betula nana L. and 

Salix spp.). Growing-season temperatures average 10°C and mean precipitation is approximately 300 

mm, half of which falls as winter snow.  
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Figure 2.1. Study area in northern Alaska. Detail map shows airborne laser scanning (ALS) collection footprint in pale 
green. Red crosses indicate locations of the three terrestrial laser scanning (TLS) plots within the western ALS footprint. 

2.2. Data collection 

2.2.1. Airborne lidar collection 

ALS data were collected August 1st, 2013 using a Riegl VQ-480i sensor mounted on a small 

aircraft (Figure 2.1; see Table 2.1 for instrument and collection specifications). Nominal return 

density was 13.5 points/m2, and flight lines were 60% overlapped to achieve an average final density 

of 27 points/m2. The commercial lidar vendor performed standard pre-processing of the airborne 

lidar data, including ground control georectification and aircraft attitude adjustments. We included 

all return numbers, return intensities, and scan angles in analyses.  

2.2.2. Terrestrial lidar collection 

In July 2013, we established three circular 25 m radius TLS field plots within the ALS 

collection footprint (Figure 2.1; see Table 2.1 for TLS instrument and collection specifications). Plot 1 

was near the foot of a small stream/watertrack on a shallow west-facing hillslope; Plot 2 was 

situated adjacent to a larger valley-bottom watertrack on a relatively protected north-facing slope; 

Plot 3 was located on a drier and more exposed south-facing shelf. Plots 1 and 2 were in tussock 

tundra, the most common plant community in the vicinity, while Plot 3 was located adjacent to 

tussock tundra in a rocky moss-shrub community. Plot size and shape were chosen to optimize TLS 

data detail and extent. Terrestrial laser scans were performed using a Riegl VZ-400 from either four 

or five exterior scan positions surrounding each circular plot, depending on terrain complexity, as 
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well as from one position at the centre of each plot. See Figure 2.2 for a representative example of 

TLS and ALS data. 

 

Figure 2.2. Representative detail of TLS (A, B) and ALS (C, D) datasets, showing nadir (A, C) and oblique (B, D) views of 
the same small area. Colour scales show absolute return elevation for TLS (B) and ALS (D) in meters. Point size is set for 
best visibility (not to scale). 
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Table 2.1. ALS and TLS instrument and collection specifications. 

ALS 

Instrument  Riegl VQ-480i  

Scanner type  Onboard waveform processing, multiple returns  

Wavelength  1550 nm  

Beam divergence  0.3 milliradians  

Flight altitude  365 m above ground level  

Vertical accuracy  8-10 cm  

Horizontal accuracy  ~10 cm  

Spot size (laser beam ground 
footprint)  

11 cm  

Nominal flight line return density  13.5 points/m2  

Nominal aggregated return density  27 points/m2  

TLS  

Instrument  Riegl VZ-400 

Scanner type  Onboard waveform processing, multiple returns 

Wavelength  1550 nm 

Beam divergence  0.35 milliradians 

Repeatability 3 mm 

Weight 9.6 kg 

Spot size (minimum beam footprint)  0.02 m 

Angular scan step (central scan) 0.7 milliradians (spacing = 2 cm at 30 m) 

Angular scan step (exterior scan)  0.3 milliradians (spacing = 1 cm at 30 m) 

 

2.2.3. Aboveground shrub biomass harvests 

We visited the three TLS scan plots in July 2014 and conducted a total of 60 shrub biomass 

harvests within them (20 shrub harvest subplots per TLS plot). Harvest subplots were chosen to 

capture a range of shrub biomass, density, and species. Harvest subplot centre coordinates were 

measured with a TopCon GR-3 survey grade GPS system running in real time kinematic (RTK) mode 

(nominal accuracy ~4 cm). At each harvest subplot, we placed a 0.64 m2 ring and identified woody 

stems within it greater than 5 cm height. Woody stems originating within the ring but projecting 

beyond it were clipped so that only the portion within the ring was included in the harvest; similarly, 

portions of woody stems originating outside the ring but projecting into the ring were included. 

Stems were clipped to the moss layer and oven-dried at 50°C until their mass measurements 

stabilized (generally at least 48 hours), then weighed to the nearest tenth of a gram. Dry shrub 

biomass included stem and leaf material. All shrub species were pooled for analysis, but visual 
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assessment suggested that species contributing the majority of biomass included Salix pulchra 

Cham., S. richardsonii Hook., S. glauca L., Betula nana L., and Vaccinium uliginosum L.  

2.3. TLS pre-processing 

For each of the three TLS scan plots (containing all shrub biomass harvest subplots), we co-

registered and merged all TLS plot scans using RiScan Pro (RIEGL Laser Measurement Systems 

GmbH, Austria) to form a single point cloud per plot. To reduce noise in the data, we filtered the 

point clouds based on deviation (a unitless Riegl point quality metric; Pfennigbauer, 2010) retaining 

only returns with deviation less than 200 (see Greaves et al., 2015).  

2.4. Calibration of TLS canopy volume 

First, we built a large set of potential canopy volume surfaces by iteratively varying 

parameters used to identify and rasterize the lowest and highest laser returns across the plots, 

largely following Greaves et al. (2015) and described below in Section 2.4.1. Table 2.2 shows the 

parameter values included in the calculation of potential canopy volume surfaces. The circular 0.64 

m2 harvest subplots were clipped from canopy volume surfaces using the subplot GPS locations. We 

then identified the canopy volume surface that best predicted shrub biomass by employing a leave-

one-out cross-validation (LOOCV) procedure, described below in section 2.4.2. All algorithms were 

scripted using the open-source software package R version 3.0.1 (R Core Team, 2015; scripts 

available from the authors). 

Table 2.2. Values of processing parameters included in canopy volume optimization. Bracketed values [ ] were only used 
in processing ‘lowest’ returns. 

Processing step Parameter values included 

Filter TLS returns by grid Grid cell size (m) 0.02, 0.04, 0.05, 0.06, 0.08, 0.10,  
[0.12, 0.14, 0.15, 0.16, 0.18, 0.20] 

[Filter to lowest point in neighbourhood] [Number of neighbours 4, 8, 12, 16, 20, 24] 

Rasterize canopy volume raster Raster resolution (m) 0.05, 0.10, 0.15, 0.20 

 

2.4.1. Creating potential TLS canopy volume surfaces 

The highest TLS returns were identified using a single-pass grid filter that retained only the 

point with highest elevation (largest z value) in each grid cell. Lowest points were identified using a 

double-pass filter: in the first pass, a grid filter was applied that retained only the point with the 

smallest z value in each grid cell. In the second pass, a nearest-neighbour algorithm was applied that 

identified the nearest neighbours of each point and retained only the lowest point from among 

those neighbours (see Table 2.2 for grid cell and neighbourhood sizes considered).  



33 
 

 

Following identification of lowest and highest points for each combination of parameters, 

we rasterized these sets of points using the las2dem tool in LAStools (Isenburg, 2017). Then for each 

combination of parameters, a canopy volume surface was calculated by subtracting the ‘lowest’ 

raster from the ‘highest’ raster and multiplying the result by the square of the raster resolution. 

Since it was unclear what resolution was appropriate, a range of resolutions (Table 2.2) was included 

in the optimization procedure. Canopy volume for individual harvest subplots was calculated by 

summing canopy volume values over the pixels comprising each subplot. 

2.4.2. Selecting the best TLS canopy volume surface with LOOCV 

Each combination of parameters produced a unique potential canopy volume for each 

harvest subplot. To protect against overfitting our final model, one-third (n = 20) of harvest subplots 

were selected using a biomass-stratified random sample and entirely withheld from LOOCV to be 

used as a test dataset. With the remaining training dataset (n = 40), we performed LOOCV using a 

simple linear regression of harvested shrub biomass against canopy volume. The optimized (best) 

canopy volume surface was the one that yielded the lowest cross-validation error. We characterized 

the strength of the optimized relationship using the coefficient of determination (R2) and root mean 

square error (RMSE). To evaluate the predictive strength of this model, we applied it to the test 

dataset and evaluated the results using R2, intercept, slope, bias, and root mean square deviation 

(RMSD; Piñeiro et al., 2008). This model provided us with a TLS-derived shrub biomass estimate (‘TLS 

biomass’) that we used as ‘truth’ for subsequent calibration of ALS data. 

2.5. Calibrating ALS canopy volume against TLS-derived biomass 

We calibrated ALS canopy volume surfaces against TLS biomass using the same procedure 

described above in Sections 2.4.1 and 2.4.2 (Figure S2.1 shows the processing relationships among 

all datasets). All potential parameter values included in the TLS surface-building process were 

retained for creation of potential ALS canopy volume surfaces, and the same subset of samples was 

withheld as a test dataset to evaluate the prediction relationship found using LOOCV. The resulting 

TLS-calibrated ALS biomass model (“TLS-ALS biomass”) was evaluated against both TLS biomass and 

harvested biomass for the test dataset. We performed the LOOCV procedure again to calibrate ALS 

canopy volume directly against harvested biomass, so that we could also compare the accuracy and 

calibration behaviour of harvest-calibrated ALS biomass (“Harvest-ALS biomass”) against TLS-ALS 

biomass. 
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3. Results and Discussion 

3.1. Canopy volume surface parameters 

Parameter values that identified the lowest and highest returns necessary to create optimal 

canopy volume were remarkably similar for TLS and ALS (Table 2.3), which was surprising given the 

differences between TLS and ALS instrument and collection specifications. For example, laser beam 

diameters of TLS instruments are much smaller than for ALS instruments (~2 cm for TLS vs. ~11 cm 

for ALS in this study) and TLS operates at much higher point collection densities. This leads to better 

discrimination of canopy elements with TLS (especially small leaves and branches at the top of a 

sparse shrub canopy), as well as a superior ability to retrieve returns from ground beneath dense 

canopies (Figure 2.2). The magnitude of canopy volumes measured in each dataset demonstrates 

this effect: maximum canopy volumes for subplots in the TLS data were approximately twice the 

maximum canopy volumes found for the same subplots in the ALS data (~0.4 m3 vs ~0.2 m3; 

compare Figure 2.3A and Figure 2.4A and 2.4C). The underestimation of canopy size by ALS datasets 

visible in Figure 2.2 is a common problem in shrub ecosystems, where the resulting error can be as 

much as 50% of the total canopy height (Streutker and Glenn, 2006). Conversely, ALS data are more 

regularly spaced and less susceptible to the ‘shadowing’ caused by oblique collection angles of TLS 

data; this can be seen in several areas of Figure 2.2, where low-lying areas are obscured by 

vegetation in the TLS data but not in the ALS data. Still, the correspondence between the 

optimization parameters of TLS and ALS suggest a practical similarity between the two datasets in 

this case. This was likely due to the relatively high density of the ALS collection (~ 27 points/m2) and 

the extremely low stature of the vegetation (<1 m), which led to the TLS instrument collecting data 

from above the canopy—somewhat more like ALS than in tall shrub or forest environments. 

 

Figure 2.3. Training model (A) and test dataset results (B) for calibrating TLS-derived canopy volume against shrub 
biomass harvests. ‘ns’ means not significant at p = 0.05. 
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Table 2.3. Strongest parameter sets for calibration of canopy volume to biomass for each data source. 

 Grid cell size, 
highest returns 

(m) 

Grid cell size, 
lowest returns 

(m) 

Neighbourhood 
size 

(No. of 
neighbours) 

Canopy volume 
raster 

resolution 
(m) 

Harvest-calibrated TLS 0.02 0.15 24 0.05 

TLS-calibrated ALS 0.04 0.15 24 0.15 

Harvest-calibrated ALS 0.04 0.15 24 0.15 

 

 

Figure 2.4. First row shows training model (A) and test dataset results (B) for calibrating ALS-derived canopy volume 
against TLS-derived shrub biomass estimates. Second row shows training model (C) and test dataset results (D) for 
calibrating ALS-derived canopy volume directly against shrub biomass harvest, and permits comparison between the 
accuracy of harvest-calibrated ALS biomass estimates (D) and TLS-calibrated ALS biomass estimates (E). ‘ns’ means not 
significant at p = 0.05. 

The only optimal canopy volume parameter that differed substantially between TLS and ALS 

datasets was the resolution of the optimized canopy volume raster (0.05 and 0.15 m, respectively). 

This difference likely reflects the inherent resolution of the TLS and ALS datasets, including both 

point-spacing and beam size differences. Indeed, the optimal resolution for each dataset 
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corresponded closely to the laser beam diameters of those datasets (~0.02 m for TLS and ~0.11 m 

for ALS).  

3.2. Biomass training and validation models 

TLS-derived canopy volumes produced very accurate aboveground shrub biomass estimates: 

the TLS biomass training model had an R2 of 0.86 and RMSE of 91 g (Figure 2.3A); for the test 

dataset, R2 was 0.78, with an RMSD of 102 g (Figure 2.3B). This accuracy was expected based on 

previous work with shrubs in Arctic tundra (Greaves et al., 2015) and sagebrush systems (Olsoy et 

al., 2014). Some relatively large variations in biomass for a given canopy volume (for example 

around 0.20 m3 canopy volume in Figure 2.3A) may be related to differing vegetation canopy 

density, which is assumed to be constant in a canopy volume-biomass model, but which may vary in 

reality; for example, two approximately 0.20 m3 subplots that fall noticeably above the line of best 

fit in Figure 2.3A are from Plot 3, where the exposed terrain tended to host denser, lower-lying 

banks of shrubs than the other two plots. This indicates the necessity of acquiring representative 

harvest samples from areas of interest.  

When these TLS biomass estimates were used as ‘truth’ for calibration of ALS-derived 

canopy volume (Figure 2.4A and 2.4B), the relationship between the TLS-calibrated ALS canopy 

volume and TLS biomass was strong (R2 = 0.82, RMSE = 96 g) and the test regression showed that 

the TLS-ALS biomass estimates could predict TLS biomass with an R2 of 0.83 and RMSD of 92 g. 

When compared to harvested biomass (Figure 2.4E), TLS-ALS biomass estimates were still robust, 

with an R2 of 0.62 and RMSD of 140 g. This represents, essentially, the actual accuracy that could be 

expected when calibrating ALS canopy volume against TLS-derived biomass estimates. 

Most striking, however, was that these TLS-ALS biomass estimates (Figure 2.4E) were 

essentially identical (mean difference 1.25 g) to the Harvest-ALS biomass estimates, which were 

derived from direct calibration of ALS against harvest data (Figure 2.4D). The similarity arises from 

the selection of the same potential ALS canopy volume surfaces during both TLS-ALS optimization 

and Harvest-ALS optimization (Table 2.3), and implies that there was no loss of accuracy caused by 

calibrating ALS data against TLS data, rather than calibrating directly against harvest data. This 

suggests that if there is a known relationship between TLS canopy volume and aboveground shrub 

biomass for a study area, TLS-derived shrub biomass estimates can be used to calibrate ALS-derived 

estimates without the need for additional harvests. This would be an advantage any time that 

performing destructive harvests is undesirable—such as in ecosystems that are slow to regenerate 
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or legally protected, in studies of vegetation change over time, or for research in long-term 

monitoring plots.  

As a final note, in addition to describing the potential for using TLS to calibrate ALS data, our 

results permit comparison of the absolute accuracy that can be achieved with TLS and ALS datasets 

using this approach. The uncertainties (RMSD) were not especially large for either the TLS or ALS 

shrub biomass estimates (92 g and 140 g, respectively), relative to the range of harvested shrub 

biomass sampled (16 g – 1100 g; mean 238 g), but TLS data represented the biomass (Figure 2.3) 

and the fine details (Figure 2.2) of the shrub canopy much more accurately than ALS. Given the slow 

growth of tundra vegetation and the short timescales of most research efforts, relying on the 

greater accuracy and sensitivity of TLS data whenever possible may prove important for successful 

change detection and monitoring as this challenging landscape continues to respond to dramatic 

changes in climate.  
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Figure S2.1. Conceptual diagram showing the derivation of aboveground shrub biomass estimates in the study. 
Harvested biomass was used to calibrate TLS-derived estimates of shrub biomass, which were subsequently used to 
calibrate ALS-derived estimates. Harvested biomass was also used to calibrate ALS-derived estimates directly. 
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CHAPTER 3: HIGH-RESOLUTION MAPPING OF ABOVEGROUND SHRUB BIOMASS IN ARCTIC TUNDRA USING AIRBORNE 

LIDAR AND IMAGERY 

Greaves, H.E., Vierling, L.A., Eitel, J.U.H., Boelman, N.T., Magney, T.S., Prager, C.M., and Griffin, K.L. 

“High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and 

imagery”. Remote Sensing of Environment (184), 2016, pp. 361-373. 

Abstract 

Accurate monitoring of climate-driven expansion of low-stature shrubs in Arctic tundra 

requires high-resolution maps of shrub biomass that can accurately quantify the current baseline 

over relevant spatial and temporal extents. In this study, our goal was to use airborne lidar and 

imagery to build accurate high-resolution shrub biomass maps for an important research landscape 

in the American Arctic. In a leave-one-out cross-validation analysis, optimized lidar-derived canopy 

volume was a good single predictor of harvested shrub biomass (R2 = 0.62; RMSD = 219 g m-2; slope 

= 1.08). However, model accuracy was improved by incorporating additional lidar-derived canopy 

metrics and airborne spectral metrics in a Random Forest regression approach (pseudo R2 = 0.71; 

RMSD = 197 g m-2; slope = 1.02). The best Random Forest model was used to map shrub biomass at 

0.80 m resolution across three lidar collection footprints (~12.5 km2 total) near Toolik Field Station 

on Alaska’s North Slope. We characterized model uncertainty by creating corresponding maps of the 

coefficient of variation in Random Forest shrub biomass estimates. We also explore potential 

benefits of incorporating lidar-derived topographic metrics, and consider tradeoffs inherent in 

employing different data sources for high-resolution vegetation mapping efforts. This study yielded 

maps that provide valuable, high-resolution spatial estimates of aboveground shrub biomass and 

canopy volume in a rapidly changing tundra ecosystem.  

1. Introduction 

Accelerating climate warming in Arctic regions appears to be stimulating an increase in 

abundance, size, and range of deciduous tundra shrubs—mostly willow (Salix spp.), birch (Betula 

spp.) and alder (Alnus spp.) (Myers-Smith et al., 2015, 2011; Naito and Cairns, 2015; Tape et al., 

2006). This shift in tundra vegetation communities is expected to impact wildlife habitat and trophic 

interactions (Boelman et al., 2014; Rich, Gough, & Boelman, 2013), alter carbon and nutrient storage 

and cycling (Mack et al., 2004; Schimel et al., 2004), influence hydrology and permafrost dynamics 

(Blok et al., 2010; Lawrence and Swenson, 2011), and may contribute to additional warming (Chapin 

et al., 2005; Loranty and Goetz, 2012). To permit accurate accounting of these ecological changes, 
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and to facilitate modeling and prediction of landscape trajectories as climate continues to warm, 

researchers and managers require spatial models (maps) of tundra vegetation structure and 

biomass. However, the fine spatial heterogeneity and low stature of tundra vegetation communities 

present a daunting challenge for conventional methods of mapping aboveground vegetation 

biomass.  

Owing to the considerable extent of the Arctic tundra biome, maps of tundra vegetation 

attributes often cover large areas at coarse resolution (e.g. the Circumpolar Arctic Vegetation Map 

[CAVM]; Walker et al., 2005). Moderate resolution (20+ m pixel) vegetation maps exist for some 

tundra regions: in Alaska, for example, the North Slope, and especially the Dalton Highway corridor 

stretching from Prudhoe Bay to the Brooks Range, is one of the best-studied and best-mapped 

regions of the American Arctic. Multiple efforts have been made in that region to characterize 

coarse- and moderate-scale land cover (Ducks Unlimited, 2013; Muller et al., 1999; Raynolds et al., 

2005; Walker et al., 2005; www.arcticatlas.org; Walker and Maier, 2007) and total aboveground 

biomass (Raynolds et al., 2012; Shippert et al., 1995; Simms and Ward, 2013; Walker et al., 2005), 

but there have been relatively few attempts to describe existing shrub characteristics in better detail 

or higher resolution.  

The shortage of high-resolution maps (<20 m pixel) represents a significant data gap, since 

these maps are necessary for characterizing spatial heterogeneity of tundra vegetation (Lantz et al., 

2010; Naito and Cairns, 2015; Raynolds et al., 2008), calibrating and validating coarser maps (Stow 

et al., 2004), and estimating related fine-scale ecological function such as wildlife habitat suitability 

(Boelman et al., 2014). These considerations are especially important in tundra ecosystems, where 

vegetation communities can be heterogeneous at extremely fine spatial scales (e.g. <1 m; M. D. 

Walker, Walker, & Auerbach, 1994), rendering moderate-resolution maps inadequate (Lantz et al., 

2010; Stow et al., 2004). Additionally, although shrubs are the tallest common vegetation on the 

treeless tundra landscape, their height rarely exceeds 2 m except in deeply thawed riparian areas; 

generally, tundra shrubs are less than 1 m in height and occur in slow-growing, irregular patches or 

dispersed among other tundra vegetation. Such low-stature, heterogeneous vegetation is especially 

difficult to identify and quantify using coarse- and moderate-resolution passive satellite-based 

remote-sensing approaches.  

Maps that focus on characteristics of shrub canopies are especially uncommon. Active 

satellite-based data such as synthetic aperture radar (SAR) show promise for mapping shrub 

attributes at moderate resolution (Duguay et al., 2015), although so far such approaches are 
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relatively rare. Selkowitz (2010) explored the potential strengths of different passive satellite data 

sources for moderate-resolution fractional shrub cover mapping over a swath of northern Alaska; 

Beck et al. (2011) used a selection of high-resolution commercial satellite imagery (IKONOS and 

SPOT, 1-5 m pixel) to train a model that estimated fractional cover of total and ‘tall’ (>1 m) shrubs at 

30 m resolution across the entire North Slope of Alaska. While these moderate-resolution maps 

represent valuable baselines for understanding shrub cover over a large and ecologically important 

area, their resolution limits their applicability and poses challenges for verification in local areas. For 

example, in Beck et al. (2011), validation could only be performed against existing maps of similar or 

coarser resolution, and against relatively few (24) visual cover estimates by field observers, rather 

than against quantitative in situ measurements or higher resolution validated maps. Further, these 

maps (necessarily for their resolution) quantify percent shrub cover per area, a metric that obscures 

gradients in shrub structure and spatial patterns of distribution and constrains applications that 

depend on understanding these properties. Higher resolution maps are likely necessary to provide 

baselines against which incremental changes in heterogeneous shrub cover can be evaluated, 

especially in topographically complex landscapes (e.g. Naito and Cairns, 2015; Raynolds et al., 2008). 

Accurately identifying and monitoring vegetation changes, and understanding and quantifying 

landscape processes and function occurring at such fine scales requires high-resolution maps that 

can capture fine-grained heterogeneity and gradients in low-stature vegetation at a spatial scale 

relevant to the vegetation. Although such high-resolution maps would necessarily be limited in 

extent, coverage of even a few important landscapes would provide outsized informational value to 

researchers and managers working across the biome. 

Challenges inherent in mapping heterogeneous low-stature vegetation highlight the 

importance of airborne and surface-based remote sensing approaches. Airborne lidar (light 

detection and ranging) has proven to be a powerful tool for quantifying structure-related attributes 

in ecosystems as diverse as forests (Dubayah and Drake, 2000; Hudak et al., 2012), Mediterranean 

woodlands (Estornell et al., 2012), salt marshes (Hladik et al., 2013), rangelands (Ritchie et al., 2001; 

Streutker and Glenn, 2006; Lee A Vierling et al., 2013), and agricultural fields (Eitel et al., 2014a). 

Airborne lidar can be collected over small to moderate spatial extents and at a high spatial 

resolution (generally 1-30 data points per square meter). Lidar provides three-dimensional (3D) 

structural information that is difficult to quantify from passive optical data, making it especially 

relevant to the challenges of quantifying subtle variations in vegetation structure.  
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Although the high resolution and three-dimensionality of lidar make it a strong and flexible 

tool, using lidar to quantify vegetation metrics in low-stature ecosystems remains challenging. 

Methods for using lidar data to derive biomass estimates for shrubs (Estornell et al., 2011; Greaves 

et al., 2015; Olsoy et al., 2014) generally differ from methods established in forest systems, due to 

the severely abbreviated height range of shrub canopies. Low vegetation stature is often further 

exaggerated in lidar data, because airborne lidar tends to significantly underestimate vegetation 

heights in shrub systems. This may occur because of threshold limitations of the laser sensor, or 

because a laser pulse may miss the highest branch of a sparse shrub or fail to reach the ground 

through dense shrub canopies. These difficulties can make it impossible to accurately retrieve 

ground or canopy surfaces (and therefore canopy height) in areas of dense shrub cover. Depending 

on the density of the canopy and of the lidar data collection, the resulting error in vegetation height 

estimates can represent up to 50% of total shrub height (Streutker and Glenn, 2006).  

Despite these difficulties, previous research with terrestrial (ground-based) lidar has shown 

that lidar-derived canopy volume can provide a good proxy for aboveground biomass in Arctic 

tundra (Greaves et al., 2015), as well as in dry sagebrush systems (Olsoy et al., 2014) and agricultural 

settings (Eitel et al., 2014a). Quantifying canopy volume provides a direct, continuous metric of 

canopy structure that can encompass both horizontal and vertical components of vegetation, 

especially when measured at high spatial resolution. Given the problems inherent in using lidar to 

identify ground and canopy surfaces in shrub systems, lidar-derived shrub canopy volumes are 

unlikely to be correct in an absolute sense; however, they provide meaningful data when well 

calibrated against in situ vegetation sampling (Greaves et al., 2015; Olsoy et al., 2014). And although 

canopy volume is less commonly used than other airborne lidar metrics (but see e.g. Kim et al., 

2009; Tao et al., 2014), the previous success of volumetric approaches with terrestrial lidar suggests 

that such methods may also be successful with airborne lidar data. This may be particularly true in 

very low-stature ecosystems like Arctic tundra, where both terrestrial and airborne lidar data are 

acquired from above the canopy, making such datasets more similar to each other than they might 

be otherwise.  

In this study, we investigate the potential for mapping shrub biomass estimates using lidar-

derived canopy volume in a simple linear regression model. Such a parsimonious model would be 

less susceptible to overfitting of training data than a more complex model, and detecting changes 

across multiple datasets collected over time would be fairly straightforward (e.g. Jones et al., 

2013)—especially because lidar datasets are somewhat more repeatable than aerial photography or 
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even satellite data, which are more susceptible to variations caused by sun-sensor geometry and 

atmospheric effects (see Bater et al., 2011 for a discussion of lidar data stability over multiple data 

collections).  

Although such a simple model is attractive, fusing lidar with spectral data has yielded 

improved estimates of vegetation biomass in a range of ecosystems (Zolkos et al., 2013); for 

example this approach has enhanced sagebrush mapping (Mundt et al., 2006), tree species 

classification (Dalponte et al., 2008), and quantification of tree structure (Hyde et al., 2006). This 

complementarity of lidar and spectral data is logical, since lidar measures the 3D structure of 

vegetation, while spectral data suggest its species and physiological state. For example, Reese et al. 

(2014) found that combining lidar and spectral data improved classification of alpine vegetation 

types, because spectral data improved differentiation among vegetation types that have similar 

vertical structure but different spectral properties, while lidar data improved differentiation among 

vegetation types with similar spectral properties but different vertical structure. 

Combining lidar with high-resolution spectral data is an especially powerful technique for 

characterizing shrubs in low-stature ecosystems (Estornell et al., 2012; Mundt et al., 2006; Riaño et 

al., 2007), suggesting that the potential for improved mapping accuracy may outweigh a preference 

for a simple model. In the Arctic, high-resolution photography has been especially important in 

illuminating ongoing changes in vegetation communities (Naito and Cairns, 2015; Tape et al., 2006), 

as it has historically been the only technique that permits detection of individual Arctic shrubs at the 

hillslope scale. However, few studies in Arctic tundra have combined lidar with high-resolution 

spectral data (Goswami et al., 2011; Rees, 2007), and the authors are aware of no prior studies using 

this approach to estimate shrub biomass or distribution in the Alaskan Arctic. 

In this study, our goal was to create accurate, high-resolution maps of shrub biomass for an 

important research landscape on the North Slope of Alaska. Our specific objectives were 1) to 

investigate the potential for using lidar-derived canopy volume as a single predictor in a simple 

shrub biomass regression model, and 2) to compare the accuracy of this simple model to a more 

complex model incorporating both lidar and high-resolution spectral data. By comparing these 

approaches and exploring the implications of each, we sought to illuminate the relative strengths of 

lidar- and spectral- derived metrics for predicting Arctic shrub biomass, potentially informing future 

investigations into this challenging research field. 
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2. Methods 

2.1. Study area 

The study area is near Toolik Lake (68°38’ N latitude, 149°36’ W longitude) in the northern 

foothills of the Brooks Range, Alaska, USA (Figure 3.1). The tundra landscape is underlain by 

continuous permafrost, with expansive rolling hills of tussock tundra dominated by tussock 

cottongrass (Eriophorum vaginatum L.) and other sedges (especially Carex spp.), along with mosses 

(frequently Sphagnum spp.) and low-stature (generally <1 m) deciduous shrubs (mainly Betula nana 

L. and Salix spp.). Tussocks, hummocks, and glacial features create a complex topographic 

patchwork at fine (<1 m) to moderate (50 m) scales. Mean precipitation in the area is approximately 

300 mm, roughly half of which falls as winter snow, and growing-season temperatures average 10°C.  

 

Figure 3.1. Location of study area in northern Alaska. Detail view shows three lidar collection footprints in pale green 
(from left to right: Toolik, Pipeline Ridge, Imnavait). Red crosses indicate locations of shrub harvest areas within the 
Toolik lidar footprint. 

2.2. Data collection 

2.2.1. Aboveground shrub biomass harvests 

We conducted 60 shrub biomass harvests—20 within each of three 25 m radius circular 

areas near Toolik Field Station (Figure 3.1). Harvest plot placement was chosen subjectively to 

capture a range of shrub species, biomass, density, and structure. Harvest plot center coordinates 

were measured with a TopCon GR-3 survey grade GPS system running in real time kinematic (RTK) 

mode (nominal accuracy ~4 cm). At each harvest plot, we placed a 0.64 m2 ring and identified all 

woody stems within it greater than 5 cm height. These woody stems were clipped to the moss layer 

and oven-dried at 50°C until their mass measurements stabilized (generally >48 hours), then 

weighed to the nearest tenth of a gram to determine total dry shrub biomass per plot. Dry shrub 



46 
 

 

biomass included both stem and leaf material. All shrub species were pooled for analysis, but visual 

assessment suggested that species contributing the majority of biomass included Salix pulchra 

Cham., S. richardsonii Hook., S. glauca L., Betula nana L., and Vaccinium uliginosum L.  

2.2.2. Airborne lidar and imagery collection 

Airborne lidar data and digital imagery were collected August 1st, 2013, in three separate 

footprints near Toolik Lake totaling 12.5 km2 (Figure 3.1; Vierling et al., 2013a, 2013b). The largest 

collection footprint (hereafter referred to as ‘Toolik’, ~6 km2) wraps around Toolik Lake from the 

northeast to southwest. The other two collection footprints are each ~3 km2; one is situated along 

the Trans-Alaska Pipeline where it crosses the high moraine ridge ~3 km east of Toolik Lake 

(‘Pipeline Ridge’) and the other covers much of the research area along Imnavait Creek, ~10 km east 

of Toolik Lake (‘Imnavait’). The areas covered by these three footprints have different glacial 

histories but similar vegetation communities. Lidar collection parameters are shown in Table 3.1. 

The lidar vendor performed standard pre-processing of the airborne lidar data, including aircraft 

attitude adjustments and ground control georectification. For this study, all laser returns were 

included in analyses (i.e. we did not filter data based on return numbers, return intensities, or scan 

angles). Simultaneous 4-band digital imagery (RGB and near infrared, hereafter ‘RGB-NIR’) was 

collected with a Leica RCD30 60MP camera mounted to the aircraft, and was processed and 

orthorectified by the lidar vendor to create orthoimagery mosaics with a pixel resolution of 4.25 cm. 

A GPS spot-check of 40 stationary objects distributed across the Toolik data collection footprint 

suggested that the imagery was accurately orthorectified to within 10 cm. 

Table 3.1. Lidar collection specifications. 

Instrument Riegl VQ-480i 

Scanner type Onboard waveform processing yielding multiple discrete returns 

Wavelength 1550 nm 

Beam divergence 0.3 milliradians 

Flight altitude 365 m above ground level 

Vertical accuracy 8-10 cm 

Horizontal accuracy ~10 cm 

Spot size (laser beam ground 
footprint) 

11 cm 

Nominal flight line return density 13.5 points m-2 

Nominal aggregated return density 27 points m-2 
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2.3. Lidar canopy volume processing 

We created a rasterized canopy volume map using an optimization algorithm based on 

previous work with terrestrial lidar (Greaves et al., 2015). The algorithm was written in the R 

statistical language (R Core Team, 2017) and is available from the authors. To produce canopy 

volume, the algorithm iteratively alters search parameters that are used to classify and rasterize 

laser returns. The optimal parameter set was the one that produced canopy volume with the lowest 

cross-validation error in a leave-one-out cross validation (LOOCV) regression against harvested 

shrub biomass. To identify ‘ground’ (lowest) laser returns, a double-pass search algorithm first 

applies a grid to the complete point cloud and identifies the lowest return within each grid cell 

(optimized grid cell size for this study was 15 cm); remaining returns are further thinned on a second 

pass that examines the nearest neighbors of each return and eliminates all but the lowest return in 

each neighborhood (optimized neighborhood size for this study was 24 neighbors). ‘Top-of-canopy’ 

(highest) laser returns are identified in a single-pass grid search of the complete point cloud for the 

highest laser returns in each cell (optimized grid cell size in this study was 4 cm). These lowest and 

highest laser returns are then interpolated and rasterized at an optimized resolution (15 cm in this 

study) and the volume between them is calculated. Optimized parameter values were similar (e.g. 

within ~4 cm for grid cell sizes) to parameters similarly optimized for terrestrial lidar scans of a 

different set of shrubs in this study area (Greaves et al., 2015), suggesting the general transferability 

of the method within this vegetation community. Canopy volume rasters were subsequently 

aggregated to 0.80 m resolution to match the area of the shrub harvest plots.  

We characterized the strength of the relationship between optimized canopy volume and 

harvested shrub biomass using the coefficient of determination (R2) and root mean squared error 

(RMSE). To evaluate the predictive strength of this simple model, we applied the model to predict 

biomass for a stratified-random sample of harvested shrubs that had been withheld from the 

optimization algorithm (i.e. a test dataset, n = 20). We then regressed the observed harvested shrub 

biomass values against predicted shrub biomass and calculated the intercept, slope, bias, R2, and 

root mean squared deviation (RMSD) to evaluate the performance of the model. Employing LOOCV 

and evaluating the resulting model on a subsample of withheld data minimized overfitting and 

allowed a more accurate assessment of model prediction strength. Note that when used to describe 

the relationship between observed and predicted values, R2 indicates what proportion of the 

variation in observed values is explained by variation in the predicted values. Also, while RMSE and 

RMSD are similar, RMSE is a regression fit metric calculated as the square root of the mean of the 
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summed squared regression residuals, and describes the variation around the best-fit regression 

line. RMSD is a prediction strength metric calculated as the square root of the mean of the summed 

squared differences between predicted and observed values, and describes the variation around the 

1:1 line. See Pineiro et al. (2008) for a discussion of model evaluation tools, including R2, RMSE, and 

RMSD.  

The optimized set of classification parameters was applied to all lidar returns to create wall-

to-wall canopy volume rasters for the three lidar footprints. As discussed in the introduction, above, 

we recognize that these canopy volumes are unlikely to be accurate in absolute terms because of 

the difficulty in identifying bare earth and canopy surfaces in shrubby areas. In the Arctic tundra of 

northern Alaska, retrieving terrain and canopy information from lidar is further complicated by the 

unique tundra vegetation: in many places the ‘ground’ is a continuous carpet of deep mosses and 

densely spaced tussocks, not soil (Figure 3.2). This presents an additional conundrum for ground-

finding—namely, in these areas, there are no data that can be reasonably interpreted as bare earth. 

Given these complications, and because our goal was to estimate shrub biomass, and not to create 

accurate digital models of terrain or canopy surfaces (a separate research goal beyond the scope of 

this study), we did not characterize the absolute error in our canopy volume layers or the optimized 

ground and top-of-canopy surfaces used to derive them. To avoid implying otherwise, we refrain 

from using standard terminology such as ‘digital terrain model’ when referring to these optimized 

surfaces or their derivatives. 
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Figure 3.2. Example of complex tundra microtopography and absence of ‘bare earth’ showing low-stature shrubs (~0.25 
m; example indicated with blue arrow) growing among cottongrass tussocks and moss in the foreground, and 
hummocks with larger shrubs (~0.80-1 m; example indicated with red arrow) in the middle distance. Photo was taken 
near the detail image shown in Figure 5B-E. A reflective target at the upper center (tripod with red circle, ~2 m tall) and 
a person near the red arrow provide scale. 

2.4. Additional lidar canopy metrics 

We used the optimized ground points to pseudo-normalize vegetation return heights in 

LAStools (Isenburg, 2015; we use the term ‘pseudo-normalize’ to acknowledge the shortcomings of 

using the optimized surfaces for this purpose). These height-normalized point clouds were further 

processed in LAStools to create layers representing maximum estimated canopy height, vegetation 

density, and standard deviation of maximum heights (Table 3.2). These layers were produced at 0.80 

m resolution using a 0.05 m vegetation height threshold, to match the area and harvest protocol of 

our shrub harvest plots. Each statistical metric was calculated using the ‘raster’ R package (Hijmans, 

2015) over a 3x3 pixel (i.e. 2.4 m) moving window to ensure sufficient lidar return data for 

reasonable statistics.  
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Table 3.2. Input groups and individual variables included Random Forest variable selection. 

Metric Description Data source 

Lidar-derived canopy metrics  

Canopy volume Volume contained between lowest 
and highest lidar-derived surfaces 

Optimized canopy volume 
raster 

Vegetation density Ratio of vegetation points to 
ground points 

Height-normalized point 
cloud 

Maximum canopy height Estimated maximum height of top-
of-canopy surface 

Height-normalized point 
cloud 

Standard deviation of max 
height 

Standard deviation of canopy 
height; indicates canopy roughness 

Height-normalized point 
cloud 

Lidar-derived topographic metrics  

Topographic position index 
(TPI) 

Distinguishes local topographic 
features like knobs and watertracks 

Optimized ground surface,  
100 m radius 

Hillshade Generalized directional topographic 
exposure 

Optimized ground surface,  
180° azimuth, 30° zenith 

SAGA wetness index (SWI) Potential soil moisture Optimized ground surface 

Morphometric protection 
index (MPI) 

Local topographic relief or 
openness 

Optimized ground surface 

Spectral metrics   

Maximum NDVI (2.4 m) Maximum value of NDVI in 
neighborhood 

Aerial RGB-NIR 
orthoimagery, 2.4 m 
moving window 

Mean NDVI (2.4 m) Mean value of NDVI in 
neighborhood 

Aerial RGB-NIR 
orthoimagery, 2.4 m 
moving window 

NDVI (0.8 m) Value of NDVI at harvest plot scale  Aerial RGB-NIR 
orthoimagery, 0.8 m 

Maximum 2GRBi (2.4 m) Maximum value of 2GRBi in 
neighborhood 

Aerial RGB-NIR 
orthoimagery, 2.4 m 
moving window 

Mean 2GRBi (2.4 m) Mean value of 2GRBi in 
neighborhood 

Aerial RGB-NIR 
orthoimagery, 2.4 m 
moving window 

2GRBi (0.8 m) Value of 2GRBi at harvest plot scale Aerial RGB-NIR 
orthoimagery, 0.8 m  

 

2.5. Lidar-derived topographic metrics 

We derived estimated topographic metrics (Table 3.2) from optimized ground surfaces using 

ArcGIS (version 10.1; ESRI, Redlands, CA) and SAGA GIS (System for Automated Geoscientific 

Analyses version 2.1.4, http://www.saga-gis.org). Topographic position index (TPI) is the elevation of 

a ground pixel relative to the pixels within a radius (we used a 100 m radius to incorporate 
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topographic variability at that scale); larger values indicate local ridges and high points, which in the 

tundra may be more wind-scoured and well-drained, while smaller values reflect low spots that may 

be comparatively protected and water-saturated (Walker et al., 1994). Hillshade is a standard ArcGIS 

tool meant to represent topographic shadowing, here calculated with an azimuth angle of 180° and 

a zenith of 30° to approximate cumulative exposure to prevailing southerly winds and higher, 

warmer southern sun angles. The SAGA Wetness Index (SWI) is similar to the Topographic Wetness 

Index (TWI) but uses a different catchment area calculation; it has previously been helpful in 

predicting vegetation type in alpine systems (Reese et al., 2014). Morphometric Protection Index 

(MPI; Yokoyama, Shirasawa, & Pike, 2002) is a measure of how the surrounding terrain protects the 

location of a given pixel from exposure; it was calculated with a radius of 50 m.  

2.6. Spectral metrics 

Maximum and mean values for both NDVI and 2GRBi (‘excess greenness’, Richardson et al., 

2007) were calculated from the aerial RGB-NIR images at 0.80 m resolution, and then using 2.4 m 

moving windows to incorporate information from surrounding vegetation. NDVI is highly correlated 

with aboveground biomass in tundra ecosystems, at least at moderate and coarse scales (Raynolds 

et al., 2012; Shippert et al., 1995). 2GRBi, although less commonly used, shows promise as a 

vegetation index that requires only commonly available RGB bands; additionally, preliminary 

analysis suggested that 2GRBi may be more sensitive than NDVI to the presence of particular tundra 

shrub species that reflect strongly across the visible range (e.g. S. richardsonii, S. alaxensis) and 

therefore produce a weak NDVI signal despite potentially large biomass. However, it is worth noting 

that 2GRBi is not a normalized index, and since the aerial imagery was not radiometrically 

calibrated, it would potentially be difficult to compare 2GRBi values across datasets. NDVI and 2GRBi 

were calculated as: 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑) (𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄  

2𝐺𝑅𝐵𝑖 = 2 ∗ (𝐺𝑟𝑒𝑒𝑛) − (𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒)  

where NIR, Red, Green, and Blue represent the absolute brightness of the near infrared, red, 

green, and blue channels, respectively.  

2.7. Building complex models with Random Forest 

Random Forest (Breiman, 2001) is a classification and regression tree approach that uses 

ensembles (‘forests’) of classification or regression trees, with each tree selecting and permuting 

randomized subsets of predictor variables. The iteration and randomization procedure reduces 

overfitting, improves the strength of predictions, and has proven useful in ecological research (e.g. 
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Evans and Cushman, 2009; Martinuzzi et al., 2009; Reese et al., 2014), likely because Random Forest 

is comparatively (though not perfectly; Dormann et al., 2013) robust to the collinearity often seen 

among ecological variables.  

We used the R package ‘randomForest’ (Liaw and Wiener, 2002) to build six shrub biomass 

models that incorporated different combinations (sets) of input data groups (Table 3.3). To ensure 

that our final models were as parsimonious as possible, we reduced the number of variables 

included in each model by employing the model selection tool in the R package ‘rfUtilities’ (Murphy 

et al., 2010), which examines the relative importance (model improvement ratio, or MIR) of each 

variable in a Random Forest regression and selects a subset of the most important variables. To 

reduce uncertainty among collinear variables in this model selection process, we first confirmed that 

input variables for each model were not highly correlated (Pearson’s correlation coefficient < 0.90). 

Because the stochastic nature of Random Forest can give different results with each execution of 

the algorithm, we ran the model selection tool 1000 times for each model, and only included 

predictors in the final Random Forest models if they were chosen in a majority of the variable 

selection runs. Performance of the final Random Forest regression models was evaluated using the 

RMSD of the out-of-bag (OOB) training samples and randomForest’s ‘pseudo R2’, which is a 

calculation of the percent variance explained by the regression trees (Liaw and Wiener, 2015). 

Table 3.3. Predictor sets included in Random Forest variable selection. 

Model name Set(s) of predictors included in model 

Canopy only Lidar-derived canopy metrics 

Canopy + spectral Lidar-derived canopy metrics, spectral metrics 

Canopy + topo Lidar-derived canopy metrics, lidar-derived topographic metrics 

Spectral only Spectral metrics 

Spectral + topo Spectral metrics, lidar-derived topographic metrics 

Canopy + spectral + 
topo 

Lidar-derived canopy metrics, spectral metrics, lidar-derived topographic 
metrics 

 

2.8. Biomass and uncertainty mapping 

Biomass predictor rasters were processed using the R package ‘raster’, and biomass was 

mapped at 0.80 m across the lidar footprints using the AsciiGridPredict tool in the R package 

‘yaImpute’ (Crookston and Finley, 2007). Because the focus of map production was to identify shrub 

biomass (even very low-stature shrub biomass) in uneven terrain, we performed no filtering to 

identify ‘unnatural’ ground slopes or to mask non-vegetation objects other than roads and large 
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gravel pads; consequently, the maps contain spurious values for objects on the landscape such as 

boardwalks and research equipment (e.g. greenhouses and eddy covariance towers). However, 

these objects are generally recognizable to the human eye based on their linearity or improbable 

height or position, and can be manually masked in areas of interest if necessary.  

We quantified uncertainty in the final shrub biomass map by producing a separate map 

showing the coefficient of variation (CV) of the Random Forest map estimates. In the final shrub 

biomass map, the shrub biomass estimate for a given pixel is the mean of all estimates produced by 

all regression trees for that pixel. By retaining the individual pixel estimates from all trees, we were 

also able to calculate the standard deviation of each pixel estimate across all trees. Normalizing this 

per-pixel standard deviation by the per-pixel mean gives the per-pixel coefficient of variation. The 

resulting CV map spatially illustrates the variation of the model estimates, represented as a 

percentage of the estimated shrub biomass in each pixel. 

3. Results 

3.1. The simple model: predicting shrub biomass from lidar-derived canopy volume 

Optimized lidar-derived canopy volume was a moderately good single predictor of 

aboveground shrub biomass. Training model R2 was 0.60 with an RMSE of 239.5 g m-2 (Figure 3.3A). 

Applying the model to the withheld test dataset gave similar results, producing an R2 of 0.62 for 

observed and predicted values, an RMSD of 218.9 g m-2, and a slope and intercept of 1.08 and -71.9 

g, respectively (Figure 3.3B).  

 

Figure 3.3. Training (A) and test (B) models for aboveground shrub biomass derived from optimized lidar canopy 
volume. ‘ns’ means not statistically significant at p = 0.05. 
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3.2. The complex model: Random Forest regression  

3.2.1. Variable selection 

The individual predictors selected as important varied depending on the composition of the 

initial variable set, although there were notable trends (Table 3.4). Lidar-derived optimized canopy 

volume, maximum canopy height, and mean NDVI aggregated at 2.4 m were selected as important 

predictors in all models where they were considered. Conversely, several predictors were never 

identified as important, including vegetation density, topographic hillshade, mean 2GRBi at 2.4 m, 

and NDVI at 0.8 m. For two of the models—canopy + topo and spectral + topo—there were 

predictors selected exactly 50% of the time. This outcome could have been avoided by running the 

model selection tool an odd number of times; however, then the tie-break would have been entirely 

arbitrary. Closer examination showed that in the canopy + topo model selection, the selected 

variables always included the same three lidar variables plus either SWI or MPI. Since it was clearly 

important to retain one of these two topographic metrics, but it was not clear which, both were 

retained in the final canopy + topo model. On the other hand, in the spectral + topo variable 

selection, the chosen model nearly always included the same set of five predictors, but 50% of the 

time it also included both maximum NDVI at 2.4 m and 2GRBI at 0.8 m. Since these two predictors 

complicated the model but were only considered important 50% of the time, neither was retained in 

the final predictor set. Interestingly, the predictors selected the majority of the time for the canopy 

+ spectral + topo model (the full model) were the same predictors selected for the canopy + spectral 

model: canopy volume, maximum canopy height, standard deviation of maximum height, and mean 

NDVI at 2.4 m resolution. The only other predictor sometimes selected for the full model was SWI, 

which was chosen in 44.5% of model selection runs. 
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Table 3.4. Percent of the time each predictor was selected for each potential Random Forest model, based on 1000 runs 
of the model selection tool in the R package ‘rfUtilities’. Dashes indicate that a predictor was not being considered for a 
model. Bolded values indicate predictors included in final models.  

Canopy 
only 

Canopy 
+ 
spectral 

Canopy 
+ topo 

Spectra
l only 

Spectral 
+ topo 

Canopy + 
spectral + 
topo 

Canopy volume 100 100 100 - - 100 

Vegetation density 0 0 0 - - 0 

Maximum canopy height 100 100 100 - - 100 

Standard deviation of height 0 100 100 - - 100 

Maximum NDVI (2.4 m) - 0 - 100 50 0 

Mean NDVI (2.4 m) - 100 - 100 100 66.7 

NDVI (0.8 m) - 0 - 0 0 0 

Maximum 2GRBI (2.4 m) - 0 - 100 99.9 0 

Mean 2GRBI (2.4 m) - 0 - 0 0 0 

2GRBI (0.8 m) - 0 - 100 50 0 

Topographic position index 
(TPI) 

- - 0 - 100 0 

Hillshade - - 0 - 0 0 

SAGA wetness index (SWI) - - 50 - 100 44.5 

Morphometric protection 
index (MPI) 

- - 50 - 100 0 

 

3.2.2. Performance of complex models  

The best-performing model was canopy + spectral (Figure 3.4). Random Forest pseudo R2 for 

the best model was 0.71, with RMSD = 197 g m-2. Canopy + topo performed nearly as well, with 

pseudo R2 = 0.70 and RMSD = 203 g m-2. The spectral only model performed worst, with a pseudo R2 

of 0.17 and RMSD of 340 g m-2. Adding topographic predictors to the spectral model improved it 

slightly: for the spectral + topo model, pseudo R2 was 0.29 and RMSE was 308 g m-2. Slope values 

were near 1 and absolute bias was 9 g or less for all models except the spectral only model, which 

had a slope of 0.69. Standard deviation of the Random Forest estimates tended to increase with 

biomass for all models, and was especially large for estimates in the spectral only and spectral + 

topo models.  
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Figure 3.4. Random Forest regression results for models with different predictor sets. Solid black lines are best fit; 
dotted red lines are 1:1 line. Grey bars are ± one standard deviation. See Table 3.3 for predictors included in each 
model. The full model (canopy + spectral + topo) is omitted because its selected variables were identical to the canopy + 
spectral model. 

3.3. Aboveground shrub biomass and uncertainty mapping 

We used the best Random Forest model, canopy + spectral, to map biomass across the three 

lidar collection footprints. Coarse-scale overview and fine-scale enlarged detail maps of 

aboveground shrub biomass and two major predictors (lidar-derived canopy volume and NDVI) are 

shown in Figure 3.5, along with the corresponding detail orthoimage for reference. Lidar-derived 

canopy volume accurately identifies the largest shrubs in the shrubby watertrack crossing the right-

hand side of the detail area, and distinguishes them from surrounding tussocky and heathy areas 

(Figure 3.5D). NDVI identifies low-volume shrubs such as the ‘fringe’ of B. nana growing on the 

edges of the watertrack (Figure 3.5E). The final shrub biomass detail map (Figure 3.5C) captures 



57 
 

 

increasing shrub presence from the heathy upslope area (lower left) to the shrubby downslope 

watertrack.  

Figure 3.6 shows the final shrub biomass map (Figure 3.6A) and the corresponding CV map 

(Figure 3.6B) for Toolik, the largest lidar collection footprint. As expected, most areas of the 

landscape have low estimated shrub biomass (Figure 3.6A; Figure 3.7A); standard deviation of shrub 

biomass tended to increase with shrub biomass up to ~900 g m-2, and then declined (Figure 3.8A). 

However, coefficient of variation (CV) maps showed that relative to the estimated biomass, 

uncertainty tended to be highest in areas of low to medium shrub biomass, and low in areas of high 

shrub biomass (Figure 3.6B; Figure 3.8B). Areas of low shrub biomass also showed the greatest 

range of uncertainty values (Figure 3.8B). In Figure 3.6A, riparian areas and watertracks are clearly 

delineated by their high shrub biomass, while low-biomass rocky areas and scoured ridgetops can be 

differentiated from hillslopes with moderate shrub biomass. In Figure 3.6B, riparian areas and 

watertracks are similarly visible as areas of very low relative uncertainty, while areas of high 

uncertainty tend to be concentrated on the hillslope areas with low to medium shrub biomass.  
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Figure 3.5. A: Overview of shrub biomass maps for the three lidar collection footprints (note biomass color scale is 
nonlinear). B-E: Enlarged detail view of a representative area showing RGB orthoimage for reference (B), final shrub 
biomass map (C; color scale is the same as for A), lidar-derived canopy volume (D; shown at native resolution of 0.15 m), 
and NDVI (E; shown at native resolution of 0.043 m).  
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Figure 3.6. Shrub biomass estimates (A) and coefficient of variation of shrub biomass estimates (B) for the Toolik 
collection footprint. 
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Figure 3.7. Histograms for the Toolik map (see Figure 3.6A) describing the frequency distribution of estimated shrub 
biomass values (A), standard deviation of shrub biomass estimates (B), and coefficient of variation of shrub biomass 
estimates (C). Histogram data represent randomly selected pixel locations comprising 10 % of all pixels in the Toolik 
map (n = 2480184). 

 

 

Figure 3.8. Scatterplots for the Toolik map (see Figure 3.6A) showing the relationship between estimated shrub biomass 
values and the standard deviation (A) and coefficient of variation (B) for those estimates. Scatterplot data represent 
randomly selected pixel locations comprising 10 % of all pixels in the Toolik map (n = 2480184). 

4. Discussion 

4.1. Simple vs. complex models for predicting shrub biomass 

There are advantages to using canopy volume alone to estimate shrub biomass in a single-

predictor regression approach (Figure 3.3), notably the elegance of a single-variable prediction 

model. Naturally there are also limitations to this simple approach. First, all volumetric approaches 

to estimating aboveground biomass make the assumption that biomass density is constant—that is, 
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that a particular volume of canopy always contains a particular quantity of shrub biomass (Greaves 

et al., 2015; Olsoy et al., 2014). Clearly this assumption is not always accurate; for example in the 

tundra, windswept rocky areas may host dense banks of shrubs settled in microtopographic 

hollows—these would fall above the line of best fit in Figure 3.3, with relatively high biomass but 

low volume. Also, reference data only included harvested biomass of shrubs >5 cm height, ignoring 

all shorter shrub stems, as well as graminoids and forbs that occurred in these plots—even if these 

were taller than 5 cm—which somewhat confounds shrub biomass density calculations. But despite 

these limitations, the simple canopy volume regression approach produced acceptable estimates of 

shrub biomass in a challenging low-stature tundra landscape. Furthermore, if shrubs continue to 

increase in height and abundance in the tundra, high-resolution lidar-derived canopy volume may 

prove to be a vegetation metric sensitive enough to detect and measure such changes. 

In addition to canopy volume, the best Random Forest model (canopy + spectral) also 

included maximum canopy height, standard deviation of maximum canopy height, and NDVI. 

Although the Random Forest variable selection procedure always indicated that the two additional 

lidar-derived canopy metrics (maximum canopy height and standard deviation of maximum canopy 

height) were important, they did not improve the model much by themselves. This can be seen by 

comparing the single-predictor model (Figure 3.3) and results for the canopy only Random Forest 

model (Figure 3.4): adding these two lidar canopy metrics to the single-predictor canopy volume 

model produced virtually no change (and potentially a slight worsening) in the resulting R2 (0.62 vs 

0.61) and RMSD (219 g m-2 vs. 228 g m-2). This suggests that these canopy variables may have been 

retained in the Random Forest variable selection only because they were too highly correlated to be 

separated, despite our precautions. For simplicity in future model-building, a stricter correlation 

threshold could be employed. 

Conversely, adding spectral predictors clearly improved estimates of shrub biomass, 

decreasing RMSD by ~30 g m-2 and increasing R2 by ~ 0.10 (Figure 3.4), which broadly agrees with 

results found in other low-stature ecosystems. For example, Riaño et al. (2007) found that 

incorporating an NDVI-based correction into lidar-derived estimates of shrub height improved 

model R2 from 0.48 to 0.65. Similarly, Estornell et al. (2012) compared models for estimating shrub 

biomass and found that adding spectral metrics to lidar improved R2 from 0.67 to 0.79. By 

incorporating greenness in our model, the NDVI metric likely improved biomass estimates in high-

biomass, low-lying shrub banks, which may have low volume but display high greenness. 

Furthermore, the addition of the NDVI spectral predictor appears to especially improve shrub 
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biomass estimates in plots with low to medium shrub biomass (i.e. harvest plots with less than ~400 

g harvested biomass; compare canopy only and canopy + spectral in Figure 3.4). Because vegetation 

communities with low shrub biomass are widespread on tundra landscapes, it seems warranted to 

use the more complicated model for the sake of improved accuracy in these areas.  

4.2. Spectral metrics: implications for scale and change detection 

We were somewhat surprised to find that NDVI was only an important predictor of shrub 

biomass when it was aggregated over a coarser resolution (2.4 m) than the lidar data (0.80 m pixel). 

This may have been due to simple georegistration error, although GPS spot-checks we performed 

suggested that the lidar and imagery datasets were accurately co-registered to within approximately 

10 cm. Still, together with the relatively poor performance of the spectral only model (even with 

four spectral predictors retained), this suggests that the value of NDVI as a predictor may be limited 

in very high-resolution (~1 m pixel) applications. At moderate to coarse resolution, NDVI is a very 

strong predictor of aboveground biomass in tundra (e.g. Raynolds et al., 2012; R2 = 0.94 for 1+ km 

pixels), but previous work does suggest that this relationship can break down at higher resolutions 

(an effect not limited to NDVI; see e.g. Costanza and Maxwell, 1994). For example, Shippert et al. 

(1995) found that field- and satellite-derived NDVI predicted biomass very well across tundra 

vegetation groups if those groups were very broadly defined (e.g. wet, dry, shrub), but was a 

relatively poor predictor when those groups were separated into their component communities, or 

into the individual samples for those communities. This poor performance may indicate localized 

saturation of NDVI values, reflectance from woody stems diluting NDVI signals for large shrubs 

(Boelman et al., 2011), or species-specific variation in NDVI response (as we noticed during 

preliminary analysis, discussed in section 2.6.); additional investigation might clarify the mechanisms 

at work.  

Still, the importance of spectral data for improving estimates of shrub biomass in our study 

reinforces the complementary nature of structural (lidar) and spectral datasets. The benefits of 

including airborne imagery datasets likely overbalance the challenges posed by varying 

environmental and technical collection specifications that make these datasets less repeatable, and 

make comparison across multiple datasets challenging. Satellite imagery data, although more 

susceptible to atmospheric variations than airborne data (e.g. opportunistic data acquisitions during 

clear skies are not possible), are also subject to more standardized correction and calibration 

algorithms that render them more comparable over time. However, high-resolution imagery (~ 2 m 

pixel or less) tends to be expensive, whether acquired from airborne or commercial satellite sources. 
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(We note that lidar acquisitions are also quite expensive.) Still, we hope that continuing advances in 

remote sensing technologies may soon permit widespread access to very high-resolution satellite 

datasets that can improve vegetation mapping in highly heterogeneous ecosystems like Arctic 

tundra. 

Our second-best model, canopy + topo, was nearly as good as the canopy + spectral model, 

which suggests that the spectral and topographic data contributed similar information—especially 

given that adding topographic data to the spectral data (in the spectral + topo model) only 

somewhat improved the spectral only model (Figure 3.4). Reese et al. (2014) found that certain 

individual Random Forest predictors (e.g. NDVI, SWI, 95th percentile lidar heights) were important 

for predicting the presence of individual alpine vegetation types; in our case, a similar effect may be 

occurring in which both spectral and topographic data improve prediction in areas with low shrub 

biomass, while lidar-derived canopy metrics are uniquely able to capture the structural signature of 

larger high-biomass vegetation. Topographic metrics may also contribute underlying information 

regarding ecological niches in which particular species occur: for example, Martinuzzi et al. (2009) 

found that a topographic metric representing exposure was important for predicting the presence of 

understory shrubs in a temperate forest system. In any case, the strong performance of the canopy 

+ topo model suggests that at least in tundra ecosystems, lidar-derived topographic data may be 

sufficient to improve lidar-derived aboveground biomass estimates if adequate spectral data are 

unavailable.  

4.3. Shrub biomass maps 

The shrub biomass maps created in this study represent high-resolution estimates of current 

aboveground shrub biomass across a widely studied research landscape in the American Arctic. We 

have also provided a means to assess the accuracy and validity of these maps by performing leave-

one-out cross-validation for our main predictor and testing the resulting prediction relationship 

against a withheld dataset, and by providing out-of-bag error estimates and uncertainty maps for 

our final model. The estimates of shrub biomass on the final shrub biomass map tended to be of 

similar range but slightly lower than previous mapped estimates of total biomass found in maps by 

Shippert et al. (1995) and Walker and Maier (2007), which is reasonable given that our estimates 

only include shrub biomass and exclude biomass of mosses, forbs, and graminoids. If anything, the 

range of shrub biomass values on our maps seems somewhat compressed, with fewer very low or 

very high mapped values than might be expected, which may reflect limitations in our harvest plot 

selection. Indeed, our harvest plots did not include samples of the largest common shrub species 
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(Salix alaxensis), partly because previous research suggests that such large shrub species occupy less 

than 3% of the overall tundra landscape (Beck et al., 2011). On the other hand, our shrub biomass 

maps capture a wider gradient of shrub cover and structure relative to previous work in this 

ecosystem. Space-based spectral techniques have been used to distinguish between tall riparian 

shrubs (>1m) with LAI  1 (e.g. S. alaxensis) and short stature (<0.5 m) dwarf shrubs in tussock 

tundra with lower LAI (Beck et al., 2011; Selkowitz, 2010), but those techniques have not permitted 

mapping variation in shrub stature beyond these two discrete groups.  

The optimized canopy volume map (Figure 3.5D), in addition to being an important 

predictor for shrub biomass, is itself a valuable high-resolution (0.15 m) spatial record of vegetation 

canopy structure within the three footprints of the lidar data collection. It also has the advantage of 

being a more direct, physically based representation of the landscape than the Random Forest-

derived shrub biomass map, and consequently may indeed prove more valuable for change 

detection and monitoring over time than estimates of shrub biomass derived from more complex 

models. 

5. Conclusions 

This study presents a robust approach for using airborne lidar data and high-resolution 

airborne imagery to accurately map low-stature shrub biomass in Arctic tundra. Simple lidar-derived 

canopy volume produced reasonable predictions of shrub biomass, but the accuracy of predictions 

was improved by including additional predictors (particularly NDVI) alongside lidar-derived canopy 

volume in a Random Forest regression approach. The high-resolution shrub biomass maps produced 

in this study are a valuable baseline reference that will be useful to researchers seeking to 

understand tundra vegetation dynamics, or to improve estimates of carbon flux, nutrient cycling, 

and wildlife habitat in the rapidly changing tundra biome. 
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CHAPTER 4: MAPPING ARCTIC TUNDRA VEGETATION AT SUB-METER RESOLUTION WITH AIRBORNE LIDAR AND 

MULTISPECTRAL IMAGERY 

Abstract 

Multi-scale landcover maps are necessary to support research into the ongoing impacts of 

climate change in Arctic regions. Commonly available coarse-scale, broad extent maps provide 

valuable general descriptions of landcover, but accurately depicting the heterogeneous nature of 

tundra vegetation communities requires very high resolution raster maps, ideally with 5 m pixel size 

or less. Such high-resolution maps provide valuable local information for validation of coarser maps, 

as well as permitting characterization of fine scale landscape phenomena like songbird habitat 

suitability. In this study, we used 33 predictor layers derived from airborne lidar and high-resolution 

(~5 cm) 4-band airborne imagery to build vegetation community maps at 20 cm resolution for three 

landscapes (12.5 km2 total) near the Toolik Lake research area in the Alaskan Low Arctic. The maps 

were predicted from a Random Forest model that was trained and tested on 800 ground reference 

plots, with classes derived from the commonly used legends on the hierarchy of polygon-based 

maps available from the Alaska Geobotany Center. Withheld test plots had a balanced accuracy of 

0.57, kappa of 0.47, and weighted (fuzzy) kappa of 0.65. With training plots included, balanced 

accuracy was 0.89, kappa was 0.85, and weighted kappa was 0.89. These maps represent valuable, 

validated, very high resolution information that can serve as baseline data for vegetation monitoring 

and change detection as well as valuable reference data for researchers working in the area. 

1. Introduction 

As the Arctic continues to warm rapidly (ACIA, 2005), research efforts seeking to improve 

understanding of potential impacts on human, animal, and vegetation communities are becoming 

increasingly urgent. At the root of many remaining uncertainties is a need to understand the 

distribution of some feature across the landscape—for example, to understand how much area is 

covered by lakes and wetlands that may be releasing increasing quantities of methane (Walter et al., 

2007), or which permafrost slopes might be at risk for unexpected thaw, potentially impacting local 

and downstream terrestrial and aquatic communities and releasing ancient soil carbon to the 

atmosphere (Osterkamp, 2005). Some of these uncertainties involve ecological interactions at very 

fine scales, such as understanding the area of suitable nesting habitat for a migratory songbird that 

requires open, dry hillsides (Boelman et al., 2014).  
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Remote sensing has enabled mapping of Arctic landscapes (Stow et al., 2004) at a range of 

resolutions and extents. Broad extent, coarse to moderate resolution maps provide valuable general 

information to researchers about surface features (e.g. Beck et al., 2011; Walker et al., 2005), and 

can be important inputs to regional and global climate models (Oechel et al., 2000), but the coarse- 

to moderate spatial resolution of these mainly satellite-data-derived maps cannot describe the 

heterogeneity of Arctic landscapes accurately enough to provide information on fine-scale ecological 

phenomena like songbird habitat (Boelman et al., 2014). Capturing the natural variability of Arctic 

tundra surfaces across complex environmental gradients requires surface mapping at very high 

resolution, generally 5 m or less (Atkinson and Treitz, 2012; Davidson et al., 2016; Langford et al., 

2016).  

In this project, we sought to create very high resolution vegetation classification maps for 

important research areas near Toolik Lake, in the Alaskan Low Arctic. This area has benefited from 

previous mapping efforts, in particular by the Alaska Geobotany Center at the University of Alaska, 

Fairbanks, which has produced a spatially hierarchical series of maps for the area depicting multiple 

surface features, including vegetation maps (http://www.arcticatlas.org), which provided a valuable 

benchmark for this project. Vegetation classes on the maps were determined using the Braun-

Blanquet classification approach (Braun-Blanquet, 1965; Walker et al., 1994), in which species 

associations are grouped into a hierarchy of successively broader units. The classification system has 

the potential to precisely describe the finely heterogeneous vegetation of the Toolik Lake area, but 

the maps are polygon-based, with variable minimum mapping units (the small-extent maps have the 

smallest minimum mapping units, 2.5 m2) and therefore tend to blur and oversimplify the 

distribution and arrangement of vegetation patches on the landscape.  

Using predictor layers derived from airborne lidar and imagery, we trained a Random Forest 

model to predict vegetation communities across three research areas near Toolik Lake (12.5 km2 

total) at 20 cm resolution. We believe these maps will provide valuable support to researchers 

working in the area who require detailed information on vegetation distribution or habitat 

suitability, as well as researchers seeking to validate coarser maps or plan future research efforts.  

2. Methods 

2.1. Study area 

The study was conducted near the Arctic Long Term Ecological Research site at Toolik Lake 

(Alaska, USA, 68°38’ N latitude, 149°36’ W longitude; Figure 4.1). Located on continuous permafrost 

tundra in the northern foothills of the Brooks Range, the Toolik area has been an important site for 
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North American Low Arctic research since the 1970s. The region is characterized by cold winters 

(mean coldest month temperature -30°C) and mild summers (mean warmest month temperature 

13°C), with roughly 300 mm of precipitation annually (Huryn and Hobbie, 2012). Complex 

topography, glacial features, and prevailing weather patterns (notably scouring southerly winds) 

generate a complex mosaic of microenvironmental gradients of parent material, exposure, and 

drainage, which in turn host a finely heterogeneous patchwork of tundra vegetation communities. 

The dominant vegetation is graminoid tundra (especially Eriophorum vaginatum and Carex 

Bigelowii) with abundant Sphagnum mosses and erect deciduous shrubs, mainly Betula nana and 

Salix species. 

 

Figure 4.1. Airborne data collection footprints (in green; from left: Toolik, Pipeline, Imnavait) and locations of reference 
plots (orange dots). Inset map shows the general location of the study area in Alaska. 

2.2. Data collection 

2.2.1. Airborne data collection 

Airborne lidar and high-resolution digital imagery were collected August 1st, 2013. Data 

were collected in three discrete footprints totaling 12.5 km2 (Figure 4.1; Vierling et al., 2013a, 

2013b). The largest and westernmost footprint (hereafter ‘Toolik’, ~6 km2) covers research areas 

near Toolik Field Station at Toolik Lake. The other two footprints are each roughly 3 km2: the 

‘Pipeline’ footprint (~3 km east of Toolik Lake) follows a stretch of the Trans-Alaska Pipeline from a 

high moraine ridge down a sloping drainage toward the Kuparuk River; the ‘Imnavait’ footprint 

includes research areas along Imnavait Creek, roughly 10 km east of Toolik Lake. Lidar collection 

specifications are shown in Table 4.1. The vendor performed pre-processing of the lidar data, 
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including aircraft attitude adjustments and ground control georectification. Simultaneous 4-band 

digital imagery (RGB and near infrared, hereafter ‘RGBN’) was collected by a Leica RCD30 60MP 

camera mounted to the aircraft. The imagery was orthorectified by the vendor and delivered as 

orthoimagery mosaics with a pixel resolution of 4.25 cm. A GPS check of 40 stationary objects 

distributed across the Toolik footprint suggested that the imagery was accurately orthorectified to 

within ~10 cm. 

Table 4.1. Lidar collection specifications. 

Instrument Riegl VQ-480i 

Scanner type Onboard waveform processing yielding multiple discrete 
returns 

Wavelength 1550 nm 

Beam divergence 0.3 milliradians 

Flight altitude 365 m above ground level 

Vertical / Horizontal accuracy 8-10 cm / ~10 cm 

Spot size (laser beam ground 
footprint) 

11 cm 

Nominal flight line return density 13.5 points m-2 

Nominal aggregated return density 27 points m-2 

 

2.2.2. Reference plot photo collection 

Field reference data were collected from across all footprints in summer 2014 and summer 

2015. The majority of plot locations (592) were established in advance using a stratified random 

scheme to ensure inclusion of a full range of slope, aspect, elevation, and glacial history across all 

footprints. An additional 47 plots were placed subjectively in the course of visiting the pre-placed 

plots, to capture a wider range of shrub characteristics, and 92 more plots were collected in 2015 to 

represent additional shrub types and topographic transects. For these 731 total field plots, we took 

nadir photographs from approximately 1 m height with a standard point-and-shoot digital camera, 

capturing roughly 1 m x 1.3 m of ground. We also recorded brief notes regarding the plant species 

and surface features present in the plot and the general area, including vegetation height, thaw 

depth, and moss/organic soil mat depth. The center coordinates of each plot photo were measured 

with a TopCon GR-3 survey grade GNSS system operating in real-time kinematic (RTK) mode 

(nominal accuracy 4 cm).  
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2.2.3 Reference plot photo classification 

Since it was desirable that the final map classes correspond as well as possible with legends 

used on previous maps, potential classes were created by examining communities described in 

available maps and literature, especially Walker and Barry (1991), Walker, Walker, and Auerbach 

(1994), Walker and Walker (1996), Raynolds, Walker, and Maier (2005), and the related hierarchy of 

maps created by the Alaska Geobotany Center at University of Alaska Fairbanks, especially Walker 

and Maier (2007). To assign each plot photo (i.e. each plot location) to a plant community, photo 

order was randomized and each photo was visually examined. Based on plant species and other 

features visible in the photo, as well as plot notes, each plot location was assigned to the class that 

best described the center of the photo where the coordinates had been measured. It wasn’t yet 

clear how well we would be able to distinguish vegetation classes in the final maps, so initial class 

assignments were as granular as possible, to permit more flexible subsequent grouping. Finally, 69 

additional plots were identified in the orthophotos to provide more reference data for gravel pads, 

blockfields (rock), and water – classes that were underrepresented in the field data and could be 

easily identified in the orthophotos. 

2.3. Input data layer processing 

A total of 33 input data layers at 20 cm resolution were derived from the airborne lidar and 

RGBN imagery using a variety of tools (Table 4.2). Most layers fall into three general categories: 

lidar-derived canopy metrics (e.g. sum and standard deviation of canopy heights), lidar-derived 

topographic metrics (e.g. topographic position index, SAGA wetness index), and first-order imagery 

metrics (e.g. NDVI, percent red, standard deviation of hue). Additionally, there is one compound 

layer, shrub biomass, which was previously derived from lidar canopy metrics and NDVI (Greaves et 

al., 2016). We also included lidar return intensity (pulse amplitude), which acts as a surface metric 

(Chust et al., 2008; Lang and McCarty, 2009). The raw intensity of the near-infrared laser return is 

affected by surface characteristics, especially wetness (water absorbs the laser pulse, leading to low 

return intensity in wet areas) and surface roughness (relatively smooth areas may reflect the pulse 

more strongly), making it a potentially valuable predictor of surface features and vegetation 

distribution (Eitel et al., 2016). Although our intensity data is not radiometrically calibrated or 

normalized (Yan and Shaker, 2014), the nonparametric nature of the Random Forest modeling 

approach permits the inclusion of such raw data. All predictor metrics were selected to be 

ecologically meaningful for arctic vegetation distribution as well as being likely to improve prediction 
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of vegetation characteristics based on previous work (e.g. Dirnböck et al., 2003; Greaves et al., 2016; 

Kushida et al., 2015; Naito and Cairns, 2011; Ohmann and Gregory, 2002). 

Owing to the large amount of noise present at such a high resolution, most layers were 

smoothed using a circular mean Focal Statistics filter (Spatial Analyst in ArcGIS, ESRI, Redlands CA). 

This type of smoothing retains the original spatial resolution, but tends to improve classification 

predictions (e.g. Gottfried et al., 2014) by decreasing meaningless local variation, instrument noise, 

and small shadows. Once the layers were prepared, the values of all predictor layers at the location 

of each reference plot were extracted for model training. We initially processed layers at several 

smoothing distances (0.5 m, 0.75 m, 1 m, 1.25 m), but retained only layers that appeared important 

in preliminary models and had a Spearman correlation less than 0.95 for the reference plot 

locations.  
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Table 4.2. Input layers. 

Variable Variable type Description (1) 

biomass Compound Estimated shrub biomass (Greaves et al., 2016) 

cnht_sd Canopy Standard deviation of canopy height within 1 m radius of pixel (2) 

cnht_sm05 Canopy Sum of canopy height (corresponds to canopy volume) within 0.5 m (2) 

cnht_sm1 Canopy Sum of canopy height within 1 m radius (2) 

dsi_05 Imagery Deciduous shrub index (Kushida et al., 2015) smoothed at 0.5 m (3) 

dsi_1 Imagery Deciduous shrub index smoothed at 1 m radius (3) 

dtm_sd Topographic Standard deviation of terrain height within 1 m radius (2) 

dtm Topographic Absolute terrain height (2) 

hli_05 Topographic Heat load index (McCune and Keon, 2002) (4) 

hue_1 Imagery Hue smoothed at 1 m radius (5) 

hue_sd Imagery Standard deviation of hue within 1 m radius (5) 

int Surface Mean raw intensity of lidar pulse return within pixel (6) 

int_1 Surface Raw intensity of lidar pulse return smoothed at 1 m radius (6) 

int_sd Surface Standard deviation of raw intensity of lidar pulse return within 1 m (6) 

ndvi_05 Imagery NDVI smoothed at 0.5 m radius (3) 

ndvi_1 Imagery NDVI smoothed at 1 m radius (3) 

pan_1 Imagery Panchromatic (R + G + B) smoothed at 1 m radius (3) 

pan_sd Imagery Standard deviation of panchromatic within 1 m radius (3) 

pctb_1 Imagery Percent blue (B/[R + G + B]) smoothed at 1 m radius (3) 

pctr_1 Imagery Percent red (R/[R + G + B]) smoothed at 1 m radius (3) 

site Topographic Site name: Toolik Lake, Pipeline Ridge, or Imnavait Creek 

swi_05 Topographic SAGA Wetness Index (Boehner et al., 2002) smoothed at 0.5 m (7) 

swi_1 Topographic SAGA Wetness Index smoothed at 1 m radius (7) 

tpi_5 Topographic Topographic Position Index calculated at 5 m radius (4) 

tpi_10 Topographic Topographic Position Index calculated at 10 m radius (4) 

tpi_25 Topographic Topographic Position Index calculated at 25 m radius (4) 

tpi_50 Topographic Topographic Position Index calculated at 50 m radius (4) 

tpi_100 Topographic Topographic Position Index calculated at 100 m radius (4) 

tpi_250 Topographic Topographic Position Index calculated at 250 m radius (4) 

ws_05 Topographic SAGA wind shelter (Plattner et al., 2004) smoothed at 0.5 m radius (7) 

ws_1 Topographic SAGA wind shelter smoothed at 1 m radius (7) 

2grbi_05 Imagery Excess greenness index (Richardson et al., 2007) smoothed at 0.5 m (3) 

2grbi_1 Imagery Excess greenness index smoothed at 0.5 m radius (3) 
1 Smoothing, summing, and standard deviations performed using ArcGIS (ESRI, Redlands, CA) Focal Statistics in Spatial 
Analyst via arcpy in Python (Python Software Foundation version 2.7, www.python.org)  
2 Canopy and terrain heights estimated from lidar as described in Greaves et al. (2017) 
3 Calculated from RGBN imagery via the 'raster' package (Hijmans, 2015) in R (R Core Team, 2017) 
4 Implemented using the Geomorphometry and Gradient Analysis Toolbox for ArcGIS (Evans et al., 2014) via arcpy in 
Python 
5 Hue derived from RGBN imagery via ENVI (Exelis Visual Information Solutions, Boulder, Colorado) 
6 Raw intensity gridded using LAStools (Isenburg, 2017) 
7 Implemented in SAGA GIS (Conrad et al., 2015) via the 'RSAGA' package (Brenning, 2008) in R 
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2.4. Random Forest modeling 

Random Forest (Breiman, 2001) is a machine learning algorithm that uses ensembles 

(‘forests’) of classification or regression trees. In a Random Forest, each tree selects and permutes 

random subsets of predictor variables at each splitting node, which reduces overfitting and 

improves the strength of predictions. Additionally, Random Forest is non-parametric, naturally 

models local interactions, and is relatively robust (but not perfectly; Dormann et al., 2013) to the 

collinearity common to ecological variables, making it an important tool for ecological research (e.g. 

Evans and Cushman, 2009; Martinuzzi et al., 2009; Reese et al., 2014).  

We used the package ‘caret’ (Kuhn, 2016) with the package ‘randomForest’ (Liaw and 

Wiener, 2002) in the R statistical language (R Core Team, 2017) to build and train the Random Forest 

classification model. Twenty-five percent of the reference data plots (selected proportionally from 

each class; n = 196 plots total) were withheld from model building to be used as a test dataset; the 

remaining 75% of the plots (n = 604) were used to train the model.  

Since the Random Forest algorithm strives to produce the best overall accuracy, it is 

susceptible to producing poor accuracy for small classes in imbalanced datasets. Since our input 

dataset was imbalanced, we used an upsampling algorithm implemented in the caret package to 

ensure equal weighting of each class (Chen et al., 2004). The model building was an iterative 

process: we used out-of-bag accuracy and confusion matrices from early models to determine which 

classes could not realistically be differentiated, then collapsed input classes accordingly (Table S4.1) 

and retrained the model, seeking the best possible balance between accuracy and retention of 

informative classes. The final class names and reference plot membership counts are in Table 4.3. 

We also tuned the number of trees and the number of variables randomly selected for splitting at 

each tree node (mtry) in the Random Forest model. We found that any number of trees greater than 

~500 and any value of mtry less than approximately 6 gave comparable results; the final model used 

1001 trees and an mtry of 1.  
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Table 4.3. Final class names and counts for all reference data. 

Class name Count 

Barren 28 

Rock 24 

Dry exposed tundra 52 

Dry Sheltered Tundra 45 

Low dense shrub 47 

Moist snowbed 61 

Tussock tundra 100 

Shrubby tussock tundra 57 

Moist non-tussock tundra 112 

Shrubby moist non-tussock tundra 79 

Low to tall moist shrub 84 

Tall shrub 17 

Raised areas in wet tundra 43 

Wet tundra 17 

Water 34 

 

2.5. Mapping 

After building the final Random Forest model, we applied it across the three data collection 

footprints using the AsciiGridPredict tool in the R package ‘yaImpute’ (Crookston and Finley, 2007). 

In post-processing, pixels in class patches smaller than 25 pixels (i.e. 1 m2; a queen relationship was 

allowed) were replaced by the surrounding class majority, making the minimum mapping unit 1 m2 

of area. After extracting the final mapped class for each reference plot location, the map was 

evaluated using both the withheld test data and the complete reference dataset by examining the 

overall accuracy, balanced accuracy (i.e. the mean class-wise accuracy), Cohen’s kappa, and Cohen’s 

weighted kappa (Cohen, 1968). Like Cohen’s kappa, Cohen’s weighted kappa quantifies the overall 

agreement after accounting for agreement by chance, but it additionally permits the investigator to 

indicate the degree of disagreement present. Since vegetation community classes are discrete labels 

meant to represent gradients of species abundance and structure, it is reasonable to treat certain 

disagreements between classes more or less seriously than others. For example, for most 

applications it would be considerably less serious to confuse Tussock Tundra with Moist Non-

Tussock Tundra, or with Shrubby Tussock Tundra, than it would be to confuse it with Dry Exposed 

Tundra or Tall Shrub. The weights matrix we used to calculate weighted kappa is in Table S4.2. 
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3. Results and Discussion 

3.1. Description of final map classes 

These descriptions are intended to aid in interpreting the maps. They include a general 

description of the surfaces and vegetation in areas covered by the class; comments on other classes 

that may be confused with the class based on the ecology or geography of the class, as well as its 

performance in the model confusion matrices (Tables 4.4 and 4.5); the estimated range of canopy 

heights (for shrubby classes only) based on lidar-derived 2.5th to 97.5th height percentiles for the 

class; and notes regarding how the class relates to the map legends used in the Alaska Geobotany 

Center maps. Specific class references are made to the comparatively granular Toolik Lake Grid 

(‘TLG’) vegetation map (Walker and Maier, 2007). 

Barren – This class contains mainly flat anthropogenic barrens such as roads, gravel pads, 

and gravel pits, and corresponds to the ‘Anthropogenic barren’ class on the TLG map.  

Rock – Includes blockfields and other areas of exposed lichen-covered rock or bare uneven 

gravelly soil. This class also tends to capture structures on the landscape, including buildings, 

greenhouses, vehicles, boardwalks, large equipment installations, and the Trans-Alaska Pipeline. It 

corresponds to the ‘Lichen on rock’ and ‘Partially vegetated barren’ classes in the TLG map. (The 

anthropogenic structures may be manually separated from this class prior to map publication.) 

Dry exposed tundra – Includes dry (well-drained) tundra communities characterized by 

prostrate shrubs such as (in acidic areas) Dryas octopetala, Arctous alpina, Salix phlebophylla, or 

Vaccinium vitis-idaea, or (in non-acidic areas) Dryas integrifolia. These areas are generally level to 

south-facing and are locally topographically elevated and exposed to sun and wind scour; 

consequently they have minimal winter snow accumulation and gravelly soils that drain well and 

thaw rapidly and deeply. This class would tend to intergrade with Barren and Rock classes (at the 

more exposed extreme) or with the Dry Sheltered Tundra or Low Dense Shrub classes (at the slightly 

moister and more sheltered extreme). This class includes the classes ‘Prostrate dwarf-shrub (acidic)’, 

‘Prostrate dwarf-shrub (Dryas octopetala)’, and ‘Prostrate dwarf-shrub (Dryas integrifolia)’ from the 

TLG map. 

Dry Sheltered Tundra – This includes well-drained areas that are somewhat more 

topographically sheltered than Dry Exposed Tundra, such as small depressions on dry ridges and 

terraces or drier strips of shallow snowbeds in upland tundra classes. Dry Sheltered Tundra may 

have considerable exposed soil cover but also support graminoids and prostrate- to hemi-prostrate 

shrubs including Ledum palustre, Vaccinium uliginosum, or Empetrum nigrum, as well as potentially 
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abundant fruticose lichens, but relatively few mosses. This class intergrades somewhat with the Dry 

Exposed Tundra class, the Low Dense Shrub class (which has denser, more even shrub cover), and 

the Moist Snowbed class (which is moister, with more abundant mosses). This class most closely 

matches the TLG ‘Hemi-prostrate dwarf-shrub (snowbed < 1m)’ class, but it also includes some more 

sheltered areas described as one of the ‘Prostrate dwarf-shrub’ classes on the TLG map.  

Low Dense Shrub – This class primarily indicates the presence of dense hemi-prostrate to 

low-erect shrubs (roughly 5-30 cm in height), characteristic of stable, relatively sheltered locations 

on warm, well-drained soils. Betula nana is the most common dominant, but patches of Vaccinium 

uliginosum and other hemi-prostrate to low-erect species are also included. This class is generally 

found as small hemi-prostrate patches in sheltered areas amid Dry Exposed Tundra, or as 

continuous low erect shrubfields on well-drained terraces. In a few moister areas (especially in level 

areas) there is some class confusion between this class and the Low to Tall Moist Shrub class; 

differentiation between these classes may not be meaningful in these areas. This class most closely 

corresponds to the TLG class ‘Hemi-prostrate dwarf-shrub (warm snowbed)’.  

Moist Snowbed – This class represents topographically well-sheltered areas with good to 

moderate drainage and moister soils than the Dry Sheltered Tundra class. It includes north-facing 

areas below well-drained Dry Exposed Tundra or Dry Sheltered Tundra areas, as well as moister 

strips of shallow snowbeds found in sheltered areas of Tussock Tundra or Moist Non-Tussock 

Tundra. Moist Snowbeds are characterized by relatively abundant Cassiope tetragona along with 

other hemi-prostrate to low-erect shrub species, and have considerably greater moss cover (and 

lower bare soil cover) than the Dry Sheltered Tundra class. The Moist Snowbed class is sometimes 

confused with Dry Exposed Tundra on the drier end of its gradient and with other moist tundra 

classes (especially Tussock Tundra and Moist Non-Tussock Tundra) on the wetter/more poorly 

drained end of its gradient. It corresponds most closely with the TLG classes ‘Hemi-prostrate dwarf-

shrub (acidic)’ and ‘Hemi-prostrate dwarf-shrub (nonacidic)’. 

Tussock Tundra – This class represents communities dominated mostly by Eriophorum 

vaginatum, which are usually moderately drained, moderately sheltered, shallowly sloped areas 

with stable acidic soils. Naturally, this common class covers a range of ‘shrubbiness’ and ‘tussocky-

ness’, so it tends to intergrade with other moist upland tundra classes, especially with Shrubby 

Tussock Tundra, Moist Non-Tussock Tundra, Moist Snowbed, and Shrubby Moist Non-Tussock 

Tundra. It corresponds to portions of the TLG class ‘Tussock-sedge’ dominated by Eriophorum 

vaginatum. 
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Shrubby Tussock Tundra – Indicates areas of tussock tundra with considerable shrub cover 

(approximately 10-25 cm in height), especially where Eriophorum vaginatum may share dominance 

with erect shrub species Betula nana or Salix pulchra, but also including Vaccinium uliginosum, 

Ledum palustre, or other shrub species. This class is sometimes confused with the other moist 

upland tundra classes, especially Tussock Tundra and Shrubby Moist Non-Tussock Tundra. It 

corresponds to the portions of the TLG class ‘Tussock-sedge’ co-dominated by Eriophorum 

vaginatum and erect deciduous shrubs, and to areas of ‘Dwarf to low-shrub’ willow and birch 

subtypes that have a significant Eriophorum vaginatum component. 

Moist Non-Tussock Tundra – This class includes moderately drained, moderately sheltered 

areas of sedge-dominated tundra without a dominant Eriophorum vaginatum component. In acidic 

areas, this usually indicates somewhat steeper or otherwise less stable upland areas than areas of 

Tussock Tundra. It also includes non-acidic sedge-dominated tundra with Dryas integrifolia. This 

class is essentially the ecological ‘default’ of the upland moist tundra classes, and as such it 

intergrades and is confused with most other upland moist tundra classes, especially Tussock Tundra 

(in more stable areas) and Moist Snowbed (in more sheltered areas). It corresponds to portions of 

the acidic TLG class ‘Tussock-sedge’ that are not dominated by Eriophorum vaginatum, as well as to 

the non-acidic ‘Nontussock-sedge’ classes, including the ‘horsetail’ and ‘Cassiope’ subtypes.  

Shrubby Moist Non-Tussock Tundra – Includes areas of moderately drained, moderately 

sheltered moist upland tundra dominated by low (roughly 5-25 cm height) erect shrubs of various 

species. This class is frequently assigned to shrubbier moist interstripe areas on non-sorted stripes, 

as well as shrubby moist upland areas not directly associated with watertracks or riparian areas. It is 

the most frequently confused class, since it naturally intergrades with Moist Non-Tussock Tundra, 

Shrubby Tussock Tundra, and Low to Tall Moist Shrub. The class most closely corresponds with the 

areas in the TLG ‘Dwarf to low-shrub’ birch and willow subtypes that do not have a strong 

Eriophorum vaginatum component.  

Low to Tall Moist Shrub – This class describes very moist areas with taller erect shrubs (~10-

100 cm height), usually Betula nana or Salix spp., especially in relation to watertracks and riparian 

corridors. These areas generally have deep moss cover and abundant Rubus chamaemorus with 

otherwise rare forb species, or significant Eriophorum angustifolium (in well-developed 

watertracks). The class also includes some shrub-adjacent riparian areas that were too small or too 

poorly represented in the data to be modeled well, such as streamside communities with abundant 

Salix chamissonis, or forbs like Aconitum delphinifolium and Ranunculus spp. As might be expected, 
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this class tends to be confused with other shrubby classes, especially Shrubby Moist Non-Tussock 

Tundra and Low Dense Shrub (especially in level, well-drained riparian areas). It most closely 

corresponds to the TLG ‘Low to tall shrublands’ birch, willow, and watertrack subtypes.  

Tall Shrub – This class describes areas with especially tall (~30-200+ cm height) deciduous 

shrubs, often Salix spp. in large, well-developed watertracks or riparian areas, or on disturbed gravel 

areas. It also includes a small grove of poplar trees found on a steep south-facing slope in the 

extreme western end of the Toolik footprint. The class is sometimes confused with the Low to Tall 

Moist Shrub class, and corresponds mainly to the TLG class ‘Low to tall shrublands (riparian)’. 

Raised Areas in Wet Tundra – This class includes mainly hummocks and other near-saturated 

but somewhat elevated locations, especially poorly drained areas dominated by mosses, with 

creeping Salix fuscescens and other fen-associated species. The hummocky structure of these areas 

can lead to map confusion with taller moist vegetation, especially Low to Tall Moist Shrub, and they 

also tend to intergrade with Moist Non-Tussock Tundra and Wet Tundra. This class most closely 

corresponds with the TLG class ‘Sedge-moss tundra (poor fens)’, particularly to the ‘Hummocks, 

strangs and raised microsites’ subtype.  

Wet Tundra – Describes wet sedge tundra, which occurs in low-lying, poorly drained, 

saturated areas and may be characterized by Carex aquatilis and Eriophorum angustifolium. Wet 

Tundra naturally intergrades with Moist Non-Tussock Tundra and Raised Areas in Wet Tundra; it 

most closely corresponds with the sedge-dominated portions of the TLG ‘Sedge-moss tundra’ fen 

and poor fen subtypes.  

Water – Includes all areas entirely covered by surface water, including very sparsely 

vegetated inundated sedge tundra and herbaceous marshes that occur in shallow water on pond 

and lake margins. This class corresponds to the TLG classes ‘Unvegetated water’ and ‘Herbaceous 

marsh’. 

3.2. Model evaluation 

For the withheld test plots, overall accuracy was 0.52, balanced (mean class-wise) accuracy 

was 0.57, and kappa was 0.47, indicating moderate agreement; however, weighted kappa was 

considerably higher (0.65), suggesting that many of the disagreements were relatively minor. The 

confusion matrix (Table 4.4) demonstrates that the main confusion was among shrubby classes (e.g. 

Shrubby Moist Non-Tussock Tundra and Low to Tall Moist Shrub) and among moist upland classes 

(e.g. Tussock Tundra and Moist Non-Tussock Tundra), which is unsurprising since these classes tend 

to grade into each other in reality. User’s accuracy was higher overall than producer’s accuracy 
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(mean 0.63 vs 0.57). The confusion matrix also illustrates that although the withheld test data 

represented 25% of all reference data, the imbalanced class sizes led to quite small withheld sample 

sizes for some classes (as small as 4 members, mean 13); this makes the accuracy metrics somewhat 

difficult to interpret, since there were relatively few opportunities to test accuracy in these smaller 

classes. 

Many sources of error potentially contributed to uncertainty in the withheld test plot 

predictions. For example, the gradient nature of all vegetation communities can make class 

assignment of an arbitrary plot location ambiguous, since a given location may show characteristics 

of multiple vegetation communities. This could lead to, for example, two similar plots being assigned 

to different classes based on a potentially arbitrary metric, such as the relative abundance of 

Cassiope tetragona in a given plot, which could add noise to the training data.  

The 20 cm resolution likely also contributed considerably to classification uncertainty, 

especially in the context of such a finely heterogeneous landscape. At such a high resolution, 

unavoidable sub-meter errors in data collection and processing become unusually important: small 

artifacts from imagery stitching and orthorectification; minor spatial variations in lidar ground-

control adjustments; centimeter-level errors in GNSS base station location or RTK corrections; and 

slight mismatches in the location of the reference plot photo and the measurement of the plot 

coordinates can all easily displace a field reference plot from its proper input layer pixel onto a pixel 

that may better represent a neighboring vegetation community, introducing additional noise in the 

training data. Indeed, the noticeable difference between the value for kappa (0.47) and weighted 

kappa (0.65) suggests that many misclassifications may be attributable to small ecological (gradient-

related) or locational variations in the data. 

When considering all 800 reference plots (including both training and test data), kappa was 

0.86, and weighted kappa was 0.89, indicating a high degree of agreement (Table 4.5). The 

discrepancy between accuracy values for the withheld and complete datasets suggests some 

overfitting in the Random Forest model, although the high agreement over the larger dataset still 

demonstrates that the model could predict accurately over a wide range of input data.  

Although the Random Forest approach is valuable for its flexibility and robustness, it 

provides only limited options for ecological interpretation of results. For example, it is possible to 

derive variable importance metrics by examining how much the accuracy (class-wise and overall) 

changes when the model is run iteratively with the values of each variable permuted (i.e. randomly 

reordered among plots). However, variable importance values become less meaningful when input 
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variables are highly correlated (Nicodemus et al., 2010), as in this study, so it is probably not 

advisable to interpret the variable importance rigorously. Nevertheless, some results are interesting 

(Table S4.3). For example, lidar intensity was important for several classes, with standard deviation 

of intensity especially important for very wet vegetated classes (Raised Areas in Wet Tundra, Wet 

Tundra), where the occurrence of intermixed high and low intensity pixels could indicate an area of 

intermixed vegetation and saturated microsites. Intensity smoothed at 1 m was the variable with 

the largest impact on the overall Gini purity index, and was especially important for very dry 

vegetated classes (Dry Exposed Tundra, Dry Sheltered Tundra) where intensity would be high, and 

for Water, where intensity would be extremely low. Greenness indices (NDVI, DSI, 2GRBI) were 

unsurprisingly important for predicting all shrubby classes, but coarse-scale topographic position 

was also important for predicting Shrubby Moist Non-Tussock Tundra and Low to Tall Moist Shrub. It 

was not surprising that lidar-derived canopy height metrics were important for predicting Tall Shrub, 

or that heat load index was important for Moist Snowbed, but it was somewhat surprising that 

percent red appeared so important for predicting wet tundra classes (Wet Tundra, Raised Areas in 

Wet Tundra) and moist upland tundra classes (Moist snowbed, Tussock Tundra, Moist Non-Tussock 

Tundra). It was also interesting that the standard deviation of the panchromatic (R + G + B), 

although not at all important for the majority of classes, was highly important for predicting Tussock 

Tundra, where high values may have indicated the presence of tussock shadows, as well as Water, 

where values would be low. Overall, in a list of 15 most important variables per class, all 33 

predictors appear for at least one class; in a list of the five most important variables per class, only 

seven predictors fail to appear for at least one class (hue_sd, swi_05, swi_1, ws_05, ws_1, tpi_25, 

and tpi_50). Although this likely is due in part to the correlated nature of many of the predictor 

variables, the wide variety of variables appearing as important for different classes also reflects the 

complicated interrelationships between vegetation communities and their ecological predictors. 
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3.3. Mapping 

The final maps are 4-bit unsigned integer 20 cm resolution rasters. Figures 4.2, 4.4, and 4.6 

show the full extent of the maps for the Toolik, Pipeline, and Imnavait footprints; figures 4.3, 4.5, 

and 4.7 each show a detail from an area within the larger footprints. Minor flight-line artifacts are 

visible in a few areas, notably in the southern portion of the Imnavait footprint; these are likely the 

result of sun-sensor geometry interacting with the vegetation canopy and the slope of the terrain, 

potentially along with slight inconsistencies in cloud cover between flight overpasses. The effect 

appears to cause some tussock tundra areas to be classed as Shrubby Moist Non-Tussock Tundra, 

presumably because the effect increased the apparent greenness and reduced the prominence of 

tussock shadows at the outer margins of the flight line.  

It is difficult to compare the maps directly to the relevant Alaska Geobotany Center maps, 

which are polygon-based rather than raster-based and have larger minimum mapping units, but the 

landscape patterns are generally congruent. Unlike the Alaska Geobotany Center maps, our model 

was unable to distinguish between acidic and non-acidic tundra pixels, which was somewhat 

surprising since these types can often be distinguished in coarser remote-sensing data. It may be 

that additional input layers or better attention paid to the reference plot data might permit these 

types to be differentiated in future efforts.  
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Figure 4.4. Map of vegetation communities for the Pipeline footprint shown at 1:19,500 scale. The footprint is rotated 
(note the north arrow) to allow a better fit on the page. 
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Figure 4.6. Map of vegetation communities for the Imnavait footprint shown at 1:17,500 scale. 
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Figure 4.7. 1:6500 scale detail of a well-known research area within the Imnavait footprint. 
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Supplemental Data 

Table S4.1. Crosswalk between original classification of reference plot photos and final collapsed class names. 

Original class name n Final class name 

Acidic dry prostrate dwarf-shrub 37 Dry exposed tundra 

Acidic hemi-prostrate dwarf-shrub (moderately deep 
snowbed) 19 Shrubby moist non-tussock tundra 

Acidic hemi-prostrate dwarf-shrub fruticose-lichen tundra 
(shallow snowbed) 45 Dry Sheltered Tundra 

Acidic hemi-prostrate shrub-sedge-forb fruticose-lichen 
(moist shallow snowbed) 28 Moist snowbed 

Barren 25 Barren 

Betnan-Rubcha dwarf shrub 24 Low to tall moist shrub 

Carex bigelowii-Sphagnum (acidic non-tussock sedge) 76 Moist non-tussock tundra 

Dry hemi-prostrate Betnan 47 Low dense shrub 

Dwarf to low-shrub tussock tundra (birch) 45 Shrubby tussock tundra 

Dwarf to low-shrub tussock tundra (willow) 12 Shrubby tussock tundra 

Eriophorum vaginatum-Sphagnum 100 Tussock tundra 

Herbaceous marsh 9 Water 

Lichen on rock 24 Rock 

Low to tall shrublands (willow) 29 Low to tall moist shrub 

Non-acidic dry prostrate dwarf-shrub sedge forb fruticose-
lichen tundra 6 Dry exposed tundra 

Non-acidic hemi-prostrate dwarf-shrub (deep snowbed) 33 Moist snowbed 

Non-acidic non-tussock -sedge (subhygric to mesic) 25 Moist non-tussock tundra 

Non-acidic non-tussock sedge with Cassiope and horsetails 
(subhygric) 9 Moist non-tussock tundra 

Partially vegetated barren and disturbed 3 Barren 

Prostrate dwarf-shrub (Dryas octopetala) 9 Dry exposed tundra 

Riparian forb-grass meadow 13 Low to tall moist shrub 

Sedge-moss tundra - poor fens (Sphagnum) 10 Wet tundra 

Sedge-moss tundra (fens) 7 Wet tundra 

Shrubby Carex bigelowii-Sphagnum (shrubby acidic non-
tussock sedge) 60 Shrubby moist non-tussock tundra 

Tall Salpul-Eriang water tracks 15 Low to tall moist shrub 

Tall shrublands (riparian) 17 Tall shrub 

Upland grass-forb meadow 2 Moist non-tussock tundra 

Water 25 Water 

Wet raised microsites 43 Raised areas in wet tundra 

Wet sedge-Salix chamissonis 3 Low to tall moist shrub 
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