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Abstract

The dielectric slab waveguide (DSW) has been the subject of much analysis in the past decades,

with many important applications in high-speed high-bandwidth electromagnetic propagation.

Electromagnetic (EM) scattering may be a significant source of degradation in signal and

power integrity of high-contrast silicon-on-insulator (SOI) nano-scale interconnects, such as

opto-electronic or optical interconnects operating at 100s of THz where two-dimensional (2D)

analytical models of DSWs are often used to approximate scattering loss. However, nearly all

analysis of the DSW’s stochastic propagation loss α (dB/cm), associated with random surface

roughness of its sidewalls, has revolved around the transverse-electric (TE) mode of opera-

tion. In this work, a formulation is presented to relate the scattering (propagation) loss to the

scattering parameters (S-parameters) for the smooth waveguide; the results are correlated with

results from the finite-difference time-domain (FDTD) method in 2D and 3D space. We propose

a normalization factor to the previous 2D analytical formulation for the stochastic scattering

loss based on physical parameters of waveguides exhibiting random surface roughness under

the exponential autocorrelation function (ACF), and validate the results by comparing against

numerical experiments via the 2D FDTD method, through simulation of hundreds of rough

waveguides; additionally, results are compared to other 2D analytical and previous 3D experi-

mental results. The FDTD environment is described and validated by comparing results of the

smooth waveguide against analytical solutions for wave impedance, propagation constant, and

S-parameters. Results show that the FDTD model is in agreement with the analytical solution

for the smooth waveguide and is a reasonable approximation of the stochastic scattering loss for

the rough waveguide. This work derives analytical expressions for α in the transverse-magnetic

(TM) mode, and correlates it against numerical experiments in the method of finite-difference

time-domain (FDTD) in both two-dimensional (2D) and three-dimensional (3D) space using

duality. We perform several stochastic numerical experiments using FDTD simulation, and

show that α correlates well against the proposed 2D analytical model and 2D FDTD in the

range of interest.
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1 Introduction

Text in this chapter originated from: [1–6,8, 9].

Nano-scale silicon-on-insulator (SOI) optical interconnects, comprised of silicon/silicon-

dioxide (Si/SiO2) dielectric waveguides operating at 100s of terahertz (THz), constitute an

increasingly important building block of modern integrated circuits, where the high-tech mar-

ket demands smaller form-factors and wavelengths. Considering the non-ideal manufacturing

process, random imperfections in the surfaces of nano-scale dielectric waveguides may cause

significant signal degradation and power attenuation, as EM waves propagate through the

interconnect structure, where the loss is primarily due to EM wave scattering with surface

roughness of the waveguide [10–14]. Therefore, the characterization of scattering loss is a topic

of significant interest to the scientific community [3, 7, 9–16].

The three-dimensional (3D) structure of SOI optical interconnects poses certain challenges

to its analytical and numerical modeling; thus, the stochastic scattering loss observed in nano-

scale THz SOI interconnects is often approximated using 2D planar models of the dielectric

slab waveguide (DSW) exhibiting surface roughness. The 2D analogue is useful for analytically

[7, 14, 16] characterizing the effect of scattering loss on the power attenuation of light waves,

and is used as a comparison for both experimental analysis (of physical waveguides) [10–13]

and numerical analysis [3, 9–11,15].

In 1983, Kuznetsov and Haus [17] published their work on using the 3D volume current

method (VCM) to evaluate the radiation loss in dielectric waveguide structures. Their work

includes analysis of single-line, two-line coupled, and three-line coupled waveguide structures,

in the absence of random surface roughness. In 1990, Lacey and Payne [14] released their semi-

nal work analyzing 2D planar waveguides exhibiting random surface roughness for a single-line

waveguide structure. Their work applies Green’s functions to the structure, operating in the

transverse-electric-to-z (TEz) mode, as an approximation for scattering loss in 3D optical inter-

connects, and later in 1994 [16] it was updated to use normalized waveguide parameters. In 2005,

Barwicz and Haus [15] expanded on both of those developments by applying the 3D VCM to

single-line waveguides exhibiting random surface roughness. In each of these cases, despite hav-

ing relatively simple geometries, the solutions are formulated around complicated integral equa-

tions, and the solutions only become more complicated as the geometry becomes more complex,

for example by adding roughness, multiple tightly-coupled lines, arbitrary-shaped lines or grat-

ing, etc., thus limiting the application of integral-based solutions. An effective workaround to

the integral-equation complication is to reformulate the problem around differential-equations,

leading to the FDTD method. A version of the FDTD method based on wavelets is used in [11],

but the details of the FDTD formulation are not included. The FDTD method is also used

in [10] through the software tool Lumerical, but again details of the FDTD methodology are

absent.
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An additional problem being addressed by the present manuscript is the lack of an ana-

lytical model for the TM-mode stochastic scattering loss in DSWs exhibiting exponential sur-

face roughness on their sidewalls. Such a model is important as it would facilitate expedient

propagation-loss analysis due to THz wave scattering in high-speed, high-bandwidth, and re-

alistic dielectric waveguides exhibiting surface roughness, such as optical and opto-electornic

interconnects [1, 5, 18].

We derive the analytical expressions for the TM-mode stochastic scattering loss by applying

the duality theorem to the existing TE-mode loss expressions. In calculating the TM-mode

stochastic loss, we evaluate four possible formulation options for normalization of the guided

power and select the optimal option based on the effective index. We develop a methodology

for the numerical validation of the above derived model, in both 2D and 3D FDTD.

While the FDTD method implemented via a serial programming paradigm would be com-

putationally expensive, its highly parallelizable nature may provide a potential path to a com-

putationally expedient solution; thus, herein we begin to explore this potential by developing a

parallelized implementation of FDTD with a traditional Yee-based algorithm [19, 20] and con-

volution perfectly matched layer (CPML) [21] boundaries, to characterize the scattering loss in

DSWs exhibiting surface roughness.

Interest in the DSW has endured over the past several decades, initially with works such

as [14, 16, 17, 22–25], and more recently with works such as [1, 3, 5–7, 9–13, 15, 26–32]. The

shift between historical and modern interest in purely dielectric wave-guiding structures may

be divided primarily by the release of the seminal work by Lacey and Payne in 1990 [14]

detailing a relatively simple model for analytically calculating stochastic scattering loss in DSW

structures operating in the optical frequency regime (λ0 ≈ 1.5 µm) with a followup work in

1994 [16] which simplifies that loss model even further. While the DSW is not necessarily a

physically realizable structure, it is the spatially 2D canonical form of SOI waveguide technology,

where SOI structures are fully spatially 3D. SOI waveguides with very large dimensions in two

directions are often approximated using DSW structures.

The discrepancy between these analytical approaches is further confounded by results from

hardware experiments. In 2015, Horikawa, Shimura, and Mogami [12] showed that the Lacey

and Payne model overestimates hardware measurements, but they also showed that the VCM

model underestimates the same measurements. Further hardware measurements [11,13, 25,27,

29,32] show a variety of measured loss figures, but each shows near correlation with the Lacey

and Payne analytical model.

Numerical experiments [10, 11, 26, 30] further show a correlation between hardware exper-

iments and the 2D analytical model. However, in each case there is some discrepancy within

the triad of hardware, numerical, and analytical models, where the Lacey and Payne ana-

lytical model is typically an overestimation. In [5] it was shown through FDTD simulations

that analytical and numerical models may be well-matched through the introduction of a nor-

malization factor in the analytical solution, by formulating input power in terms of physical
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waveguide parameters. Previous numerical modeling of stochastic scattering loss includes the

VCM method [15], film mode matching [28], and the finite-difference time-domain (FDTD)

method [5, 10,11].

Realistic dielectric waveguides are fully 3D structures. Despite the dimensional discrepancy,

2D analytical models are often used as approximations, provided that there is only tight con-

finement in one of the two cross-sectional dimensions, where length is functionally infinite along

the longitudinal-section in both directions. 3D dielectric waveguides with width much larger

than height are spatially inefficient. Therefore, in this paper we conduct numerical experiments

in FDTD to determine the limit for width where 2D analytical models may be considered a

good approximation of 3D dielectric waveguides. The 2D analytical models for wave-impedance

Zw (Ohm) and the propagation-constant β (rad/m) are used for comparison.

The ensuing chapters examine the critical components to stochastic scattering loss due to

random surface roughness. Chapter 2 covers the fundamentals behind the two most major

components to this research, roughness and scattering loss. The formulation outlines the con-

tribution that results from noise in a physical space and how that translates into power and

signal degradation over large distances. Chapter 3 details how the scattering parameters relate

to dielectric waveguides, roughness, and scattering loss mechanisms. Chapter 4 explores the

effects of scattering loss on a simulated dielectric waveguide, first in the canonical spatially-two-

dimensional (2D) form, the DSW, then in the fully realized 3D SOI waveguide. These numerical

experiments show the strengths and weaknesses of currently accepted models of scattering loss

and highlight some potential improvements to existing formulations.
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2 Roughness and Scattering

Text in this chapter originated from: [1–6,8, 9].

Now, with its history established, there truly is no better way to start exploring the world

of roughness than to dive headfirst into it. While the research into scattering loss from rough-

ness dates back decades, and much has been done to make the process more approachable,

the subject matter still relies on the reader having knowledge of a broad range of physical

phenomena. The formulation provided in this chapter is primarily through an electromagnetic

viewpoint. Since the ultimate end for this formulation is simulation and numerical experiment,

details are provided in the evaluation methodology for producing simulated roughness capable

of interaction with the finite-difference time-domain (FDTD) method for simulation. Since

the electromagnetic operation of dielectric waveguides occurs in discrete transverse eigenmodes

(modal operation), the formulation covers both transverse electric (TE) and transverse mag-

netic (TM) modes, and highlights some of the delicate intricacies of the translation between

the two. Lastly, we look at the formulation for roughness as a consequence of correlated noise.

2.1 Field Excitation, Modes, and Loss Models

Depending on the field excitation, the DSW may be operated in either the TEz or TMz modes.

Similarly, the SOI waveguide may operate in TEz-like or TMz-like modes, but the full 3D fields

do not have a readily available analytical form. These modes are time-harmonic in nature, i.e.,

all time-domain field components may be written as F̂ (t) = ℜ
{
Feȷωt

}
, where F is a complex

phasor, ω (rad/s) is the source angular frequency, ℜ{x} is the real part of x, and ȷ =
√
−1. The

nonzero field components in the TEz mode are Ey, Hx, Hz, and the nonzero field components

in the TMz mode are Hy, Ex, Ez [5, 7]. We assume propagation to be along +ẑ only.

We may then write the transverse field components along the width, as Ey(x, z) = ΦTE(x)e
−ȷβz

and Hy(x, z) = ΦTM(x)e−ȷβz, where the phase constant β = neffk0 (rad/m), k0 (rad/m) is the

free-space wave number, neff is the effective index for either TE or TM modes as described

in [7, Appendix D.C]. The field’s spatial distribution is assumed to be in the lowest order mode

such that both field amplitudes ΦTE and ΦTM may be characterized by (2.1) [5, 7],

Φ(x) =

{
A cos (κx) |x| ≤ d

A cos (κd)e−γ(|x|−d) |x| > d
, (2.1)

where A is peak field amplitude, κ =
√

k20n
2
1 − β2, γ = k0

√
β2 − k20n

2
2, and each of these

components is dependent on the mode of operation [5, 7, 22].

The stochastic propagation loss due to wave scattering with random surface roughness is

found by comparing input power to output power using

P (z) = P (0)e−αz (W). (2.2)
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and solving for α. However, the per-unit-length ratio between the power radiated from the

waveguide and the power guided through it

α =
Prad/2L

Pg
(Np/m), (2.3)

is an equivalent formulation to (2.2) but is slightly [14, 16] more mathematically manageable

in the limiting case, where α is the scattering propagation loss, P (0) is the input guide power,

P (z) is the output guide power a distance of z away from P (0), Prad is the radiated power due

to an ensemble average of surface roughness, Pg is the nominal guided power in an unperturbed

waveguide, and L is the waveguide length. These were derived for the TEz mode [5, 7, 14, 16],

where both Prad and Pg use only Ey in calculations. Prad in the TEz mode is expressed as

(2.4a) [14,16]. Then, although the procedure for derivation of αTE may be repeated according

to [14] for the TM mode, it is expedient to simply apply the duality theorem [23, pp. 311-312]

to αTE to obtain the TM mode stochastic loss as (2.4b),

αTE =
Prad,TE

2L
=

1

2

∫ π

0

1

η2

〈
|Ey(r, θ)|2

〉
2L

rdθ (2.4a)

αTM =
Prad,TM

2L
=

1

2

∫ π

0
η2

〈
|Hy(r, θ)|2

〉
2L

rdθ, (2.4b)

where the ŷ field components have been coordinate-transformed from rectangular to polar, η2 =√
µ0/ϵ2, µ0 ≈ 1.26×10−6 H/m, and ⟨f(x)⟩ is the ensemble average [7] of the function f(x) over

a rough waveguide of infinite length. The impedance is η2 since the far-field propagation for Prad

is transverse electromagnetic (TEM) and is in the cladding region only. Assuming stochastic

propagation loss is ergodic (see [7, Appendix A]) the spatial average of surface roughness for a

single waveguide of infinite length is equivalent to the ensemble average of an infinite number

of rough waveguides with each possessing a finite length.

Using the form of
〈
|Ey(r, θ)|2

〉
presented in [14], the radiated power due to wave scattering

off of the surface roughness in the TEz mode is (2.5a), and application of duality theorem yields

the radiated power in the TMz mode as (2.5b)

Prad, TE

2L
=

1

2η0
Φ2
TE(d)(n

2
1 − n2

2)
2 k

3
0

4π

∫ π

0
R̃(β − n2k0 cos(θ))dθ (2.5a)

Prad, TM

2L
=

η0
2n2

2

Φ2
TM(d)(n2

1 − n2
2)

2 k
3
0

4π

∫ π

0
R̃(β − n2k0 cos(θ))dθ, (2.5b)

where R(ζ) is the autocorrelation function (ACF) of the ideal roughness profile, and R̃(k) is

the spatial Fourier transform of R(ζ) and the power spectral density [7] of the roughness.
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Any ACF may be used with (2.5). Herein we use the widely referenced exponential ACF

(2.6) [7, 12–14,16]

R(ζ) = σ2e−
|ζ|
Lc , (2.6)

where σ (m) is the standard deviation of the probability density function (PDF) of the roughness

profile and Lc (m) is the correlation length. The exponential ACF is especially popular as it

approximates physical manufacturing processes [13] and the integral of its power spectral density

has a closed form analytical solution.

We define the guided power as the power flowing through a DSW in the +ẑ direction. Given

the field symmetries in (2.1), the guided power may be written as one-sided integrals (2.7a) and

(2.7b) where f∗(x) is the complex conjugate of f(x).

Pg,TE =
1

2

∫ ∞

−∞
ℜ{−EyH

∗
x} dx =

∫ ∞

0

1

ηg,TE
|Ey|2dx (2.7a)

Pg,TM =
1

2

∫ ∞

−∞
ℜ
{
ExH

∗
y

}
dx =

∫ ∞

0
ηg,TM|Hy|2dx (2.7b)

2.1.1 Normalization Factor for TE modes

The core and cladding regions may have a different wave impedance value on the interval [0, d]

than on (d,∞), due to the step index which affects ηg. For the TEz mode ηg,TE = ωµ0

β is

the best formulation option for modeling scattering loss, i.e., the stochastic FDTD simulation

results of Chapter 4 validate this choice [5,9]. The use of the effective impedance as shown here

is derived from (14) and (30) in [5], where the effective impedance was implicitly part of the

integration of Φ2(x) but has been made explicit here. This leads to the simplified TEz mode

scattering loss equation being [5]

αTE =
1

NF,TE
cos2 (κTEd)MWSW , (2.8)

where related variables are grouped intoMW =
(
n2
1 − n2

2

)2 k30
4π , and SW =

∫ π
0 R̃(β−n2k0 cos(θ))dθ.

The normalization factor was previously derived [5] as (2.9a), but note that the normalization

factor from [14] is equivalent to (2.9b). We may visualize the effect of normalization in Pg

through comparison of power density distribution across the height of a smooth DSW. Fig. 2.1a

shows the TEz mode distribution with the [14]- and [5]-type normalization factors (diamonds

and squares, respectively), the analytical distribution, and the E ×H∗ distribution.

NF,TE = neff,TE

(
d+

1

γTE

)
= neff,TEdeff (2.9a)

NF,TE = n1

(
d+

1

γTE

)
= n1deff, (2.9b)
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Figure 2.1: Distribution of power for Pg in the (a) TEz and (b) TMz modes for various calcula-
tion methods. All discretized fields are computed using 2D FDTD model of a smooth DSW. [1].
This figure was originally published in [2].
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where deff is the effective half-height [7, sec. VI.F], κTE and γTE are κ and γ evaluated for

the TE mode [7, Appendix D.C]. The distinction between d and deff is made primarily due to

method by which electromagnetic power is transmitted through dielectric waveguides. Much of

the power, particularly in the TM-mode, is carried on the surface of the waveguide, and as the

height shrinks, the potential power decay grows exponentially. This is illustrated in Fig. 2.2,

which depicts the propagation loss as a function of waveguide height in the DSW. α0 shows the

results from Fig. 2 in [13], α1 is based on β from [23] based on the solution of (2.10), and α2

is based on β from the effective index method [24]. The 1/d2 curve is shown as reference for

comparing losses.

(µ0/µd) (βydh) tan (βydh) = αy0h (αy0h)
2 + (βydh)

2 = a2, (2.10)
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0

200
400
600
800

1000

Figure 2.2: Attenuation coefficient α vs. waveguide width. This figure was originally published
in [3]. ©2021 USNC-URSI

2.1.2 Normalization Factor for TM modes

There is not yet a well-established value for ηg,TM, so we explore the four formulation options,

below. For the ideal (smooth) waveguide without roughness Pg,TM may be split into integrals
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over core and cladding regions which are evaluated using the methods described in [7, Appendix

C.D] with the continuity relationship

tan(κTMd) =
n2
1

n2
2

γTM

κTM
,

where κTM and γTM are κ and γ evaluated for the TM mode [7, Appendix D.C], yielding

Pg,TM = Pcore + Pclad =
A2

TMηcore
2

(d+ fcore +
ηclad
ηcore

fclad), (2.11)

where the fractions fcore and fclad are (2.12a) and (2.12b), respectively, and ηcore and ηclad are

the variables of interest for the below options.

fcore =
n2
1n

2
2γTM

n4
1γ

2
TM + n4

2κ
2
TM

(2.12a)

fclad =
2n4

2κ
2
TM

γTM

(
n4
1γ

2
TM + n4

2κ
2
TM

) (2.12b)

� Single Simple Impedance (SSI) In [14], the guide impedance was equivalent to setting

ηcore = ηclad = η1. Doing the same here yields (2.13).

Pg,TM =
A2

TMη0
2n1

(d+ fcore + fclad) (2.13)

� Piecewise Simple Impedance (PSI) Assigning the material impedance for each region

independently, i.e., ηcore = η1 and ηclad = η2, yields (2.14).

Pg,TM =
A2

TMη0
2n1

(d+ fcore +
n1

n2
fclad) (2.14)

� Piecewise Effective Impedance (PEI) Following the historical formulation for modal

field configurations in the TMz mode, as summarized in [7, Appendix C], enforces ηcore =
β
ωϵ1

and ηclad = β
ωϵ2

. This yields (2.15).

Pg,TM =
A2

TMneff,TMη0

2n2
1

(d+ fcore +
n2
1

n2
2

fclad) (2.15)

� Single Effective Impedance (SEI) Considering the duality between TEz and TMz

guided powers, assigning ηcore = ηclad = ωµ0

β yields (2.16). This assignment follows from

the implication that neff (and therefore β) already includes the geometric relationship

between core and cladding.

Pg,TM =
A2

TMη0
2neff

(d+ fcore + fclad) (2.16)



10

The scattering loss α may then be simplified to (2.17)

αTM =
1

NF,opt
cos2(κTMd)MWSW , (2.17)

where MW and SW are the same as in (2.8), and NF,opt is the normalization factor based on

the four options for guide power listed in (2.18)

NF,SSI =
1

n1

(
d+ fcore + fclad

)
(2.18a)

NF,PSI =
1

n1

(
d+ fcore +

n1

n2
fclad

)
(2.18b)

NF,PEI =
neff

n2
1

(
d+ fcore +

n2
1

n2
2

fclad

)
(2.18c)

NF,SEI =
1

neff

(
d+ fcore + fclad

)
(2.18d)

Fig. 2.1b shows TMz mode distribution with the each of these normalization factors, the

analytical distribution, and the Poynting vector distribution.

In Fig. 2.1, we see that for both TE and modes the Poynting vector calculation results in

near-perfect overlap with the analytical solution for power distribution across the height of the

waveguide, validating the FDTD simulation. In Fig. 2.1a, the normalization factor in (2.9a)

also overlaps the analytical distribution, whereas the normalization factor in (2.9b) results in

a large overestimation of Pg, which would make αTE smaller. In Fig. 2.1b, the PEI option

shows a similar overlap with the analytical distribution compared to the TEz mode, whereas

the SEI option seemingly overestimates the guide power by a significant margin. The PEI and

analytical options have a large amount of power density on the surface of the waveguide.

It should then be expected that TMz mode propagation will result in much larger power

dissipation per-unit-length compared to TEz mode propagation. The SEI option redistributes

the power such that the power contained within the waveguide core region has far greater

emphasis than the surface; this concentration toward the center of the waveguide core produces

far different analytical model for comparison with simulation results compared to the PEI, SSI,

and PSI normalization factor options, as shown by data in Chapter 4.

2.1.3 Derivation of Attenuation and Phase Coefficients from Modal Solutions of

Dielectric Slab Waveguides

There are multiple methods for characterizing networks. Two crucial pieces of information to

have are the rate of attenuation and the phase shift between two arbitrary points within a

network. Here, the attenuation and phase coefficients (α and β, respectively) are calculated

for a DSW. The DSW chosen here is assumed to operate in the transverse electric (TE) mode

to the z-direction (TEz). We assume ∂
∂y = 0 and the electric field of the form expressed by
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(2.19). Propagation in the waveguide is assumed to be along ẑ, with field components defined

by equations (56)-(61) in [7].

Ey(x, z) = Ey0Φ(x)e
−(α+jβ)z (2.19)

The ratio of this expression when evaluated at z = 0 and at z = ℓ, where ℓ is the distance

between measurement points in (m), results in (2.20), where the modal amplitude function

cancels, leaving only the exponential term and the ratio itself.

Ey(x, ℓ)

Ey(x, 0)
=

Ey0Φ(x)e
−(α+jβ)ℓ

Ey0Φ(x)
= e−(α+jβ)ℓ (2.20)

The complex logarithm, defined in (2.21), is then applied to this ratio, and the real and

imaginary components are separated. Each component is simplified, resulting in expressions

for α and β, where the units of α are (Np/m) and the units of β are (rad/m).

Log(z) = ln |z|+ j arg (z) (2.21)

α = −1

ℓ
ln

∣∣∣∣Ey(x, ℓ)

Ey(x, 0)

∣∣∣∣ (2.22a)

β = −arg (Ey(x, ℓ))− arg (Ey(x, 0))

ℓ
(2.22b)

2.2 Noise to Roughness

Typical noise found nearly everywhere and correlated roughness are tightly linked. Here we

examine three uncorrelated noise distributions and one exponentially correlated noise distribu-

tion. Each of these are described by their respective probability density function (PDF). The

uncorrelated noise images use uniform, exponential, or Gaussian PDFs. The correlated noise

images are generated using the exponential PDF and correlation techniques in [33], where the

noise images are 2D. Correlation and spectral data for uncorrelated versus correlated noise

images are shown in Fig. 2.3.

The correlated noise images are generated automatically with the Pyspeckle package [33].

The control image (with no noise) and examples of noisy images are shown in Fig. 2.4, where

values have been normalized to be in [0, 1]. We use a 30 × 30 pixel resolution to display

an arbitrary guided mode for the E-field in a typical K-band waveguide. A noisy image is

generated for each real and imaginary component of the E-field distribution, and each image

is injected to have signal-to-noise ratio of 1. Magnitude plots for each of the noise images are

shown in Fig. 2.4. We see therein that while white noise is applied to the field randomly, the

correlated noise appears to “warp” the field pattern rather than simply adding random spikes.
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Figure 2.3: (a) Uncorrelated and (b) correlated noise autocorrelation; (c) uncorrelated and (d)
correlated noise spectrum. This figure was originally published in [4]. ©2023 USNC-URSI
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2.3 Verifying the Validity of Discretized Roughness Profiles

In reality, the surface roughness on a dielectric waveguide varies on the atomic scale, such that

it is most easily conceptualized as a continuous rough profile. However, both empirical and

simulated data requires a sampled profile instead. This causes many issues, some of which may

be mitigated through a comprehensive validation methodology. Only through that may a sam-

pled rough profile (as applied to a simulated waveguide) approximate a realistic “continuous”

rough surface. The following section outlines the process by which sampled rough profiles are

generated and validated prior to their application in FDTD simulation.

We start by assigning a target for σo, Lco , and µo, where µ designates the mean in this

subsection. These parameters are then normalized by the spatial discretization step-size ∆x

value used in the FDTD simulation to yield {σ = σo/∆x, Lc = Lco/∆x, µ = 0}. The normalized

values are passed into the Pyspeckle [33] Python library which uses the methods in [34] to

generate random profiles; this generation process returns a floating point array of a specified size,

whose elements quantify the surface perturbation. A linear offset is added to the aforementioned

floating point array to ensure that all values are positive. The offset array is then quantized

with the floor function and the same linear offset is subtracted from the now integer array,

where the final integer array has parameters σ′, L′
c, and µ′. The error between input (σ) and

output (σ′) parameters may be quite large, due to the quantization process. However, we may

circumvent this issue by constraint-based generation of profiles, described below.

We set a percentage tolerance for the normalized input parameters {σ, Lc, µ}, and we check

that the output parameters {σ′, L′
c, µ

′} are within the prescribed tolerance. If a profile does not

meet the criteria it is discarded and a new profile is generated. In our numerical experiments,

a 10% tolerance is specified by σ′ ∈ [0.9σ, 1.1σ], L′
c ∈ [0.9Lc, 1.1Lc], and µ′ ∈ [−0.01,+0.01].

We find σ′ and µ′ via built-in Numpy functions std andmean, respectively. We may estimate

the L′
c value that fits the autocorrelation data, as explained next. We start by finding the

autocorrelation of the generated discretized surface profile using the Pyspeckle autocorrelate

function which provides a normalized array with its maximum value occurring at ζ = 0. Note

the autocorrelation of the generated profile tracks an exponential ACF up to the correlation

length, as can be seen in Fig. 2.6. With that in mind, we apply a root finding technique to

determine L′
c while using RXX(L′

c) = e−1 as the reference value. We then subtract e−1 from

the discrete ACF and find the root closest to ζ = 0, which is the correlation length of the

discrete ACF. We may then compare the L′
c with Lc to determine the validity of the generated

discretized profile.

For samples with parameter values ∆x = 11 nm and σ = 9 nm, and knowing that the

probability distribution function (PDF) of the random process is normal in nature, we know

that 99% of values in the final array will be contained in the range ±3σ ≈ ±2.46. Applying

the floor function to this range results in the discrete set {−3,−2,−1, 0, 1, 2} which may cause

significant differences between output values {σ′, L′
c, µ

′} and input values {σ, Lc, µ}.
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Figure 2.6: Example ACF with input parameters σ = 9 nm and Lc = 50 nm. The discrete
trace is generated with 5000 samples. This figure was originally published in [5].

Figure 2.6 compares a discretized exponential ACF comprised of 5000 samples against the

continuous analytical ACF (2.6). Even at this small sample size, the discretized profile still

correlates well to the ideal ACF up to ζ = Lc, but after that point, there is noticeable noise.

At ζ = 0 nm the discretized and continuous analytical ACFs do not line up perfectly. The

misalignment at ζ = 0 nm may be remedied by normalizing the analytical ACF to match the

discretized ACF, using σ′ instead of σ.
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3 S-Parameters

Text in this chapter originated from: [1–6,8, 9].

While it may be convenient to formulate analytical models for scattering loss using the

variable physical parameters in a dielectric waveguide, it does not produce such a convenient

method for its use in engineering. To that end, this chapter outlines the transition between the

more physical approach in the previous chapter toward the usage of the scattering parameters

(S-parameters). This approach allows traditional tools, e.g. network analyzers, to be used to

acquire empirical data on physical dielectric waveguides which may then be used in conjunction

with the previously derived analytical models. The concept is expanded upon through its

implementation into the FDTD environment, and a novel formulation for the extraction of

S-parameters from the simulated waveguides.

3.1 S-Parameter Computation in a Simulated Environment

S-parameters are often used to characterize a variety of electronic systems [6,9,35]. The method-

ology of finding S-parameters may be applied to 2D FDTD simulations quite expediently [6,9].

We use a slight modification of the traditional definition of S-parameters [35], where the total

voltage measured at each port in a system can be decomposed into incident and reflected volt-

ages, i.e., Ṽ = Ṽ + + Ṽ −, and those components can be used to evaluate S-parameters as in

(3.1), where m,n, k are port numbers, Ṽ + is the incident wave, Ṽ − is the reflected wave, and

Ṽ is the total wave.

Smn =
Ṽ −
m

Ṽ +
n

∣∣∣∣∣
Ṽ +
k =0 ∀k ̸=n

(3.1)

Differing from the traditional definition, instantaneous port power values may be substituted for

port voltages, where an additional factor of 1/2 must be applied to many computations. Elec-

tromagnetic power transmission occurs as a power density wave, but an averaging, i.e., surface

integration at the port location, must be calculated to reduce the 3D (2+1 spatial/temporal

dimensions, respectively) wave to a 1D time-dependent signal per port which may then be con-

verted to a 1D frequency domain signal. In FDTD simulations, we use a two-port system, so

{m,n, k} ∈ {1, 2}. This methodology may be further extended to systems with more ports.

In the simulation grid setup, a variable source is used to excite the fields, and the com-

putational space is divided into the primary domain and the perfectly matched layer (PML)

region [21]. The refractive index n is defined as n =
√

ϵ/ϵ0, and the finite dimension of the

waveguide is δ = 2d, where d is the half-width or half-height. Electric and magnetic field data

are collected over time at ports 1 and 2.

The collection of electric field data for the S-parameters is somewhat complex. An example

baseline setup and geometry is represented visually in Fig. 3.1, where the waveguide is depicted

by the blue region bounded by the solid horizontal black lines, the dashed box is the boundary
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between the PML region and the main computational domain, and the red dot is the source

location. This source is an infinite line (ILS) due to the 2D field geometry of the example

simulation setup. A four-step field evaluation process is required for this single waveguide

setup. Parallel waveguides may also be simulated [36], where the number of steps required is

equal to the number of ports times two. We are able to record total, incident, and reflected

fields in FDTD simulations, but these may not all be recorded simultaneously. The setup for

each step of the simulation process for collecting S-parameters is outlined below and shown

visually in Fig. 3.2.

PML Region

n2

n2

n1

ℓ

Port 2Port 1

ILS 𝛿 = 2d

Ƹ𝑧

ො𝑥

+𝑑

−𝑑

Figure 3.1: FDTD simulation geometry, ILS: Infinite Line Source, n1 = 3.5, n2 = 1.5, Dashed
box: primary computational space and the PML region boundary, δ is the width or height of
the waveguide, ℓ is the distance between port 1 and port 2, and the dotted red lines are the
locations of ports 1 and 2. This figure was originally published in [6]. ©2022 IEEE

Sim 1: The first simulation starts by placing the source condition near port 1, thus enforcing

Ṽ +
2 = 0 for this simulation. Additionally, we extend the right-side CPML boundary to enclose

up to 10 cells to the right of port 1. This simulation records Ṽ +
1 , so nonideal test parameters,

e.g., surface roughness, dispersion, or material variability, are excluded.

Sim 2: The second simulation uses the same source condition as the first. The CPML

boundaries are evenly distributed around the computational domain such that fields may in-

teract with any portion of the waveguide. We record Ṽ1 and Ṽ −
2 during this simulation, and

nonideal test parameters are included.
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Sim 1

Sim 2

Sim 3

Sim 4

Figure 3.2: S-parameter measurement setup. Field data are collected over time at ports 1
and 2 as defined in Fig. 3.1. The dashed box represents the boundary between the primary
computational domain and the PML region. This figure was originally published in [6]. ©2022
IEEE
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Sim 3: The third simulation is a mirror of the first. We place the source condition and

extend the left-side CPML boundary to be near port 2, thus enforcing Ṽ +
1 = 0 in this simulation.

Likewise, Ṽ +
2 are recorded during this simulation.

Sim 4: The fourth simulation finalizes the port field data collection. It is mirror-like

compared to the second simulation. However, nonideal parameters are identical and identically

oriented compared to sim 2. Similar to the third simulation, we place the source condition near

port 2, with the CPML boundaries matching those in the second simulation. This simulation

records Ṽ −
1 and Ṽ2, concluding the necessary data collection.

The fields directly recorded in the 4-step process are limited to those listed above, but

there are still two critically missing field components which are required to fully calculate the

scattering matrix. Those being Ṽ −
1 where Ṽ +

2 = 0, and Ṽ −
2 where Ṽ +

1 = 0. Here, we may

utilize the decomposition relation to find the implicit reflected fields. Specifically, using Ṽ +
1

from sim 1 and Ṽ1 from sim 2, we may obtain Ṽ −
1 = Ṽ1 − Ṽ +

1 . Similarly, we may recover Ṽ −
2

from simulations 3 and 4.

With each of these values calculated from the numerical experiments, the S-parameters

matrix may now be computed. In ideal waveguide with no sidewall perturbations, we would

expect the S-parameters matrix (of the waveguide system) to be both symmetric (reciprocal)

and unitary (lossless) [35]. For a waveguide with sidewall perturbations, we expect the S-

parameters matrix (of the waveguide system) to be symmetric (reciprocal) but non-unitary

(lossy) [35]. Higher port numbers may be simulated by following the same process of incident

field simulation followed by total field simulation, for each port subsequently.

3.2 Computing Power Decay of a 2-port network, Using S-Parameters

The attenuation coefficient in a 2-port network, such as the DSW modeled in Fig. 3.1, can be

calculated using the S-Parameters. Starting with Sim 2, we take the total voltage wave values

at both ports 1 and 2, labeling them Ṽ (0) and Ṽ (ℓ), respectively. We assume the voltage waves

to have the same form as the electric field where the modal field component Φ(x) is replaced

with an initial voltage V0, such that Ṽ (z) = V0e
−(α+jβ)z. In this form, it is expected that as z

increases, the reference voltage peak will attenuate and its phase will accumulate. With voltage

recorded at two port locations, we may begin to determine the complex valued α+ ȷβ directly.

This is done by dividing Ṽ (ℓ) by Ṽ (0), resulting in (3.2).

Ṽ (ℓ)

Ṽ (0)
=

V0e
−(α+ȷβ)ℓ

V0
= e−(α+ȷβ)ℓ (3.2)

Using (3.2), α can be isolated through the complex logarithm, (3.3), where z ∈ C. ln(|z|) is
the natural logarithm (of base e), and arg() is the total accumulated phase of z; i.e., the angle of

z in relation to the real axis in the complex plane plus any full turns about the origin and may

be greater than 2π [37]. For a forward traveling wave, i.e., a wave where power is transferred

from port 1 to port 2, we assume that the phase accumulation is always positive.
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Applying (3.3) to (3.2) results in (3.4). Equation (3.4) may be separated into real and

imaginary components, resulting in the final expression in (3.5), for calculating power loss

directly from FDTD experiments.

log(z) = ln(|z|) + ȷ arg(z), (3.3)

−αℓ− ȷβℓ = ln

(∣∣∣∣∣ Ṽ (ℓ)

Ṽ (0)

∣∣∣∣∣
)

+ ȷ arg

(
Ṽ (ℓ)

Ṽ (0)

)
(3.4)

α = −1

ℓ
ln

(∣∣∣∣∣ Ṽ (ℓ)

Ṽ (0)

∣∣∣∣∣
)

(Np/m) (3.5)

Equation (3.5) is labeled the direct method for calculating power loss from FDTD simulation,

but there is an alternative definition using incident and reflected fields found through the use

of S-Parameters and the corresponding simulations. We start by squaring the input to (3.5),

where the labels are reverted from 0 and ℓ to voltages in reference to ports 1 and 2, leading to

A =

∣∣∣∣∣ Ṽ (ℓ)

Ṽ (0)

∣∣∣∣∣
2

=

∣∣∣∣∣ Ṽ2

Ṽ1

∣∣∣∣∣
2

=

∣∣∣∣∣ Ṽ +
2 + Ṽ −

2

Ṽ +
1 + Ṽ −

1

∣∣∣∣∣
2

=

(
Ṽ +
2 + Ṽ −

2

)(
Ṽ +
2 + Ṽ −

2

)∗
(
Ṽ +
1 + Ṽ −

1

)(
Ṽ +
1 + Ṽ −

1

)∗ . (3.6)

The magnitude-squared operation can be replaced with the equivalent complex operation, re-

sulting in (3.6) where ∗ denotes the complex conjugate operator. This equation for A is rein-

serted into (3.5) logarithm to recover the expression for α as a function of S-parameters, (3.7) [6],

labeled the S-parameter method.

α = −1

ℓ
ln

(∣∣∣∣(1 + S11) (S12)

S11 + S12S21

∣∣∣∣) (Np/m). (3.7)

Equation (3.7) may also be utilized to obtain values for additional parameters, such as

cross-talk, in larger systems by substituting 1 and 2 for some m and n value, respectively.
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4 FDTD Analysis Numerical Experiments

Text in this chapter originated from: [1–6,8, 9].

The previous chapters outlined the fundamental formulation required to analyze dielectric

waveguides with random surface roughness. Each component is necessary to understanding

the complete picture of the following stochastic experiments. The final piece to the formu-

lation is the actual construction of the FDTD environment which is covered throughout this

chapter. The major components to this chapter cover the various numerical experiments that

were conducted to verify, highlight, and expand upon previous research in the area of dielectric

waveguides, roughness, and power decay from scattering loss. The chapter is divided into two

major sections. Section 4.1 details the experiments conducted using the 2D FDTD environ-

ment. This includes FDTD setup, environment verification, and stochastic analysis. Section 4.2

details the numerical experiments conducted using the fully 3D FDTD environment. Since the

environment is different from 2D FDTD, this is also verified. We examine some aspects unique

to 3D waveguides resulting from finite width, and discuss the results from further stochastic

analysis. Additionally, information is provided regarding the actual computer implementation

of the FDTD environments and some advancements possible with hardware acceleration.

4.1 2D FDTD Numerical Experiments: Results and Discussion

4.1.1 SOI Waveguide with Surface Roughness

We orient the SOI waveguide in space as shown in Fig. 4.1a. The width-height cross-section

is centered at the origin, where the height is along x̂ and the width is along ŷ. We assume

propagation along the length in the +ẑ direction, where the length would ideally extend toward

infinity. The highlighted center cut in Fig. 4.1a is shown in Fig. 4.1b. The 2D cross-section

additionally serves as the geometry for the corresponding DSW to the SOI waveguide. Typically,

if the width of the SOI waveguide is much larger than the height and the variations along

width are very small, then the DSW is an appropriate approximation. As width approaches

infinity and variations along width approach zero, the SOI waveguide approaches the DSW.

An example of surface roughness is shown in Fig. 4.1b alongside the nominal geometry. The

example roughness is omitted in Fig. 4.1a but is present on the upper and lower walls of the

SOI waveguide and varies only as a function of length, i.e., we assume height perturbations do

not vary along width.

We examine the SOI waveguide and DSW composed of two dielectric media, where both

are defined by their respective refractive index. Medium 1 (core region) has a refractive index

n1 = 3.5 and exists in the SOI waveguide in −w/2 ≤ y ≤ +w/2 and −d ≤ x ≤ +d. The core

region has a finite nominal height δ = 2d, where d is the half-height. Medium 2 (cladding region)

has refractive index n2 = 1.5 and exists everywhere outside the core region. The refractive index

is defined as nm =
√
ϵm/ϵ0, where m is either 1 or 2 and ϵ0 ≈ 8.85×10−12 F/m [3,5–7,9,14,16].
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(a) (b)

Figure 4.1: Structural geometry and orientation for the DSW, (a) 3D view, (b) 2D cross-section
with roughness example. This figure was originally published in [2].

In 3D space w is finite, but in 2D space w approaches infinity and we may also assume that
∂
∂y

→ 0 for all 2D analysis with this geometry. The waveguides in question exhibit stochastic

surface roughness, i.e., random perturbations in height as a function of length. Herein we

consider surface roughness with an exponential autocorrelation function.

4.1.2 The FDTD Environment

The DSW structure may expediently fit into 2D FDTD analysis. We start by converting the

nominal structure into uniform discrete cells with side length ∆x. The temporal resolution is

then set at the Courant stability limit [38] for 2D FDTD, where the background material is set

to the cladding medium. We apply the CPML [21] to the exterior of the computational domain,

thereby simulating infinite space with minimal reflections and computational cost.

We define length over which we generate and discretize a random profile as ℓ; the remaining

cells along the length of the waveguide are buffer space to allow for the source condition to

settle into a guided mode (mode settling), before arriving at port 1. Much of the formulation

outlined in Chapter 2 uses 2L to define the length of the waveguide, but we use ℓ in the FDTD

space instead. These are functionally equivalent parameters, and may be used interchangeably.

Once the rough surface profile is ready, it is applied as the core and cladding boundary

between ports. Referring to Fig. 4.2, we place a source condition along x̂ in a vertical line

of cells across the entire mouth of the waveguide, where the distance between the source and

CPML is sufficient to disallow interaction between the two. A separation of 10 cells is adequate

in most experiments, noting experiments where a different value is required. While we may

approximate infinite space with the CPML, we still need to retain a buffer space in the cladding

region between the waveguide and CPML boundary as the fields extend beyond the height of the

waveguide. To capture the interactions of the EM fields in both the core and cladding regions,
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Figure 4.2: The baseline DSW structure. This figure was originally published in [5].
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the cladding is size appropriately. In Fig. 2.1 the power wave magnitude decays exponentially

in the cladding region with a rate of 1/γ proportional to distance from the waveguide surface,

and that behavior is used to set the buffer size. At a distance of 4/γ from the waveguide surface,

the field magnitude is no more than 2% of its magnitude on the waveguide surface, which is

adequate for limiting the interaction between guided waves and the CPML. Electric field data

are collected at ports 1 and 2 along the first line of cells adjacent to the rough region. These

points are recorded at each time-step over the entire simulation duration. In post-processing, we

convert the time-domain E-field values to the frequency domain with the fast Fourier transform

(FFT) [39]. We then numerically integrate the E-field over the recorded line of cells, resulting

in a frequency dependent voltage with which further analysis may be performed.

We set up the FDTD grid based on the waveguide geometry, material parameters, and

desired frequency range. The geometry is set up as shown in Fig. 4.2, where n1 = 3.5 and

n2 = 1.5. We set the fundamental frequency as f0 = 194.8 THz (corresponding to source

wavelength λs = 1.54 µm). Using the core refractive index, we find the minimum phase velocity

vmin (m/s). Using the fundamental frequency, we assign our desired maximum frequency as

fmax = NHf0 (Hz), where NH is the number of desired harmonics above the fundamental. Using

both the minimum phase velocity and the maximum frequency, we find the minimum wavelength

simulated in the FDTD scheme with λmin = vmin/fmax. Then, our spatial discretization is

∆x = λmin/30 in most experiments, and we note the experiments where that value may differ.

We set the time-step ∆t at the Courant limit based on the cladding material which has the

largest possible phase velocity in the FDTD environment, such that ∆t = ∆x√
2vclad

.

Testing this setup at NH = 2, ∆x ≈ 7.3 nm/cell and the total grid is 5554 cells × 247

cells (ẑ × x̂) with 26,997 time-steps, including 40 layers of CPML as the absorbing boundary

condition. Along x̂, the core region is centered and the nominal full width measures 36 cells,

where the remaining 300 cells are evenly distributed on either side of the core as cladding.

Along ẑ, ℓ = 4092 cells, and the remaining 1858 cells are evenly distributed to each port region.

The computations are done by using a workstation with two Intel® Xeon® E5-2687W v3

CPUs (40 logical cores), operating at 3.10 GHz. Each simulation occupies less than 410 MB of

RAM and is completed in roughly 300 seconds.

4.1.3 Modal Transformations and Coordinate Mapping

The geometry used for the characterization of scattering loss from random surface perturbations,

shown in Fig. 4.2, is based on the geometry from Fig. 5 in [7]. The fields in [7] are described as

TEz, since Ez = 0 and ∂
∂y

= ∂y = 0, and by using (56), (59), and (60) in [7] we know the non-

zero field components are {Ey, Hx, Hz}, while Ez = Ex = Hy = 0. The TEz field configuration

may also be obtained from (6-72) in [23] and setting ∂y = 0. This is a degenerate configuration

as setting ∂y = 0 in (6-64) in [23] yields the TMy, and in (6-74) in [23] yields TEx.

For the geometry shown in Fig. 4.2, there exists a single nonzero E-field component along the

invariant (infinite) direction (ŷ), and two nonzero H-field components along the finite directions
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(ẑ, x̂) which may be interpreted as either height or width [7]. Out of the three mathematically

equivalent modes (TEz, TMy, TEx), we choose the TEz field configuration here, as it aligns best

with the physical interpretation of the physical waveguide with propagation along ẑ (length), a

transverse E-field along ŷ (width or height), and H-field components along x̂ and ẑ. Our FDTD

simulations are based on the traditional Yee algorithm in a 2D lattice, as formulated in ( [20],

ch. 3), where the formulation is derived with the assumption that Hz = 0 and ∂z = 0, resulting

in the TMz mode with field components {Ez, Hx, Hy}. Note here that the E-field has a single

nonzero component along the infinite (invariant) direction, and the H-field has two nonzero

components. Since we can assign the FDTD geometry in an arbitrary manner, we choose to

orient Hx along the length and Hy along the width (or height), resulting in a field configuration

with the same orientation as the analytical formulation but with a rotated coordinate grid.

We can rotate the coordinate grid of the analytical field configuration such that it results in a

Ƹ𝑧

ො𝑥

ො𝑦 Ƹ𝑧

ො𝑥

ො𝑦 Ƹ𝑧 ො𝑥

ො𝑦

(a) (b) (c)

Ƹ𝑧
ො𝑥

90𝑜 90𝑜

Figure 4.3: Coordinate grid rotation steps. (a) Initial orientation of analytical formulation
for 2D TEz. (b) Intermediary rotated mapping. (c) Final mapped orientation of analytical
formulation is identical to the FDTD formulation for 2D TMz. This figure was originally
published in [5].

configuration identical to the FDTD fields by the steps shown in Fig. 4.3. In Fig. 4.3, starting

with the analytical expression in (a), we rotate the coordinate grid twice. The first rotation is

90◦ around x̂ from ẑ toward ŷ; this produces the grid in (b). The second rotation is 90◦ around

ẑ from ŷ to x̂; this produces the grid in (c). The mapping is complete after these rotations, and

we can then use the FDTD 2D TMz field components {Ez, Hx, Hy} to represent the analytical

2D TEz field components {Ey, Hz, Hx}, respectively, with no modifications to the established

FDTD formulation nor the analytical formulation.

4.1.4 Simulation Space Verification

We validate the FDTD model being used in these numerical experiments in three ways, de-

scribed below. Unless stated otherwise, the data in this section is generated for a smooth
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waveguide with δ = 300 nm, n1 = 3.5, n2 = 1.5, and f0 = 194.8 THz. Validation must be done

prior to performing numerical experiments, so we utilize the smooth waveguide and the below

methods for model validation. Using known and expected attributes of the smooth waveguide,

we can compare the results obtained from numerical experiments to provide confidence in the

validity of our model before performing numerical experiments with waveguides that exhibit

surface roughness.

Wave Impedance One such method is through comparison with a known analytical solution

to the smooth DSW. We use the wave impedance of an outward traveling wave. This solution

is well established and has been derived in several places [7, 23]. We find the wave impedance

by dividing TEz mode E-field by the corresponding H-field component along the length of the

DSW. Here, those fields are Ey and Hz, respectively. In the smooth DSW case, the real portion

of the wave impedance should be very small. For the analytical solution, the division between

the E-field and H-field gives

Zw = ȷ
x

|x|
ωµ

γ
(Ω), (4.1)

where µ is the magnetic permeability. Division of x by its magnitude is used to set the appro-

priates sign for either above or below the DSW.

The FDTD portion of this comparison may be conducted through the second simulation

from Chapter 3 with the surface roughness omitted. Since the wave impedance is calculated

for an outward traveling wave, we use the E-field and H-field data in the cladding region. We

take all the steps necessary to compare frequency-domain voltages as described in Section 4.1.2,

but we exclude the final integration such that we are left with field data for every point along

the line at ports 1 and 2. Using the port 2 data allows for the wave to propagate over a long

enough distance to be well-set into the lowest order mode. We take the measurements from two

cells below the lowest core cell which leaves a single cell buffer between the core region and the

cell used for this calculation. Finally, the imaginary component is compared to the analytical

solution.
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Figure 4.4: (a) Zeroth order TEz mode wave impedance for the smooth DSW. (b) Propagation
constant β vs. frequency. (c) S-parameters for the smooth waveguide. (d) Propagation loss α
(dB/cm) vs. frequency, for a smooth waveguide with S-parameters method vs. direct method
for calculating propagation loss. This figure was originally published in [5].

The wave impedance calculated from the FDTD model is shown in Fig. 4.4a. We can see

that the impedance found from numerical experiment matches with the expected analytical

value throughout this range of frequency samples. At f0 the difference between the FDTD and

analytical values is approximately 1.5 Ω, which translates to an error of less than 2% near the

frequency of interest.

Propagation Constant In the next validation method, we compare the propagation con-

stant β obtained from FDTD against that obtained from the EIM in the frequency range of

interest, at the same samples as the FDTD model output. We find β from FDTD by evaluating

the imaginary component of (3.4). Since we are examining the phase angle of the voltage mea-

surements, the division of Ṽ (ℓ) by Ṽ (0) may be converted to a subtraction, resulting in (4.2).
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In FDTD, we compute the angle of the complex voltages over the entire frequency range on the

smooth DSW and unwrap the final angle array into full angle form (rather than principal angle

form). In Fig. 4.4b, the traces are nearly overlapped. The fundamental frequency is highlighted

by the vertical dashed line, where the error between the EIM and the FDTD model is less than

1%. This data further validates the FDTD model, and confirms the formulation leading to

(4.2).

β = −1

ℓ

(
arg
(
Ṽ (ℓ)

)
− arg

(
Ṽ (0)

))
(4.2)

Scattering Matrix In the last validation method, we utilize the properties of the S-parameters

matrix described in Chapter 3. As stated, the matrix should be symmetric and unitary for the

smooth waveguide. We extract the S-parameters from the FDTD model using the method

presented in Chapter 3, and show these in Fig. 4.4c. Two observations are noteworthy in the

frequency range of interest: (1) the cross-terms (S12, S21) have a magnitude of near 0 dB,

indicating that there is almost complete transmission of power from one end of the waveguide

to the other, and the self-terms (S11, S22) are correspondingly very small compared to the

cross-terms, with a peak value of less than −150 dB; therefore, the matrix is nearly unitary as

expected for a smooth lossless waveguide. (2) the S-parameter matrix is symmetrical, given the

near perfect overlap of S11 with S22, and S12 with S21. These observations are the expected

results for an ideal network, such as a smooth DSW. Since the FDTD results align well with

the expected behavior of a 2-port network, these results further validate the FDTD model.

Scattering Loss Calibration We compare the S-parameters method and the direct method

for calculating loss, as shown in Fig. 4.4d. Here, we observe an oscillatory behavior similar to

that in the cross-terms of Fig. 4.4c. The oscillations hover around α = 0 dB/cm and decay

with increasing frequency, while the expected per-unit-length attenuation for an ideal smooth

waveguide is α = 0 dB/cm. Note that the loss from the S-parameters and from the direct

method match very well, where the mean-squared error is on the order of 10−8.

With an accurate model in hand, the field data are collected according to the methodology.

In this manner, sample field data in the FDTD setup is shown in Fig. 4.5 and Fig. 4.6. The

results shown in these figures are the electric and magnetic total field values evaluated at ports

1 and 2, according to simulation 2 of Fig. 3.2. Figure 4.7 shows the attenuation coefficient

as a function of frequency using both the simple modal method as well as the S-parameter

method. Note the error is negligible, as shown in Fig. 4.8. The overall S-parameters are shown

in Fig. 4.9 and Fig. 4.10. As expected from a smooth dielectric waveguide structure in 2D

FDTD, the attenuation is very small compared to the size of the simulation space, and power

is almost fully transferred from port 1 to port 2. Additionally, S11 and S22 are negligibly small.

Furthermore, the various methods for calculating the attenuation coefficient are nearly perfectly

aligned.
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Figure 4.5: Electric field waveform samples at ports 1 and 2. This figure was originally published
in [6]. ©2022 IEEE
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4.1.5 Correlated Profile Experiments

The FDTD method is used to solve a discretized DSW with stochastic sidewall roughness,

where the upper and lower roughness profiles are identical (correlated). Correlated profiles are

used to reduce numerical noise and show setup changes more distinctly. This setup is tested

with σ = 9 nm and σ = 15 nm over a range of correlation lengths. The nominal loss value for

each setup is calculated and converted to have units of dB/cm by multiplying loss in Np/m by

0.08686. This value is then compared against the computed loss value from FDTD. The mini-

mum, mean, and maximum percentage difference from the expected loss value for each test-case

is shown in Tables 1 and 2. In order to reduce some errors resulting from the stochastic nature

of the problem, ten simulations are run for each setup. For each setup, a unique rough profile

is generated, discretized, and evaluated for proximity to the setup conditions. Each profile is

considered valid if the computed discrete parameters (σ, Lc) are within ±10% of the desired

value. The evaluated discrete parameters are then used in the analytical calculation for each

individual simulation, dependent on the true roughness profile experienced by the FDTD sim-

ulation.

σ = 9 (nm)

Analytic Error (%)

Lc (nm) α (dB/cm) Min Mean Max

400 407.0 -11.19 11.60 23.51
500 339.2 -8.16 0.78 19.96
600 289.3 -21.82 -7.67 11.09
700 251.6 -29.20 -8.56 3.65
800 222.3 -15.19 0.99 12.06
900 198.9 -25.30 6.24 42.85
1000 179.9 -24.79 -1.91 22.53

Table 1: Results for σ = 9 (nm). α is the analytic value for the corresponding setup. Mean of
mean errors is: 0.21%. Data within this table were originally published in [9]. ©2022 USNC-
URSI

The average of the mean of the mean errors across Lc for both σ = 9 nm and σ = 15 nm

is approximately −0.38%, showing a reasonable correlation between the numerical experiments

in FDTD and the analytical solution. It may be noted that while ten simulations per setup can

provide a rough trend, adding many more simulations for each test case would help increase

statistical confidence in the correlation between analytical and FDTD results.

In Fig. 4.11, we show an example loss curve simulated in FDTD, to demonstrate the effec-

tiveness of filtering the FDTD output. As we can be seen in the figure, there is a nontrivial

level of noise on the full range of α. Applying a 10-point moving average filter results in the

Filtered trace reduces the noise in the FDTD data. This is best exemplified by the α values for
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σ = 15 (nm)

Analytic Error (%)

Lc (nm) α (dB/cm) Min Mean Max

200 1726.0 11.18 19.01 25.70
300 1390.2 2.30 12.61 25.70
400 1130.4 -11.28 6.78 20.83
500 942.2 -25.01 3.97 15.73
600 803.7 -23.74 -5.34 16.17
700 699.0 -27.69 -3.94 11.33
800 617.5 -45.18 -13.05 17.17
900 552.5 -40.71 -15.51 15.88
1000 499.7 -30.64 -13.18 12.02

Table 2: Results for σ = 15 (nm). α is the analytic value for the corresponding setup. Mean
of mean errors is: -0.96%. Data within this table were originally published in [9]. ©2022
USNC-URSI

frequencies above 225 THz, where the noise is reduced by an order of magnitude. However, the

noise reduction in the range around f0 is more limited.

Figure 4.12 uses the data from tables 1 and 2, to illustrate the distribution of percent error

between FDTD and analytical calculations with and without filtering. The values are grouped

by corresponding σ values across varying correlation lengths. Figures 4.12a and 4.12b the same

data at σ = 9 nm, where 4.12b has a 10-point moving average filter applied. Likewise, the same

occurs for Figs. 4.12c and 4.12d but at σ = 15 nm instead. The figures show the distribution of

percentage errors for all correlation lengths with the same standard deviation, where a total of

924 roughness profiles were simulated using the FDTD model. We use these data to illustrate

the effect of filtering on simulation results. In Fig. 4.12a the mean error is −5.12%, whereas in

Fig. 4.12b the error is reduced to −4.12%, and the standard deviation reduces from 21.96 to

19.87%.

In Fig. 4.12c the mean error is 1.89%, whereas in Fig. 4.12d the error is increased, to 2.24%.

Like in the σ = 9 plots, the standard deviation reduces, this time from 19.76 to 18.56%. From

the numerical experiments conducted in FDTD on the relatively short-length DSW, we have

created the histogram of occurrences, which may be easily translated to a probability mass

distribution.

Some potential sources of error in Fig. 4.12 are listed below. (1) The parameters {σ′, L′
c, µ

′},
rather than {σ, Lc, µ}, are used in the analytical solution when calculating the percentage errors.

(2) We use a relatively coarse spatial and temporal resolution in the FDTDmodel, while utilizing

a finer resolution grid may decrease the percentage error range, it would increase computation

time. (3) We use analytical model based on the formulation originally proposed in [14] that

used various approximations and simplifications, such as a first-order Taylor series expansion

to evaluate the E-field.
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Figure 4.11: α vs. frequency, for a rough waveguide (σ = 15 nm, Lc = 200 nm) with noisy
FDTD data (red dashed line) compared to filtered FDTD data (blue solid line), where f0 is the
excitation source frequency. This figure was originally published in [5].
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Figure 4.12: Percent error in propagation loss α (dB/cm) between analytical vs. FDTD so-
lutions: (a) 924 roughness profiles at σ = 9 nm, (b) same as (a) with data filtering, (c) 947
roughness profiles at σ = 15 nm, and (d) same as (c) with data filtering. This figure was
originally published in [5].



39

From each setup in Fig. 4.12 the maximum difference between filtered and unfiltered data is

standard deviation from Fig. 4.12a,4.12b which reduces by 2.09%, and each other relevant value

changes by around 1%, with the mean percentage error in the σ = 15 nm case actually increasing

by 0.35%. This shows that the filtering step does not significantly impact the percentage error

of the FDTD results from the analytical solution. Even in the best case, the differences between

filtered and unfiltered data are minimal, and thus filtering is omitted from future experiments

to improve the data integrity and increase the per-simulation computation rate.

4.1.6 Loss Value Comparisons

We compare this correlated profile experiment to previous theoretical and experimental works.

In [7], the components for α are based on the more physically realistic form of E-field (2.1)

where the peak amplitude Ae may be any real-valued scalar. The absence of any normalization

factor (i.e., setting NF = 1) leaves a dependency on input power; however, the input power

may be modified to fit the expected scattering loss value for any point. In [14], the original

formulation for finding scattering loss was proposed, where the mathematical normalization of

(2.1) is used, effectively ignoring its contribution to the relationship.

The follow-up work of [16] proposed a formulation for scattering loss calculations by using

normalized waveguide parameters, but as was noted in [15], there appears to be an extra factor

of 2 in the formulation used therein. We can see this numerically by comparing [16] with

this work, also in Table 3, where the loss value is double our calculations above. We further

see that an input power of PTE = 4.3 mW in the formulation found in [7] is most similar

to the normalized values found here, but other choices of input power (e.g., PTE = 1 mW or

PTE = 1.45 mW) could yield different values for loss as they may not eliminate dependence of α

on input power. The VCM was used in [15] to verify the scattering loss calculations. Their work

was done on several 3D waveguides, and these provide a similar analogue to the 2D structure

simulated in this work.

Source d = 210 nm d = 250 nm
(a: hardware experimental) Lc = 20 nm Lc = 50 nm
(b: numerical/analytical) σ2 = 1 nm2 σ2 = 81 nm2

a [13] Lee N/A ≈34
a [10] Jaberansary N/A ≈33
a [12] Horikawa ≈0.5 N/A
b [15] Barwicz N/A 48.6
b [16] PL 94 1.87 193.7
b [7], PTE = 1 mW 0.22 22.1
b [7], PTE = 1.45 mW 0.32 32.1
b [7], PTE = 4.3 mW 0.94 95.2
This work (2.8) (2.9b) 0.94 96.8

Table 3: α values in (dB/cm). Data in this table were originally published in [5].
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Looking at the experimental side, in [12] a physical 3D dielectric optical interconnect was

tested for scattering loss. Their results show that the 2D planar model [16] is generally an

overestimate of what can be expected from physical hardware, and the 3D simulations in

[15] are generally an underestimate. Furthermore, in [12], unit variance is used, making it

unique compared to other experimental data and included in Table 3. Other experiments

conducted on physical hardware include those of [10, 13], where a scattering loss magnitude of

≈35 dB/cm is reported. These experiments were conducted on 3D SOI optical interconnects

consisting of Si core and SiO2 cladding extending 1 µm in each direction around the core, making

them amenable to comparison with the 2D planar approximation. The loss value in [10, 13] is

approximately 36% of ours, and 72% of the loss value in [15].

4.1.7 Uncorrelated Profile Experiments

We simulated DSWs with rough surface profiles over a range of σ and Lc values. Each simulation

generates unique roughness profiles for both the upper and the lower core/cladding boundaries.

The simulation setups are each combination of σ ∈ {9, 15} nm and Lc ∈ {200, 300, ..., 1000} nm.

2168 waveguides were simulated (approx. 120 simulations per setup). We control for potential

mismatch between simulation results and (2.8) by evaluating σ and Lc for each rough surface

profile in that set, followed by taking the mean those σ and Lc values, and using those in (2.8).

The error for each setup is calculated using (4.3).

%E = 100×
αanalytical − ᾱsimulation

αanalytical
, (4.3)

where αanalytical is (2.8) and ᾱsimulation is the mean scattering loss calculated from FDTD results

with the corresponding setup using the direct method.

We use the assumption core impedance normalization factor (2.9b) to calculate the error

between (2.8) and simulation results, and we show those errors in Fig. 4.13. We observe that 10

of the 18 setups have errors with magnitudes larger than 30%. This results in the average error

being between -30% and -40%, where (2.8) underestimates the FDTD scattering loss for each

setup. Next, we use the effective impedance normalization factor (2.9a) to perform a similar

error comparison between (2.8) and simulation results in Fig. 4.14. With this assumption

the errors are reduced significantly. The latter normalization factor still underestimates the

evaluated simulation scattering loss, but not to the same extent as with the former. Now, 10 of

the 18 setups have errors with magnitudes smaller than 10%, and the average error is between

-5% and -10%.

In Figs. 4.13 and 4.14, the errors from simulations with σ = 9 nm generally have a larger

magnitude than those from σ = 15 nm, and as Lc increases the errors appear to approach a

range of values. These observations are likely due to the particular grid discretization used

in simulation. In the previous section it was shown that the core impedance normalization

factor results in a very small error, but here we show that the same assumption and comparison
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Figure 4.13: Percentage error for FDTD simulation results compared with (2.8), using normal-
ization factor (2.9b). Markers show setup error. Lines show mean error for each σ. This figure
was originally published in [1]. ©2022 USNC-URSI

results in a much larger error. This is because those simulations used correlated roughness

profiles, i.e., the profile on the lower boundary is a direct copy of the profile generated for the

upper boundary, whereas here the simulations use uncorrelated profiles, i.e., a unique profile

is generated for both boundaries. In reality, correlated rough surface profiles are rare, so this

experiment is much more realistic.

4.1.8 Setup Comparisons Data

Though the wave impedance shows good correlation with a relatively coarse discretization,

rough waveguides may require finer detail to approach a similar closeness to analytical calcu-

lations. Through our numerical experiments, we found that primarily three variables affect

stochastic simulations: (1) the resolution (number of divisions per defining wavelength), (2)

rough waveguide length (ℓ), and (3) tolerance on discrete roughness parameters. Tests are

performed in 2D FDTD, where

r ∈ {20, 30, 40, 50, 60, 80, 100} ,

ℓ ∈ {20µm, 30µm, 40µm} ,

Tp ∈ {10%, 15%, 20%}
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Figure 4.14: Percentage error for FDTD simulation results compared with (2.8), using nor-
malization factor (2.9a) according to [7]. This figure was originally published in [1]. ©2022
USNC-URSI

are explored. Across all FDTD simulations for this experiment there were a total of 17,459

sample roughness profiles simulated (≈138 profiles per setup). The target roughness parameters

are σt = 15 nm and Lc,t = 500 nm. This Lc,t is near the center of the range of Lc,t test setups in

the subsequent experiments, but since the evaluation of (4.7) is not directly dependent on any

particular σt, Lc,t, effectively any σt, Lc,t could be used. Upon completion of all simulations for

a particular setup, we take the mean and standard deviation of the resulting α values. These

results are then processed further into percentage error and bandwidth defined in (4.4) and

(4.5), respectively,

%error =
|αA − ᾱF|

αA
× 100% (4.4)

%BW =
std (αF)

ᾱF
× 100% (4.5)

where ᾱF is the mean of all FDTD α calculations for a particular setup, std (αF) is the standard

deviation of those same calculated α values, and αA is the analytical scattering loss evaluated

at σt and Lc,t. We consider a setup to be good if the percentage error and bandwidth are both

nearly 0%, where the ideal outcome implies high accuracy and high precision. We use (2.8)

with normalization factor (2.9a) for αA in Fig. 4.15, and we use (2.17) with normalization factor

(2.18d) in Fig. 4.16. Results from TEz mode simulations are shown in Fig. 4.15. Since profile

generation is random and some test setups could result in an impossible combination, a cap
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Figure 4.15: 2D TEz mode results for r vs. ℓ vs. Tp at σt = 15 nm and Lc,t = 500 nm. This
figure was originally published in [2].
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for how many invalid roughness profiles may be discarded was set at 50,000. Should no valid

profile be found over 50,000 iterations the setup is skipped and simulation of the next setup is

started. The setups (ℓ, r, Tp) = (40 µm, 20, 10%), (30 µm, 50, 20%) did not find any valid

roughness profiles over 150 attempts (7.5 × 106 profiles were rejected for each). This may be

seen in Fig. 4.15 as a mean percentage error of 100% and bandwidth of ±0%. At least one valid

roughness profile was found for all other setups in the TEz mode.

The mean error decreases as ℓ and r both increase, so the best simulation results occur

at (ℓ, r) = (40 µm, 100), however those results are only marginally better than at (ℓ, r) =

(40 µm, 40) or (ℓ, r) = (30 µm, 50). In fact, any setup where the resolution and length are

greater than at the aforementioned references seems to perform comparably well. Since the

results only marginally improve for larger setups, we may assume that any setup with larger r

or ℓ will primarily serve to increase the computation time rather than offer any improvement

in comparison to analytical solutions. This serves to show that increasing the computational

size is not necessarily beneficial to the accuracy of stochastic simulation.

The bandwidth for all TEz mode sims appears to follow the same trend as the mean error,

where some of the best results occur near (ℓ, r) = (40 µm, 100), but the benefit of increasing

length is more distinct. We see a decrease in bandwidth of nearly ±20% for each setup where

ℓ is increased by 10 µm. However, this effect is not as readily seen with the increase in r. This

implies that if r is large enough to adequately simulate the σt, there is little benefit to further

increasing r. Conversely, even if ℓ is large enough to adequately simulate Lc,t, there is still

visible and significant benefit to increasing ℓ.

Since the simulations are stochastic, no individual simulation should have exactly the same

calculated α value as any other simulation, and while α may be similar between simulations,

each roughness profile is unique. The range within which α may be expected to fall is dictated

by the PDF that governs the roughness profile. The bandwidth decreasing from ±60% to ±40%

by increasing ℓ from 30 µm to 40 µm has a benefit in that fewer simulations are required to

reach a consistent mean value, i.e., a mean percentage error which changes minimally as more

simulation results are added.

As Tp is increased we see a far subtler effect on α calculations, where the impact of Tp is most

visible in the bandwidth. We see that a virtual cutoff point exists in the bandwidth plot for

Tp = 20% at ℓ = 30 µm and r = 50. Below that point the bandwidth increases as r decreases,

whereas the bandwidth is comparable to Tp = 10% and Tp = 15% as r increases. This implies

that Tp has a similar but less significant effect to ℓ. This also shows that while Tp = 10% will

approach a marginally stable ᾱF, Tp = 15% does not necessarily require additional simulations

to achieve a similar ᾱF.

The results from TMz mode FDTD simulation are shown in Fig. 4.16, where there are

several differences between TEz and TMz mode FDTD simulation results. The setup at (ℓ, r,

Tp) = (40 µm, 20, 10%) again was unable to generate any valid profiles across the 150 search

attempts, but (ℓ, r, Tp) = (30 µm, 50, 20%) found at least one valid profile.



45

20
30
40
50
60
80

100

p=
10

%
Re

so
lu

tio
n 

(r)

Mean Error Bandwidth

20
30
40
50
60
80

100

p=
15

%
Re

so
lu

tio
n 

(r)

20 30 40
 ( m)

20
30
40
50
60
80

100

p=
20

%
Re

so
lu

tio
n 

(r)

20 30 40
 ( m)

0

10

20

30

40

50

Figure 4.16: 2D TMz mode results for r vs. ℓ vs. Tp at σt = 15 nm and Lc,t = 500 nm. This
figure was originally published in [2].
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Unlike the TEz mode simulation results, the simulation results from TMz mode simulations

appear to be much less sensitive to the test parameters. However, the same trends are still

present between the two modes. Once again, the best results are seemingly at the largest ℓ

and r values and the smallest Tp values, but as ℓ increases we may see only a small decrease in

mean error or in bandwidth for most results. Furthermore, there is an even smaller difference

as r increases. The TMz mode having a lower mean percentage error overall indicates that

TMz mode analytical model is less sensitive to changes in scattering due to surface roughness

calculated during simulation. The lowered sensitivity is likely due to αTM being larger than

αTE. This data contradicts the results found in [11], where the αTM was approximately half

αTE, but here we see that αTE ≈ 1170 dB/cm and αTM ≈ 3870 dB/cm for this σt, Lc,t.

4.1.9 Statistical Analysis on 2D Stochastic Loss

We simulate stochastic roughness in the 2D TEz and 2D TMz modes. The data from those

simulations are shown in Table 4, where all values for αF are shown in dB/cm. The TEz mode

simulations were performed with r = 60 and ℓ = 80 µm with Tp = 10%, and those in the TMz

mode were performed at r = 60, ℓ = 40 µm, and Tp = 5%. These data are compared with

Mode Lc,t sims ᾱF std(αF) min(αF) max(αF)

TE 300 143 1898.97 331.26 1080.32 2723.35

TE 400 143 1466.58 301.35 563.65 2136.93

TE 500 142 1154.80 291.53 581.83 2172.36

TE 600 142 986.20 300.26 342.73 2172.36

TE 700 142 862.45 250.73 309.56 1692.91

TE 800 142 742.81 254.23 5.62 1484.56

TM 300 147 5058.42 862.97 2833.08 7164.78

TM 400 146 4482.29 837.37 2058.77 6403.92

TM 500 146 3912.81 796.84 1886.13 6252.10

TM 600 145 3456.58 796.28 1903.49 5287.46

TM 700 146 3045.63 696.56 1405.46 4660.05

TM 800 145 2683.57 641.75 1184.69 4474.81

Table 4: 2D Simulation Data. Data in this table were originally published in [2].

analytical equations across each of the normalization factors, where the TEz mode is compared

with (2.8) in Fig. 4.17 and the TMz mode is compared with (2.17) in Fig. 4.18. Both are shown

in percentage error with each respective analytical function and normalization factor.

Errors for specific Lc are shown as markers, and the mean error across all setups for a

particular normalization factor is shown as an associated horizontal line. In these compar-

ative figures, positive and negative percentage errors indicate whether the analytical function

overestimates or underestimates evaluated FDTD data, respectively. The TEz mode analytical

solution needs the (2.9a) normalization factor to match well with simulation results, while the
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Figure 4.17: 2D TEz percentage errors at (2.9a) and (2.9b). This figure was originally published
in [2].
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(2.9b) normalization factor greatly underestimates the evaluated loss figures as predicted in

Fig. 2.1a. This further corroborates the results from [1,5].

Fig. 4.18 shows some similarities to Fig. 4.17, but there are also some notable differences.

While the analytical solution in the TEz mode seems to tend toward underestimation with the

(2.9b) normalization factor, the TMz mode simulations show that the normalization factors

other than the SEI option (2.18d) produce a large overestimation of simulation scattering loss

values. This is likely due to the inversion of η in the duality-based translation from TEz to

TMz analytical functions. In this comparison, the SEI option is clearly the best, with a mean

error nearest to 0% and individual errors within ±20%. Despite the mean being close to zero

in the SEI, there is a linear behavior in the point-to-point percentage errors not seen in the

TEz mode results, seemingly as a function of Lc. This linear behavior may be seen in each

of the presented normalization factor options, where neither singular nor piecewise impedance

corrects the offset.

It is possible to “correct” this offset for any of the four options by multiplying the analytical

function by the correction factor (4.6)

C = 1−MLc − b, (4.6)

where M = error2−error1
Lc,2−Lc,1

, and bi = (Lc − Lc,i) − errori, and i ∈ {1, 2}, and points 1 and 2

designate a particular relative error (and not the percent-error) corner and Lc coordinate pair.

This correction factor serves to highlight the absence of a higher-order Lc-dependence in the

proposed analytical solution. This “correction factor” can only be used to highlight this point,

and cannot correct actual data as that would nontrivially modify experiment results, thereby

invalidating findings. Therefore, the correction factor is not applied in any other context.

4.2 3D FDTD Numerical Experiments: Results and Discussion

4.2.1 Simulation Setup

We test the analytical formulations using the FDTD method based on the traditional Yee algo-

rithm [19,20,40] in 2D TEz, 2D TMz, and 3D. The coordinate transform outlined in section 4.1.3

may be used to translate the analytical notation to the 2D FDTD notation, but no such trans-

form is required for 3D FDTD. The discretized geometry from Fig. 4.1 is shown in Fig. 4.19

and essentially adds the source and the boundary conditions; the three primary cross-sections

(center-slices) for 3D FDTD are shown, where the 2D FDTD simulations use only Fig. 4.19a.

The spatial discretization (∆x) is uniform and proportional to the wavelength in the core

region, where ∆x = λ0
rn1

, r ∈ N is the resolution, and λ0 is the source wavelength in free-space,

in both 2D and 3D simulation spaces. The temporal discretization is set at the Courant limit

in the cladding region, i.e., ∆t = n2∆x
c0
√
D
, where c0 ≈ 3 × 108 m/s and D is either 2 or 3 for the

respective spatial dimension. The boundary conditions of all simulations are the convolution

perfectly matched layer (CPML) [20,21], where NCPML = 20.
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Figure 4.19: FDTD setup (a) x̂ − ẑ, (b) x̂ − ŷ, and (c) ŷ − ẑ center-slice cross-sections. This
figure was originally published in [2].
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Figures 4.19a and 4.19c show both ends of the waveguide length are terminated fully into

CPML. This ensures there is neither spurious resonance in the nominal geometry nor reflection

from end-cap core/cladding boundaries. The fields outside the waveguide (along the transverse

axes) decay exponentially, so the cladding region for those dimensions is sized such that the

distance between the core and CPML regions is set to 2λ0 in 2D simulations and 0.55λ0 in 3D

simulations. At these distances it is expected that little waveguide power reaches the CPML

region in the absence of roughness.

The waveguide is excited for single mode operation. Both TEz and TMz modes are ex-

cited using the corresponding ŷ source field-component uniformly over the entire mouth of the

waveguide, as shown in Fig. 4.19a and 4.19c. The total simulated waveguide length is split into

three regions; these are the (1) settling, (2) rough, and (3) end regions, where the settling and

end ranges are smooth waveguide regions. The settling region is required for the excitation to

enter into a guided mode. In 2D simulations this range was determined to be approximately

5µm, and in 3D it was approximately 4µm. The end range is needed to reduce noise for power

calculations and is approximately 10 cells wide. The roughness is applied between the settling

and end ranges, and power calculations are made at port locations p1 and p2, at one cell away

on the exterior of the rough region along the waveguide length.

The analytical formulation is based on the assumption of uncorrelated upper and lower

roughness profiles, so two rough profiles are generated randomly and discretized for each sim-

ulation involving roughness; in a process similar to that in described in [5]. We evaluate α in

FDTD by calculating power at p1 and p2 according to (4.7)

α = −1

ℓ
ln

∣∣∣∣P (p2)

P (p1)

∣∣∣∣ , (4.7)

where power calculations are performed by numerically integrating along the waveguide cross-

section between the lower and upper CPML boundaries. In 2D simulations we use the right-

hand side of (2.7a) and (2.7b) for TEz and TMz modes (using only |Ey|2 or |Hy|2 and the

corresponding ηg), respectively. We calculate power using (4.8) for 3D simulations

Pg,3D =
1

2

∫ +∞

−∞

∫ +∞

−∞
ℜ
{(

E⃗ × H⃗∗
)
· ẑ
}
dxdy, (4.8)

where ±∞ is approximated by numerically integrating between the CPML boundaries. All

power calculations are evaluated at a single frequency, where the frequency-domain E-field and

H-field are calculated using the simultaneous fast Fourier transform (SFFT) [40] at the source

frequency (f0) during FDTD simulation, where f0 = c0/λ0 (Hz).
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4.2.2 Computational Environment

The simulations performed for the subsequent experiments were computed with graphical pro-

cessing unit (GPU) parallelization on NVIDIA RTXTM A6000 hardware. Computational speed

for these simulations is evaluated with

ν =
Nx ×Ny ×Nz ×Nt

ts × 106
, (Mcells/s)

where Nx, Ny, and Nz are the number of cells in the simulation space along the x̂, ŷ and ẑ

directions, respectively, Nt is the number of time steps, and ts is the total simulation time for

each sample waveguide. In 3D FDTD, ν ≈ 4500 Mcells/s.

4.2.3 3D FDTD Environment Validation

We validate the FDTD simulation environment by calculating the surface wave impedance of

the waveguide in the cladding region. This calculation is performed on a smooth waveguide,

where the TEz and TMz mode wave impedances have analytical solutions (4.9a) and (4.9b),

respectively,

Z−d
w,TE =

Ey

Hz
= −ȷ

ωµ0

γTE
(Ω) (4.9a)

Z−d
w,TM = −Hy

Ez
= ȷ

γTM

ωϵ2
(Ω), (4.9b)

where both impedances are calculated on the lower surface of the waveguide at x = −d. The

field components are evaluated three cells below the waveguide core region at midpoint of the

simulation space along the waveguide length. The cell offset ensures there is no ambiguity in

ϵ. Note that the wave impedance of the smooth waveguide is purely imaginary for propagating

waves in both TEz and TMz, showing that it is lossless. This implies that any loss calculated

during rough simulations must be the result of scattering from stochastic roughness. Also

note that Z−d
w,TE is negative (capacitive) near the source frequency whereas Z−d

w,TM is positive

(inductive). In 3D FDTD we additionally evaluate at midpoint along width, noting that the

2D analytical surface wave impedance is a good approximation for w ≫ h.

Wave impedance results are shown in Fig. 4.20. Those data were collected as time-domain

field components which were then converted to frequency-domain by the fast Fourier transform

(FFT) [39]. The frequency-domain field components were then used with (4.9a) and (4.9b) to

calculate wave impedance, where those results are shown as squares for 2D FDTD and circles

for 3D FDTD. The resolution for wave impedance simulations was r = 40, and the total length

was the settling region plus 10 µm for both 2D and 3D simulations. Fig. 4.20 shows near-

perfect overlap between FDTD and analytical results in the frequency band of 100 to 300 THz,

where the maximum difference between FDTD results and analytical calculation is less than

2% at f = f0 ≈ 194.8 THz. These results provide high confidence about our FDTD simulation

methodology.
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Figure 4.20: Wave Impedance in the (a) TEz mode and (b) TMz mode. ℑ{x} is the imaginary
part of x. This figure was originally published in [2].

4.2.4 3D Stochastic Roughness Analysis

The 3D simulation data are shown in Table 5, where all simulations were performed with r = 40,

ℓ = 40 µm, and Tp = 10%. The same comparisons performed for the 2D data are made again

Mode Lc,t sims ᾱF std(αF) min(αF) max(αF)

TE 400 52 1487.96 152.71 1113.70 1820.25

TE 500 52 1209.86 176.19 825.71 1774.58

TE 600 52 970.59 132.59 640.02 1404.50

TE 700 59 878.72 111.44 603.86 1134.35

TM 400 100 4508.49 533.26 3377.23 6018.22

TM 500 100 3765.00 411.78 2916.86 4923.59

TM 600 100 3364.13 403.83 2363.11 4418.36

TM 700 100 2963.02 396.24 2219.94 4281.01

Table 5: 3D Simulation Data. Data within this table were originally published in [2].

in 3D with Fig. 4.21 for TEz-like mode and Fig. 4.22 for TMz-like mode simulations.

In both modes, αA is based on the assumption of 2D geometry with no variation along width.

We approximate this effect by making the width much larger than the height. The source in

3D approximates the 2D model with TEz-like and TMz-like modes using an excitation in the

primary field component along the width, i.e., Ey in the TEz-like and Hy in the TMz-like

modes, respectively. Simulations in 3D FDTD are far more computationally expensive, so a

more limited range of 3D simulations were performed (compared to 2D FDTD) at σt = 15 nm

and Lc,t ∈ {400, 500, 600, 700} nm.

We see therein that, at these settings, the 3D FDTD simulation space produces results quite

similar to the corresponding 2D FDTD models. A particular point of interest is the standard
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Figure 4.21: 3D TEz percentage errors at (2.9a) and (2.9b). This figure was originally published
in [2].



55

400 500 600 700
Lc, t (nm)

40

20

0

20

40

60
%

 e
rro

r

SSI (17a)
PSI (17b)
PEI (17c)
SEI (17d)

Figure 4.22: 3D TMz percentage errors across all 4 options in (2.18). This figure was originally
published in [2].

deviation of αF, where the 3D FDTD simulations resulted in a smaller bandwidth compared to

the 2D FDTD simulations by approximately a factor of two. This reduction appears to be the

result of 3D versus 2D simulation spaces. There may be several possible explanations: (1) The

rate and directions in which energy may spread in 3D simulation, i.e. spherical decaying (at

1/ρ2) as opposed to cylindrical decaying (at 1/ρ). (2) The width confinement has some effect

on more fundamental waveguide parameters, e.g., propagating mode cutoff frequencies, which

affects the ability for certain wave patterns to propagate along the length. (3) 3D simulations

provide a more robust environment for EM fields to exist and propagate, where energy exits

the transverse plane, resulting in the dot product along ẑ (used to calculate power flow along

length) to capture only part of the guided power. (4) There could be more EM resonance

which is not captured by the time-average power calculation, where energy exists but is not

realized. While it is somewhat less noticeable than in the 2D case, the same linear behavior in

the percentage error versus Lc shown in Fig. 4.22 may be seen. This may again be corrected

using (4.6), but this has the additional computational burden of simulating a dimensionally

larger space to obtain the data necessary for the computation of that correction factor.
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4.2.5 3D FDTD Specific Considerations

The waveguides of interest are fully 3D and have step index contrast between core and cladding

regions with refractive indices n1 = 3.5 and n2 = 1.5 (corresponding to Si/SiO2), respectively,

where the core is surrounded uniformly on all sides by a cladding which is assumed to be infinite

in extent. The core region geometry is shown in Fig. 4.23, where we note the top and bottom

walls of the waveguide are separated by the height (δ), the left and right walls are separated

by the width (w), and all walls are smooth.

ො𝑦

Ƹ𝑧

ො𝑥

𝑤

𝛿

Top
Bottom

Source Location

Figure 4.23: 3D waveguide geometry. This figure was originally published in [8]. ©2023 USNC-
URSI

The 2D analytical Zw model is defined in (4.10) [23] may be used as an approximation for

comparison with 3D simulations data.

ZTE
w =

Ey

Hz
= −ȷ

ωµ0

γ
, (Ω) (4.10)

The propagation constant can be evaluated from the relation of E-field components using

the imaginary component of the complex logarithm in (4.11) [6]

β =
1

ℓ
(arg(E1)− arg(E2)) = neffk0, (rad/m). (4.11)

For computing Zw using (4.10), each numerical experiment uses λ0 = 1.54 µm and δ =

200 nm, and reported values are evaluated at f = 194.8 THz. FDTD field data are collected

at the midpoints along ℓ and w, with a three-cell offset from the bottom of the waveguide core

region.

These data are collected over widths varying from 200 nm to 5 µm. Those results are shown

in Fig. 4.24. We see therein that Zw calculated with FDTD approaches the 2D analytical model

and saturates at w ≈ 800 nm. There is a noticeable offset between the 3D FDTD data and the

2D analytical approximation below that point but little variation between FDTD and analytical
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Figure 4.24: Zw across widths. This figure was originally published in [8]. ©2023 USNC-URSI

calculations above that point. In this case, the 2D analytical model is a good approximation

for w ≥ 4δ.

Sample FDTD Zw data are shown with all discrete cells in the w×ℓ cross-section in Fig. 4.25.

The boundary of the region directly below the waveguide core is shown as dotted lines. Within

the below core region there is minimal variation along length. Zw settles to a stable value

within 2 µm from the source location at z = 0, and the variations along w appear only near

the region boundary. Outside the boundary there are several null points appearing periodically

along length. The length interval between nulls seems to be inversely proportional to waveguide

width. The null points are likely the result of 3D multi-modal behavior as more propagating

modes exist in the waveguide with increasing w.

Figure 4.25: Zw vs. w and length. This figure was originally published in [8]. ©2023 USNC-
URSI

FDTD fields data are also collected at two w× δ planes along length. The average of all Ey

values in those planes is then related to β using (4.11), where ℓ = 5 µm. We see saturation-like
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behavior in Fig. 4.26 similar to Fig. 4.24. However, the saturation point for β appears to be

at w ≈ 2 µm. This implies that the 2D analytical model is a good approximation for the 3D

Figure 4.26: β across widths. This figure was originally published in [8]. ©2023 USNC-URSI

dielectric waveguide where w ≥ 10δ. Since Zw is an implicit function of β through γ, this

w limit should be used when utilizing the 2D analytical approximations. Fig. 4.27 shows the

point-to-point β calculations (without field-averaging), where the boundary between core and

cladding is shown as a red dotted line. The mode configuration changes as w increases, hence

the use of field-averaging in Fig. 4.26.

Figure 4.27: Point-to-point β across w and δ. This figure was originally published in [8]. ©2023
USNC-URSI
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5 Conclusion

Text in this chapter originated from: [1–6,8, 9].

While TE mode analysis of the stochastic propagation loss α in the DSW exhibiting random

surface roughness on its sidewalls is prevalent [7,14,16], there has been little work done for the

TM mode analysis of the same structure. Furthermore, comparison between 2D analytical

model and both 2D and 3D computational models has been limited.

In this work, we (1) proposed a novel and simple analytical model for TM mode α of DSW,

(2) provided several formulation options for guided-power normalization, and (3) compared

those formulations against 2D and 3D FDTD simulations that revealed the proposed single

effective impedance (SEI) as the optimal formulation. (4) A novel FDTD-based methodol-

ogy for extraction of S-parameters for optical interconnects was proposed. Using the proposed

methodology, the attenuation and the phase delay were calculated for a DSW operating in the

mid-infrared regime. The results of the FDTD simulations were then shown to correlate well

with known analytic solutions. (5)Additionally, we examined ways in which various normaliza-

tion factors affect the guided power distribution across the height of the DSW, and highlighted

the importance of normalization in both the TM and TE modes through stochastic numerical

experiments in FDTD. (6) We swept several key FDTD parameters and monitored 2D FDTD

performance to report the optimal settings required to achieve accurate stochastic results. We

then used those settings to simulate hundreds of 2D and 3D rough waveguides at various target

values for standard deviation σ and correlation length Lc. In that comparison we showed that

the 3D FDTD simulation results match well with the 2D analytical model for this particular

application of surface roughness. The proposed normalization factor in the TM mode is the

dual to the best normalization factor in the TE mode. However, the TM mode exhibits a lin-

ear deviation in the α’s percentage error between the analytical model and the 2D/3D FDTD

models.

We note that while the 2D analytical models appear to be effective in predicting general

trends in α of 2D and 3D FDTD, the 2D analytical models may need further refinement and

increased complexity to provide higher accuracy, based on our data showing Lc-dependence of

α in 2D and 3D FDTD. Additional numerical experiments are underway for analysis of α vs.

3D-specific parameters, such as finite width and an-isotropic surface roughness patterns, that

affect comparison against the 2D analytical models.

The additional experiments conducted showed that fundamental parameters Zw and β have

a strong dependence on the w/δ ratio, where in this case, good correlation to 2D analytical

model is achieved for w ≥ 10δ; the data suggests an order-of-magnitude difference would be

sufficient.

The proposed analytical formulation of scattering loss was verified, using an expedient

FDTD scheme which included extraction of the attenuation coefficient and S-parameters. We

validated the FDTD scheme by comparing numerical results against previously published ana-
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lytical functions for the DSW. With the FDTD model verified, we demonstrated S-parameters

extraction and attenuation coefficient calculation by applying the proposed methodology to a

smooth DSW. We then applied the methodology to compute the attenuation coefficient for a

DSW exhibiting random sidewall perturbations according to the exponential autocorrelation

function.

Along the way, we demonstrated the ability of the FDTD scheme to produce reasonably

accurate results through tens of simulations for sidewall roughness profiles of varying correlation

length at standard deviations of σ = 9 nm and σ = 15 nm. The FDTD results showed that

the mean error for simulation is quite small, with an overall average error of only −4.12% and

2.24% for the attempted standard deviations, respectively.

The simulation models used in this work were released as an open-source software in the

Optical Interconnect Designer Tool (OIDT) [18,36] under the GNU General Public License v3.0

[41]. This tool is both CPU and GPU parallelized, where GPU parallelization has computational

speeds at ν ≈ 4500 Mcells/s.

Some future topics of research may include investigation of the following items (1) causes

behind the FDTD-observed linear offset in the TM-mode percent error (4.6), (2) effects of

finite-width confinement on α in 3D, (3) effects of an-isotropic surface roughness on α in 3D,

(4) implementation of the discretized and truncated surface roughness profiles that better

model the specified continuous roughness profile, (5) modeling of surface roughness using an

unstructured FDTD grid, and (6) cross-coupling effects due to roughness in tightly-coupled 3D

waveguides.
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