
Fault Tolerant Solutions for DSRC Safety
Applications in VANET

A Dissertation
Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
with a

Major in Computer Science
in the

College of Graduate Studies
University of Idaho

by
Sherif Ibrahim Morsy Hussein

Major Professor: Axel Krings, Ph.D.
Committee Members:
Robert Rinker, Ph.D.;

Ahmed Abdel-Rahim, Ph.D.;
Azad Azadmanesh, Ph.D.

Department Administrator: Fredrick Sheldon, Ph.D.

August 2018

ii

Authorization to Submit Dissertation

This dissertation of Sherif Ibrahim Morsy Hussein, submitted for the degree of

Doctor of Philosophy with a Major in Computer Science and titled "Fault Tolerant

Solutions for DSRC Safety Applications in VANET", has been reviewed in final form.

Permission, as indicated by the signatures and dates below, is now granted to submit

final copies to the College of Graduate Studies for approval.

Major Professor:
Axel Krings, Ph.D. Date

Committee Members:
Robert Rinker, Ph.D. Date

Ahmed Abdel-Rahim, Ph.D. Date

Azad Azadmanesh, Ph.D. Date

Department

Administrator:
Frederick Sheldon, Ph.D. Date

iii

Abstract

Vehicular Ad Hoc Networks (VANETs) are an emerging technology in Intelligent

Transportation Systems (ITS) that aim to enhance traffic efficiency and safety. VANET

deploy Dedicated Short Range Communications (DSRC) safety applications that are

intended to alert drivers of dangerous road conditions and road hazards, e.g., during

low visibility, to reduce accidents. DSRC offers the wireless support for Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication to form the VANET.

This requires that each vehicle be equipped with an On-Board Unit (OBU) and the

infrastructure, such as an intersection, be equipped with a Road Side Unit (RSU).

DSRC safety applications enable vehicles to exchange status information with their

neighbors in a beacon message called Basic Safety Message (BSM). The reliability of

safety applications heavily depends on the timely reception of these BSMs. However,

DSRC safety applications might be exposed to the full range of malicious attacks

associated with wireless technology.

In this dissertation, we concentrate on wireless jamming and GPS time spoofing

attacks and their impact on the reliability of safety applications. First, we introduce

a new hybrid jammer, that combines the properties of several types of jammers. The

new jammer has the capabilities to 1) prevent legitimate nodes from accessing the

medium to send their BSMs, and 2) make innocent nodes appear as misbehaving.

As a mitigation strategy for this new jammer, we propose a detection algorithm that

can differentiate between legitimate nodes subjected to the attack and misbehaving

nodes. Then we present a series of algorithms to enhance safety application relia-

bility in the presence of GPS time spoofing attacks. The mitigation strategies are

as follows: 1) A decentralize clock synchronization algorithm is introduced that is

capable of handling GPS time spoofing attacks; 2) An enhanced clock synchroniza-

tion algorithm is proposed that considers a more realistic and stronger fault model.

Finally, 3) a clock synchronization algorithm is presented that considers a mixed

environment consisting of autonomous and connected vehicles in the presence of

omission faults.

iv

The proposed clock synchronization algorithms work as an augmentation to the

current GPS synchronization protocol. Their effectiveness are demonstrated using

laboratory and field experiments, as well as simulations using NS3 and SUMO.

Finally, we show that the proposed mitigation strategies enhance the safety appli-

cations reliability with no extra hardware nor modifications of existing standards.

v

Acknowledgements

First and foremost, I would like to take this opportunity to thank God for being my

strength and guide in this research. Without Him, I would not have had the wisdom

or the physical ability to do so.

I express my sincere gratitude to my advisor Prof. Axel Krings for the continuous

support of my Ph.D study and related research, for his patience, motivation, and

immense knowledge. This work would not have been possible without his guidance

in all the time of research and writing of this dissertation. I could not have imagined

having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my dissertation committee:

Dr. Robert Rinker, Dr. Ahmed Abdel-Rahim, and Dr. Azad Azadmanesh, for their

insightful comments and encouragement.

Moreover, I am thankful to the Egyptian Government for funding my Ph.D. study

here at the University of Idaho.

I am also deeply grateful to the University of Idaho’s Computer Science faculty,

staff, and students for how they have affected my life and studies and for providing

me with an environment that enabled me to work, especially with my best friend

Mohamed. From outside the Computer Science faculty, I would like to thank Sameh

Sorour and Ahmed Ibrahim for their support, help, and encouragement.

Finally, to my caring, loving, and supportive wife, Amira Mostafa: my deepest

gratitude. Your encouragement when the times got rough are much appreciated

and duly noted. It was a great comfort and relief to know that you were willing to

provide management of our household activities while I completed my work. My

heartfelt thanks.

vi

Dedication

I would like to dedicate this dissertation to the memory of my father,

Ibrahim Morsy

who inspired scientific thinking in my life;

To my mother,

Amal Anawr

who provided me the endless support;

To my wife,

Amira Mostafa

for her patience, and encouragement toward the completion of this work;

Finally to my kids,

Ziad & Zaina

who make it all worthwhile.

vii

Table of Contents

Authorization to Submit D issertation ii

Abstract . iii

Acknowledgements . v

Dedication . vi

Table of Contents . vii

L ist of F igures . xi

L ist of Tables . xiii

L ist of Abbreviations . xiv

1 Introduction . 1

1.1 The Big Picture . 2

1.2 Research Motivation and Objectives . 4

1.3 Summary of Contributions . 5

1.4 Dissertation Outline . 6

2 Background . 7

2.1 Intelligent Transportation System . 7

2.1.1 DSRC Safety Applications . 7

2.1.2 Basic Safety Message . 10

2.1.3 Electronic Emergency Light (EEBL) 12

2.1.4 Intersection Collision Avoidance (ICA) 13

2.2 802.11P . 15

2.2.1 EDCA Channel Access Rules . 15

2.2.2 Transmission Queue Behavior 16

2.3 Fault Model . 17

2.4 VANET Malicious Attacks . 18

viii

2.4.1 Denial of Service (DoS) attacks 20

Jamming Models . 20

Misbehavior attack Models . 21

2.4.2 GPS time spoofing attack . 22

2.5 Safety Application Resilience and Fault Tolerance 23

3 A New Hybrid Jammer and its Impact on the EEBL Safety Ap -

plication . 24

3.1 Related Work . 24

3.1.1 Selfish Misbehavior Detection Techniques 25

3.1.2 Malicious Misbehavior Detection Techniques 25

3.2 A New Hybrid Jammer for VANET . 26

3.2.1 EEBL Safety Application Reliability 27

3.2.2 Transmission Queue Behavior and Field Test Observations . . 27

3.3 Hybrid Jammer System Model . 29

3.3.1 Attack Model . 31

Stationary Attack Model . 31

Mobile Attack Model . 32

3.3.2 Jamming Impact on Transmission Queues 33

3.4 Hybrid Jammer Detection . 35

3.4.1 Detection Algorithm . 35

3.4.2 Detection Algorithm Implementation and Testing 37

3.5 Conclusions . 39

4 A Clock Synchronization Algorithm for VANET. 40

4.1 Related Work . 41

4.1.1 Clock Synchronization in Ad-hoc Networks 42

4.1.2 Clock Synchronization in VANET 42

4.2 System and Fault Models . 43

4.2.1 System Model and Notation . 43

4.2.2 Fault Model . 46

4.3 Proposed Clock Synchronization Protocol 48

ix

4.3.1 Normal Operation Stage . 48

4.3.2 Agreement Stage . 49

4.4 Simulations and Analysis . 51

4.4.1 Assumptions and Parameters . 51

4.4.2 Analysis of Simulations . 52

4.5 Conclusions . 55

5 Enhanced Clock Synchronization in the Presence of S ingu -

lar and Hybrid Fault Modes 56

5.1 Related Work . 56

5.2 System and Attack Model . 58

5.2.1 Attack Model . 58

5.2.2 System Model . 59

5.3 Enhanced Clock Synchronization Algorithm 60

5.3.1 Agreement Algorithms . 60

5.3.2 ECSA . 61

5.3.3 Receiving Thread . 62

5.3.4 Agreement Thread . 63

5.3.5 Sending Thread . 64

5.4 Simulations and Analysis . 64

5.4.1 Simulations and Analysis of Model 1 65

5.4.2 Simulations and Analysis of Model 2 71

5.5 Conclusions . 74

6 Clock Synchronization with Connected and Autonomous Ve -

hicles . 76

6.1 Related Work . 77

6.2 Motivational Field Test . 78

6.3 Clock Synchronization Algorithm Considering Omissions 80

6.4 Simulations and Analysis . 82

6.4.1 Simulation Results . 82

6.4.2 Field-Test Analysis . 86

x

6.5 Conclusions . 88

7 Conclusions and Future Work 89

7.1 Future Work . 91

B ibliography . 92

Appendices . 100

A F ield Test . 100

A.1 Arada LocoMate OBU Commands . 100

A.2 Arada LocoMate OBU Jammer Command 104

B Transmitter/Receiver OBU Code 105

B.1 Transmitter . 105

B.1.1 GPS Information Extraction . 105

B.1.2 BSM Transmitter . 108

B.2 Receiver . 112

B.2.1 BSM Reception . 112

B.2.2 Missing BSMs Check . 117

C Clock Synchronization S imulation Code in NS3 119

C.1 Global Variables . 119

C.2 BSM Generation and Transmission . 122

C.3 BSM Reception . 124

C.4 Agreement Process . 126

xi

List of Figures

F igure 1 .1 Driver use of electronic devices, 2006-2015 [1] 1

F igure 2 .1 DSRC channels [7] . 8

F igure 2 .2 FCW safety application 8

F igure 2 .3 EEBL safety application 9

F igure 2 .4 DNPW safety application 9

F igure 2 .5 BSW + LCW safety applications. 9

F igure 2 .6 IMA safety application. 10

F igure 2 .7 Basic safety message structure 11

F igure 2 .8 EEBL safety application timing model 13

F igure 2 .9 Intersection collision scenarios [12] 13

F igure 2 .10 ICA safety application timing model 14

F igure 2 .11 EDCA channel access prioritization [16] 16

F igure 2 .12 Omissive/Transmissive Six-Mode (OTH-6) Fault Model [20] . . 17

F igure 3 .1 BSMs from vehicles 1 and 2 received by vehicle 3 29

F igure 3 .2 Stationary jammer. 31

F igure 3 .3 Mobile jammer . 32

F igure 3 .4 Queuing effect for jamming periods of 1, 2, 3, and 4s, showing

the BSMs received by the HV from RV. 33

F igure 3 .5 Hybrid jamming detection GUI 38

F igure 4 .1 Two cluster connectivity graphs. 45

F igure 4 .2 GPS spoofing attack scenario 47

F igure 4 .3 Proposed clock synchronization protocol. 49

F igure 4 .4 Impact of selection functions for 30% reduction 53

F igure 4 .5 Impact of selection functions for 20% reduction 54

F igure 5 .1 Attack model . 59

F igure 5 .2 The Enhanced Clock Synchronization Algorithm (ECSA). . . . 62

xii

F igure 5 .3 Convergence speed for different scenarios under GPS time spoof-

ing attack . 66

F igure 5 .4 SOA faults impact on ECSA convergence speed in Model 1 . . 67

F igure 5 .5 Different distributions of malicious faults 68

F igure 5 .6 TS faults impact on ECSA convergence speed in Model 1 . . . 69

F igure 5 .7 The ECSA convergence speed using the hybrid fault model for

scattered malicious node distribution 70

F igure 5 .8 Convergence speed of ECSA under GPS time spoofing attack

using SUMO simulation 71

F igure 5 .9 SOA faults impact on ECSA convergence speed in Model 2 . . 72

F igure 5 .10 The impact of singular TS fault model on ECSA convergence

speed in Model 2 . 73

F igure 5 .11 Hybrid fault model impact on ECSA convergence speed in Model 2

using scattered malicious node distribution 73

F igure 6 .1 Field experiment Location 78

F igure 6 .2 Received BSMs during the field experiment 79

F igure 6 .3 VANET clock synchronization algorithm 81

F igure 6 .4 SOA impact on clock convergence speed [in rounds] 83

F igure 6 .5 SOA impact on distance to crash [in meters] 84

F igure 6 .6 Impact of reduction percentages on convergence speed at 25mph

86

F igure 6 .7 Impact of reduction percentages on convergence speed at 25mph

86

F igure 6 .8 Collision avoidance of scenario with AV without DSRC 87

F igure A.1 Experiment setup . 101

xiii

List of Tables

Table 2 .1 Braking distances on level roadways for wet asphalt [14] 15

Table 3 .1 Field test parameters 28

Table 3 .2 Hybrid jammer parameters. 33

Table 3 .3 Hybrid jammer detection algorithm test parameters 37

Table 5 .1 Traffic density parameters 65

Table 5 .2 Performance comparison (in rounds) of the agreement algorithms

under Model 1 and Model 2 74

Table 6 .1 Field test parameters 79

Table A.1 Common options [67] 101

Table A.2 Provider options [67] 104

Table A.3 User options [67] . 104

xiv

List of Abbreviations

AIFS Arbitration Inter-Frame Space

AV Autonomous Vehicles

BSM Basic Safety Message

BSW Blind Spot Warning

CCH Control Channel

CLW Control Loss Warning

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Converging Time Synchronization

DCF Distributed Coordination Function

DIFS Distributed Inter-Frame Space

DNPW Do Not Pass Warning

DoS Denial of Service attack

DSRC Dedicated Short Range Communication

EDCA Enhanced Distributed Channel Access

EEBL Emergency Electronic Brake Lights

FCC Federal Communication Commission

FCW Forward Collision Warning

FIFO First-in First-out

FSPL Free Space Path Loss

FTA Fault Tolerant Average

FTM Fault Tolerant MidPoint

GPS Global Positioning System

HV Host Vehicle

HCS Hybrid Clock Synchronization

I2V Infrastructure-to-Vehicle

ICA Intersection Collision Avoidance

IEEE Institute of Electrical and Electronics Engineer

IMA Intersection Movement Assist

xv

ITS Intelligent Transportation Systems

LCW Lane Change Warning

MAC Media Access Control

MANET Mobile Ad-Hoc Networks

MSR Mean Subsequence Reduced

MSE Mean Subsequence EgoCentric

MSEP Mean Subsequence EgoPhobic

MSRH Mean Subsequence Reduced History

MSFR Mean Subsequence with Fixed Reduction

MSER Mean Subsequence EgoCentric with Reduction

MSEPR Mean Subsequence EgoPhobic with Reduction

NHTSA National Highway Traffic Safety Administration

OBU On-Board Unit

OMSR Omission Mean Subsequence Reduced

PCAP Packet Capture

PCF Point Coordination Function

PDR Packet Delivery Ratio

PER Packet Error Rate

PHY Physical Layer

PIFS PCF Inter-frame Space

RSU Road Side Unit

RV Remote Vehicle

SAE Society of Automotive Engineers

SCH Service Channel

SIFS Short Inter-frame Space

SNR Signal to Noise Ratio

SOA Strictly Omission Asymmetric

TTD Time Table Diffusion

TTT Time Table Transfer

USDOT United States Department of Transportation

V2I Vehicle-to-Infrastructure

xvi

V2V Vehicle-to-Vehicle

VANET Vehicular ad hoc Networks

WAVE Wireless Access in Vehicular Environments

WDoS Wireless Denial of Service attack (WDoS)

WSA WAVE Service Advertisement

WSMP WAVE Short Message Protocol

WSM WAVE Short Messages

1

chapter 1

Introduction

Motor vehicles are the most popular way of moving people from one place to another,

especially for small distances. They are convenient, save people time, and are not

confined to set departure and arrival times such as buses and trains. However,

according to the National Highway Traffic Safety Administration (NHTSA) report

from August 2016 [1], the United States had 35,092 fatalities from crashes on U.S.

roadways during 2015, an increase from 32,744 in 2014. The number of people

injured on the Nation’s roads increased in 2015 from 2.34 to 2.44 million.

Crashes might occur due to reasons that are out of our control, such as low

visibility, or due to driver behavior. The NHTSA estimated that the critical reason

for crashes can be assigned to the driver 93% of the time [2]. It takes only one

moment of inattention, e.g., checking phone messages or texting, to risk losing one’s

life. For example, Figure 1.1 shows the percentages of people using their phones

while driving [1]. Some states prohibit all drivers from using hand-held cell phones

while driving. However, there is still a large number of people injured or killed

in the United States as the result of crashes linked to distracted driving. Vehicle

improvements, including air bags and electronic stability control, have contributed to

reducing such traffic fatalities. The NHTSA has predicted that the number of crashes

could be decreased dramatically with the use of emerging Intelligent Transportation

Systems (ITS) technologies [3].

F igure 1 .1 : Driver use of electronic devices, 2006-2015 [1]

2

ITS integrates advanced communication technologies in transportation to im-

prove traffic safety and efficiency. It deploys Dedicated Short Range Communica-

tions (DSRC) into vehicles and the infrastructure to enable both Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) communications to form the Vehicular Ad

Hoc Network (VANET). The U.S. Federal Communications Commission (FCC), allo-

cated 75MHz of DSRC spectrum at 5.9 GHz to be used exclusively for V2V and V2I

communications. It requires that each vehicle in a VANET be equipped with an On-

Board Unit (OBU) and each intersection with a Road Side Unit (RSU). ITS provide a

variety of useful DSRC safety applications that aim to enhance traffic efficiency and

increase driver awareness. For example, rear-end collision safety applications such

as Emergency Electronic Brake Lights (EEBL) and Forward Collision Warning (FCW)

can be used to alert drivers about possible collisions ahead. Such applications are

very valuable, especially when drivers do not have direct visual contact to the hazard

ahead.

1 .1 the big picture

In recent decades, several applications were proposed for use in VANETs. DSRC

applications can be classified into two main categories: non-safety and safety appli-

cations.

The first category includes non-safety applications aiming at enhancing the use of

road networks in order to avoid highly congested road segments, thereby achieving

efficient travel times and decreased fuel consumption. The applications aim to make

the driving experience more comfortable, and provide access to different services

such as weather forecast and paying tolls without the need to stop.

The second category, safety applications, aims to increase the safety of drivers,

passengers, and pedestrians. Such applications save lives by avoiding or minimizing

the effects of traffic accidents. These applications can predict and detect possible

crashes and road hazards; they then broadcast warning messages over road network

segments. However, as these applications are based on wireless communication,

3

they might be subjected to the full spectrum of security vulnerabilities associated

with such technologies.

We will address some of the challenges that affect the reliability of safety appli-

cations and might cause them to fail. Such challenges are directly related to our

research. In particular, we will focus on malicious attacks that affect data availability

and consistency in VANET. Examples of attacks are as shown next.

Sybil attack: In this attack a vehicle pretends to be several vehicles at the same

time but in different locations, thereby creating a huge security risks in the network.

An attacker might use this attack for his own beneficial purposes. For example, the

attacker transmits multiple messages with different identities to the other vehicles

to make them feel that there is heavy traffic ahead. However, they may also serve

to provoke false alerts to drivers, potentially resulting in unexpected reactions that

may lead to accidents.

Message spoofing attack: Here a malicious vehicle sends incorrect or bogus informa-

tion to other vehicles to deceive them about certain events. For instance, an attacker

may transmit a message announcing "hazard ahead" to force others to change their

direction or cause unexpected reactions.

DoS attack: This is one of the most serious attacks in any network, and it can be

conducted using various techniques. A misbehaving vehicle may broadcast irrele-

vant or unimportant messages to use up large amounts of bandwidth, or jam the

channel, thus preventing the legitimate nodes from sending warnings in the proper

time. Such attack might cause safety applications to fail, as they are time critical

applications and late warning renders them to be useless.

GPS spoofing attack: A GPS receiver attached to the OBU in each vehicle is the

main sources of time and positioning information. An attacker might use a GPS

satellite emulator to generate manipulated or spoofed GPS signals. GPS spoofing

attacks may aim to cause a localization problem, or cause clock synchronization

problems between vehicles. Synchronization faults might cause safety applications

to fail as they will not be able to alert the drivers in the proper time to avoid a crash.

4

1 .2 research motivation and objectives

As mentioned above, DSRC safety applications are time sensitive applications, where

delayed alerts might cause safety applications to fail. For example, imagine a person

launching an object into traffic while disrupting the medium in the region around

the induced hazard. This disruption of communication could cause failure of the

safety application. A driver seeing the hazard would react, e.g., by braking hard.

However, such attack will prevent safety applications from warning the drivers with-

out visual contact, potentially leading to rear-end collisions. Such failure, whether

due to benign or malicious reasons, has the potential to undermine public trust and

acceptance of DSRC or VANET technologies. Since the safety applications operate

in a critical infrastructure, where their failure could result in injury and loss of

life, reliability is crucial. Specifically, reliability of the real time communication is

necessary to respond to the warning messages before it becomes too late for a driver

to react.

This research addresses the enhancement of safety application reliability in the

presence of malicious attacks by using the principles of fault tolerance and surviv-

ability. Specifically, we will focus on the mitigation of wireless jamming and GPS

time spoofing attacks. Our main objectives are to:

1. Introduce a new jammer attack and its potential impact on DSRC safety appli-

cation reliability.

2. Design and implement mitigation strategies for the such jamming attacks.

3. Address the clock synchronization problem in VANET due to GPS time signal

faults, and their impact on the reliability of different safety applications.

4. Propose distributed clock synchronization solutions capable of solving the

clock synchronization problem when GPS-based approaches alone will fail.

The solutions consider different safety applications and diverse attack models.

5

1 .3 summary of contributions

The major contributions of this research are based on real observations during field

experiments using Arada Locomate Classic [4] devices, and simulations. The contri-

butions are as follows:

• A new hybrid jammer is introduced that combines the properties of so-called

constant and deceptive jammers in addition to characteristics resembling ran-

dom jammers. The jammer is capable of causing safety application failure, and

might cause legitimate nodes to appear misbehaving on the medium.

• A hybrid jammer detection algorithm is proposed as a mitigation strategy for

hybrid jamming attacks. It can differentiate between misbehaving nodes and

legitimate nodes subjected to this attack, thereby enhancing safety application

reliability.

• A clock synchronization protocol capable of handling GPS time spoofing at-

tacks is presented. The new protocol is based on approximate agreement

and it does not require any extra hardware or message overhead. It works as

an augmentation of the VANET’s centralized clock synchronization approach,

which is based on GPS.

• An Enhanced Clock Synchronization Algorithm (ECSA) for VANET is intro-

duced. ECSA executes a new agreement algorithm addressing a more realistic

and stronger fault model in the presence of GPS time spoofing attacks. The

proposed algorithm aims to enhance the EEBL safety application reliability.

• A new clock synchronization algorithm for a mixed traffic model that includes

autonomous vehicles is introduced. The proposed algorithm considers the

Intersection Collision Avoidance safety application. It is able to deal with GPS

time faults in the presence of omission faults. Field test results show that the

augmentation of DSRC capability for autonomous vehicles is crucial.

6

1 .4 dissertation outline

The rest of the dissertation is structured as follows. In Chapter 2 we will give

background related to the proposed work. A new hybrid jammer and a detection al-

gorithm as a mitigation strategy will be introduced in details in Chapter 3. Chapter 4

presents a decentralized clock synchronization approach for VANET. An enhanced

clock synchronization algorithm capable of handling omission faults and malicious

nodes in VANET is introduced in Chapter 5. A clock synchronization protocol that

considers a different safety application and fault model is presented in Chapter 6.

Finally, Chapter 7 discusses conclusions and future work.

7

chapter 2

Background

2 .1 intelligent transportation system

ITS aim to improve road safety by integrating communication technologies into

vehicles and the infrastructure. Connected vehicle technologies deploy DSRC safety

applications that are intended to alert drivers of dangerous road conditions and

road hazards, e.g., during low visibility, to reduce accidents. DSRC allows vehicles

to exchange their status information, including GPS coordinates and time values,

using V2V communication. This requires that each vehicle be equipped with an

OBU. A GPS receiver attached to each OBU is considered as the main source of the

exchanged information between vehicles. The OBU also enables V2I communication,

which requires that the infrastructure, e.g., an intersection, is equipped with an RSU.

The FCC, in collaboration with the United States Department of Transporta-

tion (USDoT), considered 75 MHz of bandwidth at 5.9 GHz (5.850-5.925 GHz) to

be utilized by DSRC communication [5, 6]. As shown in Figure 2.1, the DSRC

bandwidth is divided into seven 10 MHz channels, one Control Channel (CCH)

denoted by CH178, and six Service Channels (SCH), i.e., CH172, 174, 176, 180, 182,

and 184. The remaining 5 MHz are reserved for future use. This research considers

CH172, which is dedicated for V2V public safety communications and DSRC safety

applications.

2 .1 .1 DSRC Safety Applications

In recent years, several DSRC safety applications were developed to operate in

VANET. These applications focus on accident prevention and hazard avoidance.

They enables vehicles to exchange their status information, including GPS coordi-

nates and time values, using V2V communication. Each vehicle executes safety

applications and contributes by sending or receiving information collaboratively.

From a safety application point of view, we refer to the vehicle generating an alert

8

reserve
5 MHz

CH172
service
10 MHz

CH174
service
10 MHz

CH176
service
10 MHz

CH178
control
10 MHz

CH180
service
10 MHz

CH182
service
10 MHz

CH184
service
10 MHz

5.
92

5
G

hz

44 dBm
40 dBm

33 dBm

23 dBm

5.
91

5
G

hz

5.
90

5
G

hz

5.
89

5
G

hz

5.
88

5
G

hz

5.
87

5
G

hz

5.
86

5
G

hz

5.
85

5
G

hz

5.
85

0
G

hz

Public Safety
V-V

Control
 Channel

CH175 CH181

Fr
eq

ue
nc

y
M

ax
im

um
 E

IR
P

Public Safety
Intersections

Public Safety
/Private

Public Safety
/Private

Public Safety
/Private

Public Safety
/Private

F igure 2 .1 : DSRC channels [7]

as Remote Vehicle (RV), and the vehicle making a decision in response to the alert as

Host Vehicle (HV). A range of DSRC safety applications focusing on crash scenarios

and their prevention have been described in [8] such as:

• Forward Collision Warning (FCW), shown in Figure 2.2, alerts the driver of HV in

case of an imminent rear-end collision with the RV, driving ahead in the same

lane and direction. FCW is useful in scenarios when approaching a vehicle that

is decelerating or stopped.

F igure 2 .2 : FCW safety application

• The Emergency Electronic Brake Lights (EEBL), depicted in Figure 2.3, alerts the

driver of the HV to decelerate once receiving a hard brake event from an RV.

• The Do Not Pass Warning (DNPW) in Figure 2.4 warns the driver of the HV

during a passing maneuver attempt that another vehicle is traveling in the

opposite direction.

9

F igure 2 .3 : EEBL safety application

F igure 2 .4 : DNPW safety application

• Blind Spot Warning + Lane Change Warning (BSW+LCW), shown in Figure 2.5,

warns the driver of the HV attempting to change into a lane, which happens

to be occupied by another vehicle traveling in the same direction, but is in its

blind-spot.

F igure 2 .5 : BSW + LCW safety applications

• Intersection Movement Assist (IMA), shown in Figure 2.6, warns the driver of an

HV entering an intersection that there is a high probability of collision with an

RV.

• Intersection Collision Avoidance (ICA) is similar to the IMA safety application,

however, it adds autonomous braking as a system response in case that the

driver ignores the warning.

In this research, we are concerned with rear-end and intersection collision sce-

narios as they represents the biggest percentages of all crashes occur. Specifically,

in 2010, intersection collisions represented about 40% of all crashes, whereas rear

10

F igure 2 .6 : IMA safety application

end collisions represented 28% [9]. Thus, we consider both EEBL and Intersection

Collision Avoidance (ICA) safety applications.

2 .1 .2 Basic Safety Message

DSRC safety applications rely on a beacon messages called Basic Safety Message

(BSM). A BSM, also called heartbeat, is periodically exchanged between vehicles

every 100ms [10]. As defined in standard SAE J2735 [11], a BSM consists of two

parts. The first part is mandatory and contains specific BSMs such as speed, heading,

location, brake status and time stamp. The second part is optional and includes

additional information for certain applications. Figure 2.7 shows the BSM field

names and their sizes.

BSM fields are described in standard SAE J2735 as follows:

• DSRC_MessageID is used to define the message type, and to inform the receiv-

ing application how to interpret the remaining bytes.

• MsgCount is used to sequence messages that were sent by the same sender with

the same DSRC_MessageID.

• TemporaryID identifies the vehicle that is sending this BSM. This value changes

periodically to ensure the overall anonymity of the vehicle.

11

F igure 2 .7 : Basic safety message structure

• DSecond provides the BSM’s time of the sender. It consists of an integer value

representing milliseconds within a minute.

• Latitude and Longitude provide the geographic latitude and longitude of the

vehicle, expressed in 1/10
th integer micro degrees.

• Elevation represents the geographic position above or below sea level.

• PositionalAccuracy consists of multiple parameters to define the accuracy of the

geographic position with respect to each axis.

• TransmissionAndSpeed expresses the current speed value in unsigned units of

0.02 meters per second, combined with a value to represent the vehicle’s trans-

mission state.

• Heading provides the current heading and the orientation of the vehicle.

12

• SteeringwheelAngel shows the rate of change of the angel of the steering wheel

in either direction.

• AccelerationSet4Way defines the acceleration values in 3 orthogonal directions,

in addition to yaw rotation rates.

• BrakeSystemStatus provides the current brake system status, (brake usage, anti-

lock brake status, auxiliary brake status), in addition to system control activity

of the vehicle.

• Lastly, VehicleSize indicates the vehicle length and width.

In this research, we consider the DSecond to be the most important field in the

BSM as it can be used to calculate a BSM’s lifetime by the difference in time when a

BSM was timestamped at the transmitter side and the reception time at the receiver

side. It will be shown that the BSM’s lifetime is used to calculate the freshness of

the received BSMs. DSRC safety applications rely on received BSMs to take the

proper decision in the proper time. As this research uses the EEBL and ICA safety

applications as a case study for clock synchronization, a closer look at how it works

is beneficial.

2 .1 .3 Electronic Emergency Light (EEBL)

The main motivation of EEBL is to alert a driver of a hard-braking event from a

vehicle ahead in the same lane. This application is especially valuable in situations

with limited visibility, e.g., fog, or when visibility is blocked by other vehicles. The

EEBL timing model is depicted in Figure 2.8. Assume that the front vehicle, denoted

by Remote Vehicle (RV), is braking hard at time tbrake due to a road hazard. The

BSMs of the RV indicate this braking event. Note that, the upper case T refers to

time intervals, whereas lower case t denote instances of time.

For the EEBL application to be effective, the rear vehicle, denoted by Host Vehicle

(HV), has to receive at least one BSM indicating the event before treact to avoid a rear-

end collision. In the figure, BSMx is the last BSM that can be received before this

cutoff time is reached. Any BSM received after this time is of no use, as an alert to

13

F igure 2 .8 : EEBL safety application timing model

the driver after treact is too late, i.e., the EEBL reliability relies on the reception of the

BSMs before time treact in order to enable the driver to react and avoid a potential

collision. Any delay, may it be due to benign reasons or due to tampering with the

BSM time stamp may render the safety application useless.

2 .1 .4 Intersection Collision Avoidance (ICA)

The main motivation of the ICA application is to alert the driver of an imminent

collision at an intersection. It relies on V2V communications as vehicles can calculate

their relative position with respect to others. This application is valuable for both

human driven vehicles and autonomous vehicles as the field of view might be

blocked by nearby buildings or other vehicles.

F igure 2 .9 : Intersection collision scenarios [12]

Figure 2.9 depicts several intersection crash scenarios that can be addressed by

the ICA [13]: (a) Left Turn Across Path - Opposite Direction (LTAP/OD), (b) Left

Turn Across Path - Lateral Direction (LTAP/LD), (c) Left Turn Into Path (LTIP), (d)

14

Right Turn Into Path (RTIP), and (e) Straight Crossing Paths (SCP). According to [12],

the SCP scenario is the most prevalent scenario as it causes 70% of the crashes for

stop signs and 43% in intersections controlled by traffic signals.

F igure 2 .10 : ICA safety application timing model

Figure 2.10 illustrates the timing for the ICA safety application. As the HV

approaches an intersection, the ICA warns the HV driver in the range RWarning about

a possible crash with an RV moving in the crossing traffic. Two possible cases are

addressed in the Figure. In the first case it is assumed that the ICA system applies an

automatic control action in the range labeled RControl if the driver of the HV ignores

the ICA warning. Thus automatic braking would be initiated at tBrake. The ICA

automatic control should bring the HV to a complete stop in range RSa f ety, thereby

avoiding a collision with the RV. In the second case, it is assumed that the HV driver

was alerted and reacts before treact. The HV driver should be able to bring the HV

to a complete stop before a collision with the RV as long as the driver brakes before

time tBrake.

In the cases above, the brake distance depends on the speed and road conditions.

To get a feeling for brake distances, Table 2.1 shows the braking distances, derived

from [14], for light vehicles moving with different speeds over wet asphalt. It should

be noted that trucks need more time to stop.

15

Table 2 .1 : Braking distances on level roadways for wet asphalt [14]

Speed (mph) Speed (Km/h) Braking Distance (m)
25 40.2 18.3
30 48.3 26.3
35 56.3 35.8

The highly dynamic nature of VANET requires that each vehicle will have a fair

and efficient access to the medium to send its BSMs. In the following section, we

briefly describe the channel access rules.

2 .2 802 .11p

DSRC communication uses the IEEE 802.11p Medium Access Control (MAC) proto-

col, which uses Enhanced Distributed Channel Access (EDCA), an improvement of

the Distributed Coordination Function (DCF) used in IEEE 802.11 [15].

2 .2 .1 EDCA Channel Access Rules

The EDCA allows different devices to access the channel based on Carrier Sense Mul-

tiple Access with Collision Avoidance (CSMA/CA). It uses four different categories

of Access Classes (AC) associated with each level of priorities:

• AC0 for Background traffic (BK),

• AC1 for Best Effort traffic (BE),

• AC2 for Video traffic (VI) and

• AC3 for Voice traffic (VO).

Assume an OBU has a BSM to transmit, it senses the media first, and if it is

idle for an Arbitration Interframe Space (AIFS), the OBU delays transmission by

a random back-off time. Specifically, it selects a random back-off time from a

Contention Window (CW) defined as [0, CW + 1], which is initialized to CWmin. If the

transmission attempt fails, the interval size is doubled, until it reaches CWmax. The

16

backoff value will only be decreased when the channel is sensed to be idle. The OBU

will send its BSM immediately when the back-off value reaches zero. Figure 2.11

depicts the timing related to channel access for different inter-frame spacings.

IEEE
AMENDMENT 8: MEDIUM ACCESS CONTROL QUALITY OF SERVICE ENHANCEMENTS Std 802.11e-2005

Copyright © 2005 IEEE. All rights reserved. 75

The MA-UNITDATA.indication primitive is generated in response to one or more received data MPDUs
containing an MSDU following validation, address filtering, decryption, decapsulation, and defragmenta-
tion, as appropriate.

The MAC Data Service shall translate MAC service requests from LLC into input signals utilized by the
MAC State Machines. The MAC Data Service shall also translate output signals from the MAC State
Machines into service indications to LLC. The translations are given in the MAC Data Service State
Machine defined in Annex C.

The MAC data service for QSTAs shall incorporate a TID with each MA-UNITDATA.request service. This
TID associates the MSDU with the AC or TS queue for the indicated traffic.

9.2 DCF

9.2.3 Interframe space (IFS)

Change the text and Figure 49 in 9.2.3 as follows:

The time interval between frames is called the IFS. A STA shall determine that the medium is idle through
the use of the CS function for the interval specified. FourFive different IFSs are defined to provide priority
levels for access to the wireless media. Figure 49 shows some of these relationships.

a) SIFS short interframe space
b) PIFS PCF interframe space
c) DIFS DCF interframe space
d) AIFS arbitration interframe space (used by the QoS facility)
e) EIFS extended interframe space

The different IFSs shall be independent of the STA bit rate. The IFS timings are shall be defined as time
gaps on the medium, and the IFS timings except AIFS areshall be fixed for each PHY (even in multirate-
capable PHYs). The IFS values are determined from attributes specified by the PHY.

Figure 49—Some IFS relationships

Authorized licensed use limited to: UNIVERSITY OF IDAHO. Downloaded on May 02,2013 at 21:02:29 UTC from IEEE Xplore. Restrictions apply.

F igure 2 .11 : EDCA channel access prioritization [16]

It should be noted that OBU transmission performance is affected by the EDCA

along with the buffering and scheduling mechanisms used at the transmitter side.

2 .2 .2 Transmission Queue Behavior

Buffering and scheduling mechanisms have a great impact on the IEEE 802.11p bea-

coning performance. The buffering mechanism defines the procedure of how BSMs

are handled when they arrive at the queue, whereas the scheduling mechanism

shows how BSMs leave the queue. The best known buffering mechanism is called

Tail-Drop and is also known as Newest Packet Drop (NPD) [17]. Depending on the

queue status, if the queue has an empty slot, the new BSM is buffered in the queue

for transmission. Otherwise, the new BSM will be dropped as the queue is full.

In [18] another buffering mechanism called Oldest Packet Drop (OPD) was pro-

posed. It is also known as head-drop queuing. Rather than dropping the newest

BSMs, the OPD keeps the freshest BSMs in the queue. It drops the packet that

contains the oldest information from the queue, creating an empty space for the

newest arriving BSM.

Once the OBU has access to the media, e.g., using CSMA/CA, the BSM is taken

from the queue for transmission using First-in First-out (FIFO) scheduling, where

BSMs are sent in the order in which they arrived to the queue. Another scheduling

17

mechanism called Last-in First-out (LIFO) was discussed in [18], where the scheduler

sends out the most recent arrived BSM. However, in reality, we have observed that

the Arada locomate OBU used in during our field and lab experiments, is deploying

the NPD buffering mechanism and FIFO scheduling.

Based on these observations and with respect to timeliness, it is concluded that,

the longer a BSM is queued, the more outdated its information becomes. In the

absence of misbehavior or jamming, given the relatively slow rate of 10 BSM/s, BSMs

are unlikely to queue if traffic density is not overloading the medium. Otherwise,

BSM might be considered to be outdated and discarded by the safety application.

2 .3 fault model

As DSRC is based on wireless communication, they inherit the full spectrum of

challenges and attacks associated with such technology. In general terms we speak

of faults. In the context of the following fault models, nodes are classified as either

faulty, i.e., they generate erroneous values, or non-faulty, generating correct values.

Figure 2.12 shows different fault models. The top level of the figure shows only one

fault mode, which is the classic Byzantine fault (BYZ-1) [19], where no restrictions

are made on the values received by different nodes.

All Faults

Malicious Benign

BenignSymmetricAsymmetric

Benign

Benign

Omissive

Symmetric

(OS)

Transmissive

Symmetric

(TS)

Strictly Omissive

Asymmetric

(SOA)

Transmissive

Asymmetric

OSTSSOA

Single Error

Omissive

Asymmetric

(SEA)

Fully

Transmissive

Asymmetric

(FTA)

BYZ-1

MPH-2

TPH-3

OTH-5

OTH-6

F igure 2 .12 : Omissive/Transmissive Six-Mode (OTH-6) Fault Model [20]

18

The second level of the figure represents the Hybrid Two-Mode fault model

(MPH-2) [21], where faults are partitioned into Malicious and Benign faults.

The third level shows the Hybrid Three-Mode Fault Model TPH-3 of [22]. In this

model, the malicious faults were partitioned into two faults based on their behavior.

The first is the symmetric fault, where all non-faulty nodes are delivered the same

value from the same faulty node. The second is the asymmetric fault, where the

non-faulty nodes do not receive the same value.

The fourth level of the figure shows the Omissive/Transmissive Hybrid Five-

Mode Fault Model (OTH-5) [23]. In this model both the symmetric and asymmetric

faults were divided into two groups each. The symmetric faults are divided into

Omissive Symmetric faults that are caused by the inability of the sender to deliver

any value to any nodes, and Transmissive Symmetric faults, which occur when a

faulty node transmits the same erroneous value to all other nodes. The asymmetric

faults are divided into 1) Strictly Omissive Asymmetric faults that take place when

the sender delivers correct values to some nodes and no value to one or more other

nodes, and 2) Transmissive Asymmetric faults, which are the classic Byzantine fault.

The last fault model in Figure 2.12, is the Omissive/Transmissive Six-Mode Fault

Model (OTH-6) [20]. This model divides the Transmissive Asymmetric faults of the

OTH-5 fault model into Fully Transmissive Asymmetric and Single Error Omissive

Asymmetric faults. The latter fault occurs when some nodes receive a single value

while others do not receive any. Whereas the Fully Transmissive Asymmetric is

the same as Transmissive Asymmetric fault defined in OTH-5. In this research we

consider the OTH-5 and OTH-6 fault models.

2 .4 vanet malicious attacks

As indicated before, due to the wireless nature of DSRC the safety applications

may be subjected to all security vulnerabilities of wireless communications. Several

VANET security challenges and their causes were presented in [24]:

• Message spoofing attack: an eavesdropping vehicle modifies an existing mes-

sage and sends it to its surrounding vehicles to deceive them. For example, an

19

attacker may transmit false information about traffic conditions so that other

vehicles change their route and clear the way.

• Message replay attack: an attacker saves a copy of an old message and replays

it later. In VANET systems, when a vehicle broadcasts a warning message, e.g.,

an accident warning, the attacker keeps a copy of this message and uses it later,

causing unnecessary vehicle stops or traffic jams.

• Denial of service (DoS) attack: the attacker tries to prevent the legitimate nodes

from accessing the medium and thus reduces the efficiency of the network,

potentially preventing important messages from being sent in time.

• Timing attack: sending messages from one vehicle to the other vehicles in

the proper time is of significant importance in VANET, especially in case of a

hazard. In timing attacks, the malicious vehicle does not send the emergency

message to its neighboring vehicles at the right time or deliberately introduces

some delay, causing them to react lately.

• GPS time spoofing attack: the primary aim of the attacker is to spoof the

timestamp contained in the GPS signal received by the vehicles under attack

[25]. This act might cause the received messages from such vehicles to be

perceived as outdated and hence cause serious problems in the VANET.

• Sybil Attack: a malicious vehicle in a VANET pretends to be multiple vehicles

by sending multiple messages with different source identity, thereby creating

an illusion to the other vehicles in the network for the benefits of this attacker.

Such act is an active attack which causes performance degradation in the

VANET system.

In this research, we consider two kind of attacks. The first is based on DoS attacks,

which can be conducted using wireless jamming or MAC layer selfish/malicious

misbehavior. The second is based on GPS time spoofing attacks in the presence of

omissions and malicious nodes.

20

2 .4 .1 DoS attacks

Denial of Service (DoS) is the most common destructive attack found in VANET

regarding communication networks. Such attack denies all services provided by

theVANET and causes safety applications to fail. The goal of traditional DoS attacks

is to prevent good nodes from accessing the medium. DoS attacks could range from

simple attacks that do not require any protocol knowledge to intelligent attacks,

where the attacker is aware of its surroundings and the communication protocol.

There are various types of attacks that can cause DoS, as will be described in the

following subsections.

Jamming Models — Jamming is the act of emitting radio signals to interfere

with communication between nodes in a wireless network [28]. It also can be defined

as the "disruption of existing wireless communications by decreasing the signal-to-

noise ratio at receiver sides through the transmission of interfering wireless signals"

[29]. One goal of the jammer may be to decrease the Signal to Noise Ratio (SNR),

thus making reception unreliable or impossible, or perhaps to destroy network

packets. However, jamming can also be viewed from a data point of view as a

DoS, where the injection of what appears to look like valid data denies other nodes

access to the media. Jamming models can be categorized into 1) simple jamming,

and 2) intelligent jamming [28, 30].

A Constant Jammer is the first jamming model in the simple jamming category. It

emits a constant stream of random data that does not follow the MAC layer protocol.

As a result, the medium appear to be constantly busy, thus blocking legitimate nodes

from communicating with each other. However, it may also result in the corruption

of ongoing packets. This type of jammer is very easy to launch and can damage

network communications to the point that no one can communicate at any time.

However, it is energy inefficient and can be easily detected.

A Deceptive Jammer is the second jamming model. It does not follow the channel

access protocol by continually injecting a stream of what appears to be valid packets

without any gaps between them. This jammer is more difficult to detect than a

21

constant because it transmits legitimate packets instead of random bits. However, it

is also energy inefficient.

A Random Jammer is different from the above two jammers, as it aims at saving en-

ergy and being harder to detect. It switches randomly between periods of jamming

and sleeping. During the jamming period its behavior resembles that of a constant

jammer. Sleeping and jamming time periods are either fixed or random.

The Reactive Jammer is the last jamming model in this category. It senses the

medium for ongoing communication, and when it senses a packet transmission, it

emits a radio signal that collides with the packet, thus corrupting it. This type of

jammer is much more difficult to detect.

Finally, an Intelligent Jammer is a protocol-aware jammer, which can target specific

packets or packet types.

Beside the obvious difference in jamming behavior, the key issues for different

jammers is detectability and power consumption, as described in [28, 30].

M isbehavior attack Models — The MAC protocol described in Subsec-

tion 2.2.1 assumes that every node that wants to access the medium plays by the

rules. A node is considered to be misbehaving if it does not follow the protocol

rules, e.g., to gain an unfair advantage in transmitting its packets, or to deny other

legitimate nodes from transmitting packets. The misbehaving nodes initial intent

may be to achieve higher channel access frequency (selfish) by manipulating backoff

value timers. However, as the greediness of such nodes increases, the network

starts to suffer with low/moderate/high level DoS attacks (malicious) [31]. This

DoS attack is difficult to be detected since the misbehaving nodes are considered

to be protocol aware nodes, and they are not sending a stream of traffic such as

conventional jamming attacks. MAC layer misbehavior can be classified into two

general categories [32], 1) selfish misbehavior [33, 34] and 2) malicious misbehavior

[28, 35].

A selfish node deliberately violates its backoff timer to obtain a larger portion

of the shared channel. In particular, it can reduce its back-off time (or consistently

use the minimum value for the back-off congestion window), and/or use another

22

distributions for the congestion window [30]. The selfish node thereby increases its

data transmission rate at the cost of other nodes.

A malicious node could prevent other nodes from communicating by either

constantly generating strong signals to disrupt a normal node’s signal, or by trans-

mitting fake packets to occupy the medium. The Sybil attack also has malicious

misbehavior [36, 37], as the malicious node impersonates several other nodes in

order to disrupt the network. Compared to selfish behavior, malicious misbehavior

is more difficult to detect and can result in more serious problems, greatly degrading

the performance for normal users [32].

2 .4 .2 GPS time spoofing attack

In order to ensure safety application data consistency and reliability, vehicles par-

ticipating in VANET should be synchronized with a clock value within a specified

tolerance. Recall that a GPS receiver attached to the OBU in each vehicle is consid-

ered to be the main source of BSM data to determine their own system time. It is

used as a centralized clock synchronization approach between vehicles. However,

GPS receiver may be subjected to GPS signal outage or GPS time spoofing attacks.

The attacker is assumed to be able to manipulate the received GPS signal in a

limited geographical area in an arbitrary way. The primary aim of the attacker is

to manipulate the time used by the OBUs of vehicles under attack in such a way that

the time difference between time stamps of vehicles is large.

According to [38], the BSM time-to-live, which is the difference between the

timestamps of the HV and RV, should be no more than 500ms. Any BSM that violate

this time restriction should be considered outdated. Based on the time-to-live rule

and GPS time spoofing attack, safety applications might face a serious denial of

service capabilities if the attacker succeeds in making the time difference between

the sending time of the BSM by RV and the reception time of the BSM at the HV

more than the time-to-live limit. This act will cause the safety application to fail by

forcing the HV to discard all such BSMs received from its neighbors.

23

2 .5 safety application resilience and fault

tolerance

Safety application reliability is related to the reception of BSMs in the proper time

to alert the driver before it is too late to react. Benign faults or malicious acts, which

cannot be fully predicted, could render safety applications useless. For example,

a jamming attack might delay vehicles from sending BSMs to the point that the

BSMs become outdated. As a result receivers discard the BSMs even if they contain

an alert. Imagine that an intelligent attacker launches this attack combined with

creating a physical hazard. Such attack might cause safety application failure and

could result in catastrophic consequences like injury and loss of life. Furthermore, it

could result in the public’s loss of confidence in the underlying technologies. Thus,

reliability and fault-tolerance are crucial.

To fulfill the fault-tolerance needs of such critical infrastructure system, this re-

search is concerned with introducing mitigation for different attack models. This can

be achieved by adding fault tolerant mechanisms, that enables the safety applications

to continue operating properly in the presence of either benign or malicious faults.

Not all faults are avoidable, but minimizing their impact can be an achievable goal.

24

chapter 3

A New Hybrid Jammer and its Impact on the EEBL Safety

Application

Wireless jamming has become a major research problem in VANET due to the ease

in blocking communication between communicated vehicles. It can be conducted

using one of the different jammer types discussed in Section 2.4.1. The objective

of a jammer is to interfere with legitimate wireless communications, thus making

reception unreliable or impossible, or perhaps to destroy network packets.

This chapter introduce a new hybrid jammer that combines the properties of

constant and deceptive jammers, in addition to characteristics resembling random

jammers. It is shown that the hybrid jammer is capable of 1) delaying the transmis-

sion of BSMs to the point of causing safety applications to fail, 2) making innocent

nodes appear to be misbehaving, and 3) rendering voting based protocols useless as

it affects the freshness of the transmitted BSMs. We consider the EEBL Safety Appli-

cation and demonstrate the impact of different jamming scenarios on the safety ap-

plication reliability. Furthermore, we introduce a detection algorithm as a mitigation

strategy for the new jammer. The proposed algorithm is capable of differentiating

between vehicles subjected to the hybrid jamming attack and misbehaving vehicles.

Finally, a GUI system will be presented, that is used to measure the effectiveness of

the hybrid jamming detection algorithm.

3 .1 related work

Recall that the mediums capacity is limited, the BSMs transmission rate is 10 BSM-

s/second, and the vehicular density is not fixed and can become very high during

traffic jams. No vehicle should be allowed to violate the IEEE 802.11p MAC proto-

col to obtain a larger portion of the shared medium. Otherwise the transmission

medium may become congested and vehicles starts to queue their BSMs. A node

is considered to be misbehaving if it does not obey the IEEE 802.11p MAC layer

25

protocol rules, e.g., to gain an unfair advantage in transmitting its packets, or to

deny other legitimate nodes transmitting packets. Different MAC layer misbehaving

attacks, classified as selfish or malicious misbehaving, were described in Section 2.4.1.

In the following subsections, we will summarize the previous research on the detec-

tion of misbehaving nodes.

3 .1 .1 Selfish Misbehavior Detection Techniques

In [33] the authors proposed a modification to the IEEE 802.11 protocol to detect

selfish misbehaving nodes. The protocol enables the receiver to select a back-off

value to be used by the sender. At the end of each transmission the receiver checks

if the sender deviates from the selected back-off value. The receiver is capable of

penalizing the sender, if a deviation in a transmission is detected. If the sender

continues on deviating from the selected back-off value over multiple transmissions,

the receiver identifies the sender as misbehaving.

A detection of greedy behavior in the MAC layer of IEEE 802.11 public networks

(DOMINO) was proposed in [39], that relies on a large amount of historical data to

perform its detection. DOMINO can be implemented on any access point (AP) in the

network. It periodically collects traffic traces of active nodes during short intervals

of time called monitoring periods. The collected traffic traces are then analyzed to

detect any violations of the MAC layer protocol.

In [32] a schemes was presented to detect and defend against MAC-layer selfish

misbehavior in IEEE 802.11 multi-hop ad hoc networks. The proposed algorithm

calculates the channel occupation durations or channel occupation ratio r for each

active node in the network. A node is said to be selfish if it occupy the channel more

than normal nodes.

3 .1 .2 Malicious Misbehavior Detection Techniques

Recall that a selfish node deliberately violates its back-off timer to obtain a larger

portion of the shared channel, and as the greediness of such nodes increase, the

network starts to experience DoS. In such case, the node was said to be a malicious

26

misbehaving node. In [35], the authors proposed a monitoring technique that detects

malicious misbehaving attacks. The authors considered the malicious misbehaving

attacks behaving as intelligent jamming attacks in an IEEE 802.11 network that could

increases the number of packet collisions. The proposed technique monitors the

network and calculates the probability of collisions. The network is said to be

subjected to malicious misbehaving attacks as the probability of collisions increases.

In [40] VANET DoS attack detection was based on a so-called "Packets entropy",

by monitoring traffic traces during short monitoring windows. Based on the fact

that malicious nodes emit more data packets, and given that when the probability

of emission of packets changes, the entropy will also change. The distinction can be

made between a normal network and a network under attack by calculating packets

entropy in each case.

The previous detection approaches were mainly based on monitoring the medium

and counting of transmitted packets or channel occupation duration. However, it

will be shown that the new hybrid jammer has the potential to make innocent nodes

appear selfish misbehaving for such detection algorithms.

3 .2 a new hybrid jammer for vanet

We now describe a new hybrid jammer that combines properties of constant, de-

ceptive, and random jammers. The jammer emits continuous random bits like a

constant jammer but the bits appear as regular packets as in deceptive jammers,

without following the CSMA protocol. In addition the jammer will be dormant for

most of the time and only jam the medium for specific time durations, e.g., half a

second to a few seconds, which make it appear like a random jammer.

During jamming all other nodes believe that legitimate transmissions are taking

place. As a result nodes refrain from transmitting and queue their BSMs until the

medium becomes available again when jamming stops. No BSM will be lost as long

as the queues of the nodes do not overflow. Due to this, jamming cannot be detected

as a malicious attack by mechanisms that use packet error rates or delivery ratios.

A formal definition of the new hybrid jammer will be given in conjunction with the

27

EEBL safety application’s BSM timing and queuing model, and its impact on the

application reliability will be analyzed.

3 .2 .1 EEBL Safety Application Reliability

The reliability of the EEBL safety application is conditioned on the reception of

BSMs and making the correct decision in the proper time. Assume that the distance

d between the HV and RV is equivalent to td seconds. Given that BSMs are spaced

100ms in time, this distance accounts for b = td/0.1 safety messages. However, one

can only consider those BSM that are received at or before treact. Different values for

reaction time have been used, e.g., in [41] a driver’s minimum reaction time used

was 0.7 seconds, whereas [42, 43] assumed it to be 1s.

Let tr denote the reaction time. Then reaction time accounts for r = tr/0.1 BSMs.

In line with the standard definition of reliability, i.e., R(t) is the probability that the

system is working to specifications during the entire time interval [0, t] [44], we can

define the EEBL application reliability as the probability of receiving at least one

BSM message at or before treact, i.e., one of BSMi, for i = 1, .., x, where x = b− r. The

safety application fails only if no BSM message is received at or before treact. If one

assumes that the reliability of one BSM is independent of that of another BSM, and

using unreliability Q(t) = 1− R(t), the probability of all x messages being lost is

Q(t) =
x

∏
i=1

Qi(ti) (3.1)

where Qi(ti) is the probability that BSMi was not received and ti is the time it should

have been received. In [43] Qi was computed based on packet error rates and packet

delivery ratio. Equation 3.1 assumes that packet failure is independent.

3 .2 .2 Transmission Queue Behavior and Field Test Observations

After an OBU generates a BSM it is placed in the transmission queue, which is a

FIFO queue [45, 46]. Once the node has access to the media, e.g., using CSMA/CA,

the BSM is taken from the queue for transmission. Should the node not be able to

28

send the BSM before the subsequent BSM arrives, i.e., within 100ms, the new BSM is

also queued. This could go on until the capacity of the transmission queue overflows,

in which case packets are dropped.

In Section 2.2.2, two different queuing mechanisms were discussed. The first,

NPD, also known as tail-drop queuing, implies that when a packet arrives at a full

queue the newest packet is dropped. The second, OPD, also known as head-drop

queuing, drops the oldest packet when a new one arrives at a full queue.

In the absence of misbehavior jamming, given the relatively slow rate of 10

BSM/s, BSMs are unlikely to queue if traffic density is not overloading the media.

However, during field tests related to the study of the impact of jamming on V2V

communications, we observed excessive queuing. In this experiment, three vehicles,

V1, V2, and V3, were equipped with OBUs, specifically, Arada LocoMate Classic

OBUs [4]. An additional LocoMate Classic OBU was configured to be a jammer

capable of operating at different data rates. Vehicles were moving at speed of 15

m/sec in a 2 lane road, whereas the jammer was at fixed position in the middle of

the test area. The exact parameters for the field test below are shown in Table 3.1. Ex-

periment configurations, OBU commands, and a complete set of parameter options

is given in Appendix A.

Table 3 .1 : Field test parameters

OBU Arada Systems LocoMate Classic
Vehicle speed 15 m/s
Test range straight 2-lane road
Test range length 1.35 km
Jammer position 600m from starting point
BSM rate 10 BSM/s (a BSM every 100ms)
Channel Safety Channel 172

Transmitter power 18 dBm
Data rate 3 and 6 Mbps
Jammer power 18 dBm
Jammer data rates 3, 6, and 12 Mbps

Figure 3.1 shows logging of BSMs at V3 received from V1 and V2 just before

the media was completely jammed. The test area can be divided into sequences of

three regions: No jamming region: here BSMs were transmitted and received with

29

the expected spacing. Jamming region: in is the region the jammer starts to affect

the transmission medium and gaps in reception were observed, as expected. After

jamming region: here bursts of BSM were logged that follow the gaps of reception.

After careful analysis of the timing and content of packets we could confirm that

the bursts were due to OBU message queuing as the media was jammed. This

queuing and subsequent burst behavior will be exploited by the hybrid jammer.

After investigation of the log files of this experiment, we discovered that the queue

of the Arada locomate OBU can hold up to 40 BSM. The knowledge of the queue size

can be important information for an attacker, as will be described in Section 3.3.2.

Also it was found that the Arada OBUs are using Drop Tail buffering or NPD, which

drops the newest BSMs if the queue is full.

N
um

be
r o

f B
SM

s
pe

r 1
00

m
s

time [s]

BSM from Vehicle V1
BSM from Vehicle V2

7

6

5

4

3

2

1

0
30 33 36 39 42 45

F igure 3 .1 : BSMs from vehicles 1 and 2 received by vehicle 3

3 .3 hybrid jammer system model

This section formally describes the behavior of the new hybrid jammer. Let Tjam

denote the duration of jamming and let ts
jam and te

jam denote the time jamming starts

and ends respectively. A jamming period Tjam is thus Tjam = te
jam − ts

jam. Now

assume that the queue size of the OBUs is q. Jamming for Tjam will theoretically

result in each OBU in the jamming area queuing m = Tjam/0.1 BSMs, where 0.1s is

the BSM spacing, i.e., 100ms. Several issues arise:

30

• With respect to timeliness of BSMs, jamming for a duration of Tjam will result

in a reception delay di for each BSMi queued, i.e., after jamming stops at te
jam

the minimum message delay of a queued BSMi is

di ≥ Tjam +
i

∑
1

tmin, 1 ≤ i ≤ m (3.2)

where tmin is the lower bound on the BSM transmission time from a specific

OBU.

• A jamming period of Tjam will not result in the lost of BSMs if i) the period is

short enough to not overflow an OBU’s transmission queue, i.e., if m ≤ q, and

if ii) subsequent queue flushing of affected OBUs does not cause congestion.

An attacker can take advantage of both issues by selectively choosing Tjam to 1)

intentionally causing BSM delays suiting its attack objectives, e.g., causing the EEBL

to fail, and 2) ensuring the jamming duration does not cause queues to overflow.

The consequences are multi-fold:

• The attacker can minimize being detected by carefully selecting the smallest

BSM delay that renders a DSRC safety application useless. For example, if one

blocks reception of x BSMs for the HV in the scenario depicted in Figure 2.8,

the driver of the HV will not have ample time to react to the hazard. A jamming

period of Tjam = x0.1s would theoretically achieve this.

• The jammer makes other vehicles appear to be misbehaving. Since jamming

causes each affected OBU to queue BSMs that are subsequently send in bursts

after te
jam, the OBUs appear to be selfishly misbehaving by the algorithms

described in Subsection 3.1.1. Specifically, each OBU’s burst will be interpreted

as getting disproportional access to the media, since the BSM rate of each node

is expected to be 10 BSMs per second.

• Jamming detection mechanisms relying on Packet Delivery Ratio (PDR), e.g.,[47],

will be ineffective as the jammer does not cause packets to be lost.

31

From the EEBL safety application point of view, the safety application fails if

no BSMs indicating an event are received in time to alert the driver before it is too

late to react. Even assuming BSM omissions were independent, which they are not,

this would be an instance in which the unreliability in Equation 3.1 would evaluate

to one, Q(t) = 1 or R(t) = 1 − Q(t) = 0. This constitutes failure of the EEBL

application.

After discussing the hybrid jammer impact on EEBL safety application, the next

subsection will introduce two possible attack models using the hybrid jammer. Then

we will investigate the impact of both attacks and show that this jammer can cause

the safety application to fail.

3 .3 .1 Attack Model

Stationary Attack Model — The stationary version of the jammer is demon-

strated in the scenario depicted in Figure 3.2a). Assume a hazard is introduced and

F igure 3 .2 : Stationary jammer

the jammer, positioned on the roadside next to the RV, jams for Tjam in coordination

with the creation of the hazard. This causes the OBU of the RV to queue BSMs,

as it cannot access the media during the jamming time. Once jamming stops, as

indicated in Figure 3.2b), the RV sends all queued BSMs in a burst, followed by

regularly spaced BSMs. The EEBL in the HV, which did not receive BSMs during

Tjam, will receive its first BSM from the burst when it is already too late to react, i.e.,

32

after time treact. Recall that, treact represents the cutoff instance of time, where any

BSM received after this time is of no use.

Mobile Attack Model — The scenario in Figure 3.3 shows how two collabo-

rating attack vehicles H and J can cause the safety application to fail. Assume, as

b)

a)

induced hazard

H

queuing

HVRV

H

HVRV

J

F igure 3 .3 : Mobile jammer

shown in part a) of the figure, that vehicle H causes a hazard, e.g., by launching

an obstacle into oncoming traffic. The driver of the RV, who sees the hazard, will

take some time to react. Now consider the scenario just before RV’s driver reacts,

as shown in Figure 3.3b). The collaborating vehicle J, which has a mobile jammer,

follows vehicle H at a distance that positions it close to the RV just before the driver

of the RV is expected to react to the hazard. Specifically, vehicle J keeps a distance

from H short of 0.7s, the minimum reaction time. After vehicle H induced the

hazard, vehicle J jams for Tjam, which can be determined based on the speed vHV

of the HV and the distance dRV,HV between the HV and RV. For example, if we

consider 0.7s as the reaction time, Tjam = dRV,HV/vHV − 0.7s, i.e. Tjam is equal to

the time separation between the RV and HV minus the reaction time. As in the

case of the stationary jammer, the mobile jamming model is capable of delaying the

reception of RV’s BSMs to the point that it is too late for the driver of HV to react.

33

3 .3 .2 Jamming Impact on Transmission Queues

As indicated in the discussion of Figure 3.1 in Subsection 2.2.2, queuing of BSMs

due to jamming was observed in real tests using commercially available OBUs. To

validate the hybrid jammer’s effect on queuing and to investigate if queuing is

deterministic, we conducted several lab experiments using three Arada locomate

Classic OBUs from Arada Systems [4]. One OBU was programmed to act as the

hybrid jammer, the second served as the RV, and the third as the HV. The experi-

ments were conducted in a controlled environment with no objects interfering with

communications. The test parameters used are shown in Table 3.2.

Table 3 .2 : Hybrid jammer parameters

OBU Model Arada Systems LocoMate Classic
Number of OBUs 3 (2 OBUs for two vehicles

and 1 for the stationary jammer)
BSM generation 10 packets/s
Channel Safety Channel 172

Transmitter power 21 dBm
Data rate 6Mbps
Jammer power and data rate 18 dBm, 6Mbps

The impact of jamming with Tjam = 1, 2, 3 and 4s of a typical experiment can be

seen in Figure 3.4, where the number of BSMs that the HV received from the RV per

100ms is shown. After each jamming period a burst of BSMs, consistent with the

number of BSMs expected to have been queued based on Tjam, can be observed.

N
um

be
r o

f B
SM

/1
00

m
s

time [s]

4s
jamming

1s

jamming

3s

jamming

2s

jamming

F igure 3 .4 : Queuing effect for jamming periods of 1, 2, 3, and 4s, showing the
BSMs received by the HV from RV

After careful examination of the experiment, it was found that jamming in prac-

tice is not as precise as in theory, and we observed several factors that introduced

34

variability. First, the time from starting the jammer until it effectively jammed the

media was nondeterministic, as it was not possible to start jamming precisely at the

time intended. We attribute the observed differences to process initialization delays

and runtime overhead of the Arada LocoMate Classic’s operating system, which is

Linux based, and the overhead associated with the jammer program. This delay can

be observed in the scenario with Tjam = 1, which actually resulted in an effective

jamming period slightly longer than 1s.

The second factor that created nondeterminism was attributed to the Arada

Locomate Classic OBUs way of flushing their buffer. Specifically, experiments re-

vealed that BSM spacing during flushing was on average 12.5ms, with minimum

and maximum observed spacings of 10ms and 16ms respectively, and a standard

deviation of 1.6. In Figure 3.4 this behavior was responsible for several spikes after

the jamming period rather than one large spike.

Thirdly it should be noted that the figure only shows BSMs sent by the RV and

received by the HV. The HV also queued messages during jamming, which also

accessed the media using CSMA/CA. However, due to the low utilization of the

media this should have had minimal impact on the data in the figure.

The experiments further suggested that the Arada Locomate Classic OBUs queued

up to around 40 BSMs before messages were dropped. In general, such approach

could be used by an attacker to experimentally determine the queue size of any

device (OBU/RSU). The attacker can then use this information to conduct an attack

to force the legitimate nodes to queue BSMs to a point that they became useless, and

at the same time no BSM is lost. Thus PDR is not affected, and no detection methods

based on PDR are effective. Specifically, detection based on PDR can be fooled, if

the detection window is large enough. Also, vehicles under attack will be accused

as misbehaving based on counting-based approaches.

35

3 .4 hybrid jammer detection

This section introduces a hybrid jamming detection algorithm capable of detect-

ing hybrid jamming and differentiating between misbehaving nodes and legitimate

nodes subjected to such attack.

3 .4 .1 Detection Algorithm

Algorithm 1 outlines the hybrid jamming detection algorithm executing in the re-

ceiver thread of each OBU. Each vehicle maintains a Vehicles Neighborhood Table

(VNT) to keep the latest information received from its neighbors. The ith record in

the VNT stores 1) the last BSM received from vehicle i, 2) receiving time of this BSM,

and 3) the number of missing BSMs, MissingBSM, for vehicle i. The VNT is used to

detect omissions as the receiving time of the latest BSM is saved.

Whereas the algorithm considers any BSM, it should be noted that for all practical

purposes only BSMs from vehicles ahead of the HV could be selected, as they

are relevant to the EEBL application. Since a BSM is expected from each vehicle

approximately every 100ms, the omission of a BSM from vehicle i can be detected,

e.g., using a watchdog mechanism, as indicated in the first “if” statement of the

algorithm. Moreover, based on the information saved in VNT, vehicles can calculate

the time passed since the last BSM was received from their neighbors. A vehicle j

might consider vehicle i to be out of its range if no BSM was received for a maximum

time period denoted by Tmax. In this case, vehicle j deletes the ith record from its VNT.

Different research addressed detecting out of range vehicles, such as [42], which is

based on distance prediction between vehicles. However, in this research, we simply

used predefine value for Tmax to indicate the out of range vehicles.

If a BSM is received from a vehicle that is not in the VNT, then a new record is

created. A missed BSM from a vehicle does not necessarily imply the presence of

a jammer, but would most likely be due to environmental conditions or collisions.

We therefore declare a threshold α to account for such benign message losses. If the

number of missed BSMs surpasses α ongoing jamming is assumed.

36

START: Receiving Thread
if (BSM not received) then

if (time since last BSM reception > Tmax) then
Delete vehicle record from VNT;

else
Increment VNT[i].MissingBSM;

end
else

if (this is the first BSM) then
Add new vehicle record to VNT;

else
Diff1 ← |Dsecondnew - Dsecondsaved| ;
Diff2 ← |DsecondHV - Dsecondnew| ;
if (Diff1 «100ms) then

Call misbehaving detection technique ;
else

if (MissingBSM ≤ α) then
VNT[i].BSM← NewBSM;
VNT[i].MissingBSM← 0;

else
VNT[i].BSM← NewBSM;
Decrement VNT[i].MissingBSM;
if (Diff2/100ms ≈ VNT[i].MissingBSM) then

Jamming detected. Mark vehicle as victim of jamming;
end

end
end

end
end
Goto: START;

Algorithm 1: Hybrid jamming detection algorithm

Two values Diff1 and Diff2 are used to identify if misbehavior is occurring or if a

node is falsely accused of such behavior. Specifically, Diff1 is the difference in time

between the creation of the last received and the currently received BSM. If this time

is much less than 100ms a misbehavior detection algorithm should be executed. The

difference in time between the Dsecond field of the received BSM and the time at

the HV, denoted by Diff2, is used to identify if a vehicles is innocently framed as

behaving selfishly. The value in Diff2/100ms should be the number of missing BSMs

37

if a burst occurred. This is used to determine that the vehicle is not misbehaving,

but sending a burst queued due to jamming.

3 .4 .2 Detection Algorithm Implementation and Testing

The hybrid jamming detection algorithm was implemented inside the receiving

thread of an Arada locomate Classic OBU using the C programming language.

Sample functions of the detection algorithm code can be found in Appendix B.

Several lab experiments were conducted to test the detection rates of the algorithm,

using three Arada locomate Classic OBUs. The first one was configured to be a

transmitter that transmited a BSM every 100ms, the second OBU was configured to

be the receiver that ran the hybrid jamming detection code in the receiving thread,

and the third OBU was programmed to be the hybrid jammer. Both the transmitter

and the receiver were subjected to the hybrid jamming attack for different jamming

periods and the results were logged inside the receiver. Table 3.3 shows the test

parameters for the hybrid jamming detection setup.

Table 3 .3 : Hybrid jammer detection algorithm test parameters

OBU Model Arada Systems LocoMate Classic
Number of OBUs 3 (2 OBUs for two transmitter and receiver

and 1 for the stationary jammer)
Test environment Lab test
BSM generation 10 packets/s
Channel Safety Channel 172

Transmitter power 21 dBm
Data rate 6Mbps
Jammer power and data rate 18 dBm, 6Mbps
Jamming durations from 200 ms to 40000 ms

A GUI was implemented using the Dot Net Framework in order to have visual

detection alerts about the hybrid jamming attack while conducting the experiments.

The GUI enabled us to observe the transmitter behavior at the receiver side in the

following periods:

• Before the jamming attack: where the receiver gets a BSM every 100 ms without

any interference.

38

• During the attack: where the receiver does not receive any BSM from the trans-

mitter as the latter senses the medium to be busy due to jamming. In this

duration, the hybrid jamming detection algorithm counts the missing BSMs,

i.e., those that were not received from that particular transmitter.

• Recovery period: which occurs directly after the jamming attack ends. During

this period of time, the receiver receives a burst of BSMs from the transmitter

subjected to such attack. The received bursts sizes were found to be equal to

the missing BSMs from the transmitter.

All three period can be seen in Figure 3.5, which is a snapshot of the GUI

program.

6

8

10

B
S

M
s

re
ce

iv
e

d
 i

n
 1

0
0

m
s

Time (sec)20 40 600

0

2

4

6

B
S

M
s

re
ce

iv
e

d
 i

n

F igure 3 .5 : Hybrid jamming detection GUI

Repeated experiments confirmed that the detection approach detects jamming

attacks successfully. Specifically it can detect jamming periods that are greater than

α ∗ 100ms, and less than or equal to Qsize ∗ 100ms. Recall that α refers to the expected

number of omissions or collisions due to environmental conditions, and Qsize is the

OBU’s queue size.

39

As the detection algorithm is based mainly on the timing information of the

received BSMs, it was noticed that the detection algorithm fails when the receiver

and the transmitter were not time-synchronized. This was observed due to frequent

GPS signal outages while conducting the lab experiments. Such outages caused the

OBUs to have different clock values, and thus the receiver was not able to detect the

missing BSMs.

3 .5 conclusions

This chapter presented a new hybrid jammer capable of failing DSRC safety applica-

tions. The jammer exposed queuing behavior that was exploited for an effective at-

tack strategy. Scenarios for stationary and mobile jammers were presented together

with their impact on the EEBL safety application. However, we expect that the jam-

mer will have similar implications for other DSRC safety applications. Experiments

were conducted using commercial DSRC equipment validated the expected impact

of the jammer. An algorithm was presented that allows detection of hybrid jamming.

This algorithm can also distinguish between misbehaving nodes and nodes that

are impacted by the jammer in such a way that makes them appear to be selfishly

misbehaving by current misbehavior detection strategies. The detection algorithm

was implemented and tested using the commercial DSRC devices. It was found that

the detection algorithm detects the hybrid jamming attacks for different jamming

durations, however, it requires that the DSRC devices be time-synchronized, as we

had observed that frequent GPS signal outages could lead to detection failure. Thus,

the clock synchronization problem and its impact on DSRC safety applications will

be discussed in the next chapters.

40

chapter 4

A Clock Synchronization Algorithm for VANET

Clock synchronization is critical in the operation of wireless communication that

assure data consistency and reliability. It can be achieved using either centralized or

decentralized approaches [48]. The current configuration of VANET uses GPS as a

central controller for clock synchronization. A GPS receiver connected to the OBUs

is the main source of OBU’s clock data. However, GPS might suffer from frequent

GPS signal outages in urban cities or it can be easily maliciously spoofed by inducing

a forged GPS signal. Moreover, a conventional GPS receiver cannot detect a spoofed

signal [49].

Recall that we had observed GPS signal outages while conducting lab exper-

iments to test the hybrid jammer detection approach described in the previous

chapter. In one instance we observed a difference of 2 seconds between the clocks

of two different OBUs due to the GPS signal outage. Such outage would cause the

hybrid jammer detection approach to fail because it is based mainly on time stamps

inside the BSMs.

Given the criticality of timeliness of BSM messages [38], failure of the GPS based

clock synchronization has also the potential to cause safety applications to fail.

To mitigate the centralized GPS clock synchronization as a single point of failure,

one approach is to require all vehicles to participate in time synchronization. This

requires vehicles to exchange and cooperatively agree on their respective local clock

values.

Agreement can be generally categorized into exact and inexact or approximate

agreement. In exact agreement, all non-faulty communicating vehicles are required

to agree on the same exact decision. Byzantine Consensus [19] and the Interactive

Consistency Problem [22] are the best-known forms of exact agreement, where all

non-faulty nodes must agree on a single value. Leader election for example is

considered to be one of the exact agreement applications. On the other hand,

in inexact agreement, also called Approximate Agreement (AA), vehicles are not

41

required to reach agreement (to vote) on the same exact value. Rather, they must

converge on final values that are within a predefined tolerance.

AA must satisfy Agreement and Validity conditions [50]. The agreement con-

dition requires that all non-faulty clocks halt with voted values that are within a

predefined tolerance of each other. The validity condition ensures that the final

voted values stay within the range of the initially correct clock values. Most of the

AA algorithms published employ rounds of data exchange and require the use of

an approximation function F to update the clock values, which are then used in

the next round of data-exchange. The objective is to gradually shrink the diameter

(difference) between local clock values, by providing a sufficient number of rounds

of data-exchanges to reach the predefined tolerance value.

In this chapter, a decentralized clock synchronization protocol for VANET is

presented. The proposed protocol is based on approximate agreement and does

not require extra hardware nor modifications of any standards. The benefits of the

proposed clock synchronization algorithm are higher resilience of safety applications

to GPS spoofing attacks and when GPS signals may not be available, such as in urban

cities.

4 .1 related work

Clock synchronization protocols are classified into centralized and decentralized

approaches [48]. The Global Navigation Satellite System (GNSS) [51] is a centralized

clock synchronization protocol that is often used by ad-hoc networks. It has the

advantage of simplicity, but requires the use of GPS data in the clock synchronization

process. The decentralized approaches to clock synchronization require that all

nodes (vehicles) participate in the synchronization process. Much research has been

conducted on clock synchronization in ad-hoc networks, with less focus on VANET,

as described below.

42

4 .1 .1 Clock Synchronization in Ad-hoc Networks

A Reference Broadcast Synchronization (RBS) protocol was proposed in [52] that

exploits the broadcast property of the wireless communication medium. In this

protocol, a transmitter sends a reference packet to all its neighbors. Each receiver

records the receiving time of the reference packet according to its local clock and then

exchanges the receiving time with other receivers. Based on receivers’ observations,

the clock offset between the receivers can be easily computed.

The Average Time Synchronization (ATS) protocol was proposed in [53], which

uses cluster heads as the key nodes in the network synchronization process. Each

cluster head broadcasts a synchronization time packet to all nodes in the cluster.

Each node in the cluster replies with the receiving time of the synchronization packet.

The cluster head then averages all receiving times to get the current global time. Fi-

nally, the cluster head broadcasts a time message that contains the computed global

time to every node. Both, the ATS and RBS protocols require a large number of

message exchanges, and the synchronization process needs to be restarted whenever

a new node with a different time joins the group. Network-wide synchronization is

achieved by a similar approach among the cluster heads.

A dynamic wireless mobile network clock synchronization protocol was pro-

posed in [54]. The protocol is based on linear approximate consensus in the presence

of Byzantine faults. Periodically, each non-faulty node collects the timestamps sent

by its neighbors and updates its clock value with the average of these timestamps.

The authors assume the facilitating nodes are not capable of using fake identifiers.

As will be demonstrated later, the average convergence function may not be the

most efficient function in all conditions. Due to the high dynamic nature and fast

network topology changes of VANETs, the aforementioned protocols are not suitable

for vehicular ad hoc networks and can take a long time to synchronize.

4 .1 .2 Clock Synchronization in VANET

A clock synchronization protocol for VANET called Converging Time Synchroniza-

tion (CTS) was proposed in [48]. This protocol is based on a sponsor election

43

mechanism. One of the network nodes, called initiator, asks its neighbors to send

their number of synchronized group members, their vehicles IDs (VIDs) and time

differences. Based on each neighbor’s reply, the node that is synchronized to the

largest number of neighbors is elected to be the new sponsor. The new sponsor then

broadcasts a clock adjusting message to all nodes to adjust their own time.

In [55], a Hybrid Clock Synchronization (HCS) was proposed. It includes wireless

sensors at fixed distances in the road to improve VANET synchronization. The main

disadvantage in HCS is that it has large hardware overhead. Both HCS and CTS

derive an equation to calculate the elapsed clock synchronization time. They appear

to be immune to network topology but they are affected dramatically when traffic

density increases. Furthermore, they introduce a large number of messages that are

not part of the standards associated with BSMs.

A Time Table Diffusion (TTD) synchronization protocol was proposed in [56] that

is immune to network topology and does not require the use of GPS. The protocol

exploits the idea of the Time Table Transfer (TTT) protocol [57], where each node

collects time information from its neighbors and constructs a time table. This time

table is then broadcast to the neighbors to build their own time table and adjust their

clock. TTD also has the same disadvantages of HCS and CTS in that it requires a

large number of extra messages outside the standards.

4 .2 system and fault models

Due to the properties of VANET, such as the fast changing, unknown topology, and

the number of participating nodes, the problem of distributed clock synchronization

is very complex. We therefore take the step of introducing a simple model, repre-

senting the key properties of pathological, worst case, scenarios.

4 .2 .1 System Model and Notation

This subsection introduces a simple VANET model to demonstrate the impact of

connectivity on clock synchronization. For the sake of clarity, the focus is only

on investigating the clock synchronization problem. Therefore, no message losses

44

or collisions are assumed to occur, e.g., due to the hidden terminal problem or

natural phenomena like shadowing. The terms “vehicle” and "node” will be used

interchangeably while describing the network model.

Assume N vehicles equipped with non-faulty OBUs travel on a road. Vehicles

are moving in the same heading (direction) with fixed speed. The communication

capabilities between vehicles are described by a connectivity graph G = (V , E),
where V is the set of vehicles V = {v1, v2, ..., vN}, and E is the set of undirected

edges ei,j for each communicating pair vi, vj. Let R be a given transmission range.

Then, for each ei,j ∈ E , the distance between vi and vj, denoted by di,j, is less than

or equal to R. Therefore, E = {ei,j|i 6= j, di,j ≤ R, ∀i, j = 1, 2, ..., N}. Note that the

graph will change over time as vehicles move. However, the graph is only used for

the problem description and analysis. The graph does not have to be maintained as

part of the algorithms below.

Assume that vehicles are divided into two fully connected clusters VC1 and VC2,

where |VC1| = |VC2| = N/2. For simplicity, the distance between any two successive

vehicles in the same cluster is fixed, e.g., to represent the road safety distance.

Figure 4.1-S0 shows the order of moving vehicles in each cluster.

The distance between clusters, dCL(1,2), is defined as the distance between the

leading vehicle v1 in the left cluster (black) VC1 and the last vehicle v5 in the right

cluster (red) VC2 in the figure. As the cluster distance dCL(1,2) decreases, communi-

cation links between the isolated clusters in Figure 4.1-S1 appear. For example, the

connectivity graph shown in Figure 4.1-S2 depicts the scenario in which vehicle v1 of

the cluster VC1 and vehicle v5 of the cluster VC2 receive each other’s messages. In the

graph, vertices are labeled by a pair x, y, where x indicates the position of vehicle in

its cluster and y is the size of the neighborhood of vx, i.e., the number of neighbors

including itself. For instance, label 1, 6 represents v1 as the first vehicle in the cluster

with a neighborhood of size 6, composed of five neighbors and itself. As the clusters

get closer, the neighborhoods of the closing vehicles increase, as can be seen in

Figures 4.1-S3 and S4. It will be shown later that the size of the neighborhoods has

implications on the clock synchronization speed.

45

F igure 4 .1 : Two cluster connectivity graphs

Each vehicle vi broadcasts a BSM every 100ms with a fixed transmission power

P. No vehicle is assumed to be misbehaving, i.e., all vehicles follow the 10 BSMs/sec

transmission rate, and no vehicle tampers with BSMs. Each vehicle maintains a

sorted multiset in which it collects all timestamps, which will be used during a

round-based voting process. Specifically, each vehicle vi collects the timestamp, tRV(j),

extracted from every BSM received from vj, together with the corresponding local

reception time, trec(j), and saves them as pairs (tRV(j), trec(j)) in a table. Just before

voting at time tvote, these timestamps are adjusted, similar to [54], and included

in a voting multiset Vi. Each vehicle vi has its own local voting multiset Vi =

46

{tk(1), tk(2), ..., tk(ni)
}, where ni is the neighborhood size of vehicle vi and k(j), j ≤ ni

is the vehicle from which the time is logged. The time estimation value tk(j) is the

clock value of vj corrected to the time at vi. Thus, tk(j) = tRV(j) + (tvote − trec(j)).

Let Uall be the multiset of all clock values held by the vehicles in the network.

Define δ(Uall) as the global diameter between clock values in the entire network.

The global diameter is the difference between the maximum and minimum clock

values in the network, i.e., δ(Uall) = max(Uall)−min(Uall). On the other hand, the

local diameter is the maximum difference between the clock values in multiset Vi of

vehicle vi, i.e., δ(Vi) = max(Vi)−min(Vi). As was indicated before, the network

topology in VANET is likely to change due to the mobility of vehicles. Therefore,

the entities defined above, such as edge set, Uall, and Vi may change as well.

Whereas the definitions above assume that the network graph is known, in

the application domain of connected vehicles it may be difficult or impossible to

precisely specify the graph. This is mainly due to the potential inability to define

the exact graph boundaries and the fast changing topologies. For example, in high

traffic density the graph may span vehicles over a large geographic area. Within

such large area constant topology changes will take place. The definition of Uall in

such case is impractical. Therefore, for practical reasons we consider more simplified

scenarios. Specifically, we study the graph from the viewpoint of the HV, as it spans

over a small geographic area, i.e., its relevant neighborhood. We concentrated also

on the impact of the worst cases of clusters merging on convergence speed.

4 .2 .2 Fault Model

Recall that we assume no vehicle is behaving maliciously, e.g., no OBU is manipu-

lating data of BSMs that are broadcast. The source of the problem is assumed to be

the absence or manipulation of GPS signals, that is, GPS timing data is omitted or

faulty data is injected externally. However, the OBUs themselves behave correctly,

as specified. We will study the impact of two types of GPS related faults on clock

synchronization in VANET.

The first fault considered is due to GPS signal outage caused by physical obstruc-

tions, such as tall buildings, mountains, or tunnels. In the absence of GPS signals,

47

such outages can cause receivers to have different clock values. This will lead to

inconsistencies of BSM time signals sent in BSMs between vehicles. We observed

such faults while conducting lab experiments using Arada OBUs during GPS signal

outages. As stated before, in one instance, we observed a difference of 2 seconds

between the clock values of two OBUs. A probable cause of OBUs to have different

time values is the power-up initialization in the absence of GPS signals.

The second fault can be induced by GPS time spoofing attacks. The attacker is

assumed to be able to spoof GPS signals in a limited geographical area as described

in [49]. Attacks can be conducted near areas that suffer from GPS signal outages,

like at the exit of parking garages, or tunnel entrances, as shown in Figure 4.2.

Manipulating the time component in the GPS signal allows an attacker to change

a GPS receiver’s local time.

F igure 4 .2 : GPS spoofing attack scenario

The impact of GPS time manipulation will be described based on the scenario

shown in Figure 2.8. Due to the hazard, the braking RV emits BSMs containing

a hard-braking event during time period Tbrake. Both faults described above could

cause clock differences of more than 500ms between the HV and RV. Recall that

the BSM time-to-live should be no more than 500 ms, as stated in [38]. Such time

difference would cause the HV to discard important BSMs received from the RV, as

it would consider these BSMs to be outdated. This could seriously affect the EEBL,

as important BSM events may be discarded. The EEBL executing in the HV will fail

48

only if it discards all BSMs containing the event from the RV up to time treact, which

is the latest time for the HV’s driver to react [43].

4 .3 proposed clock synchronization protocol

The proposed clock synchronization protocol aims to synchronize the clocks of

vehicles without having any information about the VANET communication topology.

It does not require any extra hardware, nor changes to any standards. Figure 4.3

outlines the protocol, which is executed on each vehicle’s OBU. It will be described

below from the viewpoint of the HV. The protocol is divided into two main stages,

a Normal Operation Stage and an Agreement Stage.

4 .3 .1 Normal Operation Stage

The Normal Operation Stage initiates the Agreement Stage just before sending a new

BSM. This allows the HV to populate the BSM to be broadcast with the agreement

clock value based on the freshest information available. The agreement stage is

initiated ∆o time units before the BSM transmission interval Timer expires, where ∆o

is the projected overhead of the Agreement Stage computations.

Upon receiving a BSM from a neighbor vj, the receiving vehicle extracts the

BSM content, which includes vj’s status information, its unique vehicle identification

(VID), and a timestamp. This timestamp is the clock value used by vj as the result of

its agreement algorithm. Each vehicle maintains a table, called Sync Table, in which

it keeps a record for each neighbor vj, heading in the same direction, as indicated

in the BSM heading field. The record maintains the following information from a

neighbor vj’s latest BSM: 1) the VID of vj, 2) the receiving vehicle’s local clock value,

trec(j), when the BSM from vj was received, 3) the BSM timestamp, tRV(j), and 4) the

heading of vj. It should be noted that the heading is saved in case the receiving

vehicle changes direction.

If the received BSM is coming from a new neighbor, a new record is created

in Sync Table, and the neighbor counter is incremented by one. If the BSM comes

from an existing neighbor, based on the sender’s VID, the data in the existing record

49

F igure 4 .3 : Proposed clock synchronization protocol

will be updated with the latest BSMs received. If no BSM has been received from a

vehicle vj for a predetermined time interval, the record of that vehicle is deleted and

the neighborhood count is decremented. The reception and transmission functions

code are show in Section C.3 and Section C.2 respectively.

4 .3 .2 Agreement Stage

The Agreement Stage is shown in the right part of Figure 4.3. If a vehicle has

no neighbors, there is no need for agreement and the stage returns control to the

Normal Operation Stage, where the BSM will be sent. Otherwise the vehicle retrieves

the timestamps tRV(j) of those vehicles with the same heading as its own from the

50

Sync Table. The vehicle then generates its sorted voting multiset Vi based on tk(j)

values for each neighbor vj as described in Subsection 4.2.1 to account for the time

elapsed on the vehicle running the agreement process. To obtain the new voted

value, the general Mean Subsequence Reduced (MSR) convergence function shown

in Equation (4.1) is used [63].

FC(Vi) = Mean[Selσ(Redτ(Vi))] (4.1)

It involves reduction, selection, and computing the mean. The reduction function

Redτ removes the τ largest and smallest elements from multiset Vi. The reduction

is not used to account for faulty nodes as in [50], but to reduce the impact of clock

values of vehicles joining a synchronized cluster. Otherwise, each vehicle joining the

cluster could trigger the synchronization process.

The selection function Selσ selects a submultiset of σ elements from the reduced

multiset. Several selection functions are considered: 1) Fault Tolerant MidPoint (FTM),

which selects the smallest and largest elements for the mean, 2) Fault Tolerant Average

(FTA), which selects all elements for the mean, and 3) Midpoint, which selects the

median element.

If the diameter δ(Uall) is reduced after each single voting round, the protocol

is called single-step convergent [50]. This allows clock convergence to occur after a

finite number of rounds. At the end of each agreement round, the vehicle sets its

local clock to the new voted clock value and sends it in the new BSM. Vehicles in

the transmission range receive this BSM and will use this clock value in the voting

process of their next round.

The agreement process may stops when δ(Vi) becomes less than the predefined

tolerance ∆tol. As the proposed clock synchronization is an augmentation to the

GPS synchronization, the agreement stage is assumed to be always running. The

agreement process code is shown in Section C.4.

51

4 .4 simulations and analysis

The following presentation of results demonstrates the impact of diverse parameters

on clock convergence using the simplified pathological VANET scenario described

above.

4 .4 .1 Assumptions and Parameters

The simulations, using the Network Simulator Version 3 (NS-3), considered six

scenarios, in which N vehicles are moving on a two lane road, such as shown in

Figure 4.2. Vehicles are divided into two fully connected clusters moving in the

same direction and with identical constant speed. Each cluster consists of N/2

vehicles, where the distance between any two successive vehicles is the same. In

the following discussion, we will refer to the graphs of a simple network shown in

Figure 4.1. However, the simulations conducted use a larger number of nodes.

In the simulation, Scenario S1 represents a graph similar to Figure 4.1-S1, where

the two clusters are disjoint, as the distance dCL(1,2) between the clusters is larger

than the transmission range R of 300m. Scenario S2 is similar to Figure 4.1-S2, where

the first vehicle, v1, of VC1 and the last vehicle, v5, of VC2 are able to exchange their

status information.

The clock values of vehicles of each cluster are initialized with values consistent

with the spoofing attack shown in Figure 4.2, where each vehicle in the area under

attack is initialized with the same value. The time difference between the two

clusters is initially 30 seconds. This represents half of the maximum value of the

timestamp field in a BSM, and is thus the worst-case offset possible. Within each

cluster, initial values are random and uniformly distributed from a time interval of

10 seconds. The predefined tolerance ∆tol was chosen to be less than 500ms, which

is the time-to-live limit in [38]. Whereas a ∆tol of 500ms may seem large for clock

synchronization, recall that our goal is not tight synchronization, but fast reaction to

events. Thus the EEBL can react to BSMs under such tolerance.

In order to study the influence of traffic density on the clock convergence rate,

each of the six scenarios described above are repeated for three different traffic

52

densities. Low density assumed N = 20 vehicles with a speed of 70 mph and

a distance di,j between successive vehicles vi and vj of 60m. Similarly, medium

density assumed N = 40 with a speed of 35 mph and di,j = 30m, and high density

assumed N = 80 with a speed of 20 mph and di,j = 15m. It should be noted that

the parameters in the scenarios are carefully chosen to result in the same overall

simulation distance. The above parameters represent a traffic flow of 3600 vehicles

per hour in each scenario.

To study the impact of reduction and selection functions on the convergence

shown in Equation 4.1, different values for τ and σ are used. Specifically, Redτ(Vi),

which reduces the τ smallest and largest values of Vi, is simulated for different

τ representing reductions of 0, 10%, 20%, and 30%. For each, the four different

selection functions Selσ described in Section 4.3 are used. The simulation of each

scenario investigated 1) how the global diameter δ(Uall) changed after each round,

and 2) the number of rounds taken by each individual vehicle until its local diameter

δ(Vi) converged to the predefined tolerance ∆tol. Each simulation ended when the

local diameter δ(Vi) of each vehicle became less than ∆tol or when the number of

rounds exceeded 300 i.e. 30 seconds. The latter was only the case for the non-

convergent Midpoint selection functions, as described later.

Each simulation was repeated 50 times and results shown are based on the worst

results observed. It is emphasized that the focus of the simulations was on the

pathological (worst case) scenarios, not on the best or average behavior. Appendix C,

shows the main functions and the global variables of the NS3 code used for the clock

synchronization approach.

4 .4 .2 Analysis of Simulations

During analysis, we observed that the number of rounds to reach agreement used by

different scenarios was very similar for reductions of 0, 10%, 20% and 30%. However,

the behavior shifted, as will be described. Convergence for reductions of 10%, 20%

and 30% was single step, whereas τ = 0 showed oscillations during convergence.

Due to space restrictions, we mainly focus on the graphs for 30% in Figure 4.4,

which shows the number of rounds for different scenarios and selection functions.

53

F igure 4 .4 : Impact of selection functions for 30% reduction

Recall that higher numbered scenarios imply higher degree of cluster overlap, as

described in Subsection 4.4.1. Furthermore, note that resynchronization would be

avoided within a cluster if the values of joining vehicles are eliminated as the result

of reduction, in which case only the joining nodes would be synchronized.

The worst case scenario is when only one new value from a different cluster

remains in the reduced multiset, because having only one value from the other

54

cluster prolongs synchronization. Figure 4.4 shows this worst case in Scenario 4 for

the three different traffic densities. An example is the case in Figure 4.1-S2, with no

reduction, or Figure 4.1-S3, with one reduced value. The same worst case behavior

was observed for lower reduction percentages. For example, this shifting behavior

can be seen if one compares reduction of 30% in Figure 4.4c with that of 20% in

Figure 4.5. In the prior the worst was in Scenario 4, whereas in the latter it was in

Scenario 3.

F igure 4 .5 : Impact of selection functions for 20% reduction

With respect to the selection functions in Figure 4.4, it is immediately evident

that MidPoint shows the worst convergence in Scenarios 4 and 5. In fact it does not

converge at all in these scenarios, where the synchronization process was terminated

after 300 rounds, i.e., 30 seconds. In the first three scenarios, the FTA, FTM and

MidPoint selections performed nearly identical and outperformed the CTS and HCS.

However, in the worst cases Scenarios 4 and Scenario 5, FTM has best performance.

This is due to the fact that FTM puts higher weight on the values of the vehicles

in the neighbor cluster, thereby speeding up the clock convergence. The scenarios

using low, medium and high densities only differ in the number of rounds and

FTM performs better as densities increase. Whereas the performance of MidPoint is

rather independent of the densities, the FTA used more rounds in denser vehicle

distributions. The same was observed for CTS and HCS in all scenarios. The

simulations of Figure 4.5 also showed that MidPoint did not converge. It should

55

be noted that FTA did converge after 517 rounds when the limit on the reduction

function was increased.

Based on the results shown, we conclude that the FTM selection function is by

far best suited for DSRC safety applications subjected to spoofing attacks in such

scenarios.

4 .5 conclusions

This chapter investigated the impact of synchronization of vehicles, or the lack

thereof, on the EEBL safety application. A decentralized clock synchronization

protocol capable of mitigating against GPS spoofing attacks was presented. The

new protocol is based on approximate agreement and it does not require any extra

hardware or message overhead. It was compared against the existing protocols CTS

and HCS. Within the proposed protocol, the impact of several selection functions on

the convergence rate was also investigated. Simulations using Network Simulator

Version 3 (NS-3) showed that the new protocol performs best when using the Fault

Tolerant Midpoint selection function, especially in worst case scenarios.

In general, this research introduced a theoretical network model and its bene-

fits to DSRC safety applications. It used simple pathological traffic scenarios that

exposed the key issues in GPS time spoofing.

56

chapter 5

Enhanced Clock Synchronization in the Presence of

Singular and Hybrid Fault Modes

In this chapter, we propose an Enhanced Clock Synchronization Algorithm (ECSA)

aiming to improve the reliability of the EEBL Safety Application. It is based on

approximate agreement, however, it enhances the previous solutions presented in

Chapter4 by considering 1) omission faults, 2) malicious faults, and 3) a hybrid fault

model consisting of both omission and malicious faults.

Several new agreement algorithms are introduced and their relative worst case

performance is analyzed. Reliability improvements will be related to clock conver-

gence speeds, the impact of fault types, and the algorithm parameters. Results

are supported by simulations using NS3 and the real-time traffic scenario mobility

model SUMO. The simulations show that the proposed algorithm can effectively

function under the assumed fault model. The algorithm is used in conjunction with

GPS-based methods, with no extra hardware nor modifications of standards.

5 .1 related work

A summary of existing clock synchronization approaches for wireless ad-hoc net-

work and VANET was presented in Section 4.1. However, as the proposed clock

synchronization approach is based on inexact agreement, traditional approximate

algorithms will be briefly discussed.

An AA algorithm typically uses a sequence of rounds, in which the difference

between the values held by non-faulty nodes is gradually reduced. This difference is

often referred to as diameter. AA algorithms are based on two conditions: Agreement

and Validity. The Agreement condition requires the diameter to reach a predefined

threshold. The Validity condition ensures the final agreed values stay strictly within

the range of the initial correct values. To reach agreement, all non-faulty vehicles

execute the following steps in each voting round:

57

• Broadcast: Every vehicle transmits its local clock value to all vehicles in its

transmission range.

• Collect: Each vehicle saves the received clock values from its neighbors in a

voting multiset, including its own clock value.

• Sampling: The vehicles remove (filter) some values from their voting multisets.

The mechanism for filtering the multisets depends on the specific agreement

algorithm.

• Execution: Each vehicle applies a voting function to its sampled multiset.

Agreement algorithms are generally divided into three families based on the sam-

pling method used.

The first family, called Anonymous or Oblivious, pays no attention to the state or

source of the received values. An example is the MSR algorithm [63] described

in Section 4.3.2. The MSR uses the general convergence function FC shown in

Equation 4.1, that executes reduction, selection, and computing the mean.

Another example of anonymous algorithms is the Omission Mean Subsequence

Reduced (OMSR) agreement algorithm introduced in [23]. In contrast to MSR algo-

rithms, OMSR algorithms do not replace the missing values by any default value,

which acts implicitly as a filtering mechanism in the sampling step. Moreover,

the reduction function of both MSR and OMSR voting algorithms depend on the

maximum number of erroneous values expected by a receiving node due to Trans-

missive Symmetric (TS) and Transmissive Asymmetric (TA) faults introduced in the

OTH-5 model [23]. A TS fault occurs when the same erroneous message is received

by all receivers, whereas a TA fault delivers different erroneous values to different

receivers.

In the second family, called Egocentric, nodes prefer values that are closer to their

own value. An example is the Mean Subsequence EgoCentric (MSE) algorithm used

in [58]. During sampling, each node replaces the missing values, or any value that

differs from its own value by more than a threshold φ, with its own value. This

58

family considers the following approximation function [58]:

FC(Vi) = Mean[Selσ(Vi)] (5.1)

The last family is called Egophobic. Here nodes prefer values that are further

away from their own value. An example is the Mean Subsequence EgoPhobic (MSEP)

algorithm [59]. Thus, a node trusts other values more than its own value.

The clock synchronization approach proposed in chapter 4 was based on the

MSR family of algorithms. However, this chapter uses a modified version of MSR

algorithms in order to reduce the impact of omission and malicious behavior. The

modified algorithm is introduced in Section 5.3.1.

5 .2 system and attack model

5 .2 .1 Attack Model

Recall that GPS time is used as a centralized source for synchronization in VANET,

and that manipulating the time component in the GPS signal might coerce vehicles

to interpret received BSMs as outdated if the difference between vehicles exceeds the

BSM time-to-live. Such an attack, i.e., causing the safety application to fail by forcing

the vehicles to discard their received BSMs, was addressed in the previous chapter

under the assumptions that there are no BSM losses, nor are there malicious nodes

that manipulate BSM data. However, BSMs might be lost, corrupted or manipulated

during the synchronization process.

This chapter considers three fault models in addition to the aforementioned

GPS signal faults. The fault models are based on the partitioning of faults in the

Omissive/Transmissive Six-Mode fault model [20] shown in Figure 2.12. The first

fault model considers the strictly omissive asymmetric (SOA) faults. An SOA fault

occurs when a correct message broadcast is received by some but not all receiving

vehicles. The SOA faults might occur due to benign reasons such as shadowing or

fading of signals.

59

The second fault model considers transmissive symmetric (TS) faults. A TS fault

occurs when the same erroneous value broadcast by a malicious node is received by

all receivers. Nodes behaving in this manner are undetectable and aim mainly at

delaying or causing the clock convergence process to fail by changing the selection

criteria of the agreement process. The maximum number of TS faulty nodes is

assumed to be f. We assume that the number of malicious nodes does not exceed

the Byzantine threshold of one third [19], i.e. f < 1
3 |Vi|.

The last fault model is a three-mode fault model that includes the SOA and TS

explained previously. The third fault mode is the Single Error Omissive Asymmetric

(SEA) that occurs when an erroneous value broadcast is received by some but not

by all receivers. The difference between SEA and SOA is the value broadcast, which

is erroneous in SEA but correct in SOA. SEA faults have also been addressed in

[61, 62].

As the aim of this research is to study worst case scenarios, such attacks and

faults are assumed to occur near areas that might be subject to GPS signal outages,

like parking garages or tunnel entrances, as shown in Figure 5.1. Malicious nodes,

which in this case are distributed, are marked red. Different distributions will be

investigated, in order to study their impact on the proposed ECSA.

F igure 5 .1 : Attack model

5 .2 .2 System Model

The nature of the highly dynamic topology of VANETs makes the design of a clock

synchronization protocol challenging. Several variables affect clock convergence

60

speed, such as: 1) the traffic density in terms of the number of vehicles and distances

between them, 2) the sampling step of the agreement algorithms, 3) the scenarios in

which vehicles are merging into a formation, 4) the BSM delivery ratio, and 5) the

presence of malicious attacks. Therefore, a simple VANET model was introduced in

Section 4.2.1 that investigate the impact of these parameters on clock convergence

speed. This model assumes that there are no BSM losses, nor are there malicious

nodes that manipulate BSM data. However, now we assume that less than 1
3 of the

total number of nodes N are malicious, to ensure that the Byzantine threshold for a

neighborhood is not violated. Therefore, f < 1
3 |Vi|. Moreover, BSMs might be lost

due to environmental conditions such as fading or shadowing. The proposed clock

synchronization algorithm synchronizes the local clocks in spite of malicious nodes,

but does not attempt to identify them.

5 .3 enhanced clock synchronization algorithm

The Enhanced Clock Synchronization Algorithm ECSA is based on iterative voting

rounds. Each round executes toward the end of each BSM transmission period.

Therefore, the rounds are initiated approximately 100 ms apart from each other.

The timestamp in each new BSM broadcast is the voted clock value of the previous

round.

At the core of ECSA are agreement algorithms. As described in Section 5.1,

different algorithms have been devised to deal with missing and malicious values.

By taking advantage of the properties of these algorithms, the next section introduces

new ideas to handle the missing values, and making changes to the reduction

function, in order to mask the effect of malicious faults.

5 .3 .1 Agreement Algorithms

The agreement algorithms introduced in this subsection are inspired from the gen-

eral MSR family of algorithms [63]. MSR algorithms follow Equation 4.1. These

algorithms are different in their selection functions. One of the selection functions

is the Fault-Tolerant Midpoint (FTM), which was shown in chapter 4 to be the best

61

selection function for merging vehicle scenarios from among a number of selection

functions tested. The FTM selects the smallest and largest values from the reduced

voting multiset for the mean.

One of the major differences among families of algorithms is in the handling

of missing values, e.g., due to BSM omission faults. The first agreement algorithm

introduced here is the Mean Subsequence with Fixed Reduction (MSFR). It was

inspired by OMSR [23], in that the missing values are not replaced, causing the

voting multisets to vary in size. The main difference between OMSR and MSFR is

that the MSFR uses a fixed reduction function, whereas the OMSR reduction function

depends on the number of faults.

The second agreement algorithm introduced here is the Mean Subsequence Re-

duced History (MSRH). Recall that each vehicle maintains a record for each neighbor

vj in the Sync Table to keep vj’s previous values. The MSRH replaces the missing

clock values with the previous values saved in the Sync Table.

Mean Subsequence EgoCentric with Reduction (MSER) is the third agreement

algorithm introduced. It uses the same preference as the MSE algorithms in [58], i.e.

each node replaces the missing values with its own value. However, unlike MSE, it

adds a reduction function that removes the extreme values from the voting multisets.

The last agreement algorithm introduced is the Mean Subsequence EgoPhobic

with Reduction (MSEPR), which uses the same preference as the MSEP algorithms in

[59], in that a node replaces the missing values with values that differ from its own

clock value before applying the reduction function. In this agreement algorithm,

each node selects the most extreme value from its voting multiset as a replacement

for the missing ones.

5 .3 .2 ECSA

Each vehicle executes ECSA, depicted in Figure 5.2. For the sake of simplicity, the

algorithm will be described from the viewpoint of the HV. ECSA consists of three

major threads. In the first thread, a vehicle continuously receives BSMs broadcast

from the surrounding neighbors. In the second thread, the vehicle executes the

62

agreement algorithm to update its clock value. The last thread broadcasts the new

clock value to be used by other vehicles in their agreement process.

F igure 5 .2 : The Enhanced Clock Synchronization Algorithm (ECSA)

5 .3 .3 Receiving Thread

The receiving thread is depicted in the left part of Figure 5.2. It is responsible for

continuously listening to the medium to receive BSMs transmitted from neighboring

vehicles. The receiving thread iterations are controlled by a Timer, initialized to 0,

which controls the time spacing of agreement rounds. The thread executes as long

63

as Timer < 100ms− ∆o, before transferring control to the agreement thread. Here

∆o represents the projected overhead of the agreement thread computations. This

allows the agreement thread to calculate the new voted clock value based on the

freshest information available.

Upon receiving a BSM from any vehicle vj, the receiving thread extracts vj’s

identification (VID), timestamp and heading (direction). The extracted timestamp is

assumed to be the latest voted clock value of vehicle vj. Each vehicle maintains a

record for each of its neighbors in a Sync Table. For each BSM received from vj, this

record holds the extracted information and the corresponding HV’s local time.

Based on vj’s VID, the receiving thread looks for vj’s record in the Sync Table. If

the VID is not found in the table, vj is considered a new neighbor and a new record

is created for it. Otherwise, vj’s record is updated by the latest information received.

An HV detects an out of range vehicle by continuously monitoring the last BSM

received from it. If no BSM has been received from a vehicle vj for a predetermined

period of time, vj’s record is deleted from its Sync Table and the neighbor counter is

decremented.

The receiving thread initiates the agreement thread ∆o time units before the Timer

reaches the BSM transmission period.

5 .3 .4 Agreement Thread

The agreement thread is depicted in the right part of Figure 5.2. Agreement is

executed only once in each voting round if the HV has received new BSMs. The

agreement thread executes two main steps: The first step is an adjustment to the

timestamps tRV(j) from the Sync Table as described in Subsection 4.2.1. These ad-

justed values tk(j) are then sorted in a voting multiset Vi. In the second step, the

agreement algorithm is executed to obtain a new clock value. The agreement thread

applies one of the agreement algorithms introduced in Section 5.3.1. The behavior

of each agreement algorithm will be described in Section 5.4.

At the end of each voting round, HV uses the voted clock value as its new

local clock. The voting algorithm is said to be single-step convergent if the global

diameter δ(Ug) is reduced after each voting round [50]. This ensures the clocks

64

will be synchronized after a finite number of voting rounds. For any vehicle vi, the

agreement thread could be skipped if the local diameter δ(Vi) becomes less than a

predefined tolerance ∆tol. However, we suggest to keep the agreement thread always

running as an augmentation to GPS synchronization.

5 .3 .5 Sending Thread

The sending thread is depicted in the bottom part of Figure 5.2. It is initiated either

at the beginning of the agreement thread, if the HV has no neighbors, or the end

of the thread, after the local clock was updated with the voted clock value. The

sending thread is responsible for creating and sending new BSMs that include the

latest vehicle status information and the new voted clock value, which will be used

in the voting rounds of other vehicles. Having a new local clock value might affect

the Sync Table time-data consistency as the receiving time of the latest BSMs for each

neighbor is based on the HV’s old clock value. Based on HV’s old clock value told,

its new voted clock value tnew, and the receiving time tHV(j) saved in the Sync Table,

an adjustment is needed to preserve Sync Table data consistency. Specifically, the

difference between told and tHV(j)(old) in each record is calculated and subtracted

from tnew as shown in Equation 5.2, where tHV(j)(old) refers to the receiving time

based on the old clock value and tHV(j)(new) refers to the receiving time based on the

new clock value.

tHV(j)(new) = tnew − (told − tHV(j)(old)) (5.2)

This adjustment keeps the Sync Table data up to date and enables the ECSA to track

omissions and out of range vehicles.

5 .4 simulations and analysis

The performance of the ECSA in a VANET was evaluated using simulations divided

into two parts. The first part was concerned with the mobility model of the moving

vehicles, whereas the second part focused on network simulation using the network

simulator NS3. Two different mobility models were considered in order to test the

65

effectiveness of the ECSA using diverse simulation scenarios and parameters. The

first model, referred to as Model 1, was based on the Constant Velocity Mobility Model

of NS3, which is used to simulate the system model described in Section 4.2.1. The

second model, referred to as Model 2, was generated using Simulation of Urban

MObility (SUMO), which imitates a real VANET environment.

5 .4 .1 Simulations and Analysis of Model 1

According to the system model presented in Section 4.2.1, the simulation model

consisted of N vehicles moving on a two-lane unidirectional road with the same

static velocity. Vehicles were divided into two fully connected clusters, where each

cluster consisted of N/2 vehicles. Inter-vehicle distances di,j were constant and equal

to the two seconds safety distance rule, whereas the inter-cluster distance dCL(1,2) was

varying as depicted in Figure 4.2.1. Table 5.1 shows the values for different traffic

densities (Low, Medium, High) used in the simulations. However, the results shown

in this section are based on high traffic density, and only a summary of the other

scenarios will be presented.

Table 5 .1 : Traffic density parameters

Low Medium High
N 20 40 80

di,j (m) 60 30 15

Velocity (m/sec) 30 15 7.5

All vehicles in the simulations were subject to the GPS time spoofing attack

described in Subsection 5.2.1. The clock values of vehicles were initialized with

random clock values consistent with the GPS time spoofing attack. The time differ-

ence between the initial clock values were set to more than BSM time-to-live, which

is 500ms [38]. Recall that the EEBL safety application should discard outdated

messages, which without clock synchronization could lead to failure. Thus, each

vehicle executes the ECSA in augmentation to GPS synchronization. Furthermore,

recall that agreement is achieved if the local diameter δ(Vi) of each vehicle becomes

less than ∆tol, which is assumed to be the aforementioned 500ms.

66

Simulations in this model were conducted 50 times and for each case the worst

results for each algorithm and vehicle density were selected for the figures below.

The reason for this selection is that we are concerned about worst cases and not

averages.

Figure 5.3 depicts the ECSA clock convergence speed. This figure assumes the

network encounters no faults, i.e., no omissions or malicious behavior. The scenarios

are thus fault free and are referred to as NoFault scenarios. The x-axis of the

F igure 5 .3 : Convergence speed for different scenarios under GPS time spoofing
attack

simulation results in this simulation model (Model 1) represents six scenarios. Each

simulation scenario is related to the network model described in Subsection 4.2.1,

where communication links between clusters increase for higher numbered scenar-

ios. In contrast to Figure 4.2.1 that shows four scenarios, Figure 5.3 shows all six

scenarios with scenario S6 resulting in a fully connected communication topology

between the two clusters. The y-axis represents the maximum number of rounds to

reach agreement, observed over all 50 simulations. It can be seen that scenario S4,

shown in Figure 4.2.1-S4, is the worst case scenario. It took 14 rounds, accounting

for 1.4s, to synchronize. This is due to the fact that vehicles in this scenario have

a voting multiset with the least number of values from the other cluster after the

reduction function was applied. In fact, this is the first scenario in which values

from other clusters are considered in voting multisets. The results for lower traffic

67

densities were very consistent with those of the higher traffic densities in terms of

ECSA convergence speed and the worst case behavior.

The simulation scenarios presented above assume that all BSMs were received

successfully. Now consider the Strictly Omissive Asymmetric (SOA) faults that cause

some BSMs to be omitted due to environmental reasons such as fading or shadowing.

According to the IEEE standard [64] Packet Error Rate (PER) of 10% should not be

exceeded. Assume that SOA faults will not exceed 10% of the transmitted BSMs

during any voting round. Any BSM subjected to SOA faults will thus be received by

at least 90% of the RV neighbors.

Figure 5.4 shows the clock convergence speed of the four algorithms, as well as

the NoFault case described above. The NoFault case embedded in the figure is used

as a reference. SOA faults may affect each vehicle differently, as some may receive

a BSM and others may not. As can be seen, the convergence speed of the ECSA

using MSRH and MSFR were rather unaffected by such faults. In all but scenario S1

they are identical. MSEPR converged much slower than all others in scenario S3 and

MSER in S4. For MSEPR, this was due to the fact that it replaces the missing values

with the extreme values, which are then eliminated using the reduction process. In

the case of MSER, the convergence was slowed down because a node uses its own

value for each missing value, essentially slowing down the propagation of values

from the other clusters.

F igure 5 .4 : SOA faults impact on ECSA convergence speed in Model 1

68

The previous singular fault model, i.e., the SOA model, assumes no malicious

behavior. However, a VANET might suffer from Transmissive Symmetric (TS) faults

caused by malicious nodes. For the singular TS fault model, the simulations assumed

that 30% of the vehicles are malicious. These faults can behave in the worst possible

case by having the faulty nodes in one cluster produce the lowest extreme values,

and the faulty nodes in the other cluster the highest extreme values. This would

force one cluster to select and ultimately produce a low voted value, and the other

cluster a high voted value. In essence, the faulty nodes can increase the gap in the

voted values, which leads to a higher number of rounds for agreement.

Different distributions of faults have been tried to understand their impact on the

ECSA’s convergence speed. Figure 5.5 depicts different fault distributions for the

low traffic density scenarios. Figure 5.5a shows the Center distribution, where the

malicious nodes (marked with yellow) of each cluster are concentrated in the area

closest to the other cluster. Figure 5.5b displays the One-End distribution, where

the malicious nodes of each cluster are concentrated at one end of their cluster.

The Scattered distribution is shown in Figure 5.5c, where the malicious nodes are

randomly distributed over both clusters.

F igure 5 .5 : Different distributions of malicious faults

Figure 5.6 shows the ECSA convergences speeds for the TS fault distribution

in Figure 5.5. ECSA can handle such malicious activity as long as the malicious

nodes percentage does not exceed the reduction function limit applied to the voting

69

multiset. However, simulations showed that the malicious nodes were able to slow

down clock convergence speeds in comparison to the non-malicious fault scenarios.

It can be seen that the Center distribution has the worst impact on ECSA, whereas

the One-End has the least impact. This is due to the fact that the nodes located in

the center of the simulation area are responsible for the clock convergence between

merging clusters. Since the malicious nodes in the center behave in the worst manner

by broadcasting the extreme values, their values are eliminated by the reduction

function, thus delaying convergence.

F igure 5 .6 : TS faults impact on ECSA convergence speed in Model 1

Now consider the hybrid fault model for the scattered distribution. Recall that

this model consists of SEA, SOA, and TS faults. A receiving node can experience an

omission due to SOA or SEA faults. In addition, a node might receive an erroneous

value from an SEA faulty node or experience an omission from the same node. From

the perspective of a receiving node, the total number of SEA and SOA faults, denoted

by NSEA and NSOA respectively, account for both transmissive and missing values.

If NSEA(a) and NSEA(o) denote the number of erroneous and missing erroneous

values respectively, then NSEA = NSEA(a) + NSEA(o). Since we assume at most

10% omissions, due to the fact that the Packet Error Rate (PER) should not exceed

10% [64], NSEA(o) + NSOA ≤ 0.1 NBSM, where NBSM is the total number of BSMs

generated per round. Additionally, it is assumed that NSEA(a) + NTS ≤ 0.3 NBSM,

where 30% is the reduction applied to a voting multiset and NTS is the total number

70

of TS faults. This implies that NSEA + NTS ≤ 0.3 NBSM + NSEA(o), which leads to

NSEA + NTS ≤

(0.3 + 0.1) NBSM − NSOA = 0.4 NBSM − NSOA

and

NTS ≤ 0.4 NBSM − (NSOA + NSEA)

Figure 5.7 shows the hybrid fault model impact on the convergence speed of

the ECSA using different agreement algorithms. Both MSFR and MSEPR failed to

converge before the set simulation round limit of 300, which accounts for 30s. This

is because the impact of TS on the agreement process depends on the replacement

preference of the omitted clock values and the total omissions, i.e., NSOA + NSEA(o).

Thus, not replacing the missing values as in MSFR, or replacing the missing values

with extreme values as in MSEPR, allows the TS fault percentage to overwhelm the

assumed reduction limit. The convergence time using MSRH or MSER also increased

F igure 5 .7 : The ECSA convergence speed using the hybrid fault model for
scattered malicious node distribution

significantly over No-Fault, most noticeable in scenario S4.

71

5 .4 .2 Simulations and Analysis of Model 2

In this simulation model denoted by Model 2, we coupled the traffic simulation

tool SUMO with network simulation tool NS3. The reason for selecting SUMO as

a road simulation tool lies in its strong capability of traffic mobility generation that

imitates the real VANET environment. The chosen simulation area was the two-lane

unidirectional Brooklyn-Battery Tunnel, renamed Hugh L. Carey Tunnel.

Unlike the previous model, the inter-spacings between vehicles are not static and

vehicle velocities were randomly selected around the tunnel speed limit. Specifically,

the vehicle velocities limit were 15 m/sec ±1.5 m/sec. The real traffic density of the

tunnel considered in this model is 38 vehicles per minute, based on traffic volumes

presented in [65]. However, different numbers of vehicles were simulated in this

tunnel, i.e., 20, 40 and 80 vehicles, using the same traffic density of the tunnel. These

parameters created different voting multiset sizes for each vehicle. Figure 5.8 shows

the clock convergence speed of the ECSA subjected to GPS time spoofing attack only.

No other faults such as omissions, or malicious vehicles were assumed.

F igure 5 .8 : Convergence speed of ECSA under GPS time spoofing attack using
SUMO simulation

Vehicles in this simulation model are subject to the fault model introduced in

Subsection 5.2.1, which was also applied to Model 1. Figure 5.9 shows the impact

of the SOA faults on the ECSA convergence speed using different agreement algo-

72

rithms, as well as the NoFault case shown in Figure 5.8. Recall that 80 vehicles were

used in the simulation scenarios of Model 1, whereas 20, 40, and 80 vehicles were

used in Model 2. Now consider the performance of different agreement algorithms

in case of, 1) the worst case scenario of Model 1, shown in Figure 5.4, and 2) the

simulation results using 80 vehicles in Model 2 shown in Figure 5.9. It can be seen

that the simulation results are consistent in both models in such cases. The main

difference is that MSEPR produces faster convergence in Model 2 compared with

Model 1. This is due to the dynamic nature of simulation Model 2, where the worst

case scenario is not guaranteed as in Model 1.

F igure 5 .9 : SOA faults impact on ECSA convergence speed in Model 2

The second singular fault model in Model 2 considers TS faults only. In this

model, only the scattered distribution of malicious nodes is considered. Recall that

vehicle neighborhood size might change during the simulation. However, no more

than 30% of the TS faults are allowed to exist in the voting multiset for any vehicle

at any time during the simulation. Figure 5.10 shows the impact of the scattered

malicious nodes distribution on the ECSA along with the no fault model. As can

be seen, the impact of malicious behavior is worse compared to the worst case in

Model 1 shown in Figure 5.6.

Finally, consider the hybrid fault model for Model 2. Figure 5.11 shows the

hybrid fault model impact on different agreement algorithms used in the ECSA. The

73

F igure 5 .10 : The impact of singular TS fault model on ECSA convergence speed
in Model 2

observation is that the omission faults strengthen the impact of TS faults compared

with the results shown in Figure 5.9 and Figure 5.10. It can also be noticed that the

simulation results of this Model shown in Figure 5.11 are consistent with those in

Model 1 shown in Figure 5.7. Specifically, both MSFR and MSEPR failed to converge

before 300 rounds, whereas, both MSRH and MSER successfully converged before

such bound, even though it took considerable time to do so in the case of high traffic

density.

F igure 5 .11 : Hybrid fault model impact on ECSA convergence speed in Model 2

using scattered malicious node distribution

74

Table 5.2 summarizes the impact of different fault models on both simulation

models presented above. Recall that the focus of the simulations was on the patho-

logical (worst case) scenarios, and not on the best or average behavior. This table

shows the worst number of rounds to reach agreement observed in each simulation

scenario. The column labeled Model 1 shows the results among the six simulation

scenarios in the first simulation model, whereas the column under Model 2 is the

result using 80 vehicles in the second simulation model. The table further indicates

that MSRH and MSER agreement algorithms perform better in comparison to other

agreement algorithms.

Table 5 .2 : Performance comparison (in rounds) of the agreement algorithms under
Model 1 and Model 2

Model 1 Model 2

No SOA Nor TS 14 26

Strictly Omissive Asymmetric Faults

MSFR 14 39

MSRH 14 30

MSER 29 54

MSEPR 23 16

Transmissive Symmetric Faults

Scattered Distribution 38 212

Hybrid Fault Model

MSFR Exceeded 300 Exceeded 300

MSRH 55 239

MSER 213 191

MSEPR Exceeded 300 Exceeded 300

5 .5 conclusions

This chapter addressed the clock synchronization problem in vehicular ad-hoc net-

work (VANET). The proposed Enhanced Clock Synchronization (ECSA) is not meant

to be a tight clock synchronization protocol, but to tolerant GPS time spoofing

75

attacks in the presence of omission and malicious faults. It is an augmentation to the

GPS synchronization protocol to enhance the reliability of DSRC safety applications.

The effectiveness of ECSA was demonstrated using the electronic emergency brake

light (EEBL) safety application, where time spoofing attacks would have otherwise

caused safety applications to disregard seemingly outdated messages, thus causing

application failure.

The ECSA utilized different agreement algorithms based on approximate agree-

ment (AA). The performance of these algorithms was analyzed by simulations un-

der two different mobility models using NS-3 and SUMO. The analysis and the

simulation results showed the stability and effectiveness of the ECSA over different

simulation scenarios. ECSA offers higher clock synchronization reliability while not

requiring any extra hardware nor producing additional message overhead that is

prevalent in most agreement algorithms.

76

chapter 6

Clock Synchronization with Connected and Autonomous

Vehicles

Tomorrow’s transportation system is expected to include a mix of autonomous and

connected vehicles. Such mixed vehicle model presents challenges in their coex-

istence, due to very different sensing technologies. In order to reduce accidents,

safety applications have been introduced, which rely on wireless communication.

Examples for connected vehicles are the DSRC Intersection Collision Avoidance

and Intersection Movement Assist safety application. Autonomous vehicles should

have the same communication capabilities as connected vehicles in addition to their

onboard sensors. This is to overcome hazard detection limitations of line-of-sight

sensors, especially in situations with blocked visibility such as in the aforementioned

collision avoidance applications.

As concluded in Chapter 4, that DSRC safety applications require that vehicles

are time-synchronized. Otherwise, safety applications might discard the received

information as it could be considered to be outdated [38]. Recall that, time synchro-

nization in VANET is based on GPS time signals, which migh suffer from signal

reflections and short-term outages in urban areas. For example, the chance of

receiving a clear GPS signal in urban areas such as Hong Kong, Tokyo, or New York

is less than 20% [66]. Furthermore, vehicles may be subjected to GPS time spoofing

attacks, where an attacker injects wrong GPS time stamps in the GPS signal, thereby

causing a clock synchronization problem. Such faults may cause safety applications,

such as the ICA, to discard received messages perceived outdated.

In this chapter, we assumed a mixed traffic model with user-operated connected

vehicles and autonomous vehicles. In such environment, we can show that an

Autonomous Vehicle (AV) with its typical line of sight sensing capability using lidar,

radar, and/or cameras, may not be able to avoid intersection crashes similar to ICA.

For example, sensing a crossing RV might be delayed in areas where large objects

or buildings block the line of sight. It will be shown that augmenting the AV with

77

V2V communication capability can help overcome these limitations as it provides

valuable information beyond line of sight, in addition to the onboard sensors used.

Moreover, we introduce a Clock Synchronization Algorithm for VANET that

overcomes GPS time faults. The proposed algorithm is based on the clock syn-

chronization approach presented in Chapter4 and aims to mitigate the ICA safety

application failure. The proposed algorithm considers omission faults, where mes-

sages may be lost or are corrupted. Such faults may occur due to environmental

conditions like shadowing and fading of the signal. The proposed algorithm uses a

new approximate agreement algorithm that has the capability to handle omissions.

The performance of the algorithm was evaluated using NS3 simulations combined

with Simulation of Urban MObility (SUMO).

6 .1 related work

Several approaches to solve the clock synchronization problem in ad-hoc networks

have been proposed. As described in Section 4.1, they are classified into two cate-

gories: centralized and decentralized [48]. The centralized approaches use a central

clock source such as GPS [51], whereas the decentralized approaches are based on

an iterative agreement process, in our case using approximate agreement.

Approximate agreement is conducted using a sequence of iterations, i.e.,rounds,

in which the nodes’ clock values converge to approximately the same value. In each

round, every node broadcasts its current clock value to its neighbors. A node then

updates its own value by applying a convergence function to the received values,

which is then used in the next round of voting. An example of an agreement

function is MSR [63], described in Section 4.3.2, that applies the three main functions:

reduction, selection, and mean. However, this research uses an agreement algorithm

based on the OMSR was proposed in [23] and discussed in Section 5.1.

78

6 .2 motivational field test

To test the reliability of V2V communication for the ICA safety application in an inter-

section where large buildings limit line of sight, a field experiment was conducted

at the University of Idaho campus using vehicles equipped with Arada Locomate

Classic OBUs [4]. Figure 6.1 shows the field experiment location and setup, with the

target intersection identified by a circle in the northwest location. Two vehicles were

used in the experiment, one traveling westbound with a stop sign at the intersection,

and the other northbound in a straight path. The vehicle marked by a red dot was

the RV traveling on the crossing path with a stop sign of the HV marked by a green

dot, with starting distances to the target intersection identified. The line of sight

between the vehicles was obstructed by the building shown. Table 6.1 shows the

245m 316m

200m

HV

RV

F igure 6 .1 : Field experiment Location

OBU configuration used for the field test.

Figure 6.2 shows the BSMs received by the HV per second in the absence of ma-

licious act for a typical test case. The figure shows the number of BSMs received by

79

Table 6 .1 : Field test parameters

OBU Model Arada Systems LocoMate Classic
Number of OBUs 2

Vehicles speed 5 m/sec
BSM generation 10 packets/s
Channel Safety Channel 172

Transmitter power 21 dBm
Data rate 6Mbps

F igure 6 .2 : Received BSMs during the field experiment

the northbound HV from the westbound RV as they both approach the intersection.

The starting locations of both vehicles at time zero are the colored dots shown in

Figure 6.1. In this specific case initially BSM reception was low or absent during

the first 23 seconds, and increased afterwards. It should be mentioned that the

experiments were conducted during real traffic condition, where unrelated vehicles

were in front of the RV, and light rain resulting in high humidity and wet asphalt.

In all cases it was found that DSRC suffered from omissions due to the buildings

impacting communication. However, the BSM delivery rates were sufficient for the

ICA to function properly. It should be noted that the reception of only one BSM

is sufficient for ICA to function. In similar field experiments in open space such

omissions were not observed at such distances.

In intersections with visual obstruction by large objects, such as shown in the

northwest of the scenario in Figure 6.1, an AV without DSRC communication may

not have sufficient time to detect an RV approaching the intersection. Thus, without

line of sight, a crash may not be avoidable, as will be demonstrated at the end of Sec-

80

tion 6.4. This strongly suggests that DSRC communication capability be required for

both human-driven vehicles and AVs to avoid possible intersection crash scenarios.

In the latter case this is to compensate for the lack of line of sight.

6 .3 clock synchronization algorithm considering

omissions

In this section, we propose a clock synchronization algorithm inspired by the algo-

rithm introduced in Section 4.3. The new algorithm can handle GPS signal outages

and GPS time spoofing attacks in the presence of Strictly Omission Asymmetric

(SOA) faults. The latter implies that one or more vehicles do not receive a BSM.

The algorithm aims to enhance the ICA safety application reliability in the presence

of such faults. Figure 6.3 presents the algorithm, which is divided into three main

threads, i.e., BSM collection, agreement, and transmission thread.

In the BSM collection thread, the algorithm collects the BSMs received from the

neighboring vehicles. Upon receiving a BSM, the transmitter vehicle ID and its

timestamp are retrieved. Recall that the timestamp is the creation time of the BSM

at the transmitter side. Each vehicle maintains a table called Sync Table to save the

extracted information. The Sync Table has one record for each neighbor. A record

contains the latest extracted information received, combined with the receiving time

based on the receiver’s local clock value. This record can be identified by the

neighbor’s vehicle ID.

The collection thread iterations are controlled by a Timer, initialized to 0, which

controls the time spacing of agreement rounds. The thread executes as long as

Timer < 100ms − ∆o, where ∆o represent the agreement thread computation over-

head. The agreement thread is initiated after Timer is expired. It is assumed that

each vehicle has at least one neighbor to be able to run the agreement process. The

agreement thread is executed only once per voting round. It consists of four main

steps.

The first step of the agreement thread is data retrieval. The stored timestamps are

retrieved and missing values are detected. The missing values can be easily detected

81

F igure 6 .3 : VANET clock synchronization algorithm

as each vehicle keeps the receiving time of the neighbors BSMs. Inspired by the

OMSR agreement algorithm, the missing values are not replaced with any default

value.

The second step performs adjustment and sorting. The retrieved times are ad-

justed similarly to [54]. The purpose of this step is to use fresh timestamps at the

time agreement is initiated, denoted by tvote. Any timestamp tRV(j) for any neighbor

vj is adjusted by the time difference between the receiving time of the BSM, denoted

by tHV(j), and time tvote. The adjusted timestamp tj is thus computed as

tj = tRV(j) + (tvote − tHV(j)) (6.1)

82

These timestamps are then sorted to form the final voting multiset.

The third step is the application of MSFR, which uses the MSR convergence

function, however, unlike OMSR, it applies the reduction function Redτ with fixed

τ in order to remove the smallest and largest values from the voting multiset, pro-

ducing the reduced multiset. Different reduction percentages will be analyzed in

Section 6.4. The proposed algorithm applies the FTM selection function Selσ to the

reduced voting multiset. FTM obtains the mean of the largest and smallest value

selected from the reduced multiset. FTM was determined to be the best selection

function for scenarios where vehicles are merging [60]. The mean is considered as

the voted clock value. Finally, the voted clock is set to be the new local clock.

The transmission thread is executed next. It is responsible for 1) broadcasting

the new BSM containing the local clock value to be used by the vehicle’s neighbors

in their agreement process, and 2) updating the Sync Table. Recall that neighbor

information is saved in the Sync Table combined with the receiving time tHV(j) of

this information. Thus, the Sync Table must be revised to account for the local clock

value derived in the agreement process. This keeps the Sync Table up to date and

enables the clock synchronization algorithm to track omissions. The new tHV(j)

value is calculated and updated in the Sync Table for each record using Equation 5.2

described in Subsection 5.3.5.

6 .4 simulations and analysis

This section shows the effectiveness of the proposed clock synchronization algorithm

for different traffic densities using simulations and field-experiments.

6 .4 .1 Simulation Results

Simulations are divided into two main parts. The first part is concerned with the

mobility model generation for the moving vehicles. It was conducted using Simu-

lation of Urban MObility (SUMO) that emulates a real world VANET environment.

The second part discusses network simulations using the network simulator NS3.

83

The simulations consisted of N vehicles moving on intersecting two-lane unidi-

rectional roads. Vehicles were divided into two clusters, where each cluster was

moving in the cross path direction of the other cluster. Vehicle speeds were random

and bounded by the road speed limit. The leading vehicles of each cluster were

configured to arrive the intersection point at the same time, effectively simulating

a potential crash scenario. A BSM transmission range of 300m was assumed in

an unobstructed environment, e.g., no buildings or other obstacles were simulated.

Some BSMs could be lost due to phenomena like fading or shadowing, resulting in

SOA faults [23]. Specifically, 10% of the transmitted BSMs during simulations were

assumed to be omissions causing SOA faults, which is consistent with the Packet

Error Rate (PER) of [64].

In the simulations, all vehicles of the cluster led by the RV were subjected to

GPS time spoofing attacks. Their clock values were initialized with random values

consistent with such an attack. Time spacings between initial values were chosen to

be more than the BSM time-to-live [38], which might force the ICA safety application

to discard the BSMs perceived as outdated. Each vehicle in the simulation executed

the proposed clock synchronization algorithm introduced in Section 6.3.

F igure 6 .4 : SOA impact on clock convergence speed [in rounds]

Figure 6.4 depicts the clock convergence speed for the proposed algorithm in the

absence and presence of SOA faults for different speeds. The notation (SOA) added

84

to the ledger identifies those simulations that assumed the SOA fault model. The x-

axis of the figure refers to the number of vehicles implemented in the simulation. The

y-axis represents the number of rounds consumed until the agreement was reached.

Each round accounts for a 100ms time span, which is the BSM transmission interval.

Recall that agreement is achieved when the clock values of all communicating vehi-

cles are within less than 500ms, i.e., the BSM time-to-live. In the case of 11 vehicles,

synchronization was achieved in 10 rounds for all speeds and fault scenarios. This

equal convergence speed is due to all vehicles being within the communication range

of each other, i.e., the communication graph was fully connected within the same

cluster. As traffic density increased, the impact of partially connected clusters caused

agreement to take more rounds.

F igure 6 .5 : SOA impact on distance to crash [in meters]

Figure 6.5 shows the impact of clock convergence on the remaining distance to

the crash point. The ICA scenario can be visualized as a triangle with right angle,

where each cathetus represents the traveling path of a vehicle and a hypotenuse is

equal to the line of sight distance between vehicles. If one assumes the maximal

BSM transmission distance of 300m (hypotenuse), then the point where the leading

vehicle of both clusters start to communicate is approximately 212m (cathetus). The

y-axis of the figure indicates the distance to the crash point after the clocks have been

85

synchronized to less than 500ms. For each scenario in Figure 6.4, Figure 6.5 shows

the remaining distance to the crash point. As can be seen, the more rounds are

needed for synchronization the shorter the remaining distances to the crash point. It

should be noted that even if scenarios have the same number of rounds, the distances

may be different depending on the speed of the vehicles.

Recall that the MSFR agreement algorithm applies fixed reduction percentages to

the voting multiset during the agreement process. Different reduction percentages

were applied and their impact on the proposed algorithm and the ICA safety appli-

cation was studied. Specifically, reductions of 0%, 15% and 30% were used in the

simulations. In this chapter, reductions are not used to deal with erroneous values as

in [23], but to allow fast synchronization of vehicles merging a synchronized cluster.

An example of merging is a vehicle joining a synchronized cluster from side street.

If the number of merging vehicles is below the reduction value, then one-round

synchronization is achieved.

Figure 6.6 shows the impact of reduction on convergence speed, and Figure 6.7

shows respective remaining distances to the crash point. As can be seen, higher

reduction percentages increase the number of rounds to converge, hence reducing

the remaining distance to the crash point. The intuition is that the higher reduction

removes more values from the voting multiset, in essence discarding more values

from the other cluster that could otherwise have higher impact on the convergence

speed.

Let’s consider the effectiveness of ICA. For the speed of 25mph, all distances in

Figure 6.7 are sufficient to alert the driver early enough to react and stop the vehicle

before the crash point, as will be described in the case of 30% reduction. This is

the most interesting scenario, as it leaves only 123m to impact. Assuming a reaction

time of 1s (11.2m for 25mph) and considering almost 19m braking distance on wet

asphalt (see Table 2.1), this leaves a safety buffer of about 95m. Looking at Figure 6.1,

such distance allows for plenty of additional time to satisfy Rsa f ety (see Figure 2.10).

The results of the figures above are for the ICA safety application. In fact the im-

pact of reduction on clock convergence speed depends on the safety application. For

example, the results presented in [60] for the EEBL safety application showed that

86

66

87

11 Vehicles 23 Vehicles 35 Vehicles
of Rounds

10

29

38

12

42

66

13

51

0 15 30 Reduction %

F igure 6 .6 : Impact of reduction percentages on convergence speed at 25mph

202
183

174

200

170199

11 Vehicles 23 Vehicles 35 Vehicles

Distance (m)

144159

123

0 15 30 Reduction %

F igure 6 .7 : Impact of reduction percentages on convergence speed at 25mph

convergence speed did not deteriorate for higher reduction percentages. The reason

behind this behavior is the relative speed of clusters in the two safety applications.

For the ICA the speed at which clusters approach each other is significantly higher

than that of EEBL, where the relative speeds of the clusters differed only slightly.

6 .4 .2 Field-Test Analysis

First we show the necessity of AV’s to have DSRC capability. Let’s assume the

test scenario shown in Figure 6.8, where the northbound (green) vehicle is an AV

operating without DSRC capability. Given the geometry of the intersection of the

87

test site, the AV will have no visibility of the RV until 18m to the crash point, as

its view is obstructed by the building. However, from Table 2.1 we can see that the

brake distance alone is 18.3m. Accounting for some time for the AV to detect the RV,

we can conclude that a crash will not be avoidable.

AV

RV

18m

F igure 6 .8 : Collision avoidance of scenario with AV without DSRC

Now consider the field test of Figure 6.1, and assume the vehicle has DSRC

capability. In a two vehicle scenario, as shown, it would take only two rounds to

synchronize clocks. With only a fraction of the BSMs received in Figure 6.2 there is

ample time for the ICA to alert the driver with plenty time to react. Even if we had

the same number of vehicles as in the simulated scenarios, a collision would have

been avoided. This can be deducted by establishing an upper bound from the worst

case scenario in Figure 6.6, which showed 87 rounds before convergence for the

largest vehicle cluster and greatest reduction. Taking the BSM reception ratios from

the field test, this translates into a convergence time of approximately 7 seconds (or

77m) before reaching the crash point. This leaves plenty of time to react and brake.

Finally, if the green vehicle in Figure 6.1 would have been a DSRC-enabled AV,

the results would have been even better than that of an HV, as its reaction time could

be arguably superior to that of a human.

88

6 .5 conclusions

This chapter addressed the impact of clock synchronization problems on the Inter-

section Collision Avoidance safety application subjected to GPS outages or GPS time

spoofing. It has been shown that such faults can cause safety applications to fail

as messages from attacked vehicles appear outdated and are discarded. A mixed

traffic model was assumed with user-operated connected vehicles and autonomous

vehicles. To mitigate the faults, a decentralized clock synchronization algorithm

based on approximate agreement was introduced, with the additional capability

of dealing with omission faults. The algorithm was studied using the Intersection

Collision Avoidance safety application. Its effectiveness was analyzed using NS3 and

SUMO simulations, as well as field tests using vehicles equipped with commercial

DSRC devices. The simulation results show that clock synchronization was achieved

in a timely manner for different traffic densities and speeds, in spite of GPS time

spoofing and omissions. The proposed algorithm does not incur additional message

overhead, as it only uses the standard basic safety messages.

With respect to autonomous vehicles, the field tests demonstrated that DSRC

capability for autonomous vehicles is crucial. In the test cases autonomous vehicles

without such communication were not able to avoid crash scenarios.

89

chapter 7

Conclusions and Future Work

This research considered VANETs and several safety applications that aim to reduce

road accidents. Several fault types, ranging from benign to malicious, and their

impact on the reliability of DSRC safety applications were studied. The faults

considered were the result of wireless jamming and GPS time spoofing attacks. Four

different mitigation strategies aiming to improve safety applications reliability were

proposed. Such strategies can be implemented into the safety application design.

They were tested through field tests, lab experiments, and simulations sing NS3 and

SUMO. Test results showed the effectiveness of the proposed approaches. The algo-

rithms do not require extra hardware overhead nor do they require modifications of

existing standards.

As our first contribution, we introduced a new hybrid jammer attack that com-

bines the properties of constant and deceptive jammers in addition to characteristics

resembling random jammers. It exposed queuing behavior that was exploited for

effective attack strategies. Two attack scenarios for stationary and mobile jammers

were presented together with their impact on the EEBL safety application, however,

we expect that the jammer will have similar implications for other DSRC safety appli-

cations. Experiments were conducted with commercial DSRC equipment, validating

the expected impact of the jammer.

As a second contribution, a hybrid jamming detection algorithm was presented as

a mitigation strategy for the above attack. The proposed algorithm was implemented

inside the receiving thread of the Arada Locomate Classic OBU in order to be tested.

It can distinguish between legitimate nodes subjected to the hybrid jamming attack

and misbehaving nodes. The test results showed the effectiveness of the proposed

algorithm as long as the OBUs were time-synchronized.

The third contribution was inspired from the previous one, where clock syn-

chronization problems were noticed during testing the hybrid jamming detection

algorithm. In this contribution, we introduced a decentralized clock synchronization

90

protocol for VANET, capable of mitigating GPS signal outages and GPS spoofing

attacks. It is based on approximate agreement, where all vehicles participate in

the synchronization process. Among several selection functions, which were imple-

mented in the agreement algorithm, Fault Tolerant Midpoint was identified to per-

form best, especially in worst case scenarios. The results presented were supported

by simulations using Network Simulator Version 3 (NS-3). The proposed protocol

was superior compared with existing protocols like CTS and HCS, in terms of clock

convergence speed, extra hardware overhead, and compliance to standards.

As a fourth contribution, an enhanced clock synchronization algorithm (ECSA)

for the previous clock synchronization process was presented. ECSA has the capa-

bilities to handle GPS spoofing attacks in the presence of omissions and malicious

faults. It is also based on approximate agreement, where new agreement algorithms

were introduced and their behavior were investigated. Results were supported by

simulations using NS-3, based on two different mobility models. The theoretical

analysis and the simulation results show the stability and effectiveness of the ECSA

over different simulation scenarios.

As a fifth and final contribution, we introduced a clock synchronization algorithm

that considers a different safety application in a mixed traffic model with user-

operated connected vehicles and autonomous vehicles. Specifically, the algorithm

aims to mitigate the GPS spoofing attack in the Intersection Collision Avoidance

safety application in the presence of omission fault. Its effectiveness was analyzed

using NS3 and SUMO simulations, as well as field tests using vehicles equipped

with commercial DSRC devices. Field experiments shows that the DSRC capability

for autonomous vehicles is crucial, or they might not be able to avoid intersection

crash scenarios, especially when the view is blocked. Furthermore, the algorithm

proved effective in mitigating GPS time spoofing attacks, even in environments

where communication was affected by large buildings.

91

7 .1 future work

This research can be the basis for several extensions. First, regarding wireless

jamming attacks, which are considered to be common and easy to implement, it may

be useful to employ counter measures upon detection. For example, for constant

jammers various techniques such as frequency hopping and channel surfing may be

considered, and their impact on reliability could be analyzed.

Second, we have proposed several clock synchronization algorithms where the

main goal is not tight synchronization, but fast synchronization to increase safety

application reliability. It would be interesting to consider a tighter clock synchro-

nization tolerance for the proposed protocol. As shown in Chapter 6, the behavior

of the clock convergence changed by changing the safety application and changing

the crash scenario. Thus, other safety applications should be considered and their

behavior should be investigated.

Third, we have assumed the use of fixed reduction percentages during the agree-

ment process. It might be beneficial to consider adaptive reduction percentages. This

adaptive reduction might depend on several parameters such as fault types, like in

[23], and also might depend on the size of the vehicles’ neighborhood.

Finally, all the approaches introduced in this dissertation referred to DSRC as

the key technology. The basic concepts will however apply to wireless technology

in general. Therefore we suggest to investigate how the attacks and mitigation

strategies relate to cellular technologies like LET-Advanced or 5G.

92

Bibliography

[1] Traffic Safety Facts: Crash Stats, U.S. Department of Transportation, National

Highway Traffic Safety Administration, DOT HS 812 326, August 2016.

[2] Traffic safety facts: Crash stats âĂŤ Critical reasons for crashes investigated in the

National Motor Vehicle Crash Causation Survey, 2015.

[3] Technology Applications for Traffic Safety Programs: A Primer, National Highway

Traffic Safety Administration, DOT HS 811 040, September 2008.

[4] Arada Systems, www.aradasystems.com

[5] Standard Specification for Telecommunications and Information Exchange Between

Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications

(DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Spec., ASTM

E2213-03, 2010.

[6] Amendment of the Commission’s Rules Regarding Dedicated Short-Range Communica-

tion Services in the 5.850-5.925 GHz Band (5.9 GHz Band), Federal Communications

Commission FCC 03-324, 2004.

[7] H. Alturkostani, Mitigation Strategies for Safety Applications in Vehicular Ad Hoc

Networks Subjected to Jamming University of Idaho, Moscow, USA, April 2016.

[8] Vehicle Safety Communications-Applications (VSC-A) Final Report, DOT HS 811 492

A. U.S. DoT, NHTSA. September 2011.

[9] Crash Factors in Intersection-Related Crashes: An On-Scene Perspective U.S.

Department of Transportation, National Highway Traffic Safety Administration,

DOT HS 811 366, September 2010.

[10] J. B. Kenney, Dedicated Short-Range Communications (DSRC) Standards in the

United States, Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, 2011.

93

[11] Dedicated Short Range Communications (DSRC) Message Set Dictionary. Society of

Automotive Engineers SAE J2735, November 2009.

[12] Analysis of Fatal Motor Vehicle Traffic Crashes and Fatalities at Intersections, 1997

to 2004 U.S. Department of Transportation, National Highway Traffic Safety

Administration, DOT HS 810 682, February 2007.

[13] Characterization Test Procedures for Intersection Collision Avoidance Systems Based

on Vehicle-to-Vehicle Communications U.S. Department of Transportation, National

Highway Traffic Safety Administration, DOT HS 812 223, December 2015.

[14] A Policy on Geometric Design of Highways and Streets, 6th Edition, American

Association of State Highway and Transportation Officials (AASHTO), 2011.

[15] 802.11-2007 - IEEE standard for information technology - telecommunications and

information exchange between systems - local and metropolitan area networks - specific

requirements - part 11: Wireless lan medium access control (MAC) and physical layer

(PHY) specifications IEEE Std 802.11, 12 June 2007.

[16] IEEE Standard for Information technology - Telecommunications and information

exchange between systems - Local and metropolitan area networks - Specific requirements,

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications Amendment 8: Medium Access Control (MAC) Quality of Service

Enhancements IEEE Std 802.11e, 2005.

[17] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida and M. May,

Comparison of tail drop and active queue management performance for bulk-data

and Web-like Internet traffic, Proc. Sixth IEEE Symposium on Computers and

Communications, Hammamet, 2001, pp. 122-129.

[18] L. Hendriks, Effects of transmission queue size buffer and scheduling mechanisms on

the IEEE 802.11p beaconing performance Proc. Twente Student Conf. IT, pp. 1-10,

2011.

[19] M. Pease, T. Shostak, L. Lamport, Reaching Agreement in the Presence of Faults

Journal of the ACM, (1980), 27(2), 228-234.

94

[20] PAUL J. WEBER, Dynamic Reduction Algorithms for Fault Tolerant Convergent

Voting With Hybrid Faults, Michigan Technological University, 2006.

[21] F.J. Meyer and D.K. Pradhan, Consensus with Dual Failure Modes, Proc. 17th Fault-

Tolerant Computing Symp., July 1987, pp. 48 - 54.

[22] P. Thambidurai, Y-K, Park, Interactive Consistence with Multiple Failure Modes, 7th

Reliable Distributed Systems Symposium, (1988), 93-100.

[23] M. H. Azadmanesh and R. M. Kieckhafer, Exploiting omissive faults in

synchronous approximate agreement in IEEE Transactions on Computers, vol. 49,

no. 10, pp. 1031-1042, Oct 2000.

[24] H. Hasrouny, A.E. Samhat, C. Bassil, A. Laouiti, Vanet Security Challenges and

Solutions: A survey, Vehicular Communications, Elsevier, vol. 7, pp. 7-20, 2017.

[25] S. Bittl, A. A. Gonzalez, M. Myrtus, H. Beckmann, S. Sailer and B. Eissfeller,

Emerging attacks on VANET security based on GPS Time Spoofing, 2015 IEEE

Conference on Communications and Network Security (CNS), Florence, 2015,

pp. 344-352.

[26] X. Sun, X. Lin and P. H. Ho, Secure Vehicular Communications Based on Group

Signature and ID-Based Signature Scheme 2007 IEEE International Conference on

Communications, Glasgow, 2007, pp. 1539-1545.

[27] M. S. Al-kahtani, Survey on security attacks in Vehicular Ad hoc Networks (VANETs)

2012 6th International Conference on Signal Processing and Communication

Systems, Gold Coast, QLD, 2012, pp. 1-9.

[28] Xu W, Trappe W, Zhang Y, Wood T, The feasibility of launching and detecting

jamming attacks in wireless networks, In: Proceedings of the 6th ACM International

Symposium on Mobile Ad Hoc Networking and Computing, 2005, pp 46-57.

[29] K. Grover; A. Lim; Q. Yang, Jamming and Anti-jamming Techniques in Wireless

Networks: A Survey Int. J. Ad Hoc and Ubiquitous Computing, Vol. 17, No. 4,

2014.

95

[30] K. Pelechrinis, et. al., Denial of Service Attacks in Wireless Networks: The Case of

Jammers Communications Surveys & Tutorials, IEEE, Vol.13, No.2, pp.245-257,

2nd Quarter 2011.

[31] C. Alocious, H. Xiao and B. Christianson, Analysis of DoS attacks at MAC Layer

in mobile adhoc networks 2015 International Wireless Communications and Mobile

Computing Conference (IWCMC), Dubrovnik, 2015, pp. 811-816.

[32] M. Li, S. Salinas, P. Li, J. Sun, and X. Huang, MAC-Layer Selfish Misbehavior in

IEEE 802.11 Ad Hoc Networks: Detection and Defense IEEE TRANSACTIONS ON

MOBILE COMPUTING, VOL. 14, NO. 6, JUNE 2015.

[33] P. Kyasanur and N. Vaidya, Selfish MAC layer misbehavior in wireless network IEEE

Trans. on Mobile Computing, vol. 4, no. 5, pp. 502-516, Sep. 2005.

[34] Z. Lu, W. Wang, and C. Wang, On order gain of backoff misbehaving nodes in

CSMA/CA-based wireless networks in Proc. IEEE Conf. Comput. Commun., San

Diego, CA, USA, Mar. 2010, pp. 1-9.

[35] L. Toledo, and X. Wang, Robust detection of MAC layer denial-of-service attacks in

CSMA/CA wireless networks IEEE Trans. Inf. Forensics Security, vol. 3, no. 3, pp.

347-358, Sep. 2008.

[36] T. Zhou, R. R. Choudhury, and P. Ning, P2dap-sybil attacks detection in vehicular

ad hoc networks IEEE J. Sel. Areas Commun., vol. 29, no. 3, pp. 582-594, Mar. 2011.

[37] H. Yu, P. B. Gibbons, and M. Kaminsky, Sybillimit: A near-optimal social network

defense against sybil attacks IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 885-898,

Jun. 2010.

[38] X. Ma, X. Yin, and K.S. Trivedi, On the Reliability of Safety Applications in VANETs

Invited paper, International Journal of Performability Engineering Special Issue

on Dependability of Wireless Systems and Networks, 8(2), March 2012.

96

[39] M. Raya, J. Hubaux, and I. Aad, Domino: A system to detect greedy behavior in

ieee 802.11 hotspots in Proc. ACM 2nd Int. Conf. Mobile Syst., Appl. Serv., Boston,

MA, USA, Jun. 2004, pp. 84-97.

[40] M. N. Mejri and J. Ben-Othman, Entropy as a new metric for denial of service

attack detection in vehicular ad-hoc networks, in Proceedings of the 17th ACM

international conference on Modeling, analysis and simulation of wireless and

mobile systems, 2014.

[41] X. Ma, X. Yin, and K.S. Trivedi, On the Reliability of Safety Applications in VANETs

Invited paper, International Journal of Performability Engineering Special Issue

on Dependability of Wireless Systems and Networks, 8(2), March 2012.

[42] H. Alturkostani, A. Chitrakar, R. Rinker, and A. Krings, On the Design of

Jamming-Aware Safety Applications in VANETs Cyber and Information Security

Research Conference (CISR 2015), Oak Ridge National Laboratory, Tennessee,

USA, April 2015.

[43] A. Serageldin, H. Alturkostani and A. Krings, On the Reliability of DSRC Safety

Applications: A Case of Jamming, in IEEE International Conference on Connected

Vehicles and Expo (ICCVE), Las Vegas, NV, pp. 501-506, 2013.

[44] W. B. Johnson, Design and Analysis of Fault-Tolerant Digital Systems Addison-

Wesley Publishing Company, New York, 1989.

[45] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-

Channel Operation, IEEE Std 1609.4TM, 2010.

[46] IEEE Standard for Information technology–Telecommunications and information

exchange between systems–Local and metropolitan area networks–Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE Std

802.11p, 2010.

97

[47] A. Nguyen, et.al., Solution of detecting jamming attacks in vehicle ad hoc networks

Proc. 16th ACM international conference on Modeling, analysis & simulation of

wireless and mobile systems (MSWiMO13), ACM, New York, 405-410, 2013.

[48] S.Wang, A. Pervez, M. Nekovee, Converging time synchronization algorithm for

highly dynamic vehicular ad hoc networks (VANETs) 7th International Symposium

on Communication Systems Networks and Digital Signal Processing (CSNDSP),

2010.

[49] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O Hanlon, and P. M. Kintner,

Jr., Assessing the spoofing threat: development of a portable GPS civilian spoofer in

Proceedings of the ION GNSS Meeting. Savannah, GA: Institute of Navigation,

2008.

[50] Satish M. Srinivasan, Azad H. Azadmanesh, Data aggregation in partially

connected networks Computer Communications, Volume 32, March 2009, Pages

594-601.

[51] R. Scopigno and H. A. Cozzetti, GNSS Synchronization in Vanets 3rd

International Conference on New Technologies, Mobility and Security, Cairo,

2009, pp. 1-5.

[52] J. Elson, L. Girod and D. Estrin, Fine-grained time synchronization using

reference broadcasts the Fifth Symposium on Operating Systems Design and

Implementation, pp. 147-163, (2002).

[53] L. Li, Y. Liu, H. Yang, H. Wang, A Precision Adaptive Average Time Synchronization

Protocol in Wireless Sensor Networks in: Proceedings of the IEEE International

Conference on Information and Automation, Zhangjiajie, China, 2008.

[54] C. Li, Y. Wang and M. Hurfin, Clock Synchronization in Mobile Ad Hoc

Networks Based on an Iterative Approximate Byzantine Consensus Protocol 2014

IEEE 28th International Conference on Advanced Information Networking and

Applications, Victoria, BC, 2014, pp. 210-217.

98

[55] D. Sam and C. Raj, A time synchronized Vehicular Ad Hoc Network (HVANET) of

roadside sensors and vehicles for safe driving Journal of Computer Science, vol. 10,

no. 10, pp. 1617-1627.

[56] K. Medani , M. Aliouat and Z. Aliouat, High Velocity Aware Clocks

Synchronization Approach in Vehicular Ad Hoc Networks Springer International

Publishing, 978-3-319-19578-0, pp. 479-490.

[57] Reza Khoshdelniat, Moh Lim Sim, Hong Tat Ewe, and Tan Su Wei, Time Table

Transfer Time Synchronization in Mobile Wireless Sensor Networks vol. 5, PIERS

Proceedings, Beijing 2009.

[58] M. H. Azadmanesh, and A. W. Krings, Egocentric voting algorithms, IEEE

Transactions on Reliability, vol. 46, no. 4, pp. 494-502, Dec. 1997.

[59] M. H. Azadmanesh, and L. Zhou, Egophobic voting algorithms, Journal of

Computers & Applications, vol. 25, no. 4, pp. 236-246, 2003.

[60] S. Hussein, A. Krings and A. Azadmanesh, VANET clock synchronization for

resilient DSRC safety applications 2017 Resilience Week (RWS), Wilmington, DE,

USA, 2017, pp. 57-63.

[61] K. Driscoll, B. Hall, H. Sivencrona, P. Zumsteg, Byzantine fault tolerance, from

theory to reality, Intl. Conf. on Computer Safety, Reliability, and Security, Sept.

2003, pp. 235 âĂŞ 248.

[62] M. Paulitsch et. al., Coverage and the use of cyclic redundancy codes in ultra-

dependable systems, Intl. Conf. on Dependable Systems and Networks, June 2005,

pp. 346 âĂŞ 355.

[63] R. M. Kieckhafer and M. H. Azadmanesh, Reaching approximate agreement with

mixed-mode faults in IEEE Transactions on Parallel and Distributed Systems, vol.

5, no. 1, pp. 53-63, Jan 1994.

99

[64] Information technology–Telecommunications and information exchange be-

tween systems Local and metropolitan area networks–Specific requirements Part

11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications," in ISO/IEC/IEEE 8802-11:2012(E) (Revison of ISO/IEC/IEEE

8802-11-2005 and Amendments), pp.1-2798, Nov. 21 2012.

[65] 2016 New York City Bridge Traffic Volumes, New York City Department of

Transportation (NYCDOT), PTDT17D00.E02, February 2018.

[66] X. Zhang, Q. Wang and D. Wan, Map Matching in Road Crossings of Urban

Canyons Based on Road Traverses and Linear Heading-Change Model in IEEE

Transactions on Instrumentation and Measurement, vol. 56, no. 6, pp. 2795-2803,

Dec. 2007.

[67] Arada LocoMate User’s Guide Version 1.23, 2012.

100

appendix a

Field Test

A field experiment was conducted in order to study the jamming impact on V2V

communication. For this purpose three vehicles were equipped with Arada Loco-

Mate Classic OBUs from Arada Systems [4]. An additional Arada LocoMate Classic

OBU was configured to be a jammer with programmable data rates. Vehicles were

moving at 15 m/sec speed and 50 m distance between any two successive vehicles

in a 2 lane road. The jammer was located at a fixed position in the middle of the

test area. During the experiment, the OBUs were configured to log all transmitted

and captured BSMs in a packet capture (pcap) file. Then we investigated these pacp

files using Wireshark, a free open source packet analyzer. This program allowed

us to analyze the experiment very carefully and study the impact of the jammer.

Figure A.1 shows the location of the experiment, the vehicle’s moving order and the

jammer position.

a .1 arada locomate obu commands

Arada Systems provides the default application getwbsstxrxencdec for its locomate

OBUs and RSUs, that is used to transmit and receive BSMs. This integrated appli-

cation can be configured with different parameters and supports different message

sets.

The following command was used in the field test experiment to allow theOBU

to transmit and receive BSMs and log them.

getwbsstxrxencdec − s 172 − t BSM − a 1 − o TXRX −X TXRXLOG − r 6.0 −
j 18 − d 100

The option -s signifies using a service channel and it is followed by the channel

number which is CH172. Similarly, option -t represents the message type to be a

BSM. Option -a is used to identify the service channel access mode. The value 1

represents alternating mode, whereas 0 represents a continuous mode. Option -o is

101

1
0

0

m
s

F
ix

e
d

 J
a

m
m

e
r

V
1

5
0

 m

1
0

0

m
s

F
ix

e
d

 J
a

m
m

e
r

V
2

V
3

5
0

 m

1
0

0

m
s

1
0

0

m
s

F igure A.1 : Experiment setup

used to indicate the transmission mode. In this case is it is both transmission and

reception. The option -X refers to the logging option. Here we logged all transmitted

and captured BSMs. Option -r indicates the data rate and -j the transmission power.

Finally, -d indicates packet delay in milliseconds. Tables A.1, A.2 and A.3 shows

the Arada locomate application parameters and values.

Table A.1 : Common options [67]

Parameter Description

-m Mac Address [xx:xx:xx:xx:xx:xx]

-s Service Channel

-b TxPkt Channel

-w Service Type [Provider/User]

-t Message Type [BSM/ PVD/ RSA/ ICA/ SPAT/ MAP/

TIM]

continued . . .

102

. . . continued

Parameter Description

-e Security Type [Plain/Sign/Encrypt]

-D Certificate Attach Interval in millisec should be in

multiple of packet delay

-l Output log filename, (specify path ending with / for

pcap format)

-P Prefex of certificate files)

-o Tx/Rx Options [TXRX/ NOTX/ NORXALL/ NORX/

TXRXUDP/ NOTXRX]

-X Logging Options [TXRXLOG/ TXLOG/ RXLOG/

NOLOG]

-g sign certificate type [certificate/di-

gest_224/digest_256/certificate_chain]

-p BSM Part II Packet interval (n BSM Part I messages)

-v Path history number [2 represents BSM-PH-2, 5 repre-

sents BSM-PH-5]

- Vehicle_Type (value as per DE_VehicleType)

-y psid value (any decimal value)

-d packet delay in millisec

-q User Priority 0/1/2/3/4/5/6/7

-j txpower in dBm

-M Model Deployment Device ID

-T Temporary ID control (1 = random, 0 = fixed upper two

bytes)

-S Safety Supplement (wsmp-s) <0:disable / 1:enable>

-L Vehicle Length in cm

-W Vehicle Width in cm

continued . . .

103

. . . continued

Parameter Description

-r data rate 0.0, 3.0, 4.5, 6.0, 9.0, 12.0, 18.0, 24.0, 27.0, 36.0,

48.0,54.0mbps

-n no argument, and selects no gps device available

-f Type xml or csv for logging in XML or CSV format. Type

pcaphdr for only pcap header logging and pcap for full

packet logging

-F frameType for TIM Packet 0-unknown(default) 1-

advisory 2-roadSignage 3-commercialSignage

-A Active Message Status

-B Port Address for RSU receive from UDP Server

-R Repeat rate for WSA frame (Number of WSA per 5

seconds) Repeatrate is included in WSA-Header only if

enabled from /proc/wsa_repeatrate_enable

-G Repeat rate for TA frame (Number of TA per 5 seconds)

TA is available only if TA channel [-c option] is given

-I IP service Enable 1= enable 0 = disable

-O Timeout for receiving udp data , in seconds

104

Table A.2 : Provider options [67]

Parameter Description

-z Service Priority

-a Service Channel Access [1:Alternating, 0:Continuous]

-c Specify Channel Number to Transmit TA

-i TA Channel Interval [1:cch int, 2:sch int]

Table A.3 : User options [67]

Parameter Description

-u User Request Type [1:auto, 2:unconditional(not wait for

WSA from provider), 3:none]

-x Extended Access <0:alternate /1:continuous>

a .2 arada locomate obu jammer command

The following commands are the instructions to execute the Jammer application. To

start the jammer use the start_tx99 application with proper frequency, mode, rate,

power and configuration values, e.g.

Start_tx99 f 5860 m 1 r 6000 p 18 c 0

The option -f signifies the starting frequency of the jammer and in this case it is

for CH172. Option -m is used to identify the service channel access mode. -r indicate

the data rate and -p indicated the transmission power. Option -c is used to indicate

the configuration type as data mode and single carrier.

To stop the continuous transmit run the stop_tx99 application without any argu-

ments, e.g.

stop_tx99

105

appendix b

Transmitter/Receiver OBU Code

b .1 transmitter

b .1 .1 GPS Information Extraction

L isting B.1 : Global Variables

1 /* This function reads the GPS information ,

2 * to fill BSM's information such as:

3 * Positioning information ,

4 * Timing information ,

5 * and Vehcile 's speed

6 * If the GPS data is not available ,

7 * default values are selected.

8 */

9 intintint getGPSInfo () {

10 charcharchar ch = '1';

11 uint64_t *lat , *lng , *alt;

12 intintint status = 0;

13 gpssockfd = gpsc_connect(NULL);

14 //Check if the GPS is running or not

15 ififif (gpssockfd < 0) {

16 printf("gpstime: gpsc is not running ...%d\n", gpssockfd);

17 returnreturnreturn -1;

18 }

19 // Memory allocation to save GPS information

20 memset (&wsmgps , 0, sizeofsizeofsizeof(GPSData));

21 status = write(gpssockfd , &ch , 1);

22 ififif (status < 1) {

23 syslog(LOG_INFO , "gpstime: write error %d (err %d)!!\n", status

, errno);

24 returnreturnreturn -1;

25 }

106

26 status = read(gpssockfd , &wsmgps , sizeofsizeofsizeof(GPSData)); //read from

gpsc

27 ififif (status < sizeofsizeofsizeof(GPSData)) {

28 syslog(LOG_INFO , "gpstime: read error %d (err %d) exp %d!!\n",

status ,

29 errno , sizeofsizeofsizeof(GPSData));

30 gpsc_close_sock ();

31 gpssockfd = -1;

32 sleep (3);

33 }

34 //Read GPS data

35 //If GPS is not connected ,

36 //The system will not work at all

37 //If the GPS data is not available ,

38 the function selects defaultdefaultdefault values

39 ififif (wsmgps.actual_time == GPS_INVALID_DATA || wsmgps.actual_time

== 0.0) {

40 printf("gpstime:wrg at=%lf fix=%d\n", wsmgps.actual_time ,

wsmgps.fix);

41 gpsc_close_sock ();

42 gpssockfd = -1;

43 sleep (3);

44 }

45 ififif(wsmgps.actual_time != 0.0)

46 GPS_Acutal_Time = wsmgps.actual_time;

47 ififif (wsmgps.latitude == 0)

48 latitude_val = 900000001;

49 elseelseelse

50 latitude_val = (longlonglong) ((wsmgps.latitude) * 10000000);

51 ififif (wsmgps.longitude == 0)

52 longitude_val = 1800000001;

53 elseelseelse

54 longitude_val = (longlonglong) ((wsmgps.longitude) * 10000000);

55 ififif (wsmgps.speed != GPS_INVALID_DATA) {

56 transmission_speed [0] = (uint8_t) (((uint32_t) (wsmgps.speed *

50)

57 & 0xFF00) >> 8);

107

58 transmission_speed [1] = (uint8_t) (((uint32_t) (wsmgps.speed *

50)

59 & 0x00FF));

60 transmission_speed [0] = transmission_speed [0] | 0xE0;

61 } elseelseelse {

62 transmission_speed [0] = ((8191 & 0xFF00) >> 8);

63 transmission_speed [1] = ((8191 & 0x00FF));

64 transmission_speed [0] = transmission_speed [0] | 0xE0;

65 }

66 returnreturnreturn 0;

67 }

108

b .1 .2 BSM Transmitter

L isting B.2 : Global Variables

1 /* Function to build the WSM Request packet.

2 * This function encapsulate the BSM related

3 * info in to WSM request packet

4 */

5 intintint buildWSMRequestPacket () {

6 //Local variables

7 intintint j;

8 asn_enc_rval_t rvalenc;

9 asn_dec_rval_t temp;

10 uint32_t intg32;

11 uint64_t intg64;

12 uint16_t intg16;

13 /* BSM Data structure declaration */

14 BasicSafetyMessage_t *bsm;

15 // ////////////////////////

16 // Memory allocation

17 VehicleType_t *vehicleType = (VehicleType_t *) calloc(1,sizeofsizeofsizeof(

VehicleType_t));

18 vehicleType ->buf = (uint8_t *) calloc(1, sizeofsizeofsizeof(uint8_t));

19 vehicleType ->size = sizeofsizeofsizeof(uint8_t);

20 vehicleType ->buf[0] = vehicle__type;

21 VehicleIdent_t *vi = (VehicleIdent_t *) calloc(1, sizeofsizeofsizeof(

VehicleIdent_t));

22 vi ->vehicleType = vehicleType;

23 VehicleStatus_t *status = (VehicleStatus_t *) calloc(1, sizeofsizeofsizeof(

VehicleStatus_t));

24 status ->vehicleIdent = vi;

25 /* WSM Channel and Tx info */

26 wsmreq.chaninfo.channel = Service_Channel;

27 wsmreq.chaninfo.rate = Data_Rate;

28 wsmreq.chaninfo.txpower = Tx_Power;

29 wsmreq.version = 1;

30 wsmreq.security = 1;

31 wsmreq.psid = 10;

109

32 wsmreq.txpriority = 1;

33 memset (& wsmreq.data , 0, sizeofsizeofsizeof(WSMData));

34 /* BSM related information */

35 bsm = (BasicSafetyMessage_t *) calloc(1, sizeofsizeofsizeof (*bsm));

36 bsm ->status = status;

37 /* allocate memory for buffer which is used to store , what type

of message it is*/

38 bsm ->msgID.buf = (uint8_t *) calloc(1, sizeofsizeofsizeof(uint8_t));

39 bsm ->msgID.size = sizeofsizeofsizeof(uint8_t);

40 /* Choose what type of message you want to transfer */

41 bsm ->msgID.buf[0] = DSRCmsgID_basicSafetyMessage;

42 /* Allocate the memory for the blob buffer , which is used to

store the data */

43 bsm ->blob1.buf = (uint8_t *) calloc(1, 38 * sizeofsizeofsizeof(uint8_t));

44 bsm ->blob1.size = 38 * sizeofsizeofsizeof(uint8_t);

45 bsm ->blob1.buf[0] = count % 127;

46 count ++;

47 //Set Vehicle temp ID

48 intg32 = htobe32(temp_id);

49 memcpy(bsm ->blob1.buf + 1, &intg32 , 4);

50 //Set the two bytes for the Dsecond

51 ififif(Old_GPS_Acutal_Time != GPS_Acutal_Time)

52 {

53 doubledoubledouble fractpart , intpart;

54 fractpart = modf (wsmgps.actual_time , &intpart);

55 uint32_t s = (uint32_t)intpart % 60 * 1000;

56 uint32_t us = fractpart * 1000 ;

57 t_Dsecond = s + us ;

58 printf("<GPS actual Time =%lf and Dsecond = %d>\n", wsmgps.

actual_time , t_Dsecond);

59 repeated = 0;

60 }

61 elseelseelse

62 {

63 repeated ++;

64 doubledoubledouble extra = (doubledoubledouble)(repeated * TransmissionRate) / 1000.0;

65 doubledoubledouble fractpart , intpart;

110

66 fractpart = modf (wsmgps.actual_time , &intpart);

67 uint32_t s = (uint32_t)intpart % 60 * 1000;

68 uint32_t us = (fractpart + extra) * 1000 ;

69 t_Dsecond = s + us;

70 printf("<GPS actual Time =%lf and Dsecond = %d>\n",

71 wsmgps.actual_time + ((doubledoubledouble)(repeated * TransmissionRate) /

1000.0) , t_Dsecond);

72 }

73 bsm ->blob1.buf[6] = t_Dsecond % 256;

74 bsm ->blob1.buf[5] = t_Dsecond / 256;

75 Old_GPS_Acutal_Time = GPS_Acutal_Time;

76 //Set Positions - 14 bytes

77 //Set the four bytes for the latitude

78 intg32 = htobe32(latitude_val);

79 memcpy(bsm ->blob1.buf + 7, &intg32 , 4);

80 //Set the four bytes for the longitude

81 intg32 = htobe32(longitude_val);

82 memcpy(bsm ->blob1.buf + 11, &intg32 , 4);

83 //Set the four bytes for the altitude

84 intg16 = htobe16(wsmgps.altitude);

85 memcpy(bsm ->blob1.buf + 15, &intg16 , 2);

86 //Set the four bytes for the Postional Accuracy

87 intg32 = htobe32 (0 xFFFFFFFF);

88 memcpy(bsm ->blob1.buf + 17, &intg32 , 4);

89 //Set Motion - 12 bytes

90 //Set the two bytes for the Speed

91 intg16 = htobe16(wsmgps.speed);

92 memcpy(bsm ->blob1.buf + 21, &intg16 , 2);

93 //TODO: Set the two bytes for the Heading

94 intg32 = htobe32 (0);

95 memcpy(bsm ->blob1.buf + 23, &intg32 , 2);

96 //TODO: Set the one byte for the Angle

97 memcpy(bsm ->blob1.buf + 25, &intg32 , 1);

98 //TODO: Set the seven bytes for the Acceleration

99 intg64 = htobe64 (0);

100 memcpy(bsm ->blob1.buf + 26, &intg32 , 7);

101 // Control - 2 bytes

111

102 //TODO: Set the two bytes for the Status

103 memcpy(bsm ->blob1.buf + 33, &intg32 , 2);

104 //Basic - 3 bytes

105 //TODO: Set the three bytes for the acceleration

106 memcpy(bsm ->blob1.buf + 35, &intg32 , 3);

107 // ////////////////////////

108 gettimeofday (&tv , NULL);

109 printf("<logtime seconds = %llu microseconds = %d>\n", (uint64_t)

tv.tv_sec , (uint32_t)tv.tv_usec);

110 // ////////////////////////

111 rvalenc = der_encode_to_buffer (& asn_DEF_BasicSafetyMessage , bsm ,&

wsmreq.data.contents , 1000); /* Encode your BSM in to WSM

Packets */

112 xer_fprint(stdout , &asn_DEF_BasicSafetyMessage , bsm);

113 ififif (rvalenc.encoded == -1) {

114 fprintf(stderr , "Cannot encode %s: %s\n", rvalenc.failed_type ->

name ,strerror(errno));

115 } elseelseelse {

116 wsmreq.data.length = rvalenc.encoded;

117 asn_DEF_BasicSafetyMessage.free_struct (&

asn_DEF_BasicSafetyMessage , bsm ,0);

118 }

119 returnreturnreturn 1;

120 }

112

b .2 receiver

b .2 .1 BSM Reception

L isting B.3 : Global Variables

1 /* Receiving Function

2 * Runs continuously to receive any BSM from surrounding neighbors.

3 * It runs the hybrid jamming detection algorithm ,

4 * which can differentiate between misbehaving vehicles ,

5 * and vehicles subjected to hybrid jamming attack.

6 * It calls a misbehaving detection mechanism if a vehicle behavior

is suspected.

7 */

8 voidvoidvoid *rx_client(voidvoidvoid *data) {

9 //Local variables

10 intintint ret = 0;

11 intintint i = 0;

12 intintint Vindex = 0;

13 intintint Diff1 = 0;

14 intintint Diff2 = 0;

15 asn_dec_rval_t decVal;

16 intintint first = 0;

17 pid = getpid ();

18 doubledoubledouble fractpart , intpart;

19 uint32_t s, us;

20 doubledoubledouble extra;

21 charcharchar ch = '1';

22 intintint status = 0;

23 // Infinity loop

24 whilewhilewhile (1)

25 {

26 //Get the received BSM

27 ret = rxWSMMessage(pid , &rxmsg);

28 gettimeofday (&tv , NULL);

29 //Read GPS Data

30 gpssockfd = gpsc_connect(NULL);

31 ififif (gpssockfd < 0) {

32 printf("gpstime: gpsc is not running ...%d\n", gpssockfd);

113

33 returnreturnreturn -1;

34 }

35 memset (&wsmgps , 0, sizeofsizeofsizeof(GPSData));

36 status = write(gpssockfd , &ch , 1);

37 ififif (status < 1) {

38 syslog(LOG_INFO , "gpstime: write error %d (err %d)!!\n",

status , errno);

39 returnreturnreturn -1;

40 }

41 status = read(gpssockfd , &wsmgps , sizeofsizeofsizeof(GPSData)); //read

from gpsc

42 GPS_Acutal_Time = wsmgps.actual_time;

43 // Receiving and printing the new BSM

44 ififif (ret > 0)

45 {

46 printf("<logtime seconds = %llu microseconds = %06d> \n", (

uint64_t)tv.tv_sec , (uint32_t)tv.tv_usec);

47 asn_DEF_BasicSafetyMessage.free_struct (&

asn_DEF_BasicSafetyMessage , bsmLog ,0);

48 bsmLog = (BasicSafetyMessage_t *) calloc(1, sizeofsizeofsizeof (* bsmLog));

49 decVal = ber_decode (0, &asn_DEF_BasicSafetyMessage , (voidvoidvoid **)

&bsmLog ,ind.data.contents , 1000); // Decode

50 count ++;

51 xer_fprint(stdout , &asn_DEF_BasicSafetyMessage , bsmLog);

52 VehicleID = (*(bsmLog ->blob1.buf + 1) << 24) | (*(bsmLog ->

blob1.buf + 2) << 16)

53 | (*(bsmLog ->blob1.buf + 3) << 8) | (*(bsmLog ->blob1.buf

+ 4));

54 Vindex = CheckVehicleID ();

55

56 doubledoubledouble diff12 = tv.tv_sec + (doubledoubledouble)tv.tv_usec /1000000.0;

57 ififif(Old_GPS_Acutal_Time != GPS_Acutal_Time)

58 {

59 fractpart = modf (wsmgps.actual_time , &intpart);

60 s = (uint32_t)intpart % 60 * 1000;

61 us = fractpart * 1000 ;

62 HVDsecond = s + us ;

114

63 repeated = 0;

64 }

65 elseelseelse ififif(repeated < 200/ TransmissionRate -1)

66 {

67 repeated ++;

68 extra = (doubledoubledouble)(repeated * TransmissionRate) / 1000.0;

69 fractpart = modf (wsmgps.actual_time , &intpart);

70 s = (uint32_t)intpart % 60 * 1000;

71 us = (fractpart + extra) * 1000 ;

72 HVDsecond = s + us;

73 }

74 Old_GPS_Acutal_Time = GPS_Acutal_Time;

75 NewBSMDsecond = (*(bsmLog ->blob1.buf + 5) << 8) | (*(bsmLog ->

blob1.buf + 6));

76 SavedBSMDsecond = (*(VNTbsmLog[Vindex]->blob1.buf + 5) << 8)

| (*(VNTbsmLog[Vindex]->blob1.buf + 6));

77 //Count the missing BSMs

78 ififif(*(bsmLog ->blob1.buf) > *(VNTbsmLog[Vindex]->blob1.buf) +

1)

79 VNTPktLost[Vindex] += abs(*(bsmLog ->blob1.buf) - *(

VNTbsmLog[Vindex]->blob1.buf)) - 1;

80 elseelseelse ififif(*(bsmLog ->blob1.buf) < *(VNTbsmLog[Vindex]->blob1.buf

))

81 VNTPktLost[Vindex] += abs(*(bsmLog ->blob1.buf) - *(

VNTbsmLog[Vindex]->blob1.buf) + 127) - 1;

82 //Check for misbehaving behavior

83 ififif(NewBSMDsecond < SavedBSMDsecond)

84 Diff1 = NewBSMDsecond - SavedBSMDsecond + 60000;

85 elseelseelse

86 Diff1 = NewBSMDsecond - SavedBSMDsecond;

87 Diff2 = HVDsecond - NewBSMDsecond;

88 ififif(Diff2 < 0)

89 Diff2 = 0;

90 // Updating the VNT table

91 //for the first packet only

92 VNTLastPktSec[Vindex] = tv.tv_sec;

93 VNTLastPktuSec[Vindex] = tv.tv_usec;

115

94 VNTPktReceived[Vindex]++;

95 asn_DEF_BasicSafetyMessage.free_struct (&

asn_DEF_BasicSafetyMessage , VNTbsmLog[Vindex],0);

96 VNTbsmLog[Vindex] = (BasicSafetyMessage_t *) calloc(1,

sizeofsizeofsizeof (* bsmLog));

97 decVal = ber_decode (0, &asn_DEF_BasicSafetyMessage , (voidvoidvoid **)

&VNTbsmLog[Vindex],ind.data.contents , 1000);

98 ififif(Diff1 >= (TransmissionRate - (TransmissionRate / 5)))

99 {

100 ififif(VNTMissingBSMs[Vindex] < N_env_error)

101 {

102 VNTMissingBSMs[Vindex] = 0;

103 }

104 elseelseelse

105 {

106 //Check for hybrid jamming attack

107 ififif(Diff2 / 100 <= VNTMissingBSMs[Vindex] && Diff2 / 100 >

1)

108 {

109 printf("<<<<Hybrid Jammer Attack Detected >>>>\n");

110 printf("<Expected Missing BSM = %03d>\n",VNTMissingBSMs

[Vindex]);

111 VNTMissingBSMs[Vindex] = VNTMissingBSMs[Vindex] - 1;

112 }

113 elseelseelse ififif(Diff2 / 100 == 0)

114 {

115 VNTMissingBSMs[Vindex] = 0;

116 }

117 }

118 printf("<Number of BSMs lost till now = %04d>\n",VNTPktLost

[Vindex]);

119 }

120 elseelseelse

121 {

122 ififif(NewBSMDsecond != SavedBSMDsecond)

123 printf("<Call Misbehaving Detection Technique >\n");

124 }

116

125 // ////////////////////////

126 }

127 elseelseelse CheckMissingBSM ();

128 }

129 }

117

b .2 .2 Missing BSMs Check

L isting B.4 : Global Variables

1 /* Function to count missing BSMs from existing neighbors.

2 * Based on the information saved in the VNT ,

3 * this function can calculates the missing BSMs since the last BSM

received.

4 */

5 voidvoidvoid CheckMissingBSM ()

6 {

7 intintint i = 0;

8 ififif(VNTCounter > 0)

9 {

10 //Get the current time

11 CurrentPktSec = tv.tv_sec;

12 CurrentPktuSec = tv.tv_usec;

13 forforfor(i = 0; i < VNTCounter; i++)

14 {

15 // Calculate the time passed since the last BSM was received

16 DiffSec = CurrentPktSec - VNTLastPktSec[i];

17 DiffuSec = CurrentPktuSec - VNTLastPktuSec[i];

18 ififif((DiffSec * 1000000 + DiffuSec) > (100000 + VNTMissingBSMs[

i] * 100000))

19 {

20 // Increament the BSM_missing counter by 1

21 //if the time passed since the last BSM received is > 100ms

22 VNTMissingBSMs[i]++;

23 ififif(VNTMissingBSMs[i] > N_env_error)

24 {

25 printf("<Number of Missing BSM from Vehicle 0X%08X is %03

d>\n", VNT[i],VNTMissingBSMs[i]);

26 }

27 // Vehicle is considered out of range and deleted from the

VNT

28 ififif(VNTMissingBSMs[i] > 100)

29 {

30 DeleteVehicle(i);

118

31 i--;

32 }

33 }

34 }

35 }

36 }

119

appendix c

Clock Synchronization Simulation Code in NS3

c .1 global variables

L isting C.1 : Global Variables

1 //Max number of allowed packets in the simulation

2 ###definedefinedefine MaxNumofPackets 100000

3 // Predefined Clock tolerance

4 ###definedefinedefine Global_Tolerance 500

5 // Number of Nodes in the simulation

6 ###definedefinedefine NodeCount 80

7 //Two clusters are simulated as in the proposed model

8 ###definedefinedefine NumOfClusters 2

9 // Distance between the clusters

10 ###definedefinedefine ClustersSeparator 320

11 //Log file name

12 charcharchar LogFile [200] = "LowDensity -S1 -30% Reduction.txt";

13 //Trace file name

14 std:: string tracebase = "scratch/Animation_Test";

15 // Pointer for animation interface

16 AnimationInterface * pAnim = 0;

17 // Animate or not

18 bool Animate = false;

19 //Print investigation messages to check simulation

20 bool PrintMessages = false;

21 // Selection function 1-FTA , 2-FTM , 3-MidPoint

22 intintint Algorithm = 2;

23 // Reduction Percentage

24 doubledoubledouble ReductionPercentage = 30;

25 // Distance between two successive vehicles

26 intintint mindistance = 15;

27 intintint minSpeed = 15;

28 //Seeds used for experiment

120

29 ###definedefinedefine RandValue 1

30 ###definedefinedefine MaxSeed 100

31 // Variable used to change the random time seed

32 intintint TimeSeed = RandValue;

33 // Synchronization table entries

34 //1 - Current receiving time

35 //2 - Receiver Dsecond

36 //3 - Offset between receiver and transmitter

37 //4 - Vehicle Heading

38 longlonglong SyncronizationTable[NodeCount][NodeCount][5] = {0};

39 //Some BSM Fields

40 uint16_t Dsecond[NodeCount] = {0};

41 uint64_t Lat[NodeCount] = {0 x1BDCF4FE };

42 uint64_t Long[NodeCount] = {0 xBA47D7D };

43 uint8_t Packet_Number[NodeCount];

44 // Counter for synchronization iterations for each vehicle

45 uint32_t NodeSyncIteration[NodeCount] = {0};

46 // Removed nodes Array

47 uint8_t RmovedNodesArray[NodeCount] = {0};

48 //# of number of active nodes surrounding each vehicle

49 uint32_t CountActiveNodes[NodeCount] = {0};

50 //This variable used to indicate frequency of running sync.

algorithm

51 intintint IterationSeparator = 1;

52 // Calculates average number of iteration in each trial

53 doubledoubledouble AverageNumberOfIterations = 0;

54 //NS3 logging type

55 NS_LOG_COMPONENT_DEFINE ("WifiSimpleOcb");

56 // Mobility model variable

57 Ptr <ConstantVelocityMobilityModel > cvmm[NodeCount];

58 //Stop synchronization flag

59 bool StopFlag[NodeCount] = {false};

60 // Voting multi -set for each vehicle

61 uint16_t Time_Table[NodeCount][NodeCount] = {0};

62 uint16_t ActiveNodesArround[NodeCount][NodeCount] = {0};

63 constconstconst doubledoubledouble Max_Dsecond_Diff = 60000;

64 uint32_t Min_Dsecond = 0, Max_Dsecond = 0;

121

65 //Total number of iterations in each experiment

66 intintint NumberOfIterations = 1;

67 //Max number of iterations in all experiment

68 uint32_t MaxNumberofIterations = 0;

69 //Stop synchronization flag

70 bool StopConvergence = false;

122

c .2 bsm generation and transmission

L isting C.2 : BSM Generation and Transmission Code

1 /* BSM transmission function

2 * This function is responsible for calling the agreement process ,

3 * and transmitting the new BSM with the new local clock value.

4 * This function fills the BSM with the required information such

as:

5 * BSM sequence number ,

6 * Vehicle ID,

7 * Positioning information ,

8 * and the new Dsecond value.

9 * Finally it sends the BSM and reschedules itself to run after the

timer expires.

10 */

11 voidvoidvoid GenerateBSM (Ptr <Socket > socket , uint32_t pktSize , uint32_t

pktCount , Time pktInterval)

12 {

13 uint8_t *buffer = new uint8_t[pktSize];

14 //Get the vehicle ID

15 uint8_t V_index = socket ->GetNode ()->GetId ();

16 //Run agreement function to calculate the new clock value

17 RunVoting(V_index ,pktCount);

18 /****** Filling the Payload ****** */

19 //the first byte for the BSM sequence number

20 buffer [0] = Packet_Number[V_index] % 127;

21 //Four bytes for the ID

22 buffer [1] = 10;

23 buffer [2] = 1;

24 buffer [3] = 1;

25 buffer [4] = V_index + 1;

26 // Positioning information

27 // Spread Lat and Long over four bytes each

28 buffer [7] = Lat[V_index] >> 24;

29 buffer [8] = Lat[V_index] >> 16;

30 buffer [9] = Lat[V_index] >> 8;

31 buffer [10] = Lat[V_index] & 0xFF;

123

32 buffer [11] = Long[V_index] >> 24;

33 buffer [12] = Long[V_index] >> 16;

34 buffer [13] = Long[V_index] >> 8;

35 buffer [14] = Long[V_index] & 0xFF;

36 // Increament packets number by 1

37 Packet_Number[V_index]++;

38 Lat[V_index] = Lat[V_index] + 110;

39 /****** End Filling the Payload ****** */

40 //Set the Dsecond value

41 buffer [5] = Dsecond[V_index] >> 8;

42 buffer [6] = Dsecond[V_index] & 0xFF;

43 //Send the BSM

44 socket ->Send (Create <Packet > (buffer , pktSize));

45 // Schedule this process to run after the timer expires

46 Simulator :: Schedule (pktInterval , &GenerateBSM , socket , pktSize ,

pktCount - 1, pktInterval);

47 }

124

c .3 bsm reception

L isting C.3 : BSM Reception Code

1 /* BSM receiving function

2 * This function is responsible for receiving the BSMs fro

surrounding neighbors.

3 * It continuously running the receiving socket.

4 * After receiving a BSM , it records the receiving time for this

BSM.

5 * Extract vehicle ID and Dsecond from the received BSM.

6 * Record the extracted information into the synchronization table

combined with receiving time of this BSM.

7 * Finally it marks the vehicles moving in the same heading to

consider them in the agreement process.

8 */

9 voidvoidvoid ReceiveBSM (Ptr <Socket > socket)

10 {

11 whilewhilewhile (Ptr <Packet > packet = socket ->Recv ())

12 {

13 uint64_t ms = Simulator ::Now().GetMilliSeconds ();

14 //Copy BSM data into a temporary buffer

15 uint8_t *buffer = new uint8_t[packet ->GetSize ()];

16 packet ->CopyData (buffer , packet ->GetSize ());

17 //Get the Receiver index

18 uint8_t Rec_Index= socket ->GetNode ()->GetId ();

19 //Read BSM data

20 //Get the Sender Index

21 uint8_t Sender_Index = buffer [4] - 1;

22 // Record the receiving time of this BSM in the synchronization

table

23 SyncronizationTable[Rec_Index][Sender_Index][0] = ms;

24 // Extract Dsecond from the Received BSM and save it in the

synchronization table

25 uint16_t temp_Dsecond = buffer [5] << 8 | buffer [6];

26 SyncronizationTable[Rec_Index][Sender_Index][1] = temp_Dsecond;

27 // Calculate the time offset between Transmitter and Receiver

and save it in the synchronization table

125

28 SyncronizationTable[Rec_Index][Sender_Index][2] = Dsecond[

Rec_Index] - temp_Dsecond;

29 //Check for vehicle heading in order to elminate vehicles

30 //in other headings

31 ififif((cvmm[Rec_Index]->GetVelocity ().x / -1 < 0

32 && cvmm[Sender_Index]->GetVelocity ().x / -1 < 0)

33 || (cvmm[Rec_Index]->GetVelocity ().x / -1 > 0

34 && cvmm[Sender_Index]->GetVelocity ().x / -1 > 0))

35 {

36 //Check for vehicles ahead or behind and mark them for future

use

37 ififif(cvmm[Sender_Index]->GetPosition ().x > cvmm[Rec_Index]->

GetPosition ().x)

38 SyncronizationTable[Rec_Index][Sender_Index][3] = 1;

39 elseelseelse

40 SyncronizationTable[Rec_Index][Sender_Index][3] = 2;

41 }

42 elseelseelse

43 {

44 //Mark vehicles moving on another direction

45 SyncronizationTable[Rec_Index][Sender_Index][3] = -1;

46 }

47 }

48 }

126

c .4 agreement process

L isting C.4 : Agreement Process Code

1 /* Agreement process

2 * This process is responsible for executing the areement process ,

3 * and set the new value to the local clock value.

4 * It first extract the saved timestamps from the synchronization

table and Sort them.

5 * Run the MSR proces.

6 * Finally check if the agreement is acheived or not.

7 */

8 voidvoidvoid RunVoting(uint8_t V_index , uint32_t pktCount)

9 {

10 //Local variables and initialization

11 uint8_t ActiveNode = 0;

12 uint8_t NotActiveNode = 0;

13 StopConvergence = true;

14 uint16_t OldDsecond = 0;

15 intintint removedNodes = 0;

16 doubledoubledouble TimeAve = 0;

17 doubledoubledouble D2 = 0, D3 = 0;

18 uint32_t MaxD2 = 0 , MaxD3 = 0, MaxD4 = 0;

19 uint64_t ms = Simulator ::Now().GetMilliSeconds ();

20 StopFlag[V_index] = true;

21 // Copying the synchronization table (timestamps entri)

22 //into the votin multiset

23 forforfor(intintint i = 0; i < NodeCount; i++)

24 Time_Table[V_index][i] = SyncronizationTable[V_index][i][1];

25 Time_Table[V_index][V_index] = Dsecond[V_index] ;

26 OldDsecond = Time_Table[V_index][V_index];

27 //Check vehicles within the predeifned clock predeifned tolerance

28 forforfor(intintint m = 0; m < NodeCount; m++)

29 {

30 ififif(Time_Table[V_index][m] != 0)

31 {

32 ififif(abs(OldDsecond - Time_Table[V_index][m]) >

Global_Tolerance)

127

33 StopFlag[V_index] = false;

34 }

35 }

36 // Sorting time table

37 forforfor(intintint m = 1; m <= NodeCount; m++)

38 {

39 forforfor(intintint n = 0; n < NodeCount - m; n++)

40 {

41 ififif(Time_Table[V_index][n] > Time_Table[V_index][n+1])

42 {

43 uint32_t temp = Time_Table[V_index][n];

44 Time_Table[V_index][n] = Time_Table[V_index][n+1];

45 Time_Table[V_index][n+1] = temp;

46 }

47 }

48 }

49 //Count number of neighbours vehicles in range

50 forforfor(intintint j = 0; j < NodeCount; j++)

51 {

52 ififif(ActiveNodesArround[V_index][j] != 0)

53 ActiveNode ++;

54 elseelseelse

55 NotActiveNode ++;

56 }

57 CountActiveNodes[V_index] = ActiveNode;

58 ififif(ActiveNode >= 4)

59 {

60 // Calculate number of nodes that will be reduced from the

voting multiset

61 removedNodes = ceil(ReductionPercentage * ((doubledoubledouble)ActiveNode

/100.0));

62 RmovedNodesArray[V_index] = removedNodes;

63 // ////////////////////////////////

64 // Increament iteration counter for each vehicle

65 //To calculate how many round taken to acheive the agreement

66 ififif(! StopFlag[V_index])

67 NodeSyncIteration[V_index]++;

128

68 // ////////////////////////////////

69 //Run the Fault Tolerant Average (FTA) selection function

70 ififif(Algorithm == 1)

71 {

72 intintint countedvalue = 0;

73 forforfor(intintint j = NotActiveNode + removedNodes; j < NodeCount -

removedNodes; j++)

74 {

75 TimeAve += Time_Table[V_index][j];

76 countedvalue ++;

77 }

78 TimeAve = round(TimeAve / countedvalue);

79 }

80 // ////////////////////////////////

81 //Run the Fault Tolerant Midpoint (FTM) selection function

82 elseelseelse ififif(Algorithm == 2)

83 {

84 TimeAve = Time_Table[V_index][NotActiveNode + removedNodes]

85 + Time_Table[V_index][NodeCount - removedNodes - 1];

86 TimeAve = round(TimeAve / 2.0);

87 }

88 // ////////////////////////////////

89 //Run the Median/MidPoint selection function

90 elseelseelse ififif(Algorithm == 3)

91 {

92 ififif(ActiveNode % 2 == 0)

93 TimeAve = round((doubledoubledouble)Time_Table[V_index][NotActiveNode

+ ActiveNode /2 - 1] / 2.0

94 + (doubledoubledouble)Time_Table[V_index][NotActiveNode +

ActiveNode /2] / 2.0);

95 elseelseelse

96 TimeAve = Time_Table[V_index][NotActiveNode + (ActiveNode

+ 1)/2];

97 }

98 //Store the new voted value as the current Dsecond

99 Dsecond[V_index] = TimeAve;

100 }

129

101 elseelseelse

102 {

103 NodeSyncIteration[V_index]++;

104 }

105 // Dsecond value must not exceed 60 sec.

106 Dsecond[V_index] = Dsecond[V_index] % 60000;

107 // ////////////////////////////////

108 //int ConvergedNodes = 0;

109 StopFlag[V_index] = true;

110 //Count number of synchronized vehicles in each vehicle

neighbours

111 forforfor(intintint m = NotActiveNode + removedNodes; m < NodeCount -

removedNodes; m++)

112 {

113 ififif(abs(Dsecond[V_index] - Time_Table[V_index][m]) >

Global_Tolerance)

114 {

115 StopFlag[V_index] = false;

116 }

117 }

118 //If vehicles are synchronized then stop the synchronization

process

119 forforfor(intintint j = 0; j < NodeCount; j++)

120 {

121 ififif(! StopFlag[j])

122 {

123 StopConvergence = false;

124 breakbreakbreak;

125 }

126 }

127 //Print investigation messages in order to check synchronization

process

128 ififif(PrintMessages)

129 {

130 intintint vCount = 0;

131 forforfor(intintint m = 0; m < NodeCount; m++)

132 {

130

133 ififif(ActiveNodesArround[V_index][m] != 0)

134 vCount ++;

135 }

136 std::cout <<"Node " << V_index + 0 << " Dsecond = " <<

OldDsecond << " Active nodes = " << vCount << "\n";

137 printTimeTable(V_index);

138 std::cout <<"Node " << V_index + 0 << " Dsecond = " << Dsecond[

V_index] << "\n";

139 }

140 // Calculte the total diameter between vehicles 's clock

141 ififif(V_index == 0)

142 {

143 Min_Dsecond = Dsecond [0];

144 Max_Dsecond = Dsecond [0];

145 forforfor(intintint i = 1; i < NodeCount; i++)

146 {

147 ififif(Min_Dsecond > Dsecond[i])

148 Min_Dsecond = Dsecond[i];

149 ififif(Max_Dsecond < Dsecond[i])

150 Max_Dsecond = Dsecond[i];

151 }

152 ififif(PrintMessages)

153 std::cout <<"Difference = " << Max_Dsecond - Min_Dsecond <<

"\n";

154 }

155 //Stop synchronization process if number of iterations excceds

300 round

156 //Or synchronization is acheived

157 ififif((StopConvergence && V_index == 0) || NodeSyncIteration[V_index

] >= 300)

158 {

159 //Check if the number of iterations exceeds the 300 rounds

160 ififif(NodeSyncIteration[V_index] >= 300)

161 TimeSeed = MaxSeed + 1;

162 //Stop the current convergence experiment

163 StopConvergenceFn ();

164 //Reset all variables in order to run new experiment

131

165 //with different random numbers

166 Reset();

167 }

168 // ////////////////////////////////

169 //Clear voting multiset

170 forforfor(intintint z = 0; z < NodeCount; z++)

171 {

172 Time_Table[V_index][z] = 0;

173 }

174 }

	Authorization to Submit Dissertation
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The Big Picture
	Research Motivation and Objectives
	Summary of Contributions
	Dissertation Outline

	Background
	Intelligent Transportation System
	DSRC Safety Applications
	Basic Safety Message
	Electronic Emergency Light (EEBL)
	Intersection Collision Avoidance (ICA)

	802.11P
	EDCA Channel Access Rules
	Transmission Queue Behavior

	Fault Model
	VANET Malicious Attacks
	DoS attacks
	Jamming Models
	Misbehavior attack Models

	GPS time spoofing attack

	Safety Application Resilience and Fault Tolerance

	A New Hybrid Jammer and its Impact on the EEBL Safety Application
	Related Work
	Selfish Misbehavior Detection Techniques
	Malicious Misbehavior Detection Techniques

	A New Hybrid Jammer for VANET
	EEBL Safety Application Reliability
	Transmission Queue Behavior and Field Test Observations

	Hybrid Jammer System Model
	Attack Model
	Stationary Attack Model
	Mobile Attack Model

	Jamming Impact on Transmission Queues

	Hybrid Jammer Detection
	Detection Algorithm
	Detection Algorithm Implementation and Testing

	Conclusions

	A Clock Synchronization Algorithm for VANET
	Related Work
	Clock Synchronization in Ad-hoc Networks
	Clock Synchronization in VANET

	System and Fault Models
	System Model and Notation
	Fault Model

	Proposed Clock Synchronization Protocol
	Normal Operation Stage
	Agreement Stage

	Simulations and Analysis
	Assumptions and Parameters
	Analysis of Simulations

	Conclusions

	Enhanced Clock Synchronization in the Presence of Singular and Hybrid Fault Modes
	Related Work
	System and Attack Model
	Attack Model
	System Model

	Enhanced Clock Synchronization Algorithm
	Agreement Algorithms
	ECSA
	Receiving Thread
	Agreement Thread
	Sending Thread

	Simulations and Analysis
	Simulations and Analysis of Model 1
	Simulations and Analysis of Model 2

	Conclusions

	Clock Synchronization with Connected and Autonomous Vehicles
	Related Work
	Motivational Field Test
	Clock Synchronization Algorithm Considering Omissions
	Simulations and Analysis
	Simulation Results
	Field-Test Analysis

	Conclusions

	Conclusions and Future Work
	Future Work

	Bibliography
	Appendices
	Field Test
	Arada LocoMate OBU Commands
	Arada LocoMate OBU Jammer Command

	Transmitter/Receiver OBU Code
	Transmitter
	GPS Information Extraction
	BSM Transmitter

	Receiver
	BSM Reception
	Missing BSMs Check

	Clock Synchronization Simulation Code in NS3
	Global Variables
	BSM Generation and Transmission
	BSM Reception
	Agreement Process

