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Abstract
The theory of complex multiplication of abelian varieties is a useful field of study

with applications ranging from the explicit construction of abelian extensions CM-fields

to the explicit description of L-functions of abelian varieties in ways which are much

easier to carry out than the more general case. In the literature the most commonly

studied abelian surfaces are those with a principal polarization. In the present thesis we

extend this analysis to describe abelian surfaces with complex multiplication which carry

a nonprincipal polarization. We provide a complete characterization of which types of

polarizations are possible on abelian surfaces which have complex multiplication by a

given quartic CM-field K as well as how to construct them when they do exist. We also

derive several necessary conditions for such abelian surfaces to exist as well as provide

an existence theorem in limited circumstances.
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Chapter 1: Introduction
The study of complex multiplication has a rich history, but the idea begins in a

relatively familiar place. Consider the study of abelian extensions of the field of rational

numbers Q. There is a classical theorem known as the Kronecker-Weber Theorem which

states that for every abelian extension K of Q there exists a natural number n such

that K ⊆ Q(ζn), where ζn is a primitive n-th root of unity. There is a fruitful way to

reframe this. Consider the transcendental function e : R/Z → C defined by x 7→ e2πix.

Interpreting R/Z as the circle group, we note that the n-th roots of unity are the images

of n-torsion points under this function. This led Kronecker to ponder the question of

whether there were other transcendental functions defined on geometric groups such that

the images of torsion points generated abelian extensions of other number fields. To put

this in other words, can we generate the class fields of a given number field using special

values of such functions?

In at least one special case the answer to this question turns out to be yes, but it takes

a little more work to explain the geometric objects which assist us in this setting. Consider

an elliptic curve E. Elliptic curves are genus one projective curves with a marked point.

Such curves carry a natural group law. Assume that E is defined over a number field, that

is, a finite extension of Q. A homomorphism of elliptic curves is a group homomorphism

which is a morphism of varieties. The set End(E) of endomorphisms of E, that is, of

homomorphisms from E to itself, forms a ring. For most curves this ring is isomorphic

to the integers. In rare circumstances when it is bigger, it is isomorphic to an order O

contained in a quadratic imaginary fieldK. E is then said to have complex multiplication

by K or by O. We will also abbreviate “complex multiplication” by CM often. Further,

in this case, E tells us about the class field theory of K. The j-invariant is a modular

function which parameterizes elliptic curves. Two elliptic curves are isomorphic if and

only if their j-invariants are the same, and an elliptic curve is defined over a number field

F if and only if its j-invariant is contained in F . The j-invariant serves the same role in

generating abelian extensions of quadratic imaginary fields K as the exponential played

in the generation of abelian extensions of Q. Let K = Q(
√
−m) be a quadratic imaginary

field where m is a squarefree positive integer. The theory of complex multiplication of

elliptic curves has as a major result that if H is the Hilbert class field of a quadratic

imaginary field K then H is generated over K = Q by j(ω) where

ω =

{
1+

√
m

2
if m ≡ 1 (mod 4),

√
m otherwise.
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From a geometric point of view this is because there is an elliptic curve isomorphic to

EOK
= C/(Z+ ωZ) = C/OK

which admits complex multiplication by OK . If h(K) is the class number of K then there

are h(K) distinct isomorphism classes of elliptic curve with complex multiplication by

OK and each of them are the Galois conjugates of EOK
. Further, their j-invariants are

the Galois conjugates of j(ω).

One can even go beyond this. By replacing ω with a generator of various nonmaximal

orders of K, or by replacing j with modular functions for various other congruence sub-

groups of SL(2,Z) we find generators of abelian extensions of K with nontrivial conduc-

tor. In fact, one gets explicit descriptions of every class field over a quadratic imaginary

field K using such methods so that the theory of complex multiplication of elliptic curves

provides a complete description of the class field theory of quadratic imaginary fields.

The natural next question to consider is whether we get a similar theory when we

replace elliptic curves with abelian varieties of higher dimension, while also replacing

quadratic imaginary fields with the appropriate number fields which contain rings iso-

morphic to endomorphism rings of abelian varieties of higher dimension. (These fields

are called CM-fields). The answer is, at least in part, no. We do not achieve nearly as

complete an explicit description of the class field theory of a higher degree CM-field by

means of abelian varieties with complex multiplication. However, in [13], Shimura and

Taniyama were able to establish partial results to these ends, and while not all class fields

of a CM-field K are constructable by means of values of modular functions at CM-points

of the Siegel modular variety, they were able to generate some class fields over K using

such methods. In particular they proved that if ω is the value of a Siegel modular func-

tion whose Fourier coefficients lie in a cyclotomic field on a CM-point corresponding to a

CM-field K then ω generates an abelian extension over K. However, there is also a new

complication which is introduced when we increase the dimension of the abelian varieties

considered.

An abelian variety A is a group variety which admits an embedding into projective

space. If such a variety is defined over the complex numbers, its complex points are

always isomorphic Cg/L where g is the dimension of A and L is a lattice in Cg. The

existence of such an embedding is equivalent to the existence of a very ample divisor on

A, which is in turn equivalent to the existence of a certain Z-bilinear form on L which is

called a Riemann form. To each Riemann form E we can associate a tuple (m1, . . . ,mg)

where g is the dimension of A. We will describe the construction of this tuple later in this

thesis. The tuple (m1, . . . ,mg) is called the type of the polarization. On the other hand,

every lattice L in Cg is such that Cg/L is isomorphic to some abelian variety A if and
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only if it admits a Riemann form. This detail is not considered for elliptic curves because

every lattice L in C admits a canonical Riemann form. In the higher dimensional case we

are free to consider questions of which abelian varieties with complex multiplication by

a given order in a CM-field K admit a polarization of a given type. The most commonly

considered case is when m1 = · · · = mg = 1, in which case the polarization is called a

principal polarization. See for instance [13] and [17].

There has been much less work on nonprincipal polarizations, and the purpose of this

thesis is to consider the conditions under which an abelian surface admits a polarization

of type (m1,m2) for m1 > 1 or m2 > 1. We were able to establish exact conditions under

which such an abelian surface exists. Such conditions are very detailed and difficult to

check by hand so we have also written an algorithm and implemented it in the PARI

programming language in order to quickly ascertain whether for a given CM-field K

there exists an abelian surface A with a polarization of type (1,m) whose endomorphism

ring is isomorphic to the ring of integers OK . We also proved several simpler necessary

conditions for such an abelian surface with complex multiplication to exist and proved

a sufficient condition for there to exist some abelian surface with a polarization of type

(1,m) and with complex multiplication by OK under certain conditions. This makes the

theory of these fields more concrete, and we are hopeful that this will open up further

avenues to use these surfaces to study the explicit class field theory of quartic CM-fields.

We have access to a good deal of data concerning these results, of which we have only

included a small portion in this thesis for illustrative purposes. In addition to illustrating

necessary conditions for the existence of certain CM abelian surfaces, this also provides

evidence for some observations and conjectures. For instance, for each prime p, there

turns out to be empirical evidence that there is a constant αp between 0 and 1 for which,

given a whole number d, the amount of quartic CM-fields of discriminant less than d

which admits a polarization of type (1, p) is approximately αpd. This basic pattern has

held for every prime we have considered, though we do not have a proof that this always

holds yet.

Another pattern which has emerged is that although the theory describes many dif-

ferent sorts of primes p for which there could in principal exist an abelian surface with

complex multiplication by a given CM-field K and a polarization of type (1, p), there are

certain primes which are not ruled out by our main theorem but for which, nonetheless,

we have failed to find examples of such a polarization.
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Chapter 2: Some Theory
We begin with some algebraic number theory which will be necessary for proving our

main results. Section 2.1 discusses results which apply to a more general setting and the

reader may not find them important until they are required for a proof in Chapter 3.

Section 2.2 is about the general theory of CM-fields. In Section 2.3 we discuss the basic

theory of abelian varieties. In Section 2.4 we discuss a certain class of bilinear forms

defined on a CM-field K which will be important in our main theorem. In Section 2.5

we discuss polarizations on abelian varieties.

2.1. Algebraic Prerequisites

Before we do anything else, we will list some algebraic facts relating to field theory

which will be useful later. These are lemmas which are used in the proofs of some more

technical facts and will seem unmotivated at this time. The reader is advised to move

on to the next section and return when the results are needed.

Lemma 2.1.1. Let O be a Dedekind domain. Let a, b, c be integral ideals of O. Then

we have

a−1b−1/c ≃ a−1/bc

where the isomorphism is an isomorphism of O-modules.

Proof. First we show that it suffices to prove the claim in the case when b is a power

of a prime ideal. To show this, let the prime decomposition of b be

b = pe11 . . . pett .

Suppose the claim is true for prime powers. Then we have

a−1b−1/c =
a−1p−e1

1 . . . p−et
t

c

=
a−1p−e1

1 . . . p
et−1

t−1

penn c

= . . .

=
a−1

pe11 . . . pett c

=
a−1

bc
.

So, suppose b = pe for p a prime of O and e a positive integer. Let π be an element of O

whose valuation at p is vp(π) = 1 and such that if q is any prime of O dividing a other

than p then vq(π) = 0. Such an element is guaranteed to exist by the approximation
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theorem ( See [10] Theorem 3.4). We define a map ψ : a−1b−1 → a−1/bc in the following

way.

Let the prime factorization of a be

qf11 . . . qfss pfs+1 .

Here fs+1 = 0 if p ∤ a. Then x ∈ a−1b−1 if and only if vp(x) ⩾ −fs+1 − e and vqj(x) ⩾ fj

for each j ∈ {1, . . . , s}. Let x ∈ a−1b−1. We claim that πex ∈ a−1. Indeed, as vp(x) ⩾

−fs+1 − e, vp(π
ex) ⩾ −fs+1 and vqj(π

ex) = vqj(x) for each j ∈ {1, . . . , s}. So πex ∈ a−1.

We define ψ(x) = πex + bc. We claim kerψ = c. To see this, first suppose x ∈ kerψ.

So ψ(x) = bc or equivalently πex ∈ bc. Then bc|xpe = xb, which implies c|(x), which is

equivalent to x ∈ c. Conversely, if x ∈ c then ψ(x)+bc = bc, so that x ∈ kerψ. Therefore

by the first isomorphism theorem we have

a−1b−1/c ≃ a−1/bc

as required. □

Proposition 2.1.2. Let OK be the ring of integers of a number field K and p a prime

ideal of OK. Let p be the rational prime lying under p and let e = e(p|p) and f = f(p|p).
Let k be a positive integer and let k̃ denote the least residue of k mod e. Then, as abelian

groups,

OK/p
k ≃

(
Z/p

k−k̃
e Z
)f(e−k̃)

×
(
Z/p

k−k̃
e

+1Z
)fk̃

.(2.1.1)

In particular, if e|k, we have

OK/p
k ≃

(
Z/p

k
eZ
)fe

.(2.1.2)

Proof. First, note that we can prove this proposition by proving the analogous

proposition where we replace OK by its completion Op with respect to the nonar-

chimedean absolute value corresponding to p. Let O = Op. We will also refer to the

unique maximal ideal of O by p. It is well-known that OK/p
k is isomorphic as a ring

to O/pk, so in particular they are also isomorphic as groups. So it suffices to show that

O/pk has the required form.

Let P be a finite abelian p-group. The fundamental theorem of finite abelian groups

tells us that P can be written as a product of cyclic p-groups. In other words, there exist

positive integers n1, . . . , nl, r1, . . . , rl such that

P ≃ (Z/pn1Z)r1 × · · · × (Z/pnlZ)rl .

Further, if we define for n ⩾ 0

U(n, P ) = the number of components of order pn+1
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then

U(n, P ) = dim
pnP

pn+1P
− dim

pn+1P

pn+2P

where dim denotes dimension as a Z/pZ vector space (see [11]). Let G = O/pk. Then

G is a finite abelian p-group.

First, assume that n ⩽ ke−1 − 1, or equivalently (n+ 1)e ⩽ k. Then

pnG

pn+1G
=

pne/pk

p(n+1)e/pk
≃ pne

p(n+1)e
≃ O

pe
.

This has order pef . So dim pnG
pn+1G

= ef .

Next, assume that n ⩾ ke−1 (so that ne ⩾ k). In this case, pnO = pne ⊆ pk, so

dim pnG
pn+1G

= 0.

Finally, assume that ke−1 − 1 < n < ke−1 so that ne < k < (n + 1)e. In this case,

pn+1O ⊊ pk ⊆ pnO. So

pnG

pn+1G
=

pnO/pk

pn+1(O/pk)
=

pne

pk
≃ O

pk−ne
.

So dim pnG
pn+1G

= dim O
pk−ne = f(k − ne).

Putting all this together, we calculate U(n,G) for n ⩾ 0:

U(n,G) = dim
pnG

pn+1G
− dim

pn+1G

pn+2G

=



0 if n ⩽ ke−1 − 2,

f(e− k + (n+ 1)e) if ke−1 − 2 < n < ke−1 − 1,

fe if n = ke−1 − 1,

f(k − ne) if ke−1 − 1 ⩽ n ⩽ ke−1,

0 if ke−1 ⩽ n.

Assume e divides k. In this case, we have that

U(ke−1 − 1, G) = fe

and U(n,G) = 0 otherwise. This implies (2.1.2).

Assume e may not divide k. In this case, we have that

U(
⌊
ke−1 − 1

⌋
, G) = f(e− k +

⌊
ke−1

⌋
e),

U(
⌊
ke−1

⌋
, G) = f(k −

⌊
ke−1

⌋
e)

and U(n,G) = 0 otherwise. A calculation now gives us (2.1.1). □

This gives us the tool to compute what quotients of rings of integers by ideals look

like in various fields. Most important in this document will be the case of quartic fields.

We have the following lemma.



7

Lemma 2.1.3. Let K be a quartic field. Let OK be the ring of integers of K. Let k be

a positive integer. Let p be a prime in OK lying over a rational prime p. Let e = e(p|p) be
the ramification degree of p and f = f(p|p) the inertia degree of p. Because [K : Q] = 4

we have the following possibilities for e, f which result in the following isomorphisms of

abelian groups.

(1) Assume e = 4, f = 1. Then:

(a) If k ≡ 0 (mod 4)

OK/p
k ≃

(
Z/p

k
4Z
)4

;

(b) If k ≡ 1 (mod 4)

OK/p
k ≃

(
Z/p

k−1
4 Z
)3

× Z/p
k−1
4

+1Z;

(c) If k ≡ 2 (mod 4)

OK/p
k ≃

(
Z/p

k−2
4 Z
)2

×
(
Z/p

k−2
4

+1Z
)2

;

(d) If k ≡ 3 (mod 4)

OK/p
k ≃ Z/p

k−3
4 Z×

(
Z/p

k−3
4

+1Z
)3
.

(2) Assume e = 3, f = 1. Then:

(a) If k ≡ 0 (mod 3)

OK/p
k ≃

(
Z/p

k
3Z
)3

;

(b) If k ≡ 1 (mod 3)

OK/p
k ≃

(
Z/p

k−1
3 Z
)2

× Z/p
k−1
3

+1Z;

(c) If k ≡ 2 (mod 3)

OK/p
k ≃ Z/p

k−2
3 Z×

(
Z/p

k−2
3

+1Z
)2
.

(3) Assume e = 2, f = 2. Then:

(a) If k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)4

;

(b) If k ≡ 1 (mod 2)

OK/p
k ≃

(
Z/p

k−1
2 Z
)2

×
(
Z/p

k−1
2

+1Z
)2
.

(4) Assume e = 2, f = 1. Then:
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(a) If k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)2

;

(b) If k ≡ 1 (mod 2)

OK/p
k ≃ Z/p

k−1
2 Z× Z/p

k−1
2

+1Z.

(5) Assume e = 1, f = 4. Then

OK/p
k ≃

(
Z/pkZ

)4
.

(6) Assume e = 1, f = 3. Then

OK/p
k ≃

(
Z/pkZ

)3
.

(7) Assume e = 1, f = 2. Then

OK/p
k ≃

(
Z/pkZ

)2
.

(8) Assume e = 1, f = 1. Then

OK/p
k ≃ Z/pkZ.

Proof. This is a direct application of the Proposition 2.1.2. □

We also carry out the same calculations for sextic and octic fields.

Theorem 2.1.4. Let K be a sextic field. Let OK be the ring of integers of K and p a

prime of OK. Let p be the rational prime lying below p. Let k be a positive integer. Let

e = e(p|p) be the ramification degree of p and f = f(p|p) the inertia degree of p. We have

the following possibilities for e and f and the corresponding group structures for OK/p
k.

(1) Assume e = 6, f = 1. Then:

(a) If k ≡ 0 (mod 6)

OK/p
k ≃

(
Z/p

k
6Z
)6

;

(b) If k ≡ 1 (mod 6)

OK/p
k ≃

(
Z/p

k−1
6 Z
)5

× Z/p
k−1
6

+1Z;

(c) If k ≡ 2 (mod 6)

OK/p
k ≃

(
Z/p

k−2
6 Z
)4

×
(
Z/p

k−2
6

+1Z
)2

;

(d) If k ≡ 3 (mod 6)

OK/p
k ≃

(
Z/p

k−3
6 Z
)3

×
(
Z/p

k−3
6

+1Z
)3

;
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(e) If k ≡ 4 (mod 6)

OK/p
k ≃

(
Z/p

k−4
6 Z
)2

×
(
Z/p

k−4
6

+1Z
)4

;

(f) If k ≡ 5 (mod 6)

OK/p
k ≃ Z/p

k−5
6 Z×

(
Z/p

k−5
6

+1Z
)5
.

(2) Assume e = 5, f = 1. Then:

(a) If k ≡ 0 (mod 5)

OK/p
k ≃

(
Z/p

k
5Z
)5

;

(b) If k ≡ 1 (mod 5)

OK/p
k ≃

(
Z/p

k−1
5 Z
)4

× Z/p
k−1
5

+1Z;

(c) If k ≡ 2 (mod 5)

OK/p
k ≃

(
Z/p

k−2
5 Z
)3

×
(
Z/p

k−2
5

+1Z
)2

;

(d) If k ≡ 3 (mod 5)

OK/p
k ≃

(
Z/p

k−3
5 Z
)2

×
(
Z/p

k−3
5

+1Z
)3

;

(e) If k ≡ 4 (mod 5)

OK/p
k ≃ Z/p

k−4
5 Z×

(
Z/p

k−4
5

+1Z
)4
.

(3) Assume e = 4, f = 1. Then:

(a) If k ≡ 0 (mod 4)

OK/p
k ≃

(
Z/p

k
4Z
)4

;

(b) If k ≡ 1 (mod 4)

OK/p
k ≃

(
Z/p

k−1
4 Z
)3

× Z/p
k−1
4

+1Z;

(c) If k ≡ 2 (mod 4)

OK/p
k ≃

(
Z/p

k−2
4 Z
)2

×
(
Z/p

k−2
4

+1Z
)2

;

(d) If k ≡ 3 (mod 4)

OK/p
k ≃ Z/p

k−3
4 Z×

(
Z/p

k−3
4

+1Z
)3
.

(4) Assume e = 3, f = 2. Then:
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(a) If k ≡ 0 (mod 3)

OK/p
k ≃

(
Z/p

k
3Z
)6

;

(b) If k ≡ 1 (mod 3)

OK/p
k ≃

(
Z/p

k−1
3 Z
)4

×
(
Z/p

k−1
3

+1Z
)2

;

(c) If k ≡ 2 (mod 3)

OK/p
k ≃

(
Z/p

k−2
3 Z
)2

×
(
Z/p

k−2
3

+1Z
)4
.

(5) Assume e = 3, f = 1. Then:

(a) If k ≡ 0 (mod 3)

OK/p
k ≃

(
Z/p

k
3Z
)3

;

(b) If k ≡ 1 (mod 3)

OK/p
k ≃

(
Z/p

k−1
3 Z
)2

× Z/p
k−1
3

+1Z;

(c) If k ≡ 2 (mod 3)

OK/p
k ≃ Z/p

k−2
3 Z×

(
Z/p

k−2
3

+1Z
)2
.

(6) Assume e = 2, f = 3, Then:

(a) If k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)6

;

(b) If k ≡ 1 (mod 2)

OK/p
k ≃

(
Z/p

k−1
2 Z
)3

×
(
Z/p

k−1
2

+1Z
)3
.

(7) Assume e = 2, f = 2. Then:

(a) If k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)4

;

(b) If k ≡ 1 (mod 2)

OK/p
k ≃

(
Z/p

k−1
2 Z
)2

×
(
Z/p

k−1
2

+1Z
)2
.

(8) Assume e = 2, f = 1. Then:

(a) If k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)2

;
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(b) If k ≡ 1 (mod 2)

OK/p
k ≃ Z/p

k−1
2 Z× Z/p

k−1
2

+1Z.

(9) Assume e = 1, f = 6. Then

OK/p
k ≃

(
Z/pkZ

)6
.

(10) Assume e = 1, f = 5. Then

OK/p
k ≃

(
Z/pkZ

)5
.

(11) Assume e = 1, f = 4. Then

OK/p
k ≃

(
Z/pkZ

)4
.

(12) Assume e = 1, f = 3. Then

OK/p
k ≃

(
Z/pkZ

)3
.

(13) Assume e = 1, f = 2. Then

OK/p
k ≃

(
Z/pkZ

)2
.

(14) Assume e = 1, f = 1. Then

OK/p
k ≃ Z/pkZ.

Theorem 2.1.5. Let K be an octic field. Let OK be the ring of integers of K and p

a prime of OK. Let p be the rational prime lying below p. Let k be a positive integer. Let

e = e(p|p) be the ramification degree of p and f = f(p|p) the inertia degree of p. We have

the following possibilities for e and f and the corresponding group structures for OK/p
k.

(1) Assume e = 8, f = 1. Then:

(a) If k ≡ 0 (mod 8)

OK/p
k ≃

(
Z/p

k
8Z
)8

;

(b) If k ≡ 1 (mod 8)

OK/p
k ≃

(
Z/p

k−1
8 Z
)7

× Z/p
k−1
8

+1Z;

(c) k ≡ 2 (mod 8)

OK/p
k ≃

(
Z/p

k−2
8 Z
)6

×
(
Z/p

k−2
8

+1Z
)2

;

(d) k ≡ 3 (mod 8)

OK/p
k ≃

(
Z/p

k−3
8 Z
)5

×
(
Z/p

k−3
8

+1Z
)3

;
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(e) k ≡ 4 (mod 8)

OK/p
k ≃

(
Z/p

k−4
8 Z
)4

×
(
Z/p

k−4
8

+1Z
)4

;

(f) k ≡ 5 (mod 8)

OK/p
k ≃

(
Z/p

k−5
8 Z
)3

×
(
Z/p

k−5
8

+1Z
)5

;

(g) k ≡ 6 (mod 8)

OK/p
k ≃

(
Z/p

k−6
8 Z
)2

×
(
Z/p

k−6
8

+1Z
)6

;

(h) k ≡ 7 (mod 8)

OK/p
k ≃ Z/p

k−7
8 Z×

(
Z/p

k−7
8

+1Z
)7
.

(2) Assume e = 7, f = 1. Then:

(a) k ≡ 0 (mod 7)

OK/p
k ≃

(
Z/p

k
7Z
)7

;

(b) k ≡ 1 (mod 7)

OK/p
k ≃

(
Z/p

k−1
7 Z
)5

× Z/p
k−1
7

+1Z;

(c) k ≡ 2 (mod 7)

OK/p
k ≃

(
Z/p

k−2
7 Z
)5

×
(
Z/p

k−2
7

+1Z
)2

; ;

(d) k ≡ 3 (mod 7)

OK/p
k ≃

(
Z/p

k−3
7 Z
)4

×
(
Z/p

k−3
7

+1Z
)3

; ;

(e) k ≡ 4 (mod 7)

OK/p
k ≃

(
Z/p

k−4
7 Z
)3

×
(
Z/p

k−4
7

+1Z
)4

;

(f) k ≡ 5 (mod 7)

OK/p
k ≃

(
Z/p

k−5
7 Z
)2

×
(
Z/p

k−5
7

+1Z
)5

;

(g) k ≡ 6 (mod 7)

OK/p
k ≃ Z/p

k−6
7 Z×

(
Z/p

k−6
7

+1Z
)6
.

(3) Assume e = 6, f = 1. Then:

(a) k ≡ 0 (mod 6)

OK/p
k ≃

(
Z/p

k
6Z
)6

;
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(b) k ≡ 1 (mod 6)

OK/p
k ≃

(
Z/p

k−1
6 Z
)5

× Z/p
k−1
6

+1Z;

(c) k ≡ 2 (mod 6)

OK/p
k ≃

(
Z/p

k−2
6 Z
)4

×
(
Z/p

k−2
6

+1Z
)2
.;

(d) k ≡ 3 (mod 6)

OK/p
k ≃

(
Z/p

k−3
6 Z
)3

×
(
Z/p

k−3
6

+1Z
)3
.;

(e) k ≡ 4 (mod 6)

OK/p
k ≃

(
Z/p

k−4
6 Z
)2

×
(
Z/p

k−4
6

+1Z
)4

;

(f) k ≡ 5 (mod 6)

OK/p
k ≃ Z/p

k−5
6 Z×

(
Z/p

k−5
6

+1Z
)5
.

(4) Assume e = 5, f = 1. Then:

(a) k ≡ 0 (mod 5)

OK/p
k ≃

(
Z/p

k
5Z
)5

;

(b) k ≡ 1 (mod 5)

OK/p
k ≃

(
Z/p

k−1
5 Z
)4

× Z/p
k−1
5

+1Z;

(c) k ≡ 2 (mod 5)

OK/p
k ≃

(
Z/p

k−2
5 Z
)3

×
(
Z/p

k−2
5

+1Z
)2

;

(d) k ≡ 3 (mod 5)

OK/p
k ≃

(
Z/p

k−3
5 Z
)2

×
(
Z/p

k−3
5

+1Z
)3

;

(e) k ≡ 4 (mod 5)

OK/p
k ≃ Z/p

k−4
5 Z×

(
Z/p

k−4
5

+1Z
)4
.

(5) Assume e = 4, f = 2. Then:

(a) k ≡ 0 (mod 4)

OK/p
k ≃

(
Z/p

k
4Z
)8

;

(b) k ≡ 1 (mod 4)

OK/p
k ≃

(
Z/p

k−1
4 Z
)6

×
(
Z/p

k−1
4

+1Z
)2

;
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(c) k ≡ 2 (mod 4)

OK/p
k ≃

(
Z/p

k−2
4 Z
)4

×
(
Z/p

k−2
4

+1Z
)4

;

(d) k ≡ 3 (mod 4)

OK/p
k ≃

(
Z/p

k−3
4 Z
)2

×
(
Z/p

k−3
4

+1Z
)6
.

(6) Assume e = 4, f = 1. Then:

(a) k ≡ 0 (mod 4)

OK/p
k ≃

(
Z/p

k
4Z
)4

;

(b) k ≡ 1 (mod 4)

OK/p
k ≃

(
Z/p

k−1
4 Z
)3

× Z/p
k−1
4

+1Z;

(c) k ≡ 2 (mod 4)

OK/p
k ≃

(
Z/p

k−2
4 Z
)2

×
(
Z/p

k−2
4

+1Z
)2

;

(d) k ≡ 3 (mod 4)

OK/p
k ≃ Z/p

k−3
4 Z×

(
Z/p

k−3
4

+1Z
)3
.

(7) Assume e = 3, f = 2. Then:

(a) k ≡ 0 (mod 3)

OK/p
k ≃

(
Z/p

k
3Z
)6

;

(b) k ≡ 1 (mod 3)

OK/p
k ≃

(
Z/p

k−1
3 Z
)4

×
(
Z/p

k−1
3

+1Z
)2

;

(c) k ≡ 2 (mod 3)

OK/p
k ≃

(
Z/p

k−2
3 Z
)2

×
(
Z/p

k−2
3

+1Z
)4
.

(8) Assume e = 3, f = 1. Then:

(a) k ≡ 0 (mod 3)

OK/p
k ≃

(
Z/p

k
3Z
)3

;

(b) k ≡ 1 (mod 3)

OK/p
k ≃

(
Z/p

k−1
3 Z
)2

× Z/p
k−1
3

+1Z;

(c) k ≡ 2 (mod 3)

OK/p
k ≃ Z/p

k−2
3 Z×

(
Z/p

k−2
3

+1Z
)2
.
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(9) Assume e = 2, f = 4. Then:

(a) k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)8

;

(b) k ≡ 1 (mod 2)

OK/p
k ≃

(
Z/p

k−1
2 Z
)4

×
(
Z/p

k−1
2

+1Z
)4
.

(10) Assume e = 2, f = 3. Then:

(a) k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)6

;

(b) k ≡ 1 (mod 2)

OK/p
k ≃

(
Z/p

k−1
2 Z
)3

×
(
Z/p

k−1
2

+1Z
)3
.

(11) Assume e = 2, f = 2. Then:

(a) k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)4

;

(b) k ≡ 1 (mod 2)

OK/p
k ≃

(
Z/p

k−1
2 Z
)2

×
(
Z/p

k−1
2

+1Z
)2
.

(12) Assume e = 2, f = 1. Then:

(a) k ≡ 0 (mod 2)

OK/p
k ≃

(
Z/p

k
2Z
)2

;

(b) k ≡ 1 (mod 2)

OK/p
k ≃ Z/p

k−1
2 Z× Z/p

k−1
2

+1Z.

(13) Assume e = 1, f = 8. Then:

OK/p
k ≃

(
Z/pkZ

)8
.

(14) Assume e = 1, f = 7. Then:

OK/p
k ≃

(
Z/pkZ

)7
.

(15) Assume e = 1, f = 6. Then:

OK/p
k ≃

(
Z/pkZ

)6
.

(16) Assume e = 1, f = 5. Then:

OK/p
k ≃

(
Z/pkZ

)5
.
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(17) Assume e = 1, f = 4. Then:

OK/p
k ≃

(
Z/pkZ

)4
.

(18) Assume e = 1, f = 3. Then:

OK/p
k ≃

(
Z/pkZ

)3
.

(19) Assume e = 1, f = 2. Then:

OK/p
k ≃

(
Z/pkZ

)2
.

(20) Assume e = 1, f = 1. Then:

OK/p
k ≃ Z/pkZ.

Having given the abelian group structure of quotients of rings of integers, we now lay

out the circumstances under which they take on a certain form which will be important

in the proof of the main theorem of this thesis. Specifically we want to find ideals g such

that OK/g is isomorphic to a product of n copies of Z/mZ.

Lemma 2.1.6. Let K be a number field, let OK be the ring of integers of K, let g be

an ideal of OK, and let m and n be positive integers. Assume that

(2.1.3) OK/g ∼= Z/mZ× · · · × Z/mZ︸ ︷︷ ︸
n

.

(1) If p is a prime ideal of OK that divides g, and p lies over the prime p of Z, then
p | m.

(2) For each prime p of Z such that p | m, define

(2.1.4) gp =
∏

p is a prime of OK ,
p|g,

p lies over p

pvp(g).

Then

(2.1.5) g =
∏
p|m

gp

and

(2.1.6) OK/gp ∼= Z/pvp(m)Z× · · · × Z/pvp(m)Z︸ ︷︷ ︸
n

.

Proof. Let m = pj11 · · · pjrr be the prime factorization of m, and let g = pk11 · · · pkss be

the prime factorization of g. For i ∈ {1, . . . , s}, let pi lie over the prime qi of Z. By the
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Chinese remainder theorem we have

(2.1.7) OK/g ∼= OK/p
k1
1 × · · · ×OK/p

ks
s .

For this, note that pkii and p
kj
j are comaximal for i, j ∈ {1, . . . , s} with i ̸= j. It follows

that

(2.1.8) |OK/g| = q
k1f(p1/q1)
1 · · · qksf(ps/qs)s .

Since (2.1.3) holds we also have

(2.1.9) |OK/g| = mn = pnk11 · · · pnkrr .

From (2.1.8) and (2.1.9) we conclude that {p1, . . . , pr} = {q1, . . . , qs}. The assertion (1)

follows, and (2.1.5) is also clear. To prove (2.1.6) we will use the following notation: if

G is a finite abelian group, and p is a prime of Z, then we let Gp be the subgroup of

G of elements that have order that is a non-negative power of p. Now by the Chinese

remainder theorem from (2.1.5) we have

(2.1.10) OK/g ∼= OK/gp1 × · · · ×OK/gpr .

Let i ∈ {1, . . . , r}. Considering the definition of gpi , and applying the Chinese remainder

theorem to OK/gpi , we see that every element of OK/gpi has order that is a non-negative

power of pi. It follows that

(2.1.11) (OK/g)pi
∼= OK/gpi .

It is also evident that

(2.1.12)

Z/pmZ× · · · × Z/pmZ︸ ︷︷ ︸
n


pi

∼= Z/pvpi (m)

i Z× · · · × Z/pvpi (m)

i Z︸ ︷︷ ︸
n

.

We now see that (2.1.6) follows from (2.1.3), (2.1.11), and (2.1.12). □

We now further specialize Lemma 2.1.6 to apply in the specific case K is quartic,

when n = 2 and m = pg for a prime p and a positive integer g. This is the specific case

which will be useful to us.

Lemma 2.1.7. Let K be quartic extension of Q, let OK be the ring of integers of K,

let p be a prime of Z, let g be an ideal of OK, and let g be a positive integer. Assume

that

(2.1.13) OK/g ∼= Z/pgZ× Z/pgZ.

Let

(2.1.14) g = pk11 · · · pktt , k1 ⩽ · · · ⩽ kt
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be the prime factorization of g (note that g is a proper ideal of OK). For i ∈ {1, . . . , t}
let pi lie over the prime pi of Z. Then p1 = · · · = pt = p and g and g satisfy exactly one

of the following conditions:

(2.1.15)

t g k1, . . . , kt (e(p1/p), f(p1/p)), . . . , (e(pt/p), f(pt/p))

1 1 2 (4, 1)

1 1 2 (3, 1)

1 1 1 (2, 2)

1 g 2g (2, 1)

1 g g (1, 2)

2 1 1, 1 (3, 1), (1, 1)

2 1 1, 1 (2, 1), (2, 1)

2 1 1, 1 (2, 1), (1, 1)

2 g g, g (1, 1), (1, 1)

If K/Q is Galois, then g and g satisfy exactly one of the following conditions:

(2.1.16)

t g k1, . . . , kt (e(p1/p), f(p1/p)), . . . , (e(pt/p), f(pt/p))

1 1 2 (4, 1)

1 1 1 (2, 2)

1 g 2g (2, 1)

1 g g (1, 2)

2 1 1, 1 (2, 1), (2, 1)

2 g g, g (1, 1), (1, 1)

Proof. By the Chinese remainder theorem we have

(2.1.17) OK/g ∼= OK/p
k1
1 × · · · ×OK/p

kt
t .

For this, note that pkii and p
kj
j are comaximal for i, j ∈ {1, . . . , t} with i ̸= j. For

i ∈ {1, . . . , t} we have

(2.1.18) |OK/p
ki
i | = p

f(pi/pi)ki
i ,

so that by (2.1.13),

(2.1.19) p2g = p
f(p1/p1)k1
1 · · · pf(pt/pt)ktt .
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It follows that p1 = · · · = pt and

(2.1.20) 2g = f(p1/p1)k1 + · · · f(pt/pt)kt.

Also, since the factorization of a finite abelian group as a direct product of cyclic groups

of prime power order is unique (this is the fundamental theorem of abelian groups), we

see that t = 1 or t = 2.

Assume first that t = 1. Then exactly one of first five entries of (2.1.15) holds by the

following table (which follows from 3.1.2).

case e(p1/p) f(p1/p) k1 exact conditions

from such that

3.1.2 OK/p
k1
1

∼= Z/pgZ× Z/pgZ

(1) (a) 4 1 k1 ≡ 0 (mod 4) impossible

(1) (b) 4 1 k1 ≡ 1 (mod 4) impossible

(1) (c) 4 1 k1 ≡ 2 (mod 4) k1 = 2 and g = 1

(1) (d) 4 1 k1 ≡ 3 (mod 4) impossible

(2) (a) 3 1 k1 ≡ 0 (mod 3) impossible

(2) (b) 3 1 k1 ≡ 1 (mod 3) impossible

(2) (c) 3 1 k1 ≡ 2 (mod 3) k1 = 2 and g = 1

(3) (a) 2 2 k1 ≡ 0 (mod 2) impossible

(3) (b) 2 2 k1 ≡ 1 (mod 2) k1 = 1 and g = 1

(4) (a) 2 1 k1 ≡ 0 (mod 2) 2g = k1

(4) (b) 2 1 k1 ≡ 1 (mod 2) impossible

(5) 1 4 impossible

(6) 1 3 impossible

(7) 1 2 k1 = g

(8) 1 1 impossible

Now assume that t = 2. Then exactly one of the last four entries of (2.1.15) holds

by the following table (which follows from 3.1.2). In the following table i ∈ {1, 2}. Note
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that since t = 2 we must have OK/p
ki
i
∼= Z/pgZ. Note also that we use that

(2.1.21) 4 ⩾ e(p1/p)f(p1/p) + e(p2/p)f(p2/p).

case e(pi/p) f(pi/p) ki exact conditions

from such that

Theorem 3.1.2 OK/p
ki
i
∼= Z/pgZ

(1) (a) 4 1 ki ≡ 0 (mod 4) impossible

(1) (b) 4 1 ki ≡ 1 (mod 4) ki = g = 1

(1) (c) 4 1 ki ≡ 2 (mod 4) impossible

(1) (d) 4 1 ki ≡ 3 (mod 4) impossible

(2) (a) 3 1 ki ≡ 0 (mod 3) impossible

(2) (b) 3 1 ki ≡ 1 (mod 3) ki = g = 1

(2) (c) 3 1 ki ≡ 2 (mod 3) impossible

(3) (a) 2 2 ki ≡ 0 (mod 2) impossible

(3) (b) 2 2 ki ≡ 1 (mod 2) impossible

(4) (a) 2 1 ki ≡ 0 (mod 2) impossible

(4) (b) 2 1 ki ≡ 1 (mod 2) ki = g = 1

(5) 1 4 impossible

(6) 1 3 impossible

(7) 1 2 impossible

(8) 1 1 ki = g = 1

Finally, assume that K/Q is Galois. Then g and g cannot satisfy the second, sixth,

and eigth entries of (2.1.15) because e(pi/p) divides 4 for i ∈ {1, . . . , t} and e(p1/p) =

· · · = e(pt/p). □

2.2. CM-Fields

In this section we study a certain generalization of a quadratic imaginary field called

a CM-field. These fields arise as the field of fractions of endomorphism rings of some

abelian varieties so they will form a central object of study in this thesis. We will need

a couple preliminary concepts in order to define a CM-field.



21

We call a number field K totally imaginary if no embedding of K into the complex

numbers takes K into the real numbers. We call K totally real if every embedding of K

into the complex numbers takes K into the real numbers. We call an element x of K

totally positive or totally negative if every embedding of K into the complex numbers

takes x into the positive or negative real numbers respectively.

Definition 2.2.1. A CM-field K is a finite algebraic extension of the field of rational

numbers Q that is totally imaginary and such that K has an index two subextension K0

which is totally real.

The simplest example of a CM-field is a quadratic imaginary field K = Q(
√
−d) with

d a positive integer. In this case, the totally real subfield is Q. In general, every CM-field

is of the form K = K0(
√
−∆) where ∆ is some totally positive element of K0. We begin

by proving some basic facts about CM-fields.

Lemma 2.2.2. Let K be a CM-field. There exists a unique automorphism β : K → K

such that

σ(β(x)) = σ(x) for x ∈ K(2.2.1)

for any embedding σ : K → C. In fact, if K0 is a totally real subfield of K such that

K = K0(
√
−∆) where ∆ ∈ K0 is totally positive, then

β(a+ b
√
−∆) = a− b

√
−∆ for a, b ∈ K0.(2.2.2)

Proof. Let K0 be a totally real subfield of K such that K = K0(
√
−∆) where

∆ ∈ K0 is totally positive. Let σ : K → C be an embedding. We first prove that

σ(a+ b
√
−∆) = σ(a− b

√
∆) for a, b ∈ K0.(2.2.3)

Let a, b ∈ K0. Then

σ(a+ b
√
−∆) = σ(a) + σ(b)σ(

√
−∆)

= σ(a) + σ(b)σ(
√
−∆).(2.2.4)

Now

(σ(
√
−∆))2 = σ(

√
−∆

2
)

= σ(−∆)

= −σ(∆).

Since ∆ is totally positive we have σ(∆) > 0. It follows that

σ(
√
−∆) = ϵσ

√
σ(∆)i
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for some ϵσ ∈ {±1}. Therefore

σ(
√
−∆) = ϵσ

√
σ(∆)i

= −ϵσ
√
−∆i

= −σ(
√
−∆).(2.2.5)

From (2.2.4) and (2.2.5) we now have

σ(a+ b
√
−∆) = σ(a)− σ(b)σ(

√
−∆)

= σ(a− b
√
−∆).

This proves (2.2.3).

Now define β : K → K by (2.2.2). Then it is clear that β is in Gal(K/K0) and

in particular β is an automorphism of K. That β satisfies (2.2.1) for any embedding

σ : K → C follows from (2.2.4). Assume β′ : K → K is another automorphism that

satisfies (2.2.1) with β′ in place of β for all embeddings σ : K → C. To complete the

proof we need to prove that β′ = β. Let x ∈ K. Let σ : K → C be any embedding.

Then β′(x) = σ−1(σ(σ(x)) = β(x). □

This gives us a new characterization of CM-fields

Lemma 2.2.3. Let K be a number field. The following are equivalent.

(1) The field K is totally real or a CM-field

(2) Let ρ : C → C be complex conjugation. There exists an automorphism τ from

K to K such that for every embedding σ : K → C, ρ ◦ σ = σ ◦ τ .

Proof. We first prove the forward implication. If K is totally real, the result is

trivial. If K is a CM-field, We let τ = β be the automorphism of K from Lemma 2.2.2.

Then Lemma 2.2.2 implies (2).

We now prove the converse. Suppose that there exists an automorphism τ : K → K

such that ρ ◦ σ = σ ◦ τ for every embedding σ : K → C. Let K0 be the fixed field of τ .

If K = K0 then K is totally real. Suppose K ̸= K0. Then τ is not the identity. I claim

the order of τ is 2. Indeed, if x ∈ K and σ : K → C is any embedding of K into C, let
τK and σK be extensions of τ and σ respectively to automorphisms of C. Then we have

τ 2K(x) = σ−1
K ◦ ρ ◦ σKσ−1

K ◦ ρ ◦ σK
= σ−1

K ◦ ρ2 ◦ σK
= IdC.

Because an extension of τ has order 2, so does τ . K must be a degree two extension of

K0 which is not embedded into the real numbers, thus K is a CM-field. □
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We also have the following.

Lemma 2.2.4. The following hold.

(1) Any composite of finitely many CM-fields and totally real fields is a CM-field or

totally real.

(2) The Galois closure of a CM-field is a CM-field.

(3) If ϕ is an embedding of CM-fields K1 → K2, then we have ρ|K2 ◦ ϕ = ϕ ◦ ρ|K1.

Proof. We start by proving (1). If we can prove the result for two fields K,L then

the result will follow in general by induction. Let σ be an embedding of LM into C and

let ρ be complex conjugation. We know that for any x ∈ L or x ∈M ,

σ(ρ(x)) = ρ(σ(x)).

Now let y ∈ LM . Since y can be written as a rational expression of elements of M with

coefficients in L, σ(ρ(y) = ρ(σ(y)). (2) is true because the Galois closure of a number

field is the composite of the finitely many Galois conjugates of the number field. We

prove (3). Note that as K2 ⊆ C, we can regard the embedding of K1 into K2 as an

embedding into C, so this result is immediate. □

CM-types. Let K be a CM-field of degree 2g over Q.

Definition 2.2.5. A CM-type of K is a collection

Φ = {ϕ1, ϕ2, . . . , ϕg}

of embeddings of K into C such that {ϕ1, ϕ2, . . . , ϕg, ϕ1 ◦ ρ, ϕ2 ◦ ρ, . . . , ϕg ◦ ρ} is the full

set of embeddings of K into C.
Let M(g,C) denote the ring of g × g matrices with complex entries. Let D(g,C)

denote the subring of diagonal matrices. We will abuse notation and also write Cg for

D(g,C).

By abuse of notation, we also use Φ to denote the map K → D(g,C) defined by

(2.2.6) Φ(x) =

 ϕ1(x)
. . .

ϕg(x)

 .

Note that as we are associating D(g,C) with Cg we might also write this as a row vector:

Φ(x) = (ϕ1(x), . . . , ϕg(x)).

However, because Φ(x) for each x ∈ K is a matrix it makes sense to multiply Φ(x) by a

g × g matrix.
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Evidently, Φ(K) is a subring of Cg isomorphic to K with addition and multiplication

coming from matrix addition and matrix multiplication. Furthermore, by Lemma 2.2.3

we have for each x ∈ K

Φ(x) = Φ(x).

We define an action of K on M(g,C) by letting α ∈ K act on X ∈M(g,C) by

(2.2.7) α ·X = Φ(α)X.

There are 2g CM-types of K. Let K2/K1 be an extension of CM-fields. Then we can

extend any CM-type Φ of K1 into a CM-type of K2 by the following process. If Φ =

{ϕ1, . . . , ϕg}, we define the CM-type of K2 induced by Φ to be the collection

ΦK2 = {ϕ ∈ Hom(K1,C) | ϕ|K1 ∈ Φ} .

This is a CM-type by Lemma 2.2.4. We say that a CM-type is primitive if it is not

induced from a CM-type on a strictly smaller CM-field. We will also refer to a CM-field

K as primitive if every CM type defined on K is primitive. We say that two CM-types

Φ and Φ̃ are equivalent if there is an automorphism σ of K such that Φ = Φ̃σ.

We will in particular focus on the example of a quartic CM-field, so we list the possible

CM-types on a quartic CM-field.

Example 2.2.6. Let K be a quartic CM-field. Let ρ : K → K denote complex

conjugation. Then there exist four distinct embeddings of K into C. Let these be

ϕ1, ϕ2, ρ ◦ ϕ1, ρ ◦ ϕ2. Let Φ = {ϕ1, ϕ2} and Φ̃ = {ϕ1, ρ ◦ ϕ2}. Then exactly one of the

following holds.

(1) K contains a quadratic imaginary subfield. Then K is a Galois extension of Q,

and its Galois group is isomorphic to the Klein four-group. In this case, each

CM-type is induced from a CM-type on a quadratic imaginary field. The two

equivalence classes are {Φ,Φρ} and
{
Φ̃, Φ̃ρ

}
.

(2) K is a cyclic Galois extension. Each CM-type is primitive and they are all

equivalent.

(3) K is non-Galois and its Galois closure has Galois group D4. Each CM-type is

primitive. The equivalence classes of CM-types are {Φ,Φρ} and
{
Φ̃, Φ̃ρ

}
.

For a proof of this, see [13], section 8.4, example 2.

Let L be the Galois closure of K and G = Gal(L/Q). Note that G acts on the CM-

types of K in the following way. An automorphism σ ∈ G acts on Φ = {ϕ1, . . . , ϕg} by

σ ·Φ = {σ ◦ ϕ1, . . . , σ ◦ ϕg}. Define the half norm NΦ : K → L and half trace TΦ : K → L
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of an element x ∈ K associated to the CM-type Φ by the following formulas:

NΦ(x) =
∏
ϕ∈Φ

ϕ(x),

TΦ(x) =
∑
ϕ∈Φ

ϕ(x).

Lemma 2.2.7. Let K be a CM-field. Let Φ be a CM-type on K. Let K1 be the field

generated by elements TΦ(x) for x ∈ K. Let H be the subgroup of G which fixes Φ, and

let K2 = LH be the fixed field corresponding to this subgroup. Then K1 = K2.

Proof. To prove that K1 ⊆ K2 it suffices to show that the generators of K1 are in

K2. Let TΦ(x) be a generator of K1. Let σ ∈ H be an automorphism of L which fixes

Φ. Thus the map ϕ 7→ σ ◦ ϕ on Φ is a bijection. So we have

σ(TΦ(x)) = σ

(∑
ϕ∈Φ

ϕ(x)

)
=
∑
ϕ∈Φ

(σ ◦ ϕ)(x)

= TΦ(x).

We now prove that K2 ⊆ K1. Note that the half trace is a sum of g embeddings of K

into L. The linear independence of characters (see [1], Chapter 14, Theorem 7) implies

that its image generates a Q-vector space of dimension g, so we must have K1 = K2. □

The field which satisfies one of the two equivalent definitions in the above lemma is

called the reflex field of K, denoted Kr. If K is itself Galois, clearly the reflex field is a

subfield of K, but if K is non-Galois this need not be true.

We will repeatedly have use of elements δ ∈ K which have the property that δ = −δ
and ReΦ(δ) ∈ Rg

>0. We define some notation to describe these elements. Let T be

any subset of the complex numbers and S any set of embeddings of K into the complex

numbers. Define:

KS(T ) = {x ∈ K | σx ∈ T for all σ ∈ S} .(2.2.8)

Of particular interest will be the case when S = Φ is a CM-type and T = iR>0:

KΦ(iR>0) = {x ∈ K | σx ∈ iR>0 for all σ ∈ Φ}(2.2.9)

We also have that the above set is never empty. We care in particular about the case

when K is a quartic CM-field so we only prove the lemma in this case here.

Lemma 2.2.8. Let K be a quartic CM-field. Let Φ = {ϕ1, ϕ2} be a CM-type on K.

Then KΦ(iR>0) is nonempty.
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Proof. First we show that a nonzero purely imaginary element of K exists. That

is, there exists α ∈ K such that α = −α. Indeed, if β is any element of K ∖ K0 then

α = β − β is purely imaginary.

As α is purely imaginary for each j = 1, 2 we have ϕj(α) = αji for some αj ∈ R∖{0}.
Thus we have the following four possibilities.

α1 > 0 and α2 > 0,(2.2.10)

α1 < 0 and α2 < 0,(2.2.11)

α1 > 0 and α2 < 0,(2.2.12)

α1 < 0 and α2 > 0.(2.2.13)

If (2.2.10) holds then α ∈ KΦ(iR>0). If (2.2.11) holds then −α ∈ KΦ(iR>0). If (2.2.13)

holds then (2.2.12) holds for −α. It thus suffices to show that KΦ(iR>0) is nonempty if

(2.2.12) holds.

Suppose there exists γ ∈ K0 with ϕ1(γ) > 0 and ϕ2(γ) < 0. Then γα ∈ KΦ(iR>0).

Thus it suffices to show that there exists γ ∈ K0 with ϕ1(γ) > 0 and ϕ2(γ) < 0.

Let n be a squarefree integer such that K0 = Q(
√
n). Let ϵ = a + b

√
n ∈ K0 with

a, b ∈ Q. Note that as Φ is a CM-type ϕ2 ̸= ϕ1 and thus if σ1 = ϕ1|K0 and σ2 = ϕ2|K0 we

have σ1 ̸= σ2 so that, after perhaps exchanging σ1 with σ2 we have that σ1 = 1K0 and σ2

is the automorphism of K0 which maps
√
m to −

√
m. We have

ϕ1(ϵ) = a+ b
√
n and

ϕ2(ϵ) = a− b
√
n.

Thus if we let γ =
√
n, then ϕ1(γ) > 0 and ϕ2(γ) < 0 as required. □

The following Lemma will be useful in our eventual work. If K is a number field let

U(K) denote the group of units of OK .

Lemma 2.2.9. Let K be a quartic CM-field with no roots of unity other than ±1. Let

K0 be its maximal totally real subfield. Then U(K) = U(K0).

Proof. The field K is totally imaginary and K0 is totally real, so K0 has 2 real

embeddings into the complex numbers and K has 2 pairs of complex embeddings into the

complex numbers. As neither field contains roots of unity other than ±1, by Dirichlet’s

Unit Theorem (see [10], Theorem 7.4), we can write U(K) = {±1} ×M and U(K0) =

{±1} × N where M and N are free abelian groups of rank 1. Let x be a fundamental

unit of K and y a fundamental unit of K0. As N ⊆ M and both are of rank 1, there

exists some number k such that xk = y. As y is real, we have xk = xk. Thus
(
x
x

)k
= 1,
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so x
x
is a root of unity. Since by assumption the only roots of unity in K are ±1, we

must have x
x
= ±1, or equivalently, x = ±x. We also know the sign is not −1, as the

only purely imaginary units are ±i which are not in K, so we must have x = x, so that

x is real. □

2.3. Riemann Forms

Let V be a vector space over a field F of characteristic 0. Let B = {b1, . . . , bn} be an

F -basis of V . The Z-span of B is called a lattice in V . Note that some sources refer to

the Z-span of any linearly independent set as a lattice, but we only use the word lattice to

refer to the span of full bases. Such lattices are in some other sources called full lattices

or complete lattices.

Of particular interest is the case when F = R. If L is a lattice in a real vector space

V We will also call L a complex lattice if the vector space V also carries the structure of

a complex vector space. Note that in this case necessarily the rank of L is even. If L is

a complex lattice in a complex vector space V , we call V/L a complex torus.

Let L be a complex lattice in Cg. Let E : L × L → Z be a Z-bilinear form. Denote

by ER the R-bilinear form Cg × Cg → R obtained by linearly extending the form on L.

More precisely, as L is a lattice in Cg, it contains an R-basis of Cg so there is a unique

R-bilinear function ER such that ER(x, y) = E(x, y) for all x, y ∈ L. Assume that E is

alternating, that is, that

E(x, x) = 0 for all x ∈ L.

Because C has characteristic 0, this is equivalent to E being skew-symmetric, that is

E(y, x) = −E(x, y) for all x, y ∈ L.

Note that this implies the same properties are true of ER. Let H denote the function

H : Cg × Cg → C defined by

H(x, y) = ER(ix, y) + iER(x, y)

for all x, y ∈ Cg.

Definition 2.3.1. Let E : L × L → Z, ER : Cg × Cg → R and H : Cg × Cg → Cg

be the functions defined above. We call E a Riemann form if they have the following

properties:

(1) ER(ix, iy) = ER(x, y) for all (v, w) ∈ Cg × Cg.

(2) The function H : Cg × Cg → C is a positive definite Hermitian form.



28

Remark 2.3.2. The fact that H is a Hermitian form is equivalent to the first condi-

tion. Indeed, if ER(ix, iy) = ER(x, y) for all x, y ∈ Cg, we have

H(y, x) = ER(iy, x) + iER(y, x)

= −ER(x, iy)− iER(x, y)

= ER(ix, y)− iER(x, y)

= H(x, y)

for all x, y ∈ Cg. Conversely, if H is Hermitian so that H(y, x) = H(x, y) for all x, y ∈ Cg,

then in particular we have

H(x, iy) = ER(ix, iy) + iER(x, iy),

H(iy, x) = ER(−y, x),−iER(iy, x)

so that, by equating real parts,

ER(ix, iy) = ER(−y, x) = −ER(y, x) = ER(x, y).

We have used the fact that ER is an alternating bilinear form.

Also note that the second condition is equivalent to the map Cg × Cg → R given for

x, y ∈ Cg by ER(ix, y) being positive definite. Indeed, as ER is alternating, if x ∈ Cg,

H(x, x) = ER(ix, x) + iER(x, x) = ER(ix, x)

so that H(x, x) = 0 if and only if ER(x, x) = 0.

Example 2.3.3. Consider the lattice L = Z + iZ in C. We can define a Z-bilinear
form E on L by

E(a+ bi, c+ di) = bc− ad.

Then E is an alternating form, and if z = a+ bi, w = c+ di ∈ C,

H(z, w) = ER(iz, w) + iER(z, w)

= ER(−b+ ai, c+ di) + iER(a+ bi, c+ di)

= ac+ bd+ (bc− ad)i

= zw.

In particular, H(z, z) = |z|2 so that H is a positive definite Hermitian form and E is a

Riemann form.

To characterize polarizations we need a basis which is described below.

Theorem 2.3.4. Let K be a CM-field with a CM-type Φ. Let c be a fractional ideal

of K and L be the lattice Φ(c) ⊆ Cg. Let E be a Riemann form on L. Then there exists
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elements y1, y2, . . . , yg, z1, z2, . . . , zg in Φ(K) and unique positive integers m1, . . . ,mg such

that m1|m2,m2|m3, . . .mg−1|mg,

L = y1Z+ y2Z+ · · ·+ ygZ+m1z1Z+m2z2Z+ · · ·+mgzgZ,

and such that for each pair of indices j, k, E(yj, yk) = E(zj, zk) = 0 and E(yj, zk) = δjk.

Proof. This is a specialization of Proposition 1.3 of [14]. Shimura proves a more

general result for alternating forms on arbitrary Dedekind domains, but this theorem is

a special case which is all that is necessary for our purposes. □

Definition 2.3.5. Let E be a Riemann form defined on a lattice L. The basis given in

Theorem 2.3.4 is called a canonical basis for L relative to E. When you have a canonical

basis for L relative to Eyou also have the associated tuple (m1 . . . ,mg). This is called

the type of E.

Let V be a finite-dimensional complex vector space of dimension g and let L be a

lattice in V . Let G be the set of all Riemann forms L× L→ Z. Assume that G is non-

empty. The set G is a semi-group under addition. Two elements E1 and E2 of G are said

to be commensurable if there exist positive integers n1 and n2 such that n1E1 = n2E2.

Commensurability is an equivalence relation on G. Any equivalence class of G with

respect to commensurability is called a polarization of L. Let P be a polarization of L,

let E ∈ P and let (m1, . . . ,mg) be the type of E as in Theorem 2.3.4. Then m−1
1 E is

also contained in P and has type (1, m2

m1
, . . . , mg

m1
); we thus may assume that m1 = 1. It

is straightforward to verify that every element of P is a positive integer multiple of E

and in fact that E is the unique element of P with this property. We refer to this unique

element E of P as the minimal element of P . If E is the minimal element of P , then we

refer to the type of E as the type of the polarization P . If the type of P is (1, . . . , 1),

then we say that P is a principal polarization.

2.4. Bilinear Forms on CM-Fields

The purpose of this section is to establish the properties of certain lattices contained

in CM-fields. Our first proposition introduces these lattices and proves that they are in

fact lattices.

Proposition 2.4.1. Let K be a CM-field, Φ a CM-type on K and c a fractional ideal

of K. Let L = Φ(c). Then L is a lattice in Cg.
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Proof. Let a1, . . . , a2g be a basis of c over Z. Then because this is a basis, the

discriminant of this basis is nonzero. The discriminant is the determinant of the matrix
ϕ1(a1) ϕ2(a1) . . . ϕg(a1) ϕ1(a1) . . . ϕg(a1)

ϕ1(a2) ϕ2(a2) . . . ϕg(a2) ϕ1(a2) . . . ϕg(a2)
...

...
. . .

...
...

. . .
...

ϕ1(a2g) ϕ2(a2g) . . . ϕg(a2g) ϕ1(a2g) . . . ϕg(a2g)

 .

Because Φ|c : c → Φ(c) defines a bijective Z-linear map, Φ(a1), . . . ,Φ(a2g) defines a Z-
basis of L. Note that, if we denote the elements of this basis by v1, . . . , v2g respectively,

the matrix above has the form 
v1 v1

v2 v2
...

...

v2g v2g


Thus, this Z-basis is linearly independent over R if and only if the above matrix has

nonzero determinant, which was already noted to be true. Therefore L is a lattice in

Cg. □

The reason we care about these lattices in particular is they admit an action of OK .

This property will eventually supply important connections to algebraic geometry. We

will discuss this later, however.

Our eventual goal is to discuss the necessary and sufficient conditions for these lattices

to admit Riemann forms. To this end we will need a a few results on a certain class of

bilinear forms described as follows:

Definition 2.4.2. Let K be a CM-field of degree 2g and c a fractional ideal of K.

Let Φ be a CM-type on K. Let L = Φ(c) ⊂ Cg. Let B : L×L→ Z be a Z-bilinear form
on L. We say that B is compatible with complex multiplication if for every a ∈ OK and

u, v ∈ Φ(c), we have

B(au, v) = B(u, av).

Note that in the case that E : L×L is compatible with complex multiplication, then

the R-linear extension ER : Cg×Cg satisfies the same identity when a ∈ C and u, v ∈ Cg.

In addition, the form EK : K×K → Q defined by pulling back E to c× c and extending

Q-linearly to K×K satisfies the same equality when a, u, v ∈ K. Because of this we will

also refer also to Q-bilinear forms on K and Cg satisfying these equalities as compatible

with complex multiplication.
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Lemma 2.4.3. Let K be a CM-field, Φ a primitive CM-type on K and c a fractional

ideal of K. Let L = Φ(c). If E : L× L→ Z is any Riemann form, then E is compatible

with complex multiplication.

Proof. This is proven in [13], though not in exactly this form. This is a result of

equation (3) in Theorem 4 of Section 6.2. □

Lemma 2.4.4. Let K be a CM-field. Let c be a fractional ideal of K, Φ a primitive

CM-type on K. Let L = Φ(c). Let B : L × L → Z be a nondegenerate Z-bilinear form

which is compatible with complex multiplication. Let Bc : c × c → Z be the Z-bilinear
form on c defined so that Bc(x, y) is equal to B(Φ(x),Φ(y)) for all x, y ∈ c, and let

BK : K ×K → Q be the unique Q-bilinear form which extends Bc to K ×K. Then there

exists an element ξ ∈ K such that for all x, y ∈ K we have

BK(x, y) = TrKQ (ξxy).

Proof. For each ξ ∈ K define a function Tξ : K → Q which for x ∈ K is defined by

Tξ(x) = TrKQ (ξx). Note that the trace form which maps (x, y) ∈ K ×K to TrKQ (xy) is a

nondegenerate bilinear form. Therefore every Q-linear functional K → Q is of the form

Tξ for some ξ ∈ K.

Returning to our setting, we use our bilinear form BK to produce a Q-linear functional

K → Q. For each x ∈ K let fB(x) : K → Q denote the linear functional defined for

all y ∈ K byfB(x)(y) = BK(x, y). The compatibility of Bc with complex multiplication

gives the following equality for every a, x, y ∈ K:

fB(ax)(y) = fB(x)(ay).

Note that in particular we have fB(x)(y) = fB(1)(xy). As fB(1) is a bilinear form

K ×K → Q by our earlier discussion there exists ξ ∈ K such that for all x ∈ K we have

fB(1) = TrKQ (ξx). So if x, y ∈ K we have that

fB(1)(xy) = TrKQ (ξxy).

By the rule coming from complex multiplication, this means that

fB(x)(y) = TrKQ (ξxy)

for x, y ∈ K. This by definition means that

BK(x, y) = TrKQ (ξxy)

for x, y ∈ K. □

We are now prepared to prove the following result.
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Proposition 2.4.5. Let K be a CM-field. Let c be a fractional ideal of K, Φ a

primitive CM-type on K. Let L = Φ(c). Let E : L × L → Z be a Riemann form on L.

Then there exists a δ ∈ K with the property that δ−1 is in KΦ(iR>0) and for all x, y ∈ c

we have

E(Φ(x),Φ(y)) = TrKQ (δ
−1xy).

Proof. Note that by Lemma 2.4.3 the Riemann form E is compatible with complex

multiplication. So Lemma 2.4.4 implies that there exists ξ ∈ K such that for x, y ∈ K,

EK(x, y) = TrKQ (ξxy). Let δ = ξ−1. It only remains to prove that δ has the desired

characteristics. Let EK0 denote the restriction of EK to K0. First we show that EK0 is

a symmetric form. Note that OK0 contains a basis of K0, so it suffices to show this for

x, y ∈ OK0 . As K0 is totally real, for x, y ∈ OK0 , x = x and y = y. We have that for all

x, y ∈ OK0 ,

EK0(x, y) = TrKQ (ξxy)

= TrKQ (ξxy)

= TrKQ (ξyx)

= EK0(y, x).

Thus EK0 is a symmetric form. But we also have that EK0 is alternating, so for x, y ∈ K0,

0 = EK0(x+ y, x+ y)

= EK0(x, x) + EK0(y, y) + 2EK0(x, y)

= 2EK0(x, y).

Therefore, EK restricts to the zero form on K0. More explicitly, this means that for all

x, y ∈ K0, we have

TrKQ (ξxy) = 0

TrK0
Q (TrKK0

(ξxy)) = 0

TrK0
Q ((ξ + ξ)xy) = 0.

This is in particular true when x = 1 which implies, because the trace form is nondegen-

erate, that ξ + ξ = 0. So ξ is imaginary and therefore δ is also imaginary. Now, because

δ is imaginary, we can write, for each j, ϕj(δ) = iδj for a real number δj. We must prove

that the δj are positive. For this purpose we write a formula for ER. Let α1, . . . , α2g be

a Z-basis of c so that Φ(α1), . . . ,Φ(α2g) is a Z-basis of Φ(c). For any r, s ∈ {1, . . . , 2g}
we have

E(Φ(αr),Φ(αs)) = TrKQ (ξαrαs)
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=

g∑
t=1

ϕt(ξαrαs) + ϕt(ξαrαs)

=

g∑
t=1

δ−1
t ϕt(αs)ϕt(αr)i− δ−1

t ϕt(αr)ϕt(αs)i.(2.4.1)

Now, for z = (z1, . . . , zg), w = (w1, . . . , wg) ∈ Cg the following define R-blinear forms on

Cg:

ER(z, w),

g∑
t=1

−δ−1
t (ztwti− wtzti).

Since by (2.4.1) these two R-bilinear forms agree on a basis of Cg as a real vector space

we conclude that they are equal. That is, for z, w ∈ Cg we have

ER(z, w) =

g∑
t=1

−δ−1
t (ztwti− wtzti).(2.4.2)

Because E is a Riemann form, ER is the imaginary part of a positive definite Hermitian

form H and we have for x, y ∈ Cg,

H(x, y) = ER(ix, y) + iER(x, y).

Consider the values of H at vectors ej which are 1 in the jth position but 0 elsewhere.

We have that

H(ej, ej) = ER((0, . . . , i, . . . , 0), (0, . . . , 1, . . . , 0))

= −δ−1
j (−i · i− i · i)

= −2δ−1
j

which implies that the δj are all negative. □

We now prove that every element δ such that δ−1 is in KΦ(iR>0) defines a Riemann

form in this way.

Proposition 2.4.6. Let K be a CM-field with a primitive CM-type Φ. Let c be a

fractional ideal of K and let L = Φ(c). Let D be the different of K. Assume that there

exists an element δ in ccD which is such that δ−1 is in KΦ(iR>0). Then the bilinear form

B : L× L→ Z defined for all x, y ∈ c by

B(Φ(x),Φ(y)) = TrKQ (δ
−1xy)

is a Riemann form.

Proof. First, note that the form described takes values in the integers. Indeed, as

c−1c−1D−1 is the trace dual of cc and δ1 ∈ c−1c−1D−1, if x, y ∈ c, then TrKQ (δ
−1xy) is in
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Z. We prove that B is an alternating form. Let x ∈ c. Then

B(Φ(x),Φ(x)) = TrKQ (δ
−1xx)

= TrK0
Q (TrKK0

(δ−1xx))

= TrK0
Q (δ−1xx+ δ−1xx)

= 0.

The last line is justified by the fact that δ−1xx ∈ KΦ(iR). To complete the proof we

prove that B is a Riemann form. Let BR : Cg × Cg → R be the real-linear extension of

B from L to Cg. Let H : Cg × Cg → C be the bilinear form given for z, w ∈ Cg by

H(z, w) = BR(iz, w) + iBR(z, w).

We first prove (1) of 2.3.1. For this, we calculate a formula for BR. Let a1, . . . , a2g be a

Z-basis of c so that Φ(a1), . . .Φ(a2g) is a basis of L. Because L spans Cg as an R-vector
space, this is also an R-basis of Cg. Let Φ = {ϕ1, . . . , ϕg}. For each j, let δj = Im(ϕj(δ)).

Then for k, l ∈ {1, . . . , g},

BR(Φ(ak),Φ(al)) = B(Φ(ak),Φ(al))

= TrKQ (δ
−1akal)

=

g∑
r=1

ϕr(δ
−1akal) + ϕr(δ−1akal)

=

g∑
r=1

−iδ−1
r ϕr(ak)ϕr(al) + iδ−1

r ϕr(ak)ϕr(al).

Because this formula holds on a basis of Cg we conclude that the form BR is given for

z = (z1, . . . , zg) and w = (w1, . . . , wg) by the formula

BR(z, w) =

g∑
r=1

−iδ−1
r (zrwr − zrwr).

This is by the same reasoning as the derivation done in Proposition 2.4.5. We now

calculate for z = (z1, . . . , zg) and w = (w1, . . . wg) ∈ Cg

BR(iz, iw) =

g∑
r=1

−iδ−1
r (izriwr − izriwr)

=

g∑
r=1

−iδ−1
r (zrwr − zrwr)

= BR(z, w).
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We now show (2) of Definition 2.3.1. Because B is alternating, it suffices to show that

Re(H) is positive definite. We have

BR(iz, z) =

g∑
r=1

−iδ−1
r (izrzr − izrzr)

=

g∑
r=1

−2δ−1
r zrzr

which is positive because δr is negative for each r. This completes the proof. □

We have now proven that Riemann forms E on L are fully characterized by a choice

of element δ such that δ−1 is in c−1c−1D−1, and δ−1 is in KΦ(iR>0). We can actually say

more about δ depending on what the type of E is.

Definition 2.4.7. Let Λ be a lattice in a vector space V over a field F and B :

V × V → F be a nondegenerate F -bilinear form on V which restricts to a Z-bilinear
form on Λ. The dual of Λ with respect to B, denoted Λ♯, is

Λ♯ = {x ∈ V | B(x,Λ) ⊆ Z} .(2.4.3)

We say that Λ is self-dual with respect to B if Λ = Λ♯.

We have the following result.

Lemma 2.4.8. Let K be a CM-field and Φ a CM-type on K. Let c be a fractional

ideal of K and L = Φ(c). Let E be a Riemann form on L inducing a polarization of

type (m1, . . . ,mg) and y1, . . . , yg,m1z1, . . . ,mgzg a canonical basis of L with respect to

this Riemann form. Regard L as a lattice inside the Q-vector space Φ(K). Then we have

L♯ =
y1
m1

Z+
y2
m2

Z+ · · ·+ yg
mg

Z+ z1Z+ z2Z+ · · ·+ zgZ.

Proof. This is a routine calculation. □

Lemma 2.4.9. Let K be a CM-field and Φ a CM-type on K. Let c be a fractional

ideal of K and L = Φ(c). Let E be a Riemann form on L. Then E defines a principal

polarization if and only if L is self-dual with respect to E.

Proof. Based on the characterization of L♯ from Lemma 2.4.8, L♯ = L if and only

if m1 = m2 = · · · = mg = 1. □

Lemma 2.4.10. Let K be a CM-field and Φ a CM-type on K. Let c be a fractional

ideal of K and L = Φ(c). Let E be a Riemann form on L of type (m1, . . . ,mg) and
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y1, . . . , yg,m1z1, . . . ,mgzg a canonical basis of L with respect to this Riemann form. Re-

gard L as a lattice inside the Q-vector space Φ(K). Then we have the following isomor-

phism of abelian groups.

L♯/L ≃ (Z/m1Z)2 × (Z/m2Z)2 × · · · × (Z/mgZ)2 .

Proof. We have

L♯/L =

y1
m1

Z+ y2
m2

Z+ · · ·+ yg
mg

Z+ z1Z+ z2Z+ · · ·+ zgZ
y1Z+ y2Z+ · · ·+ ygZ+m1z1Z+m2z2Z+ · · ·+mgzgZ

≃
y1
m1

Z
y1Z

×
y2
m2

Z
y2Z

× · · · ×
ygZ
mgZ

ygZ
× z1Z
m1z1Z

× z2Z
m2z2Z

× · · · × zgZ
mgzgZ

≃ (Z/m1Z)2 × (Z/m2Z)2 × · · · × (Z/mgZ)2 .

This proves the result. □

We need another lemma to build toward our main result.

Lemma 2.4.11. Let K be a CM-field with primitive CM-type Φ and different D.

Let c be a fractional ideal of K and L = Φ(c). Let E be a Riemann form on L. By

Proposition 2.4.5 there exists δ ∈ K which is such that δ−1 is in KΦ(iR>0) such that E

is given by the formula

E(Φ(x),Φ(y)) = TrKQ (δ
−1xy)

for all Φ(x),Φ(y) ∈ L. We then have

L♯ = Φ(δc−1D−1).

Proof. For a lattice Λ ⊆ K, let Λ∨ denote the trace dual of Λ in K. Note that for

fractional ideals r we have r∨ = r−1D−1. In particular, D−1 = O∨
K . We have

L♯ = Φ(c)♯ = {w ∈ Φ(K) | EK(w,Φ(c)) ⊆ Z}

=
{
w ∈ Φ(K) | TrKQ (δ−1Φ−1(w)c) ⊆ Z

}
= Φ

({
x ∈ K | TrKQ (δ−1xc) ⊆ Z

})
= Φ

({
x ∈ K | TrKQ (δ−1xc) ⊆ Z

})
= Φ(

(
δ−1c

)∨
)

= Φ
(
δc−1D−1

)
.

This completes the proof. □
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2.5. Abelian Varieties

An abelian variety over a field K is a group variety over K that is, as a variety,

connected and complete. In particular, an abelian variety has a group structure which is

abelian. For example, an elliptic curve is an abelian variety of dimension one. Abelian

varieties over the complex numbers have a very rigid structure.

Theorem 2.5.1. If A is an abelian variety of dimension g defined over the complex

numbers then there exists a lattice L in Cg such that A(C) ≃ Cg/L and there exists a

Riemann form L × L → Z. Conversely, if L is a lattice in Cg for some positive integer

g and there exists a Riemann form L× L→ Z then Cg/L is an abelian variety.

Proof. The proof is long. An outline is given in Chapter 3 of [13], although he

neglects to prove some details. In particular, Shimura neglects to prove that his con-

struction of a Riemann form from a holomorphic theta function works. To see details on

these, see [3], Chapter 4 or [5], Chapter 5. □

Let A be an abelian variety of dimension g and let L be a lattice in Cg such that

A ≃ Cg/L. We define a polarization of A to be a polarization P of L, and we refer to

the pair (A,P ) as a polarized abelian variety.

We list some properties of transformations of abelian varieties which will motivate

the primary objects of study for this thesis. We make many claims without proof but

proofs can be found in the early chapters of [13] or [6].

Let A and B be abelian varieties. A homomorphism of abelian varieties from A to B

is a map A → B which is a homomorphism of group varieties. We denote the set of all

homomorphisms of abelian varieties from A to B by Hom(A,B). This is an abelian group

under addition. A homomorphism from an abelian variety A to itself is called an endo-

morphism. We write End(A) = Hom(A,A). This is a ring with addition and composition

of functions as its operations. An isogeny from A to B is a surjective homomorphism

of abelian varieties with a finite kernel. An abelian variety is called simple if it is not

isogenous to a product of lower-dimensional abelian varieties.

Assume that A is an abelian variety over C of dimension g. Then A is isomorphic

to Cg/L for an appropriate lattice L. In this case, because a homomorphism of group

varieties is in particular a homomorphism of complex manifolds. Such a homomorphism

lifts from Cg/L to a linear map Cg → Cg. It follows that there is an isomorphism between

the ring of endomorphisms A→ A and the ring of linear endomorphisms Cg → Cg which

leave L invariant. That is,

End(A) ≃ {α ∈ Mg(C) | αL ⊆ L} .
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Then End(A) is a finite rank Z-module in Mg(C) of rank no greater than 2g. Most abelian

varieties will have endomorphism rings of rank less than 2g. Assume that A is simple

and has endomorphism ring of rank 2g. Then it can be shown that K = End(A) ⊗Z Q
is a CM-field. Then End(A) is isomorphic to an order O contained in OK . In this case,

we say that A has complex multiplication by O.

Proposition 2.5.2. Let K be a CM-field, c a fractional ideal of OK and L = Φ(c).

Suppose that L admits a Riemann form so that Cg/L is a polarized abelian variety. Then

Cg/L has complex multiplication by OK.

Proof. We define an action of OK on Cg by letting α ∈ OK act on z ∈ Cg by

α · z = Φ(α)z

as in Definition 2.2.5. Now, note that as c is a fractional ideal of K it has the property

that αc ⊆ c, which implies that α · L ⊆ L. Therefore the action of OK on Cg descends

to an action of OK on L. So L has complex multiplication by OK □

It is also true that any abelian variety A with complex multiplication by OK is

isomorphic to Cg/Φ(c) for some fractional ideal c of K.
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Chapter 3: Main Results
In this chapter we state and prove the main results of this thesis. The first main

result is Theorem 3.1.2 which characterizes exactly when there exists an abelian surface

with complex multiplication by the maximal order OK in a given CM-field K admitting

a polarization of type (1,m). Such a surface is isomorphic to C2/Φ(c) where Φ is a

primitive CM-type of K and c is a fractional ideal of K, such that ccDiffK/Q = δa−1 for

δ−1 ∈ KΦ(iR>0) and a a fractional ideal of certain specified forms. This expands upon

work by Shimura and Taniyama when m = 1.

The remainder of the section deals with corollaries of this result. We derive many

necessary conditions for there to be polarized abelian surfaces with complex multiplica-

tion by a given CM-field K. Many of these necessary conditions are specific to the case

when K is a cyclic Galois extension or to the case when K is a non-Galois extension.

These necessary conditions are not sufficient conditions, but if m is a positive integer,

whenever there exists a fractional ideal a =
∏

p|m ap as given in Theorem 3.1.2 and a is

an extension of an ideal of K0, we prove in Theorem 3.2.1 that there exists some abelian

surface with complex multiplication by K which admits a polarization of type (1,m).

3.1. The Main Theorem

This section is devoted to the proof of the most important theorem in this thesis. We

wish to generalize classical results producing elliptic curves with complex multiplication.

These classical results are, for instance, the key to many theorems on the generation of

class fields of quadratic imaginary fields by values of modular functions at CM-points.

Recall that when E is an elliptic curve defined over C the ring End(E) is either isomorphic

to the integers or to an order O in a quadratic imaginary number field K. The theory has

been extended by Shimura and Taniyama [13] to abelian varieties of higher dimension.

The elliptic curves which have complex multiplication by O are those which are

isomorphic to C/c where c is a fractional ideal of OK . Because homothetic lattices

produce isomorphic elliptic curves, the isomorphism classes of elliptic curves with complex

multiplication correspond to the ideal classes of OK . When generalizing this to a field

of higher degree, things are more complicated. It is still true that an abelian variety of

dimension g is isomorphic as a complex Lie group to a dimension g complex torus, which

is a quotient of Cg by a full rank lattice, but we now have to establish when it is possible

to define a polarization on the lattices involved. The aim of this section is to explain how

to produce abelian surfaces which have complex multiplication by a specified order O in

a quartic CM-field K and which have a polarization of a specified type (m1,m2).
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Notation and conventions. In the remainder of this section unless it is specified

otherwise, K will refer to a CM-field with [K : Q] = 2g. Its maximal totally real subfield

will be denoted by K0. We regard K as embedded into the complex numbers so that

the map ρ : C → C mapping an element x to its complex conjugate x restricts to an

embedding of K into C. Let O = OK be the ring of integers of K.

Characterization of polarizations. We begin by stating a result already known

in the literature (for example in [13]) classifying abelian surfaces with complex multipli-

cation which have a principal polarization.

Theorem 3.1.1. Let K be a quartic CM-field. Let Φ be a primitive CM-type on K.

Let OK be the ring of integers of K and c be a fractional ideal of OK. Let L = Φ(c).

There exists a Riemann form E on L which induces a principal polarization on C2/L

if and only if there exists a number δ ∈ K such that δ−1 ∈ KΦ(iR>0) and such that

(δ) = ccD. When this is the case, a Riemann form E is defined for all Φ(x),Φ(y) ∈ L

by

E(Φ(x),Φ(y)) = TrKQ (δ−1xy).

The main result of this section is to generalize Theorem 3.1.1 to the case of any

polarization. Our theorem can be stated as follows:

Theorem 3.1.2. Let K be a quartic CM-field with primitive CM-type Φ, c a fractional

ideal of K, and L = Φ(c). Let m be a positive integer. Let Sm be the set of all ideals b

which have a factorization of the form

b = ccD
∏
p|m

ap

where for each prime p|m, ap and vp(m) satisfy one of the following:

(1) ap = p−vp(m) where p is a prime lying over p with e(p|p) = 1, f(p|p) = 2;

(2) ap = p−2vp(m) where p is a prime lying over p with e(p|p) = 2, f(p|p) = 1;

(3) ap = p
−vp(m)
1 p

−vp(m)
2 where p1 and p2 are distinct primes lying over p with

e(p1|p) = e(p2|p) = 1, f(p1|p) = f(p2|p) = 1;

(4) ap = p−2 where vp(m) = 1, and p is a prime lying over p where e(p|p) = 4 and

f(p|p) = 1 or e(p|p) = 3 and f(p|p) = 1;

(5) ap = p−1 where vp(m) = 1, and p is a prime lying over p where e(p|p) = 2 and

f(p|p) = 2;

(6) ap = p−1
1 p−1

2 where vp(m) = 1, and p1 and p2 are distinct primes lying over p

where p1 and p2 satisfy one of the following.

(a) e(p1|p) = 3, e(p2|p) = 1 and f(p1|p) = f(p2|p) = 1;

(b) e(p1|p) = e(p2|p) = 2 and f(p1|p) = f(p2|p) = 1;
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(c) e(p1|p) = 2, e(p2|p) = 1 and f(p1|p) = f(p2|p) = 1.

Then there exists a Riemann form on L which defines a polarization of type (1,m) if and

only if there exists an ideal b ∈ Sm which is principal and of the form b = (δ) where

δ−1 ∈ KΦ(iR>0). In this case, the Riemann form is given by the formula

E(Φ(x),Φ(y)) = TrKQ (δ
−1xy)

for x, y ∈ c.

Proof. Assume there exists a Riemann form E : L × L → Z of type (1,m). By

Proposition 2.4.5 there exists δ ∈ K such that δ−1 ∈ KΦ(iR>0) and E(Φ(x),Φ(y)) =

TrKQ (δ
−1xy) for all x, y ∈ c. By Lemma 2.4.10 we have that if L♯ is the dual of L with

respect to E then, since the type of E is (1,m), we have, as abelian groups,

L♯/L ≃ (Z/mZ)2 .(3.1.1)

On the other hand, we also have by Lemma 2.4.11 that L♯ ≃ δc−1D−1. Using Lemma 2.1.1

we have that

L♯/L ≃ δc−1D−1/c ≃ OK/δ
−1ccD.(3.1.2)

Thus, by (3.1.1) and (3.1.2) we have

OK/δ
−1ccD ≃ (Z/mZ)2 .(3.1.3)

Let the prime decomposition of δ−1ccD be

δ−1ccD = qv11 . . . qvtt .(3.1.4)

Let the prime decomposition of m be

m = pu1
1 . . . pus

s .(3.1.5)

The Chinese remainder theorem gives us the following equalities:

OK/δ
−1ccD ≃ OK/q

v1
1 × · · · ×OK/q

vt
t ,

(Z/mZ)2 ≃ (Z/pu1
1 Z)2 × . . . (Z/pus

s Z)2 .

These equalities, together with (3.1.3) now give us

OK/q
v1
1 × · · · ×OK/q

vt
t ≃ (Z/pu1

1 Z)2 × . . . (Z/pus
s Z)2 .(3.1.6)

Note that for each j = 1, . . . , t there is a unique rational prime qj lying under qj and

O/q
vj
j is qj-primary. Also note that (Z/pjZ)2 is pj-primary. This implies each prime

qj is contained in the set {p1, . . . ps}. That is, for each j ∈ {1, . . . , t} there exists an

l ∈ {1, . . . , s} such that qj|pl. Thus, because of the isomorphism (3.1.3), after a possible
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reordering of the primes dividing m, we have for each j, if we define (δ−1ccD)pj as in

Lemma 2.1.6, then

OK/(δ
−1ccD)pj ≃

(
Z/puj

j Z
)2
.

To complete the proof of this direction it will suffice to prove that δ−1ccD has form

as in (1), (2), (3), (4), (5) or (6) in the statement of the theorem. This follows from

Lemma 2.1.6 and 2.1.7.

To prove the other direction suppose that Sm contains a fractional ideal b which is

principal and of the form b = (δ) where δ−1 ∈ KΦ(iR>0). By the definition of Sm we

may write b in the form

b = (δ) = ccD
∏
p|m

ap

where for each p|m, ap satisfies one of (1), (2), (3), (4), (5) or (6) as in the statement

of the theorem. Note that δ ∈ ccD. By Proposition 2.4.6 we have that if we define

E : L× L→ Z by the formula

E(Φ(x),Φ(y)) = TrKQ (δ
−1xy)

for x, y ∈ c then E defines a Riemann form on L. We must show that it defines a

Riemann form of type (1,m). Let (m1,m2) be the type of the polarization defined by E.

If L♯ denotes the dual of L with respect to E then by Lemma 2.4.11 and Lemma 2.4.10

respectively, we have

L♯/L ≃ OK/δ
−1ccD = OK/

∏
p|m

a−1
p and(3.1.7)

L♯/L ≃ (Z/m1Z)2 × (Z/m2Z)2 .(3.1.8)

Using that the ap satisfy one of (1), (2), (3), (4), (5), or (6) and Proposition 2.1.2 one

may verify that OK/
∏

p|m a−1
p ≃ (Z/mZ)2. This implies that m1 = 1 and m2 = m by the

uniqueness of the canonical decomposition of finite abelian groups. (See [11] Corollary

6.11.) □

The following easy result from Theorem 3.1.2 will be necessary in later deriving

necessary conditions for the existence of polarizations.

Lemma 3.1.3. Let the assumptions and notations be as in Theorem 3.1.2. Assume

that there exists a Riemann form on L which defines a polarization of type (1,m). Then

for each prime p dividing m the norm of ap is of the form

N(ap) = p−2l

for a positive integer l.
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Proof. Let p be a prime dividing m. Because a ∈ Rm(K)we must have that ap

satisfies one of (1), (2), (3), (4), (5) or (6) of Theorem 3.1.2. We consider each of these

in turn.

If ap satisfies (1) then there exists a prime p of K over p such that ap = p−vp(m) and

f(p|p) = 2. Thus NK
Q (ap) = p−2vp(m). If ap satisfies (2) then there exists a prime p of K

over p such that ap = p−2vp(m) and f(p|p) = 1. Thus NK
Q (ap) = p−2vp(m). If ap satisfies

(3) then there exist primes p1 and p2 of K over p such that ap = p
−vp(m)
1 p

−vp(m)
2 and

f(p1|p) = f(p2|p) = 1. Thus NK
Q (ap) = p−2vp(m). If ap satisfies (4) then there exists a

prime p of K over p such that ap = p−2 and f(p|p) = 1. Thus NK
Q (ap) = p−2. If ap

satisfies (5) then there exists a prime p of K over p such that ap = p−1 and f(p|p) = 2.

Thus NK
Q (ap) = p−2. If ap satisfies (6) then then there exist primes p1 and p2 of K over

p such that ap = p−1
1 p−1

2 and f(p1|p) = f(p2|p) = 1. Thus NK
Q (ap) = p−2. □

3.2. Corollaries of the Characterization of Polarizations

There are some relatively simple corollaries of Theorem 3.1.2 which we establish in

this section. The following new notation will often be useful in the sequel. Let K be

a primitive quartic CM-field with CM-type Φ, c a fractional ideal of K and L = Φ(c).

Let m be a positive integer. We let Rm = Rm(K) be the set of all fractional ideals

a =
∏

p|m ap where for each p|m we have that ap satisfies one of (1), (2), (3), (4), (5) or

(6) in Theorem 3.1.2. We first prove an existence result.

Theorem 3.2.1. Let K be a primitive quartic CM-field. Let m be a positive integer.

Assume that a =
∏

p|m ap is a fractional ideal in Rm(K) such that there exists a fractional

ideal h of K0 such that a = hOK. Then there exists a fractional ideal c and a CM-type

Φ such that Φ(c) admits a polarization of type (1,m).

Proof. This proof uses ideas from Proposition 5.3 in [17] and page 41 in [16].

Let z be any nonzero element of K such that z = −z. By [18] Theorem 10.1 and the

fact that the infinite place of K0 ramifies in K, we have that the map NK
K0

: Cl(K) →
Cl(K0) on class groups induced by the norm map of ideals is surjective. We claim that

zDiffK/Q a is an extension of an ideal b in K0. Indeed, if DiffK/K0 is the relative different

of K over K0, by Theorem 2.5 in chapter III of [10], DiffK/K0 is generated by elements

of the form f ′(ϵ) where ϵ ∈ OK is such that K = K0(ϵ) and f is the minimal polynomial

of ϵ over K0. As K/K0 is a quadratic imaginary extension,

f(x) = x2 − (ϵ+ ϵ)x+ ϵϵ,

so that

f ′(ϵ) = 2ϵ− ϵ− ϵ = ϵ− ϵ.
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Thus DiffK/K0 is generated by elements of the form ϵ− ϵ with ϵ ∈ OK . For each ϵ ∈ K,

ϵ − ϵ is purely imaginary in K. So if b1 is the ideal in K0 generated by elements of the

form z−1(ϵ− ϵ), then z−1DiffK/K0 = b1OK . And by definition DiffK0/Q is an ideal of K0.

Finally, recall that a = hOK with h a fractional ideal of K0. Thus

z−1DiffK/Q a = z−1DiffK/K0 DiffK0/Q aOK (See page 443 in [4])

= b1DiffK0/Q hOK

= bOK

where b = b1hDiffK0/Q. Thus by the surjectivity of the norm map on class groups, there

exists y ∈ K×
0 and a fractional ideal c of OK such that

yNK
K0
(c−1) = b

yNK
K0
(c−1)OK = bOK

yc−1c−1 = z−1DiffK/Q a (see ex. 14, ch. 3 of [7])

yz = ccDiffK/Q a.

Note that as y ∈ K0 and z is purely imaginary, yz is purely imaginary. Thus, by

Theorem 3.1.2 there exists a CM type Φ such that Φ(c) admits a polarization of type

(1,m). □

Using Theorem 3.2.1 we can give a simple sufficient condition for the existence of a

(1,m) polarization when m and the discriminant of K are relatively prime.

Corollary 3.2.2. Let K be a primitive quartic CM-field of degree 4 with maximal

totally real subfield K0. Let m be a positive integer. Assume for each prime p dividing

m, p is unramified in K and we have(
DiscK0/Q

p

)
= 1.

Then there exists a fractional ideal c of K and a CM-type Φ of K such that Φ(c) admits

a polarization of type (1,m).

Proof. By Theorem 3.2.1 it suffices to show that we can find a ∈ Rm(K) such that

there exists a fractional ideal h of K0 such that a = hOK . To show this it suffices to

show that for each p|m we can find ap such that a =
∏

p|m ap and there exists a fractional

ideal hp of K0 such that ap = hpOK .

Because
(

DiscK0/Q
p

)
= 1 we have that p splits in K0, i.e., there exists a prime p of

K0 such that pOK0 = pσ(p) where σ is the nontrivial automorphism of K0. If p remains

inert in K then let hp = p−vp(m) and ap = hpOK . Then we have that ap satisfies (1) of

Theorem 3.1.2. If p splits in K so that pOK = PP for a prime P of K, let hp = p−vp(m)
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and ap = hpOK = P−vp(m)P
−vp(m)

. Then we have that ap satisfies (3). In either case

there exists a fractional ideal hp of K0 such that ap = hpOK so that there exists some

fractional ideal c of K and some CM-type Φ such that Φ(c) admits a polarization of type

(1,m). □

Corollary 3.2.3. Let K be a primitive quartic CM-field with CM-type Φ, c a frac-

tional ideal of K and L = Φ(c). Let p be a rational prime and let m be a positive integer

such that p|m. Assume that C2/Φ(c) admits a polarization of type (1,m). Then p is not

inert in K.

Proof. This follows immediately from Theorem 3.1.2. □

Lemma 3.2.4. Let K be a primitive quartic CM-field with CM-type Φ, c a fractional

ideal of K and L = Φ(c). Let m be a positive integer. Then each element r of Rm which

satisfies ccDiffK/Q r = (δ) for some δ ∈ KΦ(iR) is invariant under complex conjugation.

Proof. This follows from the fact that (δ) and DiffK/Q are invariant under complex

conjugation. □

Corollary 3.2.2 described what happened when a prime was split in the totally real

subfield. The following corollary tells us what happens when it is inert in the totally real

subfield.

Corollary 3.2.5. Let K be a primitive quartic CM-field with CM-type Φ, c a frac-

tional ideal of K and L = Φ(c). Let p be a rational prime and let m be a positive integer

such that p|m. Suppose that p is inert in OK0 and that C2/L admits a polarization of

type (1,m). Then p ramifies in OK and vp(m) = 1.

Proof. Suppose that p is inert in OK0 and that C2/L admits a polarization of type

(1,m). We have that f(r|p) ⩾ 2 for any prime r of OK dividing p. Because C2/L admits

a polarization of type (1,m) by Theorem 3.1.2 there exists δ ∈ KΦ(R>0) and r ∈ Rm

with (δ) = ccDr and r =
∏

q|m aq and for all q|m aq satisfying one of (1), (2), (3), (4), (5),

or (6) of Theorem 3.1.2. This implies that p is not totally inert in OK . Let q = pOK0 ;

by assumption q is prime. Either q = p1p2 for distinct primes p1, p2 in OK or p ramifies

in OK . Suppose the first case is true. Because K is a quadratic imaginary extension

of K0, we must have that p1 = p2. Because ap satisfies (1), (2), (3), (4), (5) or (6) of

Theorem 3.1.2, it follows that that ap satisfies (1) of Theorem 3.1.2. But this is impossible

because in case (1), ap = p−vp(m) where either p = p1 or p = p2, neither of which make

ap invariant under complex conjugation. This contradicts Lemma 3.2.4. It follows that p

is ramified in OK . Because ap satisfies (1), (2), (3), (4), (5) or (6) of Theorem 3.1.2 and

p ramifies in OK and p is inert in OK0 we now see that ap must satisfy (5) of Theorem

3.1.2. This implies vp(m) = 1. □
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3.3. Necessary Conditions for Nonprincipal Polarizations in Galois

Extensions

Let K be a Galois CM-field of degree 4 with maximal totally real subfield K0 and

primitive CM-type Φ. Let m be a positive integer. Let c be a fractional ideal of K. We

want to prove some necessary conditions for Φ(c) to admit a polarization of type (1,m).

In this section we will make repeated use of the Kronecker symbol
( ·
·

)
. We note that

since K is Galois and has a primitive CM-type Φ by 2.2.6 it is a cyclic extension of Q.

Let Gal(K/Q) = ⟨s⟩ be the Galois group of K over Q. We then have that there are four

CM-types on K:

Φ1 = {1K , s} ,

Φ2 =
{
1K , s

3
}
,

Φ3 =
{
s2, s3

}
,

Φ4 =
{
s2, s

}
.

Note that s2 is complex conjugation and Φ1 = Φ3 and Φ2 = Φ4 so that there are two

equivalence classes of CM-type represented by Φ1 and Φ2.

Theorem 3.3.1. Let K be a quartic cyclic number field. Let K0 be its unique quadratic

subfield. Then K0 = Q(
√

DiscK/Q) and there exists some t ∈ Z such that DiscK/Q =

t2DiscK0/Q.

Proof. The proof relies on a result which comes from a paper by Edgar and Peterson

( [2] ). It follows from their calculations in proving Proposition 2 that DiscK/Q = w2f 3

for some integers w and f with f squarefree and K0 = Q(
√
f). The fact that K0 =

Q(
√
DiscK/Q) follows immediately from that. From this it follows that√

DiscK/Q = a+ b
√

DiscK0/Q

for some rational numbers a and b. Then

DiscK/Q = a2 + b2DiscK0/Q+2ab
√

DiscK0/Q.

This implies that 2ab = 0 as DiscK/Q is rational. Now, b cannot be 0 so a = 0. Thus

DiscK/Q = b2DiscK0/Q. By [4] page 443 we know Disc2K0/Q divides DiscK/Q which implies

that b is an integer. □

Theorem 3.3.2. Let K be a number field and DiscK/Q the discriminant of K. The

rational primes p which ramify in K are precisely those which divide DiscK/Q.

Proof. A proof can be found in any introduction to algebraic number theory, for

instance in [10] chapter 3, section 2. □
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Theorem 3.3.3. Let K be a number field of degree n. Let p be a rational prime which

does not divide DiscK/Q. Let r be the number of distinct primes of OK lying over p. We

have the following equality: (
DiscK/Q

p

)
= (−1)n−r.

Proof. This is a famous result of Stickelberger and a proof can be found in [4] on

page 502, in section 4 of chapter 26. □

Proposition 3.3.4. Let K be a Galois CM-field of degree 4 with maximal totally real

subfield K0 and primitive CM-type Φ. Let m be a positive integer. Let c be a fractional

ideal of K and L = Φ(c). Assume that L admits a Riemann form inducing a polarization

of type (1,m). Then for every prime p dividing m which is unramified in K,(
DiscK/Q

p

)
=

(
DiscK0/Q

p

)
= 1.

Proof. Since L admits a Riemann form inducing a polarization of type (1,m) by

Theorem 3.1.2 there is an element a =
∏

q|m aq in Rm(K) such that ccDa = (δ) where

δ−1 ∈ KΦ(iR>0). Then since p is unramified in K, ap satisfies either (1) or (3) of

Theorem 3.1.2. So f = ef ⩽ 2 where e = e(p|p) and f = f(p|p) where p is any prime of

K lying over p. Let r be the number of primes lying over p. As K is Galois, erf = 4. It

follows that r = 2 or 4. Thus by Theorem 3.3.3,(
DiscK/Q

p

)
= 1.

That
(

DiscK/Q
p

)
=
(

DiscK0/Q
p

)
follows from Theorem 3.3.1. This completes the proof. □

Proposition 3.3.5. Let K be a primitive quartic Galois CM-field with cyclic Galois

group Gal(K/Q) = ⟨s⟩. Let K0 = Q(
√
n), n ∈ Q be the real quadratic subfield of K. Let

Φ = {ϕ1, ϕ2} be a CM-type on K. Let δ ∈ K×. Then the following are equivalent:

(1) δ ∈ KΦ(iR), i.e. ϕ1(δ) = −ϕ1(δ) and ϕ2(δ) = −ϕ2(δ).

(2) s2(δ) = −δ.
(3) TrKK0

(δ) = 0.

(4) TrKQ (δ) = TrKQ ((1 +
√
n)δ) = 0.

(5) TrKQ (δ) = TrKQ (αδ) = 0 where α ∈ K0 is any element such that K0 = Q(α).

Proof. We prove that (1) implies (2). Assume (1) holds. Then considering all CM-

types on K we can assume that one of ϕ1 and ϕ2 are s or s
3. Assume that ϕ1 = s. Then

by assumption = −s(δ). We also have that s2 is complex conjugation. Thus

s2(s(δ)) = −s(δ)
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s3(δ) = −s(δ)

s2(δ) = −δ.

Now assume that ϕ1 = s3. So

s3(δ) = −s3(δ)

s5(δ) = −s3(δ)

s2(δ) = −δ.

This proves (2).

We now prove (2) implies (1). Assume (2) holds. As in the proof that (1) implies (2)

we can assume ϕ1 = s or ϕ1 = s3. Without loss of generality assume ϕ1 = s.

ϕ1(δ) = s(δ)

= s3(δ)

= s(−δ)

= −s(δ)

= −ϕ1(δ).

Now, because of the possible CM-types on K we can assume ϕ2 = 1K or ϕ2 = s3. Assume

ϕ2 = 1K . Then

ϕ2(δ) = δ

= s2(δ)

= −δ

= −ϕ2(δ).

Assume ϕ2 = s3. Then

ϕ2(δ) = s3(δ)

= s5(δ)

= s3(−δ)

= −s3(δ)

= −ϕ2(δ).

This proves (1).

We now prove (2) is equivalent to (3). Note that as K0 is totally real, the only

automorphism of K over K0 is conjugation, which is s2. The result follows from this.
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That (3) implies (4) follows immediately from the facts that TrKQ = TrK0
Q ◦TrKK0

and

that 1 +
√
n ∈ K0.

We prove (4) implies (3). Assume TrKQ (δ) = TrQ((1 +
√
n)δ) = 0. Let TrKK0

(δ) =

a+ b
√
n with a, b,∈ Q.

0 = TrKQ (δ)

= TrK0
Q (TrKK0

(δ))

= TrK0
Q (a+ b

√
n)

= 2a.

This implies a = 0. Similarly,

0 = TrKQ ((1 +
√
n)δ)

= TrK0
Q (TrKK0

((1 +
√
n)δ))

= TrK0
Q ((1 +

√
n) TrKK0

(δ))

= TrK0
Q ((1 +

√
n)b

√
n)

= TrKQ (b
√
n+ bn)

= 2bn.

This implies b = 0 which proves (3).

That (3) implies (5) follows immediately from the facts that TrKQ = TrK0
Q ◦TrKK0

and

that α and 1 + α ∈ K0.

We prove (5) implies (3). Let TrKK0
(δ) = a+ b

√
n with a, b ∈ Q. It follows that a = 0

for the same reasons as in the proof that (4) implies (3). Let α = c+ d
√
n with c, d ∈ Q.

Then

0 = TrKQ (αδ)

= TrK0
Q (αTrKK0

(δ)))

= TrK0
Q ((c+ d

√
n)b

√
n)

= TrK0
Q (cb

√
n+ bdn)

= 2bdn.

So 0 = 2bdn. Since d ̸= 0 and n ̸= 0, b = 0, as required. □

Corollary 3.3.6. Let K be a Galois CM-field of degree 4 with maximal totally real

subfield K0 and primitive CM-type Φ. Let m be a positive integer. Let c be a fractional

ideal of K and L = Φ(c). Suppose that L admits a polarization of type (1,m) which is

induced by δ ∈ K which is such that δ−1 ∈ KΦ(iR>0) so that (δ) = ccDiffK/Q a as in
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Theorem 3.1.2. Let p be a prime dividing m. Suppose that p ramifies in K. Then ap

satisfies one of (2), (4), (5), or (6) and we have the following possibilities.

(1) If p splits in OK0, then ap satisfies (2) or (6)(b).

(2) If p is inert in OK0 then ap satisfies (5).

(3) If p ramifies in OK0 then ap satisfies (4).

Proof. Let r be the number of primes of OK lying over p and let e and f be the

common ramification index and inertia degree respectively of any prime lying over p in

OK .

Suppose p splits in OK0 . Then because erf = 4 and we know r ⩾ 2, so we must have

ef ⩽ 2. We also know that p ramifies so that e = 2 and thus f = 1. This implies that

ap satisfies one of (2) or (6)(b).

Suppose p is inert in OK0 . Then f ⩾ 2. Because p ramifies in OK , e ⩾ 2, so e = 2

and f = 2. This implies ap satisfies (5).

Suppose p ramifies in OK0 . So e ⩾ 2. We have e = 4 or e = 2. Assume e = 2. We will

obtain a contradiction. Let p be any prime of K lying above p and let T be the inertia

field of p. By Theorem 28 in [7] we have that [K : T ] = e = 2, so T = K0. But also by

Theorem 28 of [7], p is unramified in T = K0 which is a contradiction. So e = 4. Thus

ap satisfies (4). □

3.4. Necessary Conditions for Non-Galois Extensions

Let K be a CM-field, K0 its maximal totally real subfield, Φ a CM-type on K, and L

the Galois closure of K. In this section we will assume that K is not Galois. We consider

the case in which K is a quartic CM-field. In this case as noted in Example 2.2.6, since

K is non-Galois, L is a degree 8 extension with Galois group D8. We use the presentation

of D8 given by ⟨t, s | t2 = s4 = 1⟩. We have the following diagram of subgroups:

Gal(L/Q) = ⟨t, s⟩

⟨t, s2⟩ ⟨s⟩ ⟨ts, s2⟩ = ⟨ts3, s2⟩

⟨ts2⟩ ⟨t⟩ ⟨s2⟩ ⟨ts⟩ ⟨ts3⟩

1

The normal subgroups are underlined. By the fundamental theorem of Galois theory, the

diagram of subfields of L is the same diagram inverted. There are five quartic subfields.

One of them is totally real, but the others are totally imaginary extensions of a quadratic
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real subfield, so any of them could be taken to be our field K. We choose K = L⟨t⟩ and

K0 = L⟨t,s2⟩. So we get the following diagram of subfields of L:

L

K = L⟨t⟩ L⟨ts2⟩ L⟨s2⟩ L⟨ts⟩ L⟨ts3⟩

L⟨t,s2⟩ L⟨s⟩ L⟨ts,s2⟩

Q

In this situation, s2 restricts to complex conjugation on any of the quartic CM-fields. The

embeddings of K into C are the restrictions of {1, s, s2, s3}. In the rest of this section we

will denote σ = s|K . The above notation will be fixed for the entire section.

Lemma 3.4.1. We have

(3.4.1) s(K) = s3(K) = L⟨ts2⟩, s2(K) = K.

Proof. Let x ∈ K. Then

ts2(sx) = ts3x = ts3tx = sx.

It follows that sx ∈ L⟨ts2⟩; this implies that s(K) = L⟨ts2⟩. The remaining claims in

(3.4.1) have a similar proof. □

The totally real quadratic extension K0 of Q contained in K is L⟨t,s2⟩. The set of all

CM-types of K/Q is {{1, σ}, {1, σ3}, {σ2, σ}, {σ2, σ3}}. The elements of Gal(L/Q) acts

on the set of embeddings of K into C by composition on the left. We have the following
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table of the actions of Gal(L/Q) on 1, σ, σ2, σ3.

1 σ σ2 σ3

1 1 σ σ2 σ3

s σ σ2 σ3 1

s2 σ2 σ3 1 σ

s3 σ3 1 σ σ2

t 1 σ3 σ2 σ

ts σ3 σ2 σ 1

ts2 σ2 σ 1 σ3

ts3 σ 1 σ3 σ2

We therefore obtain the following table of actions on the CM-types:

{1, σ} {1, σ3} {σ2, σ} {σ2, σ3}

1 {1, σ} {1, σ3} {σ2, σ} {σ2, σ3}

s {σ2, σ} {1, σ} {σ2, σ3} {1, σ3}

s2 {σ2, σ3} {σ2, σ} {1, σ3} {1, σ}

s3 {1, σ3} {σ2, σ3} {1, σ} {σ2, σ}

t {1, σ3} {1, σ} {σ2, σ3} {σ2, σ}

ts {σ2, σ3} {1, σ3} {σ2, σ} {1, σ}

ts2 {σ2, σ} {σ2, σ3} {1, σ} {1, σ3}

ts3 {1, σ} {σ2, σ} {1, σ3} {σ2, σ3}

Therefore, we have the following stabilizers:

(3.4.2)

CM-type stabilizer

{1, σ} {1, ts3}

{σ2, σ3} {1, ts3}

{1, σ3} {1, ts}

{σ2, σ} {1, ts}
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Lemma 3.4.2. Let Φ be a CM-type for K, and let Kr be the reflex field of K with

respect to Φ. We have:

(3.4.3)

Φ Kr

{1, σ} L⟨ts3⟩

{σ2, σ3} L⟨ts3⟩

{1, σ3} L⟨ts⟩

{σ2, σ} L⟨ts⟩

Proof. By definition, the reflex field of K with respect to Φ is the fixed field in

L of the stabilizer in Gal(L/Q) of Φ. The table (3.4.3) now follows immediately from

(3.4.2). □

We have the following result.

Lemma 3.4.3. Let K0 = Q(
√
n) where n ∈ Q. Let {σ1, σ2} be a CM-type for K/Q.

Let δ ∈ K. Then the following are equivalent

(1) σ1(δ) = −σ1(δ) and σ2(σ) = −σ2(δ).
(2) s2(δ) = −δ.
(3) TrKK0

(δ) = 0.

(4) TrKQ (δ) = TrKQ ((1 +
√
n)δ) = 0.

(5) TrKQ (δ) = TrKQ (αδ) = 0 where α ∈ K0 is such that K0 = Q(α).

Proof. The proof of this is nearly identical to the proof of Proposition 3.3.5. Instead

of s being an automorphism of K, s is an automorphism of L but this does not change

any of the calculations. □

In future results we will have occasion to consider primes with a factorization of the

following form in K:

K P Q1 Q2

K0 p q

Q p

where P is not ramified over p. Note that this implies that f(P|p) = 2 and that this

is only possible in a non-Galois extension as the inertia degrees do not agree between

primes.
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Lemma 3.4.4. Let p be a rational prime unramified in K which decomposes in K in

the above manner, that is, pOK = PQ1Q2 where P = pOK for a prime p of OK0 above

p and qOK = Q1Q2 for a prime q of OK0. Then p is unramified in L.

Proof. Note that as L is Galois, the ramification index for each prime of L above

p are the same number e. Let r be the number of primes of L above p and let f be the

residue degree common to each of them. We have erf = 8 as L is degree 8. We also

know that f ⩾ 2 as P already has inertia degree 2 in K. Also, as p has already factored

into three primes in K we have r ⩾ 3. But r < 8, so the only possibility is r = 4, f = 2

and e = 1. □

Lemma 3.4.5. Let Φ be a CM-type on K. Let Kr be the reflex field with respect

to Φ and Kr
0 the maximal totally real subfield of Kr. Let p be a rational prime that

is unramified in L. Let k and n be positive integers such that kn is even. Let C be a

fractional ideal of K with norm v2, for v a rational number, and let B be an ideal of K.

Let δ ∈ K×. Assume that

s2(δ) = −δ,(3.4.4)

NK
Q (B) = pn,(3.4.5)

(δ) = CDiffK/QB
−k.(3.4.6)

Then

(1) δs(δ) /∈ Q and DiscK/Q is not a square in Z.
(2) δs(δ) ∈ Kr

0 and Kr
0 = Q(δs(δ)).

(3) Kr
0 = Q(

√
DiscK/Q).

(4)
(

DiscK/Q
p

)
=
(

DiscKr
0/Q

p

)
.

Proof. Since kn is even, there exists ℓ ∈ Z such that −kn = 2ℓ.

Proof of (1). Applying the norm map of ideals to (3.4.6) we obtain the following

equality of ideals:

(3.4.7) (NK
Q (δ)) = (v2DiscK/Q p

−kn).

It follows that there exists ε ∈ {±1} such that

(3.4.8) NK
Q (δ) = εv2DiscK/Q p

−kn.

Now

NK
Q (δ) = δs(δ)s2(δ)s3(δ)

= δs(δ)(−δ)s(−δ)

= (δs(δ))2.(3.4.9)
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By (3.4.8) and (3.4.9) we have

(3.4.10) (δs(δ))2 = εv2DiscK/Q p
−kn.

Now

δs(δ) = s2(δs(δ))

= s2(δ)s3(δ)

= (−δ)(−s(δ))

= δs(δ).(3.4.11)

From (3.4.11) we conclude that δs(δ) ∈ R so that (δs(δ))2 > 0; since v2, DiscK/Q, and

p−kn are all positive, we see that ε = 1 and so

(3.4.12) (δs(δ))2 = v2DiscK/Q p
−kn.

Assume that δs(δ) ∈ Q; we will obtain a contradiction. Since δs(δ) ∈ Q we have:

δs(δ) = s(δs(δ))

= s(δ)s2(δ)

= −δs(δ).(3.4.13)

From (3.4.13) we have δs(δ) = 0, so that δ = 0, a contradiction. Next, assume that

DiscK/Q is a square in Z; we will obtain a contradiction. Let DiscK/Q = d20 where d0 ∈ Z.
By (3.4.12) we now have

(3.4.14) (δs(δ))2 = (vd0p
ℓ)2.

Then (3.4.14) implies that δs(δ) = ±vd0pℓ; in particular, δs(δ) ∈ Q, which is a contra-

diction.

Proof of (2). We have Kr
0 = L⟨ts,s2⟩. Now

t(δs(δ)) = t(δ)ts(δ)

= δtst(δ)

= δs3(δ)

= −δs(δ).(3.4.15)

And:

s(δs(δ)) = s(δ)s2(δ)

= −δs(δ).(3.4.16)
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By (3.4.15) and (3.4.16) we have ts(δs(δ)) = δs(δ) and s2(δs(δ)) = δs(δ). This implies

that δs(δ) ∈ Kr
0 . Since δs(δ) /∈ Q by i) and [K0 : Q] = 2, we conclude thatK0 = Q(δs(δ)).

Proof of (3). From (3.4.12) we have

(3.4.17) δs(δ) = ±vpℓ
√

DiscK/Q.

By (2) we obtain Kr
0 = Q(

√
DiscK/Q).

Proof of (4). Let Kr
0 = Q(

√
m) where m is a square-free integer. Since DiscK/Q is

not a square in Z, so by (3) there exists an integer c such that c2m = DiscK/Q. Since p

is unramified in K by assumption, p ∤ DiscK/Q; this implies that p ∤ c. Therefore,
(

c
p

)
is

not zero and is hence ±1. It follows that(
DiscK/Q

p

)
=

(
c2m

p

)
=

(
c

p

)2(
m

p

)
=

(
m

p

)
.

We have

DiscKr
0/Q =

4m if m ≡ 2, 3 (mod 4),

m if m ≡ 1 (mod 4).

It follows that

(3.4.18)

(
m

p

)
=

(
DiscKr

0/Q

p

)
if m ≡ 1 (mod 4). We claim that (3.4.18) also holds if m ≡ 2, 3 (mod 4). Assume that

m ≡ 2, 3 (mod 4). By assumption, p is unramified in L; this implies that p is unramified

in Kr
0 . It follows that p ∤ DiscKr

0/Q = 4m. In particular, p ̸= 2. We have(
DiscKr

0/Q

p

)
=

(
4m

p

)
=

(
2

p

)2(
m

p

)
=

(
m

p

)
.

This proves our claim. We now have(
DiscK/Q

p

)
=

(
DiscKr

0/Q

p

)
.

This completes the proof. □

Let K1/K2 be an extension of number fields and let P be a prime of K1. Then we

will denote the prime P ∩OK2 of K2 that P lies over by PK2 .

Lemma 3.4.6. Let F1, F2, F3, and F4 be number fields with subfield relationships illus-

trated by the following diagram.

F4

F2 F3

F1
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Assume F4 = F2F3, and F3 is a normal extension of F1. Let P be a prime of F4, and

assume that PF1 is unramified in F4. Then

(3.4.19) f(PF4/PF2) ⩽ f(PF3/PF1).

Proof. This follows from Ex. 10, Chap. 4, p. 83 and Theorem 28 of Chap. 4 of [7]. □

Theorem 3.4.7. Let Φ be a CM-type on K. Let Kr be the reflex field with respect to

Φ and Kr
0 the maximal totally real subfield of Kr. Let c be a fractional ideal of K. Let

L be the Galois closure of K. Let m be a positive integer. Let p be a prime dividing m.

Assume that p is unramified in L, and that C2/Φ(c) admits a polarization of type (1,m).

By Theorem 3.1.2 there exists a =
∏

q|m aq in Rm(K) and δ ∈ KΦ(iR>0) such that

(3.4.20) (δ) = ccDiffK/Q
∏
q|m

aq.

Then DiscK/Q is not a square in Z and exactly one of the following cases holds:

(3.4.21)

ap satisfies r
(

DiscK/Q
p

) (
DiscK0/Q

p

)
r′
(

DiscKr/Q
p

) (
DiscKr

0/Q

p

)
(1) 2 1 1 2 1 1

(1) 3 −1 1 2 1 −1

(3) 4 1 1 4 1 1

(3) 3 −1 1 2 1 −1

Here, r and r′ are the number of primes of K and Kr lying over p, respectively, and (1)

and (3) refer to conditions in Theorem 3.1.2.

Proof. To begin we note that in this proof we will sometimes use the Stickelberger

criterion 3.3.3 without further comment.

By Theorem 3.1.2, since p is unramified in K, ap must satisfy (1) or (3) of Theo-

rem 3.1.2. For brevity, in the remainder of this proof, if ap satisfies (1) of Theorem 3.1.2,

then we will say that (1) holds; a similar comment applies if ap satisfies (3) of Theo-

rem 3.1.2. We define an ideal B of K as follows. If (1) holds, then there exists a prime P

of K lying over p such that ap = P−k with e(P/p) = 1 and f(P/p) = 2; in this case we

define B = P. If (3) holds, then there exist distinct prime ideals P1 and P2 of K lying

over p such that ap = P−k
1 P−k

2 with e(P1/p) = e(P2/p) = 1 and f(P1/p) = f(P2/p) = 1;

in this case define B = P1P2. We then have (δ) = DiffK/QB
−k and NK

Q (B) = p2. We

also note that by Lemma 3.4.3 we have s2(δ) = −δ. We note that DiscK/Q is not a square

in Z by Lemma 3.4.5. By Lemma 3.4.5 we also have
(

DiscK/Q
p

)
=
(

DiscKr
0/Q

p

)
. Since p is



58

L⟨1⟩ = L

L⟨s2⟩

L⟨s⟩

L⟨t,s⟩ = Q

L⟨ts2⟩K = L⟨t⟩ L⟨ts⟩ L⟨ts3⟩

K0 = L⟨t,s2⟩ L⟨ts,s2⟩ = L⟨ts3,s2⟩ = Kr
0

2
1

1

1
12

2

1
1

1

1

2 2
1

1

Figure 1. Inertial degrees for any prime of L lying over p when (1) holds
and (DiscK/Q /p) = 1.

unramified in K, p must split in K0 by Corollary 3.2.3; hence,
(
DiscK0/Q /p

)
= 1. We

have
(
DiscK/Q /p

)
= (−1)4−r = (−1)r and

(
DiscKr/Q)/p

)
= (−1)4−r′ = (−1)r

′
.

Assume that (1) holds and that
(
DiscK/Q /p

)
= 1. Since

(
DiscK/Q /p

)
= 1 we see that

r is even. Hence, r = 2 or r = 4. If r = 4, then f(P/p) = 1, a contradiction. Hence, r =

2. Let R be any prime of L lying over p. Then the inertial degrees of all the intermediate

quadratic extensions are as in fig. 1. This may be proven as follows. f(RK0/p) = 1:

use
(
DiscK0/Q /p

)
= 1. f(RL⟨s2⟩/RL⟨s⟩) = 1: use Lemma 3.4.6. f(RL⟨s2⟩/RKr

0
) = 1: use

Lemma 3.4.6. f(RL/RL⟨ts3⟩) = 1: use Lemma 3.4.6. f(RL/RL⟨ts⟩) = 1: use Lemma

3.4.6. f(RKr
0
/RQ) = 1: use

(
DiscKr

0/Q /p
)
= 1. f(RL⟨s2⟩/RK0) = 1: use Lemma 3.4.6.

f(RL/RL⟨ts2⟩) = 1: use Lemma 3.4.6. f(RL/RK) = 1: use Lemma 3.4.6. f(RL⟨s⟩/RQ) =

1: use multiplicativity. f(RK/RK0) = 2: use r = 2. All remaining inertial degrees now

follow from multiplicativity. From fig. 1 we conclude that in L⟨ts⟩ there are exactly two

primes lying over p; similarly, in in L⟨ts3⟩ there are exactly two primes lying over p. Since

Kr = L⟨ts⟩ or Kr = L⟨ts3⟩ it follows that r′ = 2 and (DiscKr/Q)/p = 1.

Assume that (1) holds and that (DiscK/Q /p) = −1. Since (DiscK/Q /p) = −1 we see

that r is odd. Hence, r = 1 or r = 3. If r = 1, then 4 = e(P/p)f(P/p) = 2, a contra-

diction. Hence, r = 3. Since there are three primes of K lying over p, since f(P/p) = 2,

since p is unramified in L, and since L is a degree eight Galois extension of Q, we see that

there are exactly four primes of L lying over p. Let R be any prime of L lying over p.

Then f(R/p) = 2, and the inertial degrees of some intermediate quadratic extensions are

as in fig. 2. These numbers are obtained as follows. f(RK0/RQ) = 1: use that p splits in

K0. f(RKr
0
/RQ) = 2: use (DiscKr

0/Q /p) = −1. f(RL⟨s2⟩/RKr
0
) = 1, f(RL⟨ts⟩/RKr

0
) = 1,

f(RL⟨ts3⟩/RKr
0
) = 1, f(RL/RL⟨s2⟩) = 1, f(RL/RL⟨ts⟩) = 1, f(RL/RL⟨ts3⟩) = 1: use

f(RKr
0
/RQ) = 2, f(R/p) = 2, and multiplicativity. f(RL⟨s2⟩/RL⟨s⟩) = 1: use Lemma
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L⟨1⟩ = L

L⟨s2⟩

L⟨s⟩

L⟨t,s⟩ = Q

L⟨ts2⟩K = L⟨t⟩ L⟨ts⟩ L⟨ts3⟩

K0 = L⟨t,s2⟩ L⟨ts,s2⟩ = L⟨ts3,s2⟩ = Kr
0

1

1
2

2
1

1

1

1 1
1

2

Figure 2. Some inertial degrees for any prime of L lying over p when (1)
or (3) holds and (DiscK/Q /p)) = −1.

L⟨1⟩ = L

L⟨s2⟩

L⟨s⟩

L⟨t,s⟩ = Q

L⟨ts2⟩K = L⟨t⟩ L⟨ts⟩ L⟨ts3⟩

K0 = L⟨t,s2⟩ L⟨ts,s2⟩ = L⟨ts3,s2⟩ = Kr
0

1
1

1

1
11

1
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1

1

1
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1

1

Figure 3. Inertial degrees for any prime of L lying over p when (3) holds
and (DiscK/Q /p) = 1.

3.4.6. f(RL⟨s⟩/RQ) = 2, f(RL⟨s2⟩/RK0) = 2: use multiplicativity. From fig. 2 we con-

clude that there are exactly two primes of L⟨ts⟩ lying over p; similarly, there are exactly

two primes of L⟨ts3⟩ lying over p. It follows that r′ = 2 and (DiscKr/Q)/p) = 1.

Assume that (3) holds and that (DiscK/Q /p) = 1. Since (DiscK/Q /p) = 1, we have

r = 2 or r = 4. If r = 2, then 4 = e(P1/p)f(P1/p) + e(P2/p)f(P2/p) = 1 + 1 = 2, a

contradiction. Hence, r = 4. Let R be any prime of L lying over p. Then the inertial

degrees of all the intermediate quadratic extensions are as in fig. 3. These numbers

are computed as follows. f(RK0/p) = 1: use that p splits in K0. f(RKr
0
/p) = 1: use

1 = (DiscK/Q /p) = (DiscK0/Q /p). f(RK/RK0) = 1: use r = 4, so that f(RK/p) = 1,

and multiplicativity. f(RL⟨s2⟩/RK0) = f(RL/RK) = 1: use Lemma 3.4.6. We now

have f(R/p) = 1 by multiplicativity; all the remaining inertial degrees now follow from

multiplicativity. From fig. 3 we see that p splits into four distinct primes in both L⟨ts

and L⟨ts3⟩; this implies that r′ = 4 and (DiscKr/Q /p) = 1.
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Finally, assume that (3) holds and that (DiscK/Q /p) = −1. Since (DiscK/Q /p) = −1

we have r = 1 or r = 3. We cannot have r = 1 since by (3) the integer r is at least 2.

Hence, r = 3. Let P3 be the third prime of K lying over p. We then have

4 = e(P1/p)f(P1/p) + e(P2/p)f(P2/p) + e(P3/p)f(P3/p) = 1 + 1 + f(P3/p).

This implies that f(P3/p) = 2. Since there are three primes of K lying over p, since

f(P3/p) = 2, since p is unramified in L, and since L is a degree eight Galois extension

of Q, we see that there are exactly four primes lying over p. Let R be any prime of L

lying over p. Then f(R/p) = 2, and the inertial degrees of some intermediate quadratic

extensions are as in fig. 2; the arguments for these degrees are as in the case when (1)

holds and (DiscK/Q /p) = −1. From fig. 2 we conclude that there are exactly two primes

of L⟨ts⟩ lying over p; similarly, there are exactly two primes of L⟨ts3⟩ lying over p. It

follows that r′ = 2 and (DiscKr/Q /p) = 1. □
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Chapter 4: Algorithms and

Calculations
Let K be a quartic primitive CM-field with CM-type Φ. Let c be a fractional ideal of

K and let L = Φ(c). Let m be a positive integer. In this chapter we write an algorithm

determining whether C2/L admits a polarization of type (1,m). We also present explicit

code in the language PARI GP which implements this algorithm. In addition we present

two applications of this algorithm. First we compile some descriptive statistics about the

frequency of polarizations. Next we give some illustrations of the necessary conditions

which we have proven in the previous chapter.

4.1. The Algorithm

Input: A CM-field K with maximal totally real subfield K0 such that K does not

contain a strict CM-subfield. A fractional ideal c of K. A positive integer m.

Output: An element δ, totally imaginary and such that the imaginary part of ϕ(δ) is

positive for each ϕ ∈ Φ which determines a polarization of type (1.m) on L, if possible. If

this is not possible, the output is the string “A polarization of type (1,m) is not possible”.

(1) Factor m into prime powers m =
∏t

i=1 p
vpi (m)

i .

(2) For each j ∈ {1, . . . , t}, factor the ideal (pj) into prime ideals in K. Algorithms

for this already exist.

(3) Determine whether there exists an j ∈ {1, . . . , t} such that there are only prime

ideals p in the decomposition of pj which enable the possibility of ideals ap

satisfying the conditions in 3.1.2. If any such prime appears in the decomposition

of m, output “A polarization of type (1,m) is not possible”. If there are no such

primes in the decomposition of m then proceed to next step.

(4) Calculate the different DK of K.

(5) For each prime p dividing m, let A(p) be the collection of ideals of the form ap

where ap satisfies one of the conditions in Theorem 3.1.2.

(6) Enumerate the collection Sm of ideals of the form

b = ccDK

∏
p|m

ap

where for each p, ap is a selection of some element of A(p).
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(7) For each element b of Sm, determine whether b is principal. If no element is

principal, output “A polarization of type (1,m) is not possible”. Otherwise,

select an ideal b which is principal and a generator δ.

(8) Calculate Re(ϕ(δ)) for each ϕ ∈ Φ. If this is positive for each ϕ, output δ.

Otherwise, output “A polarization of type (1,m) is not possible”.

That this algorithm is sufficient relies on the assumption that K has only ±1 as roots

of unity, so that all the units of K are real units. This is justified by the fact that K is

a primitive CM-field. This is okay in our circumstances because we are assuming that

K is primitive from which it follows that K contains no roots of unity other than ±1 so

that Lemma 2.2.9 applies.
In order to use the above algorithm to obtain data we implemented it in the PARI

programming language. The code for this implementation is given below.

Beginning_Check(K, m) =

{

/* This is a function which checks whether necessary conditions

for a polarization to occur are satisfied. If a given number

field fails this check there is no reason to continue the

algorithm.*/

\\ We iterate the check over all the primes dividing m

for(n=1,#factor(m)~,

p = factor(m)[n, 1];

v_p = factor(m)[n, 2];

r = #idealfactor(K,p)~;

for(t=1, r,

e = idealfactor(K,p)[t,1][3];

f = idealfactor(K,p)[t,1][4];

\\ We will only consider the check to be failed if

\\every prime lyingabove some prime factor of m fails

\\the required condition so weinitialize a variable

\\"index" to count the number of primes that fail.

index = 0;

if(v_p > 1,

if((e> 1 && f > 1), index++,

if(f>3, index++)

)

);

if(index == r, return(0))

);

);

return(1)

};
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Find_Admissible_Aps(K,m) =

{

/*This is a function which calculates the ideals a_p given in

the main theorem, if they exist.*/

\\We want to produce a list of the ideals which may satisfy

\\the theorem. We do this by starting with an empty list and

\\adding potential ideals as we go.

list = [];

for(n=1, #factor(m)~,

\\For each prime p dividing m we determine all the a_ps

\\if any that exist.

a_plist = [];

p = factor(m)[n, 1];

\\We will repeatedly use the factorization of p in K

\\so we initialize a variable for it.

pfactor = idealfactor(K,p);

v_p = factor(m)[n, 2];

r = #pfactor~;

for(t=1, r,

e = pfactor[t,1][3];

f = pfactor[t,1][4];

\\This is case (1) of the main theorem.

if(e == 1 && f == 2,

a_plist = concat(a_plist, [idealpow(K, pfactor[t,1],-v_p)])

);

\\This is case (2) of the main theorem.

if(e == 2 && f == 1,

a_plist = concat(a_plist, [idealpow(K, pfactor[t,1],-2*v_p)])

);

\\This is case (3) of the main theorem. This one has

\\two prime ideals involved in it so we have

\\ to include a nested for loop. Nested for loops will

\\appear for every case which involves multiplication for

\\two prime ideals.

if((e == 1 && f == 1) && t < r,

for(s=t+1, r,

if (pfactor[s,1][3] == 1 && pfactor[s,1][4] == 1,

a_plist = concat(a_plist, [idealmul(K,idealpow(K, pfactor[t,1],-v_p),

idealpow(K,pfactor[s,1],-v_p))])

);

);

);
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\\This is case (4) of the main theorem.

if((v_p == 1 && (e == 4 && f == 1)) || (v_p == 1 && (e == 3 && f == 1)),

a_plist = concat(a_plist, [idealpow(K, pfactor[t,1],-2)])

);

\\This is case (5) of the main theorem.

if(v_p == 1 && (e == 2 && f == 2),

a_plist = concat(a_plist, [idealpow(K, pfactor[t,1],-1)])

);

\\The remaining code covers case (6).

\\This is more complicated

\\because there are two different

\\configurations of e and f in some of them so I’ve

\\written two conditionsals for (a) and (c).

\\ We first look at (6)(a).

if(v_p == 1 && e == 3 && f == 1 && t < r,

for(s=t+1, r,

if (pfactor[s,1][3] == 1 && pfactor[s,1][4] == 1,

a_plist = concat(a_plist, [idealmul(K,idealpow(K, pfactor[t,1],-v_p),

idealpow(K,pfactor[s,1],-v_p))])

);

);

);

if(v_p == 1 && e == 1 && f == 1 && t < r,

for(s=t+1, r,

if (pfactor[s,1][3] == 3 && pfactor[s,1][4] == 1,

a_plist = concat(a_plist, [idealmul(K,idealpow(K, pfactor[t,1],-v_p),

idealpow(K,pfactor[s,1],-v_p))])

);

);

);

\\Case (6)(b).

if(v_p == 1 && e == 2 && f == 1 && t < r,

for(s=t + 1, r,

if (pfactor[s,1][3] == 2 && pfactor[s,1][4] == 1,

a_plist = concat(a_plist, [idealmul(K,idealpow(K, pfactor[t,1],-v_p),

idealpow(K,pfactor[s,1],-v_p))])

);

);

);

\\Case (6)(c).

if(v_p == 1 && e == 2 && f == 1 && t < r,

for(s=t + 1, r,

a_plist = concat(a_plist, [idealmul(K,idealpow(K, pfactor[t,1],-v_p),
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idealpow(K,pfactor[s,1],-v_p))])

);

);

if(v_p == 1 && e == 1 && f == 1 && t < r,

for(s=t + 1, r,

if (pfactor[s,1][3] == 2 && pfactor[s,1][4] == 1,

a_plist = concat(a_plist, [idealmul(K,idealpow(K, pfactor[t,1],-v_p),

idealpow(K,pfactor[s,1],-v_p))])

);

);

);

);

\\We add all the lists of a_p factors to the main list.

list = concat(list, [a_plist]);

);

\\We output the list of lists of a_ps.

return(list)

};

FindS(K, m) =

{

/*This is a function which takes

the a_p factors found in the last

function and multiplies them

to find the set S_m given in the

main theorem. This amounts to

calculating each possible product

\prod a_p as p runs over the prime

factors of m. */

\\There is a Pari function called

\\fold which will perform a function

\\f(x_1,x__2, ..., x_n) on all

\\elements of the n-fold cartesian

\\product of a collection

\\of sets.

Aplistm = concat(Find_Admissible_Aps(K, m), [[K.diff]]);

S = fold((A, B) ->[idealmul(K, a, b)|a<-A;b<-B], Aplistm);

return(S)

};

FindPrincipal(K,m) =

{

/*This function determines whether any of the ideals
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in S_m are principal ideals. The output is the set of

pairs of principal elements of S_m together with a generator.*/

IdealSet = FindS(K,m);

PrincipalSet = [];

for(n=1, #IdealSet~,

Ideal = IdealSet[n];

\\We use the function bnfisprincipal. The first entry of this

\\function outputs a vector which is 0 if and only

\\if the ideal which was input is principal. We

\\have to use a workaround for the if

\\statement because if the classgroup is trivial

\\ it outputs the empty vector.

gen = bnfisprincipal(K, Ideal);

if(0 * gen[1] == gen[1],

PrincipalSet = concat(PrincipalSet,[[Ideal, gen[2]]]);

);

);

return(PrincipalSet);

};

IsGenIm(K, m) =

{

/*This function determines whether the generators of the principal ideals in S_m

are generated by imaginary elements. The output is the set of such ideals.*/

ProspSet = FindPrincipal(K, m);

ImSet = [];

for(n=1, #ProspSet~,

if(nfelttrace(K, ProspSet[n][2]*nfsubfields(K, 2)[1][2]) == 0

&& nfelttrace(K, ProspSet[n][2]) == 0,

ImSet = concat(ImSet, [ProspSet[n]])

);

);

return(ImSet)

};

ListCheck(Fields, Polalist) =

{

/*This is a function which inputs a list of fields and a list of

integers and checks whether they fields ring of integers admits

a polarization of type (1, m) for each m in Pola.*/

Outlist = [];

\\We don’t need all of the data given by LMFDB so we only save
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\\some of their output in our output list. What we save is the

\\LMFDB label of the field, a defining polynomial, and the

\\ discriminant.

for(n=1,#Fields~,

Outlist = concat(Outlist, [[Fields[n][1],Fields[n][2],

Fields[n][3]]])

);

\\We iterate through each field, calculate and output all

\\the data we want.

for(n=1, #Fields~,

F = bnfinit(Fields[n][2]);

Outlist[n] = concat(Outlist[n], [F.clgp.no]);

\\We enumerate over our list of polarizations and check

\\whether F has a polarization by each of them.

for(t=1, #Polalist~,

P = Polalist[t];

if(Beginning_Check(F, P) == 0,

\\An output of B means "Beginning Check Failure"

Outlist[n] = concat(Outlist[n], ["B"]),

if(FindS(F, P) == [],

\\An output of A means "No choices of Ap for some p"

Outlist[n] = concat(Outlist[n], ["A"]),

\\An Output of P means

\\"No choice of c \overline c D_K \prod a_p is principal.

if(FindPrincipal(F, P) == [],

Outlist[n] = concat(Outlist[n], ["P"]),

\\An Output of I means

\\"No choice of c \overline c D_K \prod a_p

\\has an imaginary generator.

if(IsGenIm(F, P) == [],

Outlist[n] = concat(Outlist[n], ["I"]),

\\If F has a polarization of type (1, P), output 1.

Outlist[n] = concat(Outlist[n], [1]);

););););

);

);

return(Outlist)

}
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Figure 4. How many number fields K of less than a given discriminant
are such that OK admits a polarization of type (1,2).

4.2. Descriptive Statistics

In this section we compile some information about how often a given primitive quartic

CM-field K has a ring of integers OK which admits a polarization of type (1, p) for a

given prime. Let C(d) be the number of primitive quartic CM-fields of discriminant

less than or equal to d. Let C(d, p) be the number of primitive quartic CM-fields of

discriminant less than or equal to d for which OK admits a polarization of type (1, p).

Remarkably, for all the p that we have considered both C(d) and C(d, p) for fixed p

appear linear in d for d ⩽ 200, 000. Evidence for this is provided in Figures 4, 5 and 6 for

the primes p = 2, p = 3 and p = 5. In Table 4.1 we list the apparent ratio C(d, p)/C(d)

for several primes p. In addition, the graphs of C(d, p) also appear linear for all the

primes p ⩽ 1223. We don’t yet have an explanation for this or a proof that it continues

to hold.

4.3. Composite Types

We also considered the following question: Given a primitive CM-field K, a CM-type

Φ, a fractional ideal c of K and a square-free semiprime number m = pq, for p and q

distinct primes, is there any relationship between whether Φ(c) admits a polarization of

type (1, p) and a polarization of type (1, q) and whether it admits a polarization of type

(1, pq). There is some relationship that can be easily ascertained. For instance, if there

does not exist a polarization of type (1, p) or (1, q) for the reason that the ideals ap or

aq, as described in Theorem 3.1.2 do not exist, then there can be no polarization of type
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Figure 5. How many number fields K of less than a given discriminant
are such that OK admits a polarization of type (1,3).

Figure 6. How many number fields K of less than a given discriminant
are such that OK admits a polarization of type (1,5).

(1, pq) for the same reason. However one might ask whether in the case that ap and aq

exist does the existence of a polarization on Φ(c) of type (1, p) and another polarization

of type (1, q) guarantee the existence of a polarization of type (1, pq)? The answer is

”no”, although counterexamples are very infrequent. One example is the field K labeled

4.0.105125.1 in the L-Functions and Modular Forms Database, which is generated over

Q by a root of the polynomial x4 − 2x3 + 14x2 − 13x + 6. This field is such that OK
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Table 4.1. A table of proportions of the number of quartic CM-fields up
to discriminant d with a (1, p) polarization over the total number of fields
up to discriminant d.

2 3 5 7 11 13 17 19 23 29
0.4230 0.2831 0.5217 0.2816 0.5537 0.2531 0.3768 0.5347 0.4147 0.5811
31 37 41 43 47 53 59 61 67 71

0.6704 0.1908 0.6915 0.2167 0.4288 0.2268 0.6485 0.6218 0.1661 0.7756
73 79 83 89 97 101 103 107 109 113

0.3520 0.7377 0.2536 0.7232 0.3371 0.6404 0.3902 0.2502 0.5852 0.3210
127 131 137 139 149 151 157 163 167 173

0.3905 0.6698 0.2958 0.5951 0.5763 0.7395 0.2724 0.0971 0.3921 0.2026
179 181 191 193 197 199 211 223 227 229

0.6793 0.6437 0.8695 0.3568 0.1132 0.7559 0.5832 0.3345 0.1945 0.6137
233 239 241 251 257 263 269 271 277 281

0.3382 0.8171 0.7648 0.7105 0.3831 0.4706 0.6040 0.7321 0.2541 0.7316

admits a polarization of type (1, 2) and a polarization of type (1, 3) but does not admit a

polarization of type (1, 6). This is the only field we found with this property for 2, 3 and

6. One explanation for the relative infrequency of this occurence is that if the different

DiffK/Q happens to be principal, generated by some δ0 ∈ KΦ(iR) and we have for some

δ2, δ3 ∈ KΦ(iR),
(δ2) = δ0a2,

and

(δ3) = δ0a3,

then we have

(δ−1
0 δ2δ3) = δ0a2a3.

Note that δ−1
0 δ2δ3 will be inKΨ(iR) for some CM-type Ψ. Thus under these circumstances

there is a polarization of type (1, 6). It turns out that it is very common for a quartic

CM-field to have a principal different, generated by an imaginary element.

4.4. Illustration of Necessary Conditions

Galois Fields. In this subsection we illustrate the results in Section 3.3 on Galois

extensions. In particular we want to show illustrations of Proposition 3.3.4. In the

following tables, we list several CM-fields K for which OK admits a polarization of type

(1, p) where p is a prime given in the table. The fields are described both by a label

given to them by the L-functions and Modular Forms Data Base (LMFDB) as well as by

a polynomial f(x) such that K is generated over Q by a root of f(x). We also give the

discriminant of each field. Table 4.2 contains fields K for which OK admits a polarization
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Table 4.2. An illustration of Proposition 3.3.4 with p = 2.

Label Polynomial Discriminant
(

DiscK/Q
2

) (
DiscK0/Q

2

)
4.0.3501153.1 x4 − x3 + 46x2 − 105x+ 951 3501153 1 1

4.0.47071057.1 x4 − x3 + 192x2 − 397x+ 9857 47071057 1 1

4.0.44720977.1 x4 − x3 + 158x2 + 685x+ 2073 44720977 1 1

4.0.8214057.1 x4 − x3 + 61x2 + 297x+ 618 8214057 1 1

4.0.64701513.1 x4 − x3 + 121x2 − 567x+ 5934 64701513 1 1

4.0.87528825.2 x4 − x3 + 265x2 − 543x+ 17814 87528825 1 1

4.0.19061833.1 x4 − x3 + 119x2 − 251x+ 4236 19061833 1 1

4.0.84311993.1 x4 − x3 + 555x2 + x+ 73492 84311993 1 1

4.0.94924073.1 x4 − x3 + 589x2 + x+ 82706 94924073 1 1

4.0.99139625.1 x4 − x3 + 301x2 − 1231x+ 7426 99139625 1 1

Table 4.3. An illustration of Proposition 3.3.4 with p = 3.

Label Polynomial Discriminant
(

DiscK/Q
3

) (
DiscK0/Q

3

)
4.0.19061833.1 x4 − x3 + 119x2 − 251x+ 4236 19061833 1 1
4.0.44720977.1 x4 − x3 + 158x2 + 685x+ 2073 44720977 1 1
4.0.47071057.1 x4 − x3 + 192x2 − 397x+ 9857 47071057 1 1
4.0.14602768.1 x4 + 97x2 + 388 14602768 1 1
4.0.6224272.1 x4 + 73x2 + 1168 6224272 1 1
4.0.58411072.1 x4 + 194x2 + 1552 58411072 1 1
4.0.24897088.1 x4 + 146x2 + 4672 24897088 1 1
4.0.92416000.4 x4 + 380x2 + 32490 92416000 1 1
4.0.43264000.4 x4 + 260x2 + 15210 43264000 1 1
4.0.12544000.2 x4 + 140x2 + 4410 12544000 1 1

of type (1, 2). Note that In every case
(

DiscK/Q
2

)
=
(

DiscK0/Q
2

)
= 1, as expected because

of Proposition 3.3.4. Tables 4.2 and Table 4.3 illustrate the same fact for the primes 3

and 5.

Whether p = 2, 3 or 5 we have
(

DiscK/Q
p

)
=
(

DiscK0/Q
p

)
= 1 as expected. This is a

small collection of data but we have run the same calculations on hundreds of Galois

fields and for many more primes and always seen the same result.

We now look at similar data to examine the question whether the necessary condition

is given in Proposition 3.3.4 is a sufficient condition for OK to admit a polarization of

type (1, p). It is not a sufficient condition. The following tables show fields K for which

OK does not admit a polarization of type (1, p) for p = 2, 3 and 5 that nonetheless
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Table 4.4. An illustration of Proposition 3.3.4 with p = 5.

Label Polynomial Discriminant
(

DiscK/Q
5

) (
DiscK0/Q

5

)
4.0.65597509.1 x4 − x3 + 252x2 − 774x+ 11097 65597509 1 1
4.0.38359789.2 x4 − x3 + 191x2 − 591x+ 6705 38359789 1 1
4.0.5929741.1 x4 − x3 + 23x2 − 215x+ 975 5929741 1 1
4.0.74618461.1 x4 − x3 + 53x2 + 763x+ 4557 74618461 1 1
4.0.1295029.1 x4 − x3 + 14x2 + 34x+ 393 1295029 1 1
4.0.42508549.1 x4 − x3 + 44x2 − 240x+ 4203 42508549 1 1
4.0.226981.1 x4 − x3 + 8x2 − 42x+ 117 226981 1 1
4.0.10061824.1 x4 + 68x2 + 306 10061824 1 1
4.0.10061824.2 x4 + 68x2 + 850 10061824 1 1
4.0.14526784.2 x4 + 122x2 + 2196 14526784 1 1

Table 4.5. An illustration of the insufficiency of the Jacobi symbol con-
dition for polarizations of type (1, 2).

Label Polynomial Discriminant
(

DiscK/Q
2

) (
DiscK0/Q

2

)
4.0.13456625.2 x4 − x3 + 106x2 + 4x+ 3656 13456625 1 1
4.0.33229625.2 x4 − x3 + 171x2 + 4x+ 8596 33229625 1 1
4.0.99139625.2 x4 − x3 + 301x2 + 4x+ 24716 99139625 1 1
4.0.27437625.2 x4 − x3 + 91x2 + 9x+ 3996 27437625 1 1
4.0.56984625.2 x4 − x3 + 116x2 − 821x+ 3601 56984625 1 1
4.0.2471625.2 x4 − x3 + 41x2 + 4x+ 796 2471625 1 1

satisfy
(

DiscK/Q
p

)
=
(

DiscK0/Q
p

)
= 1. It is interesting to note that although none of

these fields had a polarization of type (1, p), there always existed an ideal ap as given

in Theorem 3.1.2. The nonexistence of a polarization was always because the fractional

ideal DiffK/Q ap always failed to be a principal fractional ideal. This is expected. Indeed,

by Theorem 3.2.1 there exists a fractional ideal c of K and a CM-type Φ such that Φ(c)

admits a polarization of type (1, p).

Non-Galois Fields. In this subsection we illustrate the results in Section 3.4 on

Galois extensions. In particular we want to show illustrations of Proposition 3.4.7. In

the following tables, we list several CM-fields K for which OK admits a polarization of

type (1, p) where p is a prime given in the table. The fields are described both by a

label given to them by the L-functions and Modular Forms Data Base (LMFDB) as well

as by a polynomial f(x) such that K is generated over Q by a root of f(x). We also

give the discriminant of each field. Table 4.8 contains fields K for which OK admits a

polarization of type (1, 2). Note that In every case the number of primes above p in K as

well as the Kronecker symbols mentioned in Theorem 3.4.7 are as expected. Tables 4.8
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Table 4.6. An illustration of the insufficiency of the Jacobi symbol con-
dition for polarizations of type (1, 3).

Label Polynomial Discriminant
(

DiscK/Q
3

) (
DiscK0/Q

3

)
4.0.48778000.3 x4 + 145x2 + 2320 48778000 1 1
4.0.48778000.2 x4 + 145x2 + 5220 48778000 1 1
4.0.49948672.4 x4 + 116x2 + 2842 49948672 1 1
4.0.73984000.2 x4 + 340x2 + 2890 73984000 1 1
4.0.30976000.2 x4 + 220x2 + 1210 30976000 1 1
4.0.92416000.2 x4 + 380x2 + 3610 92416000 1 1
4.0.43264000.2 x4 + 260x2 + 1690 43264000 1 1
4.0.12544000.1 x4 + 140x2 + 490 12544000 1 1
4.0.256000.4 x4 + 20x2 + 10 256000 1 1
4.0.39304000.1 x4 + 170x2 + 340 39304000 1 1
4.0.88121125.2 x4 − x3 + 56x2 + 584x+ 5971 88121125 1 1
4.0.12008989.1 x4 − x3 + 29x2 + 415x+ 933 12008989 1 1
4.0.88121125.1 x4 − x3 + 56x2 − 1196x+ 4191 88121125 1 1
4.0.614125.1 x4 − x3 + 11x2 − 101x+ 171 614125 1 1

Table 4.7. An illustration of the insufficiency of the Jacobi symbol con-
dition for polarizations of type (1, 5).

Label Polynomial Discriminant
(

DiscK/Q
5

) (
DiscK0/Q

5

)
4.0.40495104.3 x4 + 156x2 + 234 40495104 1 1
4.0.12008989.1 x4 − x3 + 29x2 + 415x+ 933 12008989 1 1
4.0.4499456.1 x4 + 52x2 + 26 4499456 1 1

Table 4.8. An illustration of Proposition 3.4.7 with p = 2.

Label Polynomial Discriminant Case r
(

DiscK/Q
2

) (
DiscK0/Q

2

)
r′
(

DiscKr/Q
2

) (
DiscKr

0/Q

2

)
4.0.3757.1 x4 − 2x3 + 6x2 − 5x+ 2 3757 (3) 3 −1 1 2 1 −1
4.0.8405.1 x4 − 2x3 + 8x2 − 7x+ 2 8405 (3) 3 −1 1 2 1 −1
4.0.29189.1 x4 − 2x3 + 8x2 − 7x+ 8 29189 (3) 3 −1 1 2 1 −1
4.0.40293.1 x4 − 2x3 + 8x2 − 7x+ 4 40293 (3) 3 −1 1 2 1 −1
4.0.62197.1 x4 − x3 + 3x2 + 14x+ 32 62197 (3) 3 −1 1 2 1 −1
4.0.63869.1 x4 − 2x3 + 10x2 − 9x+ 16 63869 (3) 3 −1 1 2 1 −1
4.0.66181.1 x4 − 2x3 + 16x2 − 15x+ 18 66181 (3) 3 −1 1 2 1 −1
4.0.93925.1 x4 − x3 + 17x2 − 19x+ 106 93925 (3) 3 −1 1 2 1 −1
4.0.39593.1 x4 − x3 + 10x2 − 7x+ 49 39593 (1) 2 1 1 2 1 1
4.0.74273.1 x4 − 2x3 + 13x2 − 12x+ 19 74273 (1) 2 1 1 2 1 1
4.0.25721.1 x4 − 2x3 + 11x2 − 10x+ 8 25721 (3) 4 1 1 4 1 1

and Table 4.9 illustrate the same fact for the primes 3 and 5. Whether p = 2, 3 or

5 we have that the necessary conditions of Theorem 3.4.7 are satisfied. This is a small
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Table 4.9. An illustration of Proposition 3.4.7 with p = 3.

Label Polynomial Discriminant Case r
(

DiscK/Q
3

) (
DiscK0/Q

3

)
r′
(

DiscKr/Q
2

) (
DiscKr

0/Q

2

)
4.0.90944.1 x4 − 2x3 + 4x2 + 4x+ 18 90944 (3) 3 −1 1 2 1 −1
4.0.25088.1 x4 + 6x2 + 2 25088 (3) 3 −1 1 2 1 −1
4.0.42632.1 x4 + 9x2 + 2 42632 (3) 3 −1 1 2 1 −1
4.0.26533.1 x4 − x3 + 9x2 − 19x+ 23 26533 (1) 2 1 1 2 1 1
4.0.30589.1 x4 − x3 + 6x2 + 2x+ 17 30589 (1) 2 1 1 2 1 1
4.0.63037.1 x4 − 2x3 + 16x2 − 15x+ 27 63037 (3) 4 1 1 4 1 1
4.0.52897.1 x4 − x3 + 8x2 + x+ 27 52897 (3) 4 1 1 4 1 1
4.0.56953.1 x4 − x3 + 11x2 − 20x+ 36 56953 (3) 4 1 1 4 1 1
4.0.99937.1 x4 − x3 + 2x2 + 13x+ 21 99937 (3) 4 1 1 4 1 1

Table 4.10. An illustration of Proposition 3.4.7 with p = 5.

Label Polynomial Discriminant Case r
(

DiscK/Q
5

) (
DiscK0/Q

5

)
r′
(

DiscKr/Q
5

) (
DiscKr

0/Q

5

)
4.0.98192.2 x4 − 2x3 + 15x2 − 14x+ 30 98192 (3) 3 −1 1 2 1 −1
4.0.27648.1 x4 + 6x2 + 3 27648 (3) 3 −1 1 2 1 −1
4.0.32832.1 x4 − 2x3 + 3x2 + 4x+ 10 32832 (3) 3 −1 1 2 1 −1
4.0.78057.3 x4 − x3 + 12x2 + 23x+ 25 78057 (3) 3 −1 1 2 1 −1
4.0.74304.1 x4 − 2x3 + 9x2 − 8x+ 10 74304 (3) 4 1 1 4 1 1
4.0.62181.1 x4 − x3 + 6x2 − 16x+ 25 62181 (3) 4 1 1 4 1 1
4.0.48069.2 x4 − x3 + 4x2 + 6x+ 15 48069 (3) 4 1 1 4 1 1
4.0.94192.1 x4 + 12x2 + 7 94192 (3) 3 −1 1 2 1 −1

collection of data but we have run the same calculations on hundreds of non-Galois fields

and for many more primes and always seen the same result.

We now look at similar data to examine the question whether the necessary condition

is given in Proposition 3.3.4 is a sufficient condition for OK to admit a polarization of

type (1, p). It is not a sufficient condition. Interestingly, it was much more difficult to find

counterexamples in this case than in the case of a Galois field. We were unable to find

a primitive non-Galois CM-field K such that OK failed to admit a polarization of type

(1, 2) which also had any of the necessary values given in the above tables. I was, however,

able to find a single field K for which OK fails to admit a polarization of type (1, 3) but

for which r = 3, r′ = 2,
(

DiscK/Q
3

)
=
(

DiscKr
0/Q

3

)
= −1, and

(
DiscK0/Q

3

)
=
(

DiscKr/Q
3

)
= 1..

This is the field labeled 4.0.65600.5 in the LMFDB which is generated over Q by a root of

the polynomial x4−2x3+x2−10x+25. Although this field does not have a polarization

of type (1, 3), there exists an ideal ap as given in Theorem 3.1.2. The nonexistence of a

polarization was because the fractional ideal DiffK/Q ap failed to be a principal fractional

ideal. Again, as in the Galois case, this is expected for the same reasons, but it is

interesting because it is so rare.
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Chapter 5: Isomorphisms between

polarized abelian varieties with CM
Recall that we have characterized in Theorem 3.1.2 how to construct an abelian

surface with complex multiplication. It follows that if (Φ, c, ζ) is a triple consisting of a

CM-type Φ, a fractional ideal c of K and an element ζ ∈ K such that ζ−1 ∈ KΦ(iR>0)

and ζD−1
K c−1c−1 ∈ Rm(K), this triple corresponds to a polarized abelian variety of type

(1,m) and the converse is also true. We want to use this to characterize when two

polarized abelian varieties of type (1,m) are isomorphic.

Theorem 5.0.1. Let Let K be a primitive quartic CM-field with CM-type Φ. Let m

be a positive integer. Let c1 and c2 be fractional ideals of OK. Let a1 =
∏

p|m a1,p, a2 =∏
p|m a2,p ∈ Rm(K) and ζ1, ζ2 be such that ζ−1

1 , ζ−1
2 ∈ KΦ(iR>0) and (ζ1) = ccDKa1 and

(ζ2) = ccDKa2.

Consider the polarizations induced by ζ1 and ζ2 respectively on C2/Φ(c1) and C2/Φ(c2).

Denote these polarized abelian surfaces by A1 and A2 respectively. These are isomorphic

as polarized abelian surfaces if and only if there exists γ ∈ K, γ ̸= 0 such that

(1) c1 = γc2 and

(2) ζ1 = (γγ)−1ζ2

Further, this is only possible if a1,p = a2,p for each p|m.

Proof. A proof is outlined in [17] during the proof of his Theorem 5.2. □

Once one has established this it is convenient to restate it in terms of the action

of a certain group on the set of isomorphism classes of abelian surfaces with complex

multiplication by OK .

Definition 5.0.2. Let I be the group of pairs (a, α) where a is a fractional ideal of

OK and α is a totally positive element of K0 satisfying aa = (α). Let P be the subgroup

of pairs of the form ((x), xx) with x in K×. The quotient I/P is called the polarized

class group of OK , denoted C(OK).

With this definition in hand, we can produce other abelian surfaces with complex

multiplication by K given that we already have one. We make a few more definitions for

convenience:

Definition 5.0.3. Let K be a primitive quartic CM-field. Φ be a CM-type on K.

Let m be a positive integer.
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(1) We denote by A(K,Φ,m) the set of all isomorphism classes of polarized abelian

surfaces with complex multiplication by K with a polarization of type (1,m)

and of CM-type Φ. If the CM-type Φ is already specified we may denote this

set instead by A(K,m).

(2) Consider the set of all pairs of the form (c, ζ) with c a fractional ideal of K and

ζ ∈ K an imaginary element such that ϕ(ζ) has positive imaginary part for each

ϕ ∈ Φ and such that ζc−1c−1DiffK/Q−1 ∈ Rm(K). We place upon this set an

equivalence relation such that if (c1, ζ1) and (c2, ζ2) are two such pairs, we say

(c1, ζ1) ∼ (c2, ζ2) when there exists γ ∈ K such that the following two conditions

are satisfied:

(a) c1 = γc2 and

(b) ζ1 = γγζ2.

We denote by J (K,Φ,m) the set of equivalence classes of pairs under this equiv-

alence relation.

(3) For each pair (c, ζ) in J (K,Φ,m) there exists an ideal a =
∏

p|m ap in Rm(K)

such that (ζ) = cc
∏

p|m ap. In other words, we have a map J (K,Φ,m) →
Rm(K). Let a =

∏
p|m ap be in Rm(K). Denote by J (K,Φ,m)a the fiber of this

map over a.

By Theorem 5.0.1 we have that A(K,Φ,m) is in bijection with J (K,Φ,m). The

bijection is given by mapping a pair (c, ζ) to the abelian surface C2/Φ(c) with the polar-

ization E : Φ(c)× Φ(c) → Z given by E(Φ(x),Φ(y)) = TrKQ (ζ
−1xy) for all x, y ∈ c.

Theorem 5.0.4. Let K be a primitive quartic CM-field, Φ a CM-type on K and OK

the ring of integers of K. There is an action of C(OK) on J (K,Φ,m). If (a, α) ∈
C(OK), this action on (c, ζ) ∈ J (K,Φ,m) is given by

(a, α) · (c, ζ) = (ac, αζ).

Proof. We must prove that this action is well-defined. By assumption, since (c, ζ)

is in J (K,Φ,m), the abelian surface it represents carries a polarization of type (1,m)

for some integer m and there exists by Theorem 3.1.2 some a =
∏

p|m ap ∈ Rm(K) such

that

(ζ) = ccDiffK/Q
∏
p|m

ap.

To show that the pair (αc, ααζ) represents an abelian surface in A(K,Φ,m), we first note

that as α is real and totally positive, αζ is totally imaginary and the imaginary part of

ϕ((αζ)−1) has the same sign as ϕ(ζ−1) so that (αζ)−1 is also in KΦ(iR>0). Now we have

(αζ) = aa(ζ)
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= acacDK

∏
p|m

ap.

This implies that (ac, αζ) ∈ J (K,Φ,m). So the action is well-defined. □

We wish to study the properties of this action. Is the action transitive? If it’s not

transitive, how many orbits do we have? It is apparent from the proof that the action is

defined that we cannot possibly map one triple to another if the ideal
∏

P |m ap associated

with each polarization are different, in other words the action descends to an action on

the fibers J (K,Φ,m)fa so the action can only be transitive if there is only one such

collection fa ∈ Rm(K) giving rise to a polarization. And so in order to answer this we

need to find how many different collections (ap) are possible. We have not yet found a

good way to measure how many possibilities there are. However this does prove a nice

theorem to end on in some restricted conditions.

Theorem 5.0.5. Let K be a primitive quartic CM-field, Φ a CM-type on K and OK

the ring of integers of K. The action of C(OK) on J(K,Φ,m) is transitive if and only

if Rm(K) is a singleton.
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