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Abstract 

Managers and policy-makers are often confronted with the difficult task of allocating limited 

resources to conservation efforts and habitat management actions. Data to inform the allocation of 

resources can be collected in the field, but the high costs and logistical complications of field-based 

approaches often render large scale field data collection efforts impractical. Satellite remote sensing 

has become increasingly important to informing conservation decisions because it can serve as an 

efficient means to collect earth observations. For example, satellite-derived data have been used to 

track ecosystem degradation, monitor restoration efforts, map land cover, and predict biodiversity. 

Significant challenges still hinder the wider application of satellite remote sensing techniques in 

conservation planning. For instance, using satellite imagery often requires expertise in remote sensing 

techniques, access to expensive image processing software, and the capacity to manage large datasets. 

These challenges hinder the development of useful information (e.g., habitat assessments) and the 

dissemination of results (e.g., maps of habitat suitability) to land managers and policy-makers.  

We used publicly available Landsat data and generalized linear mixed models to link satellite-

derived metrics of marsh condition with the relative abundance of the federally endangered Yuma 

Ridgway’s rail (Rallus obsoletus yumanensis). We followed a rigorous model selection process to: 1) 

identify the most appropriate set of marsh condition variables that best predict rail abundance; 2) 

optimize the temporal scale at which we measured these predictors; 3) identify the optimal statistical 

distribution with which to model rail abundance; and 4) account for the spatio-temporal dynamics of a 

fragmented and stochastic ecosystem (freshwater emergent marshlands). Our model selection process 

allowed us to objectively select the most parsimonious model for inference. We applied the results of 

our rail abundance models to generate range-wide predictive maps of habitat suitability at a fine spatial 

grain (30 m). Such maps will help target management actions, both spatially and temporally, 

throughout the range of this endangered bird. Moreover, we developed a reliable way to detect wetland 

disturbances with Landsat imagery, which may help determine how frequently to re-apply 

management actions. 

We addressed many of the challenges facing the use of satellite remote sensing by working 

with the web-based (and freely available) Google Earth Engine to process large datasets of Landsat 

imagery and generate maps of habitat suitability. These maps of habitat suitability are shareable, 

interactive, and easy to update and will enhance our ability to prioritize management actions for 

recovery of an endangered bird. We focused on the Yuma Ridgway’s rail, but our methods could be 

applied to other species of conservation concern. 
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INTRODUCTION 

The Endangered Species Act (ESA) provides for the protection of listed species and the 

habitats upon which they depend. Yet, we often lack the necessary information to recover species so 

that they can be removed from ESA listing. Indeed, over 100 birds have been listed under the ESA 

since its inception, but only 8 have been sufficiently recovered to allow de-listing (U.S. Fish and 

Wildlife Service 2017). Managers and policy-makers are confronted with the difficult task of 

allocating limited resources to conservation actions, often in the face of considerable uncertainty 

(Bottrill et al. 2008). For example, how do we prioritize management actions spatially and temporally 

to maximize the benefit to listed species? Ideally, managers would have information on relative habitat 

suitability at potential restoration sites, the effects of proposed management/restoration actions, and a 

means of prioritizing areas for future management actions. Such data can be gathered through range-

wide population and habitat monitoring in the field, but field-based approaches are often impractical 

because of high costs and time requirements. 

Satellite remote sensing (i.e., satellite imagery and satellite-derived data) has become 

increasingly important to conservation planning because it can provide a cost-effective approach to 

collect data to guide conservation decisions at broad spatial scales. Satellite-derived data have been 

used to track ecosystem degradation, monitor restoration efforts, map land cover, and predict 

biodiversity (Turner et al. 2003, 2015, Salvia et al. 2012, Pettorelli et al. 2014, Cordell et al. 2017). 

Researchers have paired satellite-derived data with wildlife data to model relationships between 

vegetation condition and species diversity, occurrence, distribution, life-history traits, and migration 

patterns for a wide variety of organisms (Goodwin et al. 2008, Lahoz-Monfort et al. 2010, Pau et al. 

2012, Wang et al. 2016). Further, satellite-derived data have been used to document changes in 

vegetation dynamics associated with anthropogenic disturbances (Verbesselt et al. 2010b, DeVries et 

al. 2015b, Muro et al. 2016, Cohen et al. 2018). 

Satellite-derived data may be particularly useful for wetland conservation. Globally, wetland 

extent declined by 64–71% during the 20th century (Davidson 2014) and by 53% during the past 200 

years in the U.S. (Dahl 2011). Wetland loss is detrimental for wetland-dependent animals and a large 

number of wetland-dependent species are listed as threatened or endangered in the United States 

(Gibbs 2000). Furthermore, wetlands are highly dynamic, sensitive to anthropogenic disturbance, and 

frequently inaccessible. Hence, wetlands need frequent monitoring but doing so can present 

insurmountable challenges. 
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Despite several recent examples of satellite remote sensing techniques and associated data 

informing conservation, significant challenges still hinder the wider application of these techniques in 

conservation planning. For one, using satellite-derived data often requires expertise in remote sensing 

techniques, access to expensive (and complicated) analytical tools, and ability to manage large datasets 

(e.g., numerous satellite images). Further, practitioners (e.g., managers, policy-makers, etc.) must 

somehow select the appropriate tools and datasets for their desired application from an overwhelming 

number of possibilities (e.g., satellite sensors, datasets, and data manipulation processes). Finally, 

many efforts to use satellite-derived data to inform conservation produce static maps or environmental 

assessments that may quickly become antiquated. 

Our goal was to develop an efficient and effective method to document temporal and spatial 

variation in habitat suitability throughout the range of an endangered marsh bird using satellite-derived 

data. We aimed to develop a method that was both accessible to managers and easy to update on an 

annual basis, thereby facilitating habitat monitoring and conservation decision making. We addressed 

many of the traditional challenges of using satellite-derived data by using Google Earth Engine. 

Google Earth Engine is a cloud-based platform that facilitates large-scale analyses of geospatial data 

by providing a multi-petabyte catalog of publicly available data and leveraging Google’s 

computational infrastructure. The imagery is pre-processed and analysis-ready (i.e., radiometrically 

calibrated and geometrically corrected), easy to access, and simple to manage (Gorelick et al. 2017). 

Indeed, the user does not need to download and organize massive datasets, thereby alleviating a host 

of data handling and management challenges. Further, Google Earth Engine offers a suite of 

prepackaged analytical algorithms and allows users to build user-defined functions and algorithms 

(Gorelick et al. 2017). Finally, Google Earth Engine users can share image processing and data 

analysis scripts, making it a potentially powerful tool for conservation planners. 

We developed our methods for the endangered Yuma Ridgway’s rail (Rallus obsoletus 

yumanensis) because it typifies many of the challenges facing the recovery of species of conservation 

concern. This rare bird inhabits emergent wetlands throughout the Lower Colorado River Basin in 

California, Arizona, Nevada, and Mexico. As a wetland-dependent bird in a desert region, the Yuma 

Ridgway’s rail occupies an extremely limited geographic range with patches of habitat embedded 

within a landscape of inhospitable non-habitat. The rail’s dependence on isolated emergent wetland 

patches in an arid region is considered a primary hurdle to successful recovery (U.S. Fish and Wildlife 

Service 2010). As such, land management agencies spend considerable resources securing adequate 

water supplies for extant marshes and implementing habitat management to maintain a mosaic of 
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early-successional marsh conditions for this rare bird (U.S. Fish and Wildlife Service 2010). These 

habitat management actions (e.g., prescribed fire or mechanical disturbance) are expensive and 

logistically complicated to implement at a spatial scale that will aid recovery throughout the species’ 

range. A process to optimize habitat restoration efforts over space and time would help managers 

maximize benefits to Yuma Ridgway’s rails. 

We sought to use satellite-derived data to inform conservation actions to benefit recovery of 

this endangered bird. Specifically, we sought to:  

1) Use satellite-derived metrics to model abundance of Yuma Ridgway’s rails; 

2) Map habitat suitability throughout the U.S. range of the Yuma Ridgway’s rail; 

3) Determine whether satellite imagery can accurately detect changes in marsh conditions 

wrought by management actions. 

Satellite-derived data may serve as a viable surrogate to exhaustive field data collection to 

guide management decisions if we can use satellite-derived data to: 1) model heterogeneity in rail 

abundance, 2) predict habitat suitability at a regional scale, and 3) detect changes in marsh condition 

associated with disturbances. The Yuma Ridgway’s rail is just one of many endangered species whose 

habitat has been reduced or fragmented. Hence, successful protection and recovery of most 

endangered species will likely require efficient allocation of limited conservation funds to maintain 

quality habitat. The ability to link local species abundance with satellite-derived metrics of habitat 

condition and accurately detect habitat disturbances will help prioritize management actions at spatial 

scales that can potentially recover and de-list endangered species. 

METHODS 

Study system 

Our study focused on 6 locations throughout the U.S. range of the Yuma Ridgway’s rail, 

including 4 locations along the Lower Colorado River (i.e., Havasu National Wildlife Refuge, Cibola 

National Wildlife Refuge, Imperial National Wildlife Refuge, and Mittry Lake Wildlife Area); 1 

location along the Lower Gila River in Arizona; and 1 location along the Salton Sea, California (i.e., 

Sonny Bono Salton Sea National Wildlife Refuge; Fig. 1). These 6 study locations represent some of 

the largest populations of Yuma Ridgway’s rails in the U.S., yet each location is characterized by a 

unique set of environmental and climatic conditions (see Appendix A for more details about the 6 

study locations). 
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The Lower Colorado River typifies a large river substantially altered by humans. Annual 

spring floods once pulsed through the Colorado River watershed supplying water across wide 

floodplains in the lower basin and sustaining a diverse assemblage of wetland types and successional 

stages (Ohmart et al. 1988, Carriquiry and Sánchez 1999, Tiegs and Pohl 2005). The annual spring 

floods from snowmelt throughout the upper Colorado River basin created new oxbows and pocket 

marshes in the lower river basin, and flushed out decadent vegetation, cycled nutrients, and reset 

succession in extant wetlands (Ohmart et al. 1988, Christensen and Lettenmaier 2007, Conway et al. 

2010). However, river regulation, water control structures, and water diversion has eliminated this 

annual flood cycle. Indeed, the Colorado River has become one of the most regulated and over-

allocated rivers in the world during the past 150 years (Carriquiry and Sánchez 1999, Christensen and 

Lettenmaier 2007, Glenn et al. 2008). 

Without the annual spring floods, new emergent marshes are not created in the Lower 

Colorado River floodplain and extant marshes senesce (e.g., accumulate decadent vegetation and are 

encroached by woody vegetation; Ohmart et al. 1988, Glenn et al. 2008, Hinojosa-Huerta et al. 2008). 

Moreover, bank stabilization and stream channelization have cut off many of the areas within the 

lower floodplain that once supported emergent marsh vegetation (e.g., backwaters, meanders, and side 

channels) from the main river channel. Consequently, extant emergent wetlands are rare and restricted 

to the main channel or to backwaters managed for mitigation (Glenn et al. 2008, Hinojosa-Huerta et al. 

2008, U.S Fish and Wildlife Service 2010, Mexicano et al. 2013). 

The Lower Gila River faces many of the same challenges as the Lower Colorado River. Water 

from the Lower Gila River is largely diverted for municipal and agricultural use and consequently, the 

river is nearly dewatered (Huckleberry 1994, Cohen et al. 2001, Glenn et al. 2008). Wetland parcels 

are generally small and separated by large expanses of dry river bed or salt cedar (Tamarix spp.) 

thickets. Furthermore, extant wetlands along the Lower Gila River often depend solely on recycled 

agricultural water, ephemeral seeps, and mitigation efforts. As such, emergent wetland vegetation is 

dynamic along the Lower Gila River, expanding and contracting in response to water availability. 

The Sonny Bono (S.B.) Salton Sea National Wildlife Refuge is on the shores of the Salton 

Sea, California and includes 334 ha of wetlands in irrigated units (69 of the 334 ha are explicitly 

managed as Yuma Ridgway’s rail habitat). New emergent marshes have expanded recently along the 

shores of the Salton Sea (mainly off refuge) and these unmanaged wetlands are fed entirely by 

recycled water (e.g., agricultural run-off) from the New and Alamo Rivers (Barnum et al. 2017). 
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Recent surveys suggest the rails are expanding into these unmanaged marshes (U.S. Fish and Wildlife 

Service, unpublished data), but it is unknown if these wetlands: 1) provide quality habitat for rails, or 

2) how long the unmanaged marshes will persist given decreasing water levels at the Salton Sea 

(Barnum et al. 2017). 

Yuma Ridgway’s rail populations are negatively impacted by the loss of wetlands and, 

importantly, the senescence of extant wetlands (Conway et al. 2010). Rails in senescent marshes with 

dense mats of dead vegetation may face higher predation risk as they are forced to walk over the mats 

of dead vegetation. Moreover, dense layers of decadent vegetation may impede foraging by restricting 

access to the soil substrate, as well as hindering rail movement through the marsh (Conway et al. 

2010). 

Yuma Ridgway’s rails respond positively to habitat management actions that reset marsh 

succession. Abundance of Yuma Ridgway’s rails increased in years following wetland fires along the 

Lower Colorado River (Conway et al. 2010). A similar pattern was observed in the Colorado River 

Delta, where rail abundance was higher in recently burned wetlands compared to undisturbed wetlands 

(Gomez-Sapiens 2014). Management actions (e.g., prescribed fire and mechanical mowing) flush out 

decadent vegetation, return nutrients to the soil, and facilitate regrowth of emergent vegetation; such 

changes may improve foraging efficiency, reduce predation risk, and enhance the reproductive success 

of Yuma Ridgway’s rails. As such, managers have effective management tools, but they are unable to 

prioritize the application of those effective management actions in space and time on a scale that will 

lead to recovery of the species. 

Yuma Ridgway’s rail survey data 

Land management agencies conduct annual marsh bird surveys throughout the range of the 

Yuma Ridgway’s rail. Survey methods follow the North American standardized marsh bird survey 

protocol (Conway 2011) and the resulting data are housed on the Avian Knowledge Network. Surveys 

include a passive segment and a call-broadcast segment to increase marsh bird response rates (Conway 

and Gibbs 2011, Nadeau et al. 2013). All surveys broadcast Yuma Ridgway’s rail vocalizations and 

are conducted from March – July (as suggested by Conway 2011).  

We analyzed marsh bird survey data collected within the 6 locations during a 13-year period, 

from 2006-2018 (Table 1). Within each location, survey points were grouped into survey routes: 

spatially clustered survey points that were visited on a single day (Fig. 1). Survey routes were 

surveyed 1-3 times annually and we included all survey routes in our analyses that met 2 criteria: 1) >1 
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year of survey data were recorded (so that we could examine trend estimates); and 2) >3 Yuma 

Ridgway’s rail detections were recorded during the entire survey window (2006-2018). We analyzed 

data from 13,190 surveys conducted at 569 survey points associated with 58 survey routes (Table 1, 

Fig. 1). 

Table 1. We used marsh bird survey data from 6 locations: 4 along the Lower 

Colorado River, 1 along the Lower Gila River, and 1 at the Salton Sea. Survey points 

were grouped into survey routes (i.e., clusters of points that were visited on the same 

morning). NWR = National Wildlife Refuge. 

Study location 

Years 

surveyed 

Survey 

routes 

Survey 

points 

Lower Colorado River    

 Havasu NWR 2006-18 11 126 

 Cibola NWR 2008-17 7 72 

 Imperial NWR 2006-17 8 53 

 Mittry Lake Wildlife Area 2006-18 11 139 

Outside Lower Colorado River    

 Lower Gila River 2006-18 7 93 

 S.B. Salton Sea NWR 2006-18 14 86 



7 

 

 

 

 

Satellite data 

The temporal and spatial resolution make Landsat imagery well suited to the needs of our 

study (i.e., long-term habitat monitoring and detection of major vegetation disturbances). Landsat is a 

joint initiative between the U.S. Geological Survey and National Aeronautics and Space 

Administration that continuously collects global earth observations in the visible and near infra-red 

wavelengths at a spatial resolution of 30 m (Lang et al. 2015, U.S. Geological Survey 2016). Landsat 

satellites collect imagery every 8–16 days and the entire Landsat archive (several decades of imagery) 

was made public in 2009 (Pettorelli et al. 2014, U.S. Geological Survey 2016). Satellite sensors with 

Figure 1. We used marsh bird survey data from 6 locations. Survey points were grouped into survey 

routes (inset is an example of Mittry Lake Wildlife Area; colors represent unique routes). All points on a 

route were surveyed on the same day. NWR = National Wildlife Refuge and WA = Wildlife Area. 

S.B. Salton Sea NWR 

Havasu NWR 

Lower Gila River Mittry Lake WA 
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finer spatial resolution (e.g., QuickBird with spatial resolution <1 m) or finer temporal resolution (e.g., 

MODIS with daily imagery) exist, but no product combines the spatio-temporal resolution and 

accessibility of Landsat imagery (the entire Landsat archive is easily accessible via Google Earth 

Engine; Turner et al. 2015, Gorelick et al. 2017).  

Spectral indices 

Spectral indices are unique combinations of satellite bands designed to highlight specific earth 

features. The normalized difference vegetation index (NDVI) is arguably the most commonly used 

spectral index for ecological studies and applications (Kerr and Ostrovsky 2003, Pettorelli et al. 2011). 

However, many other spectral indices exist to monitor vegetation dynamics (Xue and Su 2017) and 

they can be loosely grouped into 2 categories: 1) those designed to measure vegetation greenness, and 

2) those designed to measure vegetation moisture content. Greenness indices are sensitive leaf 

pigments (chlorophyll), photosynthetic capacity, and vegetation density (Tucker 1979, DeVries et al. 

2015b, Schultz et al. 2016). Moisture indices correlate with vegetation moisture content, canopy 

structure, and productivity (Kauth and Thomas 1976, Gao 1996, Wilson and Sader 2002). We 

evaluated the ability of several spectral indices to: 1) predict rail abundance, and 2) detect major 

wetland disturbances that setback succession. 

Satellite imagery acquisition and processing 

We acquired and processed all Landsat imagery on the Google Earth Engine platform 

(Gorelick et al. 2017). We followed a 9-step workflow to process all imagery and derive monthly 

measurements of vegetation condition for all study sites. 
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The spatial scale at which animals respond to their environment is an important consideration 

for spatially explicit efforts to model habitat suitability (Johnson 1980, McGarigal et al. 2016). Recent 

Yuma Ridgway’s rail occupancy models identified 224 m as a useful scale for modeling the response 

of rails to habitat variables (Glisson et al. 2017). Moreover, 96.3% of all Yuma Ridgway’s rails 

detected during surveys were estimated to be ≤225 m of the survey point. Therefore, we measured all 

marsh covariates in a 224-m buffer around the survey points. That is, we spatially averaged all the 

pixels within a 224-m buffer of each survey point and used these point estimates to derive marsh 

condition covariates (see Appendix B for more details).  

1. Image collection

•Compile all available 
Landsat imagery during 
1999-2018 for the U.S 
range of the species

2. Clip imagery

•Clip all imagery to study 
locations

3. Cloud filter

•Apply a GEE algorithm 
to remove pixels 
contaminated with cloud 
cover

4. Monthly composites

•Average all images 
collected during each 
month to create a 
timeseries with 240 
monthly images

5. Compute spectral 
indices

•Compute a suite of 
spectral indices for each 
image in the timeseries

6. Vegetation masks

•Apply a year-specific 
vegetation mask to 
remove all pixels not 
classified as vegetation

7. Spatial averages

•Spatially average each 
index value for all pixels 
in a region of interest 
(i.e., marsh bird survey 
point or disturbance 
footprint)

8. Export data

•Export all data from 
GEE for analyses in R

9. Linear interpolation

•Linear interpolation to 
fill in any missing dates 
in the timeseries

Figure 2. Landsat imagery processing workflow that we used to generate timeseries of spectral indices. GEE = 

Google Earth Engine. See Appendix B for a detailed description of our image processing workflow. 
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Satellite-derived metrics of marsh condition 

Decadent vegetation, sedimentation, and woody vegetation increases over time within 

wetlands (in the absence of disturbance) and these successional changes negatively affect Yuma 

Ridgway’s rails (Conway et al. 2010). We therefore derived covariates from spectral indices that 

would correlate with marsh condition and seral stage (and thus rail habitat suitability). In defining 

covariates of marsh condition, we sought to identify: 1) metrics of marsh condition that best reflected 

rail habitat suitability (e.g., annual vegetation greenness); 2) the most appropriate temporal scale at 

which to measure marsh condition (e.g., are marsh condition metrics measured during the breeding 

season more informative than those measured over the whole year?); and 3) suitable spectral indices 

with which to measure important marsh condition metrics. Spectral indices vary in their sensitivity to 

noise (e.g., atmospheric interference), and thus in their ability to document and monitor vegetation 

condition (Huete 1988, Gao 1996, Xue and Su 2017, Healey et al. 2018). Hence, we considered 

several spectral indices that are widely used to measure vegetation greenness or vegetation moisture 

content, and a fused index designed to capture variation in both vegetation greenness and moisture 

(Table 2). Our goal was to identify the most appropriate marsh condition covariates with which to 

model heterogeneity in relative abundance of rails (Table 3). 
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Table 2. Spectral indices that we used to detect wetland disturbances. Formula refers to combination of bands 

and coefficients used to calculate each spectral index. Color of index label refers to: green = greenness index, 

blue = vegetation moisture index, and purple = fused index. See Appendix A for additional index descriptions. 

Index Name Formula Justification 

Key 

Citations 

NDVI 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NDVI is the most commonly 

used vegetation index for 

ecological studies. It 

correlates with vegetation 

greenness and primary 

productivity. 

(Tucker 

1979, 

Pettorelli et 

al. 2005) 

TCG 
Tasseled Cap 

Greenness 

−0.3344 ∗ 𝐵𝑙𝑢𝑒 +  −0.3544 ∗ 𝐺𝑟𝑒𝑒𝑛 +
 −0.4556 ∗ 𝑅𝑒𝑑 +  0.6966 ∗ 𝑁𝐼𝑅 −
0.0242 ∗ 𝑆𝑊𝐼𝑅 − 0.2630 ∗ 𝑆𝑊𝐼𝑅2  

Correlates with vegetation 

density and greenness 

(Kauth and 

Thomas 

1976) 

NDMI 

Normalized 

Difference 

Moisture Index 

NIR − 𝑆𝑊𝐼𝑅 

NIR + SWIR
 

Correlates with vegetation 

moisture 

(Gao 1996, 

Wilson and 

Sader 2002) 

TCW 
Tasseled Cap 

Wetness 

0.2626 ∗  𝐵lue  +  0.2141 ∗  𝐺reen  +
 0.0926 ∗  𝑅ed  +  0.0656 ∗  𝑁IR  −
0.7629 ∗  𝑆𝑊𝐼𝑅  − 0.5388 ∗  𝑆WIR2   

Correlates with vegetation 

moisture and soil moisture 

(Kauth and 

Thomas 

1976, Crist 

1985) 

NVMI 
NDVI fused 

with NDMI 
NDVI + NDMI 

Fused index designed to 

describe variation in 

vegetation moisture and 

greenness 

(Kennedy 

et al. 2018) 
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Table 3. We considered several metrics for each marsh condition covariate to help quantify spatio-temporal 

variation in Yuma Ridgway’s rail habitat condition. Predicted direction of rail response indicates the 

hypothesized relationship between the marsh condition covariate and rail abundance. The final 2 columns detail 

the different temporal scales at which we calculated marsh condition covariates and the indices used to measure 

each covariate. Index colors: green = vegetation greenness indices, blue = vegetation moisture indices, and 

purple = the fused index, NVMI. Proportion of vegetation (final row) does not have associated indices. See 

Appendix A for additional covariate descriptions. 

Marsh condition 

covariates Justification 

Predicted 

rail 

response 

Temporal scales 

considered Index 

Maximum 

vegetation 

greenness or 

moisture 

As decadent vegetation 

increases, maximum vegetation 

greenness and moisture should 

decrease 

+ 
Current full year 

Current breeding season 

Previous full year 

Previous breeding season 

NDVI 

TCG 

NDMI 

TCW 

NVMI 

Minimum 

vegetation 

greenness 

Non-native phragmites may 

inflate minimum greenness 

values 
- 

Current full year 

Current breeding season 

Previous full year 

Previous breeding season 

NDVI 

TCG 

NVMI 

Minimum 

vegetation 

moisture 

Phragmites and decadent 

vegetation mats may inflate 

minimum vegetation moisture 

values 

- 
Current full year 

Current breeding season 

Previous full year 

Previous breeding season 

NDMI 

TCG 

NVMI 

Rate of 

vegetation 

growth 

Decadent vegetation may 

suppress emergent vegetation 

growth rates and late seral stage 

marshes may show more gradual 

annual vegetation green-up than 

early successional emergent 

marshes 

+ 
Current full year 

Current breeding season 

Previous full year 

Previous breeding season 

NDVI 

TCG 

NDMI 

TCW 

NVMI 

Change in 

vegetation 

greenness or 

moisture 

Seasonality (the amount of 

annual change) may be 

negatively correlated with 

decadent vegetation 

+ 
Current full year 

Current breeding season 

Previous full year 

Previous breeding season 

NDVI 

TCG 

NDMI 

TCW 

NVMI 

Accumulated 

vegetation 

greenness or 

moisture 

Accumulated greenness and 

moisture should inform marsh 

condition through time and 

should be negatively correlated 

with wetland seral stage 

+ 
5-year accumulated sum 

3-year accumulated sum 

2-year accumulated sum 

 

NDVI 

TCG 

NDMI 

TCW 

NVMI 

Instantaneous 

vegetation 

greenness or 

moisture 

Greenness and moisture values 

at the time of surveys should 

reflect marsh condition at the 

time of surveys 

+ Concurrent with survey 

NDVI 

TCG 

NDMI 

TCW 

NVMI 

Proportion 

vegetated 

Proportion of vegetation within 

224-m buffer of survey points 

will reflect the amount of habitat 
+ Current full year NA 
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Statistical modeling 

Counts of animals are frequently used as indices of abundance (Krebs 2001). We used counts 

of Yuma Ridgway’s rails detected during each survey to address questions regarding the effects of 

marsh condition on relative rail abundance. We investigated these questions with generalized linear 

mixed models (GLMM). We used a 4-step model selection process to identify a final model because 

of the large number of potential predictor variables, the multiple plausible statistical distributions for 

modeling counts (e.g., Poisson, Negative Binomial), and the spatio-temporal structure of our observed 

data. The 4 steps included: 1) reduce the list of candidate predictor variables hypothesized a priori to 

create a final, reduced set of most useful covariates, and therefore a global fixed-effects model; 2) 

identify the most appropriate statistical distribution for modeling the count data; 3) identify an 

appropriate random-effects structure that captures the spatio-temporal dependence of counts; and 4) 

conduct fixed-effects model selection (conditional on #1-3 above) to identify a final, parsimonious 

GLMM for making inferences about effects of marsh condition on relative rail abundance (Fig. 3). We 

used Akaike’s Information Criterion (AIC) for all stages of model selection, which we describe in 

detail below. 

 

 

 

 

 

 

Covariate reduction to create a global fixed-effects model set 

Detection probability – Imperfect detection complicates efforts to understand how 

environmental condition affects species occurrence and abundance (Royle 2004, Sauer and Link 

2011). Ignoring imperfect detection when modeling abundance or occurrence data can bias estimates 

and cause incorrect inferences (Fiske and Chandler 2011). We controlled for variation in detection by 

including nuisance fixed-effects covariates in the count model. Such an approach allowed us to model 

changes in relative rail abundance as a function of marsh condition covariates while also accounting 

for imperfect detection during call-broadcast surveys (see Sauer and Link 2011, Barker et al. 2018). 

Covariate 
reduction to 
create global 
fixed-effects 

model set

Identify 
appropriate 
statistical 

distribution

Identify 
appropriate 

random effects 
structure

Final model 
selection to 
identify a 

parsimonious 
model for 
inference

Figure 3. A conceptual diagram of the 4-step model selection process that we followed in our analyses. 
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We included covariates known to affect rail detectability: time of day and date of survey (Conway and 

Gibbs 2011, Glisson et al. 2017). We included time of day as minutes after sunrise and survey date as 

the Julian day of the year. We used a fixed-effects negative binomial regression (with only detection 

covariates) to fit all possible combinations of detection covariates and used AIC to identify the most 

appropriate detection covariates to include in subsequent analyses. 

Marsh condition covariates – We considered 116 candidate marsh condition variables because 

we sought to identify: 1) the marsh condition metrics that best predicted relative rail abundance (e.g., 

maximum annual vegetation greenness vs maximum annual vegetation moisture), 2) the most suitable 

temporal scale at which to measure those metrics (e.g., current breeding season vs previous breeding 

season), and 3) the best spectral index with which to measure important marsh condition metrics. As 

such, we took 3 steps to reduce the list of candidate marsh condition covariates: 1) temporal-scale 

optimization, 2) category-specific scale-optimized covariate reduction, and 3) all category scale-

optimized variable reduction. We fit negative binomial regression models (including the detection 

covariates identified above) and a single marsh condition covariate (separately for each variable) and 

used AIC to rank models.  

1) Temporal scale optimization – We selected the most appropriate temporal scale separately 

for each spectral index. For example, we fit models (as described above) with maximum NDVI 

calculated at all 4 temporal scales and selected the most parsimonious model. We repeated this process 

with 6 marsh condition covariates (top 6 rows of Table 3). We derived instantaneous greenness and 

moisture and proportion of vegetation for the current year only, and thus did not need to select the 

optimal temporal scale for these variables. 

2) Category-specific scale-optimized covariate reduction – Once we selected the appropriate 

temporal scale for each covariate, we then assessed collinearity of all covariates within each category 

(i.e., vegetation greenness, vegetation moisture, and fused index). We dropped the weaker (larger AIC 

in univariate analyses) of any pair of covariates with a correlation coefficient >0.7. Collinearity 

increases the variance of parameter estimates but typically must be quite strong (≥0.8) to substantively 

affect precision of parameter estimation (Fox 2015).  

3) All category scale-optimized covariate reduction – Finally, we grouped all remaining 

covariates (regardless of category) and again dropped the weaker of any pair of covariates with a 

correlation coefficient >0.7. We included the reduced set of marsh condition covariates in all 
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subsequent model selection steps until the final stage, when we selected the most parsimonious fixed-

effects model structure. 

Identify appropriate statistical distribution 

Accounting for overdispersion – Count data are commonly modeled as arising from a Poisson 

process (Lynch et al. 2014), but ecological count data commonly violate the Poisson assumption of 

equi-dispersion (i.e., equal mean and variance) and are thus overdispersed (i.e., the observed variance 

is greater than the mean; Rhodes 2015). Overdispersion can be caused by ecological processes, such as 

clustering of individuals in high-quality habitat, or sampling processes such as imperfect detection 

(Martin et al. 2005, Lindén and Mäntyniemi 2011). When the equi-dispersion assumption of the 

Poisson distribution is violated, the negative binomial distribution is commonly used to model count 

data (Hilbe 2011, Lindén and Mäntyniemi 2011, Irwin et al. 2013). The negative binomial distribution 

uses one or more additional parameters to describe the mean-variance relationship (Lindén and 

Mäntyniemi 2011), where the variance is often modeled as a quadratic function of the mean (𝜇), but 

alternative parameterizations are available (Hilbe 2011, Lindén and Mäntyniemi 2011). To 

accommodate the possibility of overdispersion in rail counts we considered 3 candidate distributions 

that are commonly used to model count data:  

1) Poisson, where 𝑉𝑎𝑟 =  𝜇 = 𝜆, 

2) Negative Binomial1 (NB1), where 𝑉𝑎𝑟 =  𝜇(1 + 𝜃), and 

3) Negative Binomial2 (NB2), where 𝑉𝑎𝑟 = 𝜇(1 + 𝜇/𝜃). 

Thus, the parameter 𝜃 governs the magnitude of overdispersion, where the NB1 and NB2 

distributions assume the variance increased linearly and quadratically with the mean, respectively. 

Even with flexible distributions like the NB1 and NB2, the base models described above 

assume the variance-mean relationship, and thus the amount and form of overdispersion, is 

unchanging in space and time. However, the variance-mean relationship may not be static in space and 

time. In such a situation, the above distributions may not adequately capture the overdispersion present 

in the data. We can model the mean-variance relationship beyond what is specified by the distributions 

above by using generalize regression to directly model heterogeneity in 𝜃 (Brooks et al. 2017). For 

example, we hypothesized that rail vocalization behavior and likelihood of vocalizing in response to 

the call-broadcast would change across the breeding season and be either: 1) more erratic at the end of 

the breeding season compared to earlier (i.e., a linear effect), or 2) more erratic during both the early 

and late stages of the breeding season but less so during the peak of breeding activities (i.e., a 
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quadratic effect). Whereas the survey date is already included in the model as a nuisance detection 

covariate affecting mean counts, both overdispersion models above (i.e., NB1 and NB2) would imply 

the magnitude of the variance changes consistently with the mean. For example, if average detection 

probability decreased later in the breeding season due to less frequent vocalization, the variance would 

decrease as well. In contrast, here we are suggesting that even as mean counts change over the 

breeding season due to changes in calling frequency, we expect the variance of those counts to remain 

high or possibly increase because the calling behavior of individual birds may also become more 

variable (either late in the season or early and late). Hence, we considered statistical models where 𝜃 

was modeled directly as a function of survey date using log-linear regression, and tested whether a 

linear, quadratic, or no effect was most supported: 

log(𝜃𝑖,𝑗,𝑠,𝑡) = 𝛾0 + 𝛾1 × 𝐷𝑂𝑌𝑖,𝑗,𝑠,𝑡 

𝑙𝑜𝑔(𝜃𝑖,𝑗,𝑠,𝑡) = 𝛾0 + 𝛾1 × 𝐷𝑂𝑌𝑖,𝑗,𝑠,𝑡 + 𝛾2 × 𝐷𝑂𝑌𝑖,𝑗,𝑠,𝑡
2 , 

where 𝛾’s are regression coefficients, DOY is the Julian day, i is point, j is route, s is survey, and t is 

year. 

Accounting for zero-inflation – Counts of animals (especially rare species) often contain more 

zeros than would be expected under the specified statistical model (Martin et al. 2005). If the 

prevalence of zero observations is high, researchers can use zero-inflated count models to more 

accurately model the frequency of zeros in the data (Warton 2005). Zero-inflated models are mixture 

models where observed data are generated from two distinct distributions: a point mass at 0 that 

generates so-called structural zeros (i.e., counts that cannot be non-zero), and count distributions with 

a mean > 0 (i.e., counts that can include sampling zeros but can also include non-zero integers; Martin 

et al. 2005, Rhodes 2015). Zero-inflated models thus allow researchers to account for excess zeros in 

the data and also make inferences about the processes that produce both structural zeros and non-zero 

counts using generalized regression (Martin et al. 2005, Rhodes 2015). For example, counts of rails 

may depend on habitat suitability- unsuitable sites result in structural zeros, whereas counts at sampled 

sites that are suitable may be ≥0 and affected by different sets of processes (e.g., greenness or 

senescence of a marsh, etc.). Therefore, we can model both the probability a site is suitable, and then 

given it is suitable, model the relative number of rails as a function of covariates. 

Just as with the dispersion parameter in a negative binomial distribution, we can model the 

zero-inflation probability as a function of covariates to make inferences about the processes underlying 
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the observed rail counts. In our study system, the proportion of routes that fall in suitable habitat varies 

among the 6 locations; some locations have proportionally more routes in habitat that is ephemeral and 

thus may be frequently unsuitable (e.g., the Lower Gila River). Thus, we expect the background 

prevalence of rails in such locations (i.e., the fraction of the study location that is occupied) to be 

lower, resulting in a higher proportion of structural zeros in the data observed at those sites. We also 

expected the proportion of routes passing through suitable habitat to vary annually because of the 

ephemerality of some wetlands, especially, along the Lower Gila River and Salton Sea where water 

levels are more dynamic than along the Lower Colorado River. As such, we tested 3 candidate zero-

inflation models for each of our 7 candidate distributions described above: constant zero-inflation 

probability, zero-inflation as a function of study location, and zero-inflation as a function of study 

location with a location-specific random intercept for year. Specifically, we compared the following 3 

zero-inflation models: 

1) constant zero-inflation probability across all locations 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑍𝐼)) = 𝜙0, 

2) zero-inflation probability varies by location 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑍𝐼)) = 𝜙0 + 𝜙location𝑗
, 

3) zero-inflation varies by location and includes a location-specific random intercept 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑍𝐼)) = 𝜙0 + 𝜙location𝑗
+ 𝑟j,t, 

where 𝜙’s are regression coefficients, 𝑝(𝑍𝐼) is the zero-inflation probability (i.e., the probability a 0 

was a structural zero that arose from a point mass on zero), r is the location-specific annual intercept, j 

is study location, and t is year. 

In all, we tested 28 candidate models to find the most appropriate statistical distribution for the 

data (Table 4; see Table A.18 for a complete list). The global model structure for both the fixed and 

random effects was used for determining the most appropriate statistical distribution. 
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Table 4. Summary of the candidate models we evaluated to identify the most appropriate 

statistical distribution with which to model rail counts. We considered each combination of 

dispersion parameterizations and zero-inflation parameterizations. This resulted in 12 possible 

NB1 models, 12 possible NB2 models, and 4 possible Poisson models. NB = negative binomial. 

Distribution 

Dispersion  Zero-inflation 

Date Date2  Constant Location 

Location-specific annual 

intercept 

NB1 x x  x x x 

NB2 x x  x x x 

Poisson NA NA  x x x 

 

Identify appropriate random effects structure 

After specifying the optimal statistical distribution with which to model the rail counts, we 

selected a random effects structure to best account for the spatio-temporal structure of the data. The 

rail counts were spatially structured with survey points grouped into routes and routes grouped within 

the 6 study locations and we sought to address 4 sources of variation in rail counts via random effects: 

1) route-level (spatial) variation, 2) broad-scale annual variation (i.e., a year effect shared by all rail 

populations), 3) local, route-specific annual variation, and 4) route-specific random time trend slopes 

(over the study duration). In other words, we considered random intercepts for routes and years, an 

annual random intercept at the route level, and a random slope for time trends by route (Fig. 4). We fit 

the global model (i.e., all fixed-effects and the optimal statistical distribution described above) with 7 

plausible combinations of the random effects and used AIC to select the best random effects structure 

(Table A.19). 
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Final model selection 

Once we identified the optimal distribution and random effects structure, we compared 27 

models with unique combinations of marsh condition covariates and used AIC to identify the most 

parsimonious model (Table A.20). We visualized the relationship between expected rail counts and the 

suite of fixed-effect covariates in the final model by generating partial-effect plots. We used the final 

model to generate predictions of expected rail counts under a range of values for each predictor while 

holding all other predictors at their mean observed value. For example, we investigated the 

relationship between rail counts and accumulated vegetation moisture by predicting rail counts under 

the full range of observed accumulated vegetation moisture values while holding all other predictors at 

their means. Finally, we generated confidence intervals around all estimated coefficients using 

nonparametric bootstrap sampling. We iteratively sampled our data 1000 times and refit our top model 

to the resampled data. We extracted the model coefficients at each iteration and used these to estimate 

Figure 4. Hypothetical depiction of multiple sources of variance in Yuma Ridgway's 

rail count data. Line types represent 3 hypothetical routes. The rail counts at each route 

show 1) spatial variation, 2) route-specific annual variation, 3) broad-scale annual 

variation shared among sites (partially masked by route-specific annual variation), and 

4) route-specific temporal trends (slopes).  
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95% confidence intervals. All GLMM models were fit in R using the glmmTMB package (Brooks et 

al. 2017). 

Predictive maps of habitat suitability 

We used coefficients for marsh condition covariates in the top model to generate predictive 

maps of relative habitat suitability (in terms of predicted relative rail abundance) throughout the range 

of the Yuma Ridgway’s rail (Fig.5). We generated raster layers in Google Earth Engine of all the top 

marsh condition covariates and applied their associated coefficients to create maps of predicted 

relative abundance of Yuma Ridgway’s rails. We used predicted relative rail abundance as a measure 

of relative habitat suitability. We used the National Wetland Inventory emergent wetland layer 

(clipped to the U.S. range of the Yuma Ridgway’s rail) to constrain predictions. That is, we clipped all 

marsh condition rasters to the emergent wetland layer to limit predictions of habitat suitability to 

emergent wetland areas. Finally, we held all nuisance detectability covariates at their mean.   

 

Wetland disturbance detection 

Reference disturbance data 

Some land management agencies use prescribed fire and mechanical means to periodically 

reset succession of marsh vegetation, reduce decadent vegetation and remove woody vegetation in 

marshes (Conway et al. 2010, U.S Fish and Wildlife Service 2010). We compiled a list of the dates 

Figure 5. A conceptual diagram of our complete modeling process. 
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and locations of prescribed fires (n=24), mechanical clearing of marsh vegetation (n=1), and natural 

fires >10 ha (n=3) at Imperial National Wildlife Refuge, S.B. Salton Sea National Wildlife Refuge, 

and Mittry Lake Wildlife Area. We used these 28 marsh “disturbances” to document how well Landsat 

imagery can detect and document such disturbances. Marsh disturbance data from other areas within 

the rail’s range were poorly recorded and were often missing important reference information (i.e., 

date and specific location of marsh disturbance events). 

For each disturbance, we defined a “disturbance footprint.” Management actions were always 

associated with a managed marsh parcel, and thus we delineated the disturbance footprint of 

management actions as the perimeter of the associated marsh parcel. Some marsh parcels were 

associated with multiple management actions. We obtained fire perimeter shapefiles for the 3 natural 

fires from the Bureau of Land Management. 

Landsat timeseries 

Landsat imagery has been used to detect and characterize disturbances in a wide range of plant 

communities, including forested ecosystems (Wilson and Sader 2002, DeVries et al. 2015b) and 

grasslands (Hutchinson et al. 2015). The detection of disturbances in wetlands is complicated because 

wetlands tend to be highly dynamic systems with a mixture of vegetation, saturated soils, and 

fluctuating water levels. These wetland characteristics can cause substantial variation in the spectral 

characteristics of Landsat imagery (Gallant 2015). Such variation has complicated traditional change 

detection approaches (e.g., image differencing, comparison of classified images through time) because 

any one image may show significant difference based solely on the dynamics of the wetland. 

However, since the opening of the Landsat image archive to the public in 2009, change detection 

techniques using dense timeseries (e.g., monthly images) have gained popularity (Verbesselt et al. 

2010b, Forkel et al. 2013, Cohen et al. 2018). Temporally dense timeseries allow one to account for 

variation in a highly dynamic system (e.g., wetlands), thereby facilitating the detection of disturbances 

(Wei et al. 2017, Cohen et al. 2018). 

We extracted monthly spectral index values from 1999-2018 for each disturbance footprint to 

create 20-year timeseries with 240 monthly spectral index values to ensure we had imagery 

representing all reference disturbances (the earliest disturbance occurred February 2001). We followed 

explicit steps for acquiring and processing the Landsat imagery (Appendix B). 
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Spectral indices for wetland disturbance detection 

Efforts to detect substantive changes in vegetation (i.e. disturbances) via spectral indices often 

rely on a single band or spectral index. For example, researchers have used NDVI to detect changes in 

forests (Verbesselt et al. 2010a), coastal mangroves (Alatorre et al. 2016), and grasslands (Hutchinson 

et al. 2015). The normalized difference moisture index (NDMI) is an index of vegetation moisture 

content (Gao 1996) and has also been widely used to detect disturbances in vegetated systems (Wilson 

and Sader 2002, Hislop et al. 2018). The Normalized Burn Ratio (NBR) was developed to highlight 

changes in soil moisture and vegetation condition after fires and has been used in a diversity of 

systems to detect fire-related disturbances (Key and Benson 2005, Fornacca et al. 2018). Finally, 

disturbance detection in wetland systems has relied on a range of indices, including NDVI, NDMI, and 

Tasseled Cap Wetness (Fickas et al. 2016, Wei et al. 2017).  

The ability to detect disturbances with a Landsat timeseries can be hindered by “noise” in the 

imagery (e.g., atmospheric interference, vegetation phenology). Single indices vary in their sensitivity 

to these sources of noise (Kennedy et al. 2010, Cohen et al. 2018) and, hence, researchers have 

recently relied on multiple indices (Cohen et al. 2017, 2018, Healey et al. 2018, Hislop et al. 2018) and 

fused indices (i.e., multiple indices merged to capture more spectral variation; Kennedy et al. 2018) to 

detect disturbances with greater sensitivity and accuracy. To this end, we evaluated the ability of 14 

spectral indices to detect changes in wetland vegetation associated with disturbance events (i.e., 

management actions and natural fires; Table 5). 

Table 5. Spectral indices used to detect wetland disturbances in our study. Formula refers to combination of 

bands and coefficients used to calculate each spectral index. 

Index Name Formula Justification 
Key 

citations 

NDVI 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NDVI is the most 

commonly used 

vegetation index for 

ecological studies. It 

correlates with 

vegetation greenness. 

(Tucker 

1979, 

Pettorelli et 

al. 2005) 

EVI 

Enhanced 

Vegetation 

Index 

2.5 ∗
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑 − 7.5 ∗ 𝐵𝑙𝑢𝑒 + 𝐿
 

Corrects NDVI for both 

soil and atmospheric 

effects, more sensitive to 

changes in areas of high 

biomass 

(Huete et 

al. 1994, 

1997, 

2002) 

SAVI 

Soil Adjusted 

Vegetation 

Index 

(1 + 𝐿) ∗
NIR − Red 

NIR + Red + L
 

Improves sensitivity of 

NDVI by including a soil 

adjustment term, L. 

(Huete 

1988) 
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NDMI 

Normalized 

Difference 

Moisture Index 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Correlates with plant 

water content, widely 

used to detect 

disturbances in vegetated 

systems 

(Gao 1996, 

Wilson and 

Sader 

2002) 

NDWBI 

Normalized 

Difference 

Water Body 

Index 

𝐺𝑟𝑒𝑒𝑛  −  𝑁𝐼𝑅 

𝐺𝑟𝑒𝑒𝑛  + 𝑁𝐼𝑅
 

Highlights water. 

Commonly used to 

delineate open water 

features 

(McFeeters 

1996) 

NDSI 

Normalized 

Difference Soil 

Index 

𝑆𝑊𝐼𝑅2 − 𝐺𝑟𝑒𝑒𝑛

𝑆𝑊𝐼𝑅2 + 𝐺𝑟𝑒𝑒𝑛
 

Correlates with plant 

water content, sensitive 

to drought. Also used to 

highlight changes in soil 

composition. 

(Ji et al. 

2009, 

Chakrabort

y and 

Sehgal 

2010, Deng 

et al. 2015) 

NBR 
Normalized 

Burn Ratio 

𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅2 + 𝑁𝐼𝑅
 

 

Sensitive to changes to 

vegetation and soil 

moisture induced by fire 

(Key and 

Benson 

2005) 

TCW 
Tasseled Cap 

Wetness 

0.2626 ∗  𝐵lue  +  0.2141 ∗  𝐺reen  +
 0.0926 ∗  𝑅ed  +  0.0656 ∗  𝑁IR  − 0.7629 ∗

 𝑆𝑊𝐼𝑅  − 0.5388 ∗  𝑆WIR2   

Correlates with 

vegetation moisture 

content and soil moisture 

(Kauth and 

Thomas 

1976, Crist 

1985) 

TCG 
Tasseled Cap 

Greenness 

−0.3344 ∗ 𝐵𝑙𝑢𝑒 +  −0.3544 ∗ 𝐺𝑟𝑒𝑒𝑛 +
 −0.4556 ∗ 𝑅𝑒𝑑 +  0.6966 ∗ 𝑁𝐼𝑅 − 0.0242 ∗

𝑆𝑊𝐼𝑅 − 0.2630 ∗ 𝑆𝑊𝐼𝑅2  

Correlates with 

vegetation density and 

greenness 

(Kauth and 

Thomas 

1976) 

TCB 
Tasseled Cap 

Brightness 

0.3561 ∗  𝐵𝑙𝑢𝑒 +  0.3972 ∗  𝐺𝑟𝑒𝑒𝑛 +
  0.3904 ∗  𝑅𝑒𝑑 +  0.6966 ∗  𝑁𝐼𝑅 +

 0.2286 ∗  𝑆𝑊𝐼𝑅 +  0.1596 ∗  𝑆𝑊𝐼𝑅2  

Correlates with soil 

moisture and brightness 

(Kauth and 

Thomas 

1976) 

TC_Fused 

TC 

combination 

band 

TCG + TCB + TCW 

Combination index 

attempting to describe 

most of the spectral 

variation of an image 

(Cohen et 

al. 2018) 

NDVINBR 
NDVI fused 

with NBR 
NDVI + NBR 

Combination index 

designed to leverage the 

sensitivity of NIR to 

changes in vegetation 

condition 

(Kennedy 

et al. 2018) 

NVWI 
NDVI fused 

with NDMI 
NDVI + NDMI 

Combination aimed at 

describing variation in 

vegetation moisture 

content and greenness 

(Kennedy 

et al. 2018) 

NVWBI 
NDVI fused 

with NDWBI 
NDVI + NDWBI 

Index designed to 

capture vegetation 

greenness and open 

water presence 

(Kennedy 

et al. 2018) 
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Disturbance detection algorithm 

Changes in vegetation dynamics can be described on 3 scales: 1) interannual changes in 

seasonal phenology (e.g., those due to subtle changes in annual rainfall and climate fluctuations), 2) 

gradual temporal trends (e.g., declines in greenness as marshes senesce), and 3) abrupt change (e.g., 

disturbances). To accurately detect abrupt changes associated with disturbance in a timeseries, one 

must account for these first two sources of variation. We used the Breaks For Additive Seasonal and 

Trend (BFAST) algorithm to detect changes in marsh condition associated with wetland disturbances 

(Verbesselt et al. 2010b, a). BFAST decomposes a timeseries into 3 components: 1) a seasonal 

(harmonic) model, 2) a trend model, and 3) a remainder (residual) component (Verbesselt et al. 

2010a). After decomposition, the algorithm uses an ordinary least-squares moving sum approach to 

test for significant “breaks” (i.e., changes in slope and intercept) in the trend component of the model. 

If breaks in the trend component are detected, the algorithm repeatedly decomposes the timeseries and 

estimates the location and size of the breaks until agreement on the location and size of breaks 

between iterations is achieved. Hence, the algorithm provides a robust approach to objectively and 

systematically estimate the timing and size of changes (both abrupt and gradual) in a timeseries. The 

general form of the timeseries model is: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡  (t  = 1, … , n), 

where 𝑌𝑡 is the observed data at time t, 𝑇𝑡 is the trend component at time t, 𝑆𝑡 is the seasonal 

component at time t, and 𝑒𝑡 is the remaining variation beyond that which is described by the trend and 

seasonal components.  

The trend component is built of 𝑚 + 1 linear segments where 𝑚 is the number of breaks. 

Each segment is described with a specific intercept, 𝛼𝑖, and slope, 𝛽𝑖, where 𝑖 = 1, … , 𝑚. The 

magnitude and direction of abrupt changes in the trend component can be calculated from the 

segment-specific intercepts and slopes. The seasonal component is described by a first order harmonic 

model that estimates the phase (i.e., timing of cycles) and amplitude (i.e., size of change) of seasonal 

phenology (Fig. 6). 
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The BFAST algorithm has been used to detect disturbance in temperate forests (Verbesselt et 

al. 2010a, Schultz et al. 2016), tropical forests (DeVries et al. 2015b) and arid environments (Watts 

and Laffan 2014, Hutchinson et al. 2015). However, this is one of the first studies to assess whether 

BFAST can be used to detect vegetation disturbances in wetland systems (also see Wei et al. 2017). 

Detecting wetland disturbance 

We applied the BFAST algorithm to 308 timeseries (22 disturbance footprints × 14 candidate 

indices) to evaluate our ability to detect changes in wetland condition associated with management 

actions. The BFAST algorithm includes 95% confidence intervals around breaks in the trend 

component and wide confidence intervals suggest considerable uncertainty around the detected break. 

We considered confidence intervals >5 months as too large to be certain that the corresponding 

reference disturbance caused the break. We therefore ignored all estimated breaks associated with 

confidence intervals >5 months. We assessed the accuracy of each index-specific BFAST algorithm by 

comparing the timing of the estimated breaks (those with confidence intervals ≤ 5 months) with 

Figure 6. Example of BFAST decomposition of an NDVI timeseries. Top panel represents the observed 

timeseries, the second panel represents the fitted seasonal model, and the bottom panel shows the fitted 

trend line. Dotted red lines represent estimated breaks (i.e., changes) in the slope and intercept of the 

trend line. Changes in slope and intercept between trend segments can be used to estimate the magnitude 

of abrupt changes. 
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reference disturbances (e.g., prescribed fires) in the marsh parcels. We considered a break to be 

accurate if the 95% confidence intervals overlapped the true date of an actual disturbance. 

We ranked indices by omission error rates (i.e., failure to detect known disturbances) instead 

of commission error rates (i.e., detected breaks that did not correspond with known disturbances) 

because we did not always have complete disturbance histories for each marsh parcel. Indeed, 

commission errors may correspond with subtle changes in marsh phenology brought on by climatic 

conditions or small-scale management actions that were not reported. 

For each break that corresponded with a known disturbance we extracted the magnitude of 

change (separately for each index). We calculated the magnitude of change by differencing the trend 

segment before and after each break. We used the magnitude of change for each index to help 

characterize the change in marsh condition wrought by management actions. 

Range-wide approach 

We considered indices with omission rates <0.5 (i.e., those indices that detected more than 

50% of the reference disturbances) for a range-wide disturbance detection exercise. We applied the 

BFAST algorithm to Landsat timeseries extracted for all marsh bird survey points to document 

significant changes in marsh condition. We used a suite of indices to increase the likelihood of 

detecting significant changes in marsh condition and to provide a mechanism to filter out spuriously 

detected changes or disturbances. We filtered all estimated breaks with a two-step process:  

1) We removed all breaks with confidence intervals > 5 months.  

2) We applied a magnitude threshold to filter out spurious breaks. We calculated the smallest 

magnitude of change associated with a reference disturbance for each index and used this value as a 

filtering threshold. That is, we ignored all breaks with a change magnitude smaller than the minimum 

change associated with the reference disturbances. 

Finally, we merged BFAST outputs from all indices to create a single disturbance history for 

each study location. Index-specific BFAST algorithms often estimated breaks at similar, but not equal, 

times and we considered all breaks detected within 5 months of each other to represent the same 

disturbance or change in marsh condition. As such, we created 20-year disturbance histories for each 

marsh bird survey point. 
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RESULTS 

Modeling Yuma Ridgway’s rail relative abundance 

Average Yuma Ridgway’s rail counts reflected the rarity of this endangered species. Across 

all years and surveys, the average number of rails detected during a survey at a given point ranged 

from 0.20 rails at the Lower Gila River to 1.92 rails at the S.B. Salton Sea National Wildlife Refuge 

(Figs. 7 and 8). Moreover, the proportion of observed zero counts during all surveys ranged from 0.87 

at the Lower Gila River to 0.40 at the S.B. Salton Sea National Wildlife Refuge (Fig. 9). 

  

Figure 7. Mean Yuma Ridgway's rail counts for all surveys conducted 

within each location during 2006-2018. NWR = National Wildlife 

Refuge and WA = Wildlife Area. 
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Figure 8. Temporal trends of mean Yuma Ridgway's rail counts for each of the 6 study 

locations. Means were calculated for all points and surveys within a given region. 

NWR = National Wildlife Refuge and WA = Wildlife Area. 

Figure 9. Distribution of Yuma Ridgway's rail counts at each of 6 locations for all surveys 

conducted from 2006-2018. NWR = National Wildlife Refuge and WA = Wildlife Area. 
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Statistical modeling 

Covariate reduction to create a global fixed-effects model set 

Yuma Ridgway’s rail counts were influenced by both the time and date of surveys and the top 

model included linear and quadratic effects for date of survey, time of survey, as well as the 2-way 

interactions (Table A.1). In addition to the detectability covariates, we selected 12 candidate marsh 

condition covariates through the multi-step covariate reduction process (Table A.17, see Appendix A 

for extended modeling results). 

Identify appropriate statistical distribution 

The fully parameterized NB1 (i.e., a zero-inflated negative binomial distribution with a linear 

mean-variance relationship) was the most supported distribution in our model selection exercises 

(Table 6). Zero-inflation probability showed a strong location (spatial) effect and location-specific 

annual variation. The Lower Gila River had the highest zero-inflation probability, whereas Havasu 

National Wildlife Refuge, Mittry Lake Wildlife Area and S.B. Salton Sea National Wildlife Refuge 

had the lowest zero-inflation probability though this varied annually (Table 7, Fig. A.2). Furthermore, 

the dispersion parameter increased quadratically with survey date at all locations, and thus the data 

became more overdispersed as the breeding season progressed (Fig. A.3). 

Table 6. A truncated list of model structures considered for our analyses. An x indicates the inclusion of an 

attribute in the structure of the final model. The top model included zero-inflation (with fixed and random effects 

in the zero-inflation model), a quadratic relationship between the dispersion parameter and survey date, and the 

full set of random effects considered in the expected count component of the model. Only the top 2 models were 

competitive, but more models are included for illustrative purposes. Dist refers to the underlying distribution. 

NB1 = negative binomial, where 𝑉𝑎𝑟 =  𝜇(1 + 𝜃), NB2 = negative binomial where 𝑉𝑎𝑟 = 𝜇(1 + 𝜇/𝜃), Pois = 

Poisson where 𝑉𝑎𝑟 =  𝜇, and 𝜃 is the dispersion parameter. 

  Dispersion  Zero-inflation  Random effects    

Dist  Date Date2  Location 

Location 

annual 

intercept  

Route 

intercept 

Route- 

annual 

intercept 

Broad-

scale 

annual 

intercept 

Route- 

time 

slope  

Delta 

AIC df 

NB1  x x  x x  x x x x  0 42 

NB1  x   x x  x x x x  1.17 41 

NB1     x x  x x x x  12.85 40 

NB1  x x  x x  x x x   12.91 41 

NB2  x x  x x  x x x x  144.04 42 

Pois     x x  x x x x  321.20 40 

 

 



30 

 

 

 

Table 7. Estimated zero-inflation probability for each of 6 

locations (estimates do not include annual variation). NWR 

= National Wildlife Refuge. 

 Location 

Zero-inflation 

probability 

Lower Colorado River  

 

Havasu NWR 0.05 

Cibola NWR 0.20 

Imperial NWR 0.41 

Mittry Lake Wildlife Area 0.08 

Outside Lower Colorado River  

 Lower Gila River 0.48 

 S.B. Salton Sea NWR 0.06 

 

Identify appropriate random effects structure 

The random effects structure included in our top model reflected spatio-temporal variation in 

rail abundance and detection relationships, and contained 1) a random spatial intercept by route; 2) a 

random intercept for year, indicating population-wide fluctuations in rail numbers across years; 3) a 

random intercept for route-specific annual effects, suggesting that counts varied annually with local-

scale variation at the route-level (in addition to broad-scale population fluctuations); and 4) a random 

temporal trend for each route, suggesting that temporal trends in expected rail counts varied among 

routes (Table 6, Fig. 10).  

 

 

Figure 10. Temporal trends in expected Yuma Ridgway's rail counts. Blue dashed line 

represents the population-level average temporal trend in expected counts, and light grey 

lines represent route specific temporal trends. 
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Model performance 

Model predictions to the observed counts produced good fit across all sites and years (Fig. 

11). The model under-predicted 0’s and over-predicted 1’s at all study locations except the Lower Gila 

River, but the differences were subtle at most sites (Fig. 11). 

Global root mean squared error (RMSE) was 1.18, indicating that the top model over or under-

predicted the number of rails by an average of 1.18 individuals. However, prediction accuracy varied 

across locations and RMSE was lowest at Lower Gila River and highest at the S.B. Salton Sea 

National Wildlife Refuge (Table 8). 

Table 8. Root Mean Squared Error of the top model calculated for each study location. NWR = National 

Wildlife Area and WA = Wildlife Area. 

Havasu 

NWR 

Cibola 

NWR 

Imperial 

NWR 

Mittry Lake 

WA 

Lower Gila 

River 

S.B. Salton 

Sea NWR 

1.05 0.77 0.88 1.33 0.58 1.86 

 

Final marsh condition covariates 

Relative abundance of Yuma Ridgway’s rails (as measured by expected counts) was 

associated with vegetation moisture covariates; 3 of the 6 final marsh condition covariates reflected 

Figure 11. Location-specific predicted and observed Yuma Ridgway's rail counts for all years. 

NWR= National Wildlife Area and WA = Wildlife Area. 
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measures of vegetation moisture content. Relative abundance of Yuma Ridgway’s rails was also 

associated with measures of vegetation greenness, but those relationships were weaker. Accumulated 

greenness (5-year) was the only measure of vegetation greenness to appear in the top model and it 

showed a weaker correlation than the other 5 marsh condition covariates (Table 9). Finally, relative 

rail abundance was influenced by marsh condition covariates measured at multiple temporal scales, 

including the current breeding season, the prior year, as well as a 5-year accumulated marsh condition 

metric. 

Quadratic relationships best described associations between relative rail abundance and the 

amount of change in vegetation moisture content during the current breeding season, the amount of 

change in marsh condition (measured with the fused index) during the previous year, and the 

proportion of vegetation within 224 m of the survey point (Table 9; Fig. 12). Relative rail abundance 

was highest when 65-85% of the buffer area was vegetated and decreased above and below that range. 

Finally, relative rail abundance was negatively correlated with minimum vegetation moisture content 

during the breeding season and 5-year accumulated vegetation moisture content (Table 9; Fig. 12)  
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Table 9. Standardized parameter estimates from the top model. Covariates 

are grouped as "Detectability Covariates" and "Marsh Condition 

Covariates". Bold text indicates parameter estimate with a 95% confidence 

interval that does not overlap 0. NVMI = the fused index (NDVI+NDMI). 

Year is continuous variable included to incorporate route-specific temporal 

trends (random slopes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Parameter Mean SE 

 Intercept -0.465 0.142 

Detectability Covariates   

 Time of Survey -0.673 0.035 

 Time of Survey2 0.108 0.009 

 Survey Date 0.101 0.016 

 Survey Date2 -0.024 0.014 

 Time of Survey : Survey Date 0.125 0.025 

 Survey Date2 : Time of Survey2 -0.031 0.010 

 Survey Date : Time of Survey2 0.0002 0.010 

 Time of Survey : Survey Date2 0.038 0.022 

Marsh Condition Covariates   

 min NDMI-breeding -0.067 0.032 

 5-y Accumulated NDMI -0.304 0.033 

 5-y Accumulated TCG 0.045 0.025 

 deltaNDMI-breeding 0.164 0.032 

 deltaNDMI2-breeding -0.052 0.015 

 deltaNVMI-previous year 0.203 0.028 

 deltaNVMI2-previous year -0.079 0.016 

 Proportion Vegetated 0.099 0.024 

 Proportion Vegetated2 -0.149 0.019 

 Year 0.074 0.054 
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Index performance 

We sought to identify spectral indices best suited to predict variation in relative rail 

abundance, and thus measure rail habitat suitability. NDMI outperformed TCW (both are measures of 

vegetation moisture content) as predictors of rail counts in our models. In our covariate reduction 

exercise, NDMI covariates frequently showed lower AIC scores than analogous TCW covariates and 

no covariates derived from TCW remained in the top model (Table 9; and Tables A.2-A.16).  

Among the measures of greenness that we assessed, NDVI and TCG were equally good 

predictors of rail counts based on our covariate reduction exercises. Greenness covariates based on 

both NDVI and TCG appeared in our initial set of 12 candidate marsh condition variables, but only 5-

year accumulated greenness (measured by TCG) remained in the top model. Covariates measured with 

NVMI (i.e., the fused index designed to capture variation in both vegetation greenness and moisture 

content) was also a good predictor of rail counts based on the covariate reduction exercises. NVMI 

covariates consistently performed better than greenness covariates, but worse than moisture covariates 

(Tables A.2-A.16).  

Figure 12. Expected counts of Yuma Ridgway’s rails as a function of 6 marsh condition covariates in the 

top model. Dashed lines represent 95% confidence intervals.  
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Wetland disturbance detection 

We detected 82% (23 of 28) of the reference disturbances with BFAST algorithms. Moreover, 

we accurately identified 80 % (20 of 25) of the reference management actions and 67% (2 of 3) of the 

reference wildfires. The BFAST algorithm failed to detect 1 wildfire at Mittry Lake Wildlife Area, 1 

prescribed wetland fire at S.B. Salton Sea National Wildlife Refuge, and 3 prescribed wetland fires at 

Imperial National Wildlife Refuge. NBR had lowest omission rates of any individual index, followed 

by 2 vegetation moisture indices, NDMI and NDSI (Table 10). Vegetation greenness indices (TCG, 

EVI, NDVI, and SAVI) performed poorly. Finally, 75% (3 of 4) of the composite indices performed 

worse than the individual indices from which they were built. Only NVWBI performed better than the 

indices from which it was built (NDWBI and NDVI). The BFAST algorithm detected no more than 

71% of the known disturbances when fit to a single index, but we reduced omission error rates by 

merging outputs from BFAST algorithms fit to multiple spectral indices. We achieved a maximum 

accuracy by merging BFAST outputs from NBR and TCW (Table 11). 

Table 10. Performance of BFAST algorithms fit with different spectral 

indices. Disturbances detected refers to the number of the 28 reference 

disturbances detected by the index-specific BFAST algorithm. 

Accuracy was calculated by dividing the number of detected 

disturbances by the total number of reference disturbances (n=28). 

Mean and median C.I.s indicate the precision with which indices 

detected disturbances. 

Index 

Disturbances 

Detected 

Omission 

Rate 

Mean 

C.I. 

Median 

C.I. 

NBR 20 0.29 3.25 3 

NDMI 19 0.32 2.53 2 

NDSI 18 0.36 2.72 2.5 

NVMI 18 0.36 2.94 3 

NDVINBR 17 0.39 3.12 3 

TCW 17 0.43 2.38 2 

TC_Fused 14 0.5 2.71 2 

TCB 11 0.61 3.27 3 

TCG 11 0.61 3.27 3 

NVWBI 10 0.64 3.00 3 

EVI 5 0.82 3.80 3 

NDWBI 5 0.82 3.40 3 

NDVI 4 0.86 3.00 2.5 

SAVI 2 0.93 4.00 4 
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Table 11. Best performing index sets. We minimized omission error rates by 

merging BFAST outputs from TCW and NBR spectral indices. 

 

 

 

 

 

Breaks associated with reference disturbances generally had greater change magnitudes than 

those breaks not associated with any known disturbances (Fig. 13). Moreover, the change magnitude 

associated with known disturbances tended to be strictly negative or positive (depending on the index), 

whereas those changes not associated with known disturbances showed both positive and negative 

change magnitudes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index set 

Number of 

detected 

disturbances Omission rate 

NBR 20 0.29 

NBR, NDSI 22 0.23 

NBR, NDMI 22 0.23 

NBR, TCW 23 0.18 

Figure 13. Average change magnitudes of BFAST breaks associated with 

reference disturbances (grey) and not associated with any known 

disturbances (black). Only the 6 best indices are shown here. Disturbances 

were associated with negative changes in the left 3 indices, and positive 

changes in the right 3 indices. Points represent means and error bars show 

95% confidence intervals. 
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We considered all indices with omission rates <0.50 in our range-wide disturbance detection 

exercises. We applied the BFAST algorithm to timeseries for each of these “good” spectral indices for 

each survey point and filtered out all detected breaks below the magnitude threshold as well as those 

with confidence intervals >5 months. After break filtering, we detected 1.93 ± 0.06 (range 0-8) breaks 

with change magnitudes at least as great as those change magnitudes produced by the reference 

disturbances at each survey point during the previous 20 years (Fig. 14). 

  

Figure 14. Maps showing the number of significant breaks detected with the 

BFAST algorithm at survey points within 4 study locations during the 

previous 5 years. 



38 

 

 

 

DISCUSSION 

Modeling relative abundance of Yuma Ridgway’s rails 

We linked Landsat-derived metrics of marsh condition with the relative abundance of Yuma 

Ridgway’s rails while accounting for the spatio-temporal dynamics of a fragmented and stochastic 

emergent marsh ecosystem. By doing so, we created a powerful method to efficiently document 

habitat suitability of the endangered rail at fine-scale resolution and broad spatial extent (i.e., the entire 

U.S. range of the species). Moreover, the products of our modeling efforts can provide a useful tool to 

guide management decisions and facilitate the allocation of resources towards effective conservation.  

We generated range-wide predictive maps of habitat suitability at a fine spatial grain (30 m 

resolution; Fig. 15). Such maps can help spatially and temporally target management actions 

throughout the range of this endangered bird. Indeed, marshes predicted by our models to have 

relatively low rail abundance that were predicted to have high rail abundance in prior years may be 

best suited for management actions. The predictive maps also illuminate the status of Yuma 

Ridgway’s rail habitat throughout their range and may highlight opportunities for habitat acquisition 

or future restoration efforts. 

The predictive maps suggest that much of the most suitable rail habitat is already protected. 

Indeed, 70.5% of all wetland areas in the 85th percentile of predicted habitat suitability falls on lands 

currently managed as National Wildlife Refuges or Wildlife Areas. Moreover, 59.1% of all the 

wetland areas in the 15th percentile of predicted habitat suitability (i.e., lowest quality habitat) falls on 

unmanaged or private lands. These results highlight several important points: 1) national wildlife 

refuges are stewards of majority of high-quality habitat for Yuma Ridgway’s rails in the U.S.; 2) 

nearly 30% of the best habitat (as predicted by our models) is currently unprotected or unmanaged and 

these wetlands may be excellent targets for future land acquisitions; and 3) roughly 40% of the least 

suitable rail habitat falls on managed lands and these wetlands may present opportunities for 

management or restoration actions to improve rail habitat to help delist or down-list the species. 
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Importantly, these predictive maps provide a mechanism to monitor changes in relative habitat 

suitability throughout the range of the Yuma Ridgway’s rail. We can use the maps of predicted habitat 

suitability to assess how habitat conditions change through time and throughout the species range, and 

how habitat suitability changes in response to the application of management actions. For example, we 

can assess how relative habitat suitability changed at Imperial National Wildlife Refuge in response to 

Figure 15. Map of predicted habitat suitability along the Lower Colorado River near 

Imperial National Wildlife Refuge. 
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prescribed wetland fire (Fig. 16). Further, we can update these maps in future years to continually 

assess changes in habitat suitability, thereby identifying areas for targeted restoration. 

 

We built the predictive maps on Google Earth Engine and this presents a powerful opportunity 

to make these maps accessible to managers and policy-makers. The maps are shareable, interactive, 

and do not require access to expensive software. Indeed, one needs only an internet connection to 

access these maps of rail habitat suitability, making them useful tools for managers to assess habitat 

suitability for regions and time-frames of interest. Furthermore, these maps will be easy to update in 

future years, thereby facilitating: 1) effective habitat monitoring, 2) identification of marshes for 

restoration efforts, and 3) rapid assessment of the effects of restoration efforts through time. 

We identified several important marsh condition relationships for Yuma Ridgway’s rails. 

Relative rail abundance was positively correlated with the seasonality of marsh vegetation during yeart 

and yeart-1. We measured seasonality as the amount of change in marsh condition during a given time 

window (breeding season or full year). Seasonality of marsh vegetation is likely affected by vegetation 

structure and composition and may thus affect rail abundance through a variety of mechanisms. First, 

non-native phragmites (Phragmites australis) readily encroaches emergent wetlands, creates dense 

monotypic stands, and generally creates poor rail habitat (Eddleman 1989, Eddleman and Conway 

1994). Importantly, phragmites remains green through the winter, whereas many emergent vegetation 

Figure 16. Average predicted relative abundance of Yuma Ridgway's rails in three 

managed marsh parcels within Imperial National Wildlife Refuge. All 3 managed units 

(represented by line colors) were burned in February 2015 and showed an increase in 

predicted relative rail abundance soon after the burn. 
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species associated with high-quality rail habitat go dormant (turn brown) in the winter (Mexicano et al. 

2012). Thus, marshes with abundant phragmites may show increased winter vegetation greenness and 

moisture content (compared to early successional emergent marshes) and exhibit smaller seasonal 

fluctuations.  

Second, Yuma Ridgway’s rails prefer marshes interspersed with shallow open water pools and 

moderate vegetation densities (Conway et al. 1993). Water and saturated soils will likely be more 

exposed in such early successional marshes than in dense marshes filled with decadent vegetation. 

Water absorbs light at a wide range of wavelengths, and thus exposed water in early successional 

marshes may have a greater impact on spectral indices (water will depress values). Dense marsh 

vegetation and decadent marsh vegetation likely mask the effects of water and result in smaller 

seasonal fluctuations in spectral indices. We hypothesized this relationship may be quadratic because 

of the possible effects of marsh disturbance. Disturbances that clear marsh vegetation may result in 

extremely low spectral values and thus result in large differences between minimum and maximum 

seasonal index values. As such, large seasonal changes may indicate disturbances and rail abundance 

may not increase until the marsh vegetation has rebounded (6 months – 1 year after wetland fire; 

Conway et al. 2010). 

Relative Yuma Ridgway’s rail abundance was negatively correlated with 5-year accumulated 

vegetation moisture content and minimum vegetation moisture content during the breeding season. 

Both negative relationships may be explained by the same mechanisms describing the relationship 

between rail abundance and marsh vegetation seasonality. Dense marsh vegetation, the accumulation 

of decadent vegetation, and the encroachment of phragmites and woody vegetation (i.e., processes that 

degrade rail habitat quality) may inflate winter vegetation moisture values and thus indicate poor 

habitat suitability for Yuma Ridgway’s rails. 

Yuma Ridgway’s rails prefer emergent marsh vegetation interspersed with open water or 

mudflats and this likely explains the positive quadratic relationship we observed between rail 

abundance and the proportion of vegetation within a 224-m buffer of survey points. This result 

corroborates prior local habitat studies and species accounts which have noted that rails prefer these 

same habitat conditions (Conway 1990, 1995, Eddleman and Conway 1994, 2018). Yuma Ridgway’s 

rail home ranges averaged 7.22 ha during the breeding season (Conway et al. 1993) and the 224-m 

buffers cover 15.78 ha. As such, fully vegetated buffers may present poorer habitat than buffers 
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interspersed with water or mudflats. Indeed, relative rail abundance decreased at survey points with 

≥75% vegetation in the 224-m buffer surrounding the point. 

We identified spectral indices well suited to predict relative abundance of Yuma Ridgway’s 

rails and monitor rail habitat suitability. Measures of vegetation moisture content outperformed (i.e., 

resulted in better model fit) measures of vegetation greenness. Importantly, NDVI performed poorly in 

relative rail abundance modeling (NDVI-based metrics were not in any of the top rail abundance 

models). NDVI is arguably the most widely used spectral index for vegetation monitoring, but our 

results suggest that other spectral indices may be better than NDVI. A myriad of spectral indices exists 

and studies that identify the index most appropriate to their study objectives (as we did here) will 

likely improve predictive accuracy of models. 

We used a generalized linear regression approach because it provided a flexible modeling 

framework to investigate the effects of marsh conditions on rails. We accounted for variable survey-

level detection probabilities by including “nuisance” detectability covariates directly in the conditional 

model (i.e., fixed-effects on the condition mean). Failing to account for spatial and temporal variation 

in detection probability has been a criticism of many past ecological studies (Fiske and Chandler 2011, 

Barker et al. 2018). Numerous sampling approaches exist to estimate detection probability so that 

investigators can link observed counts to true abundance; however, these approaches require collecting 

auxiliary data in the field (e.g., mark-recapture methods, distance sampling, or double observer 

sampling). Absent such auxiliary data, N-mixture models (Royle 2004) are a popular approach to 

estimate abundance in the face of imperfect detection because they simultaneously estimate abundance 

(N) and detection probability (p). To make such estimates, N-mixture models rely on several 

restrictive assumptions (e.g., constant p, animals were not double counted, and populations remained 

closed during survey periods) and N-mixture models are very sensitive to violations of these 

assumptions (Barker et al. 2018, Link et al. 2018). We could not separately estimate N and p with 

generalized linear regression (as is possible with N-mixture models), therefore we could make 

inferences only about relative rail abundance (instead of true abundance). However, generalized linear 

regression provides a powerful and flexible framework to evaluate processes affecting relative 

abundance (Sauer and Link 2011, Barker et al. 2018). 

Wetland disturbance detection 

Detecting abrupt vegetation changes in wetland systems is particularly challenging because of 

the heterogeneity of many wetland systems and their dynamic water levels (Dahl 2006, Guo et al. 
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2017, Wei et al. 2017). We demonstrated that applying the BFAST algorithm to temporally dense 

Landsat timeseries is a robust way to detect wetland disturbances, despite the inherent heterogeneity of 

emergent wetlands. Moreover, we reduced omission rates by fitting BFAST algorithms to multiple 

spectral indices and merging the outputs. Such ensemble approaches have been effective for detecting 

disturbances in temperate and tropical forests (Schultz et al. 2016, Cohen et al. 2018, Healey et al. 

2018), but we are unaware of previous studies that have done so in wetlands. 

The BFAST algorithm detected 82% (23 of 28) of known wetland disturbances. The 5 

omissions (4 prescribed fires and 1 natural fire) may have resulted from low fire intensities. Magnitude 

of disturbance influences the ability to detect the signal of a disturbance (i.e., a change in the imagery) 

through the noise of the timeseries (DeVries et al. 2015b, Cohen et al. 2018, Healey et al. 2018). 

Wetland fires do not always burn hotly or cover the full extent of the marsh. As such, low intensity 

wetland fires may not generate enough disturbance in the vegetation to be detected with precision by 

the BFAST algorithm. Indeed, if we included imprecise breaks (i.e., breaks with estimated confidence 

intervals >5 months), we detected 3 of the 5 omitted fires. However, the average estimated confidence 

intervals around those detections was 14.6 months. 

The best performing indices were all derived from the short-wave infrared (SWIR) bands. Our 

results mirror studies in forested systems where SWIR-based indices were most sensitive to 

deforestation and forest disturbance (Wilson and Sader 2002, DeVries et al. 2015a, Cohen et al. 2018). 

SWIR bands are sensitive to vegetation moisture content and canopy structure (Baig et al. 2014, 

Schultz et al. 2016) and they may better reflect changes in marsh condition wrought by disturbances. 

In our system, the poor performance of greenness indices may be due (in part) to the timing of 

management actions and the response of marsh vegetation. Most of the known disturbances (25 of 28) 

occurred during the winter months (management actions typically occur during the winter to minimize 

impacts on the rail breeding season and avoid times of highest fire intensities) and wetland vegetation 

regrows quickly after management actions. Indeed, marsh vegetation was abundant within 6 months of 

management action, and burned marshes were difficult to distinguish visually from unburned marshes 

after only 2 years (Conway et al. 2010). As such, winter disturbances may not affect the annual cycle 

of greenness values enough to generate a disturbance signal. That is, low greenness values will still 

occur in the winter (just lower than normal because of the burned vegetation) and high greenness 

values will still occur in the summer. Moisture content of vegetation may take longer to recover after 

wetland disturbance, and thus moisture indices (those derived from SWIR bands) may better detect 

changes in the structure and density of marsh vegetation after such disturbances. 
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We ranked indices based on the omission error rate. We did not use commission rates (false 

positives) because we did not know the full history of the management units in question. Indeed, 

management actions are not always reported and subtle changes in the irrigation regimes may cause 

changes in marsh condition which are detected by the BFAST algorithms.  

We estimated 1.93 (range 0-8) breakpoints per survey point with change magnitudes ≥ the 

change magnitudes from the 28 known (reference) disturbances. While most of the estimated breaks 

did not correspond with known disturbances (e.g., management actions or wildfires), they still reflect 

significant changes in the condition and phenology of marsh vegetation. Such information can help 

inform the dynamics and frequency of wetland disturbance throughout the range of Yuma Ridgway’s 

rails. We can use these results to highlight those marshes where disturbances are infrequent and 

perhaps overdue.  

Finally, we applied the BFAST algorithm to spatially (and temporally) averaged spectral index 

values for each disturbance footprint and survey point buffer. Such an approach facilitated the 

exploration of different indices, while reducing the computational intensity of the analyses (compared 

to a pixel-based approach). However, spatially averaging all pixels within the disturbance footprint 

may mask the signal (i.e., deviations in spectral index values) of a disturbance, especially for low 

intensity disturbances. A pixel-based change detection approach would be a valuable continuation of 

this work. We have identified the optimal indices for wetland change detection and our results 

demonstrate that the BFAST algorithm can be effective, hence we could apply our same disturbance 

detection techniques at a pixel scale. A pixel-based approach would also allow us to better estimate the 

spatial accuracy of the BFAST algorithm (Schultz et al. 2016). We could compare the timing and 

location of “disturbed” pixels to known disturbance footprints to evaluate our ability to estimate the 

extent as well as timing of wetland disturbances. Such information would greatly facilitate prioritizing 

management actions throughout the region.  

Our work attempts to address some of the challenges facing the spatial and temporal 

prioritization of habitat management actions. We used publicly available Landsat data to predict 

relative habitat suitability at a fine spatial grain throughout the U.S. range of an endangered species. 

Moreover, we developed a reliable way to detect wetland disturbances, which may further help 

spatially and temporally prioritize management actions. Our work also highlights the importance of 

identifying appropriate spectral indices to match the study objectives of any research effort. We 

implemented our predictive maps of relative habitat suitability on the web-based Google Earth Engine 
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platform, thereby creating an informative and accessible tool for land management agencies. 

Importantly, by implementing our modeling efforts on Google Earth Engine, our predictive maps may 

be updated readily to monitor habitat condition through time. Our work focused on the endangered 

Yuma Ridgway’s rails, but our modeling approaches that apply Landsat imagery to elucidate 

relationships between local species abundance and habitat conditions and predict habitat suitability 

could readily be applied to other species of conservation concern. 
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APPENDIX A: YUMA RIDGWAY’S RAIL RELATIVE ABUNDANCE MODELING: ADDITIONAL 

INFORMATION 

Study location descriptions 

Each of the 6 study locations supported Yuma Ridgway’s rails and was characterized by a 

unique set of climatic and environmental conditions. We attempted to account for such differences in 

the structure of our model (i.e., zero-inflation probability and random effects). 

1) Havasu National Wildlife Refuge (Mohave County, Arizona and San Bernardino County, 

California): Havasu National Wildlife Refuge protects 48 river km of the Colorado River, including 

one of the last remaining natural reaches through the Topock Gorge. Emergent wetland parcels are 

scattered along the Topock Gorge in small backwaters and side channels, but most emergent wetland 

vegetation is concentrated in the Topock Marsh. This 1600 ha marsh is dominated by cattails (Typha 

spp), bulrush (Schoenoplectus spp), and increasingly, the invasive salt cedar (Young et al. 2015). 

Marsh bird survey points are distributed across Topock Marsh and in emergent marsh parcels 

throughout Topock Gorge. The approximate elevation of Havasu National Wildlife Refuge is 159 m 

and annual precipitation averages 11.8 cm. 

2) Cibola National Wildlife Refuge (La Paz County, Arizona and Riverside County, CA): This 

National Wildlife Refuge was established in 1964 to mitigate the effects of river regulation, 

channelization, and straightening. The refuge maintains 566 ha of marshes, meanders, and backwaters 

for migrating waterfowl and other wetland-dependent wildlife. Cattails and bulrushes are the dominant 

wetland species in most marshes. Marsh bird survey points are located primarily within the managed 

marshes, but several routes traverse less heavily managed backwaters and old river channel. The 

approximate elevation of Cibola National Wildlife Refuge is 67 m and annual rainfall averages 9.7 cm. 

3) Imperial National Wildlife Refuge (Yuma County, Arizona and Imperial County, CA): This 

refuge protects a mosaic of marshes, backwaters, and the last un-channelized stretch of the Colorado 

River north of the Mexico border. The refuge maintains 60 ha of marshes as habitat for Yuma 

Ridgway’s rails. These marshes are periodically burned to reset marsh succession (Conway 2010). A 

single survey route meanders through the managed marsh units, whereas remaining routes are 

distributed throughout backwaters and along the main channel of the Colorado River. Average 

elevation of Imperial National Wildlife Refuge is 59 m and annual rainfall averages 8.5 cm. 
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4) Mittry Lake Wildlife Area (Yuma County, Arizona): Located just south of the Imperial 

Dam, this wildlife area protects more than 480 ha of marsh for waterfowl and wetland-dependent 

species (National Audubon Society, 2019). Much of the marsh area is concentrated in an expansive 

cattail and bulrush marsh with meandering waterways and pools. Most survey routes are located 

within this main marsh parcel; however, several routes traverse smaller, isolated marsh parcels 

scattered throughout the wildlife area. Wetland fires (prescribed and natural) frequent Mittry Lake 

Wildlife Area, which is jointly managed by the Bureau of Land Management, Bureau of Reclamation, 

and Arizona Game and Fish Department. Average elevation of Mittry Lake Wildlife Area is 56 m and 

annual rainfall averages 8.5 cm. 

5) Lower Gila River (Yuma County and Maricopa County, Arizona): Marsh bird survey routes 

are widely distributed along the Lower Gila River from south of Yuma, Arizona to Phoenix, Arizona. 

Water from the Lower Gila River is largely diverted for municipal and agricultural use and 

consequently, the river is nearly dewatered (Huckleberry 1994, Cohen et al. 2001, Glenn et al. 2008). 

Wetland parcels are generally small and separated by large expanses of dry river bed or salt cedar 

thickets. Furthermore, extant wetlands along the Lower Gila River often depend on recycled 

agricultural water, natural seeps, and mitigation efforts. As such, emergent wetland vegetation can be 

quite ephemeral and temporally dynamic along the Lower Gila River, expanding and contracting in 

response to water availability. Elevation along the Lower Gila River ranges from 43 m near Yuma, 

Arizona to 331 m outside of Phoenix, Arizona. Annual total rainfall averages 8.5 cm near Yuma, 

Arizona and 20.3 cm around Phoenix, Arizona. 

6) Sonny Bono Salton Sea National Wildlife Refuge (Imperial County, California): Created 

along the shores of the Salton Sea, this national wildlife refuge provides 334 ha of wetland area in 

irrigated units, although only 69 ha are managed as Yuma Ridgway’s rail habitat. Emergent wetlands 

have expanded recently along the shores of the Salton Sea and these unmanaged wetlands are fed 

entirely by recycled water (e.g., agricultural run-off) from the New and Alamo Rivers (Barnum et al. 

2017). Most of the survey points are distributed along the managed wetland parcels, but additional 

routes cover unmanaged marshes on the southeast side of the Sea, and isolated reclamation wetland 

units adjacent to the main refuge. Average elevation at the Salton Sea is -69 m and annual rainfall 

averages 8.4 cm. 
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Satellite-derived metrics of marsh condition: Descriptions and justification 

Our goal was to identify the most appropriate satellite-derived metrics of marsh condition with 

which to model heterogeneity in relative abundance of rails. We derived marsh condition metrics from 

vegetation greenness and vegetation moisture content indices as well as a fused (greenness + moisture 

content) index. For each year of the survey period (2006-2018) we calculated the following marsh 

condition covariates:  

1) Maximum vegetation greenness and moisture – Marshes fill with decadent vegetation as 

they senesce, and this decadent vegetation may suppress annual growth of new emergent vegetation. 

Therefore, measurements of vegetation greenness and moisture content should decrease as marshes 

senesce. We calculated the maximum greenness and moisture content values for each survey point 

during each year of the survey period. We predicted that expected rail counts would correlate 

positively with measures of maximum vegetation greenness and moisture. 

2) Minimum vegetation greenness and moisture – The non-native phragmites grows in dense 

monotypic stands along Lower Colorado River riparian areas (Glenn et al. 1996, 2008). Phragmites 

readily encroaches into emergent wetland in the absence of disturbance, and negatively affect rail 

habitat (Eddleman 1989). Furthermore, phragmites stays green through the winter, whereas many 

emergent wetland plant species go dormant in the winter. As such, the presence of phragmites in 

marshes may inflate minimum vegetation greenness and vegetation moisture content. We predicted 

that expected rail counts would be negatively correlated with minimum vegetation greenness and 

moisture content. 

3) Change in vegetation greenness or moisture (annual max - annual min) – This is a measure 

of the seasonality of marsh vegetation. We hypothesized that the magnitude of change in vegetation 

greenness and/or moisture decreases as wetlands senesce (e.g., fill with decadent vegetation or are 

encroached by phragmites). Yuma Ridgway’s rails prefer early successional emergent marshes which 

may show greater seasonality than late seral stage marshes. We therefore predicted that expected rail 

counts would correlate positively with the seasonality of marsh vegetation. 

4) Rate of vegetation growth – We calculated rate of growth (i.e., slope) for each index during 

the Yuma Ridgway’s rail breeding season (March – August; Eddleman and Conway 2018). We 

considered slope as an informative covariate because the rate of vegetation growth (and thus green-up 

and accumulation of vegetation moisture) in the spring is likely suppressed by decadent vegetation in 



60 

 

 

 

senescent marshes. We predicted that expected rail counts would correlate positively with rates of 

vegetation change in the spring. 

5) Instantaneous vegetation greenness or moisture – Measurements of vegetation greenness 

and moisture content concurrent with marsh bird surveys should reflect marsh condition at the time of 

a given survey. We predicted that expected rail counts would correlate positively with instantaneous 

vegetation greenness and moisture content. 

5) Accumulated greenness and moisture – We considered that accumulated marsh greenness 

or moisture content may reflect multi-annual variation in marsh condition. We therefore calculated 

accumulated condition measures by summing all monthly index (e.g., greenness) values during 2, 3, 

and 5-year time intervals preceding surveys. For example, we calculated 5-year accumulated 

greenness for a given survey by summing the 60 preceding monthly greenness measurements for that 

survey point. 

6) Proportion vegetated –We predicted that the expected number of rails would be positively 

correlated with the amount of vegetation within the 224-m point buffers. As such, we included the 

proportion of vegetation of each point buffer as a covariate in our rail abundance models. We 

estimated the proportion of vegetation within each point buffer (separately for each year) by 

calculating the area of each buffer classified as vegetation and dividing by the total area of the buffer 

(15.78 ha). 

Spectral indices for relative rail abundance modeling 

We sought to identify the most appropriate spectral index with which measure the important 

marsh condition covariates in the models of relative Yuma Ridgway’s rail abundance. We evaluated 

several indices commonly used to measure vegetation greenness and moisture content: 

1) Normalized difference vegetation index (NDVI) – NDVI reflects differences in leaf 

pigments (e.g., chlorophyll) and is widely used to estimate vegetation condition and primary 

productivity (Tucker 1979, Pettorelli et al. 2011). 

2) Tasseled Cap Greenness (TCG) – Tasseled Cap Transformations leverage all Landsat 

spectral bands to create principal component bands that are sensitive to various earth features (Kauth 

and Thomas 1976). TCG is one such principal component that correlates with the presence and density 

of vegetation (Kauth and Thomas 1976). TCG has been used to track green biomass, detect change in 
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forested systems, and assist with landcover classification (Baker et al. 2007, Fickas et al. 2016, Schultz 

et al. 2016, Tang et al. 2016). 

3) Normalized difference moisture index (NDMI) – This index reflects vegetation moisture 

content and correlates strongly with vegetation productivity (Gao 1996). NDMI has been used to 

monitor vegetation condition (Hislop et al. 2018), detect disturbances in forested systems (Wilson and 

Sader 2002, DeVries et al. 2015b, Schultz et al. 2016), and monitor flooding in riverine wetlands (Guo 

et al. 2017). 

4) Tasseled Cap Wetness (TCW) – TCW reflects vegetation moisture content and correlates 

with vegetation productivity (Kauth and Thomas 1976). TCW is used in wetland classification (Tana 

et al. 2013) as well as change detection applications (Cohen et al. 2018). 

5) NDVINDMI (NVMI) –We fused NDVI and NDMI to create a new index of wetland 

condition that incorporates variation in vegetation moisture and greenness. 

Extended modeling results 

We performed multiple stages of covariate reduction and model selection to identify 1) the 

optimal set of covariates to control for variable survey-level detection probability, 2) the most 

appropriate marsh condition covariates to include in the models, and 3) the most appropriate model 

structure (i.e., statistical distribution and random effects structure). We first identified the optimal set 

of detectability covariates (Table A.1).  
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Table A.1. Detectability models included linear and quadratic effects for survey date and time of day. 

Interactions involved both linear and quadratic effects when applicable. The second and third best models were 

not competitive and are included only for illustrative purposes. 

 

We considered 116 candidate marsh condition covariates because we sought to identify: 1) the 

most informative marsh condition covariates for relative Yuma Ridgway’s rail abundance models, 2) 

the most appropriate temporal scale at which to measure the marsh condition covariates, and 3) the 

most appropriate spectral index with which to measure marsh condition for rail abundance modeling. 

We first selected the optimal temporal scale for each marsh covariate (Tables A.2–A.16). 

 

 

 
 

 

 

 
 

 

 Parameters   

Model 

Survey 

date: 

Linear 

Time of 

day: Linear 

Survey 

date: 

Quadratic 

Time of day: 

Quadratic Interaction 

Delta 

AIC df 

Detect_1 x x x x x 0 10 

Detect_2 x x  x x 13.13 7 

Detect_3 x x x x  15.69 6 

Detect_4 x x  x  20.66 5 

Detect_5  x  x  105.82 4 

Detect_6 x x x  x 147.84 7 

Detect_7 x x   x 191.12 5 

Detect_8 x x x   219.77 5 

Detect_9 x     283.64 3 

Detect_10 x  x   446.19 4 

Detect_11 x     446.93 3 
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Table A.2. Temporal-scale optimization of accumulated greenness covariates. All 

models were fit with negative binomial regression and included the optimal detectability 

covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Greenness TCG 5-year 434.89 11 

Greenness TCG 3-year 443.71 11 

Greenness TCG 2-year 451.83 11 

Greenness NDVI 3-year, breeding 454.21 11 

Greenness NDVI 5-year 454.35 11 

Greenness TCG 2-year, breeding 455.09 11 

Greenness NDVI 2-year, breeding 455.39 11 

Greenness TCG 3-year, breeding 455.41 11 

Greenness NDVI 5-year, breeding 455.77 11 

Greenness NDVI 3-year 455.77 11 

Greenness TCG 5-year, breeding 455.93 11 

Greenness NDVI 2-year 456.00 11 
 

Table A.3. Temporal-scale optimization of accumulated vegetation moisture 

covariates. All models were fit with negative binomial regression and included the 

optimal detectability covariates. Delta AIC was calculated against the single best 

marsh covariate. 

Category Index Temporal scale Delta AIC df 

Moisture NDMI 5-year 137.91 11 

Moisture NDMI 3-year 142.47 11 

Moisture NDMI 2-year 204.04 11 

Moisture NDMI 5-year, breeding 352.54 11 

Moisture NDMI 3-year, breeding 367.63 11 

Moisture TCW 5-year 383.43 11 

Moisture TCW 3-year 385.54 11 

Moisture NDMI 2-year, breeding 386.53 11 

Moisture TCW 2-year 404.09 11 

Moisture TCW 5-year, breeding 444.90 11 

Moisture TCW 3-year, breeding 445.85 11 

Moisture TCW 2-year, breeding 449.92 11 
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Table A.4. Temporal-scale optimization of accumulated marsh condition derived 

from the fused index. All models were fit with negative binomial regression and 

included the optimal detectability covariates. Delta AIC was calculated against 

the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Fused NVMI 5-year 250.42 11 

Fused NVMI 3-year 276.54 11 

Fused NVMI 2-year 326.18 11 

Fused NVMI 5-year, breeding 418.29 11 

Fused NVMI 3-year, breeding 429.47 11 

Fused NVMI 2-year, breeding 432.71 11 
 

Table A.5. Temporal-scale optimization of change in vegetation covariates. All models 

were fit with negative binomial regression and included the optimal detectability 

covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Greenness TCG Current breeding season 428.92 11 

Greenness TCG Previous breeding season 431.06 11 

Greenness NDVI Previous breeding season 437.26 11 

Greenness NDVI Current breeding season 446.00 11 

Greenness NDVI Previous full year 449.72 11 

Greenness TCG Current full year 451.47 11 

Greenness TCG Previous full year 451.95 11 

Greenness NDVI Current full year 455.72 11 
 

Table A.6. Temporal-scale optimization of change in vegetation moisture covariates. All 

models were fit with negative binomial regression and included the optimal detectability 

covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Moisture TCW Current breeding season 171.18 11 

Moisture TCW Previous breeding season 183.00 11 

Moisture TCW Current full year 254.14 11 

Moisture NDMI Current breeding season 267.39 11 

Moisture TCW Previous full year 272.41 11 

Moisture NDMI Previous breeding Season 328.32 11 

Moisture NDMI Current full year 351.16 11 

Moisture NDMI Previous full year 362.98 11 
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Table A.7. Temporal-scale optimization of change in vegetation condition covariates 

derived from the fused index. All models were fit with negative binomial regression 

and included the optimal detectability covariates. Delta AIC was calculated against 

the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Fused NVMI Current breeding season 383.57 11 

Fused NVMI Previous breeding season 390.99 11 

Fused NVMI Previous full year 426.79 11 

Fused NVMI Current full year 440.23 11 

 

Table A.8. Temporal-scale optimization of rate of change of vegetation greenness. All 

models were fit with negative binomial regression and included the optimal 

detectability covariates. Delta AIC was calculated against the single best marsh 

covariate. 

Category Index Temporal scale Delta AIC df 

Greenness NDVI Previous breeding season 425.65 11 

Greenness NDVI Current full year 430.07 11 

Greenness TCG Previous breeding season 431.13 11 

Greenness TCG Previous full year 443.95 11 

Greenness TCG Current breeding season 444.42 11 

Greenness NDVI Current breeding season 446.11 11 

Greenness NDVI Previous full year 454.10 11 

Greenness TCG Current full year 455.67 11 

 

Table A.9. Temporal-scale optimization of rate of change of vegetation moisture 

content. All models were fit with negative binomial regression and included the 

optimal detectability covariates. Delta AIC was calculated against the single best 

marsh covariate. 

Category Index Temporal scale Delta AIC df 

Moisture TCW Current breeding season 310.16 11 

Moisture NDMI Current breeding season 350.04 11 

Moisture NDMI Previous breeding season 369.84 11 

Moisture TCW Previous breeding season 374.57 11 

Moisture TCW Previous full year 423.59 11 

Moisture TCW Current full year 429.71 11 

Moisture NDMI Current full year 444.07 11 

Moisture NDMI Previous full year 446.64 11 
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Table A.10. Temporal-scale optimization of rate of change of fused vegetation 

condition covariates. All models were fit with negative binomial regression and 

included the optimal detectability covariates. Delta AIC was calculated against the 

single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Fused NVMI Previous full year 375.40 11 

Fused NVMI Previous breeding season 386.27 11 

Fused NVMI Current breeding season 396.11 11 

Fused NVMI Current full year 419.77 11 
 

Table A.11. Temporal-scale optimization of maximum vegetation moisture content 

covariates. All models were fit with negative binomial regression and included the optimal 

detectability covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Moisture NDMI Current full year 375.30 11 

Moisture NDMI Previous full year 386.33 11 

Moisture NDMI Previous breeding season 392.06 11 

Moisture NDMI Previous full year 401.55 11 

Moisture TCW Current breeding season 450.11 11 

Moisture TCW Previous breeding season 451.80 11 

Moisture TCW Current full year 453.23 11 

Moisture TCW Previous full year 453.80 11 
 

Table A.12. Temporal-scale optimization of maximum vegetation greenness covariates. 

All models were fit with negative binomial regression and included the optimal 

detectability covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Greenness NDVI Current full year 449.45 11 

Greenness TCG Current breeding season 452.63 11 

Greenness NDVI Previous full year 453.76 11 

Greenness TCG Current full year 453.83 11 

Greenness NDVI Current breeding season 454.13 11 

Greenness NDVI Previous breeding season 456.08 11 

Greenness TCG Previous full year 456.08 11 

Greenness TCG Previous breeding season 456.08 11 
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Table A.13. Temporal-scale optimization of maximum fused marsh condition covariates. 

All models were fit with negative binomial regression and included the optimal 

detectability covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Fused NVMI Current full year 432.27 11 

Fused NVMI Previous breeding season 432.81 11 

Fused NVMI Previous full year 434.95 11 

Fused NVMI Current breeding season 438.97 11 

 

Table A.14. Temporal-scale optimization of minimum vegetation greenness covariates. 

All models were fit with negative binomial regression and included the optimal 

detectability covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Greenness TCG Previous breeding season 417.39 11 

Greenness NDVI Previous breeding season 435.42 11 

Greenness TCG Current breeding season 444.75 11 

Greenness TCG Previous full year 448.96 11 

Greenness NDVI Current full year 451.21 11 

Greenness NDVI Current breeding season 453.02 11 

Greenness NDVI Previous full year 455.25 11 

Greenness TCG Current full year 455.87 11 

 

Table A.15. Temporal-scale optimization of minimum vegetation moisture covariates. All 

models were fit with negative binomial regression and included the optimal detectability 

covariates. Delta AIC was calculated against the single best marsh covariate. 

Category Index Temporal scale Delta AIC df 

Moisture NDMI Current breeding season 0 11 

Moisture NDMI Current full year 98.06 11 

Moisture NDMI Previous breeding season 103.61 11 

Moisture NDMI Previous full year 165.19 11 

Moisture TCW Current full year 268.23 11 

Moisture TCW Current breeding season 270.61 11 

Moisture TCW Previous full year 294.97 11 

Moisture TCW Previous breeding season 301.43 11 
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Table A.16. Temporal-scale optimization of the minimum fused vegetation condition 

covariates. All models were fit with negative binomial regression and included the 

optimal detectability covariates. Delta AIC was calculated against the single best marsh 

covariate. 

Category Index Temporal scale Delta AIC df 

Fused NVMI Current breeding season 171.61 11 

Fused NVMI Previous breeding season 174.68 11 

Fused NVMI Previous full year 287.21 11 

Fused NVMI Current full year 314.25 11 

 

After temporal scale optimization, we further reduced the list of candidate marsh condition 

variables by dropping the weaker (as judged by AIC) of any pair of colinear variables with a 

correlation coefficient greater than 0.7 (Fig. A.1). We selected 12 candidate marsh condition 

covariates, which we included in all model structure selection exercises (Table A.17). 

Table A.17. The reduced set of marsh condition covariates included in the global fixed-effects model. Covariate 

refers to the type of measurement and Temporal scale indicates at what timeframe the covariate was derived. 

“Breeding season” refers to March – August. “Full” indicates covariates were derived from the full year. Index 

refers to the index used to estimate the associated marsh condition covariate. 

Marsh 

condition 

covariate Temporal scale Description and justification 

Predicted 

rail 

response Index 

Accumulated 

vegetation 

greenness 

5 year 

Accumulated greenness over 5 years 

of a marsh parcel. Increasing values 

should indicate healthier marshes 
+ 

TCG 

Maximum 

vegetation 

greenness 

Current full 

year 

Decadent vegetation may suppress 

emergent vegetation growth and 

therefore reduce maximum annual 

NDVI values 

+ 
NDVI 

Minimum 

vegetation 

greenness 

Previous full 

year 

Invasive evergreen species may 

inflate minimum greenness values 

and thus late seral stage marshes 

may stay greener in the winter 

- 
TCG 

Minimum 

vegetation 

moisture 

Current 

breeding 

season 

NDMI correlates with vegetation 

moisture content, therefore as 

minimum values increase, the 

"dryness" of the habitat increases 

- NDMI 
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Change in 

vegetation 

moisture 

Current 

breeding 

season 

Senescent marshes with abundant 

decadent vegetation and woody 

vegetation should show less 

seasonality than early successional 

emergent marshes 

+ 
NDMI 

Accumulated 

vegetation 

moisture 

5 year 

Accumulated marsh vegetation 

moisture over 5 years will reflect 

overall marsh condition through 

time 

+ 
NDMI 

Rate of 

vegetation 

moisture 

change 

Current 

breeding 

season 

The rate of emergent vegetation 

growth is likely suppressed by 

decadent vegetation. TCW reflects 

vegetation moisture content, hence 

TCW slope values will decrease as 

marshes senesce 

+ 
TCW 

Minimum 

vegetation 

moisture 

Current year-

full 

Minimum vegetation moisture will 

likely increase with the 

accumulation of senescent 

vegetation 

- 
TCW 

Change in 

vegetation 

moisture 

Current year-

breeding 

season 

Amount of change in the breeding 

season should correlate with seral 

stages, with early successional 

marshes experiencing greater 

change in the breeding season 

+ 
TCW 

Change in 

marsh 

vegetation 

Previous full 

year 

NVMI reflects vegetation moisture 

and greenness. The amount of 

change in NVMI during the 

previous breeding season should 

decrease as marshes senesce  

+ 
NVWI 

Instantaneous 

marsh 

condition 

Concurrent 

with survey 

NVMI reflects vegetation moisture 

and greenness and breeding season 

values indicate current marsh 

condition 

+ 
NVMI 

Proportion 

vegetated 
Current year 

Proportion of vegetation within the 

224-m survey point buffer should 

correlate with the amount of 

wetland habitat around a survey 

point 

+ 
NA 
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Model structure 

Once we had identified the optimal set of detectability covariates and the reduced list of 

candidate marsh condition covariates, we sought to identify the most appropriate model structure to 

describe the Yuma Ridgway’s rail count data. We first identified the optimal distribution (Table A.18). 

We then selected the optimal random effects structure (Table A.19). We included all detectability and 

candidate marsh condition covariates in all models during model structure selection. 

 

 

 

Figure A.1. Correlation plot of final marsh condition covariates. All candidate 

variables were assessed for collinearity and the weaker of any pair of variables 

with a correlation coefficient greater than 0.7 was dropped. bs = breeding 

season, lag = previous year, delta = amount of change, and rol5 = 5-year 

accumulated covariates. 
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Table A.18. Statistical distribution selection. The zero-inflated negative binomial distribution with 

a linear and quadratic effect of survey date on the dispersion parameter was the most supported 

model. Zero-inflation probability varied by region with a region-specific random intercept. Models 

based on the NB1 distribution were more supported than those built on the NB2 or Poisson 

distributions. X’s indicate whether the model included an attribute in the structure. NB1 = negative 

binomial where 𝑣𝑎𝑟 = 𝜇(1 + 𝜃), NB2 = negative binomial where 𝑣𝑎𝑟 = 𝜇(1 + 𝜇/𝜃), and θ is the 

dispersion parameter.  

Distribution 

 Dispersion  Zero-inflation    

 Date Date2  Constant Location 

Location- 

annual 

intercept  

Delta 

AIC df 

NB1  x x   x x  0 42 

NB1  x    x x  1.17 41 

NB1      x x  12.85 40 

NB1  x x   x   37.17 41 

NB1  x    x   39.82 40 

NB1      x   49.73 39 

NB1  x x  x    72.61 36 

NB1  x   x    74.05 35 

NB1     x    82.17 34 

NB1  x x      108.60 35 

NB1  x       111.66 34 

NB1         122.17 33 

NB2  x    x x  143.00 41 

NB2  x x   x x  144.04 42 

NB2      x x  158.76 40 

NB2  x x   x   198.84 41 

NB2  x    x   198.97 40 

NB2      x   215.36 39 

Poisson      x x  341.20 39 

NB2  x   x    363.56 35 

NB2  x x  x    365.35 36 

NB2     x    373.88 34 

NB2  x       405.26 34 

NB2  x x      406.60 35 

Poisson      x   413.81 38 

NB2         421.28 33 

Poisson     x    630.65 33 

Poisson         1405.88 32 
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Random Effects 

We then selected the most parsimonious random effects structure (conditional on the 

identified statistical distribution and set of fixed-effect covariates; Table A.19). 

Table A.19. Random effects structure selection. The top model included all hypothesized random effects. All 

models were based on a zero-inflated negative binomial distribution and included the full set of candidate fixed-

effects. We held the distribution constant and only altered the random effects structure. X’s indicate inclusion of 

an attribute in the model. Dist. refers to distribution. NB1 = negative binomial where 𝑣𝑎𝑟 = 𝜇(1 + 𝜃), NB2 = 

negative binomial where 𝑣𝑎𝑟 = 𝜇(1 + 𝜇/𝜃), and θ is the dispersion parameter. 

Dist.  Dispersion  Zero-inflation  Random effects    

  Date Date2 
 Location 

Location

-annual 

intercept  

Route 

intercept 

Route-

annual 

intercept 

Broad-

scale 

annual 

intercept 

Route

-time 

slope  

Delta 

AIC df 

NB1  x x  x x  x x x x  0.0 42 

NB1  x x  x x  x x x   12.91 40 

NB1  x x  x x  x x    22.27 39 

NB1  x x  x x  x  x x  295.10 41 

NB1  x x  x x  x   x  332.20 40 

NB1  x x  x x  x  x   365.08 39 

NB1  x x  x x  x     410.70 38 

NB1  x x  x x    x   2291.83 38 

 

Final model selection 

Finally, we compared 26 plausible combinations of marsh condition covariates and 1 model 

with no marsh condition variables (i.e., a null model) and selected the top model using AIC (Table 

A.20). All models were fit with the full set of detection covariates and optimal model structure 

identified from the previous model selection steps. 
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Table A.20. Final fixed-effect model selection. All models were fit with the full set of detectability covariates as 

well as the optimal model structure. bs = breeding season, lag = previous year, delta = amount of change, and 

rol5 = 5-year accumulated values. 

Model Formula 

Delta 

AIC df 

1 

Detectability Covariates + minNDMI.bs + rol5NDMI + rol5TCG + 

deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + 

PropVeg + PropVeg2 

0.00 34 

2 

Detectability Covariates + minNDMI.bs + rol5NDMI * rol5TCG + 

deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + 

PropVeg + PropVeg2 

0.08 35 

3 

Detectability Covariates + minNDMI.bs + rol5NDMI * rol5TCG + 

minTCGlag + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + 

deltaNVMIlag2 + PropVeg + PropVeg2 

0.11 36 

4 

Detectability Covariates + minTCW + minNDMI.bs + rol5NDMI * 

rol5TCG + minTCGlag + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag 

+ deltaNVMIlag2 + PropVeg + PropVeg2 

0.16 37 

5 

Detectability Covariates + minNDMI.bs + rol5NDMI + rol5TCG + 

minTCGlag + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + 

deltaNVMIlag2 + PropVeg + PropVeg2 

0.45 35 

6 

Detectability Covariates + minNDMI.bs + rol5NDMI * rol5TCG + 

minTCW + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + 

deltaNVMIlag2 + PropVeg + PropVeg2 

0.99 36 

7 
Detectability Covariates + minNDMI.bs + rol5NDMI + deltaNDMI.bs + 

deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + PropVeg + PropVeg2 
1.60 33 

9 

Detectability Covariates + minTCW + minNDMI.bs + rol5NDMI * 

rol5TCG + minTCGlag + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag 

+ deltaNVMIlag2 + NVMI + PropVeg + PropVeg2 

1.66 38 

10 
Detectability Covariates + minNDMI.bs + rol5NDMI + deltaNDMI.bs + 

deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + PropVeg + PropVeg2 
2.33 32 

11 

Detectability Covariates + minNDMI.bs + rol5NDMI + deltaNDMI.bs + 

deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + maxNDVI + PropVeg 

+ PropVeg2 

3.38 34 

12 

Detectability Covariates + minTCW + minNDMI.bs + rol5NDMI * 

rol5TCG + minTCGlag + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag 

+ deltaNVMIlag2 + maxNDVI + NVMI + PropVeg + PropVeg2 

3.64 39 

13 

Detectability Covariates + minNDMI.bs + rol5NDMI + minTCW + 

deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + 

PropVeg + PropVeg2 

3.69 33 
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14 

Detectability Covariates + minNDMI.bs + rol5NDMI + minTCGlag + 

maxNDVI + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + 

deltaNVMIlag2 + PropVeg + PropVeg2 

5.18 35 

15 

Detectability Covariates + deltaTCW.bs + deltaTCW.bs2 + minNDMI.bs + 

rol5NDMI * rol5NDVI + minTCW + deltaNDMI.bs + deltaNDMI.bs2 + 

deltaNVMIlag + deltaNVMIlag2 + NVMI + PropVeg + PropVeg2 

5.20 38 

16 

Detectability Covariates + slopeTCW + minTCW + deltaTCW.bs + 

+minNDMI.bs + rol5NDMI * rol5TCG + minTCGlag + deltaNDMI.bs + 

deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + maxNDVI + NVMI + 

PropVeg + PropVeg2 

5.34 41 

17 

Detectability Covariates + minNDMI.bs + rol5NDMI + deltaNDMI.bs + 

deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + maxNDVI + NVMI + 

PropVeg + PropVeg2 

5.36 35 

18 

Detectability Covariates + minNDMI.bs + rol5NDMI + minTCW + 

deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + NVMI 

+ PropVeg + PropVeg2 

5.68 34 

19 

Detectability Covariates + slopeTCW + slopeTCW2 + minTCW + 

deltaTCW.bs + deltaTCW.bs2 + +minNDMI.bs + rol5NDMI * rol5TCG + 

minTCGlag + deltaNDMI.bs + deltaNDMI.bs2 + deltaNVMIlag + 

deltaNVMIlag2 + maxNDVI + NVMI + PropVeg + PropVeg2 

6.38 43 

20 

Detectability Covariates + minTCW + deltaTCW.bs + deltaTCW.bs2 + 

+minNDMI.bs + rol5NDMI + deltaNDMI.bs + deltaNDMI.bs2 + 

deltaNVMIlag + deltaNVMIlag2 + maxNDVI + NVMI + PropVeg + 

PropVeg2 

8.80 38 

21 

Detectability Covariates + deltaTCW.bs + deltaTCW.bs2 + minNDMI.bs + 

rol5NDMI + rol5NDVI + minTCW + deltaNDMI.bs + deltaNDMI.bs2 + 

deltaNVMIlag + deltaNVMIlag2 + NVMI + PropVeg + PropVeg2 

9.02 37 

22 

Detectability Covariates + slopeTCW + slopeTCW2 + minTCW + 

deltaTCW.bs + deltaTCW.bs2 + minNDMI.bs + rol5NDMI + deltaNDMI.bs 

+ deltaNDMI.bs2 + deltaNVMIlag + deltaNVMIlag2 + maxNDVI + NVMI + 

PropVeg + PropVeg2 

10.03 40 

23 

Detectability Covariates + minNDMI.bs + rol5NDMI * rol5TCG + 

minTCGlag + deltaTCW.bs + deltaTCW.bs2 + deltaNVMIlag + 

deltaNVMIlag2 + PropVeg + PropVeg2 

27.48 36 

24 

Detectability Covariates + minNDMI.bs + rol5NDMI + rol5TCG + 

deltaNDMI.bs + deltaNDMI.bs2 + deltaTCWlag.bs + deltaTCWlag.bs2 + 

PropVeg + PropVeg2 

47.66 34 

25 

Detectability Covariates + deltaTCW.bs + minNDMI.bs + rol5NDMI + 

rol5NDVI + minTCW + deltaNDMI.bs + deltaNVMIlag + PropVeg + 

PropVeg2 

50.59 33 

26 
Detectability Covariates + minNDMI.bs + rol5NDMI + minTCGlag + 

maxNDVI + deltaNDMI.bs + deltaNVMIlag + PropVeg + PropVeg2 
58.06 33 

27 Detectability Covariates 756.63 25 
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Our final model can be represented by the following set of equations: 

𝑌𝑖,,𝑠,𝑡 ~NB1(µi,j,s,t , θ | NZI)          (1)

                             

 i = survey point 

 j = route 

 s = survey visit number (within year) 

 t = year  

 NZI = the event the data point was not a structural zero  

 θ = dispersion parameter 

 

 

𝑙𝑜𝑔(𝜇𝑖,𝑗,𝑠,𝑡) = 𝑙𝑜𝑔(𝐸[𝑌𝑖,𝑗,𝑠,𝑡])  = 
 

𝛽0 + 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑣𝑠. + 𝑀𝑎𝑟𝑠ℎ𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐶𝑜𝑣𝑠. +𝑎𝑗 + (𝜆 + 𝑡𝑗) × 𝑦𝑒𝑎𝑟𝑡 + 𝑏𝑡 + 𝑐𝑗,𝑡   (2) 

 𝛽0 = fixed intercept 

𝑎𝑗 = random spatial (route) intercept 

𝜆 = fixed (average) temporal trend over all regions 

tj = random temporal slope by route 

𝑏𝑡 = broad-scale annual random intercept 

𝑐𝑗, = route-specific annual random intercept 

 

𝑉𝑎𝑟(𝑌
i,j,s,t

|𝜇i,j,s,t,NZI) = 𝜇i,j,s,t(1 + 𝜃)        (3)

  

𝑙𝑜𝑔(𝜃) = 𝛾0 + 𝛾1 × 𝐷𝑂𝑌𝑖,𝑗,𝑠,𝑡 + 𝛾2 × 𝐷𝑂𝑌𝑖,𝑗,𝑠,𝑡
2        (4) 

where 𝛾’s are dispersion regression coefficients and DOY is Julian day of survey,  

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑍𝐼)) = 𝜙0 + 𝜙region𝑗
+ 𝑟j,t,         (5) 

where 𝜙’s are zero-inflation regression coefficients, 𝑝(𝑍𝐼), is the zero-inflation probability and rj,t is 

location-specific annual random intercept. 
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Figure A.3. Estimated relationship between the dispersion parameter and survey date in the top 

model. 

Figure A.2. Zero-inflation probability varied by study location and randomly by year (random 

location-specific annual intercept). 
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APPENDIX B: LANDSAT IMAGERY ACQUISITION AND PROCESSING 

We accessed and processed all imagery on Google Earth Engine (Gorelick et al. 2017). 

Landsat sensor data is regularly processed to either top of atmosphere (TOA) reflectance or surface 

reflectance (SR). TOA reflectance is sometimes referred to as at-satellite reflectance because it is a 

measure of all reflectance measured by the satellite. As such, TOA reflectance values include 

atmospheric effects (e.g., effects of cloud cover and atmospheric aerosols; Holben 1986). SR imagery 

is typically processed to remove atmospheric effects and represents reflectance from the surface of the 

earth. We relied on Tasseled Cap Transformations at many stages of these analyses (e.g., image 

classification, rail abundance modeling) and the coefficients to compute these transformations are only 

available for TOA imagery (Huang et al. 2002, Baig et al. 2014). To remain consistent in our analyses, 

we used TOA imagery to calculate all spectral indices. We followed a 9-step workflow to process the 

Landsat imagery and extract spectral index timeseries for our study locations (Fig. B.1). We detail 

each step below. 

1. Image collection

•Sort and compile all 
available Landsat 
imagery during 1999-
2018 for the study area

2. Clip imagery

•Clip all imagery to a 
regional polygon

3. Cloud filter

•Apply a GEE algorithm 
to remove pixels 
contaminated with cloud 
cover

4. Monthly composites

•Average all images 
collected during each 
month to create a 
timeseries with 240 
monthly images

5. Compute spectral 
indices

•Compute a suite of 
vegetation indices for 
each image in the 
timeseries

6. Vegetation masks

•Apply a year-specific 
vegetation mask to 
remove all pixels not 
classified as vegetation

7. Spatial averages

•Spatially average each 
index value for all pixels 
in a region of interest 
(i.e., marsh bird survey 
point or managed marsh 
unit)

8. Export data

•Export all data from 
GEE for analyses in R

9. Linear interpolation

•Linear interpolation to 
fill in any missing dates 
in the timeseries

Figure B.1. Landsat imagery processing workflow to generate timeseries of spectral indices. GEE= Google Earth 

Engine. 
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1. Image collection 

We collected and processed Landsat imagery from 1999-2018 to ensure the BFAST algorithm 

had ≥2 years of imagery with which to estimate the seasonal and trend components of the timeseries 

before a known disturbance (earliest reference disturbance occurred February 2001). We used imagery 

from Landsat 5 and Landsat 7 satellites to improve the temporal coverage and density of the 

timeseries. 

2. Clip imagery 

Our 6 study regions (i.e., Havasu, Cibola, Imperial, and S.B. Salton Sea National Wildlife 

Refuges, Mittry Lake Wildlife Area, and the Lower Gila River) were separated by wide expanses of 

non-habitat and we defined 4 general polygons around these 6 sites (instead of creating 1 large 

polygon to encompass all sites). We clipped all Landsat imagery to these 4 regional polygons to 

reduce the computational expense of our analyses. 

3. Cloud filters 

Cloud cover can influence TOA reflectance values. As such, we applied a cloud scoring 

algorithm in Google Earth Engine to remove pixels contaminated by cloud cover. Google Earth 

Engine uses thermal bands and pixel brightness to estimate the probability of cloud cover in each pixel 

of an image (Gorelick et al. 2017). We removed all pixels with a probability of cloud cover greater 

than 20%. 

4. Monthly composites 

Landsat imagery is collected with a temporal resolution of 8–16 days. We created monthly 

images by averaging all images collected within a given month to 1) reduce noise, 2) minimize pixel 

loss from cloud cover, and 3) create a timeseries with equal time steps (i.e., 12 images per year). As 

such, we created an image collection with 240 monthly images for each region (20 year × 12 months). 

5. Compute spectral indices 

We then computed all desired spectral indices and added them as bands to the monthly images 

in our image collection (see Table 5 for index descriptions and formulas). In this way, each monthly 

image had bands for NDVI, NDMI, etc. Adding each index as a band to an image also greatly reduced 

the dimensions of our image timeseries (we had 240 monthly images with 16 bands each vs 3840 

single band images). 



81 

 

 

 

6. Vegetation masks 

We calculated spatial averages of all the pixels within a 224-m buffer of the marsh bird survey 

points, and thus sought to minimize the influence of water and bare areas on these averages. The U.S. 

Fish and Wildlife Service produces the National Wetland Inventory (NWI) to track the status and 

quantify the extent of wetlands in U.S. (Wilen and Bates 1995, Dahl 2006). These data are publicly 

available and a NWI shapefile, detailing the location and extent of all wetlands in the U.S., has been 

used in a wide range of research applications (e.g., Kayastha et al. 2012, Glisson et al. 2017). The 

NWI shapefile is logistically complicated and expensive to produce, and thus the NWI shapefile is 

updated infrequently (Chignell et al. 2018). Moreover, NWI layers have low commission error rates 

but high omission error rates (Wright and Gallant 2007). Indeed, visual inspection of the NWI layer 

within our study region showed numerous omission errors, particularly along the Salton Sea and 

Lower Gila River (NWI layers showed no emergent wetlands along the Lower Gila River). We 

processed 20 years of imagery for this study and the extent and location of wetlands can vary greatly 

during such time (even along the heavily regulated Colorado River). Rather than rely on static NWI 

shapefiles to define the amount of wetland habitat around each marsh bird survey point, we created 

year-specific vegetation layers to better represent the dynamics of the system. We detail the process 

through which we derived the vegetation masks below. 

6.0 General process 

We created the vegetation masks by classifying images into 3-4 categories, depending on the 

complexities of the system: 1) water, 2) bare, 3) natural vegetation, and when necessary 4) agriculture. 

We used Random Forest image classification implemented in GEE to create a yearly classified image 

within each regional polygon (Fig. B.3). The landscape throughout much of the Lower Colorado River 

corridor is stark and can reasonably be described with 3 basic landcover types: 1) highly arid desert 

regions, 2) narrow riparian zones, and 3) water. As such, we classified images into these 3 basic 

landcover types and achieved >97% classification accuracy at Imperial, Cibola and Havasu National 

Wildlife Refuges (Table B.1). The Lower Gila River and Salton Sea regions were more heterogeneous 

and contained much more agriculture, and therefore necessitated a more nuanced classification 

scheme. For these 2 regions, we classified pixels into 4 categories: 1) water, 2) bare, 3) natural 

vegetation, and 4) agriculture. We then applied the year-specific classified image to remove all pixels 

not designated as natural vegetation from subsequent analyses (Fig. B.3). We describe each step in 

more detail below. 
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6.1 –6.4 Annual summer NDVI composite 

Creating composite images from a collection of multitemporal imagery is a common approach 

to reduce the effects of cloud contamination, atmospheric interference, and sensor error (Holben 

1986). In this process, a collection of imagery is compressed into a single image based on some 

measure of pixel quality. For example, in a greenest pixel composites, each pixel location is sorted 

such that it represents the highest possible NDVI value from the collection of imagery (i.e., images 

collected during an entire year for the same location; Holben 1986). We created “modified” greenest 

pixel composites for each year of the study (1999–2018). Greenest pixel composite images caused 

problems with subsequent image classification, particularly along: 1) shallow areas of the Colorado 

River where submerged vegetation can temporarily be exposed and cause spikes in NDVI values and 

2) desert washes with sparse vegetation that will temporarily “green-up” after a rain event. When we 

created a composite image with the highest possible NDVI for each pixel, we experienced increased 

image classification error (i.e., shallow parts of the river and desert washes were classified as riparian 

vegetation). We alleviated these problems by creating greenest pixel composite based on the 85th 

1. Filter Landsat 
imagery for 1 May –
15 October of each 
year (1999-2018).

2. Apply cloud mask to 
remove pixels 

contaminated by cloud 
cover

3. Compute NDVI and 
add as a band to each 
image in annual the 

timeseries

4. Create an annual 
composite image based 
on the 85th percentile 
of NDVI (a modified 

greenest pixel 
composite).

5. Add predictor bands 
to each annual image

6. Create training 
features for each 

classification category

7. Apply Random 
Forest image 

classification to each 
annual composite 

image

8. Assess accuracy and 
adjust training features 

if necessary

9. Postprocess 
classified images (i.e., 

majority filters) to 
smooth out noise in 

classified images

10. Create a vegetation 
mask from all pixels 
classified as natural 

vegetation

11. Apply the year 
specific vegetation 

masks to exclude all 
pixels not classified as 

vegetation from 
analyses

Figure B.2. Vegetation mask derivation process. We used the vegetation masks to remove all pixels not 

classified as natural vegetation, thereby reducing the influence of non-vegetated pixels on the calculation of 

marsh condition covariates. 
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percentile NDVI values. Moreover, classification accuracy was higher for summer composites (i.e., 

composites built from imagery collected during the summer) than winter or full annual composites. As 

such, we created yearly composite images from all LS7 imagery collected during 1 May Yeart – 15 

October Yeart; 𝑡 =  2006, … , 2018. We then used these composite images to create year-specific 

vegetation masks, as discussed below. 

6.5 Predictor bands 

For Imperial, Cibola, and Havasu National Wildlife Refuge (i.e., those areas with 3-category 

classification schemes) we used TCW, TCB, TCG, NDMI, and NDSI as predictor bands in the 

classification. TCW, TCG, NDMI, and NDSI correlate with vegetation condition and soil moisture 

content. TCB reflects the brightness of the image and helped the models discern bare features (which 

are much brighter than water and vegetation). 

We incorporated temporal dynamics to improve the classification throughout the Lower Gila 

River and Salton Sea regions (Geerken et al. 2005, Geerken 2009). The Salton Sea and Lower Gila 

River were heavily interspersed with agriculture, which complicated classification. We fit first order 

harmonic trend models to a 20-year NDVI (vegetation greenness) timeseries for each pixel in the 

region to estimate the amplitude and timing of annual change. Agricultural fields are harvested 

repeatedly throughout the year and thus experience an erratic phenology with repeated high and low 

NDVI values. Marsh parcels, on the other hand, (typically) exhibit a simple annual cycle with a low 

NDVI values in the winter and higher NDVI values in the late summer/fall. We improved our ability 

to accurately discern wetland vegetation from agricultural areas by leveraging their different 

phenological NDVI cycles and including phase and amplitude (i.e., the timing and magnitude of 

seasonal change in NDVI) as predictors in the Random Forest classification. Indeed, average 

classification accuracy in these regions improved from 93.6% (±1.1%) to 97.6% (±0.3%) with the 

inclusion of phenological covariates. 

6.6 Training features 

For each study region we selected ≥15 training features in each category (e.g., water, bare, 

natural vegetation). We viewed high spatial resolution imagery on Google Earth (not Google Earth 

Engine) during the study period to ensure the selected training areas remained constant through time 

(i.e., bare areas remained bare and water features remained as water for duration of study period). We 

selected training features to represent the full range of spectral variation in each class and scattered 

them across the extent of the entire image to be classified.  
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6.7 Random forest 

In Random Forest, we built a classifier based on the range of spectral values of each training 

feature in the 5 predictor bands. We then applied the classifier to predict the class (land cover type) of 

each pixel in the image based on the spectral properties of that pixel (Fig. B.3).  

6.8 Error assessment 

To assess accuracy of our classifiers, we randomly partitioned all the pixels in our training 

features into a training dataset (60% of pixels) and testing dataset (40% of pixels). We then trained the 

classifier with the training dataset and verified it with the testing data. We assessed the accuracy of the 

classifier by comparing the classification with the true class of the pixel. 

If accuracy was <95%, we adjusted the number and location of training features to better 

capture the range of spectral values represented by each category and reclassified the image. We 

iterated this process until we achieved an accuracy >95% for each year of the study window (1999-

2018; Table B.1). 

Figure B.3. An example of a classified image clipped to a regional 

polygon. Green areas are classified as vegetation, blue areas are 

water and grey areas are bare/desert areas. 
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Table B.1. Random Forest image classification accuracy for each year and region of the 

study. NWR = National Wildlife Area and WA = Wildlife Area. 

 Region 

Year 

Cibola and 

Imperial 

NWR 

S.B. Salton 

Sea NWR 

Mittry Lake WA and 

Lower Gila River 

Havasu 

NWR 

1999 99.66 97.88 97.24 99.79 

2000 99.73 97.77 97.72 99.97 

2001 99.76 97.55 97.66 99.90 

2002 99.85 97.81 97.14 99.86 

2003 99.88 97.70 97.69 99.93 

2004 99.18 97.70 97.39 99.86 

2005 99.71 97.49 96.82 99.83 

2006 99.91 97.88 97.72 99.96 

2007 99.78 98.04 97.17 99.93 

2008 99.79 97.77 97.47 100.00 

2009 99.72 97.96 97.01 99.86 

2010 99.68 97.98 97.31 99.93 

2011 99.90 97.98 97.79 99.90 

2012 99.86 97.76 96.88 99.76 

2013 99.74 97.57 97.53 99.87 

2014 99.75 97.65 97.27 99.76 

2015 99.86 97.83 97.73 99.97 

2016 99.91 97.54 98.11 99.93 

2017 99.87 97.67 97.67 99.97 

2018 99.96 97.54 97.24 99.89 

 

6.9 Postprocessing of classified imagery 

Pixel-based image classification often results in some isolated, misclassified pixels (Lillesand 

and Kiefer 1994). As such, classification postprocessing is often applied to reduce this so called “salt 

and pepper” effect and improve the accuracy of the original classified image (Huang et al. 2014). We 

used a simple majority filter, in which each pixel is reclassified as the majority class in an N × N pixel 

neighborhood (Stuckens et al. 2000). If no class represents the majority in the neighborhood, pixels are 

left unchanged. We used a 2 × 2-pixel neighborhood because many wetland parcels in our study 

system were quite small and the riparian zone along the Lower Colorado River can be narrow. A small 

moving window minimized the risk of smoothing out narrow bands of correctly classified vegetation 

pixels. 
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6.10 – 6.11 Vegetation masking 

We aggregated all pixels not classified as natural vegetation to create a binary vegetation/non-

vegetation mask. We used the year-specific vegetation mask to remove non-vegetation pixels from all 

12 monthly images in the corresponding year. We iterated this process for all years in the timeseries. 

7. Spatial averages 

Once all non-vegetation pixels were removed from the monthly images, we computed the 

average spectral index value from all pixels in a 224-m buffer around the marsh bird survey points.  

8. Export index-specific timeseries 

Through the processes described above, we built a 20-year timeseries (with 240 monthly 

values) for each spectral index of interest at each marsh bird survey point and disturbance footprint 

(>9,000 timeseries). We exported these data from Google Earth Engine for analyses in R (R Core 

Team 2018).  

9. Linear interpolation 

Cloud contamination occasionally caused missing images in the timeseries (Table B.2). 

Missing images were rarely sequential (<1% of all missing images occurred on sequential months). As 

such, we relied on linear interpolation to fill any gaps in the timeseries. Linear interpolation fits a line 

between the nearest known data points to estimate the value of the missing data. We iteratively applied 

a linear interpolation to each index-specific timeseries for each marsh bird survey point to ensure a 

complete timeseries. We graphically inspected interpolated timeseries to assess performance of the 

interpolation. We performed all linear interpolations with the convenience package, imputeTS in R. 

Table B.2. Cloud contamination occasionally caused gaps in the Landsat timeseries extracted for each marsh bird 

survey point. Image region is the “clipping region” in which we processed Landsat imagery. The number of 

missing images is the average number of images missing from each marsh bird survey point in the region. % 

missing is the corresponding percentage of the 240-image timeseries that was missing. 

Image region Avg. # of missing images % of timeseries missing 

Havasu Region 0.1 0.04% 

Imperial and Cibola Region 1.2 0.5% 

Salton Sea Region 2.8 1.2% 

Mittry Lake and Gila River 4.4 1.8% 
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Proportion vegetated 

We estimated the proportion of vegetation within the 224-m buffer of each marsh bird survey 

point by summing the number of pixels classified as vegetation, calculating their area (each pixel = 

0.09 ha) and dividing by the total area of the buffer (15.78 ha). These estimates likely contained error 

among years due to misclassification in the vegetation mask, but we had no reason to suspect the error 

was systemic. Indeed, our estimates of the vegetated proportion of buffers tracked reasonably well 

with observed conditions (Fig. B.4) 

 

 

 

Figure B.4. Proportion of vegetation in the 224-m buffers of survey points through time. The top 

graph shows proportion of vegetation at an Imperial National Wildlife Refuge managed wetland and 

the bottom graph shows a more dynamic wetland parcel along the main stem of the Colorado River 

that experienced a steady increase in wetland vegetation. 
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