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Abstract

Tree-ring records are invaluable sources of seasonally-to-annually-resolved paleoclimate information

that allow for the multi-centennial to multi-millennial length contextualization of modern instrumental

observations and trends. Within the Northern Hemisphere, substantial temporal and spatial limitations

exist regarding the understanding of past temperature variability from within the tree-ring record. In

this body of work, I detail the refinement and application of the novel dendrochronological technique,

blue intensity (BI), in order to develop a new network of tree-ring-based temperature proxy records

across the mid-latitudes of North America. This dissertation, which heavily relies on the fundamental

tree-ring principle of limiting factor, utilizes high-elevation tree-ring collections derived from Picea rubens

and Picea engelmannii populations across the Appalachian, United States Rocky, and Sangre de Cristo

Mountain ranges to examine the relationships between numerous tree-ring metrics (total ring-width, BI,

and maximum latewood density) and climatic variables in temperature-limited montane environments.

This body of work illustrates the first broad-scale application of BI methods as well as the first BI-

based temperature reconstructions in North America below 45°latitude. In Chapter 1, I examine and

demonstrate a strong, positive, and temporally stable relationship between late-growing season maximum

air temperatures and the delta BI parameter using a P. rubens chronology from the southern Appalachian

mountains of the eastern United States. In Chapter 2, I examine the application of using BI methods to

develop a late-summer maximum temperature reconstruction for the southern Rocky Mountains—a mid-

latitude (i.e. 36 ◦N), arid region in North America, spanning 1735−2015 CE using a composite latewood

BI (LWB) Picea engelmannii chronology from multiple sites across the Sangre de Cristo Mountains

in northern New Mexico. The reconstruction demonstrates fluctuating warm and cool periods during

the latter portion of the Little Ice Age (ca. 1730–1850) and also documents substantial warming over

the last decade, the trend of which appears to be anomalous within the context of the past ca. 280

years. In Chapter 3, I demonstrate the use of LWB to reconstruct current-year growing (warm) season

maximum temperatures in the low-to-mid latitudes (30°-50°N) of western North America. I detail the

development of a new tree-ring network comprised of 26 LWB chronologies developed from living, high-

elevation Picea engelmannii sampled across the western United States. From this network, I develop 4

individual temperature reconstructions, which characterize regional temperature histories across western

North America from northern Mexico to southern British Columbia over the past 4 centuries. Further,

I compare these 4 temperature reconstructions to highlight the spatial patterns of regional temperature

trends throughout time. This body of work and the subsequent reconstructions provide important updates

and increased data point density to the tree ring temperature proxy network of the Northern Hemisphere.
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Additionally, I highlight the use of blue intensity methods at both low- and mid-latitude upper tree line

locations to increase the presence of strongly temperature-sensitive records at increasingly lower latitudes

of the Northern Hemisphere. I conclude this dissertation with a brief synthesis detailing the current state

of the global BI network and the anticipated future trajectory of BI methods within the paleoclimate

community.
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Chapter 1: Blue intensity as a temperature proxy

in the eastern United States: A pilot study from

a southern disjunct population of Picea rubens

(Sarg.)

Published: Heeter KJ, Harley GL, Van De Gevel SL, White PB (2019) Blue intensity as a

temperature proxy in the eastern United States: A pilot study from a southern disjunct population of

Picea rubens (Sarg.). Dendrochronologia 55:105-109

1.1 Abstract

Annual surface air temperatures across the eastern United States (US) have increased by more than

1°C within the last century, with the recent decades marked by an unprecedented warming trend. Tree-

rings have long been used as a proxy for climate reconstruction, but few truly temperature-sensitive

trees have been documented for the eastern US, much less the Appalachian Mountains in the Southeast.

Here, we measure blue intensity (BI) and ring width (RWI) in red spruce growing at the southernmost

latitudinal range margin of the species on the North Carolina-Tennessee border to test the efficacy of

using either metric as a temperature proxy in the eastern US. The BI and RWI chronologies spanned

1883-2008 and had an interseries correlations of 0.42 and 0.54, respectively, but time series were trimmed

to the period 1950-2008 due to low sample depth. We discovered strong, positive, and stable correlations

between both current-year early fall (September-October) Tmax (r=0.62; p< 0.001) and Tmean (r=0.51; p

< 0.001) and delta BI (∆BI) during the period 1950-2008, but found no significant relationships between

temperature and RWI. We show BI metrics measured in red spruce to be a promising temperature proxy

for the southern Appalachian Mountain region. Future research should focus on testing [1] the efficacy

of using BI on red spruce collected from across the species range, and [2] the potential for using BI as a

temperature proxy in other conifers distributed in the eastern US.

1.2 Introduction

Anthropogenic activities are the foremost contributors to the increasing severity of global climate

variability. Notably, annual surface air temperatures across the eastern United States (US) have increased

by more than 1°C within the last century (Pachauri et al., 2014). This warming trend is expected to
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continue, increasing surface air temperatures across the southern Appalachian Mountains and Southeast

US by at least 2.5°C within the next century (Kunkel et al., 2013; Horton, 2014). Tree-rings have long

been used as a proxy dataset for climate reconstruction. However, there are few reported tree-ring

proxies of temperature in the eastern US (e.g. Cook and Johnson 1989; Pearl et al. 2017), and none for

the Southeast. Red spruce (Picea rubens Sarg.) is a common conifer species in the eastern US, with a core

distribution in the northeastern US and Canada, and small, disjunct populations extending down to the

highest-elevations of the southern Appalachian Mountains on the North Carolina-Tennessee border. These

low-latitude, disjunct populations of climate refugia species left over after the last glacial period–such as

red spruce–could be critically important for providing a historical context for past temperatures.

In recent years, Blue Intensity (BI) metrics have been refined and increasingly integrated into the field

of dendroclimatology (McCarroll et al., 2002; Björklund et al., 2014; Rydval et al., 2014; Wilson et al.,

2014; Dolgova, 2016). However, most BI studies are focused on high-latitude species. In the northeastern

US, maximum latewood density (MXD) was used successfully to reconstruct summer monthly tempera-

tures (Conkey, 1986; Briffa et al., 1992). Delta BI (∆BI; the difference of latewood BI and earlywood BI,

which has comparable temperature correlations to MXD (e.g. Björklund et al. 2015), offers an efficient

and cost-effective alternative for reconstructing temperature. To date, no BI-derived temperature proxies

have been explored for the eastern US. In this paper, we demonstrate successful use of ∆BI as a tem-

perature proxy using red spruce growing at the southern range limit for the species. Given the extensive

distribution of red spruce from North Carolina/Tennessee into Canada, we highlight the potential of using

BI techniques to produce temperature reconstructions across the eastern US (Figure 1.1).

1.3 Methods

1.3 Study area

Tree-ring samples for this study were collected from Roan Mountain, North Carolina/Tennessee, US

(36.10°N, 82.13°W; Figure 1.1). The Roan Mountain area covers approximately 19 km2 of the southern

Appalachian Mountains and is located in the Blue Ridge physiographic province. Roan Mountain eleva-

tion ranges between 786 and 1916m, and the area is classified as Cfb (marine temperate climate) under

the Köppen climate classification system (White et al., 2012). Soils are well-drained Inceptisol loams

that form on steep, rocky slopes and ridge tops. Overstory species composition is heavily dominated by

red spruce and Fraser fir (Abies fraseri (Pursh) Poir.), with notable presence of associate species such as

yellow birch (Betula alleghaniensis Britt.), mountain maple (Acer spicatum Lam.), and American beech

(Fagus grandifolia Ehrh.) (White et al., 2012).
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Figure 1.1: Historical range (gray polygon; Little and Viereck 1971) of red spruce (Picea rubens Sarg.)
in North America shown with the location of the Roan Mountain, North Carolina/Tennessee, USA study
site (this study; triangle) and previously-documented locations of red spruce tree-ring collections (circles)
in the literature and/or on the International Tree Ring Data Bank.

1.3 Sample selection

In 2008, increment cores were collected from red spruce within six high elevation (>1800m) circular

0.05ha fixed-radius (12.66m) plots (separated by at least 100m) as part of a study detailed in White

et al. (2012). All plots were downslope from the ridgeline and predominately on the south-eastern aspect.

Samples were collected as close to the root-shoot interface to obtain the maximum amount of growth

rings for each individual (Fritts, 1976). For the purposes of this study, we selected increment cores from
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White et al. (2012) that [1] derived from canopy dominant trees, [2] contained the greatest number of

growth rings, and [3] exhibited minimal disturbance trends in ring-width patterns.

1.3 Chronology development

Red spruce cores were first mounted, then progressively sanded to 1000 grit (Speer, 2010). We scanned

all samples at 2400 dpi on an Epson Expression XL 12,000 scanner using an IT8.7/2 calibration card

coupled with 89 Silverfast software to ensure reproducibility. After calibration, we delineated rings and

obtained ring-width (RWI) and ∆BI data using CooRecorder (Larsson, 2014). Although we investigated

multiple BI metrics (i.e. earlywood maximum reflectance, latewood minimum reflectance (LWBI)), we

used the ∆BI metric because it greatly reduces the inherent bias of BI data resultant from potential

inter-ring discoloration (Björklund et al., 2013).

All samples were crossdated visually, then checked using the software COFECHA (Holmes, 1983).

After examining the effects of both the age-dependent and 2/3 spline interactive detrending approaches,

we ultimately detrended both the red spruce RWI and ∆BI series using the Signal-Free (SF) detrending

approach (Melvin and Briffa, 2008) with a 2/3 spline to produce chronologies with less bias in the mid-

lower frequencies. Because the increment cores selected for analysis were of similar age, the 2/3 spline

proved a better fit compared to the age-dependent spline. Further, initial climate-growth correlation

tests with both the 2/3 and age-dependent spline chronologies revealed similar but stronger agreement

between temperature data and the 2/3 spline chronology. We used the expressed population statistic

(EPS) to assess the signal strength of all detrended series.

1.3 Climate analysis

We tested Pearson correlation coefficients between the RWI and ∆BI and temperature datasets tem-

porally using the TreeClim package in R (Team et al., 2013; Zang and Biondi, 2015) and spatially using

the KNMI Climate Explorer (Trouet and Van Oldenborgh, 2013). We performed our statistical tests using

mean (Tmean) and maximum (Tmax) monthly temperatures from the Parameter-elevation Relationships

on Independent Slopes Model (PRISM) (Daly et al., 1994) surface temperature dataset at 4k resolution

and taken from the Roan Mountain region (36.21-35.17°N, 82.09-81.05°W). Correlations were calculated

over the 1950â2008 period based on the low sample depth and EPS prior to 1950. We used TreeClim

to test for signal stability using forward moving interval correlation analysis (c.f. Saladyga and Maxwell

2015).
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1.4 Results

We selected 52 red spruce increment cores out of the 286 total cores collected by White et al. (2012)

based on the radial growth parameters provided in the Methods section. The ∆BI chronology spanned

the period 1883-2008 and had an interseries correlation of 0.42. However, sample depth and thus EPS

dropped below 0.85 at the year 1949, so the final ∆BI time series used for analyses spanned 1950-2008

(Figure 1.2A). The RWI chronology spanned 1883-2008 with an intersersies correlation was 0.54 and had

an EPS value of > 0.85 during the period 1904-2008. For comparison purposes, we used the common

period of both chronologies, 1950-2008, for subsequent analyses.

Figure 1.2: (A) Relationship between the red spruce (Picea rubens Sarg.) delta blue intensity (∆BI)
chronology (blue) from Roan Mountain, North Carolina/Tennessee (n=52) and 4k PRISM Sep-Oct max-
imum temperature (Tmax; °C; black) values taken from the region: 36.21-35.17°N, 82.09-81.05°W during
the period 1950-2008. (B) Forward moving monthly correlations during the 1950-2008 period between
the ∆BI chronology and Sep-Oct Tmax. (C) Spatial correlations between gridded 4k PRISM Sep-Oct
Tmax during the period 1950-2008 and ∆BI. (D) Forward moving monthly correlations during the period
1950-2008 between RWI and Sep-Oct Tmax.



6

We tested a number of BI metrics and discovered the strongest correlations between the temperature

data and ∆BI. We found current-year early fall (September-October) Tmax (r = 0.62; p < 0.001) and

Tmean (r = 0.51; p < 0.001) were positively correlated with ∆BI during the period 1950-2008 (Figure

1.2A; results for Tmean not shown). We also found strong agreement between LWBI and Sep-Oct Tmax (r

= 0.51; p < 0.001) and Tmean (r = 0.54; p < 0.001). Agreement between ∆BI and both Tmax (r = 0.11;

p > 0.10) and Tmean (r = 0.10; p > 0.10) dropped significantly prior to 1950 due to a decrease in the

number of samples. Temporally, the stability of the ∆BI-Tmax and ∆BI-Tmean relationships were strong

for the months of September and October from 1950 to 2008 (only Tmax shown Figure 1.2B). Spatially,

Sep-Oct Tmax showed the highest seasonal correlation values (r > 0.60), as we found Roan Mountain red

spruce to be spatially representative of maximum temperature centralized along the southern Ridge and

Valley and Blue Ridge provinces and extending north through the Piedmont and Appalachian Plateau to

the Adirondack Mountains (Figure 1.2C). Our analysis showed no significant correlations between RWI

and Tmax (r = 0.11; p > 0.10) or Tmean (r = 0.02; p > 0.10) (for comparison, RWI-Tmax shown in Figure

1.2D).

1.5 Discussion

In the context of impending temperature increase during the next few decades, tree-ring based

reconstructions- which provide valuable information about regional to hemispheric climate history- allow

for a better understanding of climate variability over time and enable us to place the current warming

trend into historical context. Our study shows BI analysis performed on red spruce growing on Roan

Mountain, North Carolina/Tennessee to be a viable method for assessing temperature variability for the

southern Appalachian Mountain region. As a result of the logging legacy visible through much of the

Appalachian region (e.g. White and Cogbill 1992), our sample population was young, even-aged, and

overall limited by a lack of older individuals (e.g. > 60 years). This demonstrated that generally, more

BI samples are needed to carry the overall population signal compared to RWI (c.f. Rydval et al. 2014;

Wilson et al. 2014). Hence, over-sampling and targeting older individuals is a practice that should be

noted as application of BI extends throughout the eastern US.

To our knowledge, this study is the first to formally document the efficacy of using ∆BI as a temper-

ature proxy in the eastern US. Our results suggest that ∆BI has a strong relationship with instrumental

temperature data compared to RWI, and thus should be investigated elsewhere in viable conifers across

the eastern US. Previous studies correlating RWI and temperature in the eastern US (e.g. McLaughlin

et al. 1987; Johnson et al. 1988; Webster et al. 2004) have related unstable climate-growth relationships

to the dendroecology and decline of red spruce throughout its range, and Roan Mountain red spruce
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shows similar results. Yet, Pearl et al. (2017) provide a robust and skillful temperature reconstruction for

the northeast US using RWI of Atlantic white cedar (Chamaecyparis thyoides L.), which like red spruce,

exhibits a unique distribution characterized by range disjunctions and climate refugia.

For red spruce, RWI is likely more heavily influenced by residual signal noise from ecological distur-

bances (e.g. White et al. 2012, 2014), and therefore, requires more vigorous detrending methods (e.g.

Cook and Jacoby 1977; Conkey 1979; Pederson et al. 2004) than ∆BI data. White et al. (2014) observed a

general decline in red spruce RWI from the Roan Mountain site starting in the 1960s and continuing until

ca. 1990. They attributed the decline in RWI to the possible effects of acid deposition, which has been

shown to be a potential contributor to overall red spruce decline throughout the region (e.g. Johnson

and Siccama 1983; Adams and Eagar 1992; Soulé 2011). We did not observe this apparent decreasing

trend in ∆BI as reported for RWI by White et al. (2014).

Because we performed our study on individuals located at the southern range limit for red spruce,

similar if not stronger results should be found within higher-latitude portions of the range. Further, future

investigations should focus on testing the efficacy of using other conifer species distributed across the

eastern US for a temperature signal via BI. Yet, discoloration (e.g. resin pocket, blue stain: Grosmannia

clavigera) is one of the greatest sources of bias and error in BI analysis (Rydval et al., 2014). We observed

a lack of visual pigment variation between the heartwood and sapwood in red spruce collected from the

Roan Mountain site. Additionally, we observed an overall absence of discoloring resins in cores. This

combination of favorable wood characteristics ultimately allowed us to analyze our cores without the need

of any color-removing sample preparation such as ethanol or acetone treatments (Rydval et al., 2014),

but this might not be the case with other conifers tested in the eastern US.

Although our overall ∆BI chronology was short and did not extend beyond the observed period (ca.

1895), we demonstrate the potential to extend the BI network throughout other portions of the species

range (Figure 1.1) using extant collections. Numerous red spruce chronologies on the International Tree

Ring Data Bank, many of which extend back to the 16th century, may prove valuable for reconstruc-

tion models. Future research should focus on filling the spatial gaps in temperature proxies throughout

the eastern US by testing [1] the efficacy of using ∆BI on red spruce collected from throughout the

species range, and [2] the potential for using ∆BI, or other BI metrics (e.g. LWBI, earlywood maxi-

mum reflectance), as a temperature proxy in other conifers, such as Fraser fir, eastern hemlock (Tsuga

canadensis), Carolina hemlock (Tsuga caroliniana), Atlantic white cedar (e.g. Pearl et al. 2014), black

spruce (Picea mariana), and balsam fir (Abies balsamea).
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Chapter 2: Late summer temperature variability

for the Southern Rocky Mountains (USA) since

1735 CE: Applying blue light intensity to

low-latitude Picea engelmannii Parry ex Engelm.

Published: Heeter KJ, Harley GL, Maxwell JT, McGee JH, Matheus TJ (2020) Late summer

temperature variability for the Southern Rocky Mountains (USA) since 1735 CE: applying blue light

intensity to low-latitude Picea engelmannii Parry ex Engelm. Climatic Change pp 1-24

2.1 Abstract

Our study examines the application of using blue intensity (BI) methods to develop a late-summer

maximum temperature (Tmax) reconstruction for the Southern Rocky Mountains—a mid-latitude (i.e.

36 ◦N), arid region in North America. We reconstruct Aug−Sep (AS) Tmax for the period 1735−2015

CE using a composite latewood BI (LWB) Engelmann spruce (Picea engelmannii Parry ex Engelm.)

chronology from multiple sites across the Sangre de Cristo Mountains in northern New Mexico, USA.

This study presents the first BI-derived temperature reconstruction for the lower mid-latitudes (30–45◦N)

of North America. We compare the climate response of multiple tree-ring parameters: latewood BI

(LWB), earlywood BI (EWB), ∆BI (earlywood BI minus latewood BI), ring width (RW), and maximum

latewood density (MXD). Of all parameters, the site-composite LWB and ∆BI chronologies show the

strongest correlations with AS Tmax. Reconstructed AS Tmax demonstrates fluctuating warm and cool

periods during the latter portion of the Little Ice Age (ca. 1730–1850) and pronounced warming through

the early to mid 20th century (ca. 1920–1950s). The reconstruction also documents substantial warming

over the last decade, the trend of which appears to be anomalous within the context of the past ca. 280

years. We highlight the potential for BI methods to be successfully used at high elevation, mid-latitude

locations where temperature proxy datasets are scarce or non-existent. As many places across the mid-

latitudes lack contiguous, temporally-resolved, decadal-scale paleo-temperature proxies, we suggest here

that BI methods can be effective at improving the spatial gaps in the Northern Hemisphere temperature

proxy network.
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2.2 Introduction

Climate change is one of the foremost drivers of ecosystem modification (Mooney et al., 2009) and

imposes increasing vulnerabilities on both human and natural communities (Thornton et al., 2014).

As much of our understanding of climate change relies heavily on the assessment of instrumental data

limited to the modern era, proxy datasets are useful tools for better understanding the effects of human

influence on climate variability over longer temporal scales. Warming surface air temperatures over the

last century are one of the most widely documented effects of climate change globally (Jones et al.,

1999). In North America, increasing annual surface air temperatures are particularly pronounced in the

American Southwest and Southern Rocky Mountains region of the United States (US), where in some

areas, average surface air temperatures have increased upwards of 0.6 ◦C over the last decade (Blunden

and Arndt, 2016). As this warming trend is expected to continue, mean surface air temperatures are

projected to increase across the region by at least 2.5 ◦C within the next 30 years (Garfin et al., 2014). In

2019, instrumental records documented anomalously warm summer (June–August) mean temperatures

across the southwest US. In August 2019, Utah, Colorado, and New Mexico all experienced the warmest

monthly mean temperatures on record (NOAA 2019). The implications of the current warming trend

are particularly challenging in the southwest US, one of the driest regions of the country, where the

sustainability of both human and natural systems rely on water resource availability. The southwest

US has one of the fastest growing regional populations that is projected to increase 68%, reaching to

94 million by 2050 (Jardine et al., 2013). In a region that is expected to only get hotter and drier,

projections suggest that increased heat, coupled with changes to warm- (e.g. rainfall) and cool-season

(e.g. snowpack) precipitation, will drastically affect the lives and economies of over 56 million people.

Recent advances in dendrochronology have allowed for the development of temperature reconstructions

of varying spatial scales, ranging from local to hemispheric. Tree-ring based temperature reconstructions

were historically accomplished using instrumental data in combination with chronologies developed from

tree-ring parameters such as tree-ring width (RW) or maximum latewood density (MXD). In North Amer-

ica, the majority of tree-ring derived temperature reconstructions originate from high latitudes (>50◦N),

where temperature is expected to be the greatest limiting factor on tree growth (Jacoby and D’Arrigo,

1989; Briffa et al., 1992, 2001; Davi et al., 2003; Anchukaitis et al., 2013; Wiles et al., 2014; Wilson et al.,

2016). However, the development of MXD and RW networks in the mid-latitudes of the continental US

throughout the late 1980s and 1990s (e.g. Briffa et al., 1988, 1992; Schweingruber et al., 1993; Schwein-

gruber and Briffa, 1996) increased the density of chronologies which allowed for reconstruction of summer

temperatures across portions of the previously under-represented areas of North America. Networks of
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tree-ring derived climate proxies, which often also allow for longer-term reconstructions of precipitation

and temperature, are necessary to better understand regional spatial patterns of ecosystem response to

climate change. As chronology networks are important for examining current and past climate over large

spatial extents, they must be updated regularly to account for the most recent decades and added to

in places where the spatial representation of local climate variables by tree ring parameters is weak or

non-existent (Schneider et al., 2015; Stoffel et al., 2015; Wilson et al., 2016). Despite the fact that MXD is

a robust parameter for reconstructing past summer temperatures, only a few MXD-derived paleoclimate

endeavors have been accomplished within the continental US compared to within Europe, Canada, and

the Alaskan US. Compared to ring-width, substantially fewer millennial length MXD records exists for

North America (e.g. Luckman and Wilson, 2005), especially in in the low to mid-latitudes. The high cost

associated with producing tree-ring densitometry data is often prohibitive to research institutions. This,

in combination with time-consuming laboratory sample preparation requirements, are likely deterrents to

conducting rigorous, widespread updates to existing MXD chronologies so that they account for warming

trend since ca. 1990.

In attempts to remedy the issues relating to the time and cost-intensive nature of generating MXD

data, the application and skill of alternative tree-ring parameters for temperature reconstructions are

increasingly being evaluated. In recent years, refinement of blue intensity (BI) methods have allowed for

the development of a temperature-responsive, alternative tree-ring parameter to MXD (McCarroll et al.,

2002; Campbell et al., 2007; Björklund et al., 2014; Rydval et al., 2014; Wilson et al., 2014; Linderholm

et al., 2015). Early development of BI methods emphasized the use of imaging analysis techniques

to examine wood density properties, with the hypothesis that a strongly-coupled relationship between

reflected visible light in the blue wavelengths and wood density allowed the former to act as a surrogate

parameter for the latter (McCarroll et al., 2002). Sheppard et al. (1996) first demonstrated the successful

use of reflected light brightness values across earlywood and latewood to reconstruct temperature. As

late summer temperatures were found to be influential on the lignification of the secondary cell wall

(Gindl et al., 2000), and shorter radiation wavelengths are more readily absorbed by lignin, the strongest

association was identified between MXD and brightness resulting from the blue spectrum (McCarroll

et al., 2002). Refinement in the analysis of blue spectrum reflected light and standardization of laboratory

methods have resulted in the latewood blue intensity (LWB) parameter producing consistently comparable

correlations to temperature as MXD (e.g. Björklund et al. 2015). Further, LWB offers a more time-

efficient and cost-effective alternative to MXD for reconstructing temperature (Björklund et al., 2019).

Despite these advantages over MXD, most BI studies to date are primarily geographically restricted to

the high-latitudes. Given that BI methods are relatively new and still in an experimental phase, more
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studies are needed to evaluate the applicability of BI methods across different regions, especially at high

elevation, low latitude locations, where certain tree species still produce consistent annual growth rings

(e.g. Brookhouse and Graham 2016; Buckley et al. 2018; Heeter et al. 2019). To date, no published BI

data exist within the non-Alaskan continental US, and temperature-proxy data is especially spatially and

temporally limited at high elevations in the mid-latitudes (30–50◦N). Further, only a few attempts have

been made to reconstruct temperature using tree-ring parameters in the arid southwest US (Briffa et al.,

1992; Schweingruber and Briffa, 1996; Salzer and Kipfmueller, 2005). If BI methods can be successfully

used to reconstruct summer temperatures in places where MXD records are either absent or temporally

limited, this technique may improve the incomplete spatial and temporal coverage of paleoclimate records

across North America and elsewhere.

We identified the Southern Rocky Mountains region of the US (southern Colorado, northern New

Mexico) as a prime area to evaluate novel methods of developing tree-ring based climate reconstruction

for a variety of logistical and environmental reasons. The Southern Rocky Mountains has adequate spatial

and continuous temporal coverage of instrumental station data capable of documenting temperature

trends since the turn of the 20th century. Additionally, the complex relief of the southwest US allows

for local dominance and persistence of many long-lived, temperature-limited tree species growing at high

elevation (>3000 m). Similar to how they perform at high latitudes, temperature proxies have historically

been most successful at high altitudes, where inter annual climate variability strongly influences tree

growth as the limiting factor (Fritts, 1976). Because of its persistence at high elevations and latitudes,

Engelmann spruce (Picea engelmannii Parry ex Engelm.) has been shown to be an exceptional species for

developing climate reconstructions from tree ring data (Parker and Henoch, 1971; Wilson and Luckman,

2003). This long-lived (>600 yrs), shade-tolerant, canopy-dominant species occupies a range extending

from British Columbia in the north, through the western US, and becomes disjunct at the southern range

extent in south-central New Mexico (NM). At its southern range periphery, Engelmann spruce becomes

less dominant, as its distribution becomes more scarce and is limited to near tree line (Alexander and

Sheppard, 1984). Engelmann spruce habitat is typically characterized as humid with long, cold winters

and short, cool summers, with heavy snowfall and extreme temperature ranges. This habitat is considered

one of the highest-elevation and coldest forest environments in the non-Alaskan continental US.

In this study, we assess the efficacy of using BI methods within the mid-latitudes of the Southern

Rocky Mountains using three Engelmann spruce sites distributed across northern NM. Our successful

demonstration of the ability of the LWB metric to track late-summer maximum temperature (Tmax)

enabled us to develop a temperature reconstruction for the northern Sangre de Cristo range of north-

central NM. We reconstructed late-summer (August−September) Tmax using a composite Engelmann
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spruce LWB chronology spanning the period 1735−2015. Further, we enhanced our assessment of the

application of BI methods with the examination of pre-existing RW and MXD data available within our

immediate study area. Our study highlights the potential of using BI methods to produce larger-area

temperature reconstructions for the mid-latitudes encompassing the American Southwest and elsewhere

across the western US.

2.3 Methods

2.3 Study area

Our study area comprises three Engelmann spruce sites located at the southern geographical range

limit of the species within the Sangre de Cristo Mountains, northern NM: Wheeler Peak (WHE) (36.57

◦N, -105.42 ◦W), Serpent Lake (near Jicarita Peak; JIS) (36.06 ◦N, -105.56 ◦W), and San Leonardo Lakes

(SLE) (36.00 ◦N, -105.65 ◦W) (Little and Viereck 1971; Figure 2.1). The sampling elevation at the WHE

and JIS sites was between 3400 and 3600 m, which was at or near treeline at these sites (Figure 2.1;

Table 2.1). At SLE, however, steep (>40◦), unstable talus slopes restricted us to sampling at 3450 m,

despite treeline being located at ca. 3750 m. Instrumental data obtained nearest to our sample locations

indicate the local climate is characterized by minimum monthly average temperatures ranging from -11.8

in January to 11.1 in July, and maximum monthly average temperatures ranging from 4.2 in January to

29.2 in July. Annual precipitation ranges from 13.9 mm in February to 52.3 mm in August (averaged

1895−2018; US Climate Data 2019). For our study region, July and August are characterized as having

the highest average maximum temperatures (29.2 and 27.7 , respectively) as well as receiving the greatest

amount of monthly precipitation (36 mm and 48 mm, respectively) (US Climate Data 2019).

2.3 Sample collection

At each site, we collected increment cores from the largest-diameter and oldest-looking Engelmann

spruce individuals between 3500 to 4000 m elevation. All cores were extracted at breast height (1.3 m

above ground surface) using a 5.0 mm diameter increment borer. We sampled two cores from each tree

parallel to the contour of the slope to reduce abnormalities in ring growth (Stokes and Smiley, 1968). We

targeted trees that showed minimal outward evidence of landslide, insect, or wind damage. We collected

a total of 32 increment cores from 16 trees at WHE, 54 cores from 27 trees at JIS, and 44 cores from 22

trees at SLE.
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2.3 MXD data compilation

We gathered the MXD raw measurement dataset for WHE from the International Tree-Ring Data

Bank (ITRDB) (Briffa et al., 1992). The MXD dataset from WHE spans the period 1830-1983 and

increment cores were collected from trees at 3120 m.

2.3 Chronology development

While the development of BI methods is still in relative infancy compared to MXD, and due to the

fact that BI-derived data produced by different laboratories are likely to be combined across regions,

the importance of ensuring methods are standardized within the context of accuracy and precision is

paramount (Björklund et al., 2019). Engelmann spruce cores were dried and mounted, then sanded at

220, 400, 600, 1000 American National Standards Institute (ANSI) grit increments. Cores were finished

by hand sanding with a 9 µm film (Speer, 2010). Because the Engelmann spruce wood collected at

these sites is characterized by a light color and generally does not exhibit any discoloration due to heart-

wood/sapwood differences or resins, no chemical pigment extraction, often necessary for BI methodology,

was required for our samples. Before scanning, all samples were first crossdated visually using a 40x

microscope.

We first calibrated our scanner to ensure accuracy of generated BI values, then scanned all samples

at 2400 dpi on an Epson Expression XL 12000 scanner using an IT8.7/2 calibration card coupled with

the 89 Silverfast software to ensure replication. We scanned a total of 52 series. We conservatively

excluded cores from scanning if they possessed excessive amounts of traumatic resin ducts that formed

Table 2.1: Site location and chronology (ring-width(RW), blue intensity (BI), maximum latewood density
(MXD)) information for the Wheeler Peak (WHE), Serpent Lake (JIS), and San Leonardo Lakes (SLE)
study sites within the Sangre de Cristo Mountains, northern NM. Maximum Latewood Density (MXD)
information from Briffa et al. 1992.

WHE JIS SLE
Latitude(◦N) 36.65 36.06 36.00
Longitude(◦W) 105.42 105.56 105.65
Sampling elevation(m) 3600 3600 3450
RW: #cores (trees) 26 (16) 27 (20) 18 (13)
RW: Full period 1667−2015 1637−2014 1653−2015
BI: #cores (trees) 26 (16) 27 (20) 18 (13)
BI: Full period 1667−2015 1637−2014 1653−2015
MXD: Elevation 3120 − −
MXD: #cores(trees) 20(10) − −
MXD: Full period 1830−1983 − −
MXD: Elevation 3120 − −
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Figure 2.1: Map showing the locations and topographic settings (contours) of the three Engelmann spruce
sites sampled for blue intensity, including (A) Wheeler Peak (WHE), (B) Serpent Lake (JIS), and (C)
San Leonardo Lakes (SLE) site within the Sangre de Cristo Mountains, NM located at the southern range
limit for the species (grey polygon; Little and Viereck 1971). Approximate tree sampling locations and
elevations at each site are circled. Green lines in panels A-C represent hiking trails.

across the entire radial width of an annual ring, because a failure to avoid these cellular abnormalities

results in inaccurate blue reflectance values. We also excluded cores that had continuous blue fungal

stain. Although initial field sample collection was specifically designed to target the oldest trees with no

outward obvious signs of insect, landslide, or wind damage, all agents which increase the likelihood of

these types of wood abnormalities, we still removed between two and four cores from each site dataset for

this reason. After cores were scanned, we delineated growth ring boundaries using automated detection

in the program CooRecorder (Larsson, 2014) to generate RW values to the nearest 0.001 mm precision.

After obtaining RW measurements, we checked our dating accuracy using the software COFECHA

(Holmes, 1983). Once we were confident that all samples were accurately dated, we collected BI values
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using the CooRecorder software program. We modified BI collector settings in CooRecorder to collect raw

latewood BI (LWB) and ∆BI data. Although Engelmann spruce collected from our sites did not show any

sapwood/heartwood color changes, we decided to collect and examine the ∆BI metric to further explore

the climate response and relationship between ∆BI and LWB. Because samples exhibited moderate

age-related trends, we detrended the Englemann spruce RW, MXD, LWB, and ∆BI series. Since raw

LWB is negatively correlated with MXD, we inverted the raw LWB data to allow for detrending of

the data by methods similar to those used for MXD data (Rydval et al., 2014). We initially used

interactive detrending to examine the effects of various conservative smoothing splines within the Signal-

Free detrending (SFD) (Melvin and Briffa, 2008) framework (Figure S.1). All series were standardized

using the power transformed residuals. We detrended the ∆BI data similarly to the LWB data, because

the calculation of this metric inherently results in a positive correlation between inverted LWB and ∆BI

(Wilson et al., 2017a). We ultimately detrended the RW, BI, and MXD data using the age-dependent

spline (ADS) (Melvin et al., 2007) within the SFD framework, because the AD-spline produced the

best curve fit to the data. This combination also best reduced the medium-frequency distortion (e.g.

over-exaggeration) at the beginning and end segments of our chronologies (e.g. the 21st century climate

warming trend) resulting from the curve-fitting process. Similar to this study, Wilson et al. (2019) also

apply this detrending approach to both RW and LWB for the purpose of examining relationships between

growth/density and summer temperatures. We used the expressed population signal (EPS; Wigley et al.,

1984) with an arbitrary threshold of 0.80 to help evaluate the quality of our chronologies and to determine

the period over which we had sample replication adequate for developing a reconstruction.

2.3 Climate Response

We used Pearson correlation analysis to test temporal relationships between temperature data and

RW, MXD, EWB, LWB, and ∆BI data using the TreeClim package in R (Zang and Biondi, 2015). Further,

we used the KNMI Climate Explorer (Trouet and Van Oldenborgh, 2013) to assess spatial correlations

between temperature data and RWI, MXD, EWB, LWB, and ∆BI data. We performed these tests using

monthly maximum and mean (Tmax; Tmean) temperatures from the Parameter-elevation Relationships on

Independent Slopes Model (PRISM) (Daly et al., 1994) surface temperature dataset at 4k resolution and

averaged over the Southern Rocky Mountains (37.25–35.90 ◦N, 104.15–106.05 ◦W). Prior examination of

all tree-ring metrics (RW, MXD, and BI metrics) with minimum temperature indicated either no or very

weak significant relationships, thus, we excluded minimum temperature as a variable in any subsequent

analysis for this study. We chose to use PRISM data because this gridded data product adequately

provides high spatial resolution monthly temperature data that performs well in regions characterized by



17

complex terrain, such as in the heavily-dissected landscapes of the Southern Rocky Mountains. While

PRISM pulled temperature data from multiple stations in the region (Table S.1), the primary source

of temperature data pulled into the PRISM model for the area encompassing our sample area is the

Red River station (36.17 ◦N, 105.40 ◦W). This rural station, situated in the cool conifer mountain

terrain at 2644 m, provides temporally reliable and consistent temperature data from 1906 to 2015.

Correlations were calculated over the period 1895-2015. We tested for signal stability by performing

forward moving interval correlation analysis using TreeClim (Zang and Biondi, 2015). We assessed the

spatial homogeneity between the three site chronology signals using principal component analysis (PCA)

across all series over the well-replicated common period (1735–2015). Further, we examined the spatial

loadings of the individual chronologies based upon the most prominent principal component (e.g. Wilson

et al., 2007b).

2.3 Climate Reconstruction

We chose a principal components regression (PCR) technique to reconstruct late summer maximum

temperatures (AS Tmax) for the Southern Rocky Mountains. We initially pre-whitened the BI data

and temperature data to provide a conservative estimate of BI-climate relationships that did not ex-

hibit inflation due to auto-correlation. We used three correlation tests—Pearson, Robust Pearson, and

Spearman—to examine the BI-climate relationships and retained chronologies that were significantly (p

<0.01) related to AS Tmax over the common period (1907-2015). For BI series which were significant,

their original, non-pre-whitened chronologies were included in the PCR. Following the Kaiser-Guttman

rule (Guttman, 1954; Kaiser, 1960), we retained the first n eigenvectors with eigenvalues >1.0 for the

multiple regression. We determined the final subset of PCs by using the minimum Akaike information

criterion (AIC), which includes a penalty term for increasing the number of predictors in the model

(Akaike, 1974).

We split the instrumental period (1907-2015) into two equal periods termed the early period (1907-

1961) and late period (1962-2015) to validate and cross-validate the AS Tmax reconstruction model (Table

S.5). To ensure stability over time, model validation was performed by calculating calibration statistics

for the early period (1907-1961) and verification statistics for the late period (1962-2015), and vice-versa.

We used two goodness-of-fit tests to validate the models: the reduction of error (RE) and coefficient of

efficiency (CE) statistics (Fritts, 1976); (Cook et al., 1999). When RE values (ranges from -∞ to +1)

are positive, the calibration model is a more skillful predictor of the target data than the mean of the

instrumental data during the calibration period. Although CE has the same range and calculation, a

positive CE value is more difficult to obtain because it relies on the verification period mean for a baseline
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of predictive skill. The validation statistics produced were calibration and verification period coefficient

of determination (CR2 and VR2), validation period reduction of error (VRE) and coefficient of efficiency

(VCE), and root-mean-square error (RMSE). After successful determination that the model is time-stable,

we used linear regression to estimate AS Tmax calibrated over the full PRISM 4k instrumental period

(1907-2015) with the composite LWB chronology and evaluated the model residuals for linear trends and

first order auto-correlation (Durbin-Watson statistic) (Durbin and Watson, 1971).

To assess model uncertainty, we used the maximum entropy bootstrapping method (MEBoot) (Vinod

et al., 2009) to produce 1,000 reconstruction replicates. We used MEBoot because it produces an empirical

probability distribution for each reconstructed estimate (e.g. each year) on which the estimation of

uncertainty is based (Cook and Kairiukstis, 2013). Additionally, MEBoot does not assume stationarity,

preserves the auto-correlation structure of the time series, and calculations of uncertainty estimates for

the calibration and verification statistics are semi-parametric (Cook et al., 2013b).

2.4 Results and Discussion

2.4 Signal strength and homogeneity

Individually, WHE contains 26 series, spanning the period 1667-2015 for RW, EWB, LWB, and ∆BI

data (Table 2.1). MXD data for WHE contains 20 series and spans the period 1830−1983. JIS is

comprised of 27 series and spans the period 1637−2014. SLE contains 18 series and spans the period

1653−2015. For each individual site, both RBAR and EPS values indicate that RW maintains the

strongest common signal over the period where the EPS is >0.80 in comparison to BI and MXD (Table

2.2). The mean RBAR for RW across the three sample sites is 0.57 (ranging 0.54−0.59). For EWB, the

mean RBAR is 0.27 (ranging 0.26−0.27). For LWB the mean RBAR is 0.28 (ranging 0.25−0.31), which

is comparable to the EWB RBAR and the ∆BI mean RBAR of 0.31 (ranging 0.29−0.35). The mean

RBAR for MXD, comprised of only one site (WHE), is 0.49.

The mean number of series from across the three sites required to meet an arbitrary EPS value of

0.80 is 3 for RW, 10 for EWB, 11 for LWB, 9 for ∆BI, and 5 for MXD. At each site, BI requires at least

three times the amount of measured series than RW to meet the EPS threshold. This is consistent with

other BI studies conducted in North America and Europe, which suggests that one of the caveats of BI is

that it requires substantially more trees to reach the point of theoretical infinite replication and maintain

a signal adequate for developing a reconstruction (Wilson et al., 2017a, 2019). The development of local

networks comprised of data obtained across multiple nearby sites, such as in the case we present here, can

be an effective way to overcome this problem of low sample depth. The LWB signal in the Southern Rocky
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Mountains is surprisingly strong for the relatively few trees needed to reach the EPS threshold (Table

2.2). This may be attributed to increased commonality in growth response among individuals across

these three study sites, or potentially be a result of increased densiometric (here, referring to the process

of latewood lignification) synchrony of Engelmann spruce compared to other species (e.g. Picea glauca,

white spruce). Similarly, the RBAR values for RW at each site are almost twice as high as those for BI.

However, MXD displays superior signal commonality to BI, second to RW. Comparatively, MXD, like

RW, requires fewer samples to achieve a strong common signal. The RBAR is also more comparable to

RW than to any BI metric. Both EWB and the LWB have comparable signal commonality to ∆BI. This

similarity can be expected due to the nature of the calculation of ∆BI, as ∆BI quantifies the difference

between BI measurements collected from the earlywood and latewood zones of the annual ring.

Overall, tree-ring metrics across each site correlate strongly with one another (Table S.2). Strong,

positive correlations (p<0.01) between metrics across different sites suggests strong spatial correspondence

between overall growth and physiological response of same-species individuals at closely situated sample

sites. The high level of agreement between tree-ring metrics at these three sites was the motivation

to develop a composite chronology. As LWB, like MXD, acts as a representation of latewood density

(Björklund et al., 2019), we should expect similar trends of cross-metric correlations between BI and RW

as between MXD and RW. Under this assumption, we should expect that MXD is more highly correlated

with LWB than with RW. As raw LWB data displays an inverse relationship with MXD, high correlations

found between MXD and the inverted LWB is consistent with the literature. Surprisingly, the MXD taken

from WHE correlates higher with JIS ∆BI (r=0.57) than WHE LWB or WHE ∆BI (r=0.48 and 0.34,

respectively). This is likely a result of differences in sampling locations of WHE MXD and WHE BI/RW,

as WHE MXD was collected at a significantly lower elevation (Table 2.1) and from different trees than

those for WHE RW/BI. Across the three sites, SLE and JIS have the weakest positive correlation for

the LWB variable. For each individual site, EWB has the weakest coupling with RW of all BI metrics,

followed by LWB and ∆BI (Table S.2).

While the BI chronologies display strong signal commonality for the the most recent 200 years, they

are not adequately replicated enough to meet an EPS value of 0.80 prior to 1786. The separate PCAs

for RW, EWB, LWB, and ∆BI over the period 1735−2015 revealed similar loadings for each of the four

variables. The explained variance on the first eigenvector is 40.9% for RW, 30.7% for EWB, 35.3% for

LWB, and 30.8% for ∆BI (Table S.3). In comparison to series originating from WHE and SLE, series

from JIS load weakly to PC1. This difference in loading is likely partially influenced by varying micro-

topographical variables and JIS being the only site located on an east aspect rather than a west aspect.

Based on PCA results, series from individual sites were pooled into one regional composite chronology
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for RW, EWB, LWB, and ∆BI to maximize signal commonality over a longer time period. Our resulting

composite chronologies for each parameter are better replicated over longer periods of time compared to

individual site chronologies. Additionally, these composite chronologies allow for direct comparisons of

multiple tree-ring parameters and for the better examination of various detrending techniques. While

the composite chronologies extend from 1635 to 2015, chronology variants for RW, EWB, LWB, ∆BI,

and MXD (Figure S.1) indicate that these composite chronologies have adequate signal commonality and

sample representation (EPS>0.80) back to 1735. The composite RW chronology displays the highest

amount of common signal variability (RBAR=0.33) and maintains an EPS>0.80 to 1713 (Table S.4).

The LWB composite chronology shows the second highest common signal (RBAR=0.29) and maintains

an EPS>0.80 to 1738.

The examination of using various detrending methods resulted in relatively similar resultant chronolo-

gies, especially in most recent 100 years, for all tree-ring metrics except for the EWB parameter. The

LWB chronology shows the least sensitivity to various modes of detrending compared to all other tree-ring

metrics examined in this study (Figure S.1). The 2
3 and NEGEXP smoothing splines over and under-

exaggerate, respectively, the end effects of the EWB chronology post-1950. All modes of detrending show

the greatest amount of variability prior to 1800, where the sample depth is comparatively lower. For

RW, EWB, LWB, and ∆BI, the chronology versions using the 2
3 spline track the ADS variants the most

similarly. From 1653 to present, the NEGEXP variants for composite RW, LWB, and ∆BI chronologies

display lower mean z-scores over this period, and thus, show higher variance from 1653 to 1800 (period

where EPS<0.80) than the 2
3 spline and ADS variants. This exaggerated decrease in early period mean

chronology values exemplifies the ”end effect” artifact from applying a stiff, linear curve fit model to the

data. We ultimately used a constrained ADS to minimize the loss in climate signal in the most recent pe-

riod (Wilson et al., 2019). Compared to the composite RW chronology, the composite chronologies for all

BI metrics show less variability over the entire period. This is consistent with other similar studies, which

compare variants of RW and LWB (e.g. Wilson et al., 2019). The lower frequency (e.g. multi-decadal

to centennial) signals are greatly affected by both the mode and practice of detrending (Figure S.1), as

well as by innate proxy characteristics (e.g. changes in series length and sample depth). This notion

is the impetus for further examination into the effects of combinations of such variables for continual

refinement of novel methods in developing paleoclimate proxy records from natural sources (e.g. BI from

tree rings). The EPS value intermittently waivers around 0.80 for LWB and ∆BI between 1725 and

1760 before consistently dropping below the 0.80 threshold. From here, we limit further analysis of our

composite tree ring chronologies to the period 1735−2015, where we have adequate sample replication

across all tree ring metrics.
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Table 2.2: RBAR and the number of series needed to attain an EPS of 0.80 for all individual sample
sites: Wheeler Peak (WHE), Serpent Lake (JIS), and San Leonardo Lakes (SLE). For RBAR values, all
data were detrended using the Age-Dependent Spline in the Signal Free framework (AD-sf).

WHE JIS SLE Mean
RW RBAR 0.590 0.586 0.540 0.572
No.series EPS 3 3 4 3
Year EPS 0.80 1699 1709 1707 1705
EWB RBAR 0.259 0.262 0.274 0.265
No. series EPS 9 10 12 10
Year EPS 0.80 1800 1759 1778 1779
LWB RBAR 0.309 0.286 0.252 0.282
No. series EPS 0.80 9 11 12 11
Year EPS 0.8 1797 1768 1802 1789
∆BI RBAR 0.294 0.350 0.295 0.313
No. series EPS 0.8 10 8 10 9
Year EPS 0.80 1804 1737 1818 1786
MXD RBAR 0.493 - - -
No. series EPS 0.80 5 - - -
Year EPS 0.80 1833 - - -

2.4 Climate response and regional expression

Our climate response analysis of RW, EWB, LWB, and ∆BI is conducted over the period 1907−2015,

where there is continuous data from at least two individual stations within the sample region. Within the

Sangre de Cristo mountain range of the Southern Rocky Mountains (37.25−35.90◦N, 104.15−106.05◦W),

all parameters are more strongly correlated with Tmax than Tmean (Table S.4. At each individual site,

August and September Tmax (AS Tmax) consistently show the strongest relationships with both BI

metrics (Figure 2.2A). The pooling of series from all sites into one regional chronology improves the

climate response of all three BI metrics to AS Tmax (Figure 2.2A). Individually, RW shows a minor

positive response to AS Tmax at JIS and SLE, but does not exhibit any significant response when pooled

into the composite chronology. The lack of temperature signal of RW found here differs from signals

found from RW in spruce-dominated boreal forests of higher latitude studies (e.g. Wilson et al. 2019;

Luckman and Wilson 2005). We suggest that RW shows less of a temperature response because even

though these high elevation spruce-dominated forests of northern NM are more humid than most other

areas of the southwest US, the comparatively arid climate still heavily influences patterns of radial growth.

We examined this further by running correlation tests for all composite chronologies against PRISM 4k

precipitation data from the same spatial and temporal extents used to examine PRISM temperature data

(Table S.5). Although RW is the only metric that shows a weak, positive correlation with precipitation

(current and previous year(−1) data) over the entire 1907−2015 period, this metric does show strong,
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positive correlations with May(−1) precipitation over the period 1980−2015 (r=0.54, p<0.01). This

increasing response of RW to precipitation is coupled with decreased sensitivity to temperature in the

most recent period (Figure S.4) and suggests the possibility of precipitation becoming an increasingly

limiting factor on radial growth at high elevations within this region. EWB, LWB, and ∆BI show

significant negative correlations with current year August precipitation. Similar to the trend seen with

RW, these relationships strengthen after 1980. Here, the data suggest that changes in precipitation are

increasingly influenced by changes in temperature (e.g. 21st century warming). This modern trend is

well documented across other parts of the southwest US (Weiss et al., 2009; Cayan et al., 2010).

The strongest relationship with temperature exists between LWB and seasonal Tmax (r=0.64). The

regional LWB chronology is also a strong predictor of Tmean (r=0.54). The temperature signal of the

EWB composite chronology is weaker and more spatially limited than the signals found in the LWB and

∆BI composite chronologies. Examination of EWB from these sites indicates that while the composite

chronology shows significant positive relationships with both AS Tmean and AS Tmax over the entire

tested observational period (r=0.21 and 0.37, respectively), the temperature signal strength is spatially

limited beyond the extent of the immediate study area (Figure S.3). Additionally, the EWB metric shows

significant positive correlations with March Tmax in the more recent decades (1960-present) (Figure S.4).

This trend warrants further examination, as it may have important implications regarding the recent

phenomenon of earlier onset of spring warming in the region, especially within the context of examining

differences in the the anatomical basis for density between earlywood and latewood (e.g. Björklund

et al., 2017). Changes to the seasonal timing and pace of spring snowmelt driven by rapidly warming

spring temperatures in the latter 20th century is well documented across the western US (Cayan et al.,

2001; Westerling et al., 2006; Cayan et al., 2010; Harley et al., 2020b). As the applicability of EWB

as a dendroclimatic parameter has not yet been widely examined (e.g. Björklund et al., 2014, 2017;

Buckley et al., 2018), future studies examining the temperature sensitivity of the EWB parameter warrant

additional consideration.

To compare climate response of the WHE MXD data to the other metrics, we conducted additional

analysis over a shortened period (Table S.4), which only includes the years during which MXD is rep-

resented (1907−1983). Compared to LWB, the climate response of MXD to AS Tmean and Tmax is

relatively low. This is consistent with results using these same MXD chronology data by Briffa et al.

(2002). Strictly comparing LWB and MXD at WHE, there is a slight seasonal response difference between

these two metrics. The decoupling of late-growing season temperature response between MXD and LWB

is somewhat inconsistent with findings from other studies comparing climate response of MXD versus

BI at higher latitudes (e.g. Björklund et al. 2014; Wilson et al. 2014; Björklund et al. 2015; Fuentes
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et al. 2018; Kaczka et al. 2018). Instead, at WHE, MXD appears to have improved temperature response

throughout the majority of the growing season (May−Aug) (Figure S.4). The difference in monthly cli-

mate response between LWB and MXD may be influenced by the ways in which each individual proxy

represents lignification, as this process occurs after all radial cell growth has ceased at the end of the

growing season (Gindl et al., 2000). While slight seasonal differences between the temperature response

of MXD and LWB at WHE are likely due to the innate proxy characteristics themselves, we also consider

the influence of differing sample locations for each proxy (e.g. differences in individual trees sampled,

topographic position of sampled trees). For example, while both MXD and BI data originate from sam-

ples collected at WHE, MXD samples were taken from trees located at a lower elevation and different

aspect. We suggest that future studies aiming to develop paleo-temperature proxies from BI methods in

the southwest US should consider sampling at as high elevation as possible in order to capture the most

robust temperature response from samples. Moreso, additional exploration is needed to better under-

stand the influence of microtopography on temperature-limited trees in the the mid-latitudes of North

America (e.g. Büntgen et al., 2008b).

We assess the temporal stability of positive relationships between PRISM 4k AS Tmax data from the

study region and RW, EWB, LWB, and ∆BI over the period 1907−2015, as well as the stability for MXD

over the period 1907−1983 (Figure 2.2B, Figure S.4). Both the forward and backward moving correlation

analyses indicate that the relationships between AS Tmax and LWB and ∆BI are strong over the entire

instrumental period. However, LWB shows less weakening in the relationship with temperature than

∆BI. We suspect the weakening in the ∆BI signal is likely attributed to the influence of the EWB data

used for the calculation of the ∆BI data. MXD shows temporal stability similar to that of ∆BI, but only

for the month of August. RW generally shows a weak and temporally-unstable relationship to Tmax over

the test period. However, RW does show a significant (p<0.01) negative relationship with March Tmax

in the most recent decades. RW also shows weak but significant positive correlations with August Tmax

in the early instrumental period (1910−1960) but exhibits a high degree of divergence from instrumental

temperature data after 1960. We suspect that the weak and unstable RW-temperature signal is partially

due to the presence of the strong previous spring precipitation signal in the composite RW chronology

(Table S.5). These data suggest that warmer-than-average spring temperatures could have an increasingly

negative affect on overall radial growth of Engelmann spruce at high elevations in this region, and that

ring-width is not an adequate parameter for capturing and preserving a temperature signal. Further, the

data support that within this region of the Southern Rocky Mountains, precipitation is becoming more

of a limiting factor on radial tree growth than in previous decades.
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The time stability of the composite LWB chronology over the full instrumental period is notable for

this region. Unlike many of the extant RW-based chronologies encompassing the western US—including

the composite RW chronology presented in this study—the composite LWB chronology does not exhibit

a high degree of divergence (Wilson et al., 2007a; D’Arrigo et al., 2008) from regional temperature data

in the most recent decades. As this is the first known publication of a LWB chronology published for this

region, this study demonstrates the potential for this tree-ring parameter to improve the spatial resolution

of temperature proxy records that adequately capture climatic trends of the most recent decades over

broader regions (e.g. gridded network reconstructions). For example, hemispheric-scale temperature re-

constructions, such as the temperature reconstruction for the Northern Hemisphere presented by Wilson

et al. (2007a), used two chronologies from the mid-latitude continental US (Biondi et al., 1999; Salzer and

Kipfmueller, 2005) due to the limited number of adequately temperature-responsive tree-ring chronologies

in this area. While using a small number of tree-ring chronologies to accomplish a broad-scale, gridded

network of temperature reconstructions may not be overly problematic due to the highly auto-correlated

nature of instrumental temperature data, increasing the density of robust tree-ring based temperature

proxy data sets will likely lead to sub-regional improvements in predictive skill for such reconstruction

efforts. As the development and integration of BI methods at lower-latitude, temperature-limited loca-

tions continues to enhance the field of dendroclimatology, we suspect that the modern period can be

adequately captured with the use of BI methods, in conjunction with MXD, to improve understandings

of the temporal and spatial variability of past temperatures.

Compared to other tree ring metrics explored in this study, LWB shows the strongest and most

spatially-resolved temperature signal over the entire instrumental period (Figures S.2; S.3). As expected

due to the nature of the calculation, the strength and spatial distribution of correlations between ∆BI and

AS Tmax most resemble those produced by the LWB chronology. However, because we see no necessity to

use the ∆BI metric due to heartwood/sapwood color homogeneity in our composite chronology series, we

limit further examination of BI methods for late summer temperature reconstruction to the LWB metric.

The spatial distribution of correlations produced by both the non-transformed and first-differenced ver-

sions of the composite AD-sf LWB chronology and PRISM 4k Tmax closely resemble one another (Figure

S.2). Both non-transformed and first-differenced versions of the LWB chronology demonstrate strong

(r>0.50), significant (p<0.01) relationships the study area surface air temperatures, as well as with tem-

peratures over the greater geographic area extending north-south along the Southern Rocky Mountain

region (39.0−37.0 ◦N, 106.0−105.0 ◦W) of New Mexico and Colorado. While the non-transformed version

of the LWB chronology shows the strongest (r>0.60) relationship with maximum temperature within the

immediate study area, with the centroid of the strongest spatial correlation located along the Sangre de
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Cristo range, the first-differenced chronology indicates a northward shift of the highest spatial correlations

centered around the Rio Grande National Forest in southern Colorado. Additionally, the first-differenced

chronology shows greater spatial smoothing and more concentric diffusion of the regional expression.

Overall similarity of the non-transformed and first-differenced versions of the chronology suggests that

the composite LWB record [1] is a robust and skilful representation of the regional climate, especially for

AS Tmax, and [2] maintains the regional temperature signal over the entire instrumental period, and is

therefore a promising candidate to develop a reconstruction.

2.4 Climate Reconstruction

We provide a late summer maximum temperature (AS Tmax) reconstruction for the Southern Rocky

Mountains that spans the period 1735-2015 (Figure 2.3). The predictor time series in the reconstruction

model is the AD-sf detrended composite LWB chronology, which is strongly and positively calibrated

with the predictand data, AS Tmax, during the instrumental period (1907−2015). The LWB chronology

explains 42% of the instrumental AS Tmax variance (R2=0.42) from 1907 to 2015 (Figure 2.3A,B). Model

performance is consistent and time-stable, with both early/late period (and vice-versa) statistics passing

validation tests (Table S.6). The strongest model verification occurred by calibrating the model during

the late period (1962-2015) and validating over the early period (1907-1961), which is a common finding

likely due to the improved accuracy of instrumental data over time (e.g. Maxwell et al., 2017; Harley

et al., 2017; Harley and Maxwell, 2018).

The AS Tmax reconstruction for the Southern Rocky Mountains indicates multiple decadal-scale warm-

ing and cooling events over the past ca. 120 years (Figure 2.3). Comparison of our LWB-based recon-

struction with other regional tree-ring based summer temperature reconstructions indicates overall general

commonality of multi-decadal patterns for across many parts of Northern America (Figure 2.4). Four

of the five warmest single-year anomalies occur from 1924 to 1939, and the 1930s, 1940s, and 1950s all

rank as the 2nd, 1st, and 3rd warmest decades, respectively (Figure 2.4, Table S.7). The warmest decadal

anomalies from our reconstruction show agreement with other regional summer temperature reconstruc-

tions. The two warmest decadal anomalies (1930s and 1940s) are also within the top five warmest decadal

anomalies of reconstructions by Briffa et al. (1992); Trouet et al. (2013); Wilson et al. (2014, 2019) (Fig-

ure 2.4). The coldest decadal anomalies from our reconstruction also closely align with those from the

(Wilson et al., 2019) LWB-based reconstruction, placing the 1760s, 1810s, and 1830s as the three coldest

decades. In particular, the MXD-based reconstruction presented by Briffa et al. (1992) shows the most

similarity of multi-decadal trends (r=0.53, p<0.01) over the common reconstructed period. This should
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Figure 2.2: A) Monthly climate response of tree ring metrics: RW, LWB, ∆BI, and MXD to regional
PRISM 4k Tmax data for both the individual sites (WHE, JIS, SLE) and for the AD-sf detrended com-
posite chronologies from previous year April (Apr(−1)) through current year December. Climate response
is calculated from previous year April (Apr(−1)) to current year December over the period (1907−1983),
and dashed line represents α=0.05; B) Forward and backward (evolutionary) moving correlation (gray
dots represent α=0.05) of composite LWB chronology and regional PRISM 4k AS Tmax over the period
1907−2015.

be expected due to the regional overlap between our reconstruction and the one presented by Briffa et al.

(1992).

Late summer temperature conditions during the 20th and 21st centuries are most notable in the

reconstruction from the Southern Rocky Mountain Region (Figure 2.4). The 20th century is characterized
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Figure 2.3: Late-summer maximum temperature (AS Tmax) reconstruction for the Southern Rocky Moun-
tains, United States. (A) Comparison of regional PRISM 4k AS Tmax instrumental data (black) and
reconstructed AS Tmax values (red), (B) scatter plot of the AS Tmax reconstructed versus instrumental
values plotted with linear function (red) and standard error (blue), and (C) reconstruction of Aug−Sep
Tmax using the LWB AD-sf composite chronology extending from 1735 to 2015.

by steady warming until ca. 1955, with a marked imprint of the 1930s Dust Bowl—a series of anomalously

dry and warm events experienced throughout portions of the southern plains of the US into northeast

NM (Cook et al., 2014). Our reconstruction, which documents an average decadal anomaly of +0.88

during this time (Table S.7), agrees with the temperature anomalies presented by Cook et al. (2014),

who document summer temperature anomalies for the Southern Rocky Mountains (ranging from +1 to

+2) that are linked to the Dust Bowl of 1934. The period of prolonged warming in the 1930s through

the 1950s is consistent with other reconstructions in other areas of North America (Briffa et al., 1992;

Trouet et al., 2013; Wiles et al., 2019). This warming is most comparable with the warming period from

1930−1950 presented in the Briffa et al. (1992) MXD-based reconstruction as well as the reconstruction

from Trouet et al. (2013). Primary causes of the Dust Bowl are linked to La Niña conditions in the

Pacific Ocean, warm sea surface temperatures (SSTs) in the north Atlantic Ocean, and human-induced

land degradation (Seager et al., 2008). A combination of dust storms and the vegetation reduction via the

replacement of drought-resistant prairie grass with drought-sensitive wheat during the 1920s are shown
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to be amplifiers of the anomalously high temperatures (Cook et al., 2009). Most maps detailing the

spatial imprint of Dust Bowl temperature anomalies (e.g. Cook et al., 2008) include the easternmost

NM counties. Here, we suggest that even at the highest elevations of the Sangre de Cristo Mountains of

north-central NM, the Dust Bowl era includes the most pronounced warming event in the context of the

past ca. 280 years.

After 1955, a cooling trend occurs for the next ca. 50 years until 2000. The most recent decade is

marked by a rapid, extreme warming trend, a rate of change that appears unprecedented since at least

1735. The warming trend of the early 20th century, followed by a 50 year cooler-than-average period,

followed by rapid warming in the last 15 years somewhat differs from many of the more general warming

trends documented across the majority of the southwest US, which suggest continual warming from 1900

until present. Despite this difference, we are confident that the reconstruction we present here is truly

representative of the local climate, as seen through the lens of the local instrumental record. At high

elevations proximal to cool mountain lakes, such as those sampled in this study, the general warming of

the 20th century is captured but not nearly as pronounced as in other areas of North America. While our

reconstruction is in close agreement with the Wilson et al. (2019) reconstruction from the Yukon Territory,

Canada, the Southern Rocky Mountains reconstruction does not show as dramatic of a warming trend in

the beginning of the 21st century, except for the last ca. 5 years of the record. Comparison of this period

trend in both reconstructions begins to address the varying magnitude of warming at different latitudes

within North America, but further comparisons are ultimately limited by the noncontemporary lengths

of the records (the Yukon reconstruction ending in 2004). Overall multi-decadal trends between our

reconstruction and the reconstruction presented by Wilson et al. (2014) for southern British Columbia,

are relatively similar, but they do display some misalignment of cold decades. The dissimilarities between

maximum summer temperatures between southern British Columbia and the Southern Rocky Mountains

suggest implications of broader climate dynamics across North America that warrants future examination.

The reconstruction also shows indications of cool periods aligning with the last ca. 100 years of the

Little Ice Age (LIA; ca. 1300−1850 CE), a period of below-average temperatures. The LIA has been

the focus of many studies and recent work suggests that the onset, duration, and intensity of the LIA

appears to have sub-regional spatial difference (e.g. Wahl and Smerdon, 2012; Neukom et al., 2019).

Because our reconstruction only covers the last ca. 100 years of the LIA, relative comparisons with other

reconstructions documenting the full duration of this period are precluded by the length of our record.

Nonetheless, we demonstrate contrasting cool and warm phases within the latter part of the LIA. The

trend of the reconstruction shows a cooling period from 1735 to 1835, then slightly warmer-than-average

conditions from 1840 to 1885. After 1885, increasingly warming conditions persist until 1955.
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Figure 2.4: Paleo-temperature comparisons for western North America. Plotted are the records of the
Southern Rocky Mountains LWB AS Tmax reconstruction presented in this study with the Wilson et al.
(2014) LWBMay−Aug Tmax record for British Columbia, Canada (orange), the Wilson et al. (2019) LWB
May−Aug Tmax record over Yukon Territory, Canada (purple), the Trouet et al. (2013) ring-width annual
Tmean record over western North America (blue), and the Briffa et al. (1992) MXD-based reconstruction
of Apr−Sep Tmean over the American Southwest (red; plotted is grid point #30 from 35◦N, 110◦W).

In the Southern Rocky Mountain region, we discovered close coupling between maximum summer tem-

perature and hydroclimate over the past ca. 280 years. We note substantial association between our AS
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Tmax reconstruction and the summer drought reconstruction from El Malpais, NM (34.79◦N,108.00◦W;

Oliver et al., 2019) with regard to intensity of anomalies, especially since the turn of the 20th (Figure

2.5). We attribute this strong coupling between temperature and hydroclimate to the growing influ-

ence of modern (the start of the instrumental record to present) increasing surface air temperatures on

the hydrologic cycle, as this is recently documented across the American Southwest (Weiss et al., 2009;

Cayan et al., 2010; Udall and Overpeck, 2017). The decreased synchrony between either wet+cool or

dry+warm events in the earlier parts of the record suggests that the relationship between temperature

and hydroclimate in this region was more decoupled prior to the Industrial Revolution, and hence, this

phenomenon is specific to the 20th-21st centuries (at least within the context of the past 280 years).

The shift in synchrony between our temperature reconstruction and the Oliver et al. (2019) hydroclimate

reconstruction after ca. 1835 alludes to the influence of anthropogenic warming on the modern hydrologic

system in this region. Based on this trend, we suggest that more well-validated, long-term temperature

proxy records are increasingly important in areas such as the Southwest US for placing modern hot-

droughts into historical context, as has been shown for the Midwest US (Maxwell and Harley, 2017). The

multi-millennial hydroclimate reconstruction by Oliver et al. (2019) extends from 2015 back to 492 BCE.

Although our record currently extends to the 1730s, developing a longer-term record could be possible

across the region, especially at high elevation sites in the Sangre de Cristo Mountains. In particular, we

discovered an abundance of submerged, remnant Engelmann spruce logs at the SLE site (Figure S.5).

Future efforts should be placed on extending the Southern Rocky Mountains temperature reconstruc-

tion back in time by incorporating remnant and subfossil spruce material. Such an effort would allow

for longer-term understandings of hydroclimate-drought relationships, especially comparing the current

warming trend with conditions during the Medieval Climatic Anomaly and LIA.

Within the context of developing temperature reconstruction networks over greater spatial extents,

LWB offers an efficient and effective alternative tree-ring parameter to MXD for developing temperature-

sensitive chronologies that account for periods of time that should be interpreted cautiously due to low

sample depth. These periods include prior to 1400 CE and post 1988 CE (Anchukaitis et al., 2017). While

this reconstruction is limited from 1735 to 2015, we do account for the most recent decades. Although the

reconstruction we present here offers valuable insight regarding temperature variability over the Southern

Rocky Mountains during the last 280 years, this study would be improved by additional sampling efforts

resulting in the ability to evaluate longer-term, multi-centennial variability in the region. While we

demonstrate the successful application of BI methods on living Engelmann spruce located at the southern

range limit for the species, further investigation regarding the efficacy of BI on remnant samples (e.g.

Wilson et al., 2017b) must be examined. The three sites from this study are all located up-slope from
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Figure 2.5: Hydroclimate-temperature comparisons for the Southern Rocky Mountains. Comparison of
11-year anomalies of (top) west-central New Mexico hydroclimate conditions presented by Oliver et al.
(2019), and (bottom) reconstructed AS Tmax presented in this study over the period of overlap 1735−2015.
Identified are period of coupled wet+cool and dry+warm conditions across the region.

alpine lakes, which contain many large, likely old, logs as a result from prolonged geomorphological events

(e.g. rock slide, avalanche) (Figure S.5). Future sampling of these logs will allow for the development

of a composite chronology that extends further back in time with increased sample depth. However,

one of the major issues using BI methods on non-living trees is the increased presence of discoloration

due to decay and algal/fungal staining (Björklund et al., 2014; Wilson et al., 2017b). While this issue

may be remedied by pre-treating discolored cores with a combination of acetone and ethanol (Rydval

et al., 2014), living tree samples are often generally brighter than samples from older remnant material

(Björklund et al., 2014). To reduce potential bias resultant from brightness differences between samples

of live and dead trees, the ∆BI metric may be of increased importance here. As LWB and ∆BI exhibit
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similar relationships to monthly Tmax, the ∆BI metric may have additional use for investigating BI

methods on subfossil wood and combining remnant BI chronologies with BI chronologies from live trees.

To our knowledge, this study is the first instance of a temperature reconstruction using BI methods at

the mid-latitudes of North America. While attempts have been made to develop chronology networks in

the western US (Schweingruber, 1988), these tree-line networks do not include BI-derived data. Although

a considerable number of BI-derived Engelmann spruce chronologies exist in western Canada (e.g. Wilson

et al. 2014), future efforts should also be placed towards extending the BI-data network towards the

southern half of the natural species range (e.g. Utah, Colorado, Wyoming, Idaho, Montana, US). Such

an effort would enable connections between the record presented here for the Southern Rocky Mountains,

and the BI-derived temperature records from the Yukon (Wilson et al., 2019) and British Columbia

(Wilson and Luckman, 2003), thus, resulting in the ability to produce broad-scale, long-term temperature

information for western North America during this period of rapidly changing climate.

2.5 Conclusions

In this study, we demonstrate the successful application of BI methods on tree cores collected across

three high-elevation, mid-latitude populations of Engelmann spruce located at the species southern ge-

ographical range limit. To our knowledge, this is the first published study to explore the application of

this technique in the mid-latitudes of North America for the purpose of developing a temperature recon-

struction. We reconstructed late summer temperatures spanning from 1735 until 2015 using the LWB

metric, and demonstrate that BI metrics can provide robust climate proxy data in the mid-latitudes of

the US. As this study shows both spatially and temporally resolved temperature response for the southern

Rocky Mountains region of the US, this study does suggest that BI methods are useful for producing

temperature-responsive parameters which are alternative to MXD. In possessing many attractive qual-

ities such as cost and time efficiency, and do not appear to have exhibit a divergence issue as seen in

other tree-ring metrics, BI methods offer an important alternative approach to spatially improving under-

represented locations within pre-existing temperature networks that rely heavily on MXD. In places such

as the American Southwest, where even MXD records are spatially and temporally limited, further wide-

scale examination of BI methods is necessary for more adequately capturing broader regional climate

trends and placing current warming trends into greater spatial and historical contexts.
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3.1 Abstract

Regional reconstructions of air temperature over the past millennium provide critical context for on-

going climate change, but they are temporally limited in the recent period or absent for many parts of

the world. We demonstrate the use of latewood blue intensity (LWB) to reconstruct current-year growing

(warm) season maximum temperatures (Tmax) in the low-to-mid latitudes (30°-50°N) of western North

America. We present a new tree ring network comprised of 26 LWB chronologies developed from living,

high-elevation Engelmann spruce (Picea engelmannii Parry ex Engelm.) sampled across the western

United States. The LWB parameter shows strong, positive (r=0.65-0.73), and temporally-stable correla-

tions with growing season Tmax. From this network we present 4 individual Tmax reconstructions, which

characterize regional temperature histories across western North America from northern Mexico to south-

ern British Columbia over the past 4 centuries. Our comparison of these 4 temperature reconstructions

highlights the spatial patterns of regional temperature trends throughout time. These reconstructions

provide important updates and increased data point density to the tree ring temperature proxy network of

the Northern Hemisphere. We highlight the use of blue intensity methods at both low- and mid-latitude

upper tree line locations to increase the presence of strongly temperature-sensitive records at increasingly

lower latitudes of the Northern Hemisphere.

3.2 Introduction

The instrumental temperature record of the past ca. 120 years is too short for contextualizing recent

temperature trends over longer timescales. Paleoclimate reconstructions, particularly derived from tree
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ring (TR) records, provide valuable estimates of past temperature variability that extend beyond the ob-

servational period (Jones et al., 1998; Mann et al., 1999, 2009; Wahl and Ammann, 2007; Christiansen and

Charpentier-Ljungqvist, 2012; Cook et al., 2013a; Linderholm et al., 2015; Esper et al., 2018). Currently,

the Northern Hemisphere (NH) contains numerous regions that are underrepresented by the coverage of

long (e.g multi-century) TR-based paleoclimate proxies (Wilson et al., 2016; Anchukaitis et al., 2017;

Köse et al., 2017). This study addresses the development of a collection of TR-derived proxy records in

a region underrepresented by updated paleo-temperature records—the temperate zone of western North

America—and presents a substantial improvement to the spatial coverage of paleo-temperature TR proxy

record coverage across the NH paleo-network.

Within the family of paleoclimate proxy records, tree rings are valuable because they provide exactly-

dated, well-replicated and sub-annually-resolved data that can extend back in time for multiple millennia,

allowing for the analysis of low-frequency variability and trends (Cook and Briffa, 1990; Briffa et al., 2004).

As novel dendrochronological techniques are developed and refined, tree rings have become one of the

most important sources of late Holocene paleoclimate information, especially in the context of providing

information about past hydroclimate and temperatures over increasingly longer time periods and across

broader areas of the NH (D’Arrigo et al., 2006; Cook et al., 2007; Schneider et al., 2015; Stoffel et al.,

2015; Cook et al., 2015; Wilson et al., 2016; Anchukaitis et al., 2017; Esper et al., 2018; Cook et al.,

2020). Most large-scale temperature reconstructions are based on either a single index, such as one

hemispheric or global mean derived from many points (e.g. Frank et al. 2010; Masson-Delmotte et al.

2013) or a spatially-resolved climate field reconstruction, emphasizing regionality before the calculation

of large-scale means (e.g. Tingley et al. 2012; Anchukaitis et al. 2017).

A synthesis of continental-to hemispheric-scale temperature reconstructions indicates a coherent, un-

precedented increase of surface air temperatures within the last century (Mann et al., 1999; Ahmed et al.,

2013; Masson-Delmotte et al., 2013). While such large-scale, single-point mean climate indices provide

robust, large-scale estimates for attribution studies (Zhai et al., 2018; Stott et al., 2010), they do not

perform well for examining regional-scale (100-500 km) temperature variability and relationships with

internal modes of climate variability (Neukom et al., 2014; Wilson et al., 2016; Neukom et al., 2019;

Christiansen and Ljungqvist, 2017; Maxwell et al., 2020). The challenges associated with the accuracy

and reliability of large-scale temperature reconstructions could be due to changes in strength of the

predictor-predictand relationship across geographic space (e.g. function of distance decay), especially in

places where the data network is spatially heterogeneous or sparse. The concurrent assumptions that [1]

proxies must be robust estimators of local temperature and [2] the large-scale mean is well-represented by

a network of local temperature datasets (Christiansen and Ljungqvist, 2017) may not be well-maintained
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as the number of records decreases back in time. Relationships between local and NH mean temperatures

are largely dependent upon geography, thus, the correspondence of interannual local temperature vari-

ability to NH mean temperatures varies across space (Christiansen and Ljungqvist, 2017). To account for

regional variability that is often muted in large-scale reconstructions, finer-scale models offer the benefits

of more accurately characterizing local-to-regional scale climate variability and geographic expressions of

atmospheric circulation patterns, radiative forcing, and ocean-atmosphere variability (Anchukaitis et al.,

2017).

Across the NH, TR-derived temperature reconstructions are most highly concentrated at high latitudes

(>50°N), where temperature is expected to be the most limiting factor on tree growth (e.g. Fritts 1976;

Jacoby and D’Arrigo 1989; Briffa et al. 1992, 2001; Anchukaitis et al. 2013; Wilson et al. 2014; Björklund

et al. 2014; Rydval et al. 2014; Linderholm et al. 2015; Björklund et al. 2015; Wilson et al. 2017a; Rydval

et al. 2017; Fuentes et al. 2018; Wilson et al. 2019; Björklund et al. 2019). At high latitudes, spatially-

resolved TR proxies have been applied successfully for the evaluation of past temperature forcing by

volcanism (Anchukaitis et al., 2017; Edwards et al., 2021) and the timing and amplitude of past cool and

warm events such as the Medieval Climate Anomaly (MCA), the Little Ice Agre (LIA), and the 20th-21st

century warming trend (D’Arrigo et al., 2006; Schneider et al., 2015; Wilson et al., 2016). The same

principle of temperature as a limiting factor for trees at high-latitudes (e.g. D’Arrigo et al. 2001; Gervais

and MacDonald 2001; Porter et al. 2013), also applies in high-elevation zones of low-to-mid-latitude,

montane environments.

Recent progress to broaden the latitudinal extent of the NH TR temperature proxy network to the

lower latitudes (< 45°N, e.g. Briffa et al. 2001; Büntgen et al. 2008a; Dorado Liñán et al. 2012; Büntgen

et al. 2017; Heeter et al. 2019; Esper et al. 2020; Reid and Wilson 2020; Heeter et al. 2020; Harley et al.

2020a; Büntgen et al. 2005; Fan et al. 2009; Buckley et al. 2018) can be attributed to [1] an increased

number of investigations of high-elevation, temperature-sensitive trees, and [2] the development and

application of additional TR metrics other than tree ring width (TRW) such as maximum latewood

density (MXD; Schweingruber et al. 1978) and blue intensity (BI; McCarroll et al. 2002). These studies

demonstrate that when TRW serves as a weak temperature predictor due to complex climate-growth

relationships at lower latitudes (<40°N) (George and Ault, 2014; Fritts, 1976; Wilson et al., 2016; Büntgen

et al., 2008a; Reid and Wilson, 2020), ring-density parameters (e.g. MXD and BI) can still be strongly

representative of local to regional temperatures.

Over the last decade, BI-derived temperature proxies have become important additions to the MXD

and TRW temperature proxy network across the NH. BI uses the light absorbance properties of wood

compounds that comprise the cell walls (e.g. lignin) to obtain a measure of raw light reflectance across the



37

earlywood and latewood zones of an annual growth ring. Examination of minimum BI by McCarroll et al.

(2002) showed the latewood reflectance exhibited a strong, negative relationship with MXD (r = -0.95,

p <0.01), and thereby were the first to suggest that BI could be an important and effective surrogate

for MXD to examine annual to decadal-scale changes in temperature. As raw BI measurement data are

inversely correlated with MXD (i.e. a dense, dark latewood will express low reflectance), current protocol

inverts the raw latewood BI (latewood blue intensity; LWB) to allow the same detrending procedures to

be used for both LWB and MXD data (Wilson et al., 2014; Rydval et al., 2014). As such, the LWB metric

response to summer maximum temperature (Tmax) is typically very similar to that of MXD. Aside from

exhibiting stronger, positive relationships with instrumental summer temperature data than TRW (e.g.

Wilson et al. 2014), both MXD and LWB are shown to exhibit less signal contamination from biological

memory of non-climatic factors and express similar auto-correlative properties to the instrumental data

(Esper et al., 2014; Rydval et al., 2018; Lücke et al., 2019).

Continued efforts by the paleoclimate community to develop and archive robust temperature-proxy

data are apparent by chronology network syntheses (e.g. Briffa et al. 1988, 1992; Schweingruber et al.

1993; Schweingruber and Briffa 1996), and most recently, the creation of NTREND-2016, a publicly

available multi-TR-proxy dataset (Figure 1), as well as the PAGES 2K multi-proxy dataset (Consortium

et al., 2017). While the spatial representation of paleo-temperature proxies in many parts of the low-

and mid-latitudes of the NH continues to improve, many of these pre-existing proxies do not include the

most recent period (e.g. Briffa et al., 2001); currently only a few TR based temperature reconstructions

from the low-to-mid-latitudes of the NH extend past ca. 1990. As such, many of these records cannot

be calibrated with instrumental climate data over the last ca. 20−30 years—a period characterized by

unprecedented and extreme climatic trend. Therefore, temperature-sensitive records that extend to the

most recent period are valuable, because they provide a more complete understanding of climate-tree

growth relationships and past climate variability (Larson et al., 2013).

To date, few TR-based temperature reconstructions, which characterize historical regional temper-

ature variability, exist for the western continental United States (US) (Douglas and Stockton, 1975;

Graumlich and Brubaker, 1986; Briffa et al., 1992; Graumlich, 1993; Biondi et al., 1999; Salzer et al.,

2014a; Heeter et al., 2020, 2021; Martin et al., 2020). However, most of these records end prior to ca.

2000, and thus do not contextualize recent warming trends. The western US is a region within the NH

where improvements to the temperature proxy network are needed both spatially and temporally. In

this paper, we present a temperature-sensitive TR proxy network comprised of LWB records from 26

sites across the western US. We use this new network to produce 4 regional reconstructions of growing-

season Tmax that represent the spatial temperature variability not only across the low-to-mid latitudes
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of the western US, but also throughout southern Canada and northern Mexico. Temporally, these re-

gional reconstructions include the most recent decade (post 2010 CE) and span several hundred years

back in time. The temporal span of these reconstructions is valuable in that they track recent trends in

regional temperature and their multi-century contextualization. Further, we emphasize the potential for

BI parameters to fill data gaps in other low-to-mid-latitude regions globally.

3.3 Methods

3.3 Study location

Data for this study are derived from a network of 26 sample sites across various regions of the western

continental US (Figure 3.1; Table 3.1). All site-level TR chronologies are derived from living Engelmann

spruce (Picea engelmanni Parry ex Engelm.). Sites were visited between 2001 and 2020, with the majority

of samples collected during the summers of 2017 and 2018. At each site, we used a hand-held increment

borer to extract cores from 10 to 25 living trees, with 2 cores taken per tree at 1.3 m above the ground.

We targeted P. engelmannii for this study, because this species is widely distributed across the most

temperature-limited environments (elevations >3,000 m) of the western US. Further, P. engelmannii was

shown previously to be favorable for BI methods due to its light-colored wood, characterized by a lack

of a visual color change between heartwood and sapwood, and a lack of resin content (e.g. Wilson et al.

2014; Heeter et al. 2020).

3.3.1.1 Sample preparation and data collection

Each core sample was processed with the intent of collecting both TRW and LWB data. As such,

we followed careful BI sample protocols to ensure high quality surface preparation, including achieving

a flat sample surface plane and the removal of samples exhibiting discoloration due to resin content or

fungal staining. After collection, cores were dried and mounted in the lab. Given that BI measurements

can be affected by the presence of mobile wood compounds not confined to an individual annual ring,

such as water and resins, chemical-based resin extraction is often required prior to BI measurement (e.g.

24 °C 99.5% acetone bath; Rydval et al. 2014; Buckley et al. 2018). Because the radial sections of P.

engelmannii cores were typically free of excessive resins and were uniformly light-colored with no obvi-

ous heartwood/sapwood color change, the samples for this study were not chemically treated. However,

in recent decades, widespread activity from high-density populations of spruce beetle (Dendroctous ru-

fipennis Kirby [Coleoptera: Scolytinae]) has caused large-scale forest disturbances across western North

America. The fungal symbiont most frequently associated with spruce beetle (95% of individuals) is
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Figure 3.1: Global-spatial context of the western US blue intensity network. A) Location and data-
classification of temperature-sensitive, tree-ring datasets currently included in the recent N-TREND
network compiled by Wilson et al. (2016), as well as the 26 LWB chronology sites presented in this
study (red circles). Map insets (B-F) displaying the locations of all 26 sites examined in this study sorted
by physiographic region, as well as the species range of Picea engelmannii (green polygon) as indicated by
Little and Viereck (1971). Chronologies are clustered by hierarchical cluster analysis into 4 regions (Figure
S.7): US Northern Rocky Mountains (teal), Central Rocky Mountains (green), Intermontane Plateau
(salmon), and Southern Rocky Mountains (dark red). Numbers correspond to respective chronology
information and statistics displayed in Table 3.1.

Leptographium abietinum (Peck) M.J. Wingf. (Aukema et al., 2005; Cardoza et al., 2008; Six and Bentz,

2003), a blue-staining endophloedic species (Davis et al., 2018). P. engelmannii are particularly prone to
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Table 3.1: Information for sample sites (n=26) examined for the western US latewood blue intensity
network. State Codes: Idaho: ID, Montana: MT, Wyoming: WY, Utah: UT, Colorado: CO, and New
Mexico: NM.*Site numbers correspond to labels in Figure 3.1. Replication (Rep) indicates number of
trees for each LWB chronology required to attain EPS >0.85, Years represents the timespan of each
chronology using the EPS >0.85 threshold. We also include the average RBAR of each chronology and
the optimum Pearson’s correlations (p<0.05) for 1920-present (1970-present) for each LWB chronology
against the local 0.5◦(or larger where relevant) CRU TS 4.04 (Harris et al. 2014) maximum temperature
grid.

Site
#

Site
code

US
State

Lat.
(°N)

Lon.
(°E)

Elev.
(m)

Rep Years RBAR Correlation Tmax (post
1970)

1 BFL ID 48.88 -116.81 2282 3 1721-2019 0.54 Aug: 0.61 (0.68)
2 MCO ID 46.80 -116.86 2963 5 1920-2019 0.34 JAS: 0.43 (0.37)
3 FKY MT 45.50 -111.67 1930 10 1901-2000 0.26 Mar-Aug: 0.56 (0.61)
4 FLS WY 44.91 -109.53 2959 7 1766-2016 0.28 JJA: 0.64 (0.68)
5 RPS WY 44.99 -109.92 3046 8 1781-2017 0.27 JJA: 0.67 (0.67)
6 MWS WY 44.80 -110.43 2960 8 1760-2019 0.29 JJA: 0.52 (0.59)
7 BTP WY 44.57 -109.29 3010 5 1756-2015 0.39 JJA: 0.65 (0.61)
8 CBS WY 44.57 -109.37 2945 6 1730-2015 0.34 JJAS: 0.65 (0.61)
9 TOW WY 44.54 -109.31 2960 7 1850-2015 0.28 Aug: 0.64 (0.70)
10 MBP WY 41.21 -109.29 3225 9 1909-2015 0.26 Aug: 0.53 (0.55)
11 MON UT 38.60 -111.96 3122 6 1886-2016 0.32 Apr-Aug: 0.60 (0.61)
12 TUS UT 38.36 -112.38 3263 3 1667-2011 0.49 Apr-Aug: 0.53 (0.50)
13 TLM UT 38.41 -111.47 3436 8 1848-2016 0.27 Apr-Aug: 0.51 (0.57)
14 BUP UT 37.32 -113.50 3438 3 1654-2018 0.65 AM: 0.47 (0.52)
15 PLS UT 38.07 -111.56 3280 13 1891-2000 0.26 AM: 0.47 (0.47)
16 HAY UT 38.49 -109.25 3271 6 1861-2017 0.32 Apr-Aug: 0.49 (0.59)
17 ABA UT 37.84 -109.46 3425 4 1859-2002 0.42 Apr-Aug: 0.45 (0.50)
18 MDB CO 40.21 -105.29 3300 4 1659-2015 0.43 AS: 0.46 (0.53)
19 CPI CO 38.82 -106.40 3580 4 1778-2015 0.43 Jun-Sep: 0.54 (0.62)
20 PPL CO 38.52 -105.42 3460 7 1732-2015 0.30 Aug: 0.36 (0.53)
21 PPU CO 38.52 -105.42 3550 3 1623-2015 0.53 Aug: 0.54 (0.61)
22 WHE NM 36.55 -105.41 3708 5 1803-2015 0.39 AS: 0.57 (0.59)
23 JIS NM 36.18 -105.56 3587 6 1776-2014 0.32 AS: 0.56 (0.62)
24 SLE NM 36.04 -105.54 3594 7 1848-2014 0.28 Aug: 0.39 (0.43)
25 TLS NM 35.99 -105.64 3573 5 1694-2018 0.36 Aug: 0.53 (0.58)
26 LOS NM 33.39 -105.81 3760 4 1878-2018 0.35 AS: 0.65 (0.73)

discoloration from blue-stain fungus, which presents a potential problem for measuring BI on this species.

For this reason, we avoided sampling any trees with evidence of spruce beetle infestation. Cores were

also examined for any evidence of blue staining and omitted from further analysis if present.

After examining cores for discoloration, we saturated the cells of the mounted samples by brushing

the surfaces with water. We incrementally shaved all saturated samples with a core-microtome until a

flat planar surface was achieved (Gärtner and Nievergelt, 2010). Lastly, all shaved samples were polished

with 40 micron sanding paper and treated with compressed air to remove any residual sawdust particles

from the intercelluar pores or cracks in the wood.
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Prepared samples were scanned as JPEG images on a calibrated Epson 12000 XL flatbed scanner

at 3200 dpi. We initially calibrated our scanner using the Silverfast software in combination with an

IT8 7.2 calibration card. We then measured TRW of the scanned cores to 0.001 mm precision using

the software CooRecorder (Larsson, 2014). After all samples were measured, visual TRW cross-dating

was statistically validated using the software COFECHA (Holmes, 1983). After absolute dating was

established with TRW, we obtained LWB data for all samples in CooRecorder (Cybis, 2020).

3.3 Chronology development and regionalization

We developed TRW and LWB chronologies for each of the 26 sample sites, totalling 52 chronologies.

As all chronologies showed non-climatic, growth-related age trends (Fritts, 1976), we compared multi-

ple approaches to series detrending (e.g. Negative Exponential, Age-dependent, 2/3 spline) in both the

ARSTAN (Cook and Holmes, 1996) and SignalFree (Melvin and Briffa, 2008) frameworks. The examina-

tion of multiple detrending options revealed minimal differences between chronology variants, however,

we found that the best chronologies were consistently produced when calculated as power-transformed

residuals (rather than ratios) in the SignalFree (SF) framework, detrended with the Age-dependent spline

(SF-ad); we applied SF-ad detrending to all chronologies in the network. We used an expressed popula-

tion signal (EPS) value of 0.85 to identify the period when chronology sample depth is not representative

of the theoretical perfect chronology. Common signal fidelity of each chronology was assessed using the

RBAR (average correlation between series; Fritts 1976) value.

We examined the spatio-temporal relationships between the detrended TRW and LWB chronologies

and local (within 0.5°of the sample location) CRU TS 4.04 0.5°(land) Tmean and Tmax data (Harris et al.,

2014) using a Pearson correlation analysis in KNMI Climate Explorer (Trouet and Van Oldenborgh,

2013) over the period spanning 1920−present. This period best reflects when the representation of high-

elevation areas by montane, climate-data stations is most-reliable and consistent across the western US.

Because the TRW chronologies showed consistently weak correlations with CRU Tmean and Tmax (Harris

et al., 2014) (see section 3.4.1; Figure S.6), we focus the remaining description of methods to LWB

predictors.

We sorted all LWB chronologies into sub-regional groupings using a 2 step process. First, we assessed

the spatial homogeneity between all chronologies using principal component analysis (PCA; Husson et al.,

2016) over the common period shared by all 26 chronologies (1920−2000). Following the Kaiser-Guttman

rule (Guttman, 1954; Kaiser, 1960), we retained the first n eigenvectors with eigenvalues >1.0. The

network-wide PCA on the 26 LWB chronologies resulted in 3 PCs with eigenvalues >1.0, explaining a

cumulative 68.5% (PC1: 45.2%, PC2: 14.4%, PC3: 8.9%) of the overall variance amongst the LWB
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chronologies. Second, regional groupings were defined using a complete linkages hierarchical cluster

analysis (HCA) (Revelle, 1979) on a Euclidean distance matrix created from loading values of LWB

chronologies to the final subset of PCs using the R package FactorMineR (Husson et al., 2016). Results

of the complete linkage HCA on the loading values of the chronologies to PC1−3 suggested optimal level of

division was achieved at a height of 0.70 (Figure S.7). This division level allowed us to group chronologies

into 4 geographic regions: the Northern (NR), Central (CR), and Southern Rocky Mountains (SR), and

the Intermontane Plateau (IP).

Once individual chronologies were sorted into regions, we examined each site chronology against

regionally-averaged CRU TS 4.04 0.5°temperature (Tmax, Tmean), precipitation, and self-calibrating

Palmer’s Severity Drought Index (scPDSI) spatial data fields (Harris et al., 2014) for each region in

Climate Explorer. Since LWB predictors consistently showed the strongest relationships with regionally-

averaged CRU Tmax over the common instrumental period (Figure 3.2; Figure S.8), we proceeded with

the CRU Tmax dataset for the subsequent reconstructions. To determine the target seasonality of the

subsequent reconstructions, we compared Pearson correlations across multiple months to determine which

combination of months would result in the strongest positive relationship between the instrumental record

and the predictors for each region.

3.3 Regional reconstruction models

Using the regional groupings identified by the HCA, we developed 4 regional Tmax reconstructions

using a nested principal components regression (PCR) approach, which accounts for the decrease in num-

ber of predictor chronologies back through time (Cook et al., 1999). Across each regional grouping, we

initially pre-whitened the predictor LWB chronologies and CRU Tmax data to provide a conservative esti-

mate of climate-predictor relationships that are not subject to inflation via auto-correlation. Chronologies

were retained for modeling if they were positively and significantly (p<0.05) correlated to the regionally-

averaged target temperature data during the common period (shared by the CRU Tmax data and the

chronology) using the Pearson, Robust Pearson, and Spearman correlation coefficents (Table S.10). The

original chronologies (non-pre-whitened) of significant predictors were then used in the PCR to develop

the reconstructions. Following the Kaiser-Guttman rule, the first n eigenvectors with eigenvalues >1

were retained for the PCR. We determined the final subset of PCs by using the minimum Akaike in-

formation criterion (AIC), which includes a penalty term for increasing the number of predictors in the

model (Akaike, 1974).

We use 1920 as the starting year of the common calibration period because prior to this date, there

are many places across the western US where representation of high-elevation areas by montane, climate-
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data stations is scarce or inconsistent. For this same reason, a similar starting year for the calibration

period was used for the temperature reconstruction by Heeter et al. (2020) in north-central New Mexico,

US. The end of the common calibration date depends on the common period shared by all predictors

of each region. The seasonality of each regional reconstruction was determined by performing a series

of regression experiments between target CRU temperature data and the LWB predictors. For each

region, we split the instrumental period into 2 periods (”early” and ”late”) to validate and cross-validate

the reconstruction model, as well as to test for stability over time (Table 3.2). We performed model

validation by calculating cross-calibration statistics for the full period and verification statistics for the

early period. This practice is common, as the earlier portions of the instrumental record often possess

greater uncertainty than the latter part of the record (Cook et al., 2013a) We used 2 goodness-of-fit

tests to validate the models: the reduction of error (RE) and coefficient of efficiency (CE) (Fritts, 1976;

Cook et al., 1999). When RE values (ranges from -∞ to +1) are positive, the calibration model is a

more skillful predictor of the target data than the mean of the instrumental data during the calibration

period. Although CE has the same range and calculation, a positive CE value is more difficult to obtain

because it relies on the verification period mean for a baseline of predictive skill. The validation statistics

produced were the calibration and verification period coefficient of determination (CRSQ and VRSQ),

and the validation period reduction of error and coefficient of efficiency (VRE and VCE). To quantify

model uncertainty, we used the maximum entropy bootstrapping method (MEBoot) (Vinod et al., 2009)

to produce 300 reconstruction replicates.

3.3 Reconstruction analyses

We first transformed reconstructed values to anomalies calculated over the full period of each re-

construction. We then calculated the top 5 single-year cool and warm anomalies for each regional re-

construction. We conducted a severity-duration analysis (González and Valdés, 2003) on reconstructed

values of at least 2+ years to determine the magnitude (average cumulative departure from the long-term

mean), duration (time span of each event), and intensity (duration divided by the magnitude) of warm

and cool events. Duration and magnitude of each event were ranked and compiled to give each event an

overall rank score. The top 5 warm and cool events are based on the overall score. We quantified and

assessed the degree of between-group and within-group synchrony (the estimated proportion of common

inter-annual variance; âc) of each regional reconstruction using the Dendrosync package in R (Alday

et al., 2018). In order to better visualize and compare decadal trends across each region, we also trans-

formed reconstructed values for each time series into z-scores based on the mean and standard deviation

of the common reconstructed period and applied an 11-year running average smoother. We addition-
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ally compared correspondence between our record and other regional and hemispheric-scale temperature

reconstructions using a Pearson’s correlation analysis over the common period of all reconstructions.

3.4 Results and Discussion

3.4 LWB as a temperature proxy in western North America

The preliminary response of the individual LWB chronologies and their TRW counterparts to local

temperature data consistently shows that LWB chronologies exhibit a stronger relationship with current-

year growing (warm) season temperatures than TRW (Figure S.6). With the exception of a few sites, the

LWB chronologies in this network are not highly correlated with their respective TRW site chronologies

(Table S.8). While Salzer et al. (2014a) demonstrate that TRW can be a successful parameter for

developing a low-frequency temperature reconstruction for a nearby region of North America (Great

Basin), our findings highlight the utility of BI methods for creating temperature-sensitive proxies from tree

rings when conventional TRW series do not show as strong of correlations with instrumental temperature

data. We initially experimented with using both TRW and LWB for the proposes of reconstructing

temperature, but the addition of the few TRW chronologies that were significantly (p<0.05), but weakly

correlated to temperature, to the predictor pools did not lead to any improvements in the models achieved

when solely using LWB predictors. Briffa et al. (1992) reported similar findings while experimenting

with the inclusion of TRW predictors in their MXD-based temperature network for the western US.

Like the presentation of the MXD network presented by Briffa et al. (1992), proceeding with just the

LWB predictors allows us to better emphasize the efficacy of the LWB metric for the creation of this

temperature-sensitive TR network.

The replication needed to attain the 0.85 EPS threshold ranges from 3−13 trees, with an average

of 6 trees. RBAR values range from 0.26−0.65, with an average of 0.36 (Table 3.1). These chronology

statistics are consistent with findings from Wilson et al. (2014), who presented BI-derived temperature

reconstructions using P. engelmannii from 7 sites across southern British Columbia, Canada.

At the local scale (within 0.5°of each site), the LWB chronologies exhibit higher correlations with Tmax

than with Tmean, which is consistent with other BI and MXD studies in North America (e.g. Wilson

and Luckman 2003; Luckman and Wilson 2005; Wilson et al. 2014, 2019; Heeter et al. 2020; Harley

et al. 2021). All temperature-LWB relationships are time-stable (Table 3.1). While sampling protocol

aimed to avoid specimens visibly or knowingly influenced by ecological disturbance, we suspect that the

chronologies at 3 sites (ABA, PLS, TUS) show the effects of heightened spruce beetle (Dendroctonus

rufipennis Kirby) outbreaks in southern Utah during the turn of the 21st century (DeRose et al., 2011).
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The original sample collections from these 3 sites contained multiple cores which were omitted due to

the presence of blue staining across the outermost growth rings. For this reason, we truncated ABA to

2002, PLS to 2000, and TUS to 2011. Because linkages have been shown between increased temperatures,

heightened spruce beetle outbreak severity, and P. engelmannii mortality (DeRose et al., 2013; Pettit

et al., 2020), targeting this tree species for future temperature reconstructions across the western US may

warrant additional consideration of site-level land use and examination of disturbance histories (Trotsiuk

et al., 2018).

3.4.1.1 Regional-level climate response

All LWB chronologies show significant (p<0.05) and positive responses to CRU Tmax during at least

2 current-year growing season months (Figure 3.2). Across most regions, statistically significant (p<0.05)

temperature response begins in March or April, and the optimum seasonal window concludes with Septem-

ber. For all regions, the strongest relationship between Tmax and the LWB chronologies over a single

month occurs in August. This was expected, as the relationship between LWB and temperature has been

widely shown to be strongest in late-summer months (Wilson et al., 2014; Heeter et al., 2020; Rydval

et al., 2017; Wilson et al., 2019; Wiles et al., 2019; Heeter et al., 2021).
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Figure 3.2: Correlations (Pearson’s r) between maximum temperature and (Tmax) latewood blue intensity
(LWB) chronologies across the western US network, grouped by region. Pearson’s r between all LWB
chronologies across each region and current-year monthly regional target CRU 4.04 0.5◦Tmax data (Harris
et al., 2014) for each region (NR: 45.0-49.0°N, 117.0-111.5°W; CR: 44.0-45.0°N, 111.0-109.0°W; IP: 37.0-
41.5°N, 114.0-109.0°W; SR: 33.0-40.5°N, 106.0-105.0°W), and the optimum seasonal average of regional
target CRU 4.04 0.5◦Tmax data. Correlations span the common period between the starting calibration
year (1920) and the last year of each individual chronology. Dashed red lines indicate significance at the
p<0.05 level.
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Notably, the IP chronologies exhibit optimum response in the months of April, May, and August, with

the June and July response being weak. Compared to the other 3 regions, the IP region simultaneously

experiences the least amount of monthly precipitation and the highest mean and maximum temperatures

during the mid-summer months (June and July) (Figure S.9). We suspect that the decreased tempera-

ture response of IP LWB chronologies in June and July may be resultant of mid-summer temperatures

exceeding the tolerance limits of trees in this region. The IP chronologies, many of which are located in

the arid regions of southern Utah, exhibit the most strongly-negative correlations with regional target

CRU scPDSI than any other region during June and July (Figure S.8). Despite this characteristic, the

IP chronologies do not show significantly negative correlations with precipitation during these months.

Therefore, we suspect that the decreasing temperature response trend is less likely an artefact of a com-

peting hydroclimate signal. A similar pattern of decreased mid-summer temperature response is also

apparent with the NR LWB chronologies. However, unlike in the IP, where low precipitation is likely

a limiting factor year-round regardless of temperature, the NR receives significantly less precipitation

in June and July. The NR LWB chronologies show significant negative correlations with precipitation

during these 2 months, thereby suggesting that this trend may be influenced by a competing hydrocli-

mate signal during the mid-summer months. Similar effects of reduced TR temperature-sensitivity during

mid-summer can be seen in the LWB predictors developed in southern British Columbia and Alberta

by Luckman and Wilson (2005) and Wilson et al. (2014). Büntgen et al. (2017), who use MXD to re-

construct summer temperatures in the Spanish Pyrenees, suggest that a weakening of TR temperature

sensitivity in mid-summer months due to increased drought stress likely occurred whenever past summers

were exceptionally warm and dry.

The SR chronologies express a strong temperature response, but over the shortest season compared

to the other regions. This response may be impacted by the hydroclimate and evaporative demands

related to temperature on TR growth in this region, as well as is likely artefact of negative correlations

between Tmax and precipitation in this region during non-monsoonal months. Babst et al. (2016) suggest

that annual growth of high-elevation conifers in the southwest US are primarily reliant on spring and

monsoon precipitation, rather than winter precipitation. We suspect that the strong monsoonal influence

of the SR during July−September (Figure S.9; US Climate Data 2020) is potentially influencing the

onset and duration of seasonal temperature response in this region. Additionally, the P. engelmannii

collected from some of the sites in the SR region (e.g. LOS) exist as disjunct populations near the

southernmost extent of the species geographic range (Little and Viereck, 1971). The shortened duration

of strong temperature response of southernmost chronologies within the SR supports the principle of

ecological amplitude (Griggs, 1914; Fritts, 1976; Holt and Keitt, 2005). This spatial pattern suggests
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that there may be differences in tree sensitivity to temperature between individuals toward the southern

range periphery versus those toward the center of the species range and, further, may be evidence of the

role of temperature in how climate change influences future species distribution patterns (Thuiller, 2004;

Hill et al., 2011).

We found that the optimum target season for the NR is May-August (MJJA), the CR is May-

September (MJJAS), the IP is April-September (AMJJAS), and the SR is August-September (AS) (Figure

3.2; Table S.9). Notably, the IP shows highest r−values (p<0.05) when April and May are included. Most

of the regional chronology pools display the highest r -values when computed over a longer growing season

comprised of multiple months. The SR is the exception, displaying highest r -values when computed over

2 consecutive months in the late growing season (August and September). This finding is consistent with

prior results indicating reduced temperature response of LWB to earlier growing season temperatures in

this southernmost region (Heeter et al., 2020).

The differences in seasonal duration of the P. engelmannii LWB response to Tmax across the historical

species range (Figure 3.1; Little and Viereck 1971) is likely attributable to factors such as [1] distance

to upper tree-line (Lloyd and Fastie, 2002; Salzer et al., 2014b; Elliott, 2011; Kipfmueller and Salzer,

2010), [2] proximity to the interior versus the periphery of the range (Amburgey et al., 2018; McCullough

et al., 2017; Herrero et al., 2013), or [3] differences in the timing of cambial reactivation (indicating start

of the growing season) (Deslauriers et al., 2003; Begum et al., 2010; Gruber et al., 2009; Harley et al.,

2012) based on location. Regardless of cause, differences in seasonal response can be problematic for

equitably comparing temperature responses of chronologies comprising broadly-distributed temperature

proxy networks. Similarly, differences in seasonality of temperature response at the local level has im-

portant implication for studies emphasizing spatial analysis of climate proxies (e.g. Anchukaitis et al.

2017), which use a common seasonal target over a broader area; in the case where the optimum seasonal

target for reconstruction differs across space, calibration results of the spatially-resolved version of the

reconstructions may appear weaker than calibration results of more localized reconstructions with vari-

able seasonal targets, such as this study. As such, differences in seasonal response should also be taken

into account when comparing TR temperature predictors across regions.

3.4 Reconstruction models

3.4.2.1 Model validation

Calibration and verification statistics are summarized in Table 3.2. The last year of the common

calibration period of each model ranges from 2000−2015. The IP common calibration period ends in

2000, because several chronologies in this group are truncated due to issues of ecological disturbance
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in the most recent years of growth. The NR common calibration period is simply limited to the earlier

sample date of one of the NR chronologies (FKY). Although FKY does not extend past the year 2000, the

scarcity of temperature-sensitive records in this part of North America warrants its inclusion. Forward

nests were then applied as needed: 1 for the NR, 3 for the CR, 4 for the IP and, and 2 for the SR (Table

3.2; Table S.11). The nested PCR models retain only the first PC for the NR, CR, and IP models, with

PC1 explaining 71.2%, 79.5%, and 68.1% of the respective cumulative variance for each model. The

PCR process retains the first 2 PCs for the SR, with PC1 (59.7%) and PC2 (13.4%) explaining 73.1%

of the cumulative model variance. These results reflect the strong common temperature signal among

intra-regional predictors identified by the HCA.

3.4.2.2 Model strength and timespan

The timespan of each model varies, with start year of each reconstruction occurring between the period

1623−1730 (Table 3.2). VRE and VCE statistics are positive for all nests across the entire reconstructed

period (Table 3.2; TableS.11) for each region, indicating that all reconstructions are skillful estimates

of temperature through time (Cook et al., 2013a). All reconstructions cover the most recent decades,

spanning to 2018. To date, there are few published temperature reconstructions that adequately capture

the first 2 decades of the 21st century in the calibration period (e.g. Fuentes et al. 2018; Heeter et al.

2020; Keyimu et al. 2020a,b; Heeter et al. 2021). RSQ values indicate robust model strength for each

region, explaining at least 44% of the common period temperature variance (Table 3.2; Table S.11).

Model strength for these 4 reconstructions are comparable to other BI- and MXD-based temperature

reconstructions for North America (Briffa et al., 1992; Wilson et al., 2014, 2019; Heeter et al., 2020).

Comparatively, the SR model shows the strongest overall skill, explaining 54% of the overall instrumental

temperature variance of the most well-replicated nest (1878-2014). While the CR is comparatively the

weakest and shortest model, it still accounts for 44% of the temperature variance of the most well-

replicated nest (1850-2015).

The relationships between the LWB chronology predictors and CRU Tmax data also show strong

spatial correlations (Figure 3.3). We noted only slight increases in spatial correlations between non-

transformed data and the first-differenced data, indicating that the LWB response is strong at both the

inter-annual and multi-decadal timescales. While the highest correlations are centered over the immediate

study areas, thereby highlighting the sub-regional differences in Tmax patterns across the western US,

these data are strongly representative of (r > 0.60, p<0.05) maximum temperature across the entire

western US, northwest Mexico, and parts of southern Canada. The broad spatial implications of these

results suggest the possibility to extend the NH TR based temperature proxy network southward, as



49

previously highlighted by Heeter et al. (2020). Similar efforts to increase coverage of under-represented

areas will allow for a better understanding of the spatial patterns of historical temperature variability

across broader geographical space.

Table 3.2: Summary statistics for PC regressions of each region included in the western US latewood
blue intensity network. (Top) Calibration and verification periods, monthly duration of the reconstructed
season, and the final reconstructed period for each regional model. (Bottom) measures of explained
variance for each regional model: RSQ (calibration period coefficient of multiple determination), VRE
(validation period reduction of error), VCE (validation period coefficient of efficiency) and RMSE (root
mean squared error).

Calibration
period

Verification
Period

Target
months

Reconstructed
Period

#forward
nests

#backward
nests

NR 1966-2000 1920-1965 MJJA 1721-2018 1 2
CR 1966-2015 1920-1965 MJJAS 1730-2018 3 4
IP 1966-2000 1920-1965 AMJJAS 1654-2018 4 7
SR 1966-2014 1920-1965 AS 1623-2018 2 7

Model First
Year

Last Year RSQ VRE VCE RMSE

NR 1920 2000 0.53 0.55 0.53 0.80
CR 1850 2015 0.44 0.44 0.44 0.84
IP 1909 2000 0.49 0.55 0.54 0.62
SR 1878 2014 0.54 0.53 0.52 0.65

3.4 Reconstruction analysis

3.4.3.1 Analysis of historical temperature variability

The 4 reconstructions show similar evidence of warm and cool periods but differ with regards to the

onset, duration, and intensity of these periods (Figure 3.4; Figure S.10). We suspect that the differences

among regions with regards to the magnitude and duration of warm and cool events can somewhat be

attributed to the varying seasonal targets of each reconstruction. The instrumental record indicates

strong spatial coherence of surface air temperatures across the western US within the last century, which

is well-reflected by the 4 reconstructions. Notably, all regional reconstructions capture a substantial

warming trend beginning at the end of the 20th century into the present. The recent warming period of

ca. 2000 to present, documented by the instrumental record, has somewhat limited representation by NH

temperature proxy studies due to insufficient record length (e.g. Wilson et al. 2016; Anchukaitis et al.

2017). Specifically in western North America, the most recent decades are characterized by not only

an unprecedented increase in surface air temperatures, but also anomalous drought, streamflow declines,

increased wildfire activity, and reduced annual snowpack (Cook et al., 2004, 2008; Kalra et al., 2008;

Pederson et al., 2011; Abatzoglou and Williams, 2016; Harley and Maxwell, 2018; Williams et al., 2020;
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Harley et al., 2020b). The severity-duration analysis indicates that, despite the short duration, high

magnitude rankings places 2015−2018 within the top 10 overall ranking warm events, and as the most

intense event for the CR, IP, and SR regions (Table 3.3). The year 2017 is ranked among the 10 warmest

single-year anomalies over each reconstructed period for all regions, and in the top 5 for the CR, IP, and

SR. While the CR, IP, and SR reconstructions slightly overestimate the warming of 2017, the relative

ranking of warm years spanning the period 2015−2018 is well corroborated by the instrumental record

(Figure 3.3). Our ability to capture the period post ca. 2010 in the TR temperature proxy record for

model calibration is meaningful, because it allows us to more accurately place the most recent period,

characterized by severe trend, into historical context. Further, the strong correspondence between the

instrumental and LWB data during the modern warming period (Figure 3.3) instills additional confidence

in extending the tree ring records back in time to robustly provide estimates of other anomalously warm

periods such as the MCA. Considering the serious implications of the projected continual warming (Flato

et al., 2013), precise, updated proxy records are important for improved detection and attribution studies

related to temperature trends and for constraining models of future temperature change.

Another pattern captured across the majority of the regions is the cooling experienced between ca.

1960−1980. This period has widely been related to a time of global solar dimming (Wild, 2009). This
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Figure 3.3: Temporal and spatial relationships between 4 western US regional maximum temperature
(Tmax) reconstructions and instrumental data. The temporal relationship (Pearson’s r, p<0.05) between
the regional reconstructions (colored lines, line shading represents standard error) and the CRU TS 4.04
Tmax data (black line) (Harris et al., 2014) over the period spanning 1920-2018. We also include the
extent of the spatial distribution of correlations between the predictor and predictand temperature data
for each regional model over the period 1920-2018 (Pearson’s r, significant at p<0.05 level).
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Figure 3.4: Decadal-scale variability of 4 regional temperature reconstructions derived from the western
US latewood blue intensity network. Temperature anomalies calculated as z-scores from the mean and
standard deviation of the common period of all reconstructions (1730−2018) for each region. Notable
cool and warm periods (Maunder and Dalton Minima and the Dust Bowl) are highlighted. Z-scores are
smoothed with an 11-year running average. Warm years are indicated by red and cool years are indicated
by blue.
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Table 3.3: Results of severity-duration analysis showing the top-five ranking warmest (+, top row)
and coolest (-, bottom row) single-year anomalies (left) and event periods (right) for the each region.
Single-year anomalies calculated over the full period (NR: 1730-2018, CR: 1680-2018, IP: 1646-2018,
and SR: 1622-2018). Duration indicates the number of years of each event, as calculated by the severity-
duration analysis from reconstructed values. Magnitude = mean cumulative departure from the longâterm
reconstructed mean for each region; Intensity = duration (years) divided by the magnitude; after ranking,
overall score = duration rank + intensity rank. Periods of interest are color coded: red= recent warming
trend; orange= Dust Bowl; blue= Maunder Minimum; purple= Dalton Minimum.

Rank Year 1-year
Anomaly

Period Duration
(years)

Magnitude Intensity Duration
Rank

Magnitude
Rank

Overall
Score

Northern Rocky Mountains
1 1979,1910 +1.70 1773-1786 14 +6.73 +0.48 9 68 77
2 1940 +1.65 1930-1936 7 +6.80 +0.97 6 69 75
3 1936 +1.63 1888-1898 11 +5.68 +0.52 8 66 74
4 1931 +1.49 1908-1915 8 +6.20 +0.77 7 67 74
5 1958 +1.47 1938-1942 5 +5.62 +1.12 5 65 70
1 1964 -4.63 1879-1884 6 -5.45 -0.91 6 69 75
2 1899 -3.65 1818-1826 9 -4.90 -0.54 7 67 74
3 1907 -2.96 1810-1815 6 -4.32 -0.72 6 65 71
4 1954 -2.57 1974-1976 3 -5.06 -1.69 3 68 71
5 1876 -2.52 1964-1965 2 -4.82 -2.41 2 66 68

Central Rocky Mountains
1 2016 +3.08 1928-1940 13 +13.74 +1.06 9 69 78
2 2017 +2.18 1888-1898 11 +6.38 +0.58 8 67 75
3 1949 +2.08 2015-2018 4 +7.50 +1.87 4 68 72
4 1988 +1.99 1869-1874 6 +4.31 +0.72 6 65 71
5 1748 +1.81 1946-1950 5 +5.31 +1.06 5 66 71
1 1968 -4.52 1834-1849 16 -17.71 -1.11 7 68 75
2 1993 -3.16 1972-1980 9 -8.27 -0.92 6 67 73
3 1787 -2.77 1904-1908 5 -5.44 -1.09 5 66 71
4 1838 -2.74 1915-1918 4 -4.03 -1.01 4 64 68
5 1951 -2.57 1967-1968 2 -4.54 -2.27 2 65 67

Intermontane Plateaus
1 1669 +3.08 1767-1777 11 +7.97 +0.72 9 94 103
2 1690 +2.32 1664-1669 6 +8.08 +1.35 6 95 101
3 2017 +2.28 1931-1940 10 +5.14 +0.51 8 92 100
4 1729 +2.12 1711-1719 9 +4.65 0.52 7 91 98
5 1783 +2.06 2015-2018 4 +6.28 +1.57 4 93 97
1 1965 -3.83 1818-1824 7 -6.56 -0.94 7 94 101
2 1746 -2.41 1654-1659 6 -9.20 -1.53 6 95 101
3 1657 -2.23 1676-1678 3 -4.75 -1.58 3 93 96
4 1763 -2.17 1758-1761 4 -3.87 -0.97 4 91 95
5 1736 -2.13 1963-1965 3 -4.75 -1.58 3 92 95

Southern Rocky Mountains
1 2018 +3.52 1894-1905 12 +12.77 +1.06 9 73 82
2 1632, 1902 +2.27 1942-1954 13 +7.33 +0.56 10 71 81
3 1900 +2.00 1859-1865 7 +6.31 +0.90 7 70 77
4 1856 +1.92 2015-2018 4 +7.48 +1.87 4 72 76
5 2017 +1.72 1715-1722 8 +5.57 +0.70 8 68 76
1 1646 -4.33 1641-1656 16 -20.50 -1.28 10 73 83
2 1761 -3.39 1970-1984 15 -12.33 -0.82 9 72 81
3 1831 -3.33 1805-1813 9 -9.07 -1.01 8 70 78
4 1647 -2.81 1963-1968 6 -9.20 -1.53 5 71 76
5 1645 -2.66 1758-1764 7 -8.87 -1.27 6 69 75
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cooling event in the 20th century is most intensely and continuously experienced in the CR and SR regions

and may have implications for solar forcing attribution studies in North America. During this time, the

IP oscillates between moderately cool (z-score >-1.0) and slightly warm (z-score <0.50) periods, while

the NR shows the predominance of slightly cool (z-score >-0.5) years. The period of ca. 1965−1980 is

represented in both the 5 coldest single-year anomalies or the top 5 overall ranking cool events for each

region. Notably, 1965 is both the single coldest year anomaly captured by both the instrumental data

and reconstruction for the IP.

Another major warm period that is well documented across all regional reconstructions occurred in

the 1930s. This anomalous warming is often associated with the Dust Bowl, a period of extreme drought

across the western US (Cook et al., 2008; Woodhouse et al., 2010). Conditions during certain years of

the Dust Bowl rival the modern warming, as the period spanning ca. 1928−1942 appears within the 5

top-ranking warm events for the NR, CR, and IP reconstructions. The magnitude of the Dust Bowl is

comparatively strongest in the CR region, with z-scores > 1.0 for this period. The period 1928−1940 is

the top-ranking warm event for the CR reconstruction. The CR differs from the other 3 regions in that

the Dust Bowl warming appears to have been an abrupt change from moderately cooler years in the early

20th century to very warm years, as opposed to a continual warming trend since ca. 1900 that culminated

in the 1930s and 1940s (Figure 3.4). The Dust Bowl is less pronounced in the SR, as ca. 1928−1940 is

situated towards the terminus of a nearly continuous warm period since ca. 1830.

The 4 regions show cooling around the time of the Dalton Minimum (ca. 1790−1830; Wagner and

Zorita 2005; Bond et al. 2001), which is widely described by numerous other temperature proxy studies

of the NH (e.g. Briffa et al. 1998; Büntgen et al. 2005). While the cooling during the Dalton Minimum

was historically attributed to solar forcing, in many areas, this period is primarily attributed to volcanic

forcing (e.g. unknown 1809 event, Mt. Tambora eruption of 1815; Wagner and Zorita 2005; Hegerl

et al. 2011; Gennaretti et al. 2014; Schurer et al. 2019). The cooling effects of volcanic eruptions during

this time are widely documented in the TR record across North America (D’Arrigo and Jacoby, 1999;

D’Arrigo et al., 2013; Stoffel et al., 2015; Wilson et al., 2016). Cooling begins approximately just after

ca. 1790 for the majority of regions and lasts into the 1840s. All regions show 2 distinct pulses during

this period, the former spanning ca. 1790−1820, and the latter spanning ca. 1825−1845. The second

pulse is most intensely expressed in CR, with the period spanning 1834−1849 ranking as the top coldest

event for the region.

The Maunder Minimum (ca. 1645−1715; Eddy 1976), another cooling period attributed to solar forc-

ing and volcanic activity (Lean et al., 1992; Shindell et al., 2001; Crowley et al., 2008), is less pronounced

than the Dalton Minimum in IP and SR. The length of NR and CR precludes examination of this time
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period. IP characterizes the Maunder Minimum as oscillating between moderately warm and cool periods

instead of a continuous cooling, whereas SR documents continuously warm temperatures interrupted by

an intense cooling spanning the period ca. 1635−1655. IP indicated 2 of the 5 top-ranking cool events

spanning the periods 1654−1659 and 1676−1678 occur during the Maunder Minimum. Similarly, the

period spanning 1641−1656 is the top-ranking cool event for SR. While the Maunder Minimum can be

seen in numerous longer-term reconstructions of temperatures of the extra-tropical NH, (e.g. Briffa et al.,

2001; Esper et al., 2002; Wilson et al., 2016) the presence and magnitude of these past events are not

ubiquitous across different regions and scales (Anchukaitis et al., 2017). Spatial differences can be seen

at the sub-continental level as well; within North America, paleo-temperature records from the Gulf of

Alaska and the Alberta Icefields show the period ca. 1690−1710 CE as being anomalously cold and

attributed to volcanic activity (Luckman and Wilson, 2005; Wiles et al., 2014), while this period is only

somewhat evident in the IP record and absent in the SR record. Like with the Dalton Minimum, non-

ubiquitous observations of the Maunder Minimum are likely resultant from heterogeneous climatic effects

of volcanism over space. Studies suggest that temperature forcing of many of the largest, high-latitude

volcanic eruptions of the past ca. 1200 years (e.g. 1783 Laki), are varied globally (Zambri et al., 2019;

Schmidt et al., 2012; Oman et al., 2006). Specific to western North America, while Crowley et al. (2008)

did not find a global expression of the Laki eruption, Jacoby et al. (1999) and Edwards et al. (2021)

both show cooling effects from Laki across northern Alaska. Further, Shindell et al. (2001) attribute non-

ubiquitous observations of the Maunder Minimum, particularly over North America, to lowering indices

of the Arctic Oscillation/North Atlantic Oscillation as solar irradiance decreases in this period.

The majority of examinations into the effects of volcanism on surface air temperatures in the NH

are, to date, largely dependent on MXD chronologies. We suggest that LWB may be an additional

suitable parameter for future quantification of volcanic cooling at finer timescales (e.g. seasonal or sub-

seasonal), because like MXD, the temperature response of LWB is less likely to be influenced by biological

persistence than with TRW (D’Arrigo et al., 2013; Stoffel et al., 2015; Lücke et al., 2019; Reid and Wilson,

2020). Recently, Edwards et al. (2021) use a combination of quantitative wood anatomy (QWA; von Arx

et al. 2016) and climate modelling to show that the effects from the 1783 Laki (Iceland) eruption across

northern Alaska were more accurately characterized as an abrupt decrease in temperature at the end of

the growing season, as opposed to an entire growing season that was anomalously cool. As such, the

application of novel TR parameters such as BI and QWA will likely play an important role in future

examination of the effects of volcanic cooling across different spatial and temporal scales. As suggested

by D’Arrigo et al. (2013), the quality, type, and spatial distribution of chronologies averaged together

to derive larger-scale estimates of past temperature are important to ensure that any volcanic signal
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is not muted. Attempts to decrease uncertainty in larger-scale estimates of temperature by increasing

spatial coverage of temperature-sensitive TR chronologies will be welcome, particularly in the estimation

of volcanic cooling.

3.4.3.2 Reconstruction synchrony and large-scale comparisons

While all 4 records show similar decadal trends, an examination of changes in the synchrony of trends

are important to better understand how internal modes of variability result in changes to local climate over

geographic space and time. Unlike correlation analysis, which provides a measure of similarity between

the calculated means of individual timeseries over a given period (e.g 10 year period), the additional

value of analyzing timeseries synchrony is that it allows for examining the relative timing of climatic

events and the likelihood that such events will occur at the same time (e.g. extreme hot or cold years).

Over the common period of all 4 regional models (1730−2018), trends in between-group synchrony of

temperature anomalies show patterns of spatial-dependence. For example, the IP and SR show the highest

between-group synchrony, and the NR and SR show the least (Figure 3.5A). Notable periods of increasing

synchrony across all 4 records include the latter half of the 20th century, specifically the Dust Bowl, and

the period between the Dalton Minimum and the terminus of the LIA (Figure 3.5B,C). The strongest

decline in overall synchrony between the 4 regions occurs around the turn of the 20th century following the

LIA (ca. 1880−1920). Although the Rocky Mountain models (NR, CR, and SR) show strong coherence

during this time, the overall declining trend is driven by strong decreases in synchrony between IP and the

Rocky Mountain models. This trend reflects the complexity of land surface temperature changes across

geographic space during a climatic transition period characterized by substantial changes to relative

external forcing by atmospheric and oceanic circulation patterns (e.g. AMO, PDO), as well as increased

anthropogenic influence at the end of the LIA (Kreutz et al., 1997; Knudsen et al., 2014; Brönnimann

et al., 2019). Future studies examining historical periods of asynchronous temperature trends across

western North America are needed to more fully understand the effects of broad-scale ocean/atmospheric

forcings on internal modes of temperature variability for this region.

The ability to compare our records with other regional and hemispheric-scale reconstructions provides

evidence to better understand the relationship between volcanism, atmospheric circulation, and changes

to surface air temperatures across space, especially at lower latitudes. Our records show strong agreement

with nearby temperature records from North America (Figure 3.6A,C). The strongest agreement between

the 4 records we present and the MXD-based temperature record for the western US by Briffa et al. (1992)

is not surprising given the similarities between LWB and MXD, as well as the close spatial proximity of

the records. Similarly, the coherence of the NR record with the British Columbia and Alberta records by
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Figure 3.5: Comparison and evaluation of synchrony between 4 regional temperature reconstructions. We
compare between-group synchrony (the estimated proportion of common inter-annual variance; âc) of A)
individual pairings of the 4 regional reconstructions (raw reconstructed values) averaged over the entire
common reconstructed period (1730-2018), B) time series of between-group synchrony trends between
all 4 regional reconstructions using a 60-year window and 10-year lag (based on AIC criteria), and C)
time series of between group synchrony trends of regional reconstruction pairings listed from B) using a
60-year window and 10-year lag (based on AIC criteria) over the common period (1730-2018). The error
bars in A) and shadows in B) and C) depict the standard errors.

Wilson et al. (2014) and Luckman and Wilson (2005) is expected given the location and similar type and

seasonality of these records. As such, we emphasize the importance of independent validation of previous

studies within the region. Since many of these pre-existing temperature proxy records for North America

do not extend to include the most recent decades, our corroborating records provide valuable updates to

this region of the NH temperature proxy network.

To date, many ensemble reconstructions, providing estimates of historical temperature variability,

exist for the NH. However, there is poor representation of temperature-sensitive predictors from the

mid-latitudes of North America in these ensemble reconstructions. We compare decadal trends for each

of the regional reconstructions presented in this study with 3 independent, ensemble temperature re-

constructions of the extra-tropical NH (Figures 3.6B, 3.6C). The 4 western US reconstructions show

significant (p<0.05), positive agreement with the NH reconstructions over their common period of over-
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Figure 3.6: Coherence of 4 western US temperature reconstructions with independent regional- and
large-scale paleo-temperature reconstructions. Comparison of plotted time series (as z-scores) between
the 4 western US regional temperature reconstructions with A) 3 independent regional temperature
reconstructions from North America: Western US (Briffa et al., 1992), Alberta, Canada (Luckman and
Wilson 2005), and British Columbia, Canada (Wilson et al., 2014), and with B) 3 independent ensemble
temperature reconstructions for the Northern Hemisphere: N-TREND 2016 (Wilson et al., 2016), Guillet
et al., 2017, and Christiansen and Ljungvist 2012. All time series displayed as z-scores calculated over the
common period for all records (1730-1973) and smoothed with an 11-year running average. C) Correlation
matrix (Pearsons r -value) over the common period 1730-1973 between the 4 regional reconstructions from
this study and the independent records listed in A) and B). All values in the matrix are significant at the
p<0.05 level.

lap (1730−1973). The strongest agreement occurs between the CR reconstruction and the multi-proxy

summer (JJA) temperature reconstruction by Guillet et al. (2017) (r=0.57). We suspect that lower cor-

relations between SR and the hemispheric reconstructions by Christiansen and Charpentier-Ljungqvist

(2012) and Wilson et al. (2016) are partially due to differences in seasonality of input records, and po-
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tentially the decreased representation of low-latitude (<40°N) temperature-sensitive predictors in these

NH estimates. Increasing the density of robust, local temperature records at lower latitudes of the NH

may result in improved accuracy of future large-scale, ensemble NH temperature reconstructions in that

they will be more representative of a greater latitudinal range for the NH. Both trends in asynchrony of

regional temperature trends and differences between regional and large-scale models highlight the impor-

tance of regional temperature models for constraining the full range and variability of global temperature

models.

3.5 Conclusions and future work

Using the LWB parameter, we provide 4 regional reconstructions of growing season Tmax over much

of the western North America temperate zone spanning the past ca. 300−400 years to present. Strong

calibration/verification statistics for each reconstruction model indicates that LWB is a robust predictor

of growing-season Tmax, especially during late-summer. This LWB network provides paleo-temperature

estimates which could further contribute increased understanding of the role of temperature on historical

drought events, especially ”hot droughts” (e.g. Overpeck 2013; Udall and Overpeck 2017) across the

western US. As numerous temperature-sensitive MXD records exist across the western US, we suggest

that future investigation of a multi-variate ensemble network of MXD, TRW, and LWB will considerably

improve the current understanding of paleo-temperature across this portion of the NH network. While

we have demonstrated the ability of LWB to contribute a collection of updated data points to the North

American temperature proxy network, additional work is needed to extend the network back in time

(e.g. sampling remnant or subfossil wood as in Luckman and Wilson 2005; Wiles et al. 2014; Gennaretti

et al. 2014). Further, we posit that the continued exploration and application of BI methods at other

mid-to-low latitude locations of the NH will contribute substantially to a more complete understanding

of local to global climate histories and dynamics.
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Chapter 4: Chapter 4: Concluding remarks on the

current and future states of tree-ring blue

intensity

Assessments of climate change impacts rely heavily on instrumental data, which is limited prior to

the early 20th century. Temperature proxies derived from natural records (e.g. tree-rings) provide es-

sential baseline data in the absence of instrumental records and allow for an improved understanding

of both modern and historic climate variability. Networks of tree-ring climate proxies, which allow for

longer-term, spatially-resolved reconstructions of climate variables, are especially valuable for better un-

derstanding the spatial patterns of climate impacts. At the present time, the tree-ring record provides

annually-resolved, well-replicated, and multi-centennial length paleoestimates of hydroclimate varaibility

for most of the Northern Hemisphere (e.g. Cook et al., 2007; Stahle et al., 2016; Cook et al., 2015, 2010,

2020). By comparison, while substantial improvements have been made over the last two decades, the

tree-ring-based paleotemperature record provides substantially less spatial coverage of the Northern Hemi-

sphere. This spatial trend is directly related to the dendroclimatology community’s historical reliance

on tree-ring chronologies derived from radial-growth metrics rather than from densiometric growth or

quantitative anatomical metrics. Historically, the development of tree-ring based temperature proxies at

decreasing latitudes in the Northern Hemisphere was problematic, because the relationship between radial

tree growth and temperature is often relatively weak due to increasingly complex hydroclimate-growth

relationships (i.e. moisture availability exerts a stronger limitation on growth) (Fritts, 1976; George and

Ault, 2014; Wilson et al., 2016). The historical issues related to complex and competing temperature-

hydroclimate signals in tree-ring chronologies are directly addressed in this dissertation. As such, this

dissertation contributes to the broader understanding about the relationships between different tree-ring

parameters and climatic variables across the mid-latitudes of the continental United States.

The development of novel tree-ring metrics that reflect tree-ring wood density rather than radial

growth, such as maximum latewood density (MXD; Schweingruber et al. 1978) and blue intensity (BI;

Sheppard et al. 1996, McCarroll et al. 2002) has greatly remedied the lack of tree-ring temperature proxies

in the Northern Hemisphere. While tree-ring parameters produced using x-ray techniques, such as MXD,

were the preferred tree-ring parameter for reconstructing past temperatures throughout the 1980s-early

2000s, the time and cost-intensive nature of these techniques motivated the tree-ring community to explore

the development of new tree-ring parameters that could provide representative metrics of ring density,
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but at a fraction of the cost. Since the pioneering work of Sheppard et al. (1996), who were the first

to experiment with visible light-based techniques on tree-rings for the purposes of dendroclimatology,

the exploration of new methods to create light-based alternatives to MXD has been wildly successful.

Since the work of McCarroll et al. (2002) first established the use of visible-light-based BI methods

for dendroclimatology, the tree-ring community has rapidly embraced this method across multiple sub-

disciplines of tree-ring research.

As of January 2022, the global tree-ring blue intensity network is comprised of over 230 BI chronolo-

gies, with 221 BI chronologies representing the Northern Hemisphere, and with 185 chronologies being

developed and published within the last four years (2018-2022; Figure 4.1A). Specifically, the work pre-

sented in this dissertation contributes substantial spatial improvements to the North American region of

the Northern Hemisphere BI network (Figure 4.1B). Notably, this dissertation research emphasizes the

utility of BI methods on conifers at decreasing latitudes in North America by targeting tree-ring collec-

tions derived from high elevation locations. Using a similar approach, many other recent studies (since

2020) have also emphasized increasing the latitudinal extent (southward) of the temperature-sensitive

tree-ring network by targeting collections from mountainous environments at lower latitudes (e.g Tsve-

tanov et al. 2020; Christopoulou et al. 2021; Cao et al. 2020; Akhmetzyanov et al. 2020; Reid and Wilson

2020). Despite major spatial improvement in the last decade, obvious spatial gaps still occur in the

Northern Hemisphere paleotemperature record, such as Mexico and north eastern Asia. Aside from New

Zealand, the Southern Hemisphere is virtually devoid of temperature-sensitive tree-ring records. In the

future, concerted efforts should be made by the tree-ring community to remedy this issue.

Since the commencement of this dissertation research in 2018, the the diversity of conifer represen-

tation in the global BI network has significantly increased. Prior to 2018, BI studies were dominated by

the Picea and Pinus genera, whereas today, the global BI network is comprised of chronologies from 18

different genera of conifer (Figure 4.2. To date, BI methods have not been successfully applied to non-

coniferous, diffuse-porous species. Future examination of BI methods on diffuse-porous species may be an

effective approach for 1] developing tree-ring based temperature proxies in conifer-excluded environments

and for 2] better understanding the relationships between tree densiometric growth and climatic variables

in new locations, globally.

Although BI has rapidly evolved since the initial work by McCarroll et al. (2002), the methods are

still in a relative state of infancy. As the methods continue to progress, additional research is needed

to understand the biological basis of BI methods at the cellular level. Recent work using quantitative

wood anatomy has begun to examine issues related to what exactly is being captured by BI methods

across each annual ring. Prior to the recent work by Björklund et al. (2021), BI was thought to be a
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Figure 4.1: Locations of all blue intensity (BI) chronologies in the current global network of peer-reviewed,
published BI studies. A) Displays the location of BI chronologies developed from 2002-2017 (black
crosses) and from 2018-2022 (red crosses). B) Highlights the BI chronologies developed for Karen Heeter’s
dissertation or related projects* (teal crosses) in relation to the other chronologies currently comprising
the global BI chronology network (dark blue crosses). *Related projects are not directly associated with
Karen Heeter’s dissertation but were developed by Heeter during her tenure at the University of Idaho.

representative measure of ring density that could be explained by the relationship between lignin content

in the latewood cell walls and its respective reflective properties. Findings from Björklund et al. (2021)

counter the general consensus that BI is related to lignin content, suggesting that BI is significantly

related to the quantitative ratio of cell wall area to cell lumen area; BI is more closely related to cell wall

geometry rather than chemical composition.

As BI-based chronologies increasingly populate the tree-ring record, BI methods should be considered

in future conversations regarding the influence of climate proxy resolution on the subsequent paleoclimate

reconstructions (c.f. the assessment of MXD records in Björklund et al. 2019). The quality and resolution

of BI data are directly related to the wood surface image from which the data are collected. The

capabilities of current visible light-based scanner technology has arguably plateaued, where even the

most high end, commercially available flatbed scanners are incapable of producing wood surface images

greater than 3200 dpi. However, recent innovations with high-resolution digital imaging systems that use

microscope cameras (e.g. Griffin et al. 2021) are promising for their future applications in BI methods.
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The global-wide effort to continue developing, refining, and disseminating information about BI meth-

ods is apparent with the creation of the International Blue Intensity Development Working Group (I-

BIND; Kaczka and Wilson 2021). The I-BIND group encourages and facilitates broad-scale collaboration

related to BI methods. Through such efforts, it’s likely that BI methods will continue to grow in popu-

larity among the dendroclimatology community. Additionally, as BI has continuously been shown to be a

cost-effective surrogate to MXD across many parts of the world, it is an amenable technique for tree-ring

research programs that may be in early stages of development or have limited financial resources. Indeed,

an increased scientific investment in widely affordable and accessible methods, which produce robust

paleoclimate estimates, would contribute to an improved and more equitable global understanding of the

Earth’s long-term climate history.
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Anchukaitis KJ, DâArrigo RD, Andreu-Hayles L, Frank D, Verstege A, Curtis A, Buckley BM, Jacoby

GC, Cook ER (2013) Tree-ring-reconstructed summer temperatures from northwestern North America

during the last nine centuries. Journal of Climate 26(10):3001–3012
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Holt RD, Keitt TH (2005) Speciesâ borders: a unifying theme in ecology. Oikos 108(1):3–6

Horton R (2014) 2014: Northeast. climate change impacts in the United States: The third national climate

assessment, jm melillo. TC Richmond, and GW Yohe, Eds, US Global Change Research Program pp

371–395

Husson F, Josse J, Le S, Mazet J, Husson MF (2016) Package âFactoMineRâ. An R package 96:698
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AD, Mundo I, et al. (2014) Inter-hemispheric temperature variability over the past millennium. Nature

Climate Change 4(5):362–367
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White PB, Van de Gevel SL, Soulé PT (2012) Succession and disturbance in an endangered red spruce-

Fraser fir forest in the southern Appalachian Mountains, North Carolina, USA. Endangered Species

Research 18(1):17–25
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Table S.3: Summary statistics (r values) for individual PCAs (RW, LWB, and ∆BI) of all series from
WHE, JIS, and SLE and loadings of each site into the first three PCs.

% of variance WHE JIS SLE
RW PC1 40.9% 0.72 0.37 0.37
EWB PC1 30.7% 0.54 0.45 0.40
LWB PC1 35.5% 0.62 0.44 0.48
∆BI PC1 30.8% 0.61 0.44 0.35

RW PC2 9.6% 0.05 0.16 0.27
EWB PC2 10.5% 0.01 0.14 -0.01
LWB PC2 11.4% 0.10 0.18 0.0
∆BI PC2 10.5% 0.05 0.25 0.03

RW PC3 7.5% -0.12 0.16 0.08
EWB PC3 7.0% 0.03 0.02 0.03
LWB PC3 6.6% 0.0 -0.04 0.06
∆BI PC3 6.4% 0.06 0.05 0.00

Table S.4: RBAR and EPS statistics. Included metrics are the RBAR, number of series needed to
attain an EPS of 0.80, and the year at which EPS is >0.80 threshold for all detrended (AD-sf) composite
chronologies.

RW EWB LWB ∆BI
RBAR 0.33 0.24 0.29 0.28
No. series EPS>0.80 6 12 13 9
Year EPS>0.80 1713 1721 1738 1724

Table S.5: Correlation coefficients of composite chronologies with PRISM 4k August−September
mean (AS Tmean) and maximum (AS Tmax) temperature, as well as precipitation data proximate to
the three sample locations in the Southern Rocky Mountains region of northern NM (37.0−35.9◦N,
105.8−104.4◦W). Bold coefficients = p<0.001

RW EWB LWB ∆ BI MXD
Tmean (1907−2015) 0.03 0.21 0.54 0.43 -
Tmax (1907−2015) 0.07 0.37 0.64 0.56 -
Tmean(1907−1983) 0.01 0.15 0.56 0.55 0.13
Tmax(1907−1983) -0.03 0.41 0.65 0.64 0.18
Previous Year May Precip (1907−2015) 0.08 0.04 -0.01 0.03 -
Previous Year May Precip (1980−2015) 0.54 -0.23 0.23 0.44 -
Current April−May Precip (1907−2015) -0.04 0.20 -0.01 -0.10 -
Current April−May Precip (1980−2015) 0.06 -0.16 -0.09 0.02 -
Current August Precip (1907−2015) 0.01 -0.30 -0.40 -0.31 -
Current August Precip (1980−2015) 0.15 -0.54 -0.46 -0.14 -
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Table S.6: Cross-validation statistics for the Southern Rocky Mountains composite LWB AS Tmax

reconstruction spanning 1735−2015 CE. To ensure model stability over time, validation statistics are
calculated for calibrating on the early period (1907-1961) and verifying on the late period (1962-2015),
and vice-versa. CR2 (VR2) = calibration (verification) period coefficient of determination; VRE (VCE)
= validation period reduction of error (coefficient of efficiency); RMSE = root-mean-square error.

Validation/Cross-validation CR2 VR2 VRE VCE RMSE
Early Period Calibration / Late Period Verification
Calibration (1907-1961) 0.30 − − − 0.93
Verification (1962-2015) − 0.31 0.57 0.16 −
Late Period Calibration / Early Period Verification
Calibration (1962-2015) 0.31 − − − 0.96
Verification (1907-1961) − 0.30 0.61 0.22 −
Full Period (1907−2015) 0.42 0.28 0.41 0.28 0.94

Table S.7: Top five warmest and coolest single-year and decade anomalies based on the composite LWB
AS Tmax reconstruction for the Southern Rocky Mountains spanning 1735-2015.

Coldest Years Anomaly Decade Anomaly
1 1831 -3.64 1990−1999 -1.04
2 1761 -2.28 1810−1819 -0.98
3 1828 -2.58 1830−1839 -0.96
4 1884 -2.49 2000−2009 -0.93
5 2003 -2.47 1760−1769 -0.28

Warmest Years Anomaly Decade Anomaly
1 1924 +2.15 1940−1949 +1.05
2 1926 +2.05 1930−1939 +0.88
3 2015 +1.99 1950−1959 +0.62
4 1936 +1.95 1890−1899 +0.34
5 1939 +2.47 1910−1919 +0.33
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Table S.8: Pearson’s correlations between individual latewood blue (LWB) chronologies and their tree
ring width (TRW) site counterparts over the common period of each chronology pairing. * indicates
significance at p <0.01 level.

Site Code r -value
TLM 0.22*
HAY 0.05
ABA 0.10
PLS 0.29*
BUP 0.55*
TUS 0.43*
MON 0.08
MBP 0.30*
TLS 0.11
PPU 0.52*
PPL 0.61*
SLE 0.18
JIS 0.18
WHE 0.41*
CPI 0.15
MDB 0.26*
LOS 0.35
BTP 0.53*
CBS 0.42*
TOW 0.28*
MWS 0.37*
RPS 0.17
FLS 0.14
MCO 0.12
BFL 0.29*
FKY 0.20

Table S.9: Results of Pearson’s correlation tests to determine the optimum CRU Tmax seasonal target
for reconstruction of each regional model. We compare r -values (p<0.05) across seasonal periods of
varying duration and are comprised of at least 2 consecutive months, ranging from July-August (JA)
to March-September (MAMJJAS). Correlations calculated over the common calibration period for each
region (NR: 1920-2000, CR: 1920-2015, IP:1920-2000, and SR:1920-2014). The optimum season for each
regional reconstruction is highlighted with a green box.

Months NR CR IP SR
JA 0.68 0.61 0.52 0.62
JJA 0.67 0.64 0.54 0.61
MJJA 0.72 0.66 0.64 0.57
AMJJA 0.69 0.61 0.67 0.52
MAMJJA 0.70 0.51 0.56 0.40
AS 0.50 0.50 0.49 0.73
JAS 0.55 0.57 0.53 0.68
JJAS 0.60 0.64 0.58 0.66
MJJAS 0.66 0.66 0.68 0.63
AMJJAS 0.65 0.64 0.70 0.58
MAMJJAS 0.68 0.56 0.60 0.47
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Table S.10: Pearson (P), Spearman (S ), and Robust Pearson (RP) correlation coefficients (significant at
p<0.05 level) for each chronology against the regional target CRU Tmax, and the standardized regression
coefficient (beta value; β) for each chronology in the regression model.

Site Name P S RP β
Northern Rocky Mountains (NR)
MCO 0.42 0.40 0.43 0.28
BFL 0.71 0.77 0.72 0.85
FKY 0.38 0.38 0.42 0.23
Central Rocky Mountains (CR)
MWS 0.50 0.50 0.46 0.17
RPS 0.67 0.63 0.64 0.28
FLS 0.64 0.63 0.58 0.26
BTP 0.59 0.51 0.54 0.23
CBS 0.48 0.44 0.44 0.18
TOW 0.56 0.52 0.52 0.21
Intermontane Plateau (IP)
BUP 0.34 0.39 0.47 0.10
HAY 0.59 0.54 0.55 0.23
TLM 0.41 0.35 0.35 0.14
TUS 0.65 0.66 0.66 0.26
MON 0.66 0.60 0.62 0.25
MBP 0.52 0.48 0.49 0.15
ABA 0.65 0.60 0.56 0.24
PLS 0.45 0.47 0.53 0.16
Southern Rocky Mountains (SR)
LOS 0.69 0.69 0.73 0.56
TLS 0.46 0.48 0.49 0.18
CPI 0.51 0.53 0.52 0.03
MDB 0.40 0.39 0.42 0.04
PPL 0.29 0.24 0.27 0.07
PPU 0.53 0.55 0.54 0.23
SLE 0.31 0.32 0.32 0.04
WHE 0.60 0.63 0.65 0.21
JIS 0.56 0.56 0.58 0.21
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Table S.11: Calibration/verification statistics for all regional reconstructions, including all forward and
backward nests. CP indicates common period.

Nest Years CRSQ VRE VCE RMSE
NR
-2 1721-1909 0.51 0.50 0.48 0.82
-1 1910-1919 0.52 0.52 0.51 0.81
CP 1920-2000 0.53 0.55 0.53 0.80
+1 2001-2018 0.43 0.52 0.50 0.86
CR
-4 1730-1759 0.23 0.17 0.17 0.98
-3 1760-1769 0.31 0.20 0.20 0.93
-2 1770-1789 0.41 0.40 0.40 0.86
-1 1790-1849 0.44 0.44 0.44 0.84
CP 1850-2015 0.44 0.44 0.44 0.84
+1 2016 0.42 0.40 0.44 0.84
+2 2017 0.43 0.40 0.41 0.84
+3 2018 0.25 0.14 0.14 0.96
IP
-7 1646-1659 0.06 0.04 0.03 0.78
-6 1660-1679 0.22 0.12 0.12 0.71
-5 1680-1849 0.42 0.44 0.44 0.61
-4 1850-1859 0.43 0.49 0.49 0.60
-3 1860-1869 0.45 0.52 0.52 0.59
-2 1870-1889 0.45 0.52 0.52 0.59
-1 1890-1908 0.45 0.51 0.51 0.59
CP 1909-2000 0.49 0.55 0.54 0.62
+1 2001-2002 0.48 0.53 0.53 0.63
+2 2003-2015 0.41 0.47 0.45 0.65
+3 2016 0.41 0.50 0.43 0.66
+5 2017-2018 0.10 0.02 0.04 0.83
SR
-7 1623-1659 0.28 0.19 0.16 0.81
-6 1660-1699 0.32 0.19 0.16 0.79
-5 1700-1739 0.33 0.20 0.17 0.78
-4 1740-1779 0.32 0.16 0.14 0.79
-3 1780-1809 0.37 0.27 0.24 0.76
-2 1810-1849 0.42 0.36 0.33 0.73
-1 1850-1877 0.41 0.35 0.33 0.73
CP 1878-2014 0.54 0.53 0.52 0.65
+1 2015 0.56 0.52 0.50 0.65
+2 2016-2018 0.47 0.50 0.49 0.71
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Appendix B: Supplemental Figures
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Figure S.1: WHE maximum latewood density (MXD), composite ring-width (RW), earlywood blue in-
tensity (EWB), delta blue intensity (∆BI), and latewood blue intensity (LWB) chronology variants, EPS,
and replication. Composite chronologies derived from PCA of pooled series from WHE, JIS, and SLE.
Differential chronology variants for each tree ring parameter result from detrending with the 2

3 spline in
SignalFree (23 sf, red line), the Age-dependent spline in SignalFree (AD-sf, blue line), and the Negative
Exponential spline in SignalFree (NegExp-sf, orange line). EPS determination based on tree ring chronol-
ogy developed with AD-sf detrending.
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Figure S.2: Spatial correlations (α=0.10) across the Southern Rocky Mountains/American Southwest
regions between the (A) non-transformed and (B) first year difference composite AD-sf LWB chronology
and regional PRISM 4k AS Tmax over the period 1907−2015.
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Figure S.3: Spatial correlations (α=0.10) across the Southern Rocky Mountains between composite RW,
EWB, and ∆BI chronologies and regional PRISM 4k AS Tmax over the period 1907−2015, and between
WHE MXD chronology regional PRISM 4k AS Tmax over the period 1907−1983.
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Figure S.4: Forward and backward (evolutionary) moving correlation (α=0.05) of composite RW, LWB,
and ∆BI chronologies and regional PRISM 4k AS Tmax over the period 1907−2014, and between WHE
MXD chronology regional PRISM 4k AS Tmax over the period 1907−1983. Note differential color scales
for correlation coefficient (r) between parameters.
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Figure S.5: Photograph of Upper San Leonardo Lake, Sangre de Cristo Mountains, northern NM showing
abundance of floating and submerged Engelmann spruce logs.
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Figure S.7: Dendrogram displaying results of a complete linkage hierarchical cluster analysis (HCA)
performed on the 26 LWB chronologies. Cluster analysis based on euclidean distance matrix of chronology
loading values on PCs1-3. Final regional groups were determined with a cutoff height value of 0.7.
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Figure S.8: Pearson’s r (p<0.05) between all 26 LWB chronologies across each region and current year
monthly and optimum season A) CRU 4.04 0.5◦Tmean, B) CRU 4.04 0.5◦precipitation, and C) CRU
1901-2017 0.5◦self-calibrating Palmer’s Severity Drought Index (scPDSI) data (Harris et al., 2014) for
each region. Correlations span the common period between the starting calibration year (1920) and the
last year of each individual chronology.
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Figure S.9: Regional climographs of mean monthly maximum, mean, and minimum temperature, and
precipitation, derived from the CRU TS 4.04 0.5°land dataset (Harris et al., 2014) over the period
1920−2019 for the Northern, Central, Southern Rocky Mountain, and Intermontane Plateau regions.
Temperature is represented by the red lines and precipitation by the blue boxes.
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Figure S.10: Plotted 4 regional Tmax reconstructions. Time series of yearly reconstructed values indicated
by thin lines, and overlaid with 20-year low pass filter smoothed time series. Associated standard zerror
with the yearly values shaded in dark grey.
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