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Abstract 
Maximum stand density index (SDIMAX) models were developed for important Pacific 

Northwest conifers of western Oregon and Washington, USA, based on site and species influences and 

interactions. Inventory and monitoring data from numerous federal, state and private forest 

management groups were obtained throughout the region to ensure a wide coverage of site 

characteristics. These observations include information on tree size, number and species composition. 

The effects and influence on the self-thinning frontier of plot-specific factors, such as climate, 

topography, soils and geology, as well as species composition, were evaluated based on geographic 

location using a multistep modelling approach. The influence of climatic variables was explored 

further in the context of potential future climate scenarios. Future climate projections based on global 

circulation models under different representative concentration pathways were utilized in a space-for-

time substitution within an ensemble learning model to understand potential shifts, both magnitude 

and direction, in modelled SDIMAX. Further issues of model sensitivity to both spatial errors associated 

with input plot locations, as well as diameter cutoffs and calculations, were explored. The regional 

model of site-specific SDIMAX will support forest managers in decision making regarding density 

management and species selection to more efficiently utilize site resources toward healthy, productive 

forests. 
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Chapter 1: Review of Forest Stand Carrying Capacity: Stand Density Index 
Modelling Methods and Application 

Introduction 

An understanding of density is critical for effective forest management. Density is a function 

of two variables, the number of plants and their size (Zeide, 2005). Through silvicultural prescriptions 

the density of a forest can be manipulated to achieve specific management objectives (Allen and 

Burkhart, 2018; Long, 1985). Many models attempt to determine the growth trajectory and mortality 

of a stand based on species and site-specific self-thinning lines that represent maximum carrying 

capacity. The maximum carrying capacity of a stand is an essential piece of information “for assessing 

site productivity, modelling and predicting stand dynamics, and silvicultural regulation.” (Pretzsch and 

Biber, 2016)  

Reineke (1933) described carrying capacity as the relationship between number of trees per 

unit area and their average diameter (dbh – diameter at breast height). When data from a sufficient 

number of stands with the same average dbh are obtained, the stand with the most trees per acre can be 

considered as having 100%, or maximum density. All other stands can be expressed as a percentage of 

this full density. Reineke plotted the log-log relationship of number of trees over average diameter to 

show the upper boundary as a straight, negative sloping line. A line was visually fit to this outer 

boundary and the number of trees that intersect at 10 inches is what Reineke called stand density index 

(SDI). There has been much discussion (Zeide, 2005, 2010; Curtis, 1970; Long and Smith, 1984; 

Zhang et al., 2005; Burkhart and Thome, 2012) and analysis (MacKinney and Chaiken, 1935; Sterba 

and Monserud, 1993; Woodall et. al, 2003; Weiskittel et. al, 2009; Vospernik and Sterba, 2015; 

Kimsey et. al, 2019) of the stand density index since Reineke first published his findings.  

Yoda et al. (1963) showed through a variety of experiments on cultivated plants, grasses and 

road-side weeds that the pure stands cannot be more densely populated than a fixed limiting density 

and that when plant number was plotted against plant mass on a log-log relation, the slope of the self-
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thinning line was “in every case nearly equal to -3/2 irrespectively of the difference in species.” 

Yoda’s -3/2 power law of self-thinning law, along with Reineke’s SDI, have been the basis for much 

forest density related research (Drew and Flewelling, 1977; Weller, 1987a; Zeide, 1987). 

Species- and Site-Specific Self-thinning Lines 

 Reineke (1933) first described the self-thinning line utilizing log-log paper and visually fit a 

reference curve to the outer boundary. He concluded the slope of the line to be -1.605 and was 

invariant to tree species or site quality. Contrary to Reineke’s belief that the slope was constant, many 

subsequent investigations have revealed systematic variations in slope (Zeide, 1987). Sterba and 

Monserud (1993) express similar doubts by stating “Reineke’s -1.605 is a reasonable average over all 

species but is probably not quite right for any individual species.” In fact, MacKinney and Chaiken 

(1935) reanalyzed Reineke’s data for loblolly pine (Pinus taeda) just 2 years after his paper and found 

a slope of -1.7070. Since initial acceptance of the self-thinning rule, slope and intercept has been found 

to be much more variable (Bi et. al., 2000). Charru et. al. (2012) conclude, based on their findings of 

modelling the self-thinning line of 11 tree species, that “the significant between-species differences in 

the self-thinning allometric coefficient invalidates the hypothesis of a constant coefficient among 

species.” Pretzsch and Biber (2005) also find the species invariant slope questionable and caution that 

using the wrong slope coefficient could cause severe errors in stand density estimates.  

Interestingly, Westoby (1984) pondered that “overall it is at present impossible to tell in what 

proportions the variation in slope among observed thinning lines is attributable to differences among 

species, differences among environmental conditions, or experimental error”. Many recent studies 

continue to explore this variation and have found species- and site-specific self-thinning lines, which 

are affected by important variables such as species composition, site topography, climatic inputs, soil 

properties and specific wood properties (Kimsey et. al., 2019; Andrews et.al., 2018; Aguirre et. al., 

2018; Kweon and Comeau, 2017; Vospernik and Sterba, 2015; Zhang et. al., 2013; Weiskittel et. al., 
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2009; Woodall et. al., 2005; Bi et. al, 2001). This literature review attempts to synthesize the current 

knowledge on controls and modelling approaches of the self-thinning boundary line. 

Biological Controls of Self-thinning 

As trees, in particular their canopies, grow, their demands on limited forest resources and 

growing space increases. This struggle between trees occurs when “the branch tips of the seedlings 

begin to touch and interfere with each other” and the success of individual trees depends on their 

ability “to keep their crowns in the light” (Frothingham, 1914). As such, the major drivers of self-

thinning (i.e., density related mortality) in forest stands are growing space competition and self-

tolerance. Yoda et. al. (1963) state as the overcrowded stand grows, the plant density becomes 

successively lower due to the competitive interaction between individuals and subsequent death of the 

suppressed. Beyond the initial establishment phase, increasing density with associated above- and 

below-ground competition diminishes growth of tree volume and diameter (Zeide, 2005). Initially, 

forest stand development is essentially free of intra- or interspecific competition during which time 

mortality is independent of density and therefore self-thinning only occurs when a site becomes fully 

occupied (Drew and Flewelling, 1977). Bi et. al. (2000) describe site occupancy as the extent to which 

the trees have occupied the growing space and utilized the available resources within the given 

environment for growth. They go on to describe a site as fully occupied when the stand has 

accumulated the maximum attainable biomass at that stand density where any further growth will 

incur mortality. 

Leaf Shape and Crown Dimensions 

Quite literally, there exists a limit of how much biomass can be packed into the canopy of a 

standing crop of plants, which ultimately leads to competition for space among individuals. Curtis 

(1970) states reduction in growth rate of the individual tree and change in distribution of growth 

among its parts is the manifestation of density related competition. Echoed by Zeide, (2005) “the 

proximity of trees and branches, their size and arrangement, distribution of foliage, form and depth of 
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roots, all these and many other factors bear on stand density.” Westoby (1984) as well states “obvious 

features of ecosystems such as the quantity and spatial arrangement of plant stand crop” are important 

to consider when trying to understand density dynamics.  Krajicek et. al. (1961) understood the 

importance of growing space competition and first described the crown competition factor (CCF) as an 

expression of stand density and is an estimate of the competition among crowns for growing space. 

CCF estimates the area available to the average tree in a stand in relation to the maximum area it could 

use if it were open grown.  They demonstrated that the shape of the crown and relative self-tolerance 

determine the maximum densities attainable by a particular species. Dean and Baldwin (1996) present 

an equation of Reineke’s SDI in terms of canopy metrics. They utilized the D-cubed law to express 

SDI in terms of mean leaf area per tree and mean live-crown ratio, and found 76% of variation of SDI 

in loblolly plantations could be explained as a function of these two metrics. Canopy growing space 

competition drives foliage to the top of crown, increasing the bending stress resulting in larger 

diameters and subsequent increase in SDI. Stress on the stem is also increased from smaller live crown 

ratios by increasing the leverage the crown exerts on the stem (Dean and Baldwin, 1996). 

Longsdale and Watkinson (1983) experimented with plants of differing geometry to evaluate 

the differences in the self-thinning line under the hypothesis that canopy structure may have an 

influence on the position of the self-thinning line. They evaluated three plants of differing geometry, a 

dicot with tall erect stems and opposite leaves, an herbaceous dicot, and a perennial grass, and 

concluded that indeed plant geometry and in particular leaf shape influence self-thinning, finding the 

grass had a higher intercept than the dicots. Regarding trees, they state “one might expect canopy 

structure as well as leaf shape to be important in determining the intercept” of the self-thinning line. 

Harper (1977) showed that pyramidal trees have higher intercepts than round-crowned trees. 

Longsdale and Watkinson (1983) reason that “the pyramidal profile of conifers or, again, their narrow 

leaves improve the efficiency of light interception and allow close packing of plant material into a 

given volume of space or the development of a greater stand height before thinning commences.” 
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Pyramidal trees are usually coniferous with narrow leaves (i.e., needles) and round-crowned are 

usually broad-leaved trees. 

Throughout the literature, where values of SDI are reported, round-crowned hardwoods 

consistently report lower SDI than conifer species. For example, Andrews et al. (2018) reported mean 

predicted maximum SDI for northern hardwoods such as yellow birch (Betula alleghaniensis Britt.), 

sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) to be the lowest 

compared to higher values for northern white cedar (Thuja occidentalis L.), eastern hemlock (Tsuga 

candensis (L.) Carr.) and eastern white pine (Pinus strobus L.). Bravo-Oviedo et al. (2018) reported a 

lower range of maximum SDI value for European beech (Fagus sylvatica L.) compared to the higher 

range of values for Scots pine (Pinus sylvenstris L.). Vospernik and Sterba (2015) found potential 

density of broadleaf species to be considerably lower than most pine, spruce and fir they studied with 

the exception of stone pine (Pinus cembra L.) having an unusually low max density compared to other 

pine species. Pretzsch and Biber (2005) found much steeper self-thinning lines for Norway spruce 

(Picea abies Karst.) and Scots pine compared to common oak (Quercus petraea [Mattuschka] Liebl.), 

although they found European beech could have a wide range of slopes, which they attribute to the 

self-tolerance of beech and the ability to quickly fill canopy gaps. 

Shade Tolerance 

There has been, and continues to be, much discussion regarding shade-tolerance and the effect 

on maximum SDI. Weller (1987b) found the slope of the self-thinning line to be significantly 

correlated with shade tolerance and concluded differences in thinning slopes are at least partly due to 

systematic biological differences between species. Jack and Long (1996) state, in general, shade-

tolerant species have a greater intercept than intolerant species. They attribute this to the ability of 

shade-tolerant trees to have higher ‘packing density’ (plant biomass per growing space volume).  

Assmann (1970) states the different light requirements of species in a mixed stand may 

produce greater assimilation efficiency in comparison to pure stands. A stand with an upper canopy of 
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light-demanding species and the intermediate and lower canopy of semi-shade-tolerant and shade-

tolerant species, which are capable of utilizing the light that has been transmitted through the upper 

canopy, may produce an additive increment on density. Pretzsch and Biber (2016) found significant 

density gains when species associations included highly shade-tolerant species such as European 

Beech, or an intermediately shade-tolerant species such as Norway spruce mixed with a very light 

demanding species like European larch (Larix decidua Mill.). Pretzsch and Schutze (2016) found 

similar results of higher density in stands of mixed shade tolerance, which they attribute to the 

complementary ecological traits of light-demanding species in the upper canopy and shade-tolerant 

ones in the lower canopy.  

Not all studies found such clear-cut relationships between shade tolerance and density. 

Weiskittel et. al. (2009) examined the self-thinning boundary line of three tree species of varying 

shade tolerance and found the steepness of the self-thinning slope did not follow shade tolerance 

rankings, although the extremely shade-tolerant western hemlock (Tsuga heterophylla) did have the 

steepest slope, red alder (Alunus rubra Bong.), a shade-intolerant hardwood had the shallowest. 

Kimsey et. al (2019) found steeper slopes when stands were composed of shade-intolerant ponderosa 

pine (Pinus ponderosa var. ponderosa) compared to stands containing intermediate Douglas-fir 

(Pseudotsuga menziesii [Mirbl] Franco var. glauca [Biessn.] Franco) and tolerant grand fir (Abies 

grandis [Douglas ex D. Don] Lindl. Var. idahoensis). Aguierre et. al. (2018) found the “least 

pronounced” (i.e., shallowest) slopes in the two most shade-tolerant species of pine (Pinus sylvestris 

and Pinus nigra) that were studied on the Iberian Peninsula. Charru et. al. (2012) found a significant 

positive correlation between maximum density and shade tolerance. Vospernik and Sterba (2015) 

compared 10 tree species in Australia and could not find a relation of self-thinning slopes with shade 

tolerance. Charru et. al. (2012) found significant exceptions to the positive correlation between 

increasing shade tolerance and max density in Douglas-fir (Pseudotsuga menziesii Franco.), Scots pine 

and Corsican pine (Pinus nigra Arn. Subsp. laricio (Poir.) Maire var. Corsicana (Loud.) Hyl.), which 
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“reached unexpectedly high densities given their low shade tolerance, suggesting that factors other 

than light resources may reduce stocking.” Ducey et. al. (2017) found that in general, species with the 

lowest specific gravities could support the highest densities regardless of shade tolerance but that there 

was significant interaction of climatic variables with shade tolerance. They found that cooler 

temperatures are associated with the ability to sustain higher densities of shade-tolerant species. 

Bravo-Oviedo et. al. (2018) also found a similar interaction between climate and shade tolerance, but 

ultimately concluded the addition of a shade-tolerance value in the model to be non-significant.  

Specific Gravity 

Dean and Baldwin (1996) explored the relationship between the mechanical stress the canopy 

exerts on the stem and the physical properties of the wood of particular species. In their linear model, 

wood specific gravity accounted for 91% of the variation in maximum SDI. Woodall et. al. (2005) 

found plot level mean specific gravity explained 92% of the variation in maximum SDI. Andrews et. 

al. (2018) determined wood specific gravity to be the most important variable in hardwood maximum 

SDI model. Bravo-Oveido et. al. (2018) showed a significant relationship between specific gravity and 

stocking, in particular on colder sites. An inverse relationship between maximum SDI and increasing 

specific gravity is the general trend in all the aforementioned studies. Woodall et. al. (2005) explain 

that species with a low specific gravity are more limited in the amount of foliage they can support 

when compared to species with higher specific gravity. Low specific gravity tree species must have a 

greater density to support the maximum leaf area the site can handle, whereas high specific gravity 

trees can carry more foliage per tree and require lower densities to fully capture the leaf area. Ducey 

and Knapp (2010) conclude from their study of SDI of mixed-species forest in the northeastern US 

that “specific gravity can be a powerful predictor” of density but that clearly other factors are 

important which are “related to the competitive dynamics of trees in mixed-species forests.” 
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Drought Tolerance 

 Niinemets et. al. (2006) demonstrated there are often negative correlations between drought 

and shade tolerance, with only 2.6-10.3% of species investigated being relatively tolerant to two 

environmental stresses simultaneously, indicating ecological trade-offs between tolerance to differing 

environmental limitations. Bravo-Oviedo et. al. (2018) found the influence of drought tolerance to be 

significant in their model of maximum density. Their results indicated a trade-off between drought and 

shade tolerance depending on site conditions and that tolerance actually reduces “the number of 

individuals needed to make full use of resources.” Their results showed the warmer the site, the greater 

presence of drought tolerant species and subsequent reduction in density. Aguirre et. al. (2018) 

included the Martonne aridity index in their maximum density model, and found significant, specie-

specific responses in all five species of pine, indicating species-specific variation in drought tolerance. 

The greatest improvement with the inclusion of the aridity index was to the Pinus halepensis model 

and is attributed to this species’ high adaptation to water stress. 

Environmental Controls of Self-thinning 

 The intercept and slope of the self-thinning line varies with site specific environmental factors 

such as topography, climate and soils. Aguierre et. al. (2018) state, at large scales, including 

environmental variables in a density model might be crucial in explaining the variability of the self-

thinning line over large environmental gradients. Vospernik and Sterba (2015) found, in general, 

larger intercepts in stands grown on more productive land. Pretzsch and Biber (2005) describe the 

limiting boundary, or self-thinning line, as the maximum density of individuals at a given size under 

optimal site conditions, where any boundary lower than this line would signify a stand under 

suboptimal growth conditions. Kimsey et. al. (2019) suggest sites with greater growth resources are 

capable of not only higher growth rates but also greater maximum carrying capacity than sites with 

fewer resources. The presence and availability of resources is strongly influenced by site-specific 

environmental variables. 
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Climate 

 Water and sunlight (i.e., photosynthetically active radiation) are essential for sustaining forest 

ecosystems. The amount, spatial distribution and timing of precipitation and sunlight strongly 

influence ecosystem structure and functioning (Chapin et. al., 2011). Other factors held equal, a 

decrease in precipitation or an increase in temperature results in increased evapotranspiration and 

susceptibility to drought stress (Abtew and Melesse, 2012). Condes et. al. (2017) showed the 

Martonne aridity index had significant and species-specific effects on maximum carrying capacity of 

pure Scots pine and European beech stands. Aguirre et. al. (2018) also showed that including the 

Martonne aridity index in their maximum SDI model improved results for the five Pinus species 

studied. Henniger et. al. (2017) found average growing season temperature and frost-free days to be 

significant explanatory variables of biomass growth in the Acadian Forest Region of the USA. 

Andrews et. al. (2018) found important species-specific interaction of growing season precipitation, 

annual degree-days > 5°C and < 0°C, as well as the interactions between growing season precipitation 

and the mean temperature in the coldest month on maximum SDI in the same region. Kweon and 

Comeau (2017) found the intercept of the self-thinning line to be strongly influenced by climate 

variables associated with evapotranspiration and water balance in trembling aspen stands (Populus 

tremuloides Michx.). Kimsey et. al. (2019) found across all species maximum SDI intercepts increased 

with reductions in annual dryness index, higher summer precipitation and warmer winters. The 

maximum SDI model of Ducey and Woodall (2017) included three climate variables with significant 

interaction with species specific gravity and shade tolerance. They found minimum annual temperature 

and shorter growing season length are associated with higher densities of shade tolerant species. 

Day Length and Light Availability 

While it is clear that light levels strongly control photosynthesis, light availability also has an 

influence on the self-thinning rate. Westoby (1984) attributes the density limit to ultimately depend on 

light interception. Kays and Harper (1974) experimented on perennial ryegrass (Lolium perenne) at 
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different densities and light levels, and found no difference in the slope of the self-thinning line 

between grasses grown in full light and 70% sunlight. However, they found the self-thinning slope of 

grass grown under the heaviest shade conditions (30% light intensity) flattened to around -1. 

Longsdale and Watkinson (1982) duplicated the ryegrass experiment and found the degree of shading 

altered the intercept of the self-thinning line but did not affect the slope. In another experiment, 

Longsdale and Watkinson (1983), from their study of plant geometry and light levels, conclude there 

is “strong evidence that the seasonal variation in the amount and quality of incident light can 

significantly affect the position of the self-thinning line.” Westoby (1984) comments on the typical 

presence of large numbers of shade tolerant plants in the forest understory, which are often assumed 

“to persist for long periods, making only very slow growth but not dying”, until they are released. 

Interestingly, he argues that there are actually high mortality rates and suggests “the continuous 

presence of large number of such seedlings in forest understories is due to continual recruitment more 

than high persistence.” 

Topography 

Moisture and sunlight are the primary drivers of tree growth but are significantly modified by 

slope, aspect and elevation. Topography strongly determines vegetation distribution and influences 

site potential in many ways. Humboldt (1807) describes (through translation) in his Essay on the 

Geography of Plants,  

“When one ascends from sea level to the peaks of high mountains, one can see a gradual 

change in the appearance of the land and in the various physical phenomena in the 

atmosphere.”   

He continues. 
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“As we go further away from sea level the temperature and pressure of the air diminish. [The] 

altitude also influences the intensity of the sun’s rays traversing the atmosphere, and the 

refraction of the rays as they travel through it.”  

The influence of elevation on temperature and precipitation is apparent (Daubenmire, 1943); however, 

these climatic factors are further modified by slope and aspect. A relationship between growth, 

elevation and aspect is based on underlying processes related to the influence of elevation and aspect 

on incoming solar energy and water availability (Roise and Betters, 1981). Slope and aspect are 

critical components influencing the amount of incident solar radiation on a site (Coops et. al, 2000). 

Stage (1976) determined aspect, which is further modified by slope, to be important indicators of site 

productivity of western white pine (Pinus monticola Dougl.) in northern Idaho. Kimsey et. al. (2008) 

examined the influence of site factors on Douglas-fir site index, and found elevation, slope and aspect 

to strongly impact productivity. Weiskittel et. al. (2009) found the self-thinning line of red alder in the 

Pacific Northwest USA to be significantly influenced by site aspect with the intercept much lower on 

north-facing slopes than on south-facing slopes. Kimsey et al. (2019) found within the Inland 

Northwestern USA, where seasonal drought is common, maximum SDI generally increased on 

northerly facing slopes, which have lower evapotranspiration rates and where winter snow pack tends 

to last longer. 

Factor compensation, as explained by Cooper et. al. (1991), explains why certain vegetative 

communities will occur on different topographic features. Daubenmire (1980) describes a relatively 

xerophytic (dry) community on the south slope and a more mesophytic (moderate) community on the 

north slope of the Palouse Range near Moscow, Idaho. A specific example is that of Douglas-fir 

communities that shift from the warmer, dry, south-facing slopes of Northern Idaho, where 

precipitation is relatively high, to steeper north-facing slopes east of the Continental Divide in 

Montana where precipitation is lower and the northerly aspects retain moisture longer into the growing 

season (Cooper et. al., 1991). 
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Another important example of topography modifying climate is illustrated by frost pockets 

found in valley floors. Daubenmire (1980) describes frost pockets as cold air drainage down a valley 

into the narrow gaps where pools of cold air accumulate at night. Frost pockets allow for trees 

typically found at higher elevation to descend into lower altitude areas. Daubenmire (1980) gives an 

example of this microclimate phenomenon by describing the islands of Thuja plicata, which can 

extend down into deep valleys where they abruptly terminate at the edge of the terrace. He concludes, 

“clearly topographic influences on microclimate are so strong and pervasive…that references to 

elevation above sea level [alone] have very low value for indicating the nature of the environment”. 

Soils 

 Soils influence site quality in many ways, including water holding capacity, nutrient 

availability and rooting depth. The significance of water availability on site quality and carrying 

capacity can be directly influenced by the soils present. Kimsey et. al. (2019) found soil parent 

material to have an important effect on stand density, in particular the presence of a volcanic ash cap 

significantly increased maximum SDI for all species studied. They attribute the increase in carry 

capacity of ash-influenced soils to the increased water holding capacity of volcanic ash. Binkley 

(1984) showed the effect of soil fertility on maximum size density relationships in Douglas-fir/red 

alder stands. The most fertile site, as expressed by the highest site index, had the greatest maximum 

size-density relationship and dropped off from this ceiling with decreasing fertility.  

Modelling Stand Density Index 

 “When examining bivariate data, scatter diagrams illustrate associative relationships…and 

have historically proven useful for exploring a diversity of ecological phenomena” (Scharf et al. 

1998). Reineke (1933) explored such an association when he first plotted the log-log relationship of 

number of trees on average diameter and noticed the outer boundary assumes a straight line form. 

Reineke proposed SDI as a stand density assessment tool where the number of trees at the reference 

diameter of 10 inches is formulated as: 
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Where N is the number of trees per unit area, QMD is quadratic mean diameter and 𝑏𝑏 is the slope 

parameter of the self-thinning line. This index allowed for comparison of densities between stands of 

similar species and region, however, to compare between various species and site types, SDI should be 

expressed in relation to a maximum (Zeide, 2010). Maximum SDI can be expressed as the maximum 

density that can exist for a particular average tree size. Knowledge of the maximum SDI and the 

current SDI would then allow for a calculation of stocking or relative density (Drew and Flewelling, 

1979). Modelling and statistical techniques have come a long way since Reineke hand fit a line, on 

paper, to the outer edge of his scatter plots. 

Plot Selection Criteria 

 A key aspect in determining maximum SDI is data selection, that is, selecting plot data from 

stands that are currently undergoing density related mortality. Bi and Tuvey (1997) remark “a problem 

that has always existed in self-thinning studies is the lack of objectivity in determining which data 

points to include when fitting the maximum biomass-density line.” Lee and Choi (2019) describe this 

difficulty, “a key implication is that analyzing maximum size-density relationships is difficult…when 

analysts cannot be sure whether sample plots are at a self-thinning frontier.” Burkhart (2013) ponders 

on how to objectively determine which observations are at the maximum; he states “the maximum 

size-density relationship that results from fitting data depends on how the data are screened to 

determine which observations are at the maximum and what fitting procedure is applied.”   

Mohler et al. (1978) describes the consequences of plot selection: “First…if sampled prior [to 

density-induced] thinning, these plots will have a low density for their mean [size] and will fall below 

the thinning line toward the middle of the usual log-log diagram. Second, in some young sample plots 

the populations may not have attained a sufficient size for crowding to have produced a change in 

density…Third, if density-independent mortality is acting on the population, some plots will have a 
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density below what would be predicted from their mean plant [size].” They continue “inclusion of 

plots not fully thinning due to lack of time for growth will result in an estimated slope which is too 

steep…Inclusion of plots not thinning due to low initial densities may or may not change the slope but 

will lower the intercept. Finally, inclusion of senescent plots will result in an estimated slope which is 

too shallow.”  

Reineke selected plots by hand-fitting a line to the outer edge of his data, this method, 

although considered arbitrary and subjective (Weller, 1987b; Zhang et al., 2005) is still utilized as a 

‘first step’ (Burkhart, 2013) in examining data in self-thinning studies. Bi et al. (2000) describe the 

early methods of choosing data points that “lie close to an arbitrarily visualized upper boundary before 

the line is estimated, and to subjectively eliminate data points from populations that are believed to be 

not undergoing density-dependent mortality.” VanderSchaaf and Burkhart (2007) utilized “a visual 

inspection of all plots…to ensure only those observations occurring along [the] dynamic thinning line 

boundary were included” in their analysis. Zhang et al. (2005) in their evaluation of various techniques 

of plot selection demonstrated the use of the visualization technique when they “purposefully selected 

two data points that lay close to a visualized upper boundary for all available points” and simply fit a 

linear regression between the two points. 

Hutchings and Budd (1981a) in deciding which plots to include, utilized repeat counts of 

density on their experimental plots of red clover, and only included populations “whose density 

appeared to be declining exponentially” in their calculations, which they admit “still requires some 

subjectivism.” West (1982) made use of repeated measurements of Eucalyptus forests in Tasmania and 

chose only plots from stands “having substantial and continuing competition-induced mortality and 

which therefore appeared to be at maximum density”, which he defined as “generally more than 1% of 

trees dying per year”. West and Borough (1983) make use of repeated measures and only selected 

plots “for which at least 10 per cent of the trees present in the plot at planting had died by the time of 

the measurement.” They go on to acknowledge “the value of 10 per cent was chosen arbitrarily to 
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indicate that ‘substantial’ mortality had occurred.” Puettmann, Hann and Hibbs (1993) used data from 

repeated measurement periods on stands of pure red alder and pure Douglas-fir, and only included 

plots in their analysis “which had no signs of past disturbance and exhibited mortality during the 

measurement periods.” The use of repeated measures to determine if a forest stand is undergoing self-

thinning was employed by Poage et al. (2007) in hemlock-spruce stands in Alaska, where multiple 

observations of TPA and QMD over time were available. Only plots where the trajectory (on log-log 

basis) began to curve were used. Begin et al. (2001) utilized repeated measures to eliminate plots 

“showing an increase in density between two measures.” 

Some methods have no formal statistical basis, as in Mohler et al. (1978) where in one case, 

field notes were relied upon to eliminate plots which had clear density-independent mortality. Prezsch 

and Biber (2016) made use of detailed stand history to select “only unthinned or slightly thinned plots 

to represent conditions at or close to maximum density” and verified this in the field by the “absence 

of stumps and presence of dead standing trees, both indicating approximate maximum stand density.”  

Many methods have been proposed for how to overcome the subjective data selection criteria. 

Bi and Turvey (1997) proposed what is known as ‘the interval method’, which involves dividing the 

range of log density into a specified number of equal intervals, then the data points having the 

maximum tree size in each interval are selected. They repeated this selection method by varying the 

number of intervals. Soloman and Zhang (2002) only included plots with a relative density (RD) 

greater than 0.7, which they admit is an arbitrary threshold. Zhang et al. (2005) used an RD threshold 

of 0.85. Kweon and Comeau (2017) removed measurements with an RD below 0.4. Monserud, 

Ledermann and Sterba (2005) included only plots “showing full crown closure and an SDI (using 

Reineke’s slope value of -1.605) value greater than 700.” Burkhart (2013) utilized normal yield tables 

to screen his data with targeted values of relative spacing and stand density index (using Reineke’s 

slope value). Condes et al. (2017) utilized quantile regression to discard plots “located in open forests 

that would be of no interest for the purpose of estimating” the maximum size-density relationship. 
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Their method involved fitting two quantile regressions (of tau = 0.5) between basal area and an aridity 

index, as well as a ratio of dominant height-QMD and the aridity index. “All plots which, for a given 

M [the aridity index], presented values for a basal area or [height:QMD] ratio of less than half of those 

expected were removed from the sample”, which they determined represented plots growing at low 

densities.  

Reyes-Hernandez et al. (2013) utilized a two-step process to determine which plots in their 

dataset were within the density-dependent stage of self-thinning. A model with both a linear and non-

linear segment was fit to plots with at least five remeasurements, then determined if a plot had reached 

the self-thinning phase based on criteria regarding the slope coefficients of each segment. They also 

acknowledge “a visual inspection of points was also performed so that only those observations that 

were showing trends that are consistent with the density-dependent mortality stage of the self-thinning 

trajectory were used for further analysis.” VanderSchaaf and Burkhart (2008) used a similar 

segmented regression approach to model different phases of the trajectory to “statistically determine 

what observations are within the generally accepted stages and phases of stand development.” 

Zhang et al. (2005) proposes one way “to avoid subjectively selecting data points is to use all 

available points and fit the self-thinning line by appropriate regression techniques.” More recent 

studies exploring the self-thinning line utilize these techniques where no, or at least minimal, plot 

screening is performed a priori and the regression methods determine which plots are at the 

maximum.  

Modelling Methods 

 The standard approach to modelling the self-thinning relationship in forest stands is linear 

regression of the following form: 

 

log(𝑁𝑁) = 𝛽𝛽0 + 𝛽𝛽1log (𝑄𝑄𝑄𝑄𝑄𝑄) 



17 
 

 

Where N is the number of trees per unit area, QMD is quadratic mean diameter and 𝛽𝛽0 and 𝛽𝛽1 are the 

intercept and slope parameters to be estimated. The important features of this linear relationship are 

the slope of the line, which is the thinning rate, and the intercept which implicitly accounts for site 

level variation, including species composition and physical site properties (Andrews et al., 2018). 

Reineke (1933) hand fit a line utilizing log-log paper along the outer boundary of the data to determine 

the slope and intercept of the line. MacKinney and Chaiken (1935) reanalyzed the same data using 

standard statistical techniques of regression to determine the slope and intercept. These early 

determinations were used as the basis to determine stocking by “dividing the actual number of trees 

[found in the stand of interest] by the number necessary for 100% stocking” (MacKinney and Chaiken, 

1935). Burkhart (2013), after screening plots he considered at maximum, fit OLS regression to 

determine the slope and intercept of the self-thinning line in loblolly pine plantations of the 

southeastern United States. Comeau et al. (2010) used OLS regression to fit self-thinning lines in Sitka 

spruce (Pieca sitchensis (Bond.) Carr.) and Douglas-fir from Great Britain and Canada by first 

choosing plots they deemed at the maximum, then fit the “average” line and finally, to correct the 

intercept, moved this line parallel upward to the plot with the highest SDI value. Pretzsch and Biber 

(2005) used OLS regression to find the species specific slopes of common beech, Norway spruce, 

Scots pine and common oak in stands determined to be ‘A-grade and fully stocked’. 

 Many methods have been developed to model the self-thinning line with an unbiased approach 

to plot selection (Bi et al., 2000; Zhang, 2005; VanderSchaaf and Burkhart, 2007). The methods 

discussed in the previous paragraph highlight regression methods of “arbitrarily hand fitting a line 

above an upper boundary of data points” (Zhang, 2005) and fitting an ordinary least squares through 

selected data points thought to be at maximum density. Beyond hand fitting and OLS, coefficients of 

the self-thinning line have been estimated via frontier analysis (Bi et al., 2000; Weiskittel et al., 2009; 

Comeau et al., 2010; Charru et al., 2012; Kweon and Comeau, 2017; Kimsey et al., 2019), quantile 

regression (Ducey and Knapp, 2010; Vospernik and Sterba, 2015; Condes et al., 2017; Aguirre, del 
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Rio and Condes, 2018; Bravo-Oveido et al., 2018), linear quantile mixed models (Andrews et al., 

2018), major axis reduction and principal component analysis (Mohler et al., 1978; Hutchings and 

Budd, 1981b; Begin et al., 2001), and linear mixed models (Kweon and Comeau, 2017). Some of these 

methods will be discussed below. 

Frontier Analysis 

 Frontier analysis is an econometric approach to “expressing the maximum amount of output 

obtainable from given input” (Aigner, Lovell and Schmidt, 1977). Farrell (1957), in his pioneering 

work on technical efficiency, set out to provide “a satisfactory measure of productive efficiency” when 

he developed the efficient production function. Farrell believed the use of average productivity of 

labor, the common approach of the time, to be a wholly unsatisfactory measure of true efficiency. 

Instead, he developed a method of incorporating all combinations of inputs (not defined by the 

weighted averages that were currently “enjoying an extensive popular vogue”) to find the measure of 

technical efficiency. Interestingly, in his example application to American agricultural data, he notes 

that the production efficiency is more than the four factors he incorporated in his model of land area, 

labor, materials and capital, and that undefined inputs of climate and fertility affect the differences in 

efficiency. Perhaps Farrell was aware of the future application of his frontier function to ecological 

concepts such as the maximum carrying capacity of a forest stand. 

 Aigner, Lovell and Schmidt (1977) built upon the theory and empirical work of Farrell, to 

develop a “new approach to the estimation of frontier production functions” which utilizes a two 

component error term, “one normal and the other from a one-sided distribution.” This frontier function 

is considered stochastic, as opposed to deterministic, due to the two-part error term which allows some 

observations to lie above the maximum boundary and is expressed as: 

𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝑢𝑢𝑖𝑖  



19 
 

 

Where 𝑣𝑣𝑖𝑖 and 𝑢𝑢𝑖𝑖 are unobservable random errors (Battese and Corra, 1977). 𝑣𝑣𝑖𝑖 is assumed identically 

and independently distributed as normal with mean of 0 and variance as σv
2. This error term is 

interpreted as the random effects of both favorable and unfavorable conditions which affect 

performance, as well as any associated measurement error. The error term 𝑢𝑢𝑖𝑖, is the non-positive 

disturbance function assumed half-normal and distributed independently of 𝑣𝑣𝑖𝑖 with variance as σu
2. 

This error term is interpreted as the deviation from the maximum output. When 𝑢𝑢𝑖𝑖 is equal to 0, the 

output, or trajectory has reached maximum. 

With respect to the self-thinning boundary, the first error term is the result of the site factors 

discussed previously such as climate and topography, as well as the characteristics of the tree species 

present such as size (QMD), crown architecture, specific gravity and tolerance to shade, drought and 

cold temperatures. This error term also encompasses any measurement error associated with these 

factors. The second error term reflects the fact that a stands trajectory has not reached the maximum 

boundary line, that is any observation not on the self-thinning boundary line will have 𝑢𝑢𝑖𝑖<0. 

 The maximum stand density index model can be formulated as follows 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽𝑖𝑖𝑛𝑛𝑖𝑖 + 𝜀𝜀𝑖𝑖 

Where N is trees per unit area, QMD is quadratic mean diameter –a measure of average tree size, 𝛽𝛽0 is 

the intercept of the self-thinning line, 𝛽𝛽1 is the slope of the self-thinning line, and 𝛽𝛽𝑖𝑖 are model 

coefficients for the 𝑖𝑖𝑡𝑡ℎ site or species-specific covariate, 𝑛𝑛𝑖𝑖 represents the value of the 𝑖𝑖𝑡𝑡ℎ site or 

species-specific covariate and 𝜀𝜀𝑖𝑖 is as defined above. The model utilizes all observations and is solved 

by maximum likelihood estimation with the error parameter assumptions as described above. 

The variance parameter of the stochastic frontier function is: 

𝜎𝜎2=𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2  

The variance ratio parameter is given by: 
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𝛾𝛾 =  𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2+𝜎𝜎𝑣𝑣2
  

Where 𝛾𝛾 lies between 0 and 1. The value of 𝛾𝛾 can be interpreted as to the applicability of a stochastic 

frontier function. For example, if 𝛾𝛾 = 0 then the variance 𝜎𝜎𝑢𝑢2  = 0 and thus there would be no need to 

include 𝑢𝑢𝑖𝑖 in the error term which would then allow the model to be estimated simply with OLS 

(Battese and Coelli, 1992). As 𝛾𝛾 approaches 1, the greater validity of the parameter estimations given 

by the stochastic frontier function. Weiskittel et al. (2009) reported 𝛾𝛾 values approaching 1 when using 

stochastic frontier analysis to model stand density of Douglas-fir, red alder and western hemlock in the 

pacific northwest and concluded the use of stochastic frontier analysis was warranted. Kimsey et al. 

(2019) modelled the maximum stand density for several conifer species of the inland northwest and 

found 𝛾𝛾 values near 1 in all models tested and concluded the use of stochastic frontier regression was 

appropriate. Kweon and Comeau (2017) reported 𝛾𝛾 values between 0.804 and 0.854 in their results of 

modeling the self-thinning boundary line of trembling aspen stands in Canada but did not comment on 

the implication of these values. Charru et al. (2012) utilized stochastic frontier analysis to model the 

self-thinning line of 11 temperate and Mediterranean tree species in France and reported 𝛾𝛾 values 

approaching 1 for many of the species models tested. 

Quantile Regression 

 Koenker and Bassett (1978) proposed a robust method to estimate linear models using 

regression quantiles in cases where the use of ordinary least squares would be too sensitive to outliers 

and long tailed or non-Gaussian error distributions. Cade and Noon (2003) note that a “regression 

model with heterogeneous variances implies that there is not a single rate of change that characterizes 

changes in the probability distributions.”  Koenker and Hallock (2001) echo this notion when they 

state that the effect of covariates “may not be constant across the conditional distribution of the 

independent variable.” Quantile regression allows for an estimation of the relationship of explanatory 

variables at any quantile of the response variable including near the upper bounds (Zhang et al., 2005), 
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which is where stands at maximum density will lie. Quantile regression has the benefit of not requiring 

subjective prescreening of plots at some assumed maximum density (Ducey and Knapp, 2010) and 

instead is fit to the “original unmodified data” (Scharf et al., 1998), where a chosen quantile (q - a 

percentage) splits the data where q observations fall below the line and 1-q fall above the line (Bravo-

Oviedo et al., 2018). Where ordinary least squares regression provides an estimate of central tendency 

(the mean) by minimizing the squares of the residuals, quantile regression is fit by minimizing the sum 

of asymmetrically weighted least absolute values of the residuals (Koenker and Hallock, 2001) 

The conditional median function is found with the 0.5 quantile, but any quantile of the 

dependent variable from 0 to 1 can be used which forces a certain percentage of observations to sit 

above and below the line. Scharf et al. (1998) note “the choice of which quantile best represents the 

boundaries of the data is an arbitrary one and must be made by the investigator.” Vospernik and Sterba 

(2015) reasoned quantile regression was appropriate in their work with Norway spruce, European 

larch and European beech because the self-thinning line is a limiting boundary where the extreme is 

important and tested quantiles of 0.9, 0.95 and 0.99, and chose the highest quantile that had significant 

parameters. Condes et al. (2017) fit maximum size density relationships of Scots pine and European 

beech using quantiles of 0.95, 0.975 and 0.99 but made no mention on which was best suited for the 

data. However, they do comment that as the quantile value approaches 1, the fitting can become very 

sensitive to extreme values “especially for small datasets or if there are several co-variables in the 

models” and that a constant quantile should be utilized when comparing the self-thinning line between 

species or between models with different variables (Condes et al., 2017). Bravo-Oveido et al., (2018) 

tested multiple quantiles near 1 for models of relative density and utilized Schwarz’s Bayesian 

Information Criteria (BIC) to determine that quantile 0.975 produced the model of best fit. 

Quantile selection can be made based on which produces realistic results in accordance with 

published stocking recommendations. Aguirre et al. (2018) investigating the maximum size density 

relationship of pine species in Spain chose a quantile of 0.975 as a compromise between 0.95 which 
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found “excessively low maximum stand densities” compared to previous studies of similar species, 

and 0.99 which “resulted in models that did not fit properly to the data.” Ducey and Knapp (2010) 

selected quantiles that produced results which agreed with A-line stocking of the species of interest. 

For example, they used a quantile of 0.85 in their eastern white pine model because it was the closest 

in agreement with published density guidelines on the species. Ducey and Woodall (2017) used 

published density management guideline and stocking diagrams when fitting quantile regression 

models to maximum size density relationships for red pine (Pinus resinosa) in the Lake States and 

found a quantile of 0.90 as the closest match. 

Linear Quantile Mixed Models 

 A mixed model approach to quantile regression can allow for each observation to have a 

‘location shift effect’ (Koenker, 2004). Andrews et al. (2018) used linear quantile mixed models to 

estimate the slope and intercept coefficients of the self-thinning line of 15 tree species in the Acadian 

Region of North America. This approach utilizes the concepts of quantile regression discussed 

previously but allows for a random effects parameter. The model can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙 = (𝛽𝛽0 +  𝑘𝑘𝑖𝑖) + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

Where N and QMD are defined as before, and 𝛽𝛽0 and 𝛽𝛽1 are the fixed parameters of intercept and 

slope and now the addition 𝑘𝑘𝑖𝑖 as the random effect of the of the 𝑖𝑖𝑡𝑡ℎ plot on intercept. The slope is kept 

constant for individual species. Andrews et al. (2018) reason the use of the individual plot estimates of 

intercept will account for site-level factors and the “near infinite variation in species composition” 

which influences SDI. Each observation now has a corresponding fixed slope determined by dominant 

species on the plot, and a unique, random deviation from the overall intercept. The influence of site 

and species-specific effects are determined in a second step after random plot intercepts are used to 

calculated unique plot level maximum SDI.  
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 As to which approach is best or most appropriate, many of these methods have addressed the 

concerns of objectively selecting plots to fit the self-thinning line and issues with extreme outliers, but 

the superiority of one method over the other depends on the questions asked of the data and the utility 

of the results. Burkhart (2013) sums this up well when he states “quantifying stand density has been 

and remains one of the most vexing problems confronting modelers of forest stand dynamics, and a 

completely satisfactory measure has not yet been advanced.” 

Modelling Site and Species Effects 

 To understand the influence of site and species-specific effects on the self-thinning line, the 

modelling methods discussed above often introduce site and species specific covariates to the model 

(Kimsey et al., 2019; Aguirre, del Rio and Condes, 2018). Another method is a two-stage approach 

where first the intercept and slope are fit to the observations and then relationships between calculated 

plot or stand specific SDIMAX are determined through various statistical methods such as linear and 

non-linear regression (Woodall et al., 2005; Dean and Baldwin, 1996) and regression trees (Andrews 

et al., 2018). 

As discussed previously, site quality is influenced by many environmental factors such as 

climate and topography. Measures of these influential factors are introduced as covariates into the 

modelling process. The inclusion of climate and topographic variables as covariates is a common 

approach to understanding the influence on the maximum size-density relationship. Climate variables 

such as mean annual temperature, mean annual precipitation, frost free period and a whole host of 

other easily derived climate metrics, as well as topographic variables expressed as transformations of 

slope and aspect measures, have been found to be significant in explaining variation in maximum SDI. 

 One approach to determine the influence of site quality on maximum stand density is by 

wrapping all the factors influencing site quality into one variable. This has been accomplished by 

introducing site index (SI) to the model as a covariate (Zhang et al., 2013; Bi, 2001). Zhang et al. 

(2013) found SI to be significant with quantile regression, showing a SDIMAX for ponderosa pine in 
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California to be 860 TPH at SI of 10 m and 1330 TPH with SI of 50 m. Bi (2001) introduced a relative 

site index measure into a maximum SDI model of Pinus radiata in Australia using stochastic frontier 

analysis. Ge et al. (2017) used SI intervals to group plots from China fir (Cunninghamia lanceolata 

(Lamb.) Hook) plantations into five categories of site quality and then produced a different maximum 

SDI model for each. Weiskittel (2009) introduced SI, as well as measures of species basal area 

proportion and a variable indicating if the stand was planted or natural, directly into a stochastic 

frontier model of maximum SDI in Douglas-fir, western hemlock and red alder stands of the Pacific 

Northwest. 

An indicator of how many and which species are present in a forest stand is an important 

consideration in modeling maximum stand density due to differing tolerance, crown architecture and a 

number of other variables which play a role in how trees interact and grow as a stand. Introducing 

species basal area proportion as a covariate into the model can account for the mixing of species with 

differing qualities. Woodall et al. (2005) give the example of how inappropriately applying the 

maximum SDI of a pure lodgepole pine (Pinus contorta) stand (around 2640 TPH) to a stand with 

only 51% lodgepole and the rest mixed species could result in a deviation of true maximum SDI of the 

mixed stand by more than 1000 stems, a very large difference. Kimsey et al. (2019) found significant 

increases in maximum SDI when shifting from pure stands of Douglas-fir or ponderosa pine to mixed 

stands. This increase was attributed to a mixing of more tolerant species, as shown by the relatively 

small increase between pure stands of shade tolerant grand fir and mixed stands of grand fir.  

The correlation of site and species-specific factors can be done without the addition of 

covariates by analyzing the relationship of the calculated SDI to the variable of interest. Dean and 

Baldwin (1996) in a two-stage approach first found plot level SDI and then used linear regression to fit 

the relationship of SDI as a function of foliage density and live crown ratio and found 76% of the 

variation in SDI could be explained by these two variables. Woodall et al. (2005) after finding the 99th 
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percentile SDI used linear regression to estimate the relationship with mean specific gravity and found 

a strong negative correlation with R2 of 0.9216. 

Andrews et al. (2018) used a two-stage approach in an attempt to determine the influence of 

species and site characteristics on maximum stand density. First the self-thinning line was fit with plot 

specific random intercepts and overall fixed slope which allowed for a unique maximum SDI to be 

calculated for each observation. The next step was to use a random forest approach to determine the 

influence of the specific plot level species and site characteristics. Random forest is an ensemble 

regression method of multiple decision trees (Breiman, 2001). This approach found the most important 

explanatory variables, such as specific gravity, leaf longevity, annual degree-days less than 0°C, 

various interactions between temperature and precipitation, for each species-specific model. 

Measures of Size 

 Why use diameter as the predictor of density? The choice of diameter by Reineke, and others, 

was “a major innovation” in describing density (Zeide, 2010) as it was historically common to use 

average or dominant height as the main descriptor of a forest. The number of trees per unit area, along 

with some dominant height, had been a simple and easy to measure expression of density but gave no 

detail on the size or spatial arrangement of the trees (Burkhart and Thome, 2012). Basal area per unit 

area, as well, conveys little about the frequency and size distribution of the trees (Chisman and 

Schumacher, 1940). Basal area, calculated as the cross-sectional area of tree stems at dbh, has the 

same components as Reineke’s SDI, that is diameter raised to a power. With basal area, that power is 

2 – the squared radius of a tree stem at 4.5 feet. If basal area is used as a measure of density, it states 

that number of trees is inversely proportional to squared diameter (Zeide, 2010). In determining the 

slope of the self-thinning line, as demonstrated in the numerous studies cited throughout this review, it 

is found to not be a squared relationship but one closer to Reineke’s -1.605 or Yoda’s -3/2. While trees 

per area and basal area are considered density measures, they do not, taken alone, express degree of 

crowding (Curtis, 2010).  
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Ultimately, density induced mortality is driven by increasing crown width, which is the plant 

part that takes up most of the space occupied by a tree (Zeide, 2005). Any meaningful descriptor of 

density should account for the occupancy of space by the tree crowns. Curtis (1982) states diameter-

based expressions of density are useful predictors because diameter is “not intrinsically correlated with 

age and site” and is “directly related to average crown development.” Chisman and Schumacher 

(1940) understood the correlation between diameter and crown when they developed the ‘Tree-Area 

Ratio’ as an equation for expressing the ground area allocation of a single tree in terms of its diameter. 

Krajicek et al. (1961) demonstrated the strong relationship between diameter and crown width in their 

study on crown competition factor. Bonnor (1964) showed, in stands of lodgepole pine, the 

relationship between crown width and height was similar at all densities. This is the familiar allometric 

relationship between plant parts, that is, plants of the same species have a particular shape independent 

of their size or state of development (Drew and Flewelling, 1977). It is this strong correlation between 

diameter and crown width, at any development stage, that explain why diameter is the best choice to 

describe density.  

Curtis (1971) concluded that diameter-based measures have the “common advantage of 

avoiding the frequently bothersome and inaccurate estimation of age and site index.” West (1982) 

compared 17 different measures of density of eucalyptus stands in Tasmania using the most basic 

approach of diameter as well as the more complex methods involving basal area, volume and height, 

and concluded that although the different approaches are related mathematically there is little gain 

achieved in the more complex models. Lee and Choi (2019) evaluated diameter, height and volume as 

predictors of the size-density relationship in Korean red (Pinus densiflora) and white pine (Pinus 

koraiensis) and Japanese larch (Larix kaempferi), and concluded even though volume had slightly 

higher correlation, that diameter was the best predictor because it fit the models well and is easily 

measurable. They also concluded height was the least descriptive because it is affected by site 

conditions. Burkhart (2013) who similarly investigated the use of diameter, volume and height in his 
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study of planted loblolly pine concluded that stem diameter had “a modest but consistent advantage” 

for describing the number of trees in self-thinning plots. 

Which diameter? 

 Reineke (1933) used average diameter by basal area in his equation. This diameter is 

mathematically equivalent to what is known as the quadratic mean diameter. It is quadratic because of 

the squared function and is different than the arithmetic mean diameter, which is a measure of central 

tendency. The quadratic mean gives greater weight to larger trees (Curtis and Marshall, 2000). 

Reineke developed his SDI equation from data of even-aged forests and QMD was sufficient in that 

there was not much variance in the diameter distribution of these stands. Reineke’s SDI equation is: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑁𝑁 �
𝑄𝑄𝑄𝑄𝑄𝑄

10
�
𝑏𝑏
 

Where N is the number of trees per unit area, QMD is diameter of average basal area, and 𝑏𝑏 is the 

calculated slope of the self-thinning line which he determined was 1.605. Zeide (1983) points out that 

the use of QMD in Reineke’s SDI equation is ‘not technically correct’ and instead recommends what 

he calls “Reineke’s diameter” or DR.  

𝐷𝐷𝑅𝑅 = 𝑑̅𝑑  �1 +  
(𝑏𝑏 − 1)𝑏𝑏

2
∗ 𝐶𝐶2�

1/𝑏𝑏

 

Where 𝑑̅𝑑 is the arithmetic mean, 𝑏𝑏 is the slope of the self-thinning which should lie somewhere 

between 1, which would produce the arithmetic mean, and 2, which would produce the quadratic mean 

(1.6 is a good approximation for 𝑏𝑏), and 𝐶𝐶2, which is the coefficient of variation of the diameter 

distribution.  

Stage (1968) demonstrated that SDI “can be computed tree by tree within a stand” by 

subdividing the contribution of each tree to SDI in an additive equation. Long and Daniel (1990) 

suggested the general summation expression as: 
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Where 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the diameter of the 𝑖𝑖𝑖𝑖ℎ tree in the stand and 𝑏𝑏 is the slope of the self-thinning line, 

again 1.6 is a good approximation. They reason the summation method is more appropriate for stands 

with non-normal diameter distributions over QMD because of the skewness in diameters and the way 

“growing stock is partitioned among the various size classes” (Long and Daniel, 1990). Burkhart and 

Thome (2012) echo this concern where Reineke’s equation and the summation equation give almost 

identical values of SDI in an even-aged monoculture with a unimodal and symmetric diameter 

distribution, but when each is applied to a stand with a more complex, inverse shaped diameter 

distribution, the values are considerably different. Chisman and Schumacher (1940) were critical of 

SDI for this very reason when they argued “the number of trees in a stand may be associated with an 

entirely different distribution of diameters than that of a normal stand having the same average.” 

Woodall (2003) notes the summation method should only be applied to uneven-aged stands and one 

needs to be aware of the diameter distribution and the effect on SDI interpretation. 

Shaw (2000) showed proof that Zeide’s (1983) calculation of DR is equivalent to the 

summation method proposed by Stage (1968) and Long and Daniel (1990). The summation method 

allows for the determination of how much each diameter class contributes to relative stand density and 

this information is lost when using QMD. Shaw (2000) deems this information critical to informed 

management decisions regarding manipulation of stand structure and concludes summation is the 

superior method of calculating SDI in irregular structured stands. Woodall et al. (2005) make a similar 

conclusion “the only way to appropriately determine SDI in stands with non-normal DBH 

distributions is to determine the SDI for individual DBH classes and then add them for the entire 

stand.” Ducey and Larson (2003) argue that the summation SDI and Reineke’s SDI should be 

considered different indices altogether and state there is no “superiority of any particular index”. They 

reason that “while additivity is useful, and simplifies many issues of mensuration and 
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interpretation…mathematical theory alone cannot settle whether one index is superior to another”. 

They conclude, this question of which method is superior, is an important research need for “guidance 

on what density index is best for a given species and management context.”  

 Andrews et al. (2018) used DR when modeling maximum SDI in the Acadia region of North 

America. Kimsey et al. (2019), Aguirre et al. (2018), Charru et al. (2012), Comeau et al. (2010), 

Condes et al. (2017), del Rio et al. (2001), Kweon and Comeau (2017), Lee and Choi (2019), Poage et 

al. (2007), Pretzsch (2005), Weiskittel (2009) used standard QMD. Bravo-Oviedo et al. (2018), Ducey 

and Knapp (2010), Long and Daniel (1990), Woodall et al. (2005), Woodall et al. (2006) used the 

summation method. 

Diameter cutoffs 

 The lower limit of diameter measurements can have considerable impact on the calculation of 

SDI. This is demonstrated in the case studies presented by Curtis (2010) where he shows the common 

problem in applying SDI to a stand with a shade-tolerant understory that is essentially managed as 

even-aged. The stand in the ‘Black Rock’ example has a very pronounced bimodal diameter 

distribution where nearly all the volume is in the overstory of Douglas-fir, and has a hemlock 

understory comprising only 8% of the basal area. He used three methods of diameter cutoff in 

calculating SDI - only including trees in the overstory, including all trees greater than or equal to 1.6 

inches and including all trees greater than or equal to the diameter cutoff calculated by the D40/4 rule 

(the mean diameter of the 40 largest trees divided by 4) which was about 8.5 inches in this case. These 

diameter cutoffs yielded SDI values (calculated with QMD) of 272, 545 and 274 respectively.  Even 

the use of the summation SDI yielded values of 270, 411 and 271 respectively. The understory 

contributes little to the overall volume or basal area of the stand but has a huge effect on the number of 

trees. Curtis (2010) makes some conclusions and recommendations:  
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• In general trees less than 1.6 inches should be excluded, or in the case of older stands a more 

subjective cutoff might be used – the D40/4 is one such method recommended  

• When a stand has numerous small stems in the understory and is clearly distinguishable from 

the main canopy, the understory should be excluded 

• The summation approach to SDI is less affected by numerous understory trees or an irregular 

diameter distribution and is preferred to the standard QMD approach. 

 Condes et al. (2017) used data from five different European National Forest Inventories and 

restricted to only plots with QMD between 10 and 55 cm in order to avoid plots in older stands where 

harvests are more frequent, as well as eliminating plots from younger stands which have not reached 

canopy closure or were under sampled due to diameter cutoffs in the sampling design. Aguirre et al. 

(2018) followed a similar protocol for their work on the maximum size-density relationship of Pinus 

species in Spain and only included plots with QMD between 10 and 50 cm to avoid under-sampled 

and harvested stands. Salas-Eljatib and Weiskittel (2018) in their study of carrying capacity of 

Northofagus forests in Chile used a diameter cutoff of 5 cm possibly because this was the sampling 

protocol of the data source. Charru et al. (2012) “for the sake of caution,” rejected plots with QMD 

less than 15 cm to avoid including stands not undergoing self-thinning. Their dataset consisted of plots 

with multiple repeat measurements so they went a step further than the ‘arbitrary’ 15 cm cutoff and 

utilized mortality metrics to determine if plots were sufficiently in the self-thinning stage. This 

procedure led to an increase of the diameter threshold of 1 to 5 cm, depending on the species and also 

caused them to set an upper threshold between 33 and 50 cm, again depending on the species. Comeau 

et al. (2010) used the interval method to select only plots in the top 10 percent SDI within each 5 cm 

interval starting at 10 cm QMD. Kimsey et al. (2019) only included plots with a minimum QMD of 

2.54 cm. Weiskittel et al. (2009) did not designate a diameter cutoff and had plots with QMD range of 

0.7 cm to 73.6 cm. Zhang et al. (2013) only described removing trees with heights less than 1.37 m 
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and provided summary statistics of the dataset with QMD between 8.2 cm and 54.5 cm in FIA plots 

and 10.1 cm to 86.1 cm in research plots.  

QMD is typically available as standard stand summary statistics and will “probably continue” 

to be used in the calculation of SDI (Shaw, 2000). One major drawback to using stand or plot 

summarized data where only QMD is given can come when the diameter distribution and cutoff in the 

sampling design may be unknown. 

One curiously lacking descriptor in the protocol of many published studies on the self-

thinning line is whether dead trees are removed or included in the analysis. During this literature 

review few sources were found which specifically mention how trees marked as dead were treated. 

Ducey and Knapp (2010) mention dead trees were removed from the dataset. Ducey et al. (2017) state 

only live trees were included in analysis. It might seem obvious to exclude dead trees but it should be 

explicitly stated given that many datasets include dead trees and if not removed could strongly bias 

results. 

Utilization of the Stand Density Index 

 Density management of a forest stand involves the manipulation and control of growing stock 

to achieve desired objectives (Long, 1985). Manipulation of growing stock allows for the selection of 

desired species, the lengthening or shortening of a rotation and the potential to maximize the yield of 

selected products (Bickford et al., 1957). Stand density index has the benefit of being a standard by 

which sites can be compared independent of stand age or site quality (Williams, 1996; Long, 1985). 

The maximum stand density for a species on a given site is “an essential piece of information for 

assessing site productivity, modelling and predicting stand dynamics and silvicultural regulation.” 

(Pretzsch and Biber, 2016) Westoby (1984) describes self-thinning as informative about stand 

dynamics, as a pattern of biomass rising over a period then collapsing. Avery and Burkhart (2002) 

describe growth models as typically requiring descriptors of stand density. Maximum SDI allows for 
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the constraint of growth models, where equations consist of expansion and decline, that is positive and 

negative factors (Zeide, 2005).  

Zeide (2005) stated it is “not possible” to determine optimal thinning levels without an ability 

to describe density. Stand density is an important tool in silviculture, most commonly as a guide to 

thinning and stand density control, and relates to suppression mortality, crown development and risk 

of windfall and snow breakage (Curtis, 2010). The ability to predict when natural, density-related 

mortality will begin to quickly increase is useful to determine the optimal timing and level of thinning 

regimes of a stand (del Rio et al., 2001). Knowledge of the maximum SDI allows for the determination 

of relative density (RD) (Drew and Flewelling, 1979), a critical component of any silvicultural 

treatment (Woodall et al., 2005). SDI and RD have been used to develop density-management 

diagrams (DMDs) which are useful for planning stand management activities such as thinning 

(Tappeiner et al., 2015). DMDs are developed for many commercially important species and serve as a 

tool for regulating and scheduling density management activities and are “a practical application of the 

self-thinning rule and its properties.” (Begin et al., 2001). DMDs are built under basic assumptions 

regarding density-dependent behavior of forest stands including self-thinning and competition 

responses (Jack and Long, 1996). These diagrams, as developed by Drew and Flewelling (1979), 

contain three relationships: 

1. The maximum size-density line 

2. Lower bound of imminent competition-mortality 

3. The line at a relative density to expect crown closure 

Drew and Flewelling (1979) describe the practical application of density management 

diagrams – stands growing below the line of crown closure are not fully utilizing the site and therefore 

density can be increased without drop in growth; maximum tree size can be obtained by managing 

stands close to the crown closure line; a stand managed between the lower bound of imminent 

competition mortality and at an RD of around 0.40 will achieve high total stand growth but will be 
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distributed among smaller individual trees compared with a stand managed at lower densities; and 

finally stands should not be allowed to move into the zone of imminent competition, or density-

dependent mortality until shortly before a final harvest. Condes et al. (2017) acknowledge 

understanding of density is crucial for silviculture and forest modelling but they take it further by 

stating “clear information regarding size-density relationships under given climatic conditions can 

contribute significantly to the development of regionally appropriate and more precise silvicultural 

guidelines for shaping stand density management diagrams.” 

Climate Forecasting for Density Management 

The influence of climatic variables on the self-thinning line has been demonstrated through 

empirical modeling of the size-density relationship of various tree species and forest ecosystems 

around the world. These models are built with historical data to which the forests have been exposed 

to over the course of stand development. Many of these models find the amount and timing of 

precipitation, and the interaction with temperature to be highly influential (Kimsey et al., 2019; 

Andrews et al., 2018; Ducey et al., 2017) As concerns about the potential impact of climate change 

grow, forest managers must be ready to deal with the possibility of increased variability and 

uncertainty involving future climate scenarios (Puettmann, 2010). Future climate projections built 

from general circulation models (GCMs) under different representative concentration pathways 

(RCPs) can be utilized to predict the impact of these changes on the carrying capacity of forests. 

Understanding this potential impact will allow for the development of mitigation and adaptation 

strategies. 

Ducey et al. (2017) developed a maximum stocking model for important tree species in the 

lake states region of the US. Their model incorporated the AN81d dataset from the PRISM Climate 

Group which consists of calculated climate variables from 1981 through 2012. The climate variables 

are extracted for each specific plot location. It is noted that their FIA plot locations were ‘dithered’ or 

fuzzed from the true plot location to protect land owner confidentiality. They conclude their model 
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may “present a path forward for development of future forest stocking metrics in the face of climate 

change and tree range shift scenarios” but do not provide examples of this utilization. Kimsey et al. 

(2019) used thirty-year normal from 1961-1990 developed by the USFS Moscow Forest Sciences 

Laboratory extracted to unfuzzed plot locations and concluded “model sensitivity to climatic gradients 

may be useful for future assessment of climate change effects on maximum stand density.” Aguirre et 

al. (2018) developed a climate-dependent model of maximum size-density relationships based on data 

from meteorological stations between 1951 and 1999. They did not utilize future climate scenarios but 

concluded their model “could be used for management decision support and even to predict possible 

consequences of climate change.” Brunet-Navarro et al. (2016) developed climate-sensitive self-

thinning lines for four Pinus species on the Iberian Peninsula utilizing historical meteorological station 

precipitation and temperature data for each plot from 1951-1999. They calculated self-thinning lines 

for individual species at the lowest, mean and highest levels of precipitation and temperature levels to 

show the impact and range as a function of these climate variables. They acknowledge they did not 

evaluate “specific climate change scenarios” but that general inferences could be made about each 

species and how they might respond under wetter/dryer or warmer/cooler conditions. They 

recommend future work relating self-thinning lines under future climate scenarios. 

Andrews et al. (2018) took the further step of applying their model with data for potential 

future climate scenarios. Their model was built using 30-year climate normal dataset from 1961-1990 

developed by the USFS Moscow Forest Science Laboratory. They then applied future climate 

scenarios from 2060 and 2090 using prediction from multiple GCMs using the RCP6 scenario. The 

RCP6 was selected because it represents a likely case or a mid-range scenario of future climate 

change. They found future scenarios predict significant and steep decreases in individual species 

maximum SDI and revealed shifts northward of where high maximum SDI ranges were located. 

Rehfeldt et al. (2006) developed range maps of forest communities based on climate relationships. 

They utilized normalized climate data from 1961-1990 at both point locations (latitude and longitude) 
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as well as a gridded surface. They updated their plant-climate relationship surfaces with IS92a climate 

scenario using the Canadian Centre for Climate Modeling and Analysis GCM (HadCM3GGa1) for 

periods beginning in 2030, 2060 and 2090. They found climate changes would shift ranges by 

increasing montane forest and grasslands at the expense of subalpine, alpine and tundra communities.  

Yue et al. (2016) developed a dynamic environment-sensitive site index model (DESIM) to 

assess change scenarios for Norway spruce stands in Germany. Although not specifically looking at 

the effect on density, they utilized four projected change scenarios during the next 100 years including 

a no change in temperature (control scenario) and increase in mean growing season temperature by 

1°C, 2°C and 4°C. DESIM allowed site potential for a given stand to vary as a consequence of 

environmental changes over time. Their results, although not consistent across their study region, 

indicated decreases in forest site productivity at the higher scenarios and modest increases in 

productivity at the lowest scenario. The approach of Yue et al. (2016) differed from that of Andrews et 

al. (2019) and Rehfeldt et al. (2016) in that it was not ‘space-for-time’ substitution of historic 

condition for future condition model parameters but was a dynamic longitudinal approach where 

predictions can be made on a continuum of time-sensitive change into the future. 

Conclusion 

Maximum stand density index serves as a tool for silvicultural prescriptions, in particular 

timing and levels of thinning and other density control measures such as planting and species 

selection. Stocking, or relative density, is determined by the ratio of current stand density to the 

potential maximum. Many environmental and biological factors control the self-thinning trajectory of 

a stand and determine the maximum carrying capacity. Empirical modeling efforts attempt to 

determine site and species dependent maximum values for many tree species and regional forest 

ecosystems. Climate sensitive models may support the development of strategies for dealing with 

potential future climate change. Regionally specific models can aid forest managers in decision 

making now and in the future to promote healthy, sustainable and productive forests.  
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Chapter 2: A Species-Specific, Site-Sensitive, Maximum Stand Density Index 
Model for Pacific Northwest Conifer Forests 

Forthcoming in Canadian Journal of Forest Research 

Introduction 

 Forest stand density is a function of two variables: the number of trees and their size (Zeide, 

2005). Initially, forest stand development is essentially free of intra- or inter-specific competition, 

during which time mortality is independent of density (Drew and Flewelling, 1977). As trees, in 

particular their canopies, grow, demand on limited forest resources and growing space increases, 

causing density to become successively lower due to the competitive interaction between individuals 

and subsequent death of the suppressed (i.e. density related mortality) (Yoda et al., 1963). A site is 

fully occupied when the stand has accumulated the maximum attainable biomass at a given stand 

density where any further growth will incur mortality (Bi et al., 2000). As such, the major drivers of 

self-thinning in forest stands are self-tolerance and the ability of individuals to acquire site resources 

through competition for above- and below-ground growing space.  

 The maximum stand density (SDIMAX), or carrying capacity, for a species on a given site is an 

essential piece of information for assessing site productivity, modelling and predicting stand dynamics 

and silvicultural regulation (Pretzsch and Biber, 2016). Through silvicultural prescriptions, the density 

of a forest can be manipulated to achieve specific management objectives (Allen and Burkhart, 2018). 

Manipulation of growing stock allows for the selection of desired species, the lengthening or 

shortening of a rotation and the potential to maximize the yield of selected products (Bickford et al., 

1957). The ability to predict when natural, density-related mortality will begin to quickly increase is 

useful to determine the optimal timing and level of thinning regimes of a stand (del Rio et al., 2001). 

The timing of key events such as crown closure and the onset of density dependent mortality can be 

anticipated at various levels of density relative to the maximum attainable carrying capacity (Long, 

1985).  
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 The determination of regional and species-specific SDIMAX values for guiding forest 

management decisions has been, and continues to be, an important subject in forestry research (Zeide, 

2010). Reineke (1933) plotted the log-log relationship of number of trees against average diameter to 

show the upper boundary as a straight, negative sloping line. A line was visually fit to this outer 

boundary and the number of trees that intersect at 10 inches is what Reineke called stand density 

index, where the highest number of trees is considered the maximum attainable density or SDIMAX. 

Stand density index has the benefit of being a standard by which sites can be compared independent of 

stand age or site quality (Williams, 1996). The traditional approach to modelling the self-thinning 

relationship in forest stands has been to use the Reineke equation of the following form: 

[1]     log(𝑁𝑁) = 𝛽𝛽0 + 𝛽𝛽1log (𝑄𝑄𝑄𝑄𝑄𝑄) 

Where N is the number of trees per unit area, QMD is the quadratic mean diameter and 𝛽𝛽0 and 𝛽𝛽1 are 

the intercept and slope parameters to be estimated. The important features of this linear relationship 

are the slope of the line, which is the self-thinning rate, and the intercept, which implicitly accounts for 

site level variation, including species composition and physical site properties (Andrews et al., 2018). 

Reineke concluded the slope of the line to be -1.605 and to be invariant to tree species or site quality. 

Contrary to this belief in a constant slope, many subsequent investigations have revealed systematic 

variations in slope (Zeide, 1987). Although Reineke’s -1.605 is a reasonable average over all species, 

it is probably not quite right for any individual species (Sterba and Monserud, 1993). Many models 

attempt to determine the growth trajectory and mortality of a stand based on species and site-specific 

self-thinning lines that represent maximum carrying capacity. 

 The intercept and slope of the self-thinning line (Equation 1) varies with site-specific 

environmental factors such as topography, climate and soils. Aguirre et al. (2018) state, at large scales, 

including environmental variables in a density model might be crucial in explaining the variability of 

the self-thinning line over large environmental gradients. Vospernik and Sterba (2015) found, in 

general, larger intercepts in stands grown on more productive land. Pretzsch and Biber (2005) describe 
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the limiting boundary, or self-thinning line, as the maximum density of individuals at a given size 

under optimal site conditions, where any boundary lower than this line would signify a stand under 

suboptimal growth conditions.  

 The presence and availability of resources is directly determined by site-specific 

environmental variables. The amount, spatial distribution and timing of precipitation and sunlight 

strongly influences ecosystem structure and functioning (Chapin et al., 2011). Numerous studies have 

incorporated important climate variables in stand density index modelling efforts (Andrews et al., 

2018; Condes et al., 2017; Kweon and Comeau, 2017). Moisture and sunlight are the primary drivers 

of tree growth but are significantly modified by site topography (i.e. slope, aspect and elevation), as 

well as soil and geologic properties. A relationship between growth, elevation and aspect is based on 

underlying processes related to the influence of elevation and aspect on incoming solar energy and 

water availability (Coops et al., 2000; Roise and Betters, 1981; Stage, 1976). Topographic variables 

have proven important in driving many stand density index models (Kimsey et al., 2019; Weiskittel et 

al., 2019). Soils influence site quality in many ways, including water holding capacity, nutrient 

availability and rooting depth. The significance of water availability on site quality and carrying 

capacity can be directly influenced by the soils present. Binkley (1984) showed the most fertile site, 

had the greatest maximum size-density relationship and dropped off from this ceiling with decreasing 

fertility. Kimsey et al. (2019) found soil parent material to have an important effect on stand density; 

in particular, the presence of fine-textured volcanic tephra significantly increased maximum SDI for 

all species studied. They attribute the increase in carrying capacity on ash-influenced soils to its 

increased water holding capacity. 

Stand composition (i.e. species presence) has been shown to influence the size-density 

trajectory. Pretzsch (2014) demonstrated how stands of species with varying physiological and 

morphological traits lead to more efficient, denser crown packing. Pretzsch and Biber (2016) showed 

average stand density was higher in mixed species stands compared with pure stands, attributing the 
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increase to complementary ecological traits. Woodall et al. (2005) give an example of how 

inappropriately applying the maximum SDI of a pure lodgepole pine (Pinus contorta) stand (around 

2640 trees per hectare (TPH)) to a stand with only 51% lodgepole could result in a deviation of true 

maximum SDI of the mixed stand by more than 1000 stems. Kimsey et al. (2019) found significant 

increases in maximum SDI when shifting from pure stands of Douglas-fir or ponderosa pine (Pinus 

ponderosa [Douglas ex C. Lawson] var. ponderosa) to mixed stands. This increase was attributed to a 

mixing of more tolerant species, as shown by the relatively small increase between pure stands of 

shade tolerant grand fir and mixed stands of grand fir.  

 To understand the influence of these biological and environmental effects on the self-thinning 

line, site- and species-specific covariates are explored in the modelling process. Andrews et al. (2018) 

used a two-stage approach to determine the influence of species and site characteristics on maximum 

stand density in mixed-species forests of the North American Acadian Region. First, the self-thinning 

line was fit with plot-specific random intercepts and overall fixed slope which allowed for a unique 

maximum SDI to be calculated for each observation. The next step was to use a random forest 

approach to determine the influence of the specific plot level species and site characteristics. 

Weiskittel and Kuehne (2019), exploring similar mixed species forests of New England, USA, also 

used a multi-step approach where first, a size-density relationship was fit with linear quantile mixed 

models to estimate slope and plot-specific intercepts, then random forest was utilized to determine the 

most influential plot-level biotic and abiotic variables. The important variables were then added to the 

base model in a stepwise fashion until a final model was chosen. 

This research project sought to determine whether these proposed methods utilized in other 

regional modelling efforts are capable of producing accurate SDIMAX region-wide models for Pacific 

Northwest conifer forests and to evaluate if these methods could offer a path towards a standardized 

approach to nationwide modelling efforts. The overall goal of this study was to utilize the available 

data and modelling methodologies in the literature, to develop maximum stand density index models 
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for important Pacific Northwest conifer species of western Oregon and Washington based on site- and 

species-specific influences and interactions. 

Materials and Methods 
Study Area 

 This analysis covers over 13.6 million hectares of Pacific Northwest forests in western Oregon 

and Washington, USA, spreading from the southern Klamath Mountains, north along the crest of the 

Cascade Range, west through the Willamette Valley and Puget Trough to the Coastal and Olympic 

ranges reaching the Pacific Ocean. These forests are dominated by coastal Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco) stands, western hemlock (Tsuga heterophylla (Raf.) Sarg.) and western red 

cedar (Thuja plicata Donn ex. D. Don) climaxes (Franklin and Waring, 1980). Forest land ownership 

is diverse and comprises a mixture of federally-owned National Forests and Parks, tribal lands, state 

and local government-owned forests and private forest and timberland held by individuals and timber 

management organizations. Elevation averages 550 meters and varies from sea level to over 4390 

meters at the top of Mount Rainer. Geology and soils are found in highly varied and complex patterns 

with extensive influence of volcanic activity (Franklin and Dyrness, 1988). Thirty-year (1961-1990) 

annual mean precipitation averaged 221 cm with a range from 54 to 631 cm. The percentage of 

precipitation during the growing season (May-September) averages 15% with a range of 7.5 to 29%. 

Mean annual temperature from this same period averaged 9.3 ºC with a range from 1 to 13.1 ºC. 

Data 

 Plot data were obtained through a collaborative network of public and private forest land 

management organizations. Inventory and monitoring plot data represented a range of fixed and 

variable radius sampling methods, each geolocated to allow extraction of desired attributes from 

spatial layers containing various physiographic metrics. Plot location information, including United 

States Forest Service (USFS) Forest Inventory and Analysis (FIA) and Field Sampled Vegetation 

(FSVeg) records, was provided as unfuzzed coordinates. When exact plot location was unavailable, 
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data were rolled up to the stand level (stand shapefiles supplied by data provider) and a stand centroid 

location was utilized (<10% of the dataset). Each plot record included number of trees per hectare 

(TPH), quadratic mean diameter (QMD) and proportion of basal area (BA) by major species groups. 

Data sources provided species basal area proportions for six species groups: Douglas-fir, western 

hemlock, western red cedar, red alder (Alnus rubra Bong.), and two other categories of conifer and 

hardwood. Data screening removed plots with less than 2.54 cm QMD and 24.7 TPH to establish a 

consistent threshold of diameter and number of trees. Only trees marked as living were included in 

plot-level estimates. The final dataset consisted of 168,220 unique observations representing the varied 

range of forest ecotypes across the Pacific Northwest (Figure 2.1). The data were broken into two 

distinct subsets, the first (n=155,083) are those plots containing at least 10% Douglas-fir by BA, and 

the second (n=13,137) consisting of plots with at least 10% western hemlock by BA which contained 

no Douglas-fir BA proportion. Summary statistics on plot data shown in Table 2.1. Although 

dominated by western hemlock, the later dataset had a significant BA proportion in secondary species 

of Pacific silver fir (Abies amabilis), which is rolled into the Other Conifer basal area proportion. This 

second subset of plots was concentrated in the wetter, climax forest conditions with less extreme 

heating events found in the Coast Range, Olympic Peninsula and Northern Cascades; however, each 

subset covered the range of the study area. These datasets will be referred to as DF-Mix and HemFir,  
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Figure 2.1 Study locations across western Washington and Oregon, USA (n = 168,220). Map was developed in 
R (R Core Team, 2020) with state boundaries from the U.S. Census Bureau TIGER/Line Shapefiles. 
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Table 2.1 Stand summary characteristics from plot record data used in this study 

 

respectively, throughout this paper. Species basal area proportions for each of the two datasets are 

found in Table 2.2. 

Table 2.2 Basal area proportion (%) breakdown of plot data used in this study 

Variable Mean SD Minimum Maximum 
DF-Mix     
    Douglas-fir 0.77 0.27 0.10 1 
    Western hemlock 0.09 0.18 0 0.90 
    Red alder 0.05 0.15 0 0.90 
    Western red cedar 0.02 0.07 0 0.90 
    Other conifer 0.04 0.12 0 0.90 
    Other hardwood 0.03 0.11 0 0.90 
HemFir     
    Douglas-fir 0 0 0 0 
    Western hemlock 0.68 0.30 0.10 1 
    Red alder 0.13 0.23 0 0.90 
    Western red cedar 0.04 0.12 0 0.90 
    Other conifer 0.13 0.23 0 0.90 
    Other hardwood 0.02 0.09 0 0.90 

  

 Topographic attributes were derived from U.S. Department of Agriculture (USDA) and 

National Resource Conservation Service (NRCS) National Elevation Data 30-m digital elevation 

models. Slope and aspect were derived using the ‘raster’ package (Hijmans, 2020) available through R 

4.0 (R Core Team, 2020). Trigonometric transformations of slope and aspect were utilized to express 

the influence of these features on climate factors such as moisture and temperature (Roise and Betters, 

1981). Spatial maps of soil parent materials were derived from U.S. Geological Service (USGS) 

1:24,000 geology maps and surficial volcanic ash mantles from the NRCS soil survey geographic 

Variable Mean SD Minimum Maximum 
DF-Mix (n = 155,083)     
    Quadratic mean diameter (QMD; cm) 29.3 15.0 2.54 160.5 
    No. of stems (TPH; trees ha-1) 1,196.0 2,102.4 24.7 56,656.7 
HemFir (n = 13,137)     
    Quadratic mean diameter (QMD; cm) 27.6 16.6 2.54 131.3 
    No. of stems (TPH; trees ha-1) 1,623.8 2,602.2 25.1 38,182.4 
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database (SSURGO). Major geologic groupings and presence-absence of ash influence were 

determined similarly to the methods described by Kimsey et al. (2019).  

 Thirty-year (1961-1990) annual, seasonal and monthly climate normals were obtained through 

the ClimateNA v6.11 (Wang et al., 2016) software package using plot-specific latitude, longitude and 

elevation. These climate data contained directly calculated and derived variables, as well as various 

interactions resulting in over 230 climate variables assigned to each record. Some of these important 

climatic variables can be seen in Table 2.3. 

Table 2.3 Site summary characteristics of plot locations used in this study 

Variable Mean SD Minimum Maximum 
DF-Mix     
    LAT (º) 45.18 1.47 42 49 
    LON (º) -123.07 0.72 -124.65 -120.73 
    ELEV (m) 517.20 311.46 0 2,098 
    SLOPE (º) 18.62 10.41 0 59.43 
    ASPECT (º) 183.37 102.98 0 360 
    MAT (ºC) 9.36 1.30 2.3 13.1 
    MCMT (ºC) 2.56 1.61 -6.3 7.4 
    MWMT (ºC) 16.90 1.33 11.2 21.5 
    MAP (cm) 214.74 75.22 54.4 571.4 
    GSP (cm) 32.33 11.44 7.8 85.5 
    RH (%) 66.15 3.73 52 78 
    PRATIO 0.15 0.03 0.075 0.29 
    MAPMCMT 8.25 3.68 -14.23 24.07 
HemFir     
    LAT (º) 46.08 1.18 42.70 49 
    LON (º) -123.39 0.79 -124.70 -120.77 
    ELEV (m) 400.18 337.61 0 1,574 
    SLOPE (º) 17.99 10.76 0 56.82 
    ASPECT (º) 183.82 113.59 0 360 
    MAT (ºC) 9.01 1.21 2.4 11.9 
    MCMT (ºC) 2.73 1.75 -6.5 7.0 
    MWMT (ºC) 15.74 0.86 12.3 20.6 
    MAP (cm) 267.78 68.72 58.9 630.9 
    GSP (cm) 42.45 9.87 13.1 92.9 
    RH (%) 68.99 2.49 55 79 
    PRATIO 0.16 0.03 0.10 0.26 
    MAPMCMT 7.25 4.55 -12.03 22.01 

*LAT – latitude, LON – longitude, ELEV – elevation, MAT – mean annual temperature, MCMT – mean 
temperature in the coldest month, MWMT – mean temperature in the warmest month, MAP – mean annual 
precipitation, GSP – growing season precipitation (May – September), RH – mean annual relative humidity, 
PRATIO – ratio of GSP to MAP, MAPMCMT – interaction between MAP and MCMT (MAP*MCMT)/1000 
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Modeling Maximum Stand Density 

 The data analysis process involved a multistep approach utilizing linear quantile mixed 

models and random forest in a variable selection process, followed by the development of an SDIMAX 

model using stochastic frontier analysis. 

 Following the findings of Salas-Eljatib and Weiskittel (2018), linear quantile mixed models 

(LQMM) were developed with the ‘lqmm’ package (Geraci, 2014) within the R programming 

environment (R Core Team, 2020) to estimate the random plot-specific intercepts and fixed species-

specific slope of the self-thinning line based on the Reineke (1933) equation: 

[2]     𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = (𝛽𝛽0 +  𝑘𝑘𝑖𝑖) + 𝛽𝛽1 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

Where TPH is trees per hectare, QMD is quadratic mean diameter in cm, β0 and β1 are fixed effects 

parameters and ki is the estimated random effect for plot record i. The random intercept parameter 

produced unique individual plot-level intercept values. The inclusion of a random intercept in the 

mixed model framework accounts for individual plot-level variance which is influenced by many 

inherent location factors such as site quality and the myriad possible species compositions found 

across the study region (Andrews et al., 2018).  

 Scharf et al. (1998) note that the decision of which quantile best represents the boundary of the 

data is an arbitrary one and must be made by the investigator. As in Andrews et al. (2018), values from 

the 90th through the 99th quantile were compared to determine which percentile to utilize. The 95th was 

chosen as the values produced were reasonable while removing the sensitivity of highly influential 

observations found at the higher quantiles, as well as unreasonably low values produced at the lower 

quantiles. Resulting from equation [2], plot-level SDIMAX values for plot i can be calculated as: 

[3]     𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = exp ((𝛽𝛽0 +  𝑘𝑘𝑖𝑖) + 𝛽𝛽1 ∗ ln(25.4)) 

 Individual plot SDIMAX values resulting from the application of equation [3] were then utilized 

to explore variable influence. Due to the large number of explanatory variables assigned to each plot 



58 
 

 

record, random forest (RF) analysis (Breiman, 2001) with the R package ‘randomForest’ (Liaw and 

Wiener, 2002) was used as a variable selection process. RF is a machine learning algorithm which 

constructs an ensemble of decision trees. RF was utilized to understand variable importance in 

predicting SDIMAX and determine the most influential variables to be considered in the final predictive 

model. RF was ran under multiple algorithm parameters utilizing a grid search tuning method to 

determine the best combination with a final run of 2500 trees trying approximately 1/3 of the variables 

at each node with an 80/20 training/testing split for cross validation. Variable importance plots 

(varImpPlot) display ranked variables on two criteria based on error and node purity measured by the 

Gini importance index. 

The top variables selected from the random forest analysis were then explored using stochastic 

frontier analysis (SFA). SFA is an econometric approach to express the maximum output obtainable 

from a given input (Aigner et al., 1977). The frontier function is considered stochastic, as opposed to 

deterministic, due to the two-part error term which allows some observations to lie above the 

maximum boundary line. The maximum stand density index model can be formulated as follows: 

[4]    𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽𝑖𝑖𝑛𝑛𝑖𝑖 + 𝜀𝜀𝑖𝑖 

where: 

[5]     𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝑢𝑢𝑖𝑖  

𝑇𝑇𝑇𝑇𝑇𝑇 is number of trees per hectare, 𝑄𝑄𝑄𝑄𝑄𝑄 is quadratic mean diameter, 𝛽𝛽0 is the intercept of the self-

thinning line, 𝛽𝛽1 is the slope of the self-thinning line, 𝛽𝛽𝑖𝑖 are model coefficients for the 𝑖𝑖𝑡𝑡ℎ site or 

species-specific covariate, 𝑛𝑛𝑖𝑖 represents the value of the 𝑖𝑖𝑡𝑡ℎ site or species-specific covariate, where 𝑣𝑣𝑖𝑖 

and 𝑢𝑢𝑖𝑖 are unobservable random errors (Battese and Corra, 1977). 𝑣𝑣𝑖𝑖 is assumed identically and 

independently distributed as normal with mean of 0 and variance as σv
2. This error term is interpreted 

as the random effects of both favorable and unfavorable conditions, which affect performance, as well 

as any associated measurement error. The error term 𝑢𝑢𝑖𝑖 is the non-positive disturbance function 
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assumed half-normal and distributed independently of 𝑣𝑣𝑖𝑖 with variance as σu
2. This error term is 

interpreted as the deviation from the maximum output. When 𝑢𝑢𝑖𝑖 is equal to 0, the output has reached 

maximum.  

With respect to the self-thinning boundary, the first error term 𝑣𝑣𝑖𝑖 is the result of the site factors 

discussed previously such as climate and topography, as well as the characteristics of the tree species 

present such as size (QMD), crown architecture, specific gravity and tolerance to shade, drought and 

cold temperatures. This error term also encompasses any measurement error associated with these 

factors. The second error term reflects the fact that a stand’s trajectory has not reached the maximum 

boundary line; that is, any observation not on the self-thinning boundary line will have 𝑢𝑢𝑖𝑖<0. The 

model utilizes all observations and is solved by maximum likelihood estimation with the error 

parameter assumptions as described above. 

The variance parameter of the stochastic frontier function is: 

[6]     𝜎𝜎2=𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2  

The variance ratio parameter is given by: 

[7]     𝛾𝛾 =  𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2+𝜎𝜎𝑣𝑣2
  

Where γ lies between 0 and 1. The value of γ can be interpreted as to the applicability of a stochastic 

frontier function. For example, if γ = 0 then the variance 𝜎𝜎𝑢𝑢2  = 0 and thus there would be no need to 

include 𝑢𝑢𝑖𝑖 in the error term which would then allow the model to be estimated simply with OLS 

(Battese and Coelli, 1992). As γ approaches 1, the greater the validity of the parameter estimations 

found by the stochastic frontier function. 

 SFA was run using PROC QLIM in SAS 9.4 (SAS Institute Inc., 2012) specified as a half 

normal, production model with the natural log of TPH as the endogenous variable. The top 

explanatory variables shown as important from the RF analysis were sequentially added and/or 
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removed depending on AIC score and 𝛾𝛾 values. Multicollinearity was assessed among the top 

variables that were considered in the selection process through Pearson Correlation Coefficients using 

the CORR procedure in SAS.  

Independent Validation of Maximum Stand Density Index Model 

 Final model results were compared against published SDIMAX of similar species and region to 

evaluate reasonableness of predictions and self-thinning line parameter values for slope and intercept. 

Also, stand growth trajectories of independent, long-term monitoring datasets were utilized to evaluate 

the predicted self-thinning trajectory. Published tables of remeasured TPH and QMD data from the 

Levels of Growing Stock (LOGS) Douglas-fir thinning studies (Curtis et al., 1997) and from western 

hemlock growth and yield trials (Hoyer and Swanzy, 1986) were utilized as independent datasets. 

Stand data was plotted along with the site-specific self-thinning line extracted from the predicted 

values at the location of these studies. Performance was evaluated based on the trajectory of these data 

points relative to the predicted self-thinning line. 

Results 
Quantile Regression 

 LQMM at the 95th quantile with random plot-level intercepts yielded predicted self-thinning slope 

and intercept of -1.607 (SE=0.013) and 12.3 (SE=0.045) for DF-Mix, and -1.544 (SE=0.017) and 

12.227 (SE=0.060) for HemFir. The random effects covariance was 0.068 for DF-Mix and 0.096 for 

HemFir. Mean predicted SDIMAX was 1220 TPH (SD=119) with a range from 464 to 1719 TPH for 

DF-mix and mean predicted SDIMAX was 1396 TPH (SD=151) with a range of 540 to 1916 TPH for 

HemFir. 

Influential Variables 

 The RF analysis was utilized for variable selection among the > 250 biotic, climatic, geologic 

and topographic factors assigned to each record. Each of the two variable importance measures (Error 

and Gini Index) was considered; however, the top 50 variables were fairly consistent between each 
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measure of importance with 40 of the top 50 in each measure being identical for the DF-Mix dataset 

and 35 of 50 for the HemFir dataset. The most influential variables were measures of basal area 

proportions for the following species: western hemlock (WH_BA), red alder (RA_BA), western red 

cedar (RC_BA) and two ‘other’ categories of conifer (OtherC_BA) and hardwood (OtherH_BA), 

location information (latitude, longitude and elevation), topographic transformations and many 

climatic variables and their interactions describing precipitation and temperature. Similar, but not 

identical, variables were selected to test in the SFA between the DF-Mix and HemFir datasets.  

Stochastic Frontier Regression 

 To begin the process, an initial model of predicting ln(TPH) with the single variable ln(QMD) 

served as the base model. The base model for DF-Mix and HemFir was considered as having 100% of 

each species basal area proportion, respectively. Then, through an iterative process, variables were 

introduced to the model and kept or removed based on variable significance (p < 0.0001) as well as 

AIC score. 

 The final models (Table 2.4) had a γ of 0.924 for the DF-Mix dataset and 0.940 for the 

HemFir dataset, indicating SFA was appropriate for modeling the self-thinning boundary line. The 

self-thinning slope was -1.517 for DF-Mix model and -1.461 for HemFir model. 

Table 2.4 Summary of frontier model parameters and variance estimates for DF-Mix and HemFir. Reineke 
model only includes intercept and slope, whereas full model includes all chosen species and site variables. 
Standard errors shown in parenthesis. All variables significant (p < 0.0001). 

Model Variables Intercept Slope gamma AIC 
DF-Mix Reineke log(QMD) 12.182 (0.009) -1.531 (0.003) 0.915 250321 
DF-Mix Full all 12.202 (0.016) -1.517 (0.003) 0.924 239957 
HemFir Reineke log(QMD) 12.014 (0.033) -1.430 (0.010) 0.919 26624 
HemFir Full all 9.754 (0.177) -1.461 (0.009) 0.940 26147 
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The final DF-Mix model had the following structure: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = exp(𝛽𝛽0 + (𝛽𝛽1 ∗ ln(25.4)) + (𝛽𝛽2 ∗  𝑊𝑊𝐻𝐻𝐵𝐵𝐵𝐵) + (𝛽𝛽3 ∗  𝑅𝑅𝑅𝑅_𝐵𝐵𝐵𝐵)

+ (𝛽𝛽4 ∗  𝑅𝑅𝑅𝑅_𝐵𝐵𝐵𝐵) + (𝛽𝛽5 ∗  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝐵𝐵𝐵𝐵) + (𝛽𝛽6 ∗  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝐵𝐵𝐵𝐵) + (𝛽𝛽7 ∗  𝐿𝐿𝐿𝐿𝐿𝐿) + (𝛽𝛽8 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

+ (𝛽𝛽9 ∗  𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) +  (𝛽𝛽10 ∗  cos _𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) +  (𝛽𝛽11 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

+  (𝛽𝛽12 ∗  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) +  (𝛽𝛽13 ∗  𝐴𝐴𝐴𝐴𝐴𝐴_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) +  (𝛽𝛽14 ∗  𝐴𝐴𝐴𝐴𝐴𝐴_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) +  (𝛽𝛽15 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)) 

The final HemFir model had the following structure: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = exp(𝛽𝛽0 + (𝛽𝛽1 ∗ ln(25.4)) + (𝛽𝛽2 ∗  𝑅𝑅𝑅𝑅_𝐵𝐵𝐵𝐵) + (𝛽𝛽3 ∗  𝑅𝑅𝑅𝑅_𝐵𝐵𝐵𝐵) + (𝛽𝛽4 ∗  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝐵𝐵𝐵𝐵)

+ (𝛽𝛽5 ∗  𝐿𝐿𝐿𝐿𝐿𝐿) + (𝛽𝛽6 ∗  𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) +  (𝛽𝛽7 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) +  (𝛽𝛽8 ∗  𝑅𝑅𝑅𝑅)

+  (𝛽𝛽9 ∗  𝑇𝑇𝑇𝑇) +  (𝛽𝛽10 ∗  𝐴𝐴𝐴𝐴𝐴𝐴_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) +  (𝛽𝛽11 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)) 

 The RF variable importance gave high rankings to many of the interaction terms between 

temperature and precipitation. Often these terms had high multicollinearity. When multiple variables 

deemed important showed high correlation, only the variable which produced the higher likelihood 

ratio was kept in the model. For example, in the DF-Mix dataset, RF variable importance showed 

interactions of both growing season precipitation (GSP) and mean annual precipitation (MAP) with 

the mean coldest month temperature (MCMT) as having large influence. These two interaction 

variables, GSPMCMT and MAPMCMT have a Pearson Correlation Coefficient of 0.98264, therefore, 

although both were significant in model development, only MAPMCMT was kept in the model 

because it produced the larger log likelihood ratio and thus the lower AIC score. Latitude (LAT), 

which was kept in both the DF-Mix and HemFir model, and had the highest Pearson Correlation 

Coefficient with PRATIO at 0.58 and 0.52 for each model respectively. Elevation (ELEV), which was 

kept in the DF-Mix model, had a Pearson Correlation Coefficient of -0.58 with MAPMCMT. These 

terms (Latitude and Elevation) were kept in the model as they account for other regional, spatial 

processes such as genetic adaptations of bud phenology and emergence, as well as the effect of day 
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length patterns on other biological developments (St. Clair et al., 2005). No other terms in either 

model had a Pearson Correlation Coefficient greater than +/- 0.5. 

 In application, if a stand is either pure Douglas-fir or western hemlock, then the DF-Mix and 

HemFir models imply 100% basal area proportion of those species respectively, with other species’ 

basal area proportion values set to 0. As a stand diverges from pure, the additional species basal area 

proportion coefficients are introduced. To predict the SDIMAX for a stand of 80% Douglas-fir, 15% 

western hemlock and 5% other hardwood, 0.15 and 0.05 would be inserted for the values of WH_BA 

and OtherH_BA respectively, and the remaining 80% Douglas-fir is built into the intercept, with the 

RA_BA, RC_BA and OtherC_BA taking a value of 0. The HemFir model inherently has 0% Douglas-

fir basal area and therefore has no coefficient for this species. In the DF-Mix model, mixing of all 

other species groups increased carrying capacity. In the HemFir model, additional hardwood species 

mixing has a negative effect on carrying capacity, while the addition of western red cedar, a tolerant 

species, increased carrying capacity. 

 Climatic variables were influential in both models (Figure 2.2). PRATIO, the ratio of growing 

season precipitation to annual precipitation (GSP/MAP), was the single most influential climatic 

variable in each model. The DF-Mix and HemFir model each showed a strong positive effect of 

having more precipitation during the growing season relative to the annual total. The DF-Mix model 

included an interaction term between mean annual precipitation and mean temperature in the coldest 

month (MAPMCMT), which had a negative effect on carrying capacity. This interaction term 

signified cooler environments receiving the same precipitation relative to warmer sites can support a 

higher carrying capacity. Relative humidity (RH) and temperature difference (TD) each had a positive 

effect on HemFir carrying capacity. The forests which support these climax stands tend to be wetter 

throughout the year. The TD term was driven mainly by cooler winters rather than hotter summer 

months, showing these forests have less extreme heating events and can tolerate the lower 

temperatures of the winter months. 
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 Elevation had a positive effect in the DF-Mix model showing that higher elevations support 

greater carrying capacity. While elevation was shown to be an influential variable in the RF analysis of  

 

Figure 2.2 Site effects on DF-MIX predicted maximum density index for the 10th and 90th quantile of each 
individual site variable while keeping other site variables constant at the 50th quantile. QMD is indexed to 
25.4cm and Douglas-fir basal area proportion held constant at 100%. 

the HemFir dataset, this variable continuously dropped out during the model building process and was 

not included in the final HemFir model. Latitude had a negative effect in both models showing, with 

other variables held constant, the forests of the northern latitudes have lower carrying capacity than 

southern forests. With approximately 7 degrees of latitude between the most southerly and most 

northerly plot in each dataset, this effect may be capturing the difference in day length with respect to 
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sun angle. The cosine of aspect, a measure of north-south slope effect, had a slight negative effect on 

DF-Mix carrying capacity as the topography shift from southerly to northerly. The interaction of 

tangent of slope and sine aspect, a modification of the east-west slope effect, had a negative effect on 

SDIMAX in both models, giving steeper, eastern facing slopes a greater carrying capacity than steeper, 

western facing slopes. This variable had little effect on flatter topography. 

 Ash influence (ASH_ANDIC), or lack thereof (ASH_ABSENT), was influential in both 

models. The absence of any underlying volcanic ash negatively affected carrying capacity in each the 

DF-Mix and HemFir models. In the DF-Mix model, the presence of andic soil properties increased 

carrying capacity significantly. Parent materials of sandstone and glacial outwash had a negative effect 

on DF-Mix and HemFir models respectively. The geologic and soil variables are binary and receive a 

value of 1 (present) or 0 (absent) when applying the model. 

Evaluation of Model Performance 

 The site specific SDIMAX models developed here were compared against published reference 

curves. Self-thinning slope and intercepts of the 50th and 95th quantile of growing conditions for each 

model were determined and plotted against published reference values (Figure 2.3). Results from 

modeling the 95th percentile of modeled SDIMAX values for the DF-Mix and HemFir plot data showed 

1,728 TPH and 1,952 TPH, respectively. 

 When applying the model across the species ranges (expected to make up at least 10% basal 

area) within the study area (Figure 2.4), mean SDIMAX values were 1,234 TPH for DF-Mix with 100% 

Douglas-fir basal area and 2,068 TPH for HemFir with 100% western hemlock basal area. Predicted 

SDIMAX values at the 0.05 and 0.95 percentiles ranged from 1,065 to 1,459 TPH for pure Douglas-fir 

stands and 1,579 to 2,644 TPH for pure western hemlock stands. Long (1985) reported SDIMAX values 

of 1,450 and 1,950 for stands of pure Douglas-fir and western hemlock, respectively. 
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 Repeat measurements of control plots from two long-term studies were available to evaluate 

the modelled self-thinning lines. The first dataset was from the Levels of Growing Stock (LOGS) 

Douglas-fir thinning trials. The LOGS study had seven sites available in the study region including 

Francis (Hoyer et al., 1996), Hoskins (Marshall and Curtis, 2002), Rocky Brook (Curtis and Marshall,  

 

Figure 2.3 Maximum stand density index frontiers of the 95th (solid line) and 50th (dashed line) quantile of 
optimal site characteristics. Established regional species-specific maximum density lines (dotted lines) are 
shown from Long (1985). Dots represent plot specific size-density relationships. 
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Figure 2.4 Regional models applied to expected species ranges within the study area with basal area input at 
100% for each Douglas-fir and western hemlock within the DF-Mix and HemFir models respectively. Units 
represent trees per hectare indexed to 25.4 cm. Output limited to specie range with expected basal area 
proportion of at least 10%. Map was developed in R (R Core Team, 2020) from 1km raster tiles with state 
boundaries from the U.S. Census Bureau TIGER/Line Shapefiles. 

2009a), Iron Creek (Curtis and Marshall, 2009b), Skykomish (King et al., 2002), Clemons (King et al., 

2002) and Stampede Creek (Curtis and Marshall, 2002). The LOGS study had one western hemlock 

plot that was also used for evaluating the HemFir model. Data from tables published in these reports 

were digitized and site-specific SDIMAX values and self-thinning curves were extracted for each 

location. Plot location information was provided by Oregon State University’s Center for Intensive 

Planted-forest Silviculture group (D. Mainwaring, personal communication). The second dataset came 

from two western hemlock thinning trials (Clallam Bay and Cascade Head) which were part of a 

growth and yield study with detailed results published by Hoyer and Swanzy (1986). This report 

contained detailed location information to extract modelled SDIMAX values at these sites. The results 

(Figure 2.5) of plotting stand development of these repeat measures datasets against model-predicted, 

site-specific self-thinning lines showed an overall good fit of the stand trajectory.
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Figure 2.5 Independent validation of regional models using long-term, repeat measures data from the LOGS (Curtis, 1997) and western hemlock spacing trials 
(Hoyer and Swanzy, 1986). Measured stand size-density trajectories are plotted against the site-specific modeled SDIMAX self-thinning line. The available dataset 
(grey dots) with established regional species-specific maximum density frontiers (dotted lines) (Long, 1985).
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Discussion 

 Controlling stand density through silvicultural prescriptions is one of the oldest and most 

commonly used methods for achieving forest management goals (Allen and Burkhart, 2018). 

Knowledge of stand carrying capacity under given climatic and physiographic conditions is crucial for 

developing regionally appropriate management guidelines (Condes et al., 2017). Results from this 

SDIMAX modelling analysis have shown the systematic differences of the self-thinning line with 

respect to varying species composition and site-specific environmental factors. Within the complex 

landscape of the Pacific Northwest, these results demonstrate the variability of site carrying capacity 

and the need for site adapted reference values of maximum density. 

 Reineke’s original analysis utilized only the measures of tree size and number from even-aged 

monocultures, with no assessment on the impact of environmental factors. It was interesting to note 

the LQMM analysis on only tree size and number of the DF-mix dataset, which was dominated by 

records from stands of pure or nearly pure Douglas-fir (median values of 87% Douglas-fir BA 

proportion) produced a self-thinning slope of -1.607 compared to Reineke’s -1.605. While the self-

thinning slope may have been similar solely based on the relationship between tree size and number, 

the subsequent analysis involving environmental variables and, in particular the introduction of 

species mixing, produce systematic differences in the slope and intercept values. 

 Utilizing the variable importance results from the random forest analysis provided a 

convenient means of dealing with the large number of potential explanatory variables. This machine 

learning approach allowed for the identification of predictors to introduce into the regression model. 

While random forest could have potentially been used as the predictive model, we opted for stochastic 

frontier regression which allowed for the assignment of coefficients to specific variables. The ability to 

display the model form with variables and assigned coefficient facilitated technology transfer and 

application of this model amongst industry partners. 
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 The results from stochastic frontier regression show a divergence from the self-thinning slope 

from -1.605 proposed by Reineke and still utilized for determining SDI today. Stands dominated by 

Douglas-fir showed a shallower slope of -1.517, while stands of hemlock-fir showed an even 

shallower slope of -1.461. Although not universal (Vospernik and Sterba, 2015; Charru et al., 2012), 

shade-tolerance of species is often thought to have an effect on the self-thinning line (Weller, 1987; 

Jack and Long, 1996; Pretzsch and Biber, 2016; Kimsey et al., 2019). This is often attributed to the 

higher ‘packing density’ and ability for shade-tolerant species to fill canopy gaps (Pretzsch, 2014). 

The results presented here show not only a flatter slope for the more shade-tolerant HemFir compared 

to DF-Mix, but also higher SDIMAX values with greater species mixing with complementary ecological 

traits. For example, in the DF-Mix model, SDIMAX increases as a stand moves away from pure, 

intermediate shade-tolerant Douglas-fir toward a mix with more shade-tolerant western hemlock and 

western red cedar. 

 As expected, climate played a significant role in the determination of site-specific SDIMAX in 

both the DF-mix and HemFir models. Consistency of precipitation, as PRATIO, throughout the 

growing season had a large positive effect on carrying capacity. This metric signals the droughtiness 

of the site, with the model showing forests receiving balanced precipitation throughout the year as 

supporting a greater carrying capacity. Extreme heating events caused a drop in carrying capacity with 

milder conditions allowing for greater SDIMAX in HemFir sites. Throughout the study region, cooler 

temperatures and greater precipitation allowed for higher carrying capacity. Adapting a species mix at 

the appropriate density, given expected climatic conditions, can allow for optimization of the stand to 

capture and utilize site resources. 

 The influence of particular underlying soil parent material was seen in both models. DF-Mix 

sites on sandstone negatively affecting site carrying capacity. Sandstone-derived soils contain more 

than 50% sand-sized particles predominantly of quartz and often have low base cation status and 

nutrient reserve (Buol et al., 2003). HemFir carrying capacity was negatively affected by soils of 
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unconsolidated glacial materials. Glacial-derived soils in the Pacific Northwest are often younger, 

shallower, less clay-rich with lower nitrogen content and rapid drainage compared to igneous or 

sedimentary derived soils (Littke et al., 2011). 

 Site carrying capacity increases when DF-Mix and HemFir stands are found on soils with 

presence of volcanic ash. As well, DF-Mix stands growing on sites in absence of volcanic ash 

influence were found to have lower carrying capacity throughout the study region. Soils associated 

with the volcanic ash tend to have greater nutritional and water holding capacity and have been shown 

to significantly affect growth and mortality (Coleman et al., 2014, Kimsey et al., 2011) 

 The range of SDIMAX values are in line with results from other published studies from the 

region (Long, 1985; Weiskittel et al., 2009). The higher reported values for the DF-mix dataset 

relative to Long (1985) or Reineke (1933) is mainly driven by species mixing. Where stands with a 

mixture of more shade-tolerant species increases the overall density relative to a stand composed of 

only less tolerant species. Overall, model evaluation against the long-term datasets demonstrated the 

importance of site-specific assessment of carrying capacity. There was strong agreement within the 

Clemons and Iron Creek sites, with the growth trajectory tracking along the predicted self-thinning 

line. While not unexpected, some sites tracked slightly below, never quite reaching the self-thinning 

line. These stands tended to self-thin before reaching previously published curves or would curve 

away from published lines back toward a lower level. Individual stands seldom travel along their self-

thinning frontier but are more likely to converge toward them during the self-thinning phase 

(Vospernik and Sterba, 2015). A one-size-fits-all approach to assigning a maximum stand density 

index solely based on species is not appropriate as can be seen by the varying self-thinning trajectories 

of these datasets. 

 The methodology used in this approach was similar to recent analysis and modelling efforts in 

other regions (Kimsey et al., 2019; Andrews et al., 2018; Ducey et al., 2017). The results presented 

here show that while the variables chosen for inclusion in the final models may vary between different 
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regions and forest types, the methodology is transferable. The ability to explore a large number of site 

and species-specific variables, and determine the most influential for model inclusion, is key to 

developing regionally specific models as variable influence varies between different forested 

ecosystems. Understanding the influence of climate variables in particular can allow for possible 

future climate conditions to be assessed within this maximum stand density index modelling 

framework. 

Conclusion 

 Site-sensitive, species-specific maximum stand density index models were developed for 

forest stands of the coastal Pacific Northwest, USA. Many environmental (climate, topography, 

underlying soil parent material/ash influence) and biological factors (species mixing) control the self-

thinning trajectory of a stand and determine the maximum carrying capacity. Stocking, or relative 

density, is determined by the ratio of current stand density to the potential maximum and may be 

utilized to predict certain phases of stand development, in particular the onset of density dependent 

mortality. Maximum stand density index serves as a tool for silvicultural prescriptions, including 

timing and levels of thinning and other density control measures such as initial spacing at planting and 

species selection. Regionally appropriate models can aid forest managers in decision-making to 

promote healthy, sustainable and productive forests. 
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Chapter 3: Pacific Northwest Conifer Forest Stand Carrying Capacity 
Projections Under Future Climate Scenarios  

Introduction 

Forest stands are generally adapted to the historic, environmental conditions which they have 

been exposed to throughout stand development. Changes to temperature, humidity, and timing and 

amount of precipitation are all predicted to occur in the near and distant future (IPCC, 2013). General 

Circulation Models (GCMs) with different greenhouse gas emissions scenarios (RCPs) project various 

changes to these important climate variables (Wang et al., 2016). These potential changes will impact 

biogeochemical cycles between forests and the environment, which may lead to changes in forest 

growth, survival and structure (Chmura et al., 2011). The development of adaptive forest management 

strategies for potential future climatic conditions may provide resilience to a changing environment. 

Forests of the Pacific Northwest, in particular, rely on water storage in snowpack and soils 

during summer droughts common to the Mediterranean climate experienced in the region (Franklin 

and Waring, 1980). Even without changes to the total amount of precipitation, earlier snowmelt and 

decline in precipitation falling as snow, is reducing this critically important water reservoir, further 

intensify water stress (Harpold, 2016). The manipulation and control of growing stock, in the form of 

density management, could be a key silvicultural tool to increase forest resilience to environmental 

change. Reducing stand density increases water and other resources available to the residual trees, and 

in turn, results in increased tree vigor and a greater ability to handle drought, and damage from insects 

and disease (Puettmann, 2011). Tree species and forest types that may be more vulnerable to changes 

in temperature or precipitation patterns, in particular overstocked stands or those with high levels of 

competition, should be targeted for density management manipulations (Chmura et al., 2011).  

An understanding of current and potential future responses of forests are necessary to facilitate 

the development of silvicultural management options for adaptation to any degree of future change 

(Dolanc et al., 2013). The response a forest may have to a changing climate will ultimately depend on 
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local, site-specific conditions. Decision makers should target the most vulnerable sites, life stages, 

traits and processes to increase forest adaptability (Chmura et al., 2011). For example, Puettman 

(2011) finds special concern should be given toward areas where species grow at a moisture-limited 

range of conditions. Gleason et al. (2021) found the negative impacts of declining snowpack to be 

exacerbated by high stand density in ponderosa pine stands and recommend reducing stand density as 

a mitigation strategy to promote resilience to snow droughts. Fernandes et al. (2016) found thinning in 

pine stands increased the resilience to climate variations by increasing water use efficiency and 

promoted targeted (i.e., under appropriate timing) density reduction as an effective adaptive 

silviculture strategy under a changing climate. 

Knowledge of where vulnerable species and forest types are found, such as areas with drought 

concerns, will facilitate where climate adaptation management efforts should be directed. Some 

management adjustments might include modifying harvest schedules and thinning regimes, or 

choosing different species or genetics when replanting (Millar et al., 2007). Capturing mortality before 

the initiation of self-thinning (i.e., density dependent mortality) requires temporal knowledge of when 

limiting conditions will begin to impact stand development. 

It has been demonstrated through empirical statistical analysis that climatic conditions affect 

the carrying capacity (SDIMAX) of a forest stand, which may be predicted through modelling efforts. 

Due to the climatic sensitivity of SDIMAX, this index may be used to assess climate change adaptation 

and mitigation efforts (Brunet-Navarro, 2016). One approach to understanding how future conditions 

may affect modelled SDIMAX is to utilize projected climatic conditions in place of historic climate data 

used to build the original models, referred to as space-for-time substitution (Yue et al., 2016). While 

these statistical models are correlative, and not necessarily suited to make mechanistic interpretations, 

they do allow the relative importance of climatic predictor variables to be assessed (Rehfeldt et al., 

2016). 
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Statistical analysis techniques such as ensemble learning methods (i.e., random forest and 

stochastic gradient boosting) allow for the effect of many variables and their interactions on the target 

function to be assessed (Iverson et al., 2008; Friedman, 2001). Non-parametric, ensemble learning 

methods are ideal for large datasets with a multi-dimensional variable space with no prior distribution 

assumed between dependent and independent variables (Andrews et al., 2018). The ability of a model 

to incorporate many variables has proved useful in projecting effects of climate change on trees and 

forests (Chmura et al., 2016). 

Future scenarios are often outside the range of any contemporary climate profile. These 

projections may be considered extramural (Rehfeldt et al., 2006) or no-analog conditions (Puettmann, 

2011). Thus, any predictions made by models relying on future projections are not defensible. 

Rehfeldt et al. (2016) found among most of the biotic communities they examined, the majority of the 

landscape was projected into an extramural condition by the year 2100, with some reaching over 85%. 

Climate conditions were considered extramural if any one of the predictor variables at a location was 

outside the range of contemporary conditions. With this in mind, interpretations regarding the 

direction and magnitude of change may still be valid to consider. Exploring a variety of timescales and 

emissions scenarios can give a summary of the expected range and variability of any future changes. 

The goal of this study is to understand the relationship between SDIMAX and future climatic 

conditions across the Pacific Northwest forest region. Specific objectives are to: (1) utilize linear 

quantile mixed models (LQMM) to determine the self-thinning boundary of important forest types and 

tree species, (2) determine climatic variable influence and importance utilizing gradient boosting 

methodology (GBM) to predict SDIMAX, (3) estimate potential future directional shifts in SDIMAX 

under various climate projections using GCMs and different RCPs and (4) understand what proportion 

of the future projections for the study area falls into extramural or no-analog conditions. 
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Materials and Methods 
Plot Data: Inventory Datasets 

 Forest inventory plot data for this project were provided by a collaborative network of public 

and private land management agencies. Each plot record contained the important tree metrics of 

quadratic mean diameter (QMD), number of trees per hectare (TPH) and proportion of basal area (BA) 

by major species group. Each record contained precise plot coordinates, which allowed for the 

extraction of important site-specific, environmental variables from geospatial layers. Data screening 

removed plots with less than 2.54 cm QMD and 24.7 TPH to establish a consistent threshold of 

diameter and number of trees. Only trees marked as living were included in plot-level estimates. The 

final dataset consisted of 168,220 unique observations representing the varied range of forest ecotypes 

across the Pacific Northwest. Plot records were subset to fall into one of two categories, the first 

(n=155,083) are those plots containing at least 10% Douglas-fir by BA, and a second (n=13,137) 

consisting of plots with at least 10% western hemlock BA which contained no Douglas-fir proportion. 

This second subset of data points was concentrated in the more niche environments in the Coast 

Range, Olympic Peninsula and Northern Cascades where wetter, climax forest conditions with less 

extreme weather events are found. These datasets will be referred to as DF-Mix and HemFir, 

respectively. 

Topographic Data 

Topographic attributes were derived from U.S. Department of Agriculture (USDA) and 

National Resource Conservation Service (NRCS) National Elevation Data 30-m digital elevation 

models. Slope and aspect were derived using the ‘raster’ package (Hijmans, 2020) available through R 

4.0 (R Core Team, 2020). Trigonometric transformations of slope and aspect were utilized to express 

the influence of these features on climate factors such as moisture and temperature (Roise and Betters, 

1981). Spatial maps of soil parent materials were derived from USGS 1:24,000 geology maps and 

surficial volcanic ash mantles from the NRCS soil survey geographic database (SSURGO). Major 
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geologic groupings and presence-absence of ash influence were determined similarly to the methods 

described by Kimsey et al. (2019). 

Climatic Data 

Climate data were obtained through the ClimateNA v6.11 software package using plot-

specific latitude, longitude and elevation. ClimateNA downscales historical and future climate data 

layers into scale-free (not gridded but directly estimable for any location) point estimates of climate 

values for the entire North American continent (Wang et al., 2016). These climate data contain directly 

calculated and derived variables, as well as various interactions resulting in over 230 climate variables 

available for extraction. Future projections within ClimateNA are based on GCMs of the Climate 

Model Intercomparison Project 5 (CMIP5). This analysis utilizes the 15 CGM ensemble, composed of 

the following Atmosphere-Ocean General Circulation Models: ACCESS1-0 (Australia), CCSM4 

(National Center for Atmospheric Research, USA), CESM1-CAM5 (University Center for 

Atmospheric Research, USA), CNRM-CM5 (France), CSIRO-Mk3-6-0 (Australia), CanESM2 

(Canada), GFDL-CM3 (Geophysical Fluid Dynamics Lab, USA), GISS-E2R (Goddard Institute of 

Space Studies, USA), HadGEM2-ES (United Kingdom), INM-CM4 (Russia), IPSL-CM5A-MR 

(France), MIROC-ESM (Japan), MIROC5 (Japan), MPI-ESM-LR (Germany) and MRI-CGCM3 

(Japan). The future projections incorporate different greenhouse gas concentration trajectories or 

RCPs. This analysis selected two RCPS: RCP4.5, a medium stabilization scenario where emissions 

peak in 2040’s with radiative forcing pathways stabilizing at 6 W/m2 (~650 ppm CO2) after 2100, and 

RCP8.5, a very high emission scenario with rising radiative forcing pathway leading to 8.5 W/m2 

(~1370 ppm CO2) by the end of the century (Vuuren et al., 2011). Each 15GCM ensemble and RCP 

scenario were summarized into 30-year time future periods referred to hereafter as 2050s (2041-2070) 

and 2080s (2071-2100). 

From each of the DF-Mix and HemFir datasets, four different future climate scenarios were 

built. While keeping the tree and topographic data constant, future climate variables were extracted for 
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each plot location for the four climate scenarios RCP4.5 in period 2050s, RCP4.5 in period 2080s, 

RCP8.5 in period 2050s and RCP8.5 in period 2080s. These additional climate extractions resulted in 

five scenarios for each DF-Mix and HemFir dataset: the historic dataset and four future scenarios. 

Comparisons of predicted SDIMAX between the future and the historic climate scenarios were 

evaluated. 

Statistical Analysis – LQMM and GBM 

To understand the influence of climate on forest stand carrying capacity, first the maximum size 

density relationship (SDIMAX) must be estimated. Following the findings of Salas-Eljatib and 

Weiskittel (2018), linear quantile mixed models (LQMM) were developed with the ‘lqmm’ package 

(Geraci, 2014) within the R programming environment (R Core Team, 2020) to estimate the random 

plot-specific intercepts and fixed species-specific slope of the self-thinning line based on the Reineke 

(1933) equation: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = (𝛽𝛽0 +  𝑘𝑘𝑖𝑖) + 𝛽𝛽1 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

where β0 and β1 are fixed effects parameters and ki is the estimated random effect for plot record i. The 

random intercept parameter produced unique individual plot-level intercept values, thus giving each 

record a unique SDIMAX.  

 The next step introduces site-specific variables by linking the estimated SDIMAX to climatic 

and other environmental properties found at each plot location. Utilizing the ensemble learning 

technique gradient boosting methodology, variable influence and importance was assessed. Stochastic 

gradient boosting (GBM) makes use of an additive gradient descent ‘boosting’ algorithm which builds 

successively improved prediction trees (Friedman, 2001). Each dataset, DF-Mix and HemFir, was split 

70/30 into training and testing sets. The test set was held back from model development and used as 

independent validation of model fit. The R packages ’gbm’ (Greenwell et al., 2020) and ‘caret’ (Kuhn, 

2020) were used to determine influence of environmental variables through tuning a GBM model. The 
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GBM model was tuned using a grid search method, where the various parameters were optimized 

toward the best predictive model. GBM constructs an ensemble of prediction trees in a ‘greedy 

stepwise’ manner and is noted for being robust to collinearity of variables (Hastie, Tibshirani and 

Friedman, 2008). A first run included all variables. Then, variable importance, the relative influence of 

variables on prediction, was examined to reduce the number of variables in the model to only the most 

influential. A relative influence of 0.25 was chosen to remove non-informative variables from the first 

run predictor set. Simplifying the predictor set results in a more parsimonious model, without 

degradation of model fit (Elith, Leathwick and Hastie, 2008). Final models were selected based on 5-

fold, cross-validated mean absolute error (MAE). MAE for both training and testing data was assessed 

to prevent overfitting. The final number of model built trees producing the lowest error on testing data 

without overfitting was chosen. 

Additional Regionwide Datasets 

 In addition to the inventory plot driven datasets, a 1-kilometer hexagonal grid was placed 

across the entire study region and then clipped to each Douglas-fir and western hemlock ranges. 

Species ranges were determined from FIA interpolated basal area maps, where if at least 10% of total 

basal area found at any given location was of the species of interest that location was considered in 

range. The grid across the entire regionwide area was then clipped to the ranges creating two 

regionwide datasets for DF-Mix (n= 151,299) and HemFir (n= 80,974). 

The same topographic and climate variables were extracted to each plot location, including the 

four future scenarios. The final GBM model for DF-Mix and HemFir were then applied to the regional 

grid datasets for SDIMAX predictions to allow climate change scenarios to be evaluated across the 

entire study region. Two basal area proportion scenarios were explored, one based on pure (100% 

basal area proportion) Douglas-fir or western hemlock composition; and a second based on species 

averages calculated from the original inventory plot datasets (Table 3.1). 
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Table 3.1 Species basal area proportions from the inventory datasets. 

Variable Mean SD Minimum Maximum 
DF-Mix     
    Douglas-fir 0.77 0.27 0.10 1 
    Western hemlock 0.09 0.18 0 0.90 
    Red alder 0.05 0.15 0 0.90 
    Western red cedar 0.02 0.07 0 0.90 
    Other conifer 0.04 0.12 0 0.90 
    Other hardwood 0.03 0.11 0 0.90 
HemFir     
    Douglas-fir 0 0 0 0 
    Western hemlock 0.68 0.30 0.10 1 
    Red alder 0.13 0.23 0 0.90 
    Western red cedar 0.04 0.12 0 0.90 
    Other conifer 0.13 0.23 0 0.90 
    Other hardwood 0.02 0.09 0 0.90 

 

Extramural Conditions 

 Future climate projections under the various scenarios were compared to the historic 

conditions to understand how much of the landscape falls into extramural conditions under future 

projections. Utilizing the regionwide datasets, all climate variables included in the DF-Mix and 

HemFir final models were evaluated for extramural status by comparing each of the future scenario 

predictions to the historic at the same location. A variable value falls outside the range of the historical 

climate data is marked as extramural. Two instances were evaluated, first, whether any of the variables 

at a given point fell outside the range, and second, what proportion of the variables at any given point 

fell outside the range. Each was evaluated as falling within the absolute range as well as within 5% 

and 10% of the absolute range. 

Results 
Maximum size-density relationship  

The LQMM analysis fit a self-thinning outer boundary line to the 95th quantile of data points. 

This resulted in a self-thinning slope of -1.608 and -1.544 for the DF-Mix and HemFir datasets, 

respectively. The random intercept produced mean predicted SDIMAX of 1220 TPH (SD=119) with a 1 
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to 99% quantile range from 840 to 1450 TPH for DF-mix and mean predicted SDIMAX of 1396 TPH 

(SD=151) with a range of 941 to 1681 TPH for HemFir. 

GBM model performance and variable influence on SDIMAX 

The final GBM model for the DF-mix dataset had 4202 trees and included 86 variables with a 

training and testing mean absolute error of 72.5 and 77.5 TPH, respectively. The most influential 

variable was the Douglas-fir basal area proportion, followed by other species basal area proportions, in 

particular western hemlock. Site characteristics of the various slope and aspect transformations, 

elevation, and the latitude and longitude at plot locations were important and highly ranked. Influential 

climate variables included interactions between the various measures of precipitation and temperature. 

The final GBM model for the HemFir dataset had 1915 trees and included 106 predictor 

variables with a training and testing mean absolute error of 77.0 and 104.2 TPH, respectively. The top 

variable was the basal area proportion of western hemlock, followed by the slope and aspect 

transformations, elevation and latitude and longitude of the plot location. The most influential climate 

variables were similar to those included in the DF-Mix model and included various measures of 

precipitation timing and amount, as well as interactions of precipitation with temperature. The number 

of degree days > 5ºC (DD5) and < 18 5ºC (DD_18) both annually and seasonally were common 

variables included in the model. The summer season Hargreaves climatic moisture deficit (CMD) 

ranked as a highly influential variable as well. The most influential variables of the chosen final GBM 

models for SDIMAX predictions are shown in Figure 3.1 and Figure 3.2 for DF-Mix and HemFir, 

respectively. 
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Figure 3.1 Relative variable importance for the gradient boosting model for the DF-Mix dataset. 
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Figure 3.2 Relative variable importance for the gradient boosting model for the HemFir dataset. 
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Future GBM model predictions: Inventory Datasets 

 The future scenario inventory datasets were run through the final GBM model to produce 

predicted SDIMAX under future climate conditions in the 2050’s and 2080’s. Both the DF-Mix and the 

HemFir datasets saw the average SDIMAX value shift downward under all scenarios (Table 3.2 and 

3.3).  

Table 3.2 Predicted SDIMAX values (mean, 1 and 99 percentiles) and standard deviations for each inventory 
dataset of DF-Mix and HemFir. 

 

 

Table 3.3 Average ratios of predicted SDIMAX under each future scenario relative to the current SDIMAX under 
past climate conditions. 

 

A majority of the records under all scenarios moved in the negative direction with ranges increasing 

under greater emission scenarios further into the future (Table 3.4). 

Prediction Scenario Mean SD 1% 99% Mean SD 1% 99%
Current 1220 53 1067 1327 1396 79 1151 1540
RCP 4.5 - 2050's 1143 72 991 1287 1287 74 1121 1452
RCP 4.5 - 2080's 1121 80 953 1282 1275 73 1116 1444
RCP 8.5 - 2050's 1115 83 937 1281 1280 71 1126 1447
RCP 8.5 - 2080's 1071 90 880 1251 1256 68 1099 1415

DF-Mix HemFir

Prediction Scenario Mean SD 1% 99% Mean SD 1% 99%
Current 1.01 0.09 0.86 1.35 1.01 0.10 0.84 1.34
RCP 4.5 - 2050's 0.95 0.11 0.76 1.32 0.93 0.12 0.73 1.35
RCP 4.5 - 2080's 0.93 0.11 0.74 1.31 0.92 0.12 0.72 1.35
RCP 8.5 - 2050's 0.92 0.11 0.73 1.30 0.93 0.12 0.73 1.35
RCP 8.5 - 2080's 0.89 0.11 0.69 1.25 0.91 0.12 0.71 1.33

DF-Mix HemFir
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Table 3.4 Proportion of inventory records which had a negative change in predicted SDIMAX. 

 

 

Although the majority of SDIMAX projections decreased under future conditions, there was a range of 

positive and negative change (Table 3.5). A small proportion of sites are projected to have favorable 

climatic changes which may led to increases in carrying capacity. Overall, the DF-Mix locations are 

projected to be slightly more resilient under the RCP 4.5 scenarios compared to the HemFir sites but 

under the RC P8.5 scenarios it is the reverse, with HemFir fairing marginally better overall compared 

to the DF-Mix sites. Not unexpectedly, the 2080’s under RCP8.5 saw the most dramatic shifts in 

SDIMAX relative to current with an average 11.4 and 8.9% shift downward in the mean predicted 

SDIMAX for DF-Mix and HemFir scenarios, respectively.  

Table 3.5 Average percent change in SDIMAX for inventory datasets. Overall is the mean percent change. If + is 
the average change for records which showed positive change. If – is the average change for records which 
showed negative change. 

   

Future GBM model predictions: Regionwide Datasets 

 The regionwide datasets under future scenarios followed similar patterns of results as the 

inventory datasets. Both the DF-Mix and HemFir datasets under each the 100% pure basal area and 

the average species basal area scenarios saw overall majority decreases in SDIMAX under all future 

climate projections (Table 3.6 and 3.7).  

Scenario DF-Mix HemFir
RCP 4.5 - 2050's 78% 78%
RCP 4.5 - 2080's 81% 80%
RCP 8.5 - 2050's 83% 80%
RCP 8.5 - 2080's 88% 83%

Scenario Overall If + If- Overall If + If-
RCP 4.5 - 2050's -5.4% 9.4% -9.7% -6.6% 10.8% -11.4%
RCP 4.5 - 2080's -7.2% 9.5% -11.0% -7.5% 10.9% -12.0%
RCP 8.5 - 2050's -7.8% 9.6% -11.5% -7.1% 10.8% -11.7%
RCP 8.5 - 2080's -11.4% 9.8% -14.2% -8.9% 10.9% -12.9%

DF-Mix HemFir
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Table 3.6 Predicted SDIMAX values (mean, 1 and 99 percentiles) and standard deviation for each regionwide 
dataset of DF-Mix and HemFir for each basal area scenario. 

 

Table 3.7 Average ratios (mean, 1 and 99 percentiles) and standard deviations of predicted SDIMAX under each 
future climate scenarios relative to the current SDIMAX under past climate conditions. 

 

The scenarios with 100% basal area of Douglas-fir and western hemlock had greater magnitude in 

both positive and negative shifts in SDIMAX compared to the average basal area scenarios. The pure 

basal area scenarios had greater proportion of sites seeing a downward shift of SDIMAX compared to 

the average species basal area scenarios under all future climate projections (Table 3.8).  

 

Mean SD 1% 99% Mean SD 1% 99%

Current 1162 54 983 1257 1349 78 1129 1503
RCP 4.5 - 2050's 1078 81 894 1251 1260 85 1081 1427
RCP 4.5 - 2080's 1055 85 874 1250 1248 81 1085 1417
RCP 8.5 - 2050's 1047 87 865 1247 1249 79 1087 1417
RCP 8.5 - 2080's 1001 84 826 1217 1227 69 1085 1388

Current 1226 49 1093 1326 1427 55 1280 1546
RCP 4.5 - 2050's 1184 62 1034 1314 1368 64 1236 1489
RCP 4.5 - 2080's 1172 63 1027 1312 1359 63 1234 1485
RCP 8.5 - 2050's 1168 64 1022 1310 1361 62 1237 1487
RCP 8.5 - 2080's 1139 68 982 1293 1343 55 1232 1463

Prediction Scenario

Avg Species Basal Proportion

100% Douglas-fir Basal Area 100% Western Hemlock Basal Area

DF-Mix HemFir

Mean SD 1% 99% Mean SD 1% 99%

Current 1 0 1 1 1 0 1 1
RCP 4.5 - 2050's 0.93 0.07 0.79 1.09 0.94 0.07 0.80 1.09
RCP 4.5 - 2080's 0.91 0.07 0.77 1.10 0.93 0.07 0.80 1.08
RCP 8.5 - 2050's 0.90 0.07 0.77 1.10 0.93 0.07 0.80 1.08
RCP 8.5 - 2080's 0.86 0.07 0.72 1.07 0.91 0.07 0.78 1.08

Current 1 0 1 1 1 0 1 1
RCP 4.5 - 2050's 0.97 0.04 0.88 1.06 0.96 0.04 0.87 1.05
RCP 4.5 - 2080's 0.96 0.04 0.87 1.06 0.95 0.04 0.86 1.04
RCP 8.5 - 2050's 0.95 0.04 0.87 1.06 0.95 0.04 0.87 1.04
RCP 8.5 - 2080's 0.93 0.05 0.83 1.05 0.94 0.04 0.85 1.04

DF-Mix HemFir

Prediction Scenario
100% Douglas-fir Basal Area 100% Western Hemlock Basal Area

Avg Species Basal Proportion
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Table 3.8 Proportion of regionwide records which had a negative change in predicted SDIMAX. 

 

Although, when the datasets are split between records seeing increases and decreases (Table 3.9), the 

pure basal area locations had greater shifts in both directions compared to the mixed basal area 

scenarios, with the DF-Mix sites being of greater magnitude than the HemFir sites.  

Table 3.9 Average percent change in SDIMAX for regionwide datasets. Overall is the mean percent change. If + is 
the average change for records which showed positive change. If – is the average change for records which 
showed negative change. 

 

Extramural Conditions 

 Extramural, or no-analog conditions, were found within all future scenarios. The percent of 

locations which had at least one variable falling outside the absolute range found in the historic 

climate conditions ranged from 49% of locations in the 2050’s under RCP4.5 scenario to 97% in the 

2080’s under RCP8.5 scenario for the DF-Mix regionwide dataset and 38% to 99% for the HemFir 

mix under the same scenarios, respectively (Table 3.10). For the same time period and RCP scenarios, 

the average percent of all variables at each location falling outside the absolute range of historic 

climate conditions ranged from 7% to 45% for the DF-Mix and 7% to 46% for the HemFir, with these 

percentages dropping by roughly half when expanding the absolute range by 10% (Table 3.11).

Scenario 100% DF BA Avg BA 100% Hem BA Avg BA
RCP 4.5 - 2050's 87% 85% 83% 85%
RCP 4.5 - 2080's 89% 88% 86% 88%
RCP 8.5 - 2050's 90% 89% 86% 88%
RCP 8.5 - 2080's 96% 93% 89% 94%

DF-Mix HemFir

Scenario Overall If + If- Overall If + If- Overall If + If- Overall If + If-
RCP 4.5 - 2050's -7.1% 3.6% -8.6% -3.4% 2.1% -4.4% -6.4% 3.4% -8.4% -4.1% 1.9% -5.2%
RCP 4.5 - 2080's -9.1% 4.0% -10.7% -4.4% 2.3% -5.3% -7.2% 3.3% -9.0% -4.7% 1.8% -5.6%
RCP 8.5 - 2050's -9.7% 4.1% -11.2% -4.7% 2.4% -5.6% -7.2% 3.3% -8.9% -4.6% 1.8% -5.5%
RCP 8.5 - 2080's -13.7% 5.2% -14.5% -7.1% 2.3% -7.8% -8.7% 3.3% -10.2% -5.9% 2.2% -6.4%

Avg BA
DF-Mix HemFir

100% DF BA Avg BA 100% Hem BA
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Table 3.10 Percent of records with at least one variable that is extramural. Three categories of extramural are shown: Abs - at least one variable was outside the 
absolute range of current climate, 5% - where at least one variable is outside of a 5% of the absolute range and 10% - where at least one variable is outside 10% 
of the absolute range. 

 

 

 

Table 3.11 Average proportion of explanatory variables for each record which fall outside the range of historic climate conditions. Three categories of 
extramural are show: Abs - the proportion of variables outside the absolute range of current climate, 5% - average proportion of variables outside of 5% of the 
absolute range and 10% - average proportion of variables outside 10% of the absolute range. 

Scenario Abs Current Range 5% of Current Range 10% of Current Range Abs Current Range 5% of Current Range 10% of Current Range
RCP 4.5 - 2050's 49% 28% 12% 38% 24% 13%
RCP 4.5 - 2080's 71% 54% 31% 63% 46% 32%
RCP 8.5 - 2050's 75% 59% 37% 68% 51% 36%
RCP 8.5 - 2080's 97% 95% 91% 99% 97% 94%

HemFirDF-Mix
Percent of records having at least one variable fall outside… Percent of records having at least one variable fall outside…

Scenario Abs Current Range 5% of Current Range 10% of Current Range Abs Current Range 5% of Current Range 10% of Current Range
RCP 4.5 - 2050's 7% 3% 1% 7% 3% 1%
RCP 4.5 - 2080's 15% 7% 3% 14% 7% 4%
RCP 8.5 - 2050's 17% 8% 4% 16% 9% 5%
RCP 8.5 - 2080's 45% 31% 21% 46% 34% 25%

DF-Mix HemFir
Average percent of explanatory variables falling outside… Average percent of explanatory variables falling outside…
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 Projections of future climate are impacting modelled stand carrying capacity in significant 

ways. Across the study region a majority of the landscape is seeing a downward shift in the SDIMAX 

(Figure 3.3 and 3.4). This change is driven by changes in temperature (Table 3.12) and precipitation 

(Table 3.13). While the total amount of mean annual precipitation is projected to remain fairly 

constant or increase slightly under all future scenarios, the timing of precipitation is shifting away 

from the growing season. The balance of precipitation in the growing season relative to the entire year 

(PRATIO) is declining across the region while at the same time the frost-free period (FFP) and both 

summer and winter temperatures are increasing. Average temperatures in both the coldest and warmest 

months are projected to increase by 2 to 3 °C under the RCP 4.5 – 2050’s projection, and by as much 

as 4 to 6 °C under the RCP 8.5 – 2080’s projection. Forests are being exposed to an earlier, longer, 

warmer growing season with access to a smaller amount of precipitation. Water storage in the form of 

snowpack is extremely important for forests growing in droughty summer conditions (Waring and 

Franklin, 1979). The amount of precipitation falling as snow (PAS) is projected to dramatically 

decline (Klos et al., 2014), further exacerbating the limited amount of water these forests have access 

to during the low precipitation summers. Stand carrying capacity is almost exclusively determined by 

competition to water resources while under severe drought (Deng et al., 2006) and with future 

conditions expected to become more water limiting for Pacific Northwest forests, a drop in SDIMAX is 

expected. 
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Figure 3.3 Percent change in SDIMAX for regionwide DF-Mix range under future climate scenarios relative to 
current. Resolution of 1km hexagonal raster tiles. 
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Figure 3.4 Percent change in SDIMAX for regionwide HemFir range under future climate scenarios relative to 
current. Resolution of 1km hexagonal raster tiles. 
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Table 3.12 Absolute change in temperature (°C) under future climate scenarios relative to historic for the current range of DF-Mix and HemFir. MCMT – mean 
coldest month temperature and MWMT – mean warmest month temperature 

 

  

Scenario Variable Min 1% Med Mean 99% Max Min 1% Med Mean 99% Max
MCMT 1.6 1.7 2.0 2.0 2.5 2.6 1.6 1.8 2.1 2.1 2.5 2.6
MWMT 2.2 2.3 2.7 2.7 3.1 3.2 2.2 2.3 2.9 2.8 3.1 3.2
MCMT 2.0 2.1 2.5 2.5 3.0 3.2 2.0 2.1 2.5 2.6 3.0 3.1
MWMT 2.8 2.9 3.4 3.4 4.0 4.1 2.8 2.9 3.6 3.5 4.0 4.1
MCMT 2.0 2.1 2.4 2.5 3.1 3.2 2.0 2.1 2.5 2.6 3.1 3.2
MWMT 2.9 3.0 3.6 3.6 4.2 4.3 2.9 3.0 3.8 3.7 4.2 4.3
MCMT 3.4 3.5 4.0 4.0 4.9 5.1 3.4 3.6 4.1 4.2 4.9 5.1
MWMT 4.6 4.9 5.8 5.8 6.8 6.9 4.7 4.9 6.2 6.0 6.8 6.9

DF-Mix

RCP 4.5 - 2050's

RCP 4.5 - 2080's

HemFir

RCP 8.5 - 2050's

RCP 8.5 - 2080's
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Table 3.13 Percent change in important climate variables under future climate scenarios for the current ranges of DF-Mix and HemFir relative to historic 
climate conditions. MAP – mean annual precipitation, PRATIO – proportion of precipitation falling during the growing season, PAS – precipitation as snow, 
DD5 – degree days above 5°C and FFP – frost free period. 

 

 

 

Scenario Variable Min 1% Med Mean 99% Max Min 1% Med Mean 99% Max
MAP -2% -1% 1% 1% 4% 4% -2% -1% 1% 1% 4% 4%

PRATIO -14% -12% -10% -10% -8% -7% -13% -11% -9% -9% -8% -7%
PAS -64% -61% -54% -54% -36% -15% -63% -61% -55% -55% -41% -26%
DD5 20% 23% 30% 33% 57% 96% 23% 27% 34% 36% 53% 69%
FFP 17% 21% 26% 27% 42% 86% 18% 22% 27% 27% 37% 49%

MAP -1% 0% 2% 3% 6% 7% -1% 0% 3% 3% 6% 7%
PRATIO -15% -13% -11% -11% -9% -8% -15% -13% -11% -11% -9% -8%

PAS -70% -68% -61% -61% -43% -18% -69% -67% -62% -62% -49% -31%
DD5 26% 29% 39% 42% 74% 129% 29% 34% 43% 45% 68% 86%
FFP 21% 26% 33% 34% 53% 117% 22% 28% 34% 35% 46% 63%

MAP -2% -1% 2% 2% 5% 6% -2% -1% 3% 2% 5% 6%
PRATIO -16% -14% -12% -12% -10% -9% -15% -14% -12% -12% -10% -9%

PAS -71% -70% -63% -63% -45% -20% -71% -69% -64% -64% -51% -34%
DD5 27% 31% 40% 44% 79% 139% 30% 36% 45% 48% 72% 92%
FFP 21% 26% 35% 35% 55% 124% 23% 30% 35% 36% 48% 65%

MAP 0% 1% 4% 4% 8% 10% 0% 1% 5% 5% 8% 10%
PRATIO -19% -18% -15% -15% -13% -12% -19% -17% -15% -15% -13% -12%

PAS -87% -85% -80% -80% -67% -38% -87% -84% -80% -80% -71% -56%
DD5 44% 50% 67% 73% 136% 244% 49% 58% 74% 79% 124% 160%
FFP 27% 39% 57% 57% 87% 210% 32% 46% 59% 59% 77% 103%

HemFirDF-Mix

RCP 4.5 - 2050's

RCP 4.5 - 2080's

RCP 8.5 - 2050's

RCP 8.5 - 2080's
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Discussion 

Higher elevation sites and those closer to the Pacific Northwest coast are not seeing as 

dramatic a shift in predictions compared to the lower elevation, inland sites found in the Willamette 

Valley, which are almost exclusively in the negative direction. The magnitude of change projections in 

temperature, precipitation timing, and precipitation as snow is buffered by higher elevation. 

Competition for water resources will not be as extreme in these areas and in fact may see an increase 

in stand carrying capacity due to the increase in growing season length. Way and Oren (2010) suggest 

that high altitude tree communities may benefit from some degree of warming opposed to warm-

adapted species often found at the edges of moisture limited environments. The results found in this 

study seem to agree with this and other projections of general range shifts upward in elevation with 

anticipated changes in climate (Parmesan, 2006; Reheldt et al., 2006). The impact of future climate 

changes on stand carrying capacity will be location dependent and any management decisions need to 

account for the specificity.  

The impact of future climate on stand carrying capacity is shown to be greater in pure stands 

of Douglas-fir and western hemlock relative to mixed species stands. Species mixing in general has 

shown to lead to increased packing density within a canopy space due to complementary ecological 

traits and crown geometry (Pretzsch and Biber, 2016). The modeled carrying capacity of mixed 

species stands appear to be more resilient to projected changes in climate. Exploring the inventory 

datasets, records showing projected increases in SDIMAX had more diversity of species basal area 

proportions. For example, under RCP 8.5 - 2080’s scenario the DF-MIX dataset showed average 

Douglas-fir basal area was 78% for plots with a decrease in SDIMAX and 71% for plots with an 

increase; and for the HemFir dataset, average western hemlock basal area was 69% for records with a 

decrease in SDIMAX and 62% for those with an increase. This relationship held for all future climate 

scenarios. While this in part may be attributed to the GBM model, which showed more diverse plots as 
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having overall higher SDIMAX, it also shows that given changes in important climate variables, more 

diverse stands have a greater resiliency to the impact of these changes compared to purer stands.  

That said, exploring the regionwide datasets, the pure basal area scenarios showed the greatest 

magnitude shifts in SDIMAX relative to the mixed species in either direction, positive and negative. 

Locations under pure basal area scenarios, for both the DF-Mix and HemFir datasets, which showed 

increases in SDIMAX under future climate projections, had greater increases relative to mixed species 

scenario, as well as the opposite, where records with decreases where greater under pure basal area 

scenarios. For example, under RCP 8.5 – 2080’s, the average positive shift was 2.9 and 1.1% greater 

for the DF-Mix and HemFir datasets respectively under the pure basal area scenarios relative to the 

average basal area scenarios. Conversely, the average negative shift was -6.7% and -3.8% greater for 

the pure basal area scenarios relative to the average basal area scenarios for the DF-Mix and HemFir 

datasets respectively. 

The management implications of moving toward mixed species management with varying 

forest structure should allow for greater resilience to a changing climate. Under projected future 

conditions, mixed stands may be able to carry a greater density longer into the rotation before the 

impact of density dependent mortality. Puettmann (2011) describes this as the ‘insurance hypothesis’ 

(attributed to Yachi and Loreau, 1999) under which a diversity of species and vegetation conditions 

may buffer the impact of a changing climate. A more diverse forest allows for complementary 

facilitation, where the presence of one species increases the availability of a limiting resource, and 

resource portioning, with more efficient sharing of limited resources between different species 

(Pothier, 2019).  

Projected future climate scenarios fall into extramural conditions across all scenarios. 

Utilizing any statistical model to extrapolate or predict outside the range of the input data is not 

appropriate. Nonetheless, general interpretations of the overall direction and magnitude of these shifts 

should be considered to understand what impact future climate may have on stand carrying capacity. 



104 
 

 

The impact of environmental conditions is reflected in underlying physiographical processes of these 

forest communities. The influence of climate on stand carrying capacity has been shown through many 

empirical studies (Kimsey et al., 2019; Aguirre et al., 2018; Andrews et al., 2018). General 

interpretations of the model projections are justified with the acknowledgment of the uncertainties 

involved in climate projections. In particular, the consistency of the modeled relationship between 

climate variables and SDIMAX beyond the range of input data, as well as the unknown impact of 

elevated CO2 concentrations on plant growth. 

Conclusion 

 Climate projections show forest communities of the Pacific Northwest may be facing a longer, 

warmer, droughtier growing season in the future. Snow pack to provide water in some more 

precipitation-limited areas will be both increasingly significant and inadequate. Spatial knowledge of 

where these impacts will be felt the most is important for silivicultural planning. Management 

approaches need to consider the impacts of these changes on the forest stand’s ability to handle the 

increase in density dependent competition, in particular for what may be an even more limited water 

supply. Planting and thinning to lower densities may provide resilience and capture the projected 

increases in density related mortality. Although many unknowns remain, for example the impact of 

global change on disease and insect patterns (Bentz et al., 2010) or wildfire behavior (Loehman et al., 

2020), density management guidelines need to consider the influence a changing environment will 

have on density driven interactions among forest communities. These results present forest managers 

and policy makers with the ability to make location specific interpretations of the magnitude and 

variability of potential shifts in forest stand carrying capacity. 
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Chapter 4: Impact of Simulated Field Plot Location Errors on Maximum Stand 
Density Index Model Development and Performance 

Introduction 

 Spatially explicit data are prominently used in many environmental modelling applications. 

Site-specific variables are extracted from spatial data layers at field plot locations to build statistical 

relationships with a response variable of interest. Modelling of forest productivity (Latta et al., 2009), 

stand density index (Andrews et al., 2019; Kimsey et al., 2019), site index (Hemingway and Kimsey, 

2020) and species distribution (Franklin, 2010) all utilize spatially explicit information to describe 

important ecological relationships across the landscape. These data are often topographic (i.e. slope, 

aspect, elevation), climatic (mean annual temperature and precipitation), geographic (county, state, 

water district, national forest, etc.) or innumerable other environmental characteristics such as 

vegetative cover, soil descriptions and land use or habitat classifications. Remote sensing products 

often rely on accurate registration of data, the linking of field plot locations with remotely sensed data. 

Forest productivity assessment utilizing satellite imagery (Coops et al., 1998), synthetic aperture radar 

(SAR) (Askne et al., 2018) and light detection and ranging (LiDAR) (Falkowski et al., 2009) are 

driven by the spatial linkage of metrics found within the remotely sensed data to the field data 

collected at the precise plot location.  A primary driver of accuracy in all these models comes from 

precise location information to minimize error in variable extraction and data linkages. 

Positional coordinates are required to identify the data point location on the three dimensional 

surface of the landscape. Positional uncertainties inevitably exist in GPS data points (Hong and 

Vonderohe, 2014). These positional uncertainties may be attributed to positional error inherent in the 

GPS or GNSS technology or a host of user errors related to how the location information was 

recorded.  Positional error may be caused by outdated technology, poor satellite signal reception or by 

errors in data processing associated with conversions between coordinate systems or rounding of 

coordinate values (Gabor et al., 2020). Tree canopies mask and block the direct line of sight between 

the GPS receiver antenna and the satellite, affecting the quality of the computed position (Pirti, 2005). 
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Given the many sources of positional error that may be involved before the data is processed, 

identification of the presence and subsequent effects of these errors on model performance should be 

considered.  

Exploring forest area classification from satellite imagery, McRoberts (2010) found that as 

many as half the ground plots used in the study were assigned to incorrect pixels due to GPS positional 

errors, leading to obscured relationships between field data and spectral information from imagery. 

Patterson and Williams (2003) found a loss in classification accuracy and large increases in forest area 

estimator variance with registration errors being off by only one or two 28.5 meter Landsat pixels. 

Frazer et al. (2011) performed positional accuracy manipulations within LiDAR point clouds and 

found median and range of mean differences in point cloud metrics increased markedly as GPS error 

increased. Zald et al. (2014) also examined the impact of plot location on LiDAR point cloud metric 

extraction and, in contrast to Frazer et al. (2011) and McRoberts (2010), found little impact of forest 

composition and structure mapping. Although, positional error in the Zald et al. (2014) study was on 

average only 18.18 m, less than the width of a single Landsat pixel but larger than the positional errors 

of typical GPS receivers. 

Forest Inventory and Analysis (FIA) plot locations use a process of “fuzzing and swapping” to 

address privacy issues of forest land owners. Under amendments made in 2000 to the Food Security 

Act of 1985 new restrictions were put in place regarding the privacy concerns of forest land owners on 

which FIA plots fell. The new regulations called for specific procedures needed to insure 

confidentiality. The true plot locations are shifted randomly in x and y coordinate directions to meet 

these confidentiality concerns. Many studies utilize this rich source of data to perform spatial 

interpolations of important forest and ecological metrics. The effects these manipulations of 

coordinates have on spatial model accuracy is often unknown. Coulston and Reams (2004) explored 

the issues of interpolation accuracy when using fuzzed versus unfuzzed coordinates to generate forest 

biomass maps covering Minnesota and found model coefficients to be outside the 95% confidence 
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interval of the parameters found using actual plot locations. They suggested further exploration 

through simulation analyses. 

 Exploring the impact of positional error is an active topic in species distribution modelling. 

Graham et al. (2008), experimenting with species occurrence data, manipulated x and y coordinates of 

plot locations by shifting the position in a random direction and distance up to 5km, and found their 

modeling efforts to be rather robust to positional error. Conversely, Johnson and Gillingham (2008) 

experimenting with positional data of caribou, randomly manipulated positional error incrementally 

from 50 to 1000 meters and found non-overlapping 95% confidence intervals after 200 m of simulated 

error and concluded their model results to be rather sensitive to this introduced positional error. 

Osborne and Leitao (2009) also experimented with positional accuracy in species distribution 

modelling by deliberately introducing error through shifting habitat raster layers in a random direction 

and found a drop in model performance. 

The primary objective of this study was to determine how sensitive the maximum stand 

density index models (SDIMAX) derived in earlier chapters are to positional errors of field plot 

locations used in the variable extraction and model building process. This objective will be assessed 

through exploring changes in extracted variable values, model coefficients and predicted SDIMAX. 

Materials and Methods 
Data 

Plot data was obtained through a collaborative network of public and private forest land 

management organizations. Inventory and monitoring plot data represented a range of fixed and 

variable radius sampling methods, each geolocated to allow extraction of desired attributes from 

spatial layers containing various physiographic metrics. Plot location information, including United 

States Forest Service (USFS) Forest Inventory and Analysis (FIA) and Field Sampled Vegetation 

(FSVeg) records, was provided as unfuzzed coordinates. When exact plot location was unavailable, 

data was rolled up to the stand level (stand shapefiles supplied by data provider) and a stand centroid 
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location was utilized (<10% of the dataset). Each plot record included number of trees per hectare 

(TPH), quadratic mean diameter (QMD) and proportion of basal area (BA) by major species groups. 

Data screening removed plots with less than 2.54 cm QMD and 24.7 TPH to establish a consistent 

threshold of diameter and number of trees. Only trees marked as living were included in plot-level 

estimates. The final dataset (n=155,083) explored in this spatial sensitivity assessment consisted of 

only those plots containing at least 10% Douglas-fir basal area proportion. 

Topographic attributes were derived from U.S. Department of Agriculture (USDA) and 

National Resource Conservation Service (NRCS) National Elevation Data 30-m digital elevation 

models. Slope and aspect were derived using the ‘raster’ package (Hijmans, 2020) available through R 

4.0 (R Core Team, 2020). Spatial maps of soil parent materials were derived from USGS 1:24,000 

geology maps and surficial volcanic ash mantles from the NRCS soil survey geographic database 

(SSURGO). 

Thirty-year (1961-1990) annual, seasonal and monthly climate normals were obtained through 

the ClimateNA v6.11 (Wang et al., 2016) software package using plot-specific latitude, longitude and 

elevation. These climate data contained directly calculated and derived variables, as well as various 

interactions resulting in over 230 climate variables assigned to each record. 

Plot Location Manipulation 

 To understand the influence of positional error on variable extraction and model performance, 

individual plot longitude and latitude coordinates were shifted in a random direction by 30, 60, 120, 

500 and 1000 meters. While these distances are much larger than typical GPS accuracy error, they 

were chosen to allow for records to shift between adjacent pixels of the data source of highest 

resolution (30 m) and to see how error changes the further plot location shifts from the actual location. 

Each record was randomly assigned a -1 or +1 in both the x and y direction to determine the shift 

direction, resulting in four possible directional combinations. Once assigned to a record, the 
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directional shift remained constant for each distance interval. Variable data was then extracted for each 

record at the six plot locations (0 – actual location, 30, 60, 120, 500 and 1000 m). 

Influence of Positional Adjustment on Data Extraction and SDIMAX Model Performance 

 The finalized stochastic frontier regression (SFR) model developed in an early chapter was 

utilized to compare how coefficients and predicted SDIMAX values changed with positional 

adjustments. The final model contained input variables describing number of trees, tree size and 

species basal area proportions, which will remain constant for each positional adjustment. Selected 

model input variables that will (potentially) change due to positional adjustments include latitude, 

elevation, topographic position, geologic and soil descriptors, and climatic variables relating to 

precipitation and temperature. The gamma statistic, which describes the validity of SFR to model a 

maximum boundary, as well as important model coefficients, will be used to compare model 

performance between positional adjustments. 

Results 
Model Parameters and Performance  

The most influential drivers of the SDIMAX model are the intercept and QMD slope coefficient. 

These two parameters overlapped under all positional scenarios at the 95% confidence interval (Figure 

4.1). A comparison of the rest of the variables in the model showed similar results, with no significant 

differences between model coefficients at all positional adjustments. However, model performance as 

measured by the gamma statistic, showed decreasing model performance the further the positional 

adjustment (Figure 4.2). 
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Figure 4.1 Intercept and slope parameters derived from the SFR model under increasing positional adjustments. 
Error bars represent 95% confidence intervals. 

 

 

Figure 4.2 SFR gamma statistic for each position adjustment. 
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Predictive Performance 

 Under each positional adjustments scenario, SDIMAX predictions for each record were made 

from the final SFR model. Increases in change at the 1 and 99 percentiles compared to actual location 

(0 m) increased with larger positional adjustment (Table 4.1). Average and median absolute change 

from actual location (0 m) increased the further the positional adjustment (Table 4.2). Standard 

deviations of change increased with larger positional adjustment. Average predicted SDIMAX saw no 

obvious patterns with positional adjustments. However, an analysis of variance between group 

averages showed significant treatment (positional adjustment) differences at the 500 and 1000 m 

positional adjustments (Table 4.3). 

Table 4.1 Change in SDIMAX with positional adjustment relative to actual location. 

 

Table 4.2 Absolute change in SDIMAX with positional adjustment relative to actual location. 

 

30m 60m 120m 500m 1000m
Min -21.5% -23.1% -22.8% -99.9% -21.8%
1% -3.95% -4.83% -5.25% -6.49% -7.20%
Mean 0.01% -0.01% -0.02% -0.03% 0.00%
Median 0.0% 0.0% -0.1% -0.1% 0.0%
99% 4.01% 5.01% 5.43% 6.34% 7.23%
Max 22.7% 26.4% 29.1% 35.2% 34.1%
SD 1.4% 1.9% 2.3% 2.9% 3.1%

30m 60m 120m 500m 1000m
Min 0.00% 0.00% 0.00% 0.00% 0.00%
1% 0.01% 0.02% 0.04% 0.04% 0.04%
Mean 0.99% 1.47% 1.85% 2.26% 2.47%
Median 0.67% 1.14% 1.61% 1.99% 2.14%
99% 4.66% 5.69% 6.06% 7.31% 8.15%
Max 22.71% 26.42% 29.08% 99.91% 34.12%
SD 1.02% 1.26% 1.38% 1.75% 1.94%
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Table 4.3 ANOVA of predicted SDIMAX. Positional adjustments of 500m and 1000m showed significant departure 
from overall mean. Intercept was actual location. 

 

Discussion 

 Overall the spatial sensitivity analysis showed this regional landscape level model developed 

for predicting SDIMAX from spatially explicit site factors is robust to positional errors of plot locations 

for the majority of input records. The main driver of predicated carrying capacity is the self-thinning 

slope coefficient for QMD, which is not a spatially explicit variable. Model coefficients remained 

rather constant although the drop in model performance with increasing spatial adjustment was not 

unexpected. Site specific factors have been shown to influence carrying capacity. Therefore, as plot 

coordinates move away from true location, these correlations with real, underlying conditions found 

where the trees were actually measured become less accurate. 

The largest swings in predicted SDIMAX were caused when a plot moved between geologic or 

soil classifications, which are binary variables in the model. For example, a site on underlying 

geography classified as sandstone had a negative impact on predicted SDIMAX and therefore a shift of 

the plot location into or out of an area classified as sandstone caused a significant fluctuation in the 

predicted value. While many geological and soil spatial layers are the result of interpolations, the 

influence of these characteristics is real and must be accounted for. This underscores the importance of 

both the need for accurate spatial layers, as well as field verification of the characteristics being 

mapped. 

Another source of change within predicted SDIMAX was the result of topographic position and 

elevation fluctuations caused with plot location adjustment. The forested landscapes of the Pacific 

Estimate Std. Error t value Pr(>|t|)
Intercept 1373.0896 0.4432 3097.972 <2e-16 ***

30m -0.1815 0.6268 -0.29 0.7721
60m -0.5921 0.6268 -0.945 0.3449
120m -0.931 0.6268 -1.485 0.1375
500m -1.488 0.6268 -2.374 0.0176 *

1000m -1.2318 0.6268 -1.965 0.0494 *
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Northwest are often in mountainous terrain with variable topography. A plot on a gentle sloping, 

southern facing aspect could easily switch to a completely different aspect and slope grade with the 

wrong positional location. Elevation just as well could see large fluctuations in areas with more rugged 

topography, where a plot location could drop off a cliff due to positional error. Some of the more 

egregious examples of this phenomenon with the analyzed dataset were found in the Northern 

Cascades region, where plot location adjustment by only 30 meters saw some elevation changes of up 

to and exceeding 100 meters. Even further positional adjustments saw up to 1000 meters in elevation 

change. While the model contains an elevation variable, it does not have as strong an influence on 

predictions as the tree specific variables: however, a large enough shift can produce a significant 

change in prediction. 

Conclusion 

 This spatial sensitivity analysis showed the developed maximum stand density index model 

was robust to positional error. The biggest issue came when the positional error caused true location to 

shift into or out of a binary classifier such as the underlying geologic or soil classification. Climate 

variables in the model do not vary widely with positional changes analyzed here. Although the most 

common and varied changes were found in topographic position and elevation, which caused 

predictions of individual records to swing due to positional adjustment, overall these changes had 

minimal effect on model parameters and regional SDIMAX predictions. This analysis underscores the 

importance of accurate tree measurements, which have a much larger influence on model parameters 

compared to positional error of plot locations. 
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Chapter 5: Sensitivity of Stand Density Index to Diameter Calculations and 
Cutoffs  

Introduction 

 Reineke’s stand density index (SDI) was originally developed as the relationship between 

number of trees per unit area and the average diameter by basal area (Reineke, 1933). This diameter 

measure used in the original form presented by Reineke is known as the quadratic mean diameter 

(QMD). That is the classic definition of a quadratic mean (Iles and Wilson, 1977) where QMD is 

calculated as the “root-mean-square” and expressed as follows: 

[1]     𝑄𝑄𝑄𝑄𝑄𝑄 =  �∑ �𝑑𝑑𝑖𝑖2�𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

Where d is the nth diameter of an individual tree and n is the total number of trees. When determining 

QMD from inventory data, it is often necessary to account for expansion factors and should be 

calculated as follows: 

[2]     𝑄𝑄𝑄𝑄𝑄𝑄 =  �∑ �𝑑𝑑𝑖𝑖2∗𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖�𝑛𝑛
𝑖𝑖=1
∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 

Where d is the nth diameter of an individual tree and TPA is the number of trees represented by that 

tree. QMD is equivalent to the diameter of the tree of average basal area and can be calculated as 

follows: 

[3]     𝑄𝑄𝑄𝑄𝑄𝑄 =  � 𝐵𝐵𝐵𝐵_𝐴𝐴𝐴𝐴���������

𝑇𝑇𝑇𝑇𝑇𝑇������∗0.005454
 

Where 𝐵𝐵𝐵𝐵_𝐴𝐴𝐴𝐴��������� is average basal area per acre, 𝑇𝑇𝑇𝑇𝑇𝑇������ is average number of trees per acre and 0.005454 is 

the constant relating inches to square feet. The quadratic mean diameter is necessarily greater than or 

equal to the arithmetic mean diameter (AMD), as it gives greater weight to larger trees. The difference 

between QMD and AMD grows as the stand structure diverges from a tight, unimodal diameter 
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distribution of an even-aged stand, to that of a more skewed or reverse-J shaped distribution of an 

uneven-aged stand. 

 For expressing stand attributes, QMD has both mensurational advantages (i.e. the exact 

relationship to basal area) and historical precedent (Curtis and Marshall, 2000). Reineke developed 

SDI from even-aged stands where variance of diameters was low and thus was sufficient for 

describing ‘average diameter’. The original equation of Reineke SDI was the following: 

[4]     𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇 �𝑄𝑄𝑄𝑄𝑄𝑄
10

�
𝑏𝑏
 

Where TPA is the number of trees per unit area, QMD is the classic ‘root-mean-square’ diameter and b 

is the slope of the self-thinning line. Reineke found this slope, in the linear form of the equation, to 

be -1.605. 

 Stage (1968) found the disadvantage of SDI in that there was no way to describe the 

contributions of various diameter classes of trees in the stand to the total index for the stand, and 

therefore computed SDI as a summation, hereafter referred to as SDI*. The summation method 

computes SDI* tree by tree within a stand as follows: 

[5]     𝑆𝑆𝑆𝑆𝑆𝑆∗ = ∑�𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
10

�
𝑏𝑏
 

Where DBHi is the diameter of the ith tree in the stand and b is the slope of the self-thinning line, 

using 1.6 a good approximation. If SDI* is to be calculated via the summation method from a stand 

table containing only diameter classes and number of trees, it can be calculated as follows: 

[6]     𝑆𝑆𝑆𝑆𝑆𝑆∗ = ∑�𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 ∗ �
𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗
10

�
𝑏𝑏
�

 
 

Where DBHj is the diameter of the jth diameter class in the stand, TPAj is the number of trees in the jth 

diameter class and b is the slope of the self-thinning line, 1.6 has been a standard approximation. At 
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the plot level, this summation formula is used with each “in” tree’s diameter, and expansion factor as 

TPA. The plot total is the summation, where the stand total is the average of all plots in the stand. 

 Zeide (1983) describes how the ‘average diameter’ in Reineke’s equation is technically neither 

the quadratic nor the arithmetic mean, but rather a function of the slope of the self-thinning line, and 

coined yet another diameter, which he called Reineke’s diameter (DR), calculated as: 

[7]     𝐷𝐷𝑅𝑅 = �1
𝑁𝑁
∑𝑑𝑑𝑖𝑖

𝑏𝑏�
1
𝑏𝑏 

Where N is the total number of trees, d is the diameters of the ith tree and b is the slope of the self-

thinning line, with 1.6 as a good approximation. In application, this equation, like that of the 

summation SDI, needs to be weighted by expansion factors for each tree and should be calculated as 

follows: 

[8]     𝐷𝐷𝑅𝑅 = � 1
∑𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

∑𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∗ 𝑑𝑑𝑖𝑖
𝑏𝑏�

1
𝑏𝑏 

Where TPAi is the number of trees represented by the ith “in” tree’s diameter. The Reineke diameter 

can then be used in the classic SDI form in place of QMD, which has been shown to be equal to the 

summation SDI* (Shaw, 2000).  

 Zeide (1983) goes on to present another equation for DR, developed using the first three terms 

of Taylor expansion, as a function of the arithmetic mean and its variability, represented by the 

coefficient of variation, as the following: 

[9]     𝐷𝐷𝑅𝑅 = 𝑑̅𝑑  �1 +  (𝑏𝑏−1)𝑏𝑏
2

∗ 𝐶𝐶2�
1/𝑏𝑏

 

Where 𝑑̅𝑑 is the arithmetic mean, 𝑏𝑏 is the slope of the self-thinning which should lie somewhere 

between 1, which would produce the arithmetic mean, and 2, which would produce the quadratic mean 

(1.6 is a good approximation for 𝑏𝑏), and 𝐶𝐶2which is the squared coefficient of variation of the 
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diameter distribution. This form of the DR equation is sometimes written without the coefficient of 

variation squared (Weiskittel and Kuehne, 2019; Andrews et al., 2018). The calculated DR then 

replaces QMD in Reineke’s SDI equation (Equation [4]) to get at a DR derived SDI. 

 Shaw (2000) demonstrated the significance which stand structure (i.e. shape of the diameter 

distribution) has on the calculation of SDI. Reineke originally developed the SDI equation from even-

aged stand data with normal diameter distributions. The QMD and summation methods produce 

similar results when applied to even-aged stands but as the diameter distribution becomes more 

irregular (greater variance about the mean diameter), as found in uneven-aged or multi-cohort stands, 

these two calculations diverge. Shaw (2000) comes to a similar conclusion of that of Zeide (1983), that 

using QMD is not “technically” correct and that the summation method yields the correct result. 

 Ducey and Larson (2003) when attempting to determine if there is a truly “correct stand 

density index”, concluded that the summation and Reineke’s original SDI should be considered 

different indices with different properties. Using a two-parameter Weibull function to simulate 

different diameter distributions with equal number of trees, basal area and QMD, they showed the 

summation SDI and Reineke SDI are ‘remarkably consistent’ over most of the diameter distributions 

until the distribution becomes heavily dominated with small trees. 

 Curtis (2010), using real stand data, demonstrated not only how these SDI calculation methods 

differ with stand structure, but how the diameter cutoff of the input data has a significant impact as 

well. He concludes that the minimum diameter limit has major effects on calculated density values and 

that in general trees smaller than 1.6 inches, or all trees of a clearly distinguishable understory, should 

be excluded from computations.  

 The overall goal of this analysis is to evaluate the impact of various diameter and SDI 

equations, as well as diameter cutoffs, on real forest inventory data which produced the maximum SDI 
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model used in previous chapters. In keeping with the tradition of the many papers cited in this 

introduction, English units will be used throughout this chapter. 

Methods 
Data 

 The forests of western Oregon and Washington will again serve as the study area for this 

analysis. Due to the requirement of the summation SDI and DR equations for individual tree 

information, rather than plot or stand level summaries, this analysis utilized data from the U.S. Forest 

Service Inventory and Analysis (FIA) Program from Oregon and Washington, resulting in 10,432 

records. FIA subplot data was summarized to the plot level. Tree level information included diameter 

at breast height (DBH) and number of trees per acre (TPA) represented by each individual tree. 

 The FIA dataset was summarized to the plot level under three diameter truncations. The first 

was no diameter cutoff, where all trees with associated expansion factors were included in plot level 

summaries. The second was the 1.6 inches which Curtis (2010) suggested as a reasonable cutoff to 

reduce issues associated with very large numbers of small trees in the understory. The third cutoff was 

a larger 5-inch cutoff, although subjective, represents a common small diameter cutoff within forest 

inventory. 

Calculated Metrics 

 For each plot record, arithmetic mean diameter (AMD), quadratic mean diameter (QMD) and 

Reineke’s Diameter (DR) via the summation method (Equation [8]), as well as DR via the Taylor 

expansion (Equation [9]) using both CV and CV2, were calculated. SDI was then calculated utilizing 

the QMD (Equation [4]) and the three methods for Reineke’s diameter within the classic SDI form 

(Equations [8], and [9] using both CV and CV2, placed in Equation [4]) as well as SDI* calculated via 

the summation method (Equation [6]). Ratios of the various calculations were determined for each 

record under each diameter cutoff. 



128 
 

 

Results and Discussion 

 The two diameter cutoffs of 1.6 and 5 inches reduced the number of plots from 10,432 records 

to 10,423 and 10,285 respectively due to the removal of plots containing only small diameter trees. As 

expected, all mean values of the three calculated diameters increased and number of trees decreased 

with increasing small tree diameter cutoff (Table 5.1). The variability in tree diameters, as indicated by 

the coefficient of variation, decreased with increasing diameter cutoff. 

Table 5.1 Calculated metrics using the various diameter calculations for the different diameter cutoff scenarios. 

 

 The increased diameter cutoff causes QMD and AMD to become closer in value. The 50th, 75th 

and 95th percentiles of the ratio between QMD and AMD get lower as the cutoff increases (Table 5.2). 

With a diameter cutoff of 5 inches this ratio stays much closer to 1 with a maximum value of 1.67 

compared to the lower and no cutoffs reaching 2.5 and 3 times the difference between QMD and the 

arithmetic mean. 

No Cutoff >= 1.6 >= 5
DBH (mean) 8.99 9.68 12.51
DR (summation) 10.06 10.68 13.33
DR (CV2) 10.18 10.79 13.39
DR (CV) 10.52 11.23 14.14

QMD 10.77 11.36 13.89
CV 0.70 0.62 0.43
TPA 404 331 155
SDI 282 274 234
SDI* 244 242 219
SDI (CV2) 252 248 221
SDI (CV) 261 242 252
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Table 5.2 Ratio of QMD to AMD for the different diameter cutoff scenarios. 

 

 As expected SDI* was always lower than SDI (Table 5.3), with all diameter cutoffs having a 

median (50th percentile) ratio between the summation and the QMD (i.e. SDI*:SDI) method of 90% or 

above. This ratio increased overall as the diameter cutoff increased. This finding is in agreement with 

Ducey and Larson (2003) who concluded the ratio is relatively insensitive to changes to the shape of 

the diameter distribution until the distribution becomes heavily dominated by small trees. Forest 

inventories with a minimum merchantability diameter cutoff will decrease sensitivity to small trees 

with large expansion factors and lead to a ratio of SDI*:SDI close to 1. 

Table 5.3 Ratio of SDI* to SDI for the different diameter cutoff scenarios. 

 

 

 Ducey (2009) demonstrated that the most extreme ratio of SDI* to SDI comes when trees are 

in two distinct diameter classes, such as those in a two-cohort stand like that of a shelterwood. These 

are stands where there are large numbers of small trees, yet, with majority of the basal area found in 

the large diameter classes. The most extreme ratios found in this analysis were between 0.55 and 0.60, 

with only 0.1% or 11 records, falling in this range. For example, the record with the lowest ratio of 

SDI* to SDI was a plot which contained 14 tree records with six large trees ranging from 30 to 56 

inches and 8 trees less than 2.5 inches, fitting with the criteria laid out by Ducey (2009) and others 

describing a stand structure which would have an extreme ratio. In this example the QMD derived SDI 

Dataset 50% 75% 95% Max
No Cutoff 1.20 1.36 1.70 3.02
>=1.6 1.16 1.29 1.56 2.52
>=5 1.08 1.14 1.27 1.67

Percentile

Dataset Min 50% 75% 95%
No Cutoff 0.55 0.90 0.95 0.98
>=1.6 0.57 0.91 0.96 0.99
>=5 0.70 0.95 0.97 0.99

Percentile
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was 175, and the summation derived SDI* was 96. This same record, with the diameter cutoff of less 

than 5 inches, SDI and SDI* are almost identical with each at 62. In this extreme example, both the 

method of calculating SDI and the diameter cutoff are important with regard to any interpretation of 

what these metrics represent or tell about this stand. Overall, with no diameter cutoff there is a greater 

amount of records tailing to the lower end whereas the larger diameter cutoff concentrates the 

distribution closer to 1 (Figure 5.1). 
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Figure 5.1 Histograms of SDI* to SDI ratio for each of the diameter cutoff scenarios. 
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 DR calculated from Zeide’s (1983) Taylor expansion (Equation [9]) should have the CV 

squared, proof being that when the b coefficient is 1 DR equals AMD and when b is 2 DR equals the 

QMD (Figure 5.2). This proof is only true for QMD when the CV is squared. Although, an 

investigation into whether DR derived via this method is equal to the summation derived DR, has 

exposed some issues. First, the assertion and proof shown by Shaw (2000), that the summation SDI* 

(Equation [6]) and the SDI calculated when utilizing the summation derived DR (Equation [8] used in 

Equation [4]) are equal, is correct. However, DR calculated via the Taylor expansion, as shown in the 

equations of Zeide (1983) where CV is squared or for Weiskittel and Kuehne (2019) where CV is not 

squared, is not exactly equivalent to the DR calculated by the summation method (Figure 5.3). In 

particular, as the coefficient of variation about arithmetic mean diameter increases, DR via Taylor 

expansion increases in proportion to DR calculated via the summation method. Perhaps, the early 

findings when utilizing DR were developed with stand data having low variability in diameter 

distribution, where these two calculations are indeed approximately equal. Zeide (1983) made use of 

the stand table in Gingrich (1967 – Table 5, p48), which had a coefficient of variation for the smallest 

and largest diameter classes of 45 and 29 respectively, to calculate DR via Taylor expansion (Equation 

[9]), which would show close agreement with the summation DR (Equation [8]).  
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Figure 5.2 DR via the Taylor expansion (Equation[9]) when b=2 should be equal to QMD. Coefficient of 
variation in this equation should be squared. CV on the x-axis is coefficient of variation. Dataset with no 
diameter cutoff shown. 

 Likewise, the SDI found with input of the Taylor expansion DR in place of QMD (Equation 

[9] using both CV and CV2, placed in Equation [4]) is not equivalent to the SDI* (Equation [6]) found 

via the summation method (Figure 5.4). Although, as the diameter cutoff increases there is greater 

agreement between the summation SDI* and the SDI calculated with DR via the Taylor expansion 

using CV2, in particular when the coefficient of variation is low. SDI calculated with CV not squared 

has already been shown to be incorrect, nonetheless it is interesting how the calculated SDI begins to 

fall in line with the summation SDI* at higher levels of variance. To avoid any confusion about what 

this diameter calculation is actually representing when calculating SDI*, DR calculated via Taylor 

expansion should not be utilized. It is recommended to either utilize QMD to calculate SDI, or if an 

area-based metric is desired, use the summation method to calculate SDI*.
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Figure 5.3 Ratio of diameter calculations relative to QMD. CV on the x-axis is coefficient of variation. 
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Figure 5.4 Ratios of SDI calculated by summation DR (equivalent to SDI*), DR with CV2 and DR with CV relative to SDI calculated with QMD for each diameter 
cutoff scenario. There is no SDI calculation from AMD. CV on the x-axis is coefficient of variation. 
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Conclusion 

 The major conclusion of this analysis is that forest structure and any diameter cutoffs used 

during forest inventory sampling have a significant impact on SDI or SDI* calculation. Any 

application of either SDI or SDI* for density management should understand how diameter 

distributions and truncation could impact the interpretation of these indices, in particular, when 

dealing with irregularly structured forest types. While the use of DR via Taylor expansion has 

interesting mathematical properties, the findings of this analysis do not support the use of this 

particular diameter calculation when applying to the stand density index. If a tree-by-tree, or area-

based SDI* is desired, then the summation method, or calculating DR via the summation method, 

should be utilized. Ducey and Larson (2003) ask whether sensitivity of SDI* to the shape of the 

diameter distribution enhances the meaning of the index or whether it is meaningless noise. The utility 

of any density index can only be set by the management objectives it will guide and the meaning it 

will have on any planned silvicultural activities. Moreover, the structure of the forest will ultimately 

dictate how the density index will be utilized and interpreted. 
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