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Abstract 
 

Terracettes, a step-like microtopographic feature primarily caused by livestock hoof action 

and grazing on hillslopes, are found throughout semi-arid rangelands of the United States.  

They have been shown to alter soil moisture, sediment transport, infiltration rates, and 

coincident vegetation patterns.  The spatial extent of terracettes is currently unknown and 

therefore their landscape-scale hydrologic influence is absent in modeling and land 

management decision making.  When viewed in very high-resolution satellite imagery, 

terracettes appear as repetitious parallel lines within a specific frequency range.  Here, we use 

frequency-based image analysis via the 2D Discrete Fourier Transform to detect terracettes 

based on their distinct patterning and orientation.  An automated workflow was created to 

detect terracettes using freely available software and satellite imagery.  Results show a 

detection accuracy of 77%.       
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1. Introduction 
Hillslope hydrologic processes play an important role in surface water runoff, sediment 

transport, nutrient availability, groundwater recharge, and stream flow (Cook, 1946; Dunne 

et al., 1991; Horton, 1933).  The efficacy of these processes has been shown to be 

dramatically affected by topography and vegetation (Bergkamp, 1998; Hawkins & Cundy, 

1987).  A dramatic example of altered hillslope topography is the terracette, a step like, 

microtopographic feature found on rangeland hillslopes around the world (Buckhouse & 

Krueger, 1981; Corrao et al., 2015; Jin et al., 2016; Kück & Lewis, 2002; Walsh et al., 2001; 

Watanabe, 1994).  Despite their global distribution and common occurrence on non-forested 

hillslopes in a range of climates, there is no comprehensive land cover inventory of 

terracettes.  In the U.S. State of Idaho, Corrao et al. (2015) estimated 159,000 ha of 

terracetted hillslopes using point sampling and ocular analysis of orthoimagery.  Other than 

this study, there have been few attempts to map terracettes beyond the hillslope scale.  This 

paper describes a semi-automated algorithm to identify and map terracettes on a regional to 

global scale.   

 

Accurately identifying terracettes on a landscape scale may aid in many uses for land cover 

data including land use change (Jennings, 2000; Lawler et al., 2014; USDA, 2013), land 

management for forage production (Holechek et al., 1999), and hydrologic model 

parameterization (Nearing et al., 2011).  Livestock may be the dominant geomorphic agents 

of terracette formation in semi-arid systems (Walsh et al., 2001; Watanabe, 1994) but some 

have found solifluction to be the driving factor (Bielecki & Mueller, 2002; Buckhouse & 

Krueger, 1981; Kück & Lewis, 2002).  Livestock preferentially use these pathways 

compacting the benches and therefore reducing vegetation (Jin et al., 2016; Stavi et al., 

2008). The increased hillslope roughness due to terracettes may promote more infiltration 

and reduce runoff through increased ponding on benches (Hawkins & Cundy, 1987) and 

preferential infiltration paths from vegetation on the shoulder of the bench (Bergkamp, 

1998).  Much of the previous work on terracettes reference the effect of microtopographic 

features on hillslope processes.  However, because all previous studies have focused on 
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single-hillslope functions and processes, their implications at larger spatiotemporal scales 

have been limited. 

 

The fields of image processing and computer vision have enabled the analysis of the ‘texture’ 

of an image based on pixel intensity differences and patterns (Gonzalez & Woods, 2006).  

The 2-dimensional discrete Fourier transform (DFT), a technique for analyzing repeating 

patterns in imagery, is used widely across disciplines.  The DFT has proven useful for 

detecting periodic, linear features from imagery by decomposing the complex, periodic 

signals into the individual frequencies (Couteron et al., 2006; Gonzalez & Woods, 2006; 

Mugglestone & Renshaw, 1998).  Looking at the intensity, or prevalence, of a range of 

frequencies, Mugglestone & Renshaw (1998) were able to identify frequency patterns in 

aerial images corresponding to linear glacial landforms.  Couteron et al. (2006) used what 

they termed Fourier-based Textural Ordination (FOTO) to classify the texture of a scene 

using radial spectral averages in principal component analysis.  Because terracettes present as 

periodic, parallel, linear features when viewed in satellite or aerial imagery, we hypothesized 

that a Fourier-based approach may be well suited to automatically detecting terracettes.  

 

Typically, terracettes are only resolvable in very high-resolution imagery (<0.5m ground 

sampling distance, i.e., resolution).  However, for DFT analysis only relative intensity 

differences in the periodic features of the image are needed.  Thus, the use and combination 

of uncalibrated RGB imagery from multiple sensors is possible (Mugglestone & Renshaw, 

1998).  Publicly available aerial imagery is well suited for this due to its high resolution and 

large spatial coverage.  The DFT’s tolerance for even heavily processed, pan-sharpened RGB 

imagery and its widely demonstrated ability to identify periodic features (Moisan, 2011; 

Smith, 1997; Xu, 1996) makes it ideal for identifying terracettes.   

 

The objective of this study was to develop and apply a DFT rule-based classification of high-

resolution aerial imagery to map terracettes and assess classification accuracy at kilometric 

scales using three study areas in Idaho and Washington, USA.      
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2. Materials and Methods 

2.1. Study Area and Field Description 

We selected three study areas (Wilma Ranch, Asotin, and Riggins) in the semi-arid region of 

northern Idaho and southeastern Washington (Figure 1).  Each site was selected for having a 

wide variety of land use and topographic characteristics based on ocular examination of 

aerial imagery.  The dominant land uses were farming and grazing on private land.  All areas 

contained distinct valley bottoms, steep slopes and were typified by a mostly dendritic 

drainage network pattern.  Bedrock at all sites was dominated by Columbia River basalts and 

soils were predominantly gravelly to cobbly silt loams.  Thirty-year (1981-2010) mean 

precipitation, December mean temperatures, and July mean temperatures for all sites ranged 

from 381 to 460mm, -1.7 to 0.4C, and 20.7 to 22.1C, respectively.  Elevation above sea level 

for all sites ranged from 225m to 1420m.  Vegetation cover on non-cropland was mostly 

grasses and shrubs with some larger woody vegetation in valley bottoms and northern aspect 

slopes. 

2.2. Imagery and Data Inputs 

All imagery used was georeferenced aerial images of approximately 15cm resolution.  The 

Wilma and Asotin sites were imaged on June 15, 2015 and the Riggins site on July 30, 2016.  

Imagery for the study area was available only as 3-band red, green, blue (RGB) “true color” 

images. The RGB bands were averaged together giving a single band raster with grey-scale 

values ranging from 0-255.  All sites, Wilma Ranch (45 km2), Asotin (56 km2), and Riggins 

(16 km2), were split into 1 km2 subscenes.  Each subscene was broken into non-overlapping 

windows of ~37x37 m (250x250 pixels).  A window size of 250x250 pixels was selected for 

two reasons:  First, it was large enough to provide sufficient repetitions of terracettes in the 

imagery following Couteron's (2006) suggestion that fine-grained patterns should repeat 

more than 3-4 times in each window for DFT.  Second, because terracettes are very fine-

grained patterns at the available resolution, a sufficiently small window size increases the 

continuity of terracette patterns in each window and increases the likelihood that they appear 

as linear parallel features even if they are part of a larger, curved set in complex terrain. 
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A USGS 10m DEM (U.S. Geological Survey, 2017) was used to create slope (degrees) and 

aspect (degrees) derivatives for all sites.  Slope was used for masking out slopes below 5° 

and above 60° and aspect was used for site characterization of classification results.  The 

2011 National Land Cover Database (NLCD) (Homer et al., 2015) was used for masking out 

areas where terracettes were unlikely to exist (e.g. urban areas and water bodies) and where 

we would be unable to identify them in the unlikely situation that they exist (e.g. forests).  

For this study, we limited selection to the two classes of Grassland/Herbaceous and 

Shrub/Scrub.  The NLCD 2011 is based primarily on a decision-tree classification of circa 

2011 Landsat satellite data and has an overall land-cover class accuracy of 83% (Wickham et 

al., 2017).   

2.3. Fourier Frequency Analysis 

The primary goal of the Fourier frequency analysis was to extract dominant frequency and 

orientation exhibited in each window (Figure 2).  Dominant frequency and orientation values 

were subsequently used as inputs for classification.  The Fast Fourier Transform (FFT) 

(Diggle, 1990) function in the R software package (R Core Team, 2017) was used to 

calculate the DFT for each window.  This converts the intensity values (0 ≤ I ≤ 255) in the 

spatial domain to the frequency domain.  Image values of I(x,y) where x and y are the 

position of a pixel are transposed to Fourier-space values F(p,q) where p and q are spatial 

frequencies along XY directions (Proisy, Couteron, & Fromard, 2007).  All image 

information in this transformation is preserved and editable in the frequency domain, readily 

allowing the extraction of periodic features (Figure 3).  The underlying values calculated by 

the FFT are complex numbers representing the phase and magnitude.  While the phase 

determines the main content of an image, the magnitude has been shown to contain the 

information related to periodic patterns (Jahne, 2004).  Therefore, for this study, only the 

magnitude portion of the transformation was kept.  The result of each transformed window 

calculated was a two-dimensional periodogram (Figure 4) displaying the distribution of 

spectral radiance periodicity at all spatial frequencies, or wavenumbers r where r was defined 

as the number of times a signal repeated itself in an image (Mugglestone & Renshaw, 1998).  

Wavelength can be determined by dividing the dimension of the square image by 

wavenumber.  Here, r was expressed as cycles per meter.  The periodogram was used as the 
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source of spectral data to determine the dominant frequency and orientation.  All extracted 

values from the periodogram of each window were added to a single table for the 

classification process. 

2.3.1. Frequency 

The dominant spatial frequency of a window is represented by the largest magnitude value in 

the periodogram.  Couteron (2002) suggested ignoring the magnitudes of the first two lowest 

frequencies as they represent the macro-heterogeneity of the image.  To accomplish this with 

windows of a higher pixel count used here, the lowest five values are ignored.  The position 

of the maximum magnitude value in the periodogram is found and by determining this 

position and corresponding wavenumber, we know the dominant frequency.  This position 

value is added to the table of all window observations.  

2.3.2. Orientation 

The dominant orientation of a Fourier-space image, if present, is expressed as higher 

magnitude values or clusters of values perpendicular to the features in the original RGB 

image (Figure 4).  By finding the clustering of higher magnitude values, we can determine 

the orientation.  A directional raster (with values between 0 and 179 degrees) was created so 

that equal directions have equal values (e.g. the orientation of 20° is the same as 200°).  We 

then use this raster to calculate zonal statistics (mean) of magnitude values for all directions 

in each window.  A loess smoothing function (Cleveland & Devlin, 1988) is applied to the 

magnitude values when plotted as a function of orientation.  Using a peak finding function 

the largest peak, or dominant orientation, is recorded into the table of all window 

observations.    

2.4. Window Classification 

A rule-based classification approach was used to classify each window.  The rules were 

optimized based on manual assessment of a random sample of windows from all study sites.  

The final classification represents whether each window was independently classified as 

having terracettes or not having terracettes.          
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2.4.1. Validation Data 

Validation data for the classification was collected via ocular assessment of randomly 

selected windows in all test scenes.  First, approximations of terracette coverage at all sites 

were digitized into binary classification polygon shapefiles with terracette and non-terracette 

classes.  A random sampling of 200 windows from each class was used to select the 

individual windows to be classified.  Each window was examined at full resolution and given 

a binary value for terracette presence or absence.  A total of 1,180 windows were manually 

examined to provide the validation data used in the classification, of which 316 were 

determined to contain terracettes.  The final validation data used for classification was 

balanced by random selection so that both classes had an equal number of samples.     

2.4.2. Determining Optimal Parameters 

The validation data was used to determine the best combination of observed image frequency 

and image orientation that resulted in the most accurate classification of terracettes.  This was 

performed through an iterative process which works through all combinations of these two 

parameters to find an optimal spatial frequency range in validation data terracettes.  When 

viewed in orthoimagery, not all terracettes exhibited the same horizontal spacing between 

benches but tended to be within a narrow range (1-3 m).  For the orientation we expected the 

observed, dominant orientation of a window containing terracettes to be perpendicular to the 

terracette feature.  Because terracettes were expected to be roughly perpendicular to the 

aspect of the hillslope, window orientation values that were within an acceptable range of the 

DEM derived likely contain terracettes.  For each combination of the two parameters, spatial 

frequency and orientation, a confusion matrix was generated using the validation data.  The 

balanced accuracy and Cohen’s kappa (Cohen, 1960) statistics were returned for each 

combination.  Balanced accuracy is the average of the accuracies for both positive and 

negative classes (Brodersen et al., 2010).  Cohen’s kappa is a measure of how closely the 

observed instances matched the predicted instances while controlling for a random 

classification.  This determination was performed separately for each study area as well as 

with all areas combined.  The optimal parameters were then used to classify the full set of 

windows in each scene.  The final classification was binary.  Two classification schemes 

were tested for the final analysis.  The first, frequency-only, was based solely on the 
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dominant frequency of each window and if it was within the range of acceptable frequencies.  

The second, frequency plus orientation, added an orientation rule and determined if the 

calculated dominant orientation of the window was within a defined angular bandwidth 

compared to the DEM derived aspect.   

3. Results 

3.1. Classification Accuracy 

A total of 172,856 windows (117 km2) were processed across all three study areas.  Out of all 

the windows processed, 17,734 (12 km2) were predicted to contain frequencies and 

orientations characteristic of terracettes.  When analyzing each of the three study areas 

individually the frequency-only based classification had accuracies ranging from 0.76 to 0.77 

and kappa values from 0.51 to 0.54 (Table 1).  The frequency + orientation classification had 

accuracies from 0.76 to 0.78 and kappa values from 0.53 to 0.57, suggesting little benefit of 

including orientation information.  The range between acceptable r values (wavenumbers) 

was 0.21 to 0.35 m-1 for the lower values and 0.67-1.88 m-1 for the upper values.  When all 

sites were analyzed as one dataset, the parameters that produced the highest balanced 

accuracy and kappa values (0.77 and 0.53, respectively) were a lower r of 0.30 m-1, upper r 

of 0.70 m-1 and angular bandwidths ranging from 50 to 60 degrees.  The angular bandwidth is 

a range rather than a single value.  The range stems from multiple combinations of angular 

bandwidths, lower r values, and upper r values that resulted in the exact same accuracy and 

kappa values.  Therefore, our results suggest that a window has a higher likelihood of 

containing terracettes if the dominant, calculated wavenumber r is between the lower and 

upper r values and is oriented +/- 50-60 degrees of the DEM derived aspect. 

 

In Figure 6, the effect of the lower and upper r values can be seen.  For the lower r, an 

increase in kappa values from 0 to 0.30 m-1 with a peak at 0.32 m-1.  After this, there is a 

steep drop in kappa values.  For the upper r, we see an increase in kappa from 0 to 0.67 m-1 

and a leveling off to the maximum allowed r.  Values below 0.30 m-1 are features with lower 

frequencies, or larger features in the RGB image that repeat fewer times in each window.  

Values above 0.67 m-1 are features that are smaller than terracettes and at the resolution of 
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images used in this study characterizes very fine grained, inter-pixel intensity differences.  

When looking at the influence of the angular bandwidth on kappa values (Figure 7), we 

found a subtle peak near 50-60.  This again suggests that the orientation information used 

here did not greatly contribute to increased classification accuracy.      

3.2. Classification Characteristics 

Characteristics for each terracette and non-terracette window were determined for both the 

validation data and final classification of each study area.  For aspect, terracettes were 

predominantly on north, northeast, and northwest facing slopes (Figure 8).  This was true for 

the validation data as well as the final classification.  Non-terracettes were slightly more 

evenly distributed, if not more prominent on the southern facing slopes.  The non-terracettes 

in the Wilma area were predominantly on southern facing slopes.  Slope was much more 

uniform between the terracette and non-terracette classification.  Both the validation data and 

final classification showed very similar distributions of terracette and non-terracette windows 

(Figure 9).  Mapping the final classification in a GIS (Figure 10), the terracettes clearly 

exhibited clustering.  

4. Discussion 

The application of Fourier-based classification used here proves to be a simple and therefore 

potentially powerful tool for identifying terracettes.  These methods do not require calibrated 

imagery and only rely on basic, open source software functions.  This reduces the cost and 

provides an opportunity to explore larger spatial extents.  Knowing the location of terracettes 

can then be used to aid in hydrologic modeling, rangeland management, and resource 

inventory. 

 

The spatial coverage values for each study area in Table 2 suggest that terracettes are a 

prominent feature in semi-arid rangelands.  The area deemed suitable for terracette 

development, based on slope and land cover, was 77.8 km2 (66.5%) in all sites combined.  

The manually identified terracetted zones totaled 8.9 km2 (8.2%) of the total combined area 

studied and the final DFT classification shows 12.0 km2 (11.5%) of terracetted land.  The 

current spatial coverage of this study doesn’t allow for reasonable extrapolation from these 
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values to larger scales.  However, the methodology used here combined with random, 

kilometric-scale plot sampling across state-wide or greater scales may further refined values 

like those of Corrao et al. (2015).  

 

In order for the method applied here to work, high-resolution imagery is necessary to provide 

the detail and contrast needed to identify terracette patterns. High-resolution imagery (sub-

meter) is becoming more available through a combination of an increasing network of 

acquisition platforms and online data repositories (e.g. Planet Team, 2019).  Currently, some 

county-scale imagery in the United States is available with 15cm resolution (e.g. INSIDE 

Idaho, 2019).   

 

The other significant limitation of this method is the timing of the imagery (Figure 11).  Date 

of image capture and the resultant sun angle at that time can both help and hinder the 

visibility of terracettes by changing the contrast between terracette bench and riser features.  

Areas with lower incident sunlight angles (e.g. north facing slopes in the northern 

hemisphere) increase shadows and therefore contrast.  Areas on southern facing slopes with 

more direct sunlight have lower contrast and as a result terracettes are not nearly as 

pronounced in the imagery.  This may result in a potential underestimation of terracettes 

overall and possibly account for an increased estimation of terracettes on north facing 

aspects.  This is likely a difficult problem to overcome but potentially solvable by variable 

image capture times.  For aspect, our final classification results were consistent with Corrao 

et al. (2017) with north as the dominant aspect where terracettes are found.  Further 

exploration of window size should be considered as this presents a variable in need of 

optimization. 

 

The driving force behind the final classification is the manual, binary classification of the 

validation data.  However, terracettes are a continuous land-cover feature that exist along a 

gradient ranging from very distinct to barely discernible.  Powell et al. (2004) found that 

accurately labeling continuous landscapes was difficult due to inherent subjectivity.  This 

was especially true when trying to label transitional classes.  In this study, we assigned each 

window a binary classification.  Therefore, we were unable to properly classify the areas of 
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transitional terracettes due to sub-window heterogeneity.  When assessing the final 

classification of the validation points, the primary source of commission/omission errors 

(Table 1) appears to be from either faint terracettes or transitional classes.  The method used 

here is also susceptible to commission errors due to windows exhibiting the same spatial 

frequency and orientation as terracettes but are indeed not terracettes.  Future research on 

terracette classification should investigate using more classes, refining objective metrics for 

each class, and alternative windowing.  A third, transitional class may bring attention to 

marginal or oddly shaped terracettes.  Objective classification metrics such as a minimum 

number of terracettes of a certain length in the window would help reduce the inherent 

human subjectivity.  Finally, incorporating overlapping windows may increase the 

identification of transitional terracettes as well as increase the confidence of all 

classifications. 

 

Prior to this study, the spatial extent of terracettes was aggregated at the state level.  While 

this certainly provides insight into statewide rangeland management, determining the precise 

locations of terracettes may allow for more tailored management strategies.  Fuhlendorf et 

al., (2017) suggests a framework of functional heterogeneity which asks what type of 

heterogeneity, at various scales, is related to a process of interest.  With the fine-grained 

knowledge of terracette location, future research may be able to discern the various 

hydrologic influence of terracettes at varying spatial scales.  Without detailed knowledge of 

the spatial extent of terracettes our ability to infer their influence is limited (Seyfried & 

Wilcox, 1995).  Site-specific observations, like those made by Bergkamp (1998) and Corrao 

et al. (2016), when used in conjunction with hillslope to watershed scale extent of terracettes, 

can help further inform the influence of terracettes in rangeland hydrology.  This information 

matched with local soil and vegetation data may also aid in predicting forage production and 

therefore potential stocking densities.  The hydrologic influence of terracettes may also be 

better understood when matched with their precise, spatial attributes (e.g. slope, aspect, 

elevation, etc.) that can be extracted from the final classification results.  
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5. Conclusion 

Fourier-based image processing and classification methods are one approach to identifying 

terracettes across kilometric spatial extents and are limited primarily by imagery.  The 

methods applied tolerate variable input imagery sources but are dependent on contrast in the 

terracette features.  Timing of imagery and aspect may play a large role in estimating the 

amount of identified terracettes. This classification approach shows promise in determining 

the currently unquantified extent of terracettes.  The results from our three study sites 

corroborate that terracettes are a widespread microtopographic feature in semi-arid 

rangelands.  Our results suggest that they are more prevalent on north facing slopes although 

this may be exaggerated by the timing of image capture.  While at least some degree of 

hillslope steepness is required for terracettes to occur, it does not appear to be the driving 

factor in terracette formation in arid rangelands.  With the methods put forth here, it may be 

possible to explore the influence of terracettes on hillslope hydrologic processes at larger 

spatial scales and therefore increase the impact of rangeland focused management decisions.   
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7. Figures 

 
Figure 1.  Overview map showing (a) Asotin, (b) Wilma Ranch, (c) Riggins study sites and 
(d) a typical hillslope with terracettes.    
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Figure 2.  Flow diagram showing steps in Fourier-based classification. 
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Figure 3.  The image information, once in the Fourier frequency domain, still contains all 
image information and remains editable.  Thresholding and applying a bandpass allows a 
visualization of the terracette information within the image.  
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Figure 4.  Example spectral attributes of individual windows in the Wilma Ranch study area.  
All images are oriented to the North.  The periodograms are grayscale representations of FFT 
magnitude transformed so that r = 0 is at plot center.   (a) Very distinct terracettes. (b) Faint, 
transitional terracettes.  (c) Typical rangeland.  (d) Forested.   
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Figure 5.  Density of the frequency of each validation data window.  Non-terracette windows 
are dominated by lower frequencies likely due to larger scale features such as trees or change 
in vegetation.  Terracette windows tend to have higher frequencies due to their unique pattern 
on the landscape. 
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Figure 6.  Kappa values for upper and lower frequency limits from the validation data. Each 
distribution represents the resultant kappa values for all combinations of angular bandwidth, 
the fixed frequency limit of that distribution, and all frequencies of the other limit (either 
Lower or Upper).  Frequencies have been binned into nearest 0.1 m-1 for plotting.  
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Figure 7.  Kappa value ranges for angular bandwidths.  Data shown is limited to lower 
frequency limits of 0.2-0.4m-1 and upper frequency limits of 0.5-0.8m-1.  Each angular 
bandwidth distribution represents the resultant kappa values for all combinations of lower 
frequency limit and upper frequency limit at that angular bandwidth.  
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Figure 8.  Density of window aspect for validation data and final classification.  Aspects 
values were derived from a 10m DEM at each window centroid.  Values below each diagram 
are the number of windows. 
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Figure 9.  Density of slope for ground truth and final output estimation for all three study 
areas. 
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Figure 10.  Results of final classification output for a) Asotin, b) Riggins and c) Wilma 
Ranch.    
 
 
 

 
Figure 11.  Unmodified images where a and b are archival imagery and c is from the imagery 
set used for this study.  Here we see the effect that acquisition timing can have on terracette 
visibility.  In b, taken only 9 days after a, the terracettes are not visible likely due to 
acquisition timing.  
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Table 2.  Area values for digitized validation data zones and final, rule-based classification 
for terracettes and not terracettes classes.  Suitable for terracette formation is defined here as 
areas with both slope between 5-60° and Grassland/Herbaceous and Shrub/Scrub landcover 
classification. *The Riggins site had gaps between images that resulted in the discrepancy in 
site area and final classification values.    
 

  Asotin Riggins* Wilma 
Total site area (km2) 56.0 16.0 45.0 

Suitable for terracette development (km2)  35.6 11.1 31.2 
Manual Classification Zones       

Terracette (km2) 2.2 1.0 5.7 
Not Terracette (km2) 53.8 15.0 39.3 

Calculated Classification       
Terracette (km2) 5.4 1.6 5.0 

Not Terracette (km2) 50.6 13.9 40.0 
 

 


