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Abstract 

Coleoptera, commonly known as beetles, comprises 40% of all insects.  Spectral readings of 

the elytra, the hardened outer wing, may be used to identify Coleoptera.  Utilizing normal 

mixture models, eighteen peak wavelengths were identified across taxonomic groups and 

genders creating a multivariate structure.  Multivariate procedures including principal 

component and discriminant analyses were employed to differentiate taxonomic groups and 

genders. The first three axes of the principal component analysis provided a clustering of 

genus and gender for a subset of taxonomic groups. The nearest neighbor discriminant 

analysis with proportional priors gave a misclassification rate of 5.2%.  Internal bootstrap 

validation of the discriminant model yielded an average error rate of 3.5%.  An external cross 

validation of the same model, conducted on independent samples resulted in an average 

misclassification of 6.5%.  Given the low misclassification rate, multivariate statistical 

approaches are recommended for analysis of spectral reflectance in Coleoptera and other 

similar insect groups. 
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Chapter 1 

Introduction 

 Insects are one of the most abundant, diverse, and necessary life forms on earth.  They 

play an integral role in pollination, degradation of waste, maintenance of pests, and medicine. 

They are also used as model organisms for conducting a variety of scientific research.  The 

order Coleoptera makes up over 50% of known insect species, with 350,000 species of 

Coleoptera having been formally described.  Estimates on the number of Coleoptera species 

range from 600,000 to 30 million (Seago et al. 2009).  Coleoptera can be found in every 

terrestrial climate in the world with species diversity often increasing in tropical locations 

(Vigneron et al. 2006).  The majority of Coleoptera species are undescribed, even when using 

conservative estimates. With such a low percentage of species having been described, it can 

be difficult for an Entomologist to correctly identify an insect. Taking into account human 

error, the probability that one will incorrectly identify a Coleoptera is higher than what is 

considered acceptable in a research setting.  However, the ability to rapidly differentiate 

Coloptera taxonomic groups with little to no error in this modern age should be within our 

means. 

The methods used for identifying Coleoptera species are usually difficult and 

inaccurate.  The classification is typically derived from antennal, tarsi, mouthparts (labial and 

maxillary palpi), ventral characters (sterna, pleura, coxae), and other morphological 

characteristics (Choate 1999).  There is a high potential for misclassification that can occur in 

the process of identification. For example, long-horned beetles which do not have long 

antennae, snout beetles which do not have snouts, ground beetles that live in trees, or aquatic 

beetles that are never in the vicinity of water (Choate 1999).  Morphology of an insect has to 

be painstakingly analyzed in order to identify them accurately, i.e. antenna measured, veins on 
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wings analyzed, carapace shape diagramed, etc.  Typically, Coleoptera are viewed under a 

dissecting microscope where traits can be analyzed.  Memorizing or locating references for 

morphology and then applying that knowledge for the process of identification can be very 

time consuming.  Coupled with human error, and the ever expanding number of described 

species, this may lead to misclassifications.  For example, one of the taxonomic groups 

chosen for this study, the genus Callidium within the family Cerambycidae, has been viewed 

by three different entomological experts with each one identifying it differently. 

 One of the most accurate ways to differentiate Coleoptera species is through their 

coloring.  In fact, entomologists have created more than 30 different terms that are used to 

describe the color brown (Seago et al. 2009).  With such a strong emphasis on color, the most 

distinguishable coloration is often seen in the hard outer wing, or elytra, of Coleoptera.  The 

elytra typically have a relatively uniform coloration with the most frequent colors seen being 

blue or green ( Piszter 2010).  The elytra are composed of chitin, with elements such as 

carbon, hydrogen, nitrogen, oxygen, calcium, and magnesium present to achieve a particular 

coloration ( Piszter 2010).  Elytral coloration is exposed to some of the strongest evolutionary 

pressures ( Piszter 2010) which include, but are not limited to crypsis, aposematic, sexual 

signals, polarized signaling (for conspecific communication), thermoregulation, and confusion 

of depth perception of predators (Seago et al. 2009).  Coloration in Coleoptera has been 

observed to change during development or as a result of environmental conditions (Seago et 

al. 2009).  Elytral coloration has been shown to vary along geographical gradients (Kawakami 

et al. 2013).  This is typically referred to as thermal melanism, where low elevations or 

temperatures have high production of dark pigments.  Elytral coloration has also been shown 

to correlate with humidity, rainfall, temperature, and isolation (Kawakami et al. 2013). 
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 All of the specimens selected for this project are wood borers or predators of wood 

boring insects.  Wood-boring beetles, or Woodborers, are considered pests in trees and some 

wooden structures.  The mandibles of these species are specifically designed for wood 

consumption.  When trees are dying, they release certain chemicals into the air which attract 

wood-boring beetles to the specific location.  When trees are cut down, for industrial 

purposes, they release chemicals signaling their death, attracting wood boring beetles.  The 

destruction typically stops when pheromones are released from insects in the tree, letting 

other insects know that the tree is full.  Wood-boring beetles are considered a pest by most 

people because of their tendency to infest trees and wooden structures. 

 Eggs of woodborers are typically laid in the crevices of bark or under the bark.  Larvae 

will fully develop in the tree.  Individuals typically bore under the bark of trees and often 

times into the xylem.  Adults typically live for a short period of time, long enough to 

reproduce and begin the life cycle again. 

The taxonomic groups selected from the University of Idaho William Barr 

Entomology Museum for this study included species in the families: Cerambycidae Callidium 

sp., Cerambycidae Desmocerus piperi Webb, Buprestidae Dicerca tenebrica, Lucanidae 

Lucanus capreolus, Lucanidae Lucanus mazama, Buprestidae Melanophila atropurpurea, 

Buprestidae Buprestis lyrata Casey, Cerambycidce Prionus californicus Motschulsky, 

Cerambycidae Spondylis upiformis Mannerheim, Trogossitidae Temnocheila chlorodia, and 

Buprestidae Trachykele blondeli blondeli.  Under most museum conditions, beetles have been 

shown to retain their color (Seago et al. 2009).  Previous research has indicated that near 

infrared reflectance can be used for rapid identification of wheat pests (Dowell et al. 1999; 
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Vigneron et al. 2006).  Slight variations of color allow one to distinguish between closely 

related species, as well as genders within the same species (Vigneron et al. 2006). 

The objectives of this study was to differentiate Coloptera taxonomic groups, as listed 

above, in the William Barr entomology museum at the University of Idaho,  based upon the 

spectrometer readings. It was also intended to differentiate the gender of the aforementioned 

taxonomic groups using the same methodology. 
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Literature Review 

 Many previous studies have arbitrarily chosen regions of spectrometer readings before 

taking any readings, which solely remained in or very close to the visible light range (Thrope 

2002; Vigneron et al. 2006).  Human vision is restricted to only 400 – 700 nm wavelengths, 

while many other organisms use different or wider ranges to communicate (Thrope 2002).  

Thrope (2002) advocates that wavelengths should be chosen free of biological context, and 

that they should be non-overlapping, in unequal ranges, with gaps existing between selections.  

However, other researchers maintain that the selection of spectrometer wavelengths should 

take into account the conspecifics method of communication, as well as the data, and not rely 

on visual ability.  There are many wavelengths within which beetles communicate, ranging 

from the ultraviolet to the infrared.  For example, the ultraviolet spectrum has been studied in 

beetles, typically for the use of mate or conspecific recognition and communication (Seago et 

al. 2009).  Also, some beetles also communicate through the use of hormones and can be 

detected in the near-infrared range. 

 A wide assortment of research has used spectrometer readings.  One common use of a 

spectrometer is identifying the chemicals present in a reaction (Barber et al. 1963).  Another 

use is the tracking of certain isotopes through a food web, particularly the detection of 
13

C in 

bacteria and invertebrates to identify carbon pathways (Hall 1995).  Other uses of 

spectrometers have been extraterrestrial, acquiring the measurements of temperature, 

composition, and atmosphere of planets and stars (Lillie 1972).  Spectrometers have also been 

used in the measurement of barrower bird color and prediction of their visual system 

evolution (Endler et al. 2005). 
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 Coloptera elytral color and composition is thought to be highly related to phylogenetic 

relationships, habitat adaptation, sexual selection, and other interactions (Thrope 2002).  

Spectrometer readings classify color as well as chemical bonds between molecules in readings 

from 350 to 2500 nm. Dowell, et al. (1999) has shown that near-infrared reflectance, 400 to 

1700 nm, can be used for the distinction of eleven laboratory-raised Coloptera wheat pest 

species on controlled diets. However, further research needs to be conducted with a wider 

spectral range using different species on an uncontrolled diet and location. This would ensure 

correctly classifying species beyond the controlled settings. 

Various univarite and multivariate statistical techniques have been previously used to 

analyze spectrometer data. The most common approach is the principal component analysis 

(Thrope 2002; Endler et al. 2005; Rousu, et al. 2013).  Other methods include least-square 

regression, discriminant analysis function, analysis of variance, students-t test and canonical 

correlation (Dowell et al. 1999; Cook et al. 2010; Rousu 2013). Spectrometer readings 

generate multiple peaks across the admissible range of wavelengths and hence, create a 

multivariate response structure. In this study, multivariate methods including principal 

component analysis, as well as parametric and nonparametric discriminant analyses were used 

to differentiate Coloptera taxonomic groups and genders based on the spectrometer readings 

of their coloration. Internal and external cross validations were carried out using the bootstrap 

simulation technique.  
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Chapter 2 

Material and Methods 

Source and description of data 

The insect order Coleoptera was selected because of their overwhelming commonality 

and unique identifying body parts, such as large elytra.  Specifically, wood boring Coleoptera 

specimens were selected from the William F. Barr Entomological Museum (College of 

Agricultural and Life Sciences, University of Idaho, Moscow, Idaho) , controlling for the 

location and year within a taxa. The collections at the William F. Barr Entomological 

Museum date back to 1893 and the holdings are of significant historical as well as scientific 

importance.  It is a substantial regional and national resource for specimens from the 

intermountain west, in addition to containing a worldwide representation of select taxa. Given 

its breadth of specimens, the museum provided a unique opportunity to examine several 

families of wood borers. Table 1 provides the taxa, year, collection location, number of 

individuals and abbreviations for the species used in this study.  
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Family: Genus Species Year Location Number of 

individuals 

Abbreviati

on 

Cerambycidae: 

Callidium sp. 

1990 Clark mountain 18 CA 

Cerambycidae: 

Desmocerus piperi  

1963 lost trail pass Idaho 18 DE 

Buprestidae: Dicerca 

tenebrica 

1954 bear creek camp 10 min north 

of Leslie 

20 DI 

Lucanidae: Lucanus 

capreolus 

2006 Camden AR 7 LC 

Lucanidae Lucanus 

mazama 

2006 Kanal Utah 22 LM 

Buprestidae: 

Melanophila 

atropurpurea 

2012 I 84 rest stop nearest to Utah 

border 

18 ME 

Buprestidae: Buprestis 

lyrata 

1982 5 min west of paradise pt. 

Palouse range ID 

24 PC 

Cerambycidae: Prionus 

californicus 

2008 Parma research center 27 PR 

Cerambycidae: 

Spondylis upiformis 

1976 3.4 miles west of clarkia Idaho 19 SP 

Trogossitidae: 

Temnocheila chlorodia 

1977  26 TE 

Buprestidae: 

Trachykele blondeli 

blondeli 

1966 Marion county Oregon 10 TR 

 

The data collection was carried out in two separate dark room laboratories in order to 

control the lighting.  The first room was located in the College of Agricultural and Life 

Science (operated under Professor Stephen Cook), while the second room was located at the 

College of Natural Resources (operated under Professor Alistair Smith).  Specimens were 

enclosed in an area painted with Krylon Ultra-Flat black paint.  This paint was chosen 

because it does not register on the spectral instrument used and, therefore, provides a null 

background for the desired readings. 

Table 1. List of Coleoptera taxa used with year collected, location collected, number of individual 

specimens measured and respective abbreviations 
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Each insect was attached through the left, front wing with a standard insect mounting 

pin.  A description of the insect’s scientific name, collection date and location was attached 

below the insect.  Spectrometer readings of insects were collected with a FieldSpec® Pro Full 

Range model, with the spectral acquisition range of 350 to 2500 nanometers (nm).  This 

instrument has a resolution of 3 nm at 700 nm, and 10 nm at 1400 nm and 2100 nm (ASD Inc. 

2012). 

Fiber optics, connected to the spectrometer, were maintained at a 3 centimeter distance 

from the specimens and manipulated through a pistol grip control affixed at a 90
 o
 angle to the 

specimens target area.  Each specimen was sequentially illuminated across a spectrum of 400 

to 700 nm.  The light source used was a Smith Vector Corp Photographic Light Model 750-

SG outfitted with a full spectrum light bulb and placed at a 45
 o
 angle, one meter away from 

the specimens.  The experimental setup is presented in figure 1.  

 

 
 

Specimen’s elytral spectral relative reflectance (%) was recorded at each wavelength 

(nm).  The relative reflectance was the percentage of a white 8
o
 hemispherical spectral 

reflectance factor for SRT-99-050.  After every third spectrometer reading, the hemispherical 

Figure 1.  This diagram shows the experimental set-up of light, specimen & spectrometer.  This set 

up was used to reduce the direct light from the source while still fully illuminating the specimen.  
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spectral reflectance factor was recorded. This allowed base reference points for the data, and 

ensured that the machine’s calibration remained constant. 

Each specimen was measured three times with the spectrometer.  The instrument 

recording software (R
3
), itself, averaged three additional shots for each of these observations.  

Following data collection, the three manual observations per specimen were averaged, 

effectively giving one spectral data point based on nine spectrometer readings.  This was 

intended to reduce any potential measurement errors.  Eleven taxa were measured, and each 

included approximately the same number of male and female specimens.  Replication 

(individuals per taxa) ranged from a minimum of three to a maximum of 12, for a total of 210 

insects.  An overall multispectral database was subsequently created from these specimens 

which encompassed reflectance measurements of 2150 wavelengths. 

Statistical Analysis 

Finite Mixture Models (FMM) 

In order to approximate the multi-modal spectral data series, finite mixture models 

were used, assuming normal distribution components.   Finite mixture models have the 

general form of ∑   
 
         .  Assuming a normal distribution model basis, the finite mixture 

model becomes:  
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where µi is the  i
th

 component peak (mean and mode), σi is the associated standard deviation, 

xij represents the univaraite observed response of the i
th

 component at the j
th

 wavelength, and 

    is the proportion accounted for by the i
th

 mixture component, where      

      ∑   
 
     , satisfying the necessary conditions for a complete probability 

distribution.  The above represents the univariate method for identifying the multiple peaks in 

the original wavelength data.  Finite mixture models have been previously used to describe 

and compare other biological responses, such as the length distributions of mountain white 

fish (Shafii et al. 2010).  Also, Royle and Link (2005) created a Gaussian mixture model of 

Anuran call surveys to predict species abundance.  

Procedure FMM in SAS 9.3 was used to fit a varying number of normal curves 

mixture model components to the data for 22 separate taxa and gender groups within the data, 

i.e. 11 species, both male and female.  Following adequate model estimation, the wavelengths 

at the corresponding model component peaks, µi, were chosen as the basis for further analysis.  

This provided a way to reduce the number of wavelengths from 2150 down to a more 

manageable database where false positives were less likely to occur. 
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Principal Component analysis (PCA) 

PCA takes multidimensional data sets and reduces their dimensions by determining 

one or more linear combinations of the variables (wavelengths) that account for the largest 

variation in the data.  In our case, wavelength               , selected by the FMM, may 

potentially be correlated and can lack the ability to show any underlying data structure by 

themselves.  PCA can help define potential unobserved latent variables in the data by 

reducing the inherent dimensions of the problem through a centering of the data origin to  ̅ 

and subsequently rotating the data using: 

          ̅  (2) 

where A is an orthogonal matrix of coefficients, and    is    rotated.  The rotation is done such 

that                 are uncorrelated to one another and the covariance matrix of 

                will be defined as: 

         [
   
   
   
     

 
] (3) 

   
  is the Eigen vector,   , where    has the largest variance and    has the smallest variance 

(Rao 1964). 

 For example, as seen in figure 2, the original variables X and Y are compressed to 

Axis 1 = a1X + b1Y, and Axis 2 = a2X + b2Y.  Axes 1 and 2 are Eigen vectors; a and b are the 

loadings of the respective variables.   The purpose of PCA is to retain as few axes as possible 

while explaining the majority of the data variability among taxa (Morrison 1976; James and 

McCulloch 1990).  The axes represent lurking variables and the coefficients (loadings) of 

these axes convey information on the relative importance of individual variables. 
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Principal component analysis is widely used in ecology (James and McCulloch 1990).  

The ecological applications vary from differentiating infested oak trees (Colemana et al. 

2011) to the color differences seen in anoles.  Another example of the use of principal 

component analysis is to classify wine using spectrometer data of trace elements (Taylor et al. 

2003).  The SAS procedure PRINCOMP was used for PCA estimation, based on the 

underlying correlation matrix. 

An additional ordination technique, multidimensional scaling, based on a dissimilarity 

matrix, was also attempted in order to distinguish underlying dimensions that could clarify the 

similarities or dissimilarities of the data.   However, the results were not satisfactory. A brief 

description of the technique as well as the results appears in appendix B. 

  

Figure 2. A generic PCA example.  Axis 1 = a1X + b1Y, Axis 2 = a2X + b2Y.  Axis 1 & 2 

are Eigen vectors; a and b are the loadings of the variables. 
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Multivariate Discriminate Analysis 

Linear discriminate analysis 

Normal discriminate analysis is typically of the form 

         
 

 |  |
 

 

             (4) 

With    representing the likelihood that an individual belongs to species k and     the 

variance-covariance matrix obtained from the k
th

 species.    is interpreted as the 

Mahalanobis distance given by: 

             
         (5) 

The Mahalanobis distance measures the distance between the data response vector, d, and a 

known vector of responses from the k
th

 species,    (Lachenbruch 1964). 

Multidimensional normal discriminate analysis has aided in the identification of 

insects prior to this study.  For example, the identification of the Africanized honey bees in 

the U.S. based upon the insect’s characteristics (Daly and Balling 1978). 

Bayesian Nearest Neighbor or K-Nearest Neighbor 

The nearest neighbor rule was first introduced by Fix and Hodges in 1951.  

Subsequently, a nearest neighbor discriminate analysis was proposed for selecting the K
th

 

nearest points using the distance function: 

               
          (6) 

where    
   is the inverse of the pooled sample variance-covariance matrix from the defined 

sample,    is a data point of interest, and    is all other data points.  The purpose of this 

technique is to classify each   , using the k points nearest to    .  That is, if the majority of 
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the k points belong to group 1, assign    to group 1; otherwise, assign    to another group, 

etc.  K-Nearest Neighbor Discriminate Analysis, or Non-parametric Discriminate Analysis, 

dispenses with the need to make probabilistic assumptions for likelihood determinations. 

Previously, Bayesian discriminate analysis has been used for classification of other 

biotic factors.  For example, the yellow starthistle growth patterns are based on landscape 

characteristics (Shafii et al. 2004). 

Bayesian discriminant analysis modifies (4) through the addition of a prior assumption 

on group assignments.  A base model for this would use a uniform or uninformed prior for 

discriminate analysis following: 

  (                        | )  
    

∑    
 (7) 

This will produce a probability between 0 and 1 with    as the prior probability, where k 

represents the number of species as follows: 

    
 

 
 (8) 

Alternatively, a proportional prior for discriminate analysis can be defined as the 

proportion of observations from each group in the input data set (Hinich 1979).  When data 

are balanced, the proportions for each group are the same so this method becomes equivalent 

to the uniform prior and hence, may be only relevant when the groups are unbalanced.  It can 

be seen in (7), where we know that    is the prior probability for species k as follows: 

  = number of individuals in species k / total number of individuals (9) 

The nearest neighbor methods aid in the prediction of species based upon multivariate 

spectrometer readings.  Procedure DISCRIM in SAS 9.3 was used for all discriminant 

analyses estimations and validations. 
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Validation 

Internal Validation 

Bootstrap is a resampling technique, with replacement, that is done when one is unsure 

about the behavior of the target population (Efron 1976).  By randomly selecting a subsample 

(Xi*) from the sample (Xi), a new sample is produced which is selected from a known 

population.  By analyzing the relationship between the sample and subsample, conclusions 

can be drawn about the actual population.  Gathering data on the population would require a 

census, which would be impractical for a subject such as Coleoptera due to the number of 

possible individuals.  Bootstrap procedures, therefore, provide a practical means of assessing 

the differences between Coleopteran species and the analyses carried out in this study. 

An internal bootstrap of proportional discriminate analysis was performed through 

bootstrap sampling with replacement and data splitting.  Data splitting was completed using a 

proportion of the database to create the model, while the remainder of the data was utilized for 

validation.  The bootstrap sample, Xi*, was selected from the data Xi at predefined 

proportions of sex and species in the database.  For each bootstrap sample, two types of 

misclassification were possible: omission (Type I), or commission (Type II).  An error of 

omission occurred when an observation, Xi*, was classified outside of its true type, while an 

error of commission occurred when an observation was placed in the wrong type.  Confidence 

intervals, means, and standard deviations were created from B = 5000 bootstrap simulations. 

External Validation 

A new independent database was created from 180 insects of the same species that 

were not previously sampled.  External validation was carried out using these data and the 
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same methodology as the internal validation, that is, a bootstrap of discriminate analysis 

assuming a proportional prior.  Unlike the first database, however, the insects chosen for 

inclusion were not controlled for location or year.  This validation provided a robust 

confirmation of the adequacy of the estimated discriminant model. 
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Chapter 3 

Results and Discussion 

Finite Mixture Model (FMM) 

As an objective means of identifying the peaks (modes) of the spectral distributions, 

equation (1) was fitted separately to each species-gender combination assuming spectral 

reflectance values were proportional to their probability of being observed. 

The number of normal curve components was allowed to vary and were ultimately 

estimated from the distribution of the data.  The final number of components ranged from 3 to 

8 distributions per species - gender group.  Thus, each of the 22 groups had a different set of 

fitted normal curves.  The peaks (e.g. the means) were selected from the normal curves as a 

technique to quantifying the strongest wavelengths in the spectrum.  The set of peak bands 

from each spectrum could then be used as a basis for comparing species-gender combinations.  

An example for the female Lucanidae: Lucanus capreolus data set is given in Figure 3.  In 

that case, six peaks were identified and ranged from 977 nm to 2133 nm.  The estimated fits 

for the 22 distributions can be viewed in appendix D. 
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Overall, a large number of peaks were identified. To assess any commonalities among 

the 22 species-gender combinations, peak placement in relation to the wavelength was 

graphed (Figure 4). 

Figure 3.  Example fit of normal curves fitted to the female Lucanidae: Lucanus capreolus distribution. 
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From figure 4, it was determined that the peaks showed some aggregation and hence, 

it led to the creation of 18 common peaks                , i.e. 18 different bandwidths 

selected as a common dataset across species.  A detailed outline of the 18 variables generated 

from FMM procedure and their corresponding bandwidths are given in Table 2. 

  

Figure 4.  Peak locations based on the Finite Mixture Model  in relative reflectance (percent) by 

wavelength.  The green lines are male and the black lines are female.  The lines are representing the 

relative reflectance at peak locations as identified by equation (1).  The grey shaded area is 

emphasizing the aggregation of the 18 peak observations.  
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Bandwidth Lower 
Limit 

Upper 
Limit 

New 
Variable 

Wavelength Mean 

10 440 450 R1 445 445 

50 500 550 R2 525 525 

60 600 660 R3 630 630 

50 800 850 R4 825 825 

30 900 930 R5 915 915 

20 960 980 R6 970 970 

125 1000 1125 R7 1063 1062.5 

50 1175 1225 R8 1200 1200 

80 1250 1330 R9 1290 1290 

30 1350 1380 R10 1365 1365 

25 1400 1425 R11 1413 1412.5 

20 1460 1480 R12 1470 1470 

25 1525 1550 R13 1538 1537.5 

45 1580 1625 R14 1603 1602.5 

25 1650 1675 R15 1663 1662.5 

125 1775 1900 R16 1838 1837.5 

90 1950 2040 R17 1995 1995 

65 2075 2140 R18 2108 2107.5 

 

 

The new 18-variable database provided a manageable number of variables for subsequent 

analyses.  A sample of the database used is presented in Appendix A. 

  

Table 2.  Detailed outline of the 18 variables generated from FMM procedure 

and their corresponding bandwidths 
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Principal Component Analysis (PCA) 

The relationship between the 18 variables created by FMM was investigated using 

principle components analysis (PCA).  The analysis implemented equations (2) and (3) in 

order to obtain the Eigen vectors or PCA axis.  The first PCA axis explained 66.84% and the 

second PCA axis explained 19.88% of the total variability in the data.  The third axis 

explained 10.3% of the variability, while the amount of variability explained by PCA axis 4 

through 18 was less than 5%.  The retention of three PCA axis, or a three dimensional space, 

explained 96.3% of the variability.  The third axis would normally not have been considered, 

however, the 10.3% of the variability explained by that axis provided an increased separation 

between species and gender.  The scree plot further detailing the first six PCA axes is given in 

Figure 5. 

 

Figure 5. The PCA scree plot showing the variance 

explained by the first six PCA axes. 
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Plots of the resulting first three PCA axes, coded by species, are given in Figures 6 

and 7.  The ellipses represent an approximate 95% confidence region for each species, 

assuming bivariate normality.  The separation of species seen in PCA axis two vs. PCA axis 

three (Figure 7) and PCA axis one vs. PCA axis two (Figure 6) is more closely related to PCA 

axis two. In both figures (6 and 7), LC (Lucanidae: Lucanus capreolus), LM (Lucanidae: 

Lucanus mazama), and PR (Cerambycidae: Prionus californicus) separate from the rest of the 

species.  The angle of their respective ellipses also varies from other species in these plots. 
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In Figure 7, species DE appears to be at a 90
o 
angle to other species, particularly 

species PR, giving some indication that they are independent of one another.  Also, LM and 

DI are mirror angles from one another, separated by 180 degrees, thus implying that they are 

negatively correlated judged by the sign of their respective PCA loading.  For figures 6 and 7, 

the separation of species and gender were not clear when viewing all 22 groups. However, as 

seen in Figure 8, plotting the data separately by individual species can discern some 

separation by gender. 

Figure 6.  The 95% prediction ellipse displays PCA axis one vs PCA axis two.   The points are the 

original data points projected into the PCA space. The abbreviations represent the following 

species: Cerambycidae: Callidium sp. (CA, SP_CA2), Cerambycidae: Desmocerus piperi (DE, 

SP_DE2), Buprestidae: Dicerca tenebrica (DI, SP_DI2), Lucanidae: Lucanus capreolus (LC, 

SP_LC2), Lucanidae: Lucanus mazama (LM, SP_LM2), Buprestidae: Melanophila atropurpurea 

(ME, SP_ME2), Buprestidae: Buprestis lyrata Casey (PC, SP_PC2), Cerambycidae: Prionus 

californicus (PR, SP_PR2), Cerambycidae: Spondylis upiformis (SP, SP_SP2), Trogossitidae: 

Temnocheila chlorodia (TE, SP_TE2), Buprestidae: Trachykele blondeli blondeli (TR, SP_TR2). 
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In Figure 8, Cerambycidae: Desmocerus piperi (DE) indicates separation between 

male and female.  The ellipse shapes are different indicating that males are better described by 

PCA axis 2 while the females are described by both PCA axes 2 and 3. 

Figure 7.  The 95% prediction ellipse displays PCA axis two vs PCA axis three.   The points are the 

original data points projected into the PCA space. The ellipses are the 95% confidence interval 

assuming bivariate normality.  The abbreviations represent the following species: Cerambycidae: 

Callidium sp. (CA, SP_CA2), Cerambycidae: Desmocerus piperi (DE, SP_DE2), Buprestidae: 

Dicerca tenebrica (DI, SP_DI2), Lucanidae: Lucanus capreolus (LC, SP_LC2), Lucanidae: 

Lucanus mazama (LM, SP_LM2), Buprestidae: Melanophila atropurpurea (ME, SP_ME2), 

Buprestidae: Buprestis lyrata Casey (PC, SP_PC2), Cerambycidae: Prionus californicus (PR, 

SP_PR2), Cerambycidae: Spondylis upiformis (SP, SP_SP2), Trogossitidae: Temnocheila chlorodia 

(TE, SP_TE2), Buprestidae: Trachykele blondeli blondeli (TR, SP_TR2). 
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The PCA loadings for each variable by wavelength                , are plotted in 

Figure 9.  The first PCA axis (red), primarily explains the overall variability through a 

positive loading value across the spectrum.  The second PCA axis (green) explains data 

variability by providing an approximate inverse to the respective loadings of the third 

principal component (yellow).  While the true meaning of these axes is purely speculative, the 

inverse behavior seen between PCA axis two and three and the relationship shown in Figure 8 

may indicate some gender differentiation based on these axes. 

Figure 8. The 95% prediction intervals separating male and female of Cerambycidae: 

Desmocerus piperi (DE) when viewed by PCA axis two and three. 
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Figure 10 displays a heat map of the correlation matrix for the peak wavelength 

values.  The values of correlation along the diagonal are one, or very close to one (white).  

This signifies that variables (peak wavelength values) close to one another are highly 

correlated.  The lower correlation values observed between         , or rather the visual 

spectrum, (400 to 700 nm), verses    through     does not correlate with the near infrared 

spectrum (800 – 1800 nm).  It is unexpected, however, that the visual spectrum,         , is 

correlated to          .  The visual spectrum encompasses what humans can see with their 

naked eye, violet, blue, green, yellow, orange and red.  Insects can sense a wider spectrum, 

outside of the human’s capabilities, which range from ultraviolet (350 nm) to red (700 nm) 

(Stark and Tan 1982).  The near infrared spectrum describes the bonds between molecules, 

Figure 9.  Principal component loadings by the wavelengths (R1, R2, … , R18) is defined by 

principal component axis 1 (red) 2 (green) and 3 (yellow). 
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which may indicate some pheromones or the composition of chitin.  The wavelengths 1654, 

1560 and 1310 nm are known identifiers of beetle’s chitin components (Liu et al. 2012).  

Chitin composes insects elytra, and the wavelengths that closely match are R15 (1654), and 

R13 (1560).  The correlation matrix can be viewed in appendix E. 

 
The PCA analyses attempted to reduce the dimensions of the data while separating species 

and gender.  While the genders were not always clearly separated from one another, the 

Figure 10. The heat map of the correlation matrix indicating the correlation between peak 

wavelength values.  The wavelengths closely correlated to one another are yellow; while the 

lower correlation values are red.  The color values are assigned based upon their z-score value. 
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species seem to separate.  The classification of species however, required consideration of 

additional statistical techniques such as multivariate discriminant functions. 

Multivariate Discriminate Analysis 

 Linear discriminant analysis 

Linear discriminant analysis was used to classify each species based on the eighteen 

variables of                  and the assumption of multivariate normality.  This was 

completed using equations (4) and (5). 

The multivariate normal discriminant analysis resulted in a misclassification rate of 

4.14% of individuals incorrectly classified as the wrong species.  The majority of the error 

originated from the comparison of species LC (Lucanidae: Lucanus capreolus) to LM 

(Lucanidae: Lucanus mazama), with a 27.27% misclassification rate. This misclassification 

might be attributed to LC having a small number of observations and the fact that LC and LM 

are taxonomically very similar.  The misclassification between CA (Cerambycidae: 

Callidium) and TE (Buprestidae: Trachykele blondeli blondeli) is thought to stem from the 

similar blue iridescent color they share and the low sample size of TE.  The small 

misclassification rate between PC (Buprestidae: Buprestis lyrata) and DI (Buprestidae: 

Dicerca tenebrica) is thought to stem from their very similar elytra.  The complete 

classification results from the multivariate normal discriminant analysis are provided in Table 

3.  
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Number of Observations and Percent Classified into Species 

From 

Species 
CA DE DI LC LM ME PC PR SP TE TR Total 

CA 17 0 0 0 0 0 0 0 0 1 0 18 

 
94.44 0 0 0 0 0 0 0 0 5.56 0 100 

DE 0 18 0 0 0 0 0 0 0 0 0 18 

 
0 100 0 0 0 0 0 0 0 0 0 100 

DI 0 0 19 0 0 0 1 0 0 0 0 20 

 
0 0 95 0 0 0 5 0 0 0 0 100 

LC 0 0 0 7 0 0 0 0 0 0 0 7 

 
0 0 0 100 0 0 0 0 0 0 0 100 

LM 0 0 0 6 16 0 0 0 0 0 0 22 

 
0 0 0 27.27 72.73 0 0 0 0 0 0 100 

ME 0 0 0 0 0 18 0 0 0 0 0 18 

 
0 0 0 0 0 100 0 0 0 0 0 100 

PC 0 0 0 0 0 0 24 0 0 0 0 24 

 
0 0 0 0 0 0 100 0 0 0 0 100 

PR 0 0 0 0 0 0 0 27 0 0 0 27 

 
0 0 0 0 0 0 0 100 0 0 0 100 

SP 0 0 0 0 0 0 0 0 19 0 0 19 

 
0 0 0 0 0 0 0 0 100 0 0 100 

TE 2 0 0 0 0 0 0 0 0 24 0 26 

 
7.69 0 0 0 0 0 0 0 0 92.31 0 100 

TR 0 0 0 0 0 0 0 0 0 0 10 10 

 
0 0 0 0 0 0 0 0 0 0 100 100 

Total 19 18 19 13 16 18 25 27 19 25 10 209 

 
9.09 8.61 9.09 6.22 7.66 8.61 11.96 12.92 9.09 11.96 4.78 100 

Priors 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 
 

 

In figure 11, the heat map of the linear discriminant function, the location of the 

highest (white) and lowest coefficients (red) of the original variables are at 

                 .  It can be inferred that the majority of the information provided by the 

Table 3. Linear discriminant analysis misclassification results  of individual species.  The 

abbreviations represent the following species: Cerambycidae: Callidium sp. (CA), Cerambycidae: 

Desmocerus piperi (DE), Buprestidae: Dicerca tenebrica (DI), Lucanidae: Lucanus capreolus 

(LC), Lucanidae: Lucanus mazama (LM), Buprestidae: Melanophila atropurpurea (ME), 

Buprestidae: Buprestis lyrata Casey (PC), Cerambycidae: Prionus californicus (PR), 

Cerambycidae: Spondylis upiformis (SP), Trogossitidae: Temnocheila chlorodia (TE), 

Buprestidae: Trachykele blondeli blondeli (TR). 
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discriminant function comes from these variables, or rather the near-infrared spectrum. One of 

the variables,    , contributing a higher loading is considered a wavelength identifying the 

chitin molecule particularly the amide II of N-H bond (Liu et al. 2012). 

 

 
The misclassification rate produced by the multivariate linear discriminant analysis is 

below 0.05, signifying that this model works well as a classification for the data set.  

However, the underlying distribution of the wavelengths are often skewed, and hence, the 

Figure 11. The Heat Map of the Linear Discriminant Function for individual Species.  Correlation 

colors are assigned based upon their z-score value, with low z-score given red and high z-score 

given white or yellow.  The abbreviations represent the following species: Cerambycidae: Callidium 

sp. (CA), Cerambycidae: Desmocerus piperi (DE), Buprestidae: Dicerca tenebrica (DI), Lucanidae: 

Lucanus capreolus (LC), Lucanidae: Lucanus mazama (LM), Buprestidae: Melanophila 

atropurpurea (ME), Buprestidae: Buprestis lyrata Casey (PC), Cerambycidae: Prionus californicus 

(PR), Cerambycidae: Spondylis upiformis (SP), Trogossitidae: Temnocheila chlorodia (TE), 

Buprestidae: Trachykele blondeli blondeli (TR). 
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assumption of multivariate normality may not have been appropriate.  Thus, additional 

statistical approaches were considered in an attempt to relax the assumptions of normality. 

Uniform Bayesian Prior Discriminant Analysis 

Bayesian priors utilize ‘K’ nearest neighbor for analysis.  K defines the number of 

nearest points utilized for discriminating the species differences.  K < 3 was considered too 

few points and K > 10 too many points. The local maxima of misclassification occurred at K 

= 6 and was chosen for subsequent analysis.  At K = 6, the misclassification rate was 3.8% 

with the highest rate of misclassification occurring between LC and LM at 27.27%.  The total 

misclassification rate is 3.8% which is below 0.05, signifying that the uniform prior provides 

a good classification for these data.  The tabulated results of the rate of misclassification for 

the uniform prior discriminant analysis are given in Table 4. 

  



   33 

 

 

Number of Observations and Percent Classified into Species 

From 

Spec 
CA DE DI LC LM ME PC PR SP TE TR Total 

CA 18 0 0 0 0 0 0 0 0 0 0 18 

  100 0 0 0 0 0 0 0 0 0 0 100 

DE 0 18 0 0 0 0 0 0 0 0 0 18 

  0 100 0 0 0 0 0 0 0 0 0 100 

DI 0 0 20 0 0 0 0 0 0 0 0 20 

  0 0 100 0 0 0 0 0 0 0 0 100 

LC 0 0 0 7 0 0 0 0 0 0 0 7 

  0 0 0 100 0 0 0 0 0 0 0 100 

LM 0 0 0 6 16 0 0 0 0 0 0 22 

  0 0 0 27.27 72.73 0 0 0 0 0 0 100 

ME 0 0 0 0 0 18 0 0 0 0 0 18 

  0 0 0 0 0 100 0 0 0 0 0 100 

PC 0 0 0 0 0 0 24 0 0 0 0 24 

  0 0 0 0 0 0 100 0 0 0 0 100 

PR 0 0 0 2 0 0 0 25 0 0 0 27 

  0 0 0 7.41 0 0 0 92.59 0 0 0 100 

SP 0 0 0 0 0 0 0 0 19 0 0 19 

  0 0 0 0 0 0 0 0 100 0 0 100 

TE 2 0 0 0 0 0 0 0 0 24 0 26 

  7.69 0 0 0 0 0 0 0 0 92.31 0 100 

TR 0 0 0 0 0 0 0 0 0 0 10 10 

  0 0 0 0 0 0 0 0 0 0 100 100 

Total 20 18 20 15 16 18 24 25 19 24 10 209 

  9.57 8.61 9.57 7.18 7.66 8.61 11.48 11.96 9.09 11.48 4.78 100 

Prior 
0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.0909

1 

0.09

091 
  

 

  

Table 4. Uniform prior discriminate analysis misclassification of individual species.  The abbreviations 

represent the following species: Cerambycidae: Callidium sp. (CA), Cerambycidae: Desmocerus piperi 

(DE), Buprestidae: Dicerca tenebrica (DI), Lucanidae: Lucanus capreolus (LC), Lucanidae: Lucanus 

mazama (LM), Buprestidae: Melanophila atropurpurea (ME), Buprestidae: Buprestis lyrata Casey (PC), 

Cerambycidae: Prionus californicus (PR), Cerambycidae: Spondylis upiformis (SP), Trogossitidae: 

Temnocheila chlorodia (TE), Buprestidae: Trachykele blondeli blondeli (TR). 
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Proportional Bayesian Prior Discriminant Analysis 

Given the knowledge of the Coleoptera order, it becomes apparent that the species are 

not equally abundant.  Proportional priors assume that the collections found at the University 

of Idaho Entomological museum are proportional to species abundance in their habitat.  

Equations (7) and (9) were utilized for the proportional prior Bayesian discriminant analysis. 

The species misclassification rate was calculated using non-parametric K
th

 nearest 

neighbor at K = 6.  The value at K=6 was chosen for the location of a local maxima, and for 

consistency with the previous method, the uniform prior.  The proportional prior discriminant 

analysis error rate was 5.2%. While this value is very close to the misclassification values 

obtained under uniform priors, it is the most accurate given our knowledge about Coleoptera.  

The species misclassification rates are somewhat consistent with the uniform prior analysis 

with regard to species CA, LC, LM, and TE.  The ‘other’ species category received several 

individuals accounting for the highest rate of species misclassification.  The results of 

misclassification rates by species using proportional prior discriminant analysis are given in 

Table 5. 
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Number of Observations and Percent Classified into Species 

From Species CA DE DI LC LM ME PC PR SP TE TR Other Total 

CA 18 0 0 0 0 0 0 0 0 0 0 0 18 

  100 0 0 0 0 0 0 0 0 0 0 0 100 

DE 0 18 0 0 0 0 0 0 0 0 0 0 18 

  0 100 0 0 0 0 0 0 0 0 0 0 100 

DI 0 0 20 0 0 0 0 0 0 0 0 0 20 

  0 0 100 0 0 0 0 0 0 0 0 0 100 

LC 0 0 0 1 1 0 0 0 0 0 0 5 7 

  0 0 0 14.29 14.29 0 0 0 0 0 0 71.43 100 

LM 0 0 0 0 19 0 0 0 0 0 0 3 22 

  0 0 0 0 86.36 0 0 0 0 0 0 13.64 100 

ME 0 0 0 0 0 18 0 0 0 0 0 0 18 

  0 0 0 0 0 100 0 0 0 0 0 0 100 

PC 0 0 0 0 0 0 24 0 0 0 0 0 24 

  0 0 0 0 0 0 100 0 0 0 0 0 100 

PR 0 0 0 0 0 0 0 27 0 0 0 0 27 

  0 0 0 0 0 0 0 100 0 0 0 0 100 

SP 0 0 0 0 0 0 0 0 19 0 0 0 19 

  0 0 0 0 0 0 0 0 100 0 0 0 100 

TE 1 0 0 0 0 0 0 0 0 24 0 1 26 

  3.85 0 0 0 0 0 0 0 0 92.31 0 3.85 100 

TR 0 0 0 0 0 0 0 0 0 0 10 0 10 

  0 0 0 0 0 0 0 0 0 0 100 0 100 

Total 19 18 20 1 20 18 24 27 19 24 10 9 209 

  9.09 8.61 9.57 0.48 9.57 8.61 11.48 12.92 9.09 11.48 4.78 4.31 100 

 

  

Table 5.  Proportional prior discriminate analysis misclassification of individual species.   The 

abbreviations represent the following species: Cerambycidae: Callidium sp. (CA), Cerambycidae: 

Desmocerus piperi (DE), Buprestidae: Dicerca tenebrica (DI), Lucanidae: Lucanus capreolus (LC), 

Lucanidae: Lucanus mazama (LM), Buprestidae: Melanophila atropurpurea (ME), Buprestidae: 

Buprestis lyrata Casey (PC), Cerambycidae: Prionus californicus (PR), Cerambycidae: Spondylis 

upiformis (SP), Trogossitidae: Temnocheila chlorodia (TE), Buprestidae: Trachykele blondeli blondeli 

(TR). 
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Validation 

Internal Validation 

Further exploration into the proportional prior method was completed using a 

bootstrap simulation for the purpose of model validation.  The proportional prior was used 

because it more accurately described the underlying population.  The bootstrap simulation 

was created using 5,000 separate samples selected with replacement and data splitting.  The 

data was split with 60% of the database used in creating the model, while 40% of the data was 

used for validation.  Each selection generated a species misclassification rate based upon a 

proportional prior discriminant analysis. 

The distribution of misclassification by the proportional prior discriminant analysis 

bootstrap is given in Figure 12.  The distribution can be approximated with a normal curve 

that has a mean of 0.0348 and a standard deviation of 0.011.  The standard deviation is rather 

low, indicating that a majority of the data is within a small range of the mean.  The fifth 

percentile error is 0.025 and the ninety-fifth percentile is 0.067.  The median is located at 

0.0341, which indicates that the skewness is low.  The low skewness is another indicator that 

the mean and median agree, and that the normal curve is a reasonable approximation of the 

data in this case.  The range of misclassification is low in value, validating the use of the 

proportional prior for this data set. 

 



   37 

 

 

 

External Validation 

External validation was performed on a new data set independent from the original 

database.  The new data contained 187 insects of the previous taxa groups, not controlled for 

by location or year collected (Appendix F).  The distribution of misclassification had a fifth 

percentile of 0% and the ninety-fifth percentile of 11.95%.  The actual validation bootstrap 

distribution is given in Figure 13. 

 

Figure 12.  The distribution of species misclassification rate for the internal bootstrap  is described using 

a normal approximation.  Species misclassification rate has a mean of 0.0348 and a standard deviation of 

0.011. 
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The mean misclassification was 0.0646 and the median misclassification was 0.0455.  

The amount of skewness was 0.02 which is low in value.  The misclassification rate between 

LC (Lucanidae: Lucanus capreolus) and LM (Lucanidae: Lucanus mazama) decreased to 

14%, which might imply that the misclassification rate is dependent on sample size.  The 

standard deviation is 0.027 which is low in value, so the data are centered near the mean.  

Overall, given that the specimens were not lab reared, geographically controlled or collected 

on the same year, the small misclassification rate of the proportional prior discriminant 

analysis provides an effective way to correctly classify these Coleoptera species. 

Figure 13. The distribution of species misclassification rate for the external bootstrap  is described 

using a normal approximation.  The mean species misclassification rate is 0.0646 or 6.46% and the 

standard deviation is 0.0278 or 2.7%. 
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Chapter 4 

Conclusions 

Replicated samples of eleven species of wood boring beetles were selected from 

William Barr Entomology Museum at the University of Idaho for potential differentiation of 

their taxonomic group and gender based on spectral reflectance readings. The methodology 

used for correctly identifying Coleoptera species typically relies on morphology of the 

individual species. In this study, however, spectroscopy on elytra composition of the insects 

was utilized for the purpose of separation of their species and gender.  Specifically, the 

analyses focused on the visual and near-infrared spectrum to differentiate species and gender.  

Spectrometer readings generated for each species-gender group were fitted to normal 

distribution mixture models to identify multiple peak reflectance wavelengths of prominence 

for further statistical analyses.  Principal component and discriminant analyses were 

subsequently used to assess the differentiation of taxonomic groups and genders based on 

spectral reflectance.  The principal component ordination technique clearly grouped 

Coleoptera by taxonomic groups, while the linear discriminant analysis, under an assumption 

of multivariate normality, provided a distinct classification of taxonomic groups and provided 

a low rate of misclassification error.  The assumption of normality was subsequently relaxed 

using a nonparametric nearest neighbor discriminant analysis, which resulted in very highly 

accurate classification of Coleoptra species.  Further internal and external validation of the 

nearest neighbor discriminant model confirmed the results of low species misclassification 

error rates.   

Given the low error rates of misclassification, the multivariate statistical approaches 

outlined in this study are recommended for analysis of spectral reflectance in Coleoptera and 
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other similar insect groups. However, it is noted that further research in this area should 

consider using a larger number of individual insects, as well as increasing the number of 

species analyzed.  Also, extrapolation of results has to be practiced cautiously due to varying 

sensitivity of spectroscopy equipment. If practically feasible, utilizing insects from multiple 

museums is highly recommended.  Incorporation of other Coleoptera attributes such as 

developmental stage, length, pheromones present, location and collection date might further 

improve the resolution of the classification techniques.  Finally, it is recommended to obtain 

additional spectrometer readings in the ultraviolet spectrum because while insects are able to 

see in that spectrum, it may contain markings that are invisible to the human eye. 
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Appendix A 

A subset (first 20 individual insects) with R1-R18 variables created from the FMM using the 

original data 
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Species Sex Rep R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 

CA M CA11 0.21 0.19 0.19 0.25 0.29 0.31 0.37 0.43 0.46 0.47 0.45 0.43 0.43 0.45 0.46 0.43 0.37 0.31 

CA M CA12 0.22 0.19 0.18 0.29 0.37 0.42 0.53 0.63 0.70 0.71 0.69 0.67 0.68 0.69 0.70 0.67 0.58 0.52 

CA M CA13 0.18 0.17 0.18 0.22 0.25 0.27 0.26 0.31 0.35 0.35 0.34 0.31 0.31 0.33 0.33 0.35 0.29 0.24 

CA M CA14 0.15 0.13 0.14 0.18 0.20 0.22 0.25 0.31 0.34 0.35 0.34 0.33 0.33 0.34 0.35 0.33 0.29 0.25 

CA M CA15 0.20 0.19 0.18 0.25 0.30 0.33 0.37 0.45 0.51 0.53 0.51 0.49 0.49 0.51 0.51 0.46 0.41 0.36 

CA M CA16 0.09 0.07 0.07 0.13 0.16 0.19 0.26 0.33 0.39 0.40 0.40 0.39 0.39 0.41 0.41 0.39 0.33 0.29 

CA M CA17 0.07 0.06 0.06 0.10 0.13 0.16 0.21 0.27 0.30 0.31 0.31 0.29 0.30 0.31 0.31 0.29 0.25 0.21 

CA M CA18 0.08 0.07 0.07 0.12 0.16 0.19 0.22 0.28 0.33 0.34 0.32 0.30 0.30 0.31 0.31 0.28 0.22 0.18 

CA F CA21 0.13 0.10 0.09 0.17 0.22 0.26 0.33 0.40 0.45 0.46 0.45 0.43 0.43 0.44 0.44 0.49 0.41 0.38 

CA F CA22 0.13 0.11 0.09 0.22 0.30 0.35 0.46 0.57 0.65 0.66 0.64 0.61 0.62 0.63 0.63 0.58 0.49 0.46 

CA F CA23 0.12 0.10 0.11 0.20 0.26 0.30 0.39 0.45 0.52 0.52 0.48 0.46 0.45 0.46 0.46 0.45 0.37 0.34 

CA F CA24 0.12 0.10 0.09 0.19 0.27 0.33 0.42 0.53 0.61 0.63 0.60 0.57 0.57 0.58 0.58 0.51 0.41 0.37 

CA F CA25 0.22 0.21 0.22 0.35 0.43 0.49 0.63 0.66 0.72 0.73 0.69 0.66 0.66 0.68 0.69 0.67 0.57 0.51 

CA F CA26 0.15 0.11 0.10 0.24 0.34 0.40 0.53 0.62 0.71 0.72 0.68 0.65 0.65 0.66 0.66 0.62 0.52 0.48 

CA F CA27 0.14 0.12 0.11 0.23 0.34 0.41 0.57 0.67 0.79 0.81 0.76 0.73 0.73 0.75 0.74 0.69 0.58 0.53 

CA F CA28 0.20 0.15 0.18 0.33 0.43 0.50 0.59 0.74 0.84 0.87 0.84 0.80 0.80 0.81 0.82 0.76 0.62 0.56 

CA F CA29 0.16 0.13 0.14 0.23 0.29 0.33 0.41 0.46 0.50 0.51 0.49 0.46 0.46 0.46 0.46 0.49 0.44 0.42 

CA F CA10 0.06 0.05 0.04 0.13 0.19 0.24 0.32 0.39 0.47 0.48 0.45 0.43 0.42 0.43 0.42 0.37 0.31 0.27 

DE F DE21 0.05 0.04 0.04 0.09 0.14 0.18 0.26 0.35 0.43 0.44 0.42 0.40 0.39 0.41 0.40 0.36 0.28 0.22 

DE F DE22 0.07 0.08 0.06 0.16 0.24 0.30 0.41 0.54 0.63 0.65 0.62 0.57 0.57 0.60 0.58 0.53 0.42 0.35 

DE F DE23 0.08 0.09 0.07 0.14 0.23 0.29 0.43 0.57 0.69 0.71 0.67 0.62 0.62 0.64 0.61 0.53 0.41 0.33 

DE F DE24 0.07 0.07 0.05 0.13 0.22 0.28 0.40 0.53 0.64 0.66 0.62 0.58 0.57 0.59 0.57 0.48 0.35 0.29 

DE F DE25 0.06 0.06 0.05 0.13 0.22 0.28 0.41 0.55 0.65 0.66 0.62 0.57 0.57 0.59 0.58 0.51 0.38 0.31 

DE F DE26 0.11 0.10 0.08 0.19 0.28 0.35 0.48 0.63 0.74 0.76 0.73 0.68 0.68 0.71 0.70 0.62 0.49 0.39 

DE F DE27 0.07 0.07 0.05 0.12 0.19 0.25 0.36 0.47 0.60 0.61 0.56 0.53 0.53 0.54 0.52 0.43 0.34 0.29 

 

  

Table A1.  The first 20 observations by individual insect of relative reflectance values at peak values of R1-R18 

selected by the FMM.  The abbreviation used in the subset data represent the following species: 

Cerambycidae: Callidium sp. (CA), Cerambycidae: Desmocerus piperi (DE). 
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Appendix B 

Multidimensional Scaling (MDS) 
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Multidimensional scaling was used to find potential relationships between the 

variables in order to make distinctions between the taxa groups.  The data on which MDS 

operates are the elements of the dissimilarity matrix among all pairs of objects using the 

Euclidian distance matrix.  The Euclidian distance matrix is an n by n matrix with distances 

between each subject.  Let Dij be the dissimilarity between objects i and j, and let ij be the 

Euclidean distance between objects i and j in the ordination space. The objective is to produce 

an ordination such that: 

Dij < Dkl  ij  kl   for all i, j, k, l 

If any given pair of objects has dissimilarity less than some other pair, then the first pair 

should be no further apart in the ordination than the second pair (Shepard 1962).  A scatter 

plot of ordination distances, against dissimilarities, is known as a Shepard diagram and can be 

viewed in figure B1. Badness of fit (Kruskal’s Stress Test), S, is defined as 
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 (10) 

Stress decreases as the rank-order agreement between distances and dissimilarities improves 

(Kruskal 1964). The aim is therefore to find the ordination with the lowest possible stress. 

In figure 14, two dimensions explain 90% of the data, and in figure 15 the two 

dimensions are graphed using Euclidian distance to create separation based on ranks.  In 

figure 15, the separation generated between species and gender created by MDS was not 

deemed adequate for the purpose of this study. 
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Figure B1.  Shepard diagram badness of fit by dimension; the first dimension has a badness of 

fit of 24%, two dimensions 11% and three dimensions 2.5%. 
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Figure B2.  The 95% prediction ellipse displays MDS dimension one vs MDS dimension two.   

Euclidian distance was used to create species separation based on rank distance.  However, as 

seen in this figure the species are not differentiating.  The abbreviatio ns represent the following 

species: Cerambycidae: Callidium sp. (CA, SP_CA2), Cerambycidae: Desmocerus piperi (DE, 

SP_DE2), Buprestidae: Dicerca tenebrica (DI, SP_DI2), Lucanidae: Lucanus capreolus (LC, 

SP_LC2), Lucanidae: Lucanus mazama (LM, SP_LM2), Buprestidae: Melanophila atropurpurea 

(ME, SP_ME2), Buprestidae: Buprestis lyrata Casey (PC, SP_PC2), Cerambycidae: Prionus 

californicus (PR, SP_PR2), Cerambycidae: Spondylis upiformis (SP, SP_SP2), Trogossitidae: 

Temnocheila chlorodia (TE, SP_TE2), Buprestidae: Trachykele blondeli blondeli (TR, 

SP_TR2). 
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Appendix C 

A subset (first 20 individual insects) with R1-R18 variables created from the FMM using the 

external Validation data 
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Spec Sex R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 

CA 1 0.02 0.04 0.07 0.12 0.06 0.03 0.03 0.10 0.15 0.13 0.18 0.17 0.16 0.14 0.12 0.09 0.09 0.06 

CA 1 0.01 0.01 0.04 0.11 0.07 0.04 0.03 0.13 0.19 0.17 0.23 0.23 0.20 0.18 0.15 0.12 0.11 0.09 

CA 1 0.02 0.04 0.07 0.14 0.08 0.04 0.03 0.12 0.17 0.15 0.20 0.20 0.18 0.16 0.14 0.11 0.10 0.07 

CA 1 0.01 0.03 0.06 0.11 0.06 0.03 0.02 0.09 0.14 0.13 0.17 0.17 0.15 0.13 0.11 0.09 0.08 0.06 

CA 1 0.01 0.01 0.02 0.06 0.04 0.02 0.02 0.08 0.12 0.11 0.14 0.14 0.13 0.12 0.10 0.07 0.06 0.05 

CA 1 0.02 0.06 0.11 0.19 0.10 0.05 0.04 0.14 0.20 0.18 0.23 0.22 0.20 0.18 0.15 0.12 0.12 0.08 

CA 1 0.02 0.04 0.08 0.14 0.08 0.04 0.03 0.11 0.15 0.14 0.18 0.18 0.16 0.14 0.13 0.11 0.10 0.08 

CA 1 0.01 0.03 0.05 0.11 0.06 0.03 0.02 0.10 0.15 0.14 0.18 0.18 0.16 0.14 0.12 0.09 0.08 0.06 

CA 1 0.02 0.04 0.07 0.13 0.08 0.04 0.03 0.12 0.17 0.16 0.20 0.20 0.18 0.16 0.14 0.11 0.10 0.07 

CA 1 0.01 0.01 0.02 0.09 0.06 0.03 0.03 0.10 0.15 0.14 0.18 0.18 0.16 0.15 0.13 0.10 0.09 0.07 

CA 1 0.01 0.03 0.05 0.10 0.06 0.04 0.03 0.12 0.18 0.16 0.21 0.21 0.19 0.17 0.15 0.12 0.11 0.08 

CA 1 0.02 0.06 0.10 0.16 0.09 0.05 0.03 0.12 0.17 0.15 0.20 0.20 0.18 0.16 0.14 0.10 0.10 0.07 

CA 1 0.01 0.02 0.04 0.09 0.06 0.03 0.02 0.09 0.14 0.13 0.17 0.17 0.15 0.14 0.12 0.09 0.08 0.06 

CA 2 0.01 0.02 0.03 0.09 0.06 0.04 0.03 0.11 0.18 0.16 0.20 0.20 0.18 0.16 0.13 0.10 0.09 0.07 

CA 2 0.02 0.04 0.06 0.12 0.07 0.04 0.03 0.10 0.15 0.13 0.18 0.17 0.16 0.14 0.12 0.10 0.09 0.07 

CA 2 0.01 0.03 0.05 0.10 0.06 0.03 0.03 0.10 0.15 0.13 0.17 0.17 0.15 0.13 0.11 0.08 0.07 0.05 

CA 2 0.01 0.03 0.05 0.13 0.08 0.04 0.03 0.13 0.20 0.18 0.23 0.23 0.20 0.18 0.15 0.12 0.11 0.08 

CA 2 0.02 0.04 0.07 0.13 0.07 0.04 0.03 0.11 0.15 0.14 0.18 0.17 0.15 0.14 0.12 0.09 0.08 0.06 

CA 2 0.01 0.02 0.02 0.07 0.05 0.03 0.02 0.09 0.13 0.12 0.16 0.16 0.14 0.13 0.11 0.09 0.09 0.07 

CA 2 0.01 0.03 0.05 0.13 0.08 0.04 0.03 0.13 0.19 0.17 0.23 0.23 0.21 0.18 0.16 0.12 0.11 0.09 

CA 2 0.02 0.04 0.07 0.13 0.07 0.04 0.03 0.11 0.16 0.14 0.18 0.18 0.16 0.14 0.12 0.09 0.08 0.06 

CA 2 0.01 0.03 0.05 0.13 0.08 0.04 0.03 0.12 0.19 0.17 0.22 0.22 0.19 0.17 0.15 0.12 0.10 0.08 

CA 2 0.01 0.02 0.04 0.08 0.05 0.03 0.02 0.08 0.13 0.12 0.15 0.15 0.14 0.12 0.10 0.07 0.06 0.05 

CA 2 0.01 0.02 0.03 0.09 0.06 0.03 0.03 0.10 0.17 0.15 0.19 0.19 0.16 0.15 0.12 0.09 0.08 0.06 

CA 2 0.02 0.04 0.08 0.13 0.08 0.04 0.03 0.11 0.17 0.15 0.20 0.19 0.17 0.15 0.13 0.09 0.08 0.06 

 

  

Table B1.  The first 20 observations by individual insect of relative reflectance values at peak values of 

R1-R18 selected by the FMM from the validation database.  The abbreviation used in the subset data 

represent the following species: Cerambycidae: Callidium sp. (CA). 
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Appendix D 

Finite Mixture Model distributions 
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Figure D1.  Finite mixture model for Cerambycidae: Callidium sp. (CA) female 

with four normal curves. 

Figure D2.  Finite mixture model for Cerambycidae: Callidium sp. (CA) male 

with four normal curves. 
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Figure D3.  Finite mixture model Cerambycidae: Desmocerus piperi (DE) female 

with six normal curves. 

Figure D4.  Finite mixture model for Cerambycidae: Desmocerus piperi (DE) male 

with six normal curves. 
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Figure D5.  Finite mixture model for Buprestidae: Dicerca tenebrica (DI) female 

with six normal curves. 

Figure D6.  Finite mixture model for for Buprestidae: Dicerca tenebrica (DI) male 

with six normal curves. 
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Figure D7.  Finite mixture model for Lucanidae: Lucanus capreolus (LC) female 

with six normal curves. 

Figure D8.  Finite mixture model for Lucanidae: Lucanus capreolus (LC) male 

with six normal curves. 
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Figure D9.  Finite mixture model for Lucanidae: Lucanus mazama (LM) female 

with six normal curves. 

Figure D10.  Finite mixture model Lucanidae: Lucanus mazama (LM) male with 

six normal curves. 
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Figure D11.  Finite mixture model for Buprestidae: Melanophila atropurpurea 

(ME) female with five normal curves. 

Figure D12.  Finite mixture model for Buprestidae: Melanophila atropurpurea 

(ME) male with six normal curves. 
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Figure D13.  Finite mixture model for Buprestidae: Buprestis lyrata Casey (PC) 

female with six normal curves. 

Figure D14.  Finite mixture model for Buprestidae: Buprestis lyrata Casey (PC) 

male with six normal curves. 
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Figure D15.  Finite mixture model for Cerambycidce: Prionus californicus (PR) 

female with six normal curves. 

Figure D16.  Finite mixture model for Cerambycidce: Prionus californicus (PR) 

male with six normal curves. 
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Figure D17.  Finite mixture model for Cerambycidae Spondylis upiformis (SP) 

female with six normal curves. 

Figure D18.  Finite mixture model for Cerambycidae Spondylis upiformis (SP) 

male with six normal curves. 
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Figure D19.  Finite mixture model for Trogossitidae: Temnocheila chlorodia (TE) 

female with six normal curves. 

Figure D20.  Finite mixture model for Temnocheila chlorodia (TE) chlorodia male 

with six normal curves. 
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Figure D21.  Finite mixture model Buprestidae: Trachykele blondeli blondeli (TR) 

female with seven normal curves. 

Figure D22.  Finite mixture model for Buprestidae: Trachykele blondeli blondeli 

(TR) male with seven normal curves. 
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Appendix E 

Correlation Matrix of R1 through R18 variables generated from the finite mixture models.  
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 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 

R1 1 0.95 0.84 0.22 0.06 0.04 0.01 0.10 0.05 0.13 0.26 0.36 0.37 0.36 0.40 0.45 0.57 0.55 

R2 0.95 1 0.88 0.20 0.02 0.00 -0.05 0.05 0.01 0.10 0.24 0.34 0.36 0.35 0.40 0.44 0.58 0.54 

R3 0.84 0.88 1 0.52 0.32 0.29 0.21 0.27 0.21 0.27 0.39 0.46 0.47 0.45 0.49 0.52 0.63 0.60 

R4 0.22 0.20 0.52 1 0.97 0.95 0.89 0.83 0.75 0.69 0.64 0.57 0.53 0.51 0.51 0.47 0.39 0.41 

R5 0.06 0.02 0.32 0.97 1 0.99 0.97 0.90 0.84 0.76 0.66 0.57 0.52 0.50 0.50 0.43 0.30 0.33 

R6 0.04 0.00 0.29 0.95 0.99 1 0.98 0.92 0.87 0.79 0.70 0.61 0.56 0.54 0.53 0.45 0.32 0.35 

R7 0.01 -0.05 0.21 0.89 0.97 0.98 1 0.96 0.93 0.85 0.75 0.65 0.60 0.58 0.57 0.48 0.32 0.35 

R8 0.10 0.05 0.27 0.83 0.90 0.92 0.96 1 0.99 0.96 0.90 0.81 0.77 0.76 0.74 0.65 0.49 0.49 

R9 0.05 0.01 0.21 0.75 0.84 0.87 0.93 0.99 1 0.98 0.91 0.82 0.79 0.78 0.76 0.66 0.48 0.48 

R10 0.13 0.10 0.27 0.69 0.76 0.79 0.85 0.96 0.98 1 0.97 0.91 0.88 0.88 0.86 0.77 0.60 0.60 

R11 0.26 0.24 0.39 0.64 0.66 0.70 0.75 0.90 0.91 0.97 1 0.98 0.97 0.96 0.95 0.88 0.76 0.75 

R12 0.36 0.34 0.46 0.57 0.57 0.61 0.65 0.81 0.82 0.91 0.98 1 0.99 0.99 0.98 0.93 0.86 0.85 

R13 0.37 0.36 0.47 0.53 0.52 0.56 0.60 0.77 0.79 0.88 0.97 0.99 1 1 0.99 0.95 0.89 0.87 

R14 0.36 0.35 0.45 0.51 0.50 0.54 0.58 0.76 0.78 0.88 0.96 0.99 1 1 1.00 0.96 0.88 0.87 

R15 0.40 0.40 0.49 0.51 0.50 0.53 0.57 0.74 0.76 0.86 0.95 0.98 0.99 1 1 0.97 0.90 0.89 

R16 0.45 0.44 0.52 0.47 0.43 0.45 0.48 0.65 0.66 0.77 0.88 0.93 0.95 0.96 0.97 1 0.95 0.93 

R17 0.57 0.58 0.63 0.39 0.30 0.32 0.32 0.49 0.48 0.60 0.76 0.86 0.89 0.88 0.90 0.95 1 0.99 

R18 0.55 0.54 0.60 0.41 0.33 0.35 0.35 0.49 0.48 0.60 0.75 0.85 0.87 0.87 0.89 0.93 0.99 1 

 

Table E1. Correlation coefficients among variables R1 through R18 generated using finite mixture models. 


