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ABSTRACT

During the past three decades, it has been demonstrated that chiral effective field

theory (EFT) represents a powerful tool to deal with hadronic interactions at low en-

ergy in a systematic and model-independent way. Within the last decade, precision

nucleon-nucleon (NN) potentials based upon chiral EFT have been constructed. Most

of these potentials have been represented in momentum-space. However, there are

some important applications in nuclear physics for which a representation of the NN

potential in position space is preferred. Therefore, in this thesis, a NN potential is

constructed that is local and given in position space in a relatively simple form. In

terms of the chiral expansion, we advance to next-to-next-to-leading order and achieve

accuracy that is superior to similar potentials constructed by other researchers. Our

potential will serve as an excellent starting point for ab initio few- and many- body

calculations in nuclear physics.
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C H A P T E R 1

INTRODUCTION

In 1911 Rutherford discovered the atomic nucleus by showing that a positively charged

core with a small radius can describe alpha particle scattering at large angles [1]. Soon

after, Thomson discovered isotopes from studying nuclear masses [2]. The first nuclear

models developed at this time used electrostatic forces with protons and electrons to

build nuclei. However, this raised questions of how a nucleus could stay together [3].

The neutron was then discovered by Chadwick in 1932 [4]. This implied that both the

neutron and proton were the basic components of a nucleus. Because of this, a new

force had to be considered to bind the nucleus together. This force is called both the

Strong Force and the Nuclear Force.

Soon after, Wigner concluded from studying the binding energies of light nuclei [5]

that the force was strong within a short range. Theoretical ideas were proposed by Ma-

jorana [6] and Heisenberg [7] to explain how the nucleus can reach saturation. Heisen-

berg also suggested that both the proton and neutron could be two different states

of one particle. Meanwhile, proton-proton scattering experiments up to 1 MeV were

conducted [8] and the deuteron’s binding energy was measured [9]. Since then, various

theories have come about to describe this force.

In 1935, Yukawa was the first to create a fundamental explanation for the nuclear

force [10]. He did so by assuming that the nucleons interact by exchanging massive

scalar particles later called mesons. Doing this creates a potential which is propor-

tional to 1
r e−µr where r is the distance between the nucleons and µ is the mass of the
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meson. The theory was soon extended. Proca [11] and Kemmer [12] added pseudo-

scalar and -vector particles. Later, Schwinger [13], Møller and Rosenfeld [14] derived

the quadrupole moment for the deuteron. A pseudo-scalar meson was predicted in

1946 [15] and found the following year [16]. This particle is called the π-meson or

pion.

In 1951, Taketani, Nakamura and Sasaki suggested dividing the nuclear force was

divided into three regions [17] consisting of a short range (r < 1 fm), an intermediate

range (1 fm < r < 2 fm) and a long range (r > 2 fm). A potential was derived

from an expansion in terms of the particle number [18], but the pair terms had to be

dropped [19] to match experimental data. Later, chiral symmetry was conceived [20, 21,

22] to explain the pair suppression. In the 1970’s, dispersion relations [23, 24] and field

theoretical approaches [25, 26] were pursued to further develop meson theory. One of

the most elaborate models was developed by the Bonn group. Multi-pion exchange

diagrams were calculated and the final result accurately agrees with the nucleon -

nucleon scattering data [27].

Even though this meson theory works quite well in explaining the experimental

data, there are issues. Mesons are not fundamental particles; the models require a

fictitious σ-meson [27] (which may or may not exist); and mesons are roughly the size

of a proton if they are viewed as hard spheres - meaning that they can’t fit between

nucleons in the nucleus.

The fundamental theory of strong interaction is quantum chromodynamics (QCD).

It uses quarks and gluons to build both mesons and nucleons. A six quark model has
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been made for the deuteron which matches up to its quantum numbers and explains

multiple features of low energy nuclear physics [28].

At low energies, QCD is non-perturbative. Because of this, QCD has been approxi-

mated and simplified into an effective field theory (EFT) [29]. Using pions and nucle-

ons as the effective degrees of freedom, the most general Lagrangian which observes

the broken chiral symmetry of QCD can be written down. This approach has become

known as chiral effective field theory.

This thesis constructs an NN potential based on the above theory in position space,

also known as configuration or r space. NN potentials have been constructed be-

fore [30, 31] but mainly in momentum space. However, some microscopic nuclear

structure calculations, such as the ground state of light nuclei (A ≤ 40), are more

conveniently performed in position space. It is therefore the purpose of this thesis to

provide a local position space NN potential.
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C H A P T E R 2

EFFECTIVE F IELD THEORY

2 . 1 P O W E R C O U N T I N G

At low energies, QCD is non-perturbative. As such, the structure and dynamics of

hadrons can’t be determined analytically. This is where EFT comes in as it shows how

to calculate hadronic interactions at low energies. This is based on work by Wein-

berg [29] which involves writing down the most general Lagrangian and calculating

the matrix elements to the given order. This was the starting point for chiral effective

field theory.

In order to determine which Feynman diagrams should be kept in the terms of the

expansion up to a given order, Weinburg’s power counting is used. The counting is

done in terms of (Q/Λχ)ν where Q stands for a momentum or pion mass and Λχ(≈

1 GeV) is the chiral symmetry breaking scale [32]. The power ν of a diagram is given

by:

ν = −2 + 2A− 2C + 2L + ∑
i

∆i (2.1)

with

∆i = di +
ni

2
− 2 , (2.2)
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where A is the number of nucleons, C is the number of separately connected pieces,

L is the number of loops in the related diagram, di is the number of derivatives or pion-

mass insertions and ni is the number of nucleon fields involved with vertex i. ∆i is

called the index of the vertex. See Ref. [33] for a derivation.

Figure 2.1 shows the counting scheme and its related Feynman diagrams [32]. LO

(Leading Order, ν = 0) describes the two nucleon force to a rough approximation: just

the one-pion exchange (1PE) and contact terms that contribute only to the S-waves.

ν = 1 does not exist because it violates time-reversal and parity invariances. NLO

(Next-to-Leading Order, ν = 2) describes the two nucleon force to a better degree by

including more contact terms as well as the two-pion exchange (2PE) in several ways

it can occur. Finally, at N2LO (Next-to-Next-to-Leading Order, ν = 3), a realistic 2PE

emerges [32].

2 . 2 T H E L A G R A N G I A N S

For pion-pion (ππ) scattering, the Lagrangian (up to ν = 4) is given by

L(ν=2)
ππ =

1
2

∂µ~π∂µ~π +
1

6 f 2
π

[(
~π∂µ~π

)2 − ~π2 (∂µ~π∂µ~π
)]
− m2

π

2
~π2 +

m2
π

24 f 2
π

~π4, (2.3)

where ~π denotes the pion fields and mπ is the pion mass. fπ is the pion decay constant.

The predictions for ππ scattering are consistent with the experimental data.
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For meson-nucleon scattering (πN), some items must be considered in order to

keep the power counting method mentioned above. As the nucleon is much more

massive than the pion, the nucleon needs to be modelled as a static physical object to

prevent a violation of the chiral limit [34]. This approach is called heavy baryon chiral

perturbation theory. Within this framework, the Lagrangians read [35]

L(ν=1)
πN = N̄(iD0 −

gA

2
~σ · ~u)N, (2.4)

L(ν=2)
πN = N̄

[
1

2M
~∇ · ~∇+ 2c1m2

π

(
U + U†

)
+ c2u2

0

+c3(u · u) + i
c4

2
~σ · (~u× ~u)

]
N, (2.5)

where N denotes the nucleon field, M is the nucleon mass, D0 is the gauge-covariant

derivative of order zero and~σ are the usual Pauli spin matrices.

Additionally,

uµ = − 1
fπ
~τ · ∂µ~π + · · · (2.6)

and

U = 1 +
i
fπ
~τ · ~π + · · · (2.7)

where the ~τ are the Pauli spin matrices for isospin. The ci’s are the π − N low-energy

constants (LEC) of order two, which will be given later, and gA denotes axial-vector

coupling constant.
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F I G U R E 2 . 1 : Feynman diagrams and their related powers. Dashed lines are pions
and solid lines are nucleons. The small dots and large dots, solid squares and
diamonds denote vertices of index 0, 1, 2 and 4. Reproduced from Ref. [32] with
permission.
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C H A P T E R 3

NN POTENTIAL BASED ON EFT

3 . 1 G E N E R A L S T R U C T U R E O F T H E N N P O T E N T I A L

The NN potential considered has the following general structure:

U(r) = VC(r) +~τ1 ·~τ2WC(r)

+ [VS(r) +~τ1 ·~τ2WS(r)]~σ1 ·~σ2

+ [VT(r) +~τ1 ·~τ2WT(r)] S12

+ [VLS(r) +~τ1 ·~τ2WLS(r)]~L · ~S

(3.1)

Where Vα’s are the isoscalar potentials and Wα’s are the isovector potentials. S12 is

the tensor operator, ~L is the orbital angular momentum operator, and ~S is the total

spin. The subscripts C,S,T and LS refer to the central, spin-spin, tensor and spin-orbit

contributions. r is the distance to a nucleon.

The potentials in the following sections are usually first derived in momentum

space and then subjected to a Fourier transformation into configuration space. See

Ref. [33] for details.
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3 . 2 P I O N E X C H A N G E

3 . 2 . 1 One-pion exchange at LO

The leading order (LO), also called the lowest order (ν = 0), is the static one pion

exchange (1PE) between nucleons. It takes on the following form in position space [33]:

W(ν=0)
S (r) =

g2
Am2

π

48π f 2
π

e−x

r
(3.2)

W(ν=0)
T (r) =

g2
A

48π f 2
π

e−x

r3 (3 + 3x + x2) (3.3)

with x being mπr. The 1PE is singular as r → 0 and thus must be regularized. For this

purpose one multiplies equations 3.2 and 3.3 with the regulator function

f1PE (n, R0; r) = 1− exp

(
−
(

r
R0

)2n
)

(3.4)

which suppressed the potential at short distances. We use n = 2 and will discuss the

choices for R0 below.

3 . 2 . 2 Two-pion exchange at NLO

At next-to-leading order (NLO), the first two pion exchange contribution occurs. The

Feynman diagrams for this are the second row, first column of figure 2.1. In configura-
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tion space, they are given by [33]:

W(2)
C =

mπ

128π3 f 4
π

1
r4

{[
1 + 2g2

A(5 + 2x2)− g4
A(23 + 12x2)

]
K1(2x)

+ x
[
1 + 10g2

A − g4
A(23 + 4x2)

]
K0(2x)

}
(3.5)

V(2)
S =

g4
Amπ

32π3 f 4
π

1
r4

[
3xK0(2x) + (3 + 2x2)K1(2x)

]
(3.6)

V(2)
T =

g4
Amπ

128π3 f 4
π

1
r4

[
−12xK0(2x)− (15 + 4x2)K1(2x)

]
(3.7)

where K0 and K1 are the modified Bessel functions.

3 . 2 . 3 Two-pion exchange at N2LO

At next-to-next-to-leading order (N2LO), the 2PE contribution is given by:

V(3)
C =

3g2
A

32π2 f 4
π

e−2x

r6

[
2c1x2(1 + x)2 + c3(6 + 12x + 10x2 + 4x3 + x4)

]
(3.8)

W(3)
S =

g2
A

48π2 f 4
π

e−2x

r6 c4(1 + x)(3 + 3x + 2x2) (3.9)

W(3)
T =

−g2
A

48π2 f 4
π

e−2x

r6 c4(1 + x)(3 + 3x + x2) (3.10)

To regularize the 2PE potentials as r is now to the sixth power, we multiply them by

f2PE (n, R0; r) =

[
1− exp

(
−
(

r
R0

)2
)]n

(3.11)

with n = 4.
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3 . 3 C O N TA C T P O T E N T I A L S

Contact terms are used in chiral perturbation theory to describe short range interac-

tions. They are depicted in figure 2.1 as crossed solid lines. This section gives the

terms for ν = 0 and ν = 2 in the power counting. Note that contact terms appear only

for even values of ν [32].

3 . 3 . 1 Contact interactions at LO

The most general set of contact interactions that occurs at LO (ν = 0) is given by [36]

V(0)
cont = [α1 + α2~σ1 ·~σ2 + α3~τ1 ·~τ2 + α4~σ1 ·~σ2~τ1 ·~τ2] f (0) (n, R0; r) (3.12)

where f (0) (n, R0; r) is the regulator function. With n = 2, this is given by

f (0) (2, R0; r) =
h̄c

πΓ
(3

4

)
R3

0
e
−
( r

R0

)4

(3.13)

Equation 3.12 can be rewritten as

V(0)
cont =

1
16

{
a00 (1−~σ1 ·~σ2) (1−~τ1 ·~τ2)

+a01 (1−~σ1 ·~σ2) (3 +~τ1 ·~τ2)

+a10 (3 +~σ1 ·~σ2) (1−~τ1 ·~τ2)

+a11 (3 +~σ1 ·~σ2) (3 +~τ1 ·~τ2)
}

f (0) (2, R0; r), (3.14)
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where the coefficients are aST with S being the total spin and T the total iso-spin of the

two nucleon system. The αi coefficients used in 3.12 and the aST coefficients used in

3.14 are related to each other by

α1 =
1

16
(a00 + 3a01 + 3a10 + 9a11)

α2 =
1

16
(−a00 − 3a01 + a10 + 3a11)

α3 =
1

16
(−a00 + a01 − 3a10 + 3a11)

α4 =
1

16
(a00 − a01 − a10 + a11) (3.15)

For fitting purposes [32], eq. 3.14 is more convenient, because it projects the contact

terms on precise spin-isospin states.

3 . 3 . 2 Contact interactions at NLO

The set of NLO contact interactions that we use is given by

V(2)
cont = [β1 + β2~σ1 ·~σ2 + β3~τ1 ·~τ2 + β4~σ1 ·~σ2~τ1 ·~τ2] Q2 f (2)qq (n, R0; r)

+ bLS,1
(3 +~τ1 ·~τ2)

4
~L · ~S f (2)LS (n, R0; r)

+ (β6 + β7~τ1 ·~τ2) S12 f (2)T (n, R0; r) (3.16)



13

where the regulator functions for n = 2 are used, which are given by

f (2)qq (2, R0; r) =
4r2

R4
0

[
5− 4

(
r

R0

)4
]

f (0) (2, R0; r) (3.17)

f (2)LS (2, R0; r) =
4

R4
0

(
r

R0

)2

f (0) (2, R0; r) (3.18)

f (2)T (2, R0; r) =
8r2

3R4
0

[
1− 2

(
r

R0

)4
]

f (0) (2, R0; r) (3.19)

Similar to the LO contacts (Eq. 3.14), the βi’s (i = 1, · · · , 4) are rearranged with four

projection operators with coefficients bST. Moreover,

(β6 + β7~τ1 ·~τ2) =
bT, 0 (1−~τ1 ·~τ2)

4
+

bT, 1 (3 +~τ1 ·~τ2)

4
(3.20)

implying

β6 =
1
4
(bT,0 + 3bT, 1) (3.21)

β7 =
1
4
(bT,1 − bT, 0) (3.22)
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C H A P T E R 4

RESULTS

4 . 1 P H A S E S H I F T S F O R N U C L E O N - N U C L E O N S C AT T E R I N G

Presented here are the results for the phase shifts up to Tlab = 250 MeV. The phase

shifts are calculated from the potentials. As explained in the previous section, the

various contributions to the potential are regularized with a cut-off radius R0. Three

cut-off radii were checked for the fitting process. Table 4.1 contains the values used in

the fitting process as well as the LECs used. The phase shifts are shown in Figure 4.1.

The phase shifts are a displacement of the partial waves of low angular momentum,

denoted by 2s+1Lj where s is the total spin, L is the orbital angular momentum (written

as S, P, D, F, ... for when L = 0, 1, 2, 3, ...) and j is the total angular momentum. Table 4.2

contains parameters for fitting the potentials to the experimental data for each cut-off.

Table 4.3 gives the scattering lengths and effective ranges for each cut-off as well as the

deuteron properties. Table 4.4 contains χ2 per datum for the fits for each cut-off. This

compares how well the fitted potentials are to experimental data and compares them

to χ2 per datum of work from another work.
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4 . 1 . 1 S-Waves

Table 4.3 gives the scattering lengths and effective ranges for 1S0 and 3S0. Fig. 4.1

shows the phase shifts. The S-waves are in sufficient agreement with the experimental

data.

4 . 1 . 2 P-Waves

There are four P-waves. Their phase shifts are in agreement with experimental data.

4 . 1 . 3 D-Waves

The 3D1 phase shift is in agreement with experimental data, but the 1D2, 3D2 and 3D3

phase shifts are high due to lack of contact parameters that do not exist at N2LO.

4 . 1 . 4 F-Waves

3F2 phase shift matches well for 1.0 fm cut-off, but is high for the 0.9 fm cut-off and too

low for the 1.1 fm cut-off. 1F3 and 3F3 phases match well with the data.

4 . 1 . 5 Mixing Parameters

The tensor operator mixes two partial waves of equal parity. The mixing parameter

shows how mixed the partial waves are. ε1 falls below the experimental data but ε2

and ε3 match the experimental data.
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4 . 2 T H E D E U T E R O N

Table 4.3 gives important deuteron properties as predicted by the cut-offs. Bd is the

Deuteron binding energy, As is the asymptotic S state, η is the asymptotic D/S state, Q

is the quadrupole moment and PD is the D-state probability. The predictions are quite

close to empirical.
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TA B L E 4 . 1 : Parameters used in exchange potentials

parameter potential (unit) Empirical

Mp 938.2720 (MeV) 938.272046(21) [37]
Mn 939.5653 (MeV) 939.5653(79) [37]
M̄ 938.9183 (MeV)

mπ0 134.9766 (MeV) 134.9766 [37]
mπ± 139.5702 (MeV) 139.57018 [37]
gA 1.29 1.2759(45) [37]
fπ 92.4 (MeV) 92.2± 0.2 [37]
c1 −0.58 (GeV-1) −0.58 [38]
c3 −3.14 (GeV-1) −3.14 [38]
c4 2.19 (GeV-1) 2.19 [38]
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TA B L E 4 . 2 : Contact term parameters for the different cut-off fits

cut-off R0

parameters 0.9 fm 1.0 fm 1.1 fm

a00 8.10 5.5 4.575
a01 2.7331 0.83427 -0.44
a10 2.3585 0.60885259 -0.7622
a11 6.12 3.69 2.50
b00 -0.11 -0.11 -0.11
b01 0.145 0.285 0.372
b10 0.10 0.23 0.38
b11 -0.19 -0.09 0.0
bT,0 0.0 0.0 0.0
bT,1 -0.012 0.0 0.0
bLS,1 0.0 -1.11 -1.12
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TA B L E 4 . 3 : Low-energy parameters and deuteron properties as predicted by the
potentials denoted by their cut-off radius R0. a and r are the scattering lengths and
effective ranges in fm.

0.9 fm 1.0 fm 1.1 fm Empirical
1S0 Ref. [32, Table 8]
ac

pp -7.814 -7.815 -7.814 -7.8149(29)
rc

pp 2.766 2.770 2.767 2.769(14)
anp -23.738 -23.738 -23.754 -23.740(20)
rnp 2.698 2.702 2.698 2.77(5)
3S1 Ref. [32, Table 8]
at 5.396 5.407 5.429 5.419(7)
rt 1.723 1.739 1.769 1.753(8)

deuteron Ref. [32, Table 9]
Bd (MeV) 2.224579 2.224575 2.224580 2.224575(9)

As (fm−1/2) 0.8801 0.8824 0.8867 0.8846(9)
η 0.0255 0.0253 0.0250 0.0256(4)

Q (fm2) 0.275 0.273 0.271 0.2859(3)
PD (%) 5.59 5.21 4.77
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TA B L E 4 . 4 : χ2 per datum for various fits using different cut-off radii R0 and a
potential from Ref. [36] with R0 = 1.0 fm.

cut-off R0

Tlab bins
(MeV) # of data 0.9 fm 1.0 fm 1.1 fm Ref. [36]

at 1.0 fm

np

0 - 100 1124 1.43 1.60 2.02 1.41

0 - 190 1570 1.63 1.85 2.40 2.60

pp

0 - 100 776 1.63 1.85 2.30 3.13

0 - 190 1187 5.41 6.66 9.98 9.41



21

0

25

50

75

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300
Lab. Energy (Mev)

Boch
0.9 
1.0 
1.1 

 1S0

-10

0

10

20

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300
Lab. Energy (Mev)

Boch

0.9 
1.0 
1.1 

 3P0

-30

-20

-10

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300
Lab. Energy (Mev)

Boch

0.9 
1.0 
1.1 

 1P1

-30

-20

-10

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300
Lab. Energy (Mev)

Boch
0.9 
1.0 
1.1 

 3P1

0

40

80

120

160

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300
Lab. Energy (Mev)

Boch
0.9 
1.0 
1.1 

 3S1

-30

-20

-10

0

Ph
as

e 
Sh

ift
 (d

eg
)

0 100 200 300
Lab. Energy (Mev)

Boch

0.9 
1.0 
1.1 

 3D1

F I G U R E 4 . 1 : Phase shifts and mixing parameters. The red, blue and green lines
are the predictions by the potentials with cut-off radius R0 = 1.1, 1.0 and 0.9 fm,
respectively. The black line is the potential of Ref. [36] with R0 = 1.0 fm. The solid
dots are the Nijmegen multienergy np phase shift analysis [39]. The open circles are
the VPI/GWU single-energy np analysis SM07 [40].
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C H A P T E R 5

CONCLUSION

In this thesis, I have applied chiral effective field theory up to N2LO to construct local

NN potentials in configuration space. Because of the singular nature of the one- and

two- pion exchange potentials at short distances, a regulator function is applied to the

pion-exchange potentials to suppresses the potential as r → 0. The parameter of this

regulator, R0, is varied from 0.9 fm to 1.1 fm.

Moreover, contact potentials are introduced to parametrize the NN potential at

short range. We use four contact terms at LO and seven terms at N2LO. These con-

tributions are "smeared out" due to the use of cut-off functions that depend on the

above mentioned R0. The parameters of these 11 contact terms are essentially free and

used to fit the partial waves of low angular momentum (the S and P waves).

The reproduction of the phase shifts of the S, P and F waves is very good. However,

there are problems with some of the D waves (1D2 and 3D2). The χ2 per datum of the

reproduction of the NN data is, in general, below 2.0 for the interval 0-100 MeV, which

is satisfactory as it is better than previous work. The description of the np data up to

190 MeV is also acceptable; while for pp, large χ2 occur above 100 MeV due to some

very accurate differential cross section measurements. The deuteron properties are

reproduced well.

Over-all our NN potential is more accurate than similar potentials constructed by

other researchers, as the chi2 per datum is smaller than that produced by Ref. [36].

Because of the precision of our position-space potential, it represents a reliable starting
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point for microscopic nuclear structure calculations (I.E. ground states of light nuclei)

that require a local potential.
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