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Abstract

Genetics has made great strides in identifying speci�c genes that a�ect traits of biomedical and

basic biological importance, andmodern genomic technology has greatly increased our power to

detect even genes with small e�ects on phenotype (Yang et al., 2010). However, genes underlying

important phenotypes don’t exist in isolation; rather, they interact in two important ways that

are now amenable to direct observation with genomic techniques.

First, genes interact within genetic regulatory networks to produce complex quantitative

phenotypes. For example, in many gene regulatory cascades a given gene product may interact

with a number of other genes and proteins. �e incorporation of a network-level functional

view of genetic interactions into models of multivariate phenotypic evolution represents a new

synthesis in biology, enabled by the wealth of empirical genomic data (Zhu et al., 2009; O’Malley,

2012). By modeling relative simple gene regulatory networks, I found that the direction of new

phenotypic (co)variation that is supplied to a population from new mutation (the M-matrix)

depends on a given network topology. Such mutational (co)variation directly contributes to the

shape and orientation of additive genetic (co)variation (the G-matrix) which a�ects how quickly

populations can adapt to a new environment. When letting the network topology itself evolve, I

found that populations can quickly explore phenotype space and, as such, can get closer to new

phenotypic optima than without mutations in the network topology. Moreover, the adaptive

trajectories taken later during the adaptive walk directly depend on historical contingencies

(i.e., which networks were selected for in the past). Lastly, when network topology evolves,

reproductive isolation can evolve too as a result of persistent overdominance.

Second, genes exist in physical locations along chromosomes so that the action of evolution-

ary forces like mutation and selection on single loci has impacts on patterns of variation at neigh-

boring loci. Meiotic recombination is central in connecting physical genetic elements to popu-

lation genetic theory as well as quantitative trait loci. As such, I have created an R package that

uses a Hidden Markov Model (HMM) approach to identify recombination hotspots, coldspots,

crossovers and non-crossover gene conversion tracts from low-coverage whole genome or re-

duced representation (e.g., RADseq) data. �is approach is applicable for any haploid or diploid

organisms with a reference genome.
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Under a divergencewith gene �ow scenario, physical gene interactions can also cause autocor-

relation in genetic di�erentiation (e.g., FST) across the genome of diverging populations, creating

“genomic islands of divergence” – gene regions that have signi�cantly greater di�erentiation than

expected under neutrality (Nosil et al., 2012). An appealing aspect of this model is that regions

physically linked to selected loci are relatively bu�ered from the homogenizing e�ect of migrant

alleles so that newmutations that are tightly linked to selected loci have a higher probability of in-

creasing in frequency, facilitating further genomic di�erentiation between diverging populations.

To examine the relative roles of selection, recombination, and gene �ow in creating heteroge-

nous genomic di�erentiation I employed mathematical modeling and experimental evolution

of polymorphic populations of the budding yeast Saccharomyces cerevisiae. I found that neither

migration nor newmutations were necessary to engender island growth. Instead the segregation

of existing standing genetic variation can transiently but quickly generate islands when admixed

populations evolve in isolation in di�erent selective environments.

Taken together, this dissertation underscores the importance of genetic interactions in gener-

ating phenotypic diversity. Moreover, we �nd that simple models of gene interaction – together

with demography and evolutionary factors – can generate complex, but predictable patterns of

adaptation. �e models, computational tools, and experimental data herein thus expand our

knowledge of how genetic interactions shape the nature of suites of traits.
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chapter 1

General introduction

Understanding the nature of diversity as long been of interests to biologists. How can interbreed-

ing individuals give rise to such phenotypic and taxanomic diversity? �eoretical and empirical

research over the past century has fundamentally changed our understanding of the evolutionary

forces that generate diversity and recent work has investigated how suites of interconnected

populations can adapt to novel environments via various types of genetic interactions. Herein I

extend our understanding of how both epistatic and physical interactions can shape multivariate

phenotypic (co)variation and heterogeneous genomic di�erentiation.

1.1 layout of chapters in this dissertation

Chapter 2 — Models ofmultivariate phenotypic evolution based on quantitative genetics have

largely not incorporated a network-based view of genetic variation. By modeling simple two-

gene regulatory networks I found that the nature of thematrix ofmutational (co)variation (theM-

matrix) is strongly a�ected by network topology. Both standing genetic variation (the G-matrix)

and rate of adaptation are constrained byM, so thatG and adaptive trajectories are curved across

phenotypic space. Under weak selection the phenotypic mean at migration-selection balance

also depends onM.

Chapter 3 — I extended the networkmodels of Chapter 2 to allowmutations in the network

topology. I found that network changes can be bene�cial early when populations are displaced

from their phenotypic optimum. �ese network changes also created historical contingencies

such that the trajectory of later adaptation depends heavily on the resulting network structure

that evolved. I also found that network architecture itself can result in overdominance and

showed that such overdominance can lead to persistent reproductive isolation between popu-

lations adapting in parallel. �e C++ based simulation program that I created to model network

evolution, NetworkEvolution, is freely available online.

https://github.com/tylerhether/NetworkEvolution
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Chapter 4 — �e role of meiotic recombination in adaptation ties Mendelian principles to

the evolutionary processes that occur at the population level. �us, further understanding of

physical genetic interactions would bene�t from e�cient methods for directly measuring rates

of recombination across the genome, including crossovers and non-crossover gene conversion

events. I created a Hidden Markov Model-based approach for estimating recombination rates,

based on genomic sequence data from haploid products of meiosis and diploid populations,

both produced by admixture between two genetically characterized parents. I used this method,

together with next-generation sequencing, to identify recombination hotspots and cold spots as

well as characterize rates and sizes of gene conversion events in the budding yeast Saccharomyces

cerevisiae. �e methods employed here have been implemented in the R packageHMMancestry.

Chapters 5 & 6 — It is increasingly evident that taxonomic diversity can occur despite ongo-

ing gene �ow between interbreeding populations. Now that we are in the genomic era, studies

have reported that loci of adaptive divergence o�en cluster within the genome of divergently

evolving populations or sister species. Mathematical models have been put forth to explain

how such “genomic islands of divergence” can form as a result of physical gene interactions

(i.e., linkage) between established divergently selected loci and de novo mutations. Using both

modeling (Chapter 5) and experimental (Chapter 6) approaches I found that an alternative

method for island formation can arise from standing genetic variation, which is likely to occur

at shorter timescales than de novomutations and might be more in line with empirical studies.

https://github.com/tylerhether/HMMancestry
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chapter 2

Genetic regulatory network motifs constrain adaptation

through curvature in the landscape of mutational

(co)variance1

2.1 summary

Systems biology is accumulating a wealth of understanding about the structure of genetic regula-

tory networks, leading to a more complete picture of the complex genotype-phenotype relation-

ship. However, models of multivariate phenotypic evolution based on quantitative genetics have

largely not incorporated a network-based view of genetic variation. Here we model a set of two-

node, two-phenotype genetic network motifs, covering a full range of regulatory interactions.

We �nd that network interactions result in di�erent patterns of mutational (co)variance at the

phenotypic level (theM-matrix), not only across networkmotifs but also across phenotypic space

within single motifs. �is e�ect is due almost entirely to mutational input of additive genetic

(co)variance. Variation in M has the e�ect of stretching and bending phenotypic space with

respect to evolvability, analogous to the curvature of space-time under general relativity, and

similar mathematical tools may apply in each case. We explored the consequences of curvature

in mutational variation by simulating adaptation under divergent selection with gene �ow. Both

standing genetic variation (the G-matrix) and rate of adaptation are constrained by M, so that G

and adaptive trajectories are curved across phenotypic space. Under weak selection the pheno-

typic mean at migration-selection balance also depends on M.

2.2 introduction

Recent years have seen an explosion in the functional understanding of genetic interactions,

includingmapping of large genetic regulatory andmetabolic networks (Dieckmann andDoebeli,

1Previously published as: Hether T.D. and Hohenlohe P.A. 2014. Genetic regulatory network motifs constrain

adaptation through curvature in the landscape of mutational (co)variance. Evolution 68:950-964. see Appendix a

for License Agreement.
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1999; Stuart, 2003; Huang et al., 2007; Dixon et al., 2009; Costanzo et al., 2010; Zhang et al., 2011).

�ese data have led toward a more comprehensive understanding of complex phenotypes, and

emphasize the complexity and non-linearity of the genotype-phenotype relationship (Benfey and

Mitchell-Olds, 2008; Mitteroecker, 2009; Tøndel et al., 2011; Travisano and Shaw, 2013). In par-

ticular, pleiotropy and functional epistasis are ubiquitous in genetic regulatory networks (Tyler

et al., 2009), and this has important consequences for the evolution of complex phenotypes.

However, traditional quantitative genetic models of multivariate adaptation typically assume

phenotypic traits to be a�ected by a large number of loci with largely independent, additive e�ects

(Lande and Arnold, 1983; Turelli, 1984; Arnold et al., 2001, 2008). While pleiotropy and statistical

epistasis are sometimes included in thesemodels (e.g. Jones et al., 2003, 2007; Alvarez-Castro and

Carlborg, 2007), the e�ects of speci�c genetic regulatory network architectures on quantitative

genetic predictions of adaptation are not well understood. Incorporation of a network-level func-

tional view of genetic interactions into models of multivariate phenotypic evolution represents a

new synthesis in biology, enabled by a new wealth of empirical data (Zhu et al., 2009; O’Malley,

2012).

An initial step toward this synthesis is to explore the consequences of simple network motifs

on patterns of dominance, pleiotropy, and epistasis, considering the equilibrium expression level

of a gene in the network as the phenotype (Omholt et al., 2000; Gjuvsland et al., 2007a; Aylor

and Zeng, 2008). Here we apply a similar modeling approach to multivariate phenotypic space.

In multivariate evolution, mutational and genetic correlation among traits can either constrain

or facilitate adaptation, depending on the relationship between the direction of selection and

genetic correlation (Schluter, 1996; Hansen and Houle, 2008; Agrawal and Stinchcombe, 2009;

Walsh and Blows, 2009). Such correlations are expected to result from factors including the

pleiotropy and epistasis inherent in genetic networks. Moreover, non-linearity in the genotype-

phenotype map resulting from genetic network architecture means that the patterns of muta-

tional correlation may change across phenotypic space, even when the mutational process at the

genotypic level remains constant (Mitteroecker, 2009). �is variation across phenotypic space

could substantially a�ect both adaptive and neutral evolutionary trajectories (Steppan et al., 2002;

Arnold et al., 2008). However, the ways in which genetic regulatory network architecture may

induce this variation have not been well quanti�ed.
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Here we consider a set of two-node network motif models, covering all basic types of reg-

ulatory interactions, in which the phenotypes of interest are the expression levels of the two

loci. �e mathematical form we use to model regulatory interactions is general to Michaelis-

Menten kinetics as well as other modes of gene regulation (Omholt et al., 2000; Gjuvsland et al.,

2007a), and we explore the complete set of possible two-node interactions in this form. �e

two nodes in the network, while described below as single loci, may also be interpreted as well-

connected modules in a larger network that interact in relatively simple ways. We model the

interactions in these networks with di�erential equations describing dynamic gene expression,

where the phenotypes are equilibrium gene expression levels. We assess whether simple network

motifs lead to non-linearity in the genotype-phenotype map that is su�cient to create not only

mutational and genetic correlation, but also variation in patterns of that correlation across phe-

notypic space. Using simulations of adaptive divergence with gene �ow between two populations,

we test whether the resulting curvature in phenotypic space constrains rates and trajectories of

adaptation.

2.3 methods

2.3.1 Modeling Gene Regulatory Networks

Wemodeled a set of six two-node gene regulatory networks using systems of ordinary di�erential

equations (ODEs) describing gene expression levels. �ese two-locus ODEs are analogous to

Gjuvsland et al. (2007a)’s three-locus models, and they describe the rate of change of the concen-

trations of gene products x1 and x2 given the genotypic values α1 and α2 and the parameters θ and

γ. �ese ODE systems reach stable equilibrium levels of expression, and we use the equilibrium

expression levels of gene products x1 and x2 as the two phenotypic traits for any instance of a

network motif. We do not explicitly model transcription and translation or specify what type of

gene product is involved, in order to apply the models to any type of regulatory signal that could

lead to interactions between loci or between tightly connectedmodules in a genetic network. Our

model uses diploid individuals but does not contain any dominance, so we de�ne the “genotypic

value” αi at each locus as the sum of allelic e�ects for the two alleles. Positive or negative gene

regulation was modeled as a sigmoid function (Figure 2.1). For example, concentration of gene
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product x1 has a positive e�ect on dynamic expression levels of locus 2 in the second equation of

(Figure 2.1A), so locus 1 positively regulates locus 2. �e parameter θ represents the amount of

regulator needed to get half of the maximum expression rate and γ is the decay rate of expressed

gene product (Gjuvsland et al., 2007a). For simplicity in the current study, these two parameters

were �xed (θ = 300, γ = 1).

Setting the ODEs for each motif to zero and solving for x1 and x2 yields unique solutions

for the gene expression levels at equilibrium as a function of the genotypic values, θ, and γ (see

Appendix a). We assume no environmental variation; therefore, for a given genotype in a

particular networkmotif we can calculate both equilibriumexpression levels – i.e. the phenotypic

trait values – directly. We assessed stability of equilibrium expression levels by calculating the

Jacobian matrix linearization of the ODEs at equilibrium points. Equilibrium trait values are

stable for all motifs when allelic e�ects and trait values are positive, conditions that are assumed

throughout this study (see Appendix a). For each regulatorymotif we also solved for genotypic

value (sum of the allelic values at each locus) as a function of equilibrium expression levels. �ese

solutions are unique, so that the genotype-phenotype map is 1:1 at the level of genotypic values

for all motifs across positive gene expression levels.

2.3.2 EstimatingM, G, and epistatic (co)variance

We estimated the matrix of mutational (co)variance M across phenotypic space for each motif

using a linear approximation to the genotype-phenotype map as follows. For each motif we

calculated the 2x2 Jacobian matrix Ji of the genotype-phenotype map. �en for motif i, Mi =

Ji Σ JTi , where Σ is the matrix of mutational variance introduced per generation at the level of

genotypic values. We assumed Σ to have zero covariance (i.e. no correlation inmutation between

loci) and equal variance terms 2σ , where σ2 = 17.3 is the per-allele mutational variance in allelic

value following a continuum of alleles model (Kimura, 1965). �is per-allele mutational variance

e�ectively scales the total size of M, but does not a�ect the covariance structure of M at all. To

validate the linear transformation approximation of M against the M-matrix that would occur

in a polymorphic population, we also estimatedM numerically by creating populations centered

at nine points in a grid across phenotypic space (at x1 = 200, 300, 400 and x2 = 200, 300, 400)

for each motif. We randomly sampled phenotypic values for 10,000 individuals from a bivariate
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Figure 2.1: Gene regulatory network motifs. Below each motif are the system of ordinary

di�erential equations governing gene expression levels xi and a graphical depiction of the
genotype-phenotype map. Parameters are genotypic value αi , the sum of allelic values at locus i;
θ, concentration of the regulator at which half of the maximum activation level is reached; and γ,
gene product decay rate. All motifs reach a single stable equilibrium gene expression level given

a pair of genotypic values. Contours represent these phenotypic trait values x1 (solid blue) and
x2 (dashed red) as a function of genotypic values.
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Gaussian distribution with standard deviation of 20 phenotypic units. We mutated each allele in

all 10,000 individuals by adding a random deviate, sampled from a Gaussian distribution with

variance σ2 = 17.3, and calculated M as the (co)variance of phenotypic deviations resulting from

allelic mutation. �e resulting M matrices were indistinguishable from those calculated above,

so the linear approximation method was used for all calculations below.

We also estimated theG-matrix of additive (co)variance and the epistatic (co)variancematrix

for the nine populations in each motif described above, using the animal model (Kruuk, 2004;

Wilson et al., 2010). Each population was evenly split into males and females, and 100 sires

were randomly mated to 10 dams each resulting in 1000 o�spring, with independent assortment

between loci. Using the resulting pedigree information, we obtained breeding values for indi-

viduals and population estimates of the G-matrix by �tting a generalized linear mixed model

with the R package MCMCglmm (Had�eld, 2010). Because our model includes no dominance

(alleles are purely additive within each locus) and no random environmental e�ects on pheno-

type, the population-level residual (co)variancematrix includes solely epistatic (co)variance. For

the random e�ects prior, we set the variance component equal to the phenotypic (co)variance

and set the parameter “nu” to 2. To the speed up convergence and chain mixing properties we

used parameter expandedmethods (Liu et al., 1998) with prior means for the working parameter

“alpha” set to (0,0) and variances set to 1,000 with zero covariance. For the residual e�ects prior,

we set the variance component of the inverse Wishart distribution to 1,000 along the diagonal

with zero covariance and nu to 0.002. We ran theMarkov Chain for 12,000 generations following

a 1,000-generation burn-in period, sampling every 25 generations to reduce autocorrelation.

Evolvability depends on mutational variation, so phenotypic space can be re-scaled by the

mutational distance between phenotypes. To the extent that adaptation is mutation-limited, this

re-scaling re�ects the “evolutionary distance” traveled during adaptation to a novel phenotype.

Mathematically, this distance between phenotypic values is the Mahalanobis distance scaled by

the local value of M, so that the inverse of M is a Riemannian metric tensor (Jost, 2008). We

created visualizations of mutation-scaled phenotypic space using an iterative algorithm for de-

forming a grid of bivariate phenotypes. �e algorithm�rst scaled the grid bymutational variance

along single phenotypic axes by multiplying distances from each point to its 4 nearest neighbors

by the square root of the corresponding diagonal elements of the inverse of M, estimated at
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each grid point as described above. It then incorporated mutational covariance by sequentially

adjusting the position of each point on the grid so that its Euclidean distance to its 8 nearest

neighbors (horizontal, vertical, and diagonal) matched as closely as possible to the Mahalonobis

distance between phenotypes, scaled by the local M-matrix. Code to perform this deformation

was written in R and is available from the authors.

2.3.3 Simulating divergent selection with gene �ow

We used R to create individual-based simulations to determine the e�ect of varying gene regula-

tory network motifs on adaptation under a model of divergence with gene �ow. Each simulation

replicate included two populations, each of size n = 2,000, exchanging migrants at rate m in an

island model (Wright, 1931). To initialize each population, we used the Phenotype-to-Genotype

equations (see Appendix a) to obtain the genotypic values α1 and α2 that correspond to a

phenotype of x1 = 300 and x2 = 300 for each network. We then generated allelic variation by

randomly drawing allelic values for each individual using a Gaussian distribution centered at

half of the genotypic value and with a variance of 200. We then imposed divergent selection

on the two populations by selecting toward two optimum phenotypes. �e phenotypic optima

for populations 1 and 2 were set to phenotypic points (x1 = 150, x2 = 450) and (x1 = 450,

x2 = 150), respectively. �us divergent selectionwas imposed along the axis representing negative

correlation between the two traits, and selection on the two populations was symmetrical in

terms of distance to the optimum and strength of selection.

We used a Gaussian �tness function to calculate individual �tness, w:

W = e−
1

2
(x−xopt)TΩ−1(x−xopt) (2.1)

where x is a column vector containing trait values, xopt is a column vector of phenotypic

optima for each trait, and Ω is a symmetrical 2x2 matrix describing the landscape of stabiliz-

ing selection, analogous to a (co)variance matrix. For simplicity, we assume equal strengths

of stabilizing selection for each trait (i.e. the diagonal elements of Ω are ω = ω11 = ω22) and

no correlational selection (ω12 = ω21 = 0). Individuals were randomly chosen to mate with a

probability proportional to their relative �tness (w W
Wmax

).
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O�spring randomly received one allele per locus from each parent, with independent assort-

ment between loci. �is process was continued, sampling with replacement from the parental

generation, until the new population’s size equaled the parental size, so that generations were

non-overlapping. During meiosis there was a probability µ that an allele mutates. In this case

the new allelic value was the sum of the original allelic value plus a random value centered at

zero with variance σ2 = 17.3. For these simulations µ was set to 0.01, so total allelic variance

introduced by mutation per generation per allele was 0.173. Note that this represents less total

mutational variance, but identical covariance structure, compared to the M-matrices calculated

above. Migration between populations followed mating. Individuals (from both populations)

were chosen to migrate with probabilitym, then pooled and redistributed randomly back to one

of the populations. To characterize the e�ects of network motif on adaptation, we simulated

10 replicates of population pairs for each motif for 1,000 generations with parameter values

m = 0.001 and ω = 10, 000. To explore the e�ects of selection strength and migration rate, we

simulated 10 replicates of population pairs for motif C across multiple parameter values (m = 0,

0.0001, 0.001, 0.01; ω = 1000, 10,000, 50,000). We ran these simulations for 20,000 generations

to characterize equilibrium levels of adaptation. For reference, at selection strengths of ω = 1000,

10,000, and 50,000, �tness of individuals 10 phenotypic units away from the optimum is 90%,

99%, and 99.8% of the �tness at the optimum, respectively. Initial selection during the simula-

tions was strong; mean-standardized selection gradients per trait (Hansen and Houle, 2008) for

the null motif at the initial population mean would be +/- 25, 2.94, and 0.60, respectively.

2.3.4 Quantifying genetic variation and adaptation

We estimated the G-matrix of additive genetic (co)variance at generations 50, 100, 500, and 1000

for the shorter simulations, and additionally at generation 20,000 for the longer simulations.

Before themating phase of each of these generations, we conducted a “side experiment” in which

100 sires were mated to 10 dams each to produce 1000 o�spring, and we estimated G using

MCMCglmm (Had�eld, 2010) as described above. Note that this pedigree data was produced

independent of �tness, and these o�spring were not those used for the next generation of the

simulation.
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We used several metrics to quantify adaptation and the structure of G during the course of

divergence with gene �ow. �e extent of adaptation was calculated as:

A = 1 −
Dopt,t

Dopt,ini
(2.2)

where Dopt,ini is the Euclidean distance between the initial starting position (300, 300) and

the phenotypic optimum, and Dopt,t is the Euclidean distance between a given population’s mean

phenotype at time t and its phenotypic optimum. Equation 2.2 represents a ratio where a value

of 1 can be interpreted as a population being well-adapted to its respective phenotypic optimum.

We quanti�ed aspects of G with four metrics (Jones et al., 2003): i) size Σ, calculated as the sum

of the eigenvalues, equal to the sum of the variance terms; ii) eccentricity or shape ε, calculated

as the smaller eigenvalue divided by the larger eigenvalue; iii) orientation φ, calculated as the

angle between the leading eigenvector gmax and the axis of x1, and iv) e�ective dimensionality

nD, calculated as the total variance divided by the leading eigenvalue (Kirkpatrick, 2009).

2.4 results

2.4.1 Genotype-phenotype map under simple network motifs

We modeled a set of six genetic regulatory network motifs (Figure 2.1). For all motifs, the

genotype-phenotype map was 1:1 at the level of genotypic values, although not allelic values (see

Appendix a). In the absence of any interlocus interaction (null motif; Figure 2.1F) each pheno-

type equaled the genotypic value at the corresponding locus. In all other cases, both pleiotropy

and epistasis were evident in the genotype-phenotype maps. Pleiotropy resulted from unidi-

rectional (motifs A and B) and bidirectional (motifs C, D, E) regulation between loci, because

the genotypic value at a single locus a�ected the expression levels of both loci. In contrast, the

nature of epistasis in allelic e�ects on phenotypes depended on the type of interaction. Negative

regulation led to linear contours on the genotype-phenotype map for the expression level of the

downstream gene – but note that where the contours are not parallel, the relationship between

multivariate genotypes and phenotypes is still nonlinear (e.g. Figure 2.1B,D; see Appendix a).

In contrast, positive regulation led to hyperbolic curved contours in the genotype-phenotype
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map for the downstream gene (e.g. Figure 2.1A). In both cases, the non-linearity in mapping

from genotype to phenotype for one or both traits indicates statistical epistasis; that is, the phe-

notype resulting from allelic substitutions at both loci di�ers from the expectation based on the

independent additive e�ects of the alleles considered separately (Phillips, 2008).

2.4.2 Landscape of mutational variation

We assessed the landscape of mutational variation using the M-matrix of quantitative genetics, a

(co)variance matrix of the phenotypic variation across multiple traits produced by mutation per

generation. �e motifs produced a wide range of mutational variance in each trait and, with the

exception of the null motif (F), correlation between traits (Figure 2.2). Moreover, M exhibited

striking variation across phenotypic space even when network motif and all other parameters

were held constant for all but the null motif. �e overall size of M – the total amount of pheno-

typic variance produced by mutation – varied across motifs as well as across phenotypic space

within motifs. �e magnitude of mutational correlation, and thus the e�ective dimensionality

of M, varied across phenotypic space for all but the null motif (Figures 2.1, a.1). �e sign of the

correlation also shi�ed under the negative feedback loopmotif (Figure 2.1C), leading to the most

extreme variation in dimensionality (Figure a.1C).

Although the network motifs exhibit strong functional epistatic interactions between loci

and statistical epistasis in the genotype-phenotype map, the patterns of (co)variance inM were

essentially the result of additive genetic (co)variance with only negligible epistatic (co)variance.

We estimated additive genetic and epistatic (co)variance for the two traits across phenotypic

space for each motif (Figures a.2, a.3). Matrices of epistatic (co)variance were much smaller in

totalmagnitude than theG-matrix of additive genetic (co)variance, and the pattern of covariance

was similar toG. Total epistatic variance represented a negligible contribution to total phenotypic

variance, such that narrow-sense heritability was greater than 0.99 for both traits in all motifs,

for those populations at the center of phenotypic space. Because additive variation contributes

most directly to the response to selection, the covariance patterns inM are predicted to have a

strong e�ect on adaptation to the extent that evolution is mutation-limited. If this is so, we can

get relative estimates of mean evolvability (Hansen and Houle, 2008) from M. �is also varied

widely across phenotypic space (Figure a.4).
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Fig. 1: Gene regulatory network motifs used in the current study. For each motif (A-F) a graphical description of the gene
regulatory network, the system of ordinary di↵erential equations used to relate genotypes to phenotypes, and a graphical
description of the genotype-phenotype map is given. Nodes in the networks represent gene products (i.e., phenotypes) xi :
i 2 {1, 2} and edges depict their dependencies within the network. In the equations, ẋi represents the rate of change of gene
product xi : i 2 {1, 2}; allelic e↵ects, ↵i; decay rate, �. Equations adapted from Gjuvsland et al. [?]. Contour plots for each
motif show the contribution of allelic values ↵1 and ↵2 to phenotype x1 (solid blue contours) and phenotype x2 (dashed red
contours).
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ẋ2 = ↵2

�
x1

�+x1

�
� �x2

1 2–+ +
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Figure 2.2: �e mutational (co)variance matrix M across phenotypic space. For each network

motif (A-F, labeled as in Figure 2.1), M-matrices for nine populations are plotted as 95%

con�dence ellipses around mutational variation produced per generation, scaled up by a factor

of 2.5 for visualization. Axes within each ellipse represent the �rst (thick line) and second (thin

line) eigenvectors, or principal components, of mutational variation.
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Because M varied across phenotypic space for all but the null model of network motifs, re-

scaling by mutational distance induced curvature in the phenotypic landscape (Figure 2.3). Note

that this re-scaled, curved phenotypic landscape may be best represented as an n-dimensional

manifold (for n traits) embedded in a higher-dimensional space, but the 2-dimensional projec-

tion of this manifold is shown in Figure 2.3. Phenotypic space was generally stretched for all

motifs relative to the null. Phenotypic space was also stretched, as expected, in directions of

positive correlation between traits in the case of negative gene regulation (Figure 2.3B,D) and

directions of negative correlation between traits in the case of positive regulation (Figure 2.3A,E).

�e extent of deformation varied across network motifs as well as across phenotypic space. De-

formation was particularly pronounced in regions of low genotypic value for the upstream gene

and high genotypic value for the downstream gene in positive regulation (upper le� corners in

Figures 2.3A,C, upper le� and lower right corners in Figure 2.3E). To the extent that evolution

is mutation-limited, these are predicted to be regions of phenotypic space in which adaptation

may be particularly constrained.

2.4.3 Adaptation under divergent selection

To test the e�ect of network-induced curvature in phenotypic space on trajectories of adaptation,

we simulated pairs of populations evolving from a common ancestor toward separate phenotypic

optima with migration between them, with replicate simulations to minimize stochastic di�er-

ences (Figure 2.4). Network motifs had a strong in�uence on both the rate and the trajectories of

adaptation. In terms of adaptation rate, most striking is the constraint on adaptation in the direc-

tion of negative correlation between traits when gene regulation is positive (Figures 2.4A,C,E).

�is corresponds to the reduced mutational variation and stretching of evolutionary distance

in these regions of phenotypic space illustrated in Figures 2.2 and 2.3. Conversely, adaptation

is relatively rapid under negative gene regulation (Figure 2.4D). Network motifs also produced

curved trajectories of adaptation through phenotypic space, most notably early in adaptation for

motif A and close to the optima for motifs B, C, and D. Curved trajectories represent the tension

between the orientation of directional selection and the orientation of additive genetic variation,

summarized by the G-matrix (Lande, 1979; Arnold et al., 2008). �e e�ects of mutational vari-

ation on adaptation rates and trajectories depend on G (Figure 2.4), and G in our simulations
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Figure 2.3: Phenotypic space re-scaled by mutational (co)variance for each motif. Phenotypic

values from 100-500 are represented as a grid that is deformed such that distances between

phenotypes, dµ, in this newdepiction represent equal amounts ofmutational variation. For visual

reference, the locations of the nine populations from Figure 2.2 are plotted as black dots in this

newmutational space. Note that this re-scalingmay cause the 2-dimensional phenotypic space to

curve outward into higher dimensions, but it is represented here as the projection of this curved

manifold onto a plane.
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was strongly a�ected byM. Adaptation was constrained when the major axis of M, and thus the

major axis of G, is perpendicular to the orientation of directional selection, and adaptation was

facilitated whenM and G align with directional selection.

To further explore the interactions among migration, selection, dri�,M, and G, we focused

on the negative feedback loop represented in motif C, extending the simulations of divergent

selection to reach equilibrium and varying strength of selection and migration rate. Motif C

showed striking di�erences in the degree and direction of mutational correlation across pheno-

typic space (Figure 2.2C).�is is expected to lead to regions of elevated and depressed evolvability

(e.g., compare upper le� and lower right regions in Figure 2.3C, respectively, and the two pop-

ulations in Figure 2.4C). As expected, we found that selection strength generally increased and

migration generally decreased both the rate and equilibrium extent of adaptation (Figures 2.5

and 2.6; Table 2.1). As seen in the trajectories of adaptation across all motifs (Figure 2.4), the

rate of adaptation toward the selective optimumwas lower in regions of phenotypic space where

mutational variance in the direction of selection was limited for the negative feedbackmotif, and

this e�ect was consistent across selection strengths and migration rates (Figures 2.5, 2.6, a.5,a.6,

a.7, a.8, and a.9). �us adaptation was slower in the phenotypic region around the optimum of

population 1 as opposed to the region around the optimum of population 2.

Re-scaling phenotypic space by mutational distance makes this di�erence clear: the two

populations are seen to travel roughly the same mutational distance over the course of 1000

generations, but the optimum of population 1 is simply farther away from the starting point

in mutational distance (Figure 2.7). Accordingly, the distance traveled in phenotypic space by

population 1 was much less than that traveled by population 2, despite the entirely symmetri-

cal directional selection, migration, and genetic dri� acting on each (Table 2.2). However, the

distance traveled by the two populations was much more similar in mutation-scaled space. In

fact, population 1 traveled farther in this re-scaled space, as a result of a steeper selection gradient

acting during the simulation because population 1 remained farther from its respective optimum

than population 2.

With weaker selection, genetic dri� had a larger e�ect, causing higher levels of variation

across replicate simulations (Figures a.5, a.6, a.7, a.8, and a.9). Over longer time scales, in the

case of weak selection, an equilibrium re�ecting dri�/migration/selection/mutation balance was
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Fig. 1: Gene regulatory network motifs used in the current study. For each motif (A-F) a graphical description of the gene
regulatory network, the system of ordinary di↵erential equations used to relate genotypes to phenotypes, and a graphical
description of the genotype-phenotype map is given. Nodes in the networks represent gene products (i.e., phenotypes) xi :
i 2 {1, 2} and edges depict their dependencies within the network. In the equations, ẋi represents the rate of change of gene
product xi : i 2 {1, 2}; allelic e↵ects, ↵i; decay rate, �. Equations adapted from Gjuvsland et al. [?]. Contour plots for each
motif show the contribution of allelic values ↵1 and ↵2 to phenotype x1 (solid blue contours) and phenotype x2 (dashed red
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ẋ1 = ↵1

�
1 � x2

�+x2

�
� �x1
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Fig. 1: Gene regulatory network motifs used in the current study. For each motif (A-F) a graphical description of the gene
regulatory network, the system of ordinary di↵erential equations used to relate genotypes to phenotypes, and a graphical
description of the genotype-phenotype map is given. Nodes in the networks represent gene products (i.e., phenotypes) xi :
i 2 {1, 2} and edges depict their dependencies within the network. In the equations, ẋi represents the rate of change of gene
product xi : i 2 {1, 2}; allelic e↵ects, ↵i; decay rate, �. Equations adapted from Gjuvsland et al. [?]. Contour plots for each
motif show the contribution of allelic values ↵1 and ↵2 to phenotype x1 (solid blue contours) and phenotype x2 (dashed red
contours).
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Fig. 1: Gene regulatory network motifs used in the current study. For each motif (A-F) a graphical description of the gene
regulatory network, the system of ordinary di↵erential equations used to relate genotypes to phenotypes, and a graphical
description of the genotype-phenotype map is given. Nodes in the networks represent gene products (i.e., phenotypes) xi :
i 2 {1, 2} and edges depict their dependencies within the network. In the equations, ẋi represents the rate of change of gene
product xi : i 2 {1, 2}; allelic e↵ects, ↵i; decay rate, �. Equations adapted from Gjuvsland et al. [?]. Contour plots for each
motif show the contribution of allelic values ↵1 and ↵2 to phenotype x1 (solid blue contours) and phenotype x2 (dashed red
contours).
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Fig. 1: Gene regulatory network motifs used in the current study. For each motif (A-F) a graphical description of the gene
regulatory network, the system of ordinary di↵erential equations used to relate genotypes to phenotypes, and a graphical
description of the genotype-phenotype map is given. Nodes in the networks represent gene products (i.e., phenotypes) xi :
i 2 {1, 2} and edges depict their dependencies within the network. In the equations, ẋi represents the rate of change of gene
product xi : i 2 {1, 2}; allelic e↵ects, ↵i; decay rate, �. Equations adapted from Gjuvsland et al. [?]. Contour plots for each
motif show the contribution of allelic values ↵1 and ↵2 to phenotype x1 (solid blue contours) and phenotype x2 (dashed red
contours).
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Figure 2.4: Evolution during 1,000 generations in response to divergent selectionwithmigration

across network motifs. Blue and red lines track the phenotypic means of the two populations

evolving toward selective optima at the blue and red points, respectively, averaged across 10

independent replicates for each motif. G-matrices are drawn as 95% con�dence ellipses at 4

time points (50, 100, 500, and 1,000 generations; darker ellipses denote more recent G-matrices).

Parameter values are m = 0.001, ω = 10,000, µ = 0.01, size of each population = 2,000.
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Figure 2.5: Extent of adaptation through time for the negative feedback network (motif C). Rows

denote di�erent selection strengths and columns denote either population 1 (le�) or 2 (right).

Within each panel are 5 di�erent migration rates between the two populations. Plotted is the

mean adaptation ratio across 10 simulated replicates for each parameter combination.
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Fig. 1: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation

Gene Regulatory Networks

Network Description Genotype–Phenotype Map
Motif 1

1 2+
+ +

ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 2

1 2–+ +
ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 3

1 2+
–+ +

ˆ̇x1 = �1
�
1 � x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 4

1 2–
–+ +

ˆ̇x1 = �1
�
1 � x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 5

1 2+
++ +

ˆ̇x1 = �1
�
x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

NULL

1 2+ +
ˆ̇x1 = �1 � �x1
ˆ̇x1 = �1 � �x1

Funding
This project was supported by the BEACON Center for the Study of Evolution
in Action (NSF DBI-0939454), the Institute for Bioinformatics and Evolutionary
Studies Computational Research Core, and grants from the National Center for
Research Resources (5P20RR016448-10), and the National Institute of General
Medical Sciences (8 P20 GM103397-10) from the NIH.

Results

m = 0.00
m = 0.00

m = 0.00
m = 0.

00

m
 =

 0
.0

0
m

 =
 0

.0
0

m
 =

 0
.0

0
m

 =
 0

.0
0

m = 0.00

m = 0.00

m = 0.00

m = 0.00

m = 0.00m = 0.00m = 0.00m = 0.00

m
 = 0.00

m
 = 0.00

m
 = 0.00

m
 = 0.00

m = 
0.0

0

m = 
0.0

0

m = 
0.0

0

m = 
0.0

0
m = 

0.0
7

m = 
0.0

7

m = 
0.0

7

m = 
0.0

7 m
 =

 0
.0

7
m

 =
 0

.0
7

m
 =

 0
.0

7
m

 =
 0

.0
7

m = 0.07

m = 0.07

m = 0.07

m = 0.07

m = 0.07m = 0.07
m = 0.07

m = 0.07

m
 = 0.07

m
 = 0.07

m
 = 0.07m

 =
 0

.0
7

m = 0.
07

m = 0.07
m = 0.07

m = 0.07

m =
 0.

13

m
 =

 0
.1

3

m
 =

 0
.1

3

m
 =

 0
.1

3

m
 =

 0
.1

3
m

 =
 0

.1
3

m
 =

 0
.1

3
m =

 0.
13

m = 0.13

m = 0.13
m = 0.13
m = 0.13

m = 0.13
m = 0.13

m = 0.13

m = 0.13

m
 =

 0
.1

3
m

 =
 0

.1
3

m
 =

 0
.1

3

m
 =

 0
.1

3

m = 0.13m = 0.13m = 0.13m = 0.13

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m = 
0.2

0
m = 

0.2
0

m = 
0.2

0

m = 
0.2

0

m = 0.20
m = 0.20
m = 0.20
m = 0.20

m = 0.20

m = 0.20

m = 0.20

m
 = 0.20

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m = 0.20m = 0.20m = 0.20m = 0.20

24.9

9.914
.8

Motif 1
Motif 2

M
otif 3

Motif 4

Motif 5

NU
LL

omega
  1000
 34000
 67000
100000

m = 0.00
m = 0.00

m = 0.00
m = 0.

00

m
 =

 0
.0

0
m

 =
 0

.0
0

m
 =

 0
.0

0
m

 =
 0

.0
0

m = 0.00

m = 0.00

m = 0.00

m = 0.00

m = 0.00m = 0.00m = 0.00m = 0.00

m
 = 0.00

m
 = 0.00

m
 = 0.00

m
 = 0.00

m = 
0.0

0

m = 
0.0

0

m = 
0.0

0

m = 
0.0

0
m = 

0.0
7

m = 
0.0

7

m = 
0.0

7

m = 
0.0

7 m
 =

 0
.0

7
m

 =
 0

.0
7

m
 =

 0
.0

7
m

 =
 0

.0
7

m = 0.07

m = 0.07

m = 0.07

m = 0.07

m = 0.07m = 0.07
m = 0.07

m = 0.07

m
 = 0.07

m
 = 0.07

m
 = 0.07m

 =
 0

.0
7

m = 0.
07

m = 0.07
m = 0.07

m = 0.07

m =
 0.

13

m
 =

 0
.1

3

m
 =

 0
.1

3

m
 =

 0
.1

3

m
 =

 0
.1

3
m

 =
 0

.1
3

m
 =

 0
.1

3
m =

 0.
13

m = 0.13

m = 0.13
m = 0.13
m = 0.13

m = 0.13
m = 0.13

m = 0.13

m = 0.13

m
 =

 0
.1

3
m

 =
 0

.1
3

m
 =

 0
.1

3

m
 =

 0
.1

3

m = 0.13m = 0.13m = 0.13m = 0.13

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m = 
0.2

0
m = 

0.2
0

m = 
0.2

0

m = 
0.2

0

m = 0.20
m = 0.20
m = 0.20
m = 0.20

m = 0.20

m = 0.20

m = 0.20

m
 = 0.20

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m = 0.20m = 0.20m = 0.20m = 0.20

0.10.2

0.5

0.7

Motif 1
Motif 2

M
otif 3

Motif 4

Motif 5

NU
LL

omega
  1000
 34000
 67000
100000

m = 0.00
m = 0.00

m = 0.00
m = 0.

00

m
 =

 0
.0

0
m

 =
 0

.0
0

m
 =

 0
.0

0
m

 =
 0

.0
0

m = 0.00

m = 0.00

m = 0.00

m = 0.00

m = 0.00m = 0.00m = 0.00m = 0.00

m
 = 0.00

m
 = 0.00

m
 = 0.00

m
 = 0.00

m = 
0.0

0

m = 
0.0

0

m = 
0.0

0

m = 
0.0

0
m = 

0.0
7

m = 
0.0

7

m = 
0.0

7

m = 
0.0

7 m
 =

 0
.0

7
m

 =
 0

.0
7

m
 =

 0
.0

7
m

 =
 0

.0
7

m = 0.07

m = 0.07

m = 0.07

m = 0.07

m = 0.07m = 0.07
m = 0.07

m = 0.07

m
 = 0.07

m
 = 0.07

m
 = 0.07m

 =
 0

.0
7

m = 0.
07

m = 0.07
m = 0.07

m = 0.07

m =
 0.

13

m
 =

 0
.1

3

m
 =

 0
.1

3

m
 =

 0
.1

3

m
 =

 0
.1

3
m

 =
 0

.1
3

m
 =

 0
.1

3
m =

 0.
13

m = 0.13

m = 0.13
m = 0.13
m = 0.13

m = 0.13
m = 0.13

m = 0.13

m = 0.13

m
 =

 0
.1

3
m

 =
 0

.1
3

m
 =

 0
.1

3

m
 =

 0
.1

3

m = 0.13m = 0.13m = 0.13m = 0.13

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m = 
0.2

0
m = 

0.2
0

m = 
0.2

0

m = 
0.2

0

m = 0.20
m = 0.20
m = 0.20
m = 0.20

m = 0.20

m = 0.20

m = 0.20

m
 = 0.20

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m
 =

 0
.2

0

m = 0.20m = 0.20m = 0.20m = 0.20

14
.937

.274
.411

1.6

Motif 1
Motif 2

M
otif 3

Motif 4

Motif 5

NU
LL

omega
  1000
 34000
 67000
100000

F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
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L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation

Gene Regulatory Networks

Network Description Genotype–Phenotype Map
Motif 1

1 2+
+ +

ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 2

1 2–+ +
ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 3

1 2+
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ˆ̇x1 = �1
�
1 � x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 4

1 2–
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ˆ̇x1 = �1
�
1 � x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 5

1 2+
++ +

ˆ̇x1 = �1
�
x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

NULL

1 2+ +
ˆ̇x1 = �1 � �x1
ˆ̇x1 = �1 � �x1
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F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 3: Sacchromyces cerevisiae genetic interaction network (left) and degree distribution (right).

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

a x2 x3 x4 x5 x6 x7 x8 x9 b

x1

=   (  )f  xy

local
minimum

local
maximum

local
maximum

local
minimum

local
minimum
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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Network Description Genotype–Phenotype Map
Motif 1

1 2+
+ +

ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
x1

�+x1
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� �x2

Motif 2

1 2–+ +
ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 3
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Motif 4
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1 � x2
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�
� �x2

Motif 5
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++ +
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�
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�
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ˆ̇x2 = �2
�
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�
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NULL
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fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.

1 2+
+ +

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

1 2–
–+ +

1 2–+ +

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

1 2+
++ +

1 2+
–+ +

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

1 2+ +

F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.

References

[1] S. Arnold, R. Burger, P. Hohenlohe, B. Ajie, and A. Jones, “Understanding the evolution and stability of the g-matrix,” Evolution, vol. 62, no. 10,
pp. 2451–2461, 2008.

[2] R. Lande, “Quantitative genetic-analysis of multivariate evolution, applied to brain - body size allometry,” Evolution, vol. 33, no. 1, pp. 402–416, 1979.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.

References

[1] S. Arnold, R. Burger, P. Hohenlohe, B. Ajie, and A. Jones, “Understanding the evolution and stability of the g-matrix,” Evolution, vol. 62, no. 10,
pp. 2451–2461, 2008.

[2] R. Lande, “Quantitative genetic-analysis of multivariate evolution, applied to brain - body size allometry,” Evolution, vol. 33, no. 1, pp. 402–416, 1979.
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Fig. 3: Sacchromyces cerevisiae genetic interaction network (left) and degree distribution (right).
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Fig. 1: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation

Gene Regulatory Networks

Network Description Genotype–Phenotype Map
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F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.

References

[1] S. Arnold, R. Burger, P. Hohenlohe, B. Ajie, and A. Jones, “Understanding the evolution and stability of the g-matrix,” Evolution, vol. 62, no. 10,
pp. 2451–2461, 2008.

[2] R. Lande, “Quantitative genetic-analysis of multivariate evolution, applied to brain - body size allometry,” Evolution, vol. 33, no. 1, pp. 402–416, 1979.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Institute for Bioinformatics &
 Evolutionary Studies

Genetic Regulatory Networks, G-matrices, and Adaptive Divergence
T y le r H e t h e r & P a u l H o h e n l o h e
D e p a rt m e n t o f B i o l o g y | U n i v e rs i t y o f I d a h o

Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation

Gene Regulatory Networks

Network Description Genotype–Phenotype Map
Motif 1

1 2+
+ +

ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 2

1 2–+ +
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�
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� �x2

Motif 3
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Motif 5
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation

Gene Regulatory Networks

Network Description Genotype–Phenotype Map
Motif 1

1 2+
+ +

ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 2

1 2–+ +
ˆ̇x1 = �1 � �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 3

1 2+
–+ +

ˆ̇x1 = �1
�
1 � x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

Motif 4

1 2–
–+ +

ˆ̇x1 = �1
�
1 � x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
1 � x1

�+x1

�
� �x2

Motif 5

1 2+
++ +

ˆ̇x1 = �1
�
x2

�+x2

�
� �x1

ˆ̇x2 = �2
�
x1

�+x1

�
� �x2

NULL

1 2+ +
ˆ̇x1 = �1 � �x1
ˆ̇x1 = �1 � �x1
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : P o l a r h i s t o g ra m s o f t h e s t a b i l i t y o f G ( l e f t ) , t h e d e g re e o f l o c a l a d a p t a t i o n ( m id d l e ) , a n d t h e a n g l e o f t h e m u t a t i o n l e �e c t s m a t ri x M ( ri g h t ) a c ro ss 4 le v e l s o f
m ig ra t i o n a n d 4 le v e l s o f t h e v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n ( l a rg e v a l u e s = w e a ke r se l e c t i o n ) a n d s i x re g u l a t o ry m o t i f s ( b l u e b o x ) . E a c h m e t ri c i s a v e ra g e d o v e r t h e
fi n a l 1 0 0 0 g e n e ra t i o n s a n d a v e ra g e d o v e r 1 0 s im u la t e d re p l i c a t e s . S t a b i l i t y o f G w a s d e fi n e d a s t h e c h a n g e i n a n g l e o f t h e l e a d i n g e i g e n v e c t o r o f G e a c h g e n e ra t i o n .
L o c a l a d a p t a t i o n i s w a s d e fi n e d a s t h e ra t i o b e t w e e n 1 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n p o p u l a t i o n s ’ p h e n o t y p i c m e a n s a n d 2 ) t h e E u c l i d e a n d i s t a n c e b e t w e e n
p h e n o t y p i c o p t im a ( i . e . , v a l u e s a p p ro a c h i n g 1 a re m o re l o c a l l y a d a p t e d ) . T h e a n g l e o f M i s t h e a n g l e b e t w e e n p h e n o t y p e 1 ’ s a x i s a n d t h e l e a d i n g e i g e n v e c t o r o f M.
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Fig. 2: LKB1 phosphorylates Thr-172 of AMPK↵ in vitro and activates its kinase activity.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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1 2+
+ +

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

1 2–
–+ +

1 2–+ +

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

1 2+
++ +

1 2+
–+ +

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

Phenotype 1

Ph
en

ot
yp

e 
2

G matrices

50 100 150 200 250 300 350

50
10

0
15

0
20

0
25

0
30

0
35

0

●

●

●

1 2+ +

F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Genetic networks lead to a variety of genetic
constraints

• Genomes are highly complex and interactive systems, with
expression of genes dependent upon the expression of other
genes; these “genotype to phenotype” networks cause genetic
correlations between phenotypes

• G, the matrix of additive genetic (co)variance in trait breeding
values, captures genetic correlations

• The shape of G depends on mutational input (the M matrix)
and the adaptive landscape [1] and can influence how
populations respond to novel selection regimes [2]

• Empirically, it is di�cult to quantify how regulatory network
architecture a�ects the evolution of G ; analytical solutions to
G evolution are also di�cult [1]

• Numerical simulations can shed light on how regulatory
networks a�ect the structure and evolution of G and the rate of
local adaptation

We simulate how gene regulatory networks
a�ect G and local adaptation

• We used R to simulate divergence with gene flow where
regulatory networks are explicitly modeled

• We simulate two populations, exchanging migrants at rate m,
evolving towards di�erent phenotypic optima; stabilizing
selection was modeled as a Gaussian fitness function with
variances �

• The “molecular phenotype” measured here was the equilibrium
expression level for each gene product (see blue box)

• We predict that G stability will depend on the network motif,
migration rate, and selection strength

• We also predict stable Gs will correspond to greater local
adaptation
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F i g u re : E v o l u t i o n o f G d u ri n g 1 0 0 0 g e n e ra t i o n s i n re s p o n se t o d i v e rg e n t s e l e c t i o n f o r a g i v e n g e n e re g u l a t o ry n e t w o r k. D a t a a re t a ke n a t 5 e v e n l y - s p a c e d t im e p o i n t s
f o l l o w in g s im u la t i o n b u rn i n ( 4 0 0 0 g e n e ra t i o n s ) , b e g i n i n g w i t h g re y e l l i p s e s a n d e n d i n g w i t h b l a c ke l l i p s e s . F o r e a c h G, a n e l l i p s e i s d ra w n c e n t e re d a t t h e p o p u l a t i o n
( b l u e o r re d ) m e a n w i t h t h e g re a t e s t d i s p e rs i o n o f b re e d i n g v a l u e s i n t h e d i re c t i o n o f t h e l o n g e s t a x i s . B l u e a n d re d d o t s d e p i c t t h e p h e n o t y p i c o p t im a f o r t h e b l u e a n d
re d p o p u l a t i o n , re s p e c t i v e l y . S h o w n h e re i s a s i n g l e re p l i c a t e f o r e a c h m o t i f w i t h p a ra m e t e rs : m = 0 , v a ri a n c e i n s t a b i l i z i n g s e l e c t i o n = 1 0 0 0 , m u t a t i o n ra t e = 0 . 0 5 ,
t o t a l p o p u l a t i o n s i z e = 5 0 0 d ip l o i d s .

Conclusions

Our results highlight how di�erences encoded in gene regulatory networks can a�ect the evolution of G and consequently the rate at which
populations reach their phenotypic optima. The results indicate that stability of G in and of itself is not a good indicator of adaptability:
motifs 2 and 4 had both high stability and high adaptability whereas motifs 1 and 5 had high stability but low adaptability. Regulatory
input from motifs 1 and 5 appear to constrain the orientation of G because G ellipses in these motifs are nearly orthogonal to the line
of divergence (except when selection was strongest). Thus, di�erent gene regulatory networks a�ect adaptability by a�ecting the sign and
magnitude of genetic correlations – pleiotropy and epistasis – between traits. Unexpectedly, we found that M also evolves in response to
divergent selection, suggesting that the genotype to phenotype map may be more dynamic than previously thought.
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Figure 2.6: Adaptive divergence for the negative feedback network (motif C). Each plot shows
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Table 2.2: Alternative distance metrics for quantifying the amount of evolutionary change over

the two 1000-generation evolutionary trajectories shown in Figure 2.7. Rescaled space uses theM-

matrix as a metric tensor, normalizing phenotypic change by the amount of mutational variance

along a trajectory. Populations 1 and 2 are those whose phenotypic optimum is at point (150, 450)

and (450, 150) in phenotypic space, respectively.

Population 1 Population 2

Euclidean distance traveled in phenotypic space 132.7 204.5

Total length of trajectory in phenotypic space 150.5 221.1

Euclidean distance traveled in rescaled space 64.8 57.9

Total length of trajectory in rescaled space 78.6 71.4
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Figure 2.7: Single simulation run for motif C, plotted in the re-scaled space shown in Figure 2.3.

Parameter values for this run are as in Figure 2.4.
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reached farther from the optimum for population 1 compared to population 2, particularly at

higher migration rates (Table 2.1).

�e G-matrix is a�ected not only by mutation but also selection and migration. For the

negative feedbackmotif (C), the structure of G varied widely across phenotypic space and across

simulation parameters (Table 2.1; Figure 2.6). In general, stronger selection produced smaller

G matrices (lower overall genetic variance; see Table 2.1), and higher migration rates shi�ed

the pattern of genetic correlation within populations so that the major axis aligned with the

direction of divergence between populations (Figure 2.6). G also varied strongly between the

two populations within simulations, showing the e�ect of variation inM across phenotypic space.

�us the tenuous balance between selection, migration, and mutational variance led to shi�s in

the sign of genetic correlation across multiple factors: phenotypic space, migration rates, and

strength of selection.

2.5 discussion

2.5.1 Curvature of the landscape of mutational variation

�eM-matrix of mutational variance and covariance plays a central role in quantitative genetic

models of multivariate evolution. M provides the ultimate source of additive genetic variation,

summarized by the G-matrix, which in turn determines the response to selection (Lande, 1979).

However, while increasing attention has focused on both empirically estimating G in natural

populations and gaining a theoretical understanding of its stability and response to evolutionary

forces (Arnold et al., 2008; Björklund et al., 2013), the M-matrix has received relatively less

attention in part because of the di�culty of directly measuring it (Houle et al., 1996; Houle, 1998;

Houle et al., 2010). One exception is Houle and Fierst (2013), who recently estimatedM for wing

traits in a set of inbredDrosophila lines subject tomutation accumulation. �ey found signi�cant

variation in M between lines, both in total size of M and in mutational covariance structure,

although some similarity inM was maintained across lines. While the functional genetic basis

of these wing traits is unknown, di�erences in mutation rates between the lines may account for

some of the di�erences inM, particularly overall size (Houle and Fierst, 2013).
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In the absence of shi�s inmutational rates or process at themolecular level, one way in which

M can evolve and di�er across genotypes or populations is through shi�s in the architecture of

genetic regulatory networks – for example, appearance or disappearance of regulatory connec-

tions between genes (Wagner and Altenbery, 1996; Lynch, 2007). An additional way is through

changes in allelic values and/or allele frequencies at loci that in�uence other loci in a regulatory

network. In this case, substantial additive genetic variation can be produced by mutation even

when genes have strong interactions at the molecular level of genes and their products, termed

functional epistasis (Stadler, 2000; Gibson andDworkin, 2004; Phillips, 2008). Here we explored

shi�s in the structure of mutational variation caused by functional epistasis with simple but ex-

plicit networkmotifmodels, holding the network architecture of regulatory connections constant

while allowing population variation in allelic values and frequencies. We found striking variation

in M at multiple levels, which in�uenced adaptation under divergent selection in simulation.

Our models lead to several conclusions about the e�ect of genetic regulatory network motifs on

mutational and genetic variation and on trajectories of adaptation.

First, we found that positive gene regulation produces more complex patterns of statistical

epistasis (Phillips, 2008) than negative regulation, illustrated by the hyperbolic versus linear

contours on the genotype-phenotype map (Figure 2.1). �is is consistent with the results of Gju-

vsland et al. (2007a), who found that positive regulation produces greater and/or more complex

patterns of statistical epistasis than negative regulation in a three-locus, one-trait networkmodel.

�is is also consistent with previous work showing higher mutational robustness resulting from

negative feedback (Acar et al., 2010; Paulsen et al., 2011; Denby et al., 2012).

Second, despite the functional epistasis modeled in the network motifs and the statistical

epistasis evident in the genotype-phenotype map, epistatic (co)variance at the population level

was negligible. Narrow-sense heritability was greater than 0.99 for both traits in allmotifs. �is is

in contrast to the results of (Gjuvsland et al., 2007a), who found moderate levels of epistatic vari-

ance across someparameter combinations in their networkmodel. Why the discrepancy between

statistical epistasis in the genotype-phenotype map and the lack of epistatic (co)variance at the

population level? It appears that the genotype-phenotype map for these models, while curved,

is smooth enough that within the phenotypic range of a population it is close to linear. �us

genetic variation within a population is nearly all additive. At this scale, pleiotropy maintains
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the key role in producing sometimes strong genetic covariance. As populations evolve across

phenotypic space in response to directional selection, statistical epistasis then results in shi�s

in the covariance structure of additive variation, but not a substantial contribution of epistatic

(co)variance.

�ird, we found that simple network motifs produce striking variation in patterns of muta-

tional variation, even when the mutational process is held constant at the allelic level. �e M-

matrix exhibits strong correlation as a result of network interactions, as expected. Moreover, the

total amount of mutational variation and the sign and degree of mutational correlation depend

also on the phenotypic mean, leading to variation inM across phenotypic space for a given net-

work. To the extent that evolution depends on genetic variation provided by mutation, variation

in patterns of mutational (co)variance e�ectively bends and stretches phenotypic space. �e

e�ect is analogous to the bending of space-time by gravitation under general relativity, so that the

inverse ofM acts as a Riemannianmetric tensor that can be used to integratemutational distance

along evolutionary trajectories (Figure 2.7, Table 2.2), analogous to inertial body trajectories in

gravitational �elds (Jost and Shaw, 2006). Compared to traditional metrics based on phenotypic

units, this type of analysis provides an alternative way of quantifying the pace of adaptation.

Re-scaling of phenotypic space by mutational distance is straightforward when the genotype-

phenotype map is 1:1, as it is for the simple network motifs examined here.

All network interactions that we examined stretched phenotypic distance overall relative to

the null model of no interaction. Phenotypic space was especially stretched in directions of

low mutational variance (i.e. axes of M with small eigenvalues). �ese axes of low mutational

variance correspond to directions in which phenotypic change is relatively small given some

amount of mutational input, i.e. axes of mutational robustness. �us network motifs di�er from

each other in mutational robustness, but motifs also induce di�erences in mutational robustness

both across phenotypic space and along di�erent axes of phenotypic change from a single initial

phenotype. �us the concept of mutational robustness, like genetic variation (Walsh and Blows,

2009), requires a multivariate view to provide explanatory power for phenotypic evolution.

Fourth, in our model the availability of mutational variation in the direction of selection con-

strains the speed of adaptation toward a selective optimum, curves the trajectory of adaptation

toward the optimum, and shi�s the position of the population mean under migration-selection
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balance. �e e�ect of genetic (co)variance, and by extension mutational (co)variance, on these

aspects of adaptation has been previously established (Jones et al., 2003, 2007, 2012). What is

new in the current results is the variation in this e�ect of M on adaptation across phenotypic

space. While the process of adapting toward a selective optimum can shi� the pattern of G given

constantM (Jones et al., 2004), our network model shows that the process of evolving through

phenotypic space can also shi� G because the population experiences di�erent M-matrices. In

addition, curvature in trajectories of adaptation caused by mis-alignment of G and directional

selection is the result of the orientation of M across phenotypic space.

Fi�h, some theoretical work has predicted that the major axis of the G-matrix in populations

experiencing gene �ow should align with direction of divergence between them, but this align-

ment depends on a balance with selection and migration rate (Guillaume and Whitlock, 2007).

Our results are consistent with this prediction, with the addition of network-induced changes

inM across phenotypic space shi�ing the resulting orientation of G as well. It is worth noting

that under weak selection, population 1 shows slightly higher rates of adaptation at intermediate

migration rates, compared to either higher or lower migration rates. �is may be an instance

of adaptive introgression; i.e. a low level of migration supplying genetic variation along the axis

of divergence between populations, which facilitates the response to selection (Guillaume and

Whitlock, 2007; Arnold andMartin, 2009; Abbott et al., 2013). Accordingly, the dimensionality of

G is highest at intermediate migration rates in this case (Table 2.1). More generally, attention has

focused on the question of the stability of G over time and among related taxa. Empirically,G is

observed to change over short time-scales (Björklund et al., 2013), but also retain some aspects of

its structure over longer time-scales and among populations (Arnold et al., 2008). Dri�, selection,

and migration are factors that can de-stabilizeG, and now we can add network-induced shi�s in

M across phenotypic space to this list.

2.5.2 Extension of simple network motif models

�e models above are most simply described in terms of two loci that regulate each others’ ex-

pression level under Michaelis-Menten-like kinetics. However, these network motifs are general

enough to apply to pairs of loci with multiple types of gene regulation (reviewed by Gjuvsland

et al. (2007a)), and also to two well-de�ned, interacting modules in a larger regulatory network.
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As larger regulatory networks are being empirically mapped, it is possible to abstract features of

these networks corresponding to suchhigher-levelmotif architecture, and tomap these aspects of

network architecture to phenotype (Tøndel et al., 2011). �is extraction of larger-scale network

motifs may suggest general features of mutational and genetic (co)variance that emerge from

genetic regulatory networks and that could impact adaptation. It remains to be seen to what

extent more complex networks can be approximated by much simpler network models in terms

of their in�uence on mutation and genetic variation, or what degree of network modularity

is required for this approximation. �e general modeling approach taken here could also be

directly extended to larger motifs, using more numerical methods in order to catalog the e�ects

of network architecture on mutational variation and evolutionary constraint.

Traditional quantitative genetics theory deals with epistasis as a source of genetic variation,

which is more limited than additive genetic variance in its ability to contribute to adaptive vari-

ation (Lande, 1979; Lynch and Walsh, 1998). However, combining epistatic interactions into a

single term obscures the wide range of functionally di�erent forms of epistasis. As we found

here, detecting little or no epistatic variance using variance decomposition methods may mask

relatively strong functional epistatic interactions at the level of gene regulation (Stadler, 2000;

Phillips, 2008). Despite the lack of epistatic (co)variance within populations, we showed that

functional epistasis can still have an impact on adaptation rates and trajectories. Integrating

a regulatory network view into the study of epistatic variance would help to link quantitative

genetic theory and models of phenotypic evolution to the emerging wealth of data from systems

biology (Gjuvsland et al., 2007a).

As described above, the genotype-phenotype map in this simple model is 1:1. �e actual

genotype-phenotype map for nearly any quantitative trait is certainly more complex, including

dynamic developmental pathways and interactions with environmental inputs, to the extent that

some suggest it may not be helpful to consider it as a “map” at all (Pigliucci, 2010; Travisano and

Shaw, 2013). Even simple network architecture can limit the ability of quantitative trait locus

(QTL) mapping, based on standard assumptions about the distribution of genetic variation, to

detect loci underlying a trait (Gjuvsland et al., 2007a). One approach around this issue is to

include network parameters directly in the mapping analysis (Wang et al., 2012). On the other

hand, it may be that in the case of large genetic regulatory networks with allelic variation at
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multiple loci, epistatic interactions average out and locus e�ects are largely additive, so that new

approaches to association mapping can indeed account for much of the observed heritability

(Allen et al., 2010; Yang et al., 2010).

Given its complexity, one may ask whether the concept of a genotype-phenotype map is

obsolete. We argue that it is not. Factors like network motif architecture, developmental pro-

cesses, and genotype-by-environment interaction certainly add layers of non-linear complexity

in the genotype-phenotype relationship. But in both functional studies and predictive models

of evolution, approaches can be used to partition these layers. At the phenotypic end, genotype-

by-environment interaction can be partitioned out by considering the “phenotype” to be a func-

tional response to environmental inputs – a set of function-valued traits (Kingsolver et al., 2001).

Network-based models can also explicitly incorporate phenotypic plasticity into the genotype-

phenotype map (Draghi andWhitlock, 2012). At the genotypic end, it may be possible to explain

a large portion of the e�ect of network architecture on relevant evolutionary features, such asM

andG, simply by summarizing complex networks as their canonicalmotif structure (Tøndel et al.,

2011). Explicit models of developmental pathways can also help to focus on particular layers of

the genotype-phenotype map (Mitteroecker, 2009; Félix, 2012). �ese relationships are clearly

di�cult to unravel, but rapid advances in technology allowing high-throughput empirical mea-

surement at multiple levels (e.g. genomic sequence, genetic andmetabolic network architecture),

as well as the promise of high-throughput methods at the organismal phenotype level (Houle

et al., 2010), may facilitate progress in revealing these connections between genotype, phenotype,

and evolutionary trajectories.

2.6 concluding remarks

Our models indicate that the architecture of simple network motifs can potentially have a strong

impact on adaptation. Network interactions lead tomutational covariance among traits, and this

covariance varies across phenotypic space. Moreover, despite strong patterns of both functional

and statistical epistasis, themutational covariance takes the form of additive genetic variation, so

it has a direct impact on the response to selection. �e e�ects of epistasis are observed in changing

the covariance structure of mutational and genetic variation as populations adapt toward novel
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phenotypes. As a result, several evolutionary properties – additive genetic (co)variance (the G-

matrix), the rate of adaptation toward a selective optimum, and the trajectory of adaptation – are

all essentially stretched and curved across phenotypic space.
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chapter 3

Directional selection on a simple genetic network leads to

stochastic adaptation, overdominance, and reproductive

isolation2

3.1 summary

Evolutionary biology has historically approached the genetics of adaptation from two perspec-

tives: (i) the genetic level, where the focus is on population dynamics and functional roles of

single genes, and (ii) the phenotypic level, where quantitative genetics provides a theoretical

base and empirical framework. �e connection between these perspectives lies in the inter-

action network among genes that a�ect a phenotype, but the scale of empirical networks has

been a barrier to understanding. Here we start to address two fundamental questions at this

interface: 1) How does network architecture a�ect the ability of complex phenotypes to evolve?

and 2) How does network architecture determine the repeatability of evolution? In this study

we expand upon previous models of gene regulatory network that connect motif architecture to

metrics of phenotypic variation based on classical quantitative genetics theory. Using simulation

modeling, we evolved populations to new multivariate phenotypic optima given two classes of

mutations: those in the consituitive allelic expressions of coding genes and those in the upstream,

cis-regulatory region. Mutations in the latter class e�ectively redraw the genotype-to-phenotype

map and so are expected to generate large jumps in phenotypic space. We con�rmed that these

large regulatory network changes are bene�cial early in an adaptive walk but become deleterious

when a population is at its optimum and evolving via stabilizing selection alone. We also found

that selection can favor “heterozygotes” in the network architecture under certain conditions.

�is overdominance can persist for millions of generations during which time the population

may become reproductively isolated from populations evolving in parallel while exploring their

holey adaptive landscape.

2Manuscript in preparation for submission to American Naturalist
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3.2 introduction

�e analysis of continuous trait variation has classically fallen into the realm of quantitative

genetics. While useful, early assumptions in quantitative genetics has simpli�ed the genetic

architecture of complex traits. Namely, there are many alleles a�ecting trait variation, each with

small, additive e�ects. But identifying the causal loci responsible for phenotypic diversity has

been di�cult under this paradigm, as evidenced by GWAS studies (for review, see Mckinney

et al., 2012). Indeed, genomes are more than just a collection of genetic material. �ey are highly

complex and interactive systems, with expression of genes dependent upon the expression of

other genes (Berg and Lässig, 2004).

�e interaction between genes, as well as each of the constituent genes’ additive e�ects on

phenotype, can be captured under a network theory paradigm (Mckinney et al., 2012). A gene

regulatory network (GRN) contains regulatory and signaling genes and the DNA sequences that

control their expression (Erwin and Davidson, 2009). �ese are directed graphs. For example, a

transcription factor protein created fromone gene transcriptionally regulates a downstream gene

(Milo et al., 2002; Babu et al., 2004). �e edge connecting two genes (i.e., nodes) therefore gives

a graphical representation of the epistatic interactions between them as well as the molecular

underpinnings of pleiotropy (Hecker et al., 2009; Phillips, 2008). With GRNs, pleiotropy and

epistasis, both of which widely occur in nature, can be explictly modeled to better predict how

populations might respond to various selection pressures.

Even simple GRNs, however, can result in complex evolutionary outcomes. For example,

Hether and Hohenlohe (2014) recently investigated how di�erent types of two-gene GRNs could

create curvature in the genotype-phenotype relationship. Speci�cally, they modeled 6 di�erent

two-gene interaction networks that range from no interaction between genes to negative feed-

back loops. Nodes in the networks and their interactions a�ected the continuous expression

level of the two genes. �ey found that network structure predictably in�uenced the direction of

mutational (co)variation and so produced a complex, curved genotype-phenotype relationship.

Moreover, when adaptation was mutation-limited, adaptation to a new optimum was fastest

when the direction of pleiotropy (i.e., the major axis of mutational covariation) was in line with

the direction of directional selection (β).
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For the above simulations, Hether and Hohenlohe (2014) disallowed any mutations in the

actual cis-regulatory modules and hence network architecture was �xed. However, it is rea-

sonable to assume that actual regulatory network structure can evolve over evolutionary time

(Erwin and Davidson, 2009). While mutations in the allelic values (i.e., nodes) of a network give

incremental and continuous changes in trait values (Hether and Hohenlohe, 2014), mutations

in the actual network (i.e., edges) may create evolutionary “leaps” in phenotypic space. �is

prediction has largely been unexplored empirically but predictions can be gained using Fisher’s

geometric model (Fisher, 1930; Orr, 2005). Brie�y, when populations are adapting to a new,

displaced multidimensional phenotypic optimum, selection favors small-e�ect mutations more

o�en than large e�ectmutations due to antagonistic pleiotropy. Under an adaptive walk to a �xed

optimum the distribution ofmutational e�ect sizesmight follow an exponential distribution (Orr,

1998, 2006). Under this scenario, large-e�ect mutations can quickly move a population closer to

its optimum and are so selectively favored early in the adaptive walk. However, these large-e�ect

mutations increasingly come at a cost as the population hones in on its optimumand this cost can

come in two forms. First, asmentioned above,mutations in genes can have pleiotropic e�ects that

are antagonistic. Second, assuming a diploid case with no dominance in the network regulation,

homozygotes genotypes of the derived regulatorymutationmay overshoot the optimumwhereas

only a single copy of the mutation (i.e., the heterozgyote) was the most �t. When allowing

regulatory mutations to co-occur with allelic mutations we would predict that mutations in the

former are selectively favored early in the adaptive walk while the contribution of small-e�ect

allelic mutations to be favored over longer timescales.

While Fisher’s model is useful in generating predictions of mutational e�ects �xed during

adaptation, it ignores epistatic interactions. Since evolving GRNs are inherently non-additive,

adaptation to a newphenotypic optimummight occur along a “rugged” �tness landscape (Wright,

1932). During adaptation in a rugged landscape, the local �tness peak that a given population

would reach would be contingent upon past random mutations that �xed early in the its history.

Such historical contingencies have been documented in Escherichia coli laboratory long term

evolution experiments (Blount et al., 2008) and in diversi�cation of three-spined stickleback

populations (Taylor and McPhail, 2000).
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�ere are several ways in which independent populations can evolve post-zygotic reproduc-

tive isolation. For example, in the Dobzhansky-Muller incompatibility (DMI) model, alternative

alleles can �x in 2 or more genes between allopatric populations (Bank et al., 2012; Lowry et al.,

2008; Fierst and Hansen, 2010). During a bout of secondary contact between these parental

populations hybrids may have reduced �tness since hybrid genotypes have not been tested by

natural selection (Dobzhansky and Dobzhansky, 1937; Muller, 1942). Empirical examples of

DMIs have been found in some model systems including Mimulus (Fishman and Willis, 2001),

Saccharomyces (Johnson, 2009), and others (Presgraves, 2010).

�e main limitation of the DMI model, however, is its dependence of �xation of alleles in

each parental population. Indeed, Unckless and Orr (2009) showed that when 2 populations

evolve to a similar phenotypic optimum, selection can favor identical alleles in each population,

precluding the formation of DMIs. Nevertheless, alternative models of epistatic interactions

show that reproductive isolation can readily form without the need for alternative alleles to �x in

di�erent populations (Wagner et al., 1994). In one example, Johnson and Porter (2000) showed

how reproductive isolation can form as a by-product of independently evolving populations expe-

riencing directional selection to identical optima. Speci�cally, theymodeled quantitative changes

in regulatory pathway binding e�cacy – not in regulation architecture itself – and found hybrid

incompatibility formed under a range of tested parameters when gene regulation contributed to

trait values.

Here we build upon networks models of Gjuvsland et al. (2007b) and Hether and Hohenlohe

(2014) to investigate the consequences of phenotypic adaptation when the underlying genetic

architecture consists of labile regulatory regions. We �rst examined the e�ects of jointly vary-

ing allelic and regulatory mutational rates on the adaptive trajectories to a new, multivariate

optimum. Second, we asked how the distance to a new phenotypic optimum a�ects network

evolution and reproductive isolation between pairs of population. We found a surprising result

over a broad range of parameters where heterozyote network architecture was selectively favored

and we further explore the stability of such overdominance in light of holey adaptive landscapes.

�ird, we identi�ed how the strength of stabilizing selection canmaintain reproductive isolation

over extended timescales (e.g., on the order of millions of generations).
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3.3 methods

We used a two-part approach to investigate the evolutionary consequences to evolving networks.

First, we modeled quantitative traits by adapting previously described analytical models of gene

regulation (Gjuvsland et al., 2007b; Hether andHohenlohe, 2014). �esemodels translate a given

individual’s multi-locus genotype to a pair of phenotypes, modulated by its particular genetic

architecture. Secondwe used stochastic simulations to quantify the di�erent adaptive trajectories

taken for replicate populations evolving to a new bivariate �tness optimum. Below we provide

details of each of these models.

3.3.1 �e network model

�e traits of interest are equilibrium expression rates of proteins. �e proteins themselves may

interact with one another as they can act like transcription factors. For example, in Figure 3.1

protein x1, which is transcribed from alleles at gene 1, is a transcription factor that activates

the regulation both alleles of gene 2, which in turn make protein x2. Note that the expression

rates of proteins x1 and x2 are also in�uenced by the nodal alleles for each gene (Figure 3.1).

For simplicity we ignore environmental variance and so the bivariate phenotypic value only

depends on the regulatory architecture of each gene and the allelic values at the nodes. We

consider diploid organisms here and the allelic contributions are additive in the sense that the

protein expressed both alleles contribute to the �nal equilibrium expression rate of a given gene’s

expression rate. We therefore have 4 alleles (from two genes) that can a�ect the expression of

proteins x1 and x2 for a given individual. �ere are 34 = 81 possible regulatory architectures and

so there are 81 di�erent systems of nonlinear ordinary di�erential equations (ODEs) that describe

the genotype-phenotype landscape (e.g., Figure 3.1B). Each ODE consists of the 4 allelic values,

αi j (the jth allele at the ith gene), the 4 regulatory alleles, and two additional parameters: θ, the

concentration of protein at which half of the maximum activation level is reached and γ, the

decay rate of the proteins within the cell. For simplicity we held both θ and γ �xed in the current

study (Table 3.1). All ODEs produced unique, stable equilibrium values for the expression rate

of proteins x1 and x2 when allelic values, θ, and γ are non-negative – a condition we �xed in the

simulations.
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Figure 3.1: Example network model used in the current study. In this network, circles represent

phenotypes and rectangles represent the underlying genes. �e phenotypic values depend (gray

arrows) on the input from the cis-acting regulatory elements (i.e., the Ri j values) and their

constitutive allelic values (αi js). Single headed, dotted, and blunt ended edges represent positive
(+), neutral (0), and negative (-) regulation, respectively. �e speci�c ODE describing this

network is given.
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Table 3.1: Description of parameters used in the simulationmodel. For each parameter the “core”

value is given and a as well as any range that was investigated.

Parameter Core Value Other Values Description
n_pops 1 2 Number of populations

N 1,000 none Number of individuals

g 10,000 up to 1e7 Number of generations

µC 0.0001 1e-05 - 0 Allelic mutation rate (per allele per

generation)

µR 0.0001 1e-05 - 0 Regulatory network mutation rate

(per allele per generation)

µV 10 none Allelic variance of allelic mutations

x(start)1 1,000 none Mean x1 phenotype of the starting
populations

x(start)2 1,000 none Mean x2 phenotype of the starting
populations

x(opt)1 200 200-1,000 Trait x1 optimum

x(opt)2 200 200-1,000 Trait x2 optimum

start_network* “0000” none Initial regulatory network architec-

ture

sV 1,000 10,000 Variance in stabilizing selection of

the bivariate Gaussian �tness func-

tion

θ 100 none Concentration of the regulatory at

which half of the maximum activa-

tion level is reached

γ 1 none Decay rate of protein products

*Initial regulatory network architecture for each of the four alleles i jkl where i and j are the
alleles at the �rst gene and k and l are the alleles at the second gene; -, 0, & + code for negative,

neutral, and positive regulation, respectively.
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3.3.2 �e evolution model

Parameters in the simulation model and their default “core” values are given in Table 3.1 and are

described in detail below. At the start of the simulation, each population was seeded withN = 103

individuals, each with no repression nor activation in the regulatory alleles (i.e., r11 = r12 = r21 =

r22 = ‘0’ for all individuals). Allelic values for each individual in a population were identical and

perfectly adapted to the original population with no standing genetic variation. We allowed each

population to evolve under the following life history cycle: viability selection, recombination and

mutation of gamete alleles.

For selection, we calculated �tness for each individual using a bivariate Gaussian �tness

function (Jones et al., 2003; Hether and Hohenlohe, 2014):

W = e−
1

2
(z−zopt)TΩ−1(z−zopt) (3.1)

where z and zopt are columnvectors for the trait values x1 and x2 and their optima, respectively.

�e diagonal components of Ω specify the variance in stabilizing selection around the pheno-

typic optimum and the o�-diagonal elements specify the covariance in stabilizing selection (see

Table 3.1 for defaults). �us, there is correlational selection when the o�-diagonal components

are nonzero. An individual survived if their �tness value was greater than a random number

drawn from a uniform distribution between 0 and 1. However, when individuals are far from the

optimum, as can occur in the beginning of the a simulation run in which the new phenotypic op-

timum is greatly displaced from the original, all individuals may have prohibitively low absolute

�tness values and this can cause populations to go extinct. We therefore invoke viability selection

by selecting on relative �tness w, (w = W
Wmax

).

Mating occurs at random amongst the surviving individuals within each population until the

number of o�spring reaches the carrying capacity, 103. Duringmating, parental gametes form by

taking into account recombination at rate r and allowing mutation of both allelic and regulatory

alleles at rates µC and µR, respectively. �e regulatory region of an allele is completely linked to

its coding region.
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3.3.3 Calculating hybrid incompatibility

Periodically throughout the simulation we perform a “side experiment” where we assess hybrid

�tness between a pairs of replicate populations. �e hybrids do not introgress in the main simu-

lation but are used only to assess hybrid incompatibility. Hybrids are formed by �rst randomly

mating parents from di�erent populations of origin with one another and then by recombining

andmutating gametes, using the same procedure described above. Absolute �tness of the diploid

hybrids is calculated from Equation 3.1. In cases where we looked at F2 hybrids, we randomly

mated individuals of the F1 generation using the same procedure above. Hybrid incompatibility,

I, is calculated by modi�cation to equation 6 of Palmer and Feldman (2009):

I =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 −
W̄hybr ids

W̄parents
, for W̄hybrids ≤ W̄parents

W̄parents

W̄hybr ids
− 1, for W̄parents < W̄hybrids

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(3.2)

�us, ourmetric of reproductive isolation, I, ranges from -1 (hybridsmuch�tter thanparents)

to 1 (parents much �tter than hybrids).

3.3.4 �ree simulation scenarios

We investigate 3 speci�c evolutionary scenarios. In the �rst scenario, we evolved replicate popu-

lations from point x1 = 1000, x2 = 1000 in phenotypic space to point x1 = 200, x2 = 200 and we

varied the rates of both types of mutations: regulatory and allelic. We were speci�cally interested

in how these two rates jointly a�ect adaptive trajectories, de�ned here as the population mean

Euclidean distance from the optimum in phenotypic space. Second, we investigated a particular

pair of mutation rates and asked if the adaptive trajectories were sensitive to the location of the

new phenotypic optimum. Here we were also concerned with the extent of reproductive isola-

tion, if any, that occurred and how distance to a new optimum a�ected the likelihood of hybrid

incompatibility. �ird, we investigated the long-term evolutionary dynamics of adaptation when

the phenotypic optimum was an intermediate distance away (at point x1 = 600 , x2 = 600) and

we kept the mutation rates the same as in scenario 2. �e so�ware developed for this simulation

is freely available at https://github.com/tylerhether/NetworkEvolution.

https://github.com/tylerhether/NetworkEvolution
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3.4 results

3.4.1 Phenotypic trajectories taken during adaptation to a distant optimum

To evaluate the phenotypic trajectories taken during adaptation to a distant optimum we sim-

ulated populations under a variety of mutational parameters. Overall we found that the rate

of adaptation to a distant peak depended on the relative contributions of regulatory and allelic

mutations (Figure 3.2). As expected, without regulatorymutations the rate of adaptation to a new

optimumwas gradual and populations approached the optimummore quickly as the allelicmuta-

tion rate increased (Figure 3.2). With regulatorymutations allowed, adaptationwas characterized

by large jumps in phenotypic space and that these jumps occurred early during the adaptive walk.

Under this scenario, all replicate populations stochastically settled on network architectures that

di�ered from the unconstrained, starting architecture (i.e., “0000”). Following these early large

jumps allelic mutations continued to increase population mean �tness at longer time scales by

incrementally adjusting the equilibrium expression levels (i.e., selecting for favorable mutations

in the αi js).

When regulatory elements evolved the rate of adaptation at longer timescales was contingent

upon the dominant regulatory network that evolved earlier in the population’s history. For ex-

ample, replicates that jumped closest to the optimum in the case of µC = 10−4 and µR = 10−4

(middle panel of Figure 3.2) did so evolving a negative, double dependency network (i.e., “- - - -”,

Figure 3.3A) which quickly moved the population close to its optimum. However, there was a

noticeable slow down in adaptation for these replicates relative to other network architectures

(Figure 3.3B-D).

3.4.2 Adaptation to other optima

We investigated how the distance to a new phenotypic optimum altered adaptive trajectories and

reproductive isolation. When the optimum was unchanged network architecture did not evolve

(upper right panel of Figure 3.4). In all other optima considered, however, changes in the network

architecture were favored. In general, selecting on a single trait resulted in replicates evolving

one or two di�erent network types but selecting on both traits yielded greater variability across

populations. For both short and distant optima, the homozygote derived allele in the network
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Figure 3.2: Summary of adaptive trajectories taken towards optimum x1 = 200, x2 = 200. For
each level of allelic mutation rate (columns) and regulatory mutation rate (rows) the population-

level mean Euclidean distance from the optimum is mapped for 50 replicate runs. Populations

were initialized at point x1 = 1000, x2 = 1000 and evolved towards a new optimum x1 = 200, x2 =
200. Colors denote the “dominant network” type (i.e., the network type that occur most frequent

at a given point in time).



41

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

00−−

00−000−0000−

000000000000

00−−00−−00−−

00−0

00000000

000−000−000−

0000

00−0

0000

000−

00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0
25

0
50

0
75

0
10

00

0 250 500 750 1000
x1

x 2

−−−−A

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000−−00−−00−−00 −000−0000−000−00−−00 −000−−00 0−00 00000−000−00−−00 0−00 000000000−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00−−00

−−+0

−−00

−−0+

−−++

−−+0

−−++

−−0+

−−00

−−0+−−+0

−−00

−−+0−−0+

−−00

−−0+

−−++−−++

−−0+−−0+−−0+

−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++

0−++

−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++

−−+0

−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++

0
25

0
50

0
75

0
10

00

0 250 500 750 1000
x1

x 2

−−++B

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

00−000−000−0000−00−0

00−−

00−0000−

00−−00−−

0000

00−−

00−000−0

00−−

00−0000−000−00−0000−

00−−00−−+0−− 00−−00−−00−−00−−00−−00−−

0+−0

0+−− 00−−

000−

00−−00−−

000−

00−−00−−00−−00−−
++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−− +0−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−++−−

0
25

0
50

0
75

0
10

00

0 250 500 750 1000
x1

x 2

++−−C


00+0
00000000
00+0
0000000000000000
000+000+
00++00++
00+0
0000
00+000+000+0
00++

00000000

00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++



++++0++++++++0++++++

00+++++++0++00++++++0+++0+++++++0+++00+++0++00++
++++++++++++0++++++++0+++++++0++0+++++++++++0+++0+++00++00+++0++++++0+++


00++0+++00++0+++++++00+++0+++0++00+++0++00+++++++0+++++++0++00++00+++0++0+++00++00++00++++++0++++0++++++0+++00++0++++0+++0++0+++0+++++++0+++++++0+++0+++0+++00+++++++0++00+++0+++0+++0++00++00+++0++0+++++++00++00+++0++0+++00+++0++00++0+++0+++00++00+++0++00++0++++0+++0++0++++0++00++++++0+++00++++++++++0+++++++++++0+++00++00++++++0+++++++00++0+++00++0+++0+++0++++0++00++0++++0+++0++0+++00+++0++++++0++++0++++++
00+++0+++0++00++00++00+++0++0++++++++++++0+++0+++0++0++++0++00+++0++0++++0+++0+++0+++0++0++++++++0+++0++00++00++++++
00++0+++0++++0++0++++++++0++0+++00++0+++0+++0+++00++0+++0+++0++++++++0+++++++0+++0++00+++0++00+++0++00++0+++0+++00+++++++0+++0++0+++00++00++00+++0++00++0+++0++++0++00++00+++0++00+++0++0+++0+++00++0++++0+++++++0+++0++00++00++++++00++0+++00++++++00++00+++0+++0++0++++++++0+++0++0+++00++00++00+++0++0+++00++0+++00++++++00++00+++0++++++00+++0++00++0+++0+++0+++++++++++00+++0++0+++00++00++00++0+++0+++0+++00++0+++0++++++++0++0++++0++00++++++++++00++00++0+++0+++00++++++++++++++00+++++++0++00++00++++++
00++

++++++++00++00++00++00++00++0++++0+++0++0+++00++00++00++00++00++00++00++0+++0++++0++00++00++00++0+++00++00++00++00++00++00++00++0+++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++00++

0
25

0
50

0
75

0
10

00

0 250 500 750 1000
x1

x 2

++++D

Figure 3.3: Speci�c examples of adaptive trajectories taken to a new, distant optimum. Shown

here are four replicate populations adapting from point x1 = x2 = 1000 to point x1 = x2 = 200 with
µC = µR = 0.0001 (i.e., middle panel of Figure 3.2). At each generation 30 individuals are plotted,

indicated by their network architecture. Above each panel the most frequent (“dominant”)

network architecture at generation 1000 is given. Concentric ellipses show the strength of

stabilizing selection (50, 75, & 95% of the (co)variance) and colors show the generation time

(orange = generation 1; purple = generation 1000).
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was favored and populations steadily adapted to their new optimum with the mean distance

from the optimum approaching zero. Interestingly, when the new phenotypic optimum was an

intermediate distance away from the original optimum the mean absolute �tness stalls. Such

stalling occurs when the highest �t individuals have only a single copy of a derived regulatory

allele at one or both loci (i.e., singly or doubly heterozygote advantage; purple shaded lines

in Figure 3.4). Moreover, these intermediate distances had a greater propensity to form high

reproductive isolation between replicate populations (Figure 3.5).

3.4.3 Persistent heterozygote advantage evolves as a byproduct of adaptation

To further investigate the heterozygote advantages seen in Figure 3.4 we evolved replicate pop-

ulations to an interminable distance (x(opt)1 = x(opt)2 = 600) for 10 million generations and

under varying selection strengths. We found that heterozygote network architecture persisted

throughout these scenarios and adaptive trajectories remained relatively steady for the �rst mil-

lion generations (Figure 3.6). Over longer timescales, mean distance from the optimum becomes

more variable and we saw that weaker selection resulting in a higher frequency of scenarios in

which the heterozygote advantage was replaced with another architecture.

In some populations the heterozygote advantages eventually collapses resulting in an overall

decrease in distance from the the optimum (i.e., an increase in mean population �tness). For

example, Figure 3.7 shows the allelic value composition of a speci�c replicate through time. In this

example adaptation leads to double heterozygote advantage network architecture. Allelic values

then diverge while keeping the mean absolute �tness steady (near W̄ABS = 0.25). �is divergence

is non-linear: small changes that result in increasing smaller neutral allelic values correspond to

disproportionally larger changes in allelic values for the heterozygote negatively regulated pair.

In this example, the dominant network architecture shi�s near 1.5 million generations in gene 2

(Figure 3.7B) and again shortly before 2 million generations for gene 1 (Figure 3.7A), ultimately

yielding a ‘++++’ architecture.

An examination of the regulatory allele and genotype frequencies at gene 1 in the above

example indicate long periods of stasis supplanted by a large shi� in network shortly before 2

million generations (Figure 3.8). A closer examination of these frequency changes at the shi�

point shows ‘-/0’ heterozygote advantage giving way to a ‘++’ genotype (Figure 3.9).
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Figure 3.4: Adaptative trajectories toward varying optima. For all replicates, populations were

initialized at point x1 = 1000, x2 = 1000 (upper right panel). Each sub-panel shows the adaptive
trajectories to a new optimum (columns and rows show the location of the new x1 and x2
optimum, respectively). Colors denote the “dominant network” type (i.e., the network type that

occur most frequent at a given point in time).
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Figure 3.5: F1 hybrid incompatibility between population pairs. At the beginning of the
simulation each population was initialized at point x1 = 1000, x2 = 1000 (upper right panel).
Each sub-panel shows frequency counts of F1 incompatibility for the �nal 100,000th generation
(20 replicate population pairs for each optimum). Columns and rows show the location of the

new x1 and x2 optimum, respectively).
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In other populations the mean distance from the optimum actually increases (Figure 3.6)

over time. Figure 3.10 shows a speci�c example. Here, the negative and neutral alleles in gene

1 again diverge but in the opposite direction than in the heterozygote collapsing example above

(Figure 3.7). In this reinforcement example its worth noting that the second gene also exhibited

a heterozygote advantage; however, the allelic values for the second gene remained unchanged

over the same time scale.

3.5 discussion

Networks are ubiquitous in nature and arise organically in all levels of biological organization.

While there is some overlap in speci�c network interactions between any given pair of taxa, the

amount of phenotypic diversity seen across the tree of life is evidence that network topology itself

changes over time. For example, sequence di�erences in the cis-regulatory module of the yellow

gene across Drosophila species is partially responsible for wing color pigmentation di�erences

and posterior abdominal coloring inmales (Gompel et al., 2005;Wittkopp et al., 2002; Jeong et al.,

2006; Erwin and Davidson, 2009). In the present study we modeled adaptation in multivariate

phenotypic space when the underlying phenotypic variation was governed by GRNs and our

results highlight some of the evolutionary consequences of evolving network architecture.

Fisher’s model was biologically grounded based on the observation that organisms are more

or less adapted to the environment in which they occur (Orr, 2005). In that scenario, most

mutations are deleterious and so large-e�ect mutations are not expected to be favored. In our

model we have two distinct classes of mutations – regulatory and allelic – and mutational e�ects

sizes in the former are larger than those in the latter. When the optimum is unchanged we see

no change in network topology (upper right panel of Figure 3.4), consistent with Fisher’s model.

�is model nevertheless misses some biological reality (indeed, all models, by de�nition, do).

Mainly, it underplays the importance of epistatic interactions and so the �tness landscape can be

thought of as a smooth surface (Orr, 1998, 2005). Our results instead show thatwhen a population

is displaced from its optimum, as can occur via a sudden change in the environment, short term

adaptation is aided by these large e�ect mutations in network structure (Figure 3.2), consistent

with a rugged �tness landscape.
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Figure 3.6: Long term adaptive trajectories toward an intermediate optimum (x1 = 600, x2 =
600) under varying selection strengths. For all replicates, populations were initialized at point

(x(start)1 = 1000, x(start)2 = 1000). Colors denote whether the “dominant network” type was

heterozygous or homozygous.
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Figure 3.7: A speci�c example of a collapsing heterozygote advantage over time. A) �e allelic

values for node 1 for 100 random individuals at each time point are plot. Colors denote a given

node’s type regulation, R1i (red, blue, and green show negative, neutral, and positive regulation,
respectively). B)�e second gene’s allelic values. In both panel A and B allelic values were started

at 500, which corresponds to the initial genetic and phenotypic values (see Table 3.1). C) �e

mean absolute �tness plotted through time.
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Figure 3.8: Broad scale view of the network shi� seen in gene 1 of Figure 3.7. Shown here are

the allele (le�most column) and genotype frequencies (all other columns) for gene 1 for every

10,000 generations. �e population was initially �xed for the neutral network.
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Figure 3.9: Details of the network shi� seen in gene 1 of Figure 3.7. Shown here are the allele

(le�most column) and genotype frequencies (all other columns) for gene 1 for every generation,

spanning the shi� in dominant network type. A deterministic model showing the heterozygous

equilibria for the two time points (dashed and dotted vertical lines) are presented in Figure b.1.
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Figure 3.10: A speci�c example of reinforcing a heterozygote advantage over time. Colors and

panel descriptions are identical as Figure 3.7. Note that this example is also a double heterozygote

advantage, as indicated by both negative (red) and neutral (blue) alleles co-occurring through

time at both nodes.
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Here we modeled regulatory mutations on the same orders of magnitude as allelic mutations

but this parametrization may seem unreasonably high. Indeed, genes that vary widely in their

epistatic e�ects are shown to evolve more slowly than smaller e�ect genes in yeast (Fierst and

Phillips, 2012). �ere are several di�erent avenues for which cis-regulatory mutations can occur,

including singe nucleotide mutations, indels, regulatory cassette shu�ing by transposable ele-

ments, and large scale genomic rearrangements (reviewed in Erwin and Davidson, 2009). We

argue that it is possible that regulatorymutations are occurring at a higher rate than realized since

they are selectively favoredmostly under cases of strong directional selection. When populations

are well �t to their environment these mutations might be so deleterious that an organism would

be nonviable early in development.

3.5.1 Historical contingencies

Looking across replicate populations we identi�ed a strong pattern of historical contingencies

under directional selection, which is a hallmark of a non-Fisherian, rugged landscape (Gavrilets,

2000). Speci�cally, during adaptation to a new distant optimum populations quickly “settled”

into di�erent network architectures. Further adaptation was facilated by allelic mutations, incre-

mentally changing the mean phenotypic values over time. Interestingly, we observed that the

longer term rate of adaptation (e.g., greater than 1000 generations) depended on which network

a given population discovered along the adaptive trajectory. Relative to no network evolution

(top row of Figure 3.2) some adaptive trajectories were ultimately slower even though initial

adaptation was very quick. �is tortoise-hare pattern makes sense in light of the direction of

mutational (co)variation. Mutations from a neutral network (“0000”) to a purely negative one (“-

- - -”) resulted in a large jump in phenotypic space, which was selectively favored early. However,

this negative network results in a negative mutational covariance (Hether and Hohenlohe, 2014)

which is roughly orthogonal to the direction of selection. In other words, most mutations that

occur in this network are not favored. �us, even though the regulatory mutation to a “- - - -”

architecture was selectively favored it slowed down the long term rate of adaptation (e.g., Fig-

ure 3.3A). On the other hand, regulatory mutations that that resulted in a “++++” topology have

a positive mutational covariation (Hether and Hohenlohe, 2014) and so more steadily adapted

compared to the “- - - -” dominated populations (e.g., Figure 3.3D). It should be noted that if the



52

direction of selection was some other pattern (e.g., β in the positive direction for both traits) the

“tortoise” and “hare” roles may be reversed.

�e degree of historical contingency depends on the the magnitude of directional selection

experienced following the environmental change (Figure 3.4). We saw the greatest variation in

distance from the optimumacross replicates that evolved towards an intermediate optimum. Our

GRNs incorporated input from two alleles at each locus. �erefore, a given network mutation,

if favored, will produce o�spring homozygote for the derived regulatory allele. In the case that

the phenotypic optimum is far relative to the regulatory mutational e�ect size, these derived

homozygotes will be favored and the new regulatory allele will sweep to high frequency in the

population. However, in cases where a single copy of the large-e�ectmutation is favored a pattern

of overdominance can form. Because there are more heterozygote genotypes than homozyogote

genotypes in our GRNs it follows that greater variability across replicates should form in pheno-

typic regions that promote overdominance.

3.5.2 Resolution of heterozygote advantages

�ere are many examples of overdominance in nature (Allison, 1954; Hollick and Chandler, 1998;

Freking et al., 2002; Gemmell and Slate, 2006) and we see this pattern form as a byproduct

to adaptation in our simulations. Interestingly this pattern was not stable (Figure 3.6). �e

collapsing of the heterozygote advantage that we see was always associated with an increase in

mean population absolute �tness. Since predicting how a homozygous optimum can be reached

when there exist high �tness heterozygous intermediates is not straightforward (Wagner et al.,

1994), in this section we discuss how such instability is selectively favored.

Consider a scenario such as the one in Figure 3.11A. Here a population begins far from its

optimum in allelic space for a single trait. Without regulatorymutations the population can adapt

through allelic mutations (e.g., top row of Figure 3.2) but this adaptation is relatively slow, at least

early on in the adaptive walk. A quicker way in which the population can reach high �tness is by

regulatory mutation. Such a mutation can be seen between Figure 3.11A and Figure 3.11B. �is

transition is another way of looking at the bene�t of the heterozygote advantage. Note that in

this example the allelic values did not change, which is a reasonable assumption given the short
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time scale at which they are selectively favored (Figure 3.2). �us, at the level of the allelic values

the �tness landscape itself changed.

�e allelic values in Figure 3.11B can evolve semi-independently along the nearly neutral

ridge of high �tness. While this is theoretically possible in the original genotype (Figure 3.11A)

selection and Mendelian segregation ensure that alleles are identical (α11 = α12) when the regu-

latory architecture is homozygous and the population is at peak �tness. In Figure 3.11B, instead

mutations in α11 are nearly neutral so long as there exists compensatory mutations in α12. We see

evidence of these compensatorymutations occurring in simulation (Figure 3.7A-B, Figure 3.10A).

�erefore, during the long stasis of overdominance, linked allelic values are walking the nearly

neutral �tness ridge.

If the population dri�s to the le� along this ridge the heterozygote advantage is reinforced

(e.g., Figure 3.10A). On the other hand, if a population dri�s rightwards along the ridge in

Figure 3.11B enough the heterozygote advantage will collapse (e.g., Figure 3.7A-B). Within a

given network type the ridges are nearly neutral; however, the regulatory mutation e�ects on

�tness need not be the same across the ridge. �is is because allelic values linked to their cis-

regulatory allele can further modify the expression rate. With enough allelic change one allele

might overtake the other.

Interestingly, in our example (Figure 3.7A) the regulatory allele that eventually dominated

(“+”) was not one of the alleles involved in the heterozygote advantage (“0” or “-”; Figure 3.8,

Figure 3.9). How is this possible? Panels B and C in Figure 3.11 have similar locations of ridges

but di�er by a the regulatory allele R12. In this example, the “+” regulatory allele arose several

times, failing to overtake until the last time (Figure 3.9). Once it did, there was a brief stable

period of a second (“-/+”) heterozygote advantage followed by �xation of the “+” regulatory allele.

Indeed, this brief ‘-/+’ heterozygote advantage in Figure 3.9 occurs near its expected equilibrium

frequency assuming a simple, deterministic model of selection with 3 alleles (Figure b.1; see

Appendix b for derivation). �us, whereas the �tness of both homozygotes in the “-/0” scenario

were low (W(00)
ABS ≈W(− −)

ABS ≈ 0.07) the �tness of the “++” homozygote was higher (W(++)
ABS ≈ 0.53).

�us, even though W(−0)
ABS ≈ 0.99 > W(−+)

ABS ≈ 0.78 genetic dri� eventually transitioned the

population to a di�erent �tness ridge (i.e., onemore akin to Figure 3.11C). Finally, allelic values α12

in the Figure 3.11C network intermediate evolved such that a “++” architecture was favored (i.e.,
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Figure 3.11: Fitness ridges for four types of networks used during the resolution of a speci�c

heterozygote advantage seen in simulation. For this example, the second gene’s regulatory values

were �xed for two “+” alleles. In each panel, the �tness is shown for a given pair of allelic values

at gene 1 given its cis-regulatory allele. Purple shading shows areas of high �tness. �e red dot
shows the location of the initial population in allelic space. �e black lines show combination of

α11 and α12 values that yield maximum �tness and the black dots shows were α11 = α12 along the
black line. For clarity, we set x2 to its optimum (x

(opt)
2 = 600) for each network type so that we

projecting a higher dimensional space into 2 dimensions.
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W(++)
ABS increased to 1). �erefore, breakdown of heterozygote advantage was due to populations

exploring the nearly neutral, “holey” �tness landscape (Gavrilets and Vose, 2005). Had selection

beenweaker (e.g., right hand side of Figure 3.6) the nearly neutral ridges would bewider allowing

for a greater degree of both ridge walking and genetic dri�.

3.5.3 Reproductive isolation

In agreement with what Johnson and Porter (2000) found, we did not observe any appreciable

F1 or F2 hybrid incompatibility under purely stabilizing selection (top right panels of Figure 3.5,

Figures b.2, b.3). We instead found that reproductive isolation evolves under directional selection

(Figure 3.5). Johnson and Porter (2000) also found that gradually directional selection facilitated

reproductive isolation because di�erent populations took di�erent evolutionary routes towards

the changing optimum. In the current study we imposed a sudden shi� in phenotypic optima.

�is shi� allowed for large e�ect, regulatory mutations to be favored early in adaptation which

contributed to reproductive isolation. Had the optimummoved slowly in our model, these large

e�ect mutations would not be stochastically �xed in di�erent populations and so reproductive

isolation would be unlikely.

Reproductive isolation in our model was associated with overdominance. Interestingly, we

did not �nd evidence of reproductive isolation forming between individuals with alternative

“pure” network architectures. �is seemingly counter intuitive result can be clari�ed by looking

at a speci�c example. Consider two individuals, a and b, with the following genotypes: a =

α11 = α12 = α21 = α22 = 350 R = ‘++++’, b = α11 = α12 = 300, α21 = α22 = 350 R = ‘00++’.

Both individuals and their o�spring would have the same pair of trait values (x1 = x2 = 600)

and so no reproductive isolation exists. Since the allelic values are identical for each gene at

the level of the individual (i.e., α(a)11 = α(a)12 ) and the second locus is �xed, only one o�spring

genotype is possible and the allelic values ‘balance’ out to the same phenotype as the parents. We

found that such balancing occurred in the pure networks (e.g., Figure 3.11A,D). On the other

hand, with overdominance the allelic values can dri� apart lending to more combinations of

genotypes that yield identical phenotypic values (e.g., Figure 3.11B,C). Consider two additional

individuals (c and d) that have identical network types but di�erent underlying allelic values: c

= α11 = 120, α21 = 680, α21 = α22 = 350 R = ‘-+++’, d = α11 = 480, α21 = 620, α21 = α22 = 350 R = ‘-
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+++’. In this example, the o�spring genotypes have reduced �tness (Table 3.2) even though their

parents have the same network topology. Importantly, since the overdominance we observed

can be unstable, reproductive isolation is also unstable. Over time, hybrid incomptability might

be reinforced via dri� or selection on additional genes or it may ultimately collapse (sensu the

ephemeral speciation model; Rosenblum et al., 2012).

3.6 concluding remarks

Our results highlight how relatively simple models of evolving regulatory network architecture

can produce stochasticity in terms of how populations respond to selection. Directional selection

preferentially favors large e�ect mutations early during an adaptive walk which translates to

variability in the “evolutionary solutions”. Finally, one of the important concepts in network

theory is robustness. If a given network is well connected, removal or damage of a single node

should not a�ect the system as a whole because other nodes in the network can compensate for

the lost or defective node. In our networks, the coding regions are nodes and the regulatory

regions are the edges that connect them. Perturbation of a node via randommutation can cause

the multivariate phenotype to shi�. However, compensatory mutations in the other node can

act to balance the network such that the phenotypic values are shi�ed back. Over time the

phenotypic means of a given population can remain unchanged but the underlying allelic values

can evolve via genetic dri� and reproductive isolation can transiently evolve as a by-product of

adaptation.
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Table 3.2: Example hybrid incompatibility between individuals with identical network

architecture. Shown here are the hybrid genotypes, phenotypes, and absolute �tness between

two parents (c and d) with identical GRN topology (‘-+++’). For all individuals the allelic and
regulatory alleles were �xed (α21 = α22 = 350, R21 = R22 = ‘+’). All other parameters were set to
their default values (Table 3.1).

Individual α11 α12 x1 x2 WABS

parent c 120 680 600 600 1.00

parent d 480 620 600 600 1.00

o�spring 1 120 620 547.7 591.9 0.25

o�spring 2 480 680 651.7 606.9 0.26
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chapter 4

Novel molecular and analytical tools for efficient

estimation of rates of meiotic crossovers and non-crossover

gene conversions3

4.1 summary

Meiotic recombination plays a central role in structuring genomic diversity. Further understand-

ing would bene�t from e�cient methods for directly measuring rates of recombination across

the genome, including crossovers and non-crossover gene conversion events. Here we describe a

Hidden Markov Model (HMM)-based approach to estimating recombination rates, based on ge-

nomic sequence data from haploid products of meiosis and diploid populations, both produced

by admixture between two genetically characterized parents. We validated this approach on simu-

lated low-coverage sequence data, andwe then applied it to an admixed yeast (Saccharomyces cere-

visiae) line produced by crossing two divergent parental strains. We used two di�erent genomic

sequencing techniques. First, we conducted low-coverage whole-genome sequencing of all four

spores from singlemeioses, produced by sporulating diploid F1 cells. Second, we appliedRADseq,

a reduced-representation genomic sequencing technique, both to spores from F1 individuals and

to diploid clones from the F6 generation of an intercross population. Genome-wide rates of

crossover (with or without associated gene conversions) and non-crossover were roughly equal,

and both displayed a strongly linear relationship with chromosome length. RADseq produced

just over one third as many markers as whole-genome sequencing, reducing its ability to detect

small-scale non-crossovers, although the two methods performed nearly equally in mapping

crossover events. However, RADseq is far more cost-e�cient than whole-genome sequencing,

particularly in library preparation, allowing many more samples to be genotyped for a given

budget. �e overall rate of recombination in the F6 diploids was lower than in the F1 spore

dataset, likely due to strong selection maintaining parental haplotype blocks in our intercross

3In review as: Hether T.D., Wiench C.W., and Hohenlohe P.A. Novel molecular and analytical tools for e�cient

estimation of rates of meiotic crossovers and non-crossover gene conversions. BMC Genomics
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line. Our genome-wide estimates for recombination rates largely agree with previous results in

yeast, and our methods provide an e�cient way of mapping recombination rate heterogeneity

speci�c to any admixed line. Our simulation and analysis so�ware is available as the R package

HMMancestry.

4.2 introduction

Meiotic recombination provides a crucial source of genetic variation by generating new combi-

nations of alleles across loci. Recombination plays a structural role during meiosis by aiding

and ensuring correct segregation of homologous chromosomes (Tsai et al., 2010; Anderson et al.,

2011; Lichten and De Massy, 2011; Kauppi et al., 2004). Recombination also drives patterns of

linkage disequilibrium and haplotype structure across the genome, determining the in�uence

of selected loci on neighboring genetic variants and a�ecting the power of mapping studies to

identify functional genes (Weir et al., 2005; Ott et al., 2015). As a result, much attention has been

given to studying how heterogeneity in recombination rate (e.g., hotspots and coldspots) a�ects

population genetic dynamics, phenotypic diversity, and variation in quantitative and disease

traits (Price et al., 2009).

While recombination can generate new haplotypes, it can also be associated with a loss of

genetic diversity via gene conversion (GC) (Szostak et al., 1983; Chen et al., 2007). Gene con-

version as a result of recombination can occur in two ways. First, during a crossover (CO),

where there is a reciprocal exchange of DNA between homologous chromosomes (Cole et al.,

2012), GC can create small chromosomal “tracts” that lack the typical 2:2 segregation pattern in

meiosis (Figure 4.1). Second, these GC tracts can occur without reciprocal exchange – known

as non-crossover (NCO) (Yanowitz, 2010). Since COs and NCOs appear to be the result of

di�erent double-strand break repair pathways, there has been recent interest in characterizing

their abundance, frequency, and location throughout the genome (Pâques and Haber, 1999; Qi

et al., 2009; Yanowitz, 2010; Cirulli et al., 2007; Mancera et al., 2008; Anderson et al., 2011).

One approach to measure GC tracts is to sequence or genotype many loci in each of the

four products of meiosis. Such an analysis is possible in yeast by sporulating diploid cells and

mechanically isolating and sequencing each spore of a tetrad (Sherman, 2002; Anderson et al.,
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Figure 4.1: Identifying a crossover-associated gene conversion tract from low-coverage sequence

data using a Hidden Markov Model. Shown here is a hypothetical chromosomal region across

the four products of a single meiosis (e.g., four spores in a yeast tetrad) in an F1 hybrid produced
by crossing two genetically characterized parents. For each spore, vertical black bars (le� y-axis)

show the number of sequence reads that match either one (positive values) or the other (negative

values) parent. Black lines (right y-axis) show the posterior probability of ancestry across genetic

markers, and colors represent inferred blocks of ancestry from either the red or blue parent. Note

the large gene conversion tract (3:1 red:blue ratio across the middle of the chromosomal region)

that is associated with a crossover event between spores 2 and 3.
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2011). Despite the recent reductions in sequencing cost, however, this tetrad dissection approach

can be costly because 1) high marker density is necessary to obtain precise size estimates of GC

tracts and locations of recombination hotspots and 2) libraries for four individual haploids need

to be prepared and sequenced for each meiosis event. For crosses between parental genotypes

that have a su�cient degree of genetic variation, a reduced representation sequencing approach

(e.g., restriction-site associatedDNAsequencing, orRADseq; Baird et al., 2008;Davey et al., 2011)

could bemuchmore e�cient in multiplexing large numbers of haploids, while keeping sequence

coverage at marker loci relatively high. A second approach is to reduce the overall sequencing

coverage for each individual. �e appeal of the latter approach is that one can sequence several

times more individual meiosis events to better estimate genome-level recombination rates and –

for haploid recombinants – more fully characterize gene conversions.

However, low-coverage sequencing introduces analytical challenges for mapping crossover,

non-crossover, and gene conversion events. At any given locus, missing data among the four

haploid products of meiosis make it di�cult to infer the segregation pattern. In diploids, low

coverage can lead to under-estimation of heterozygous genotypes. In addition, other factors can

lead to incorrect ancestry assignment at marker loci: ancestral polymorphism, mutation, and

sequencing error.

Recently, Hidden Markov Models (HMMs) have been used to probabilistically infer local

ancestry (hidden state) along a chromosome from the observed sequencing data in the face of

these challenges (for review see Liu et al., 2013). HMMs are computationally e�cient and highly

accurate in inferring local ancestry from sparse or error-prone data (Figure 4.1). For instance,

HMMmethods have successfully identi�ed local ancestry tracts in admixed human populations

(Price et al., 2009; Hu et al., 2013). One such program, SEQMIX (Hu et al., 2013), takes advantage

of low-coverage o�-target exome data to re�ne local ancestry from unlinked SNPs. �is program

and others focus on diploids, in which NCO and �ne-scale GC events are very hard to detect. In

order to obtain estimates of �ne-scale GC tracts it is necessary to infer local ancestry for haploid

gametes.

Here we develop and test an HMM-based inference method for identifying recombination

tracts (CO with GC, CO without GC, NCO, and telomeric GC) from low-coverage sequencing

of the four haploid products of meiosis in admixed individuals. We validate the method using
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simulated data. We apply it to two sequence datasets fromhaploid spores in yeast (Saccharomyces

cerevisiae): the �rst produced with low-coverage, whole-genome shotgun sequencing, and the

second with a novel modi�cation of the lower-cost, reduced-representation RADseq method

(Baird et al., 2008; Davey et al., 2011). We then test whether our estimates of all four types of

recombination di�er between these two sequencing methods and compare our maps of recom-

bination rates with previously published estimates in yeast. Lastly, we extend our HMMmethod

to map COs from low-coverage sequencing of diploids in an admixed population and apply it to

a sample of diploid F6 advanced intercross line (AIL) isolates. Our results give insight into the

frequency and genomic distribution of recombination rates without the need for high coverage,

whole genome sequencing. �e HMMs, recombination simulator, and the CO/NCO inference

algorithm that we describe have been implemented in the R package HMMancestry, which is

freely available online (https://github.com/tylerhether/HMMancestry).

4.3 results

4.3.1 Validation of Ancestry Inference Method Using Simulated Data

We developed a Hidden Markov Model (HMM) method for inferring chromosomal ancestry

and recombination events, calledHMMancestry, and validated it against simulated low-coverage

sequence data. We used the Forward-Backward algorithm (Durand et al., 2008) to assign pos-

terior probabilities of ancestry for each single-nucleotide polymorphism (SNP) locus along a

chromosome of an admixed individual. �is method infers ancestry at SNP positions that were

unobserved due to low sequencing coverage and is robust to missing or misleading genotypic

data. We also created amaximum likelihood (ML)method for estimating two global parameters:

the genome-wide recombination rate (ĉ) and the assignment probability (p̂). Recombination rate

ĉ (cM/kb) is multiplied by the physical distance between the �anking and focal SNPs to estimate

transition probability from one hidden state (ancestral haplotype) to another. �e assignment

probability p re�ects uncertainty in the assignment of each sequence read to a parental geno-

type, which can result from ancestral polymorphism, mutations a�er the admixture event, and

sequencing and mapping error.

https://github.com/tylerhether/HMMancestry


63

To examine the performance of our method in accurately genotyping loci, we simulated

meiosis events using a range of biologically and methodologically relevant parameters. We were

speci�cally interested in how accuracy, de�ned as the squared correlation coe�cient between the

inferred and the true states (Hu et al., 2013), changed with genome-wide recombination rate (c),

the assignment probability (p), ploidy, and mean sequencing coverage. UsingHMMancestry, we

simulated several meiosis events from known recombination and assignment estimates (c and p),

inferred these parameters (ĉ and p̂) by ML directly from the simulated data, and inferred local

ancestry at all SNP locations.

Overall, the Forward-Backward and ML estimator algorithms performed well in inferring

ancestral states across the genome from simulated low-coverage data. Across a broad range of

parameters, a sequencing coverage of about 1X per sample optimizes the accuracy of ancestry es-

timation versus the total sequencing e�ort (Figure 4.2). �is optimum level of coverage matches

that for estimating population-level allele frequencies (Buerkle and Gompert, 2013). �emedian

squared correlation coe�cient between known and inferred ancestral states for all simulated data

combined was 0.997. Model performance for haploids was better than diploids, but this e�ect

was most pronounced under extremely low coverage (e.g., 0.2X) and high recombination rate (1

cM/kb; Figure 4.2). As expected, increasing the assignment probability (i.e. reducing ancestral

polymorphism and sequencing and mapping error) also increased model performance.

We also tested the performance of our method to estimate genome-wide rates of recombi-

nation and genotyping uncertainty. Our ML estimate of recombination rate, ĉ, tended to very

slightly underestimate the true value under some parameters, including larger values of true c,

although this deviation remained 10 orders of magnitude smaller than the true value (Figure c.1).

Deviations of the ML-estimated assignment probability, p̂, from the true value were lower at

higher sequencing coverage and at higher true values of p, and our ML estimate was unbiased

(Figure c.2).

4.3.2 Algorithm to identify recombination events from haploid spore data

�e four products of meiosis in an F1 individual are expected to have a 2:2 segregation pattern of

parental chromosomes. Recombination events (CO with and without GC, and NCO GC) lead

to changes in the 2:2 segregation pattern along chromosomes and tracts of non-2:2 segregation
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replicates for each parameter combination.
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(e.g., 3:1 ratio of parental haplotypes). To map these recombination events using the inferred

blocks of parental ancestry in the four products of a meiosis event, we created an inference

algorithm in HMMancestry that uses a three-step classi�cation scheme (Figure 4.3). �e �rst

phase moves along a chromosome, identi�es the regions with unique segregation patterns, and

classi�es the ‘simple’ recombination events. If the focal region is non-2:2 and is located on the

end of a chromosome it is classi�ed as a telomeric GC. If the focal region is non-2:2 and is �anked

by 2:2 regions with identical or di�erent segregation patterns, it is classi�ed as a NCO or a CO

with GC, respectively. Second, the algorithm conducts another sweep along the chromosome to

resolve complex GC regions. We de�ne complex regions as regions of non-2:2 segregation (or

2:2 regions of less than 2.5kb) that are themselves �anked by one or more GC tracts. For each

of these complex tracts the algorithm identi�es whether the �anking 2:2 regions have identical

or di�erent segregation patterns and reclassi�es the complex tracts as either NCO or CO with

GC, respectively. �ird, the algorithm screens each chromosome for crossover events that lack

a (detected) GC event and classi�es them as CO without GC. For each inferred GC tract (CO

or NCO) we estimate the size of the tract as the distance between the outermost SNP locations

within the tract. For CO events without a detected GC tract, we calculate the size as the distance

between the two SNP positions �anking the change from one 2:2 segregation pattern to another;

in e�ect, this distance re�ects the maximum size of a GC event that could be associated with the

CO but be undetected given the scale of resolution in the marker set.

4.3.3 Estimation of recombination rates from haploid yeast spores

First we identi�ed parental SNPs between haploid oak isolate (YPS128) and haploid wine isolate

(DBVPG1106) strains of S. cerevisiae using whole-genome sequencing. We analyzed 5,674,883

PE250 reads across the two haploid parents before quality �ltering, retaining 5,550,596 (97.8%)

a�er quality �ltering. We merged overlapping paired ends when applicable. We found that 93%

and 87% of YPS128 and DBVPG1106 paired-end reads could be merged, as expected given our

targeted insert size (400 bps). We retained 70.9X and 80.9X coverage forYPS128 andDBVPG1106

haploid strains, respectively, and identi�ed 73,581 SNPs between the two parental strains. A�er

removing the 2-micron and mtDNA speci�c loci, we retained a �nal count of 73,294 total SNPs

that were diagnostic between the two parents.
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Figure 4.3: Inference algorithm used to infer crossovers, non-crossover, and telomeric gene

conversion events. Blue, grey, and purple boxes show classi�cations made in the �rst, second,

and third phases of the algorithm, respectively.
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We mated the above parental strains and whole genome shotgun sequenced all 48 meiotic

products from 12 independent sporulation events (we refer to this as theWGS dataset). ForWGS,

we sequenced a total of 4,714,686 PE250 reads. An average 90.6% (SD=2.7%) of reads could be

merged into a single read with a minimum overlap of 10 bps. A�er mapping these reads to our

SNP list (see above) we found an average of 62,470.3 informative SNPs (i.e., SNPs that had at least

one read mapped to it) per individual (range: 35,069 - 72,329). �e mean read coverage for these

informative SNPs for WGS samples was 2.8X (SD=0.9X; Table 4.1).

To test a more e�cient way of mapping recombination events across a large number of sam-

ples, we developed a modi�cation of the Restriction-site-Associated DNA sequencing (RADseq)

protocol (Baird et al., 2008; Ali et al., 2015). Our method increases the density of markers across

the genome compared to the existing RADseq protocol by digesting DNA with two enzymes

in parallel. From the reference genome sequence of yeast strain s288c (Cherry et al., 2012) we

estimated that 6,066 RAD loci would be produced by digesting genomic DNAwith two enzymes:

nsiI and pstI. We also estimated that 33,983 (46%) of the total SNPs would occur within 600bp of

each cut site. Note that our protocol is expected to produce a sequenced locus at nearly every site

adjacent to a single recognition site for either of these two enzymes, in contrast to other 2-enzyme

RADseq protocols (Peterson et al., 2012; Andrews et al., 2016). Brie�y, we split each sample in two

and digested the aliquots with either nsiI or pstI. Performing these digestions separately reduces

the bias in shearing e�ciency, a source of variance in coverage across loci, by producing larger

DNA fragments than would occur in a single 2-enzyme digestion (Davey et al., 2013).

We applied this modi�ed RADseq protocol to all 188 haploid spores from 47 meiosis events

(RAD), produced by sporulation of diploid yeast cells from a cross between strains YPS128 and

DBVPG1106 as above. We sequenced a total of 9,965,065 PE300 reads. We found an average of

60.8% (SD=2.0%) of read pairs across all 188 samples could be merged. �is was unsurprising

since RADseq prepared samples had a larger targeted inserted size of 400-600 bps than WGS

samples. Mean coverage for RAD was 3.9X (Table 4.1) and we identi�ed 22,304.8 informative

SNPs per individual on average (range: 7,918 - 32,193).

We applied HMMancestry to the WGS and RAD haploid spore datasets to estimate ancestry

at all 73,294 SNPs, identify chromosomal blocks of ancestry, and map recombination tracts. Our

ML estimates for assignment probability, p̂, were similar and high for both WGS and RAD



68

T
a
b
l
e
4
.1
:
S
e
q
u
e
n
c
e
a
n
d
S
N
P
in
fo
rm
a
ti
o
n
fo
r
e
a
ch
d
a
ta
se
t
u
se
d
in
th
is
st
u
d
y.
N
=
n
u
m
b
e
r
o
f
in
d
iv
id
u
a
ls
;
W
G
S
=
w
h
o
le
-g
e
n
o
m
e

se
q
u
e
n
c
in
g
;
R
A
D
=
R
A
D
se
q
o
f
h
a
p
lo
id
sp
o
re
s;
D
IP
=
R
A
D
se
q
o
f
d
ip
lo
id

F 6
sa
m
p
le
s.
M
e
a
n
n
u
m
b
e
rs
o
f
S
N
P
s,
re
a
d
s,
a
n
d
c
o
v
e
ra
g
e

a
re
p
e
r
in
d
iv
id
u
a
l
sa
m
p
le
.

D
a
ta

N
R
a
w
re
a
d
p
a
ir
s
m
e
a
n
S
N
P
s

ra
n
g
e
S
N
P
s

m
e
a
n
re
a
d
s
m
e
a
n
c
o
v
e
ra
g
e
S
D
c
o
v
e
ra
g
e

W
G
S
4
8

4
,7
14
,6
8
6

6
2
,4
7
0
.3

35
,0
6
9
–
7
2
,3
2
9

17
8
,5
8
3.
9

2
.8

0
.9

R
A
D

18
8

9
,9
6
5,
0
6
5

2
2
,3
0
4
.8

7,
9
18
–
32
,1
9
3

9
1,
9
55
.6

3.
9

1.
2

D
IP

9
6

4
,8
55
,1
9
3

2
7,
0
7
6
.1

8
,4
7
8
–
33
,3
54

9
3,
9
4
2
.1

3.
4

0
.7



69

datasets (Table 4.2). However, WGS contained a 55% higher estimated genome-wide recom-

bination rate ĉ than RAD. We used the inference algorithm in HMMancestry to map di�erent

types of recombination events and found an average of 160.1 recombination events per meiosis

event across the two datasets. WGS detected signi�cantly more recombination tracts on average

(199.7) than RADseq (151.3; F1,57 = 71.8; p < 1e − 11). �is increase in tract count for the WGS

dataset is a result of its higher marker density (Table 4.1) compared to RAD, which results in

�ner-scale detection of recombination events, and accounts for the higher estimate of overall

recombination rate ĉ. Accordingly, the WGS dataset contained signi�cantly smaller tracts for

all types of GC (K-S one-tailed test; Table 4.2; Figure 4.4). WGS detected more telomeric GC

and NCO tracts than RAD, and it also detected smaller-scale GC events associated with CO

than RAD (Table 4.2). Because WGS detected more small-scale NCO events, the WGS data also

contained a larger number of separate 2:2 tracts that would have been grouped together with the

lower marker density of RAD.

�e two sequencing methods detected similar numbers of CO events with and without GC

(Table 4.2; Figure c.3). Combining CO events with and without GC, RAD and WGS predicted

about 6.2 and 6.4 COs perMbp, respectively (Table 4.3), which was statistically indistinguishable

between the datasets (Pvalue for interaction between the number of COs and data type = 0.55).

We found a tight linear relationship between chromosome length and the average number of

both CO and NCO events in S. cerevisiae haploid spores (Figure 4.5; Table 4.3). On the other

hand, we found a striking di�erence in the number of NCOs per chromosome size between the

two datasets (Pvalue < 2e − 03), consistent with the failure of the lower marker density in RAD

to detect small-scale NCO tracts. For WGS, the rate of NCOs was similar to that of COs (7.1 per

Mbp) but much greater than the rate of NCOs found with RAD (4.0 per Mbp).

4.3.4 Estimation of CO rates in a diploid F6 population

We further extended the HMMancestry algorithms to infer parental ancestry in diploid individ-

uals, in which chromosomal blocks can be one of three possible states (i.e. homozygous for

one or the other parent, or heterozygous). We applied this method to map CO events in the F6

generation of an AIL between the S. cerevisiae strains YPS128 and DBVPG1106. We applied the

modi�ed RADseq approach described above to 96 diploid individuals and achieved a similar
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Figure 4.4: CO and NCO sizes for WGS and RAD datasets. Bars show the proportion of tracts

in each bin, normalized by the total number of each type of tract for each technique; see Table

4.2 for total counts.



72

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

CO

NCO

2.5

5.0

7.5

10.0

12.5

2.5

5.0

7.5

10.0

12.5

0.4 0.8 1.2
Chromosome Size (Mbps)

M
ea

n 
N

um
be

r 
of

 C
O

s 
an

d 
N

C
O

s 
pe

r 
te

tr
ad

Sequence Run

●

●

RAD

WGS

Figure 4.5: Mean number of CO andNCO events per tetrad as a function of chromosome length
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Table 4.3: Regression of the number of COs (with and without GC) and NCOs on chromosome

length in the WGS and RAD datasets.

Type Slope (events per Mbp) Intercept R2

CO | WGS 6.433 0.798 0.955

CO | RAD 6.183 0.5471 0.9822

NCO | WGS 7.118 0.1002 0.8504

NCO | RAD 3.998 0.4895 0.8066
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number of SNP markers and coverage level to the haploid RAD dataset (Table 4.1). While NCO

and CO-associated GC events cannot be distinguished from these data, we were able to map

CO events and estimate genome-wide recombination rates. �e maximum likelihood estimates

p̂ and ĉ were 0.999 and 5.6, respectively. Taking into account that the F6 diploids contained

an extra 5 rounds of recombination relative to either WGS or RAD, we observed a noticeable

decrease in the genome-wide recombination rate (1.1 cM/kb) relative to the haploid datasets.

However, this drop in apparent recombination rate may be the result of selection or assortative

mating in the admixed population. At the chromosomal level, large regions (i.e., up to 300 Kb)

were dominated by one or the other parental haplotypes with lower than expected heterozygosity

(Figure 4.6), in striking contrast to the mean 1:2:1 ratio that is expected to occur throughout the

genomewith complete admixture and neutrality. Inmany of these blocks we found that estimates

of recombination rates were much lower than in the haploid spores datasets. In some cases,

block boundaries coincide with hotspots of recombination identi�ed in both the haploid and

diploid datasets, but in other cases regions of elevated recombination rate do not correspond to

haplotype boundaries in the F6 population. �us, it appears that selection or assortative mating

is maintaining large blocks of homozyogous ancestry from one or the other parental strain, and

the boundaries of these blocks depend only in part on recombination hotspots.

4.4 discussion

4.4.1 Methods for inferring local ancestry with HMMs

Hidden Markov Models (HMMs) are commonly used to infer local ancestry across the genome

in admixed populations, and several related methods have been developed (reviewed in Liu et al.

(2013); Liang andNielsen (2014)). Some of the earliermethods (e.g., ANCESTRYMAP; Patterson

et al., 2004), have been combined with unlinked panels of ‘ancestry informative markers’ to

identify genomic regions associated with human diseases (e.g., asthma; Mersha, 2015). HAPMIX

(Price et al., 2009) takes advantage of haplotype information to infer local ancestry. With low-

coverage whole genome or reduced representation data, however, knowledge of speci�c haplo-

types can be di�cult to discern since many loci may be unsequenced across individuals. An-

dolfatto et al. (2011) developed a diploid HMM-based method for identifying COs from reduced
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Figure 4.6: Local ancestry and recombination rates in 96 diploid F6 individuals. Illustrated for
each chromosome is the recombination rate (y axis) as a sliding window average of cM per 5 kb

window (step size = 1 kb) in diploids (black). For reference, haploid inferred recombination rate

is plotted in purple. Values greater than 15 cM are truncated for clarity. Within each plot the

frequency of local ancestry is plotted with non-overlapping windows (5 kbp window size). Blue,

red, and green show the relative frequencies of YPS128 homozygotes, DBVPG1106 homozygotes,

and heterozygotes. �e red triangle on chromosome XV shows the location of a homozygote-

lethal locus (His3), engineered to ensure that the advanced intercross population remains diploid.
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representation sequencing data inDrosophila simulans that does not rely on phased data. As with

our approach, their method probabilistically assigns local ancestry and is capable of imputing

ancestry at loci that lack sequence coverage. �eir model had two tuning parameters: γ was used

for uncertainty in parental reference sequences and ε was used to incorporate sequencing error

based on Phred quality values. Our method incorporates both sequencing error and uncertainty

in reference strains into a single parameter, p, which is estimated from the data by maximum

likelihood.

Extending HMMancestry to other systems carries a few caveats. First, we assume equal ad-

mixture between two parental lines, meaning that in the HMM the initial state probabilities are

1:1 for haploids and 1:2:1 for diploids. Unequal admixture would deviate from this expectation,

but our method should be robust to this violation. Under the HMM, the posterior probabilities

of genotypes at the initial marker depend also on observed read counts at this marker as well as

across the chromosome, so that higher sequence coverage and a larger number of markers on

each chromosome easily overwhelms the e�ect of initial state probabilities.

Our method does not strictly account for sex chromosomes which can behave either like a

haploid or a diploid chromosome. However, there are two ways to infer ancestry at sex chromo-

some with our current method. In cases where phenotypic markers to distinguish sexes exists

one could use the appropriate HMM (e.g., if the organism is male, use the haploid algorithm).

Additionally, one could run both the haploid and diploid algorithms and compare the resulting

likelihood values in a odds ratio model comparison framework (Durbin et al., 1998). �e latter

approach can even be used to determine sex in the absence of other phenotypic markers.

Larger genomes require more computational e�ort for ancestry estimation, although the

HMMapproach remains highly e�cient. For a single simulated diploid chromosomewith 500,000

SNPs, HMMancestry estimated posterior probabilities and inferred ancestry in just under a sec-

ond using a 2.5 GHz Intel Core i7 Macintosh (running OS X 10.10.5). Computationally, we found

that both the haploid and diploid Forward-Backward algorithmswere 75-100 faster whenwritten

in C++ using the R package Rcpp (Eddelbuettel and François, 2011) than when written in R

alone (tested using microbenchmark with default settings; Mersmann, 2011) and thus we have

implemented this more e�cient version in HMMancestry. When scaling up to larger genomes

we found a near linear increase in computation time of the forward-backward algorithm with
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the number of loci. We also make use of R’s built in parallel package for increased computational

e�ciency during the ML estimating algorithm.

More complex models of recombination could be incorporated in the simulation functions

as well as the ancestry inference in HMMancestry. For instance, it would be possible to allow

for chiasma interference (Mancera et al., 2008; Zhao and Speed, 1996), or to allow two rates of

recombination rather than the single rate thatwe consider here (c) to account for genomic regions

with substantially elevated recombination (hotspots). Nonetheless, we were still able to identify

recombination hotspots across the yeast genome (Figure 4.6) even with a single transition rate

parameter in our HMM.

4.4.2 Genomic sequencing approaches

Our method of estimating recombination rates relies on genomic sequence data across a relative

large number of samples, and here we evaluated two sequencing techniques. Low-coverage

whole-genome sequencing (WGS) maximizes marker density with the potential to gather data

at every polymorphic site across the genome. Accordingly, with WGS we were able to detect not

only crossover events, but also small-scale non-crossover gene conversion events. Our modi�ed

RADseq technique is a reduced representation technique, leading to a lower marker density,

although our two-enzyme approach was successful in increasing the marker density above most

other RADseq protocols (Andrews et al., 2016). Nonetheless, RADseq was less able to detect

small-scale non-crossover events. �e primary trade-o� between methods is that roughly three

times the number of samples can be multiplexed in a sequencing experiment with RADseq

compared withWGS in order to achieve the samemean coverage across marker loci. Depending

on the goals of a study, statistical power may be improved by including more samples (i.e. more

meiosis events) rather than a denser marker set. A second major di�erence between the tech-

niques is in cost of library preparation. Whole-genome Illumina shotgun sequencing is typically

conducted using proprietary kits in which individual samples are not barcoded (i.e. ligated to

adaptors with speci�c nucleotide sequences that are used to identify individual samples in the se-

quence data) until near the end of library preparation. �e cost of this protocol typically exceeds

US$100 per sample. In contrast, RADseq ligates a set of custombarcoded adaptors to each sample

early in the protocol, and samples can then be multiplexed during the rest of library preparation
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(Andrews et al., 2016; Ali et al., 2015). Adaptor ligation to the single-strandedDNAoverhangs le�

by restriction enzyme digestion in RADseq also tends to be more straightforward than the blunt-

end ligation inWGS protocols. As a result, library preparation for RADseq is typically US$5 - 10

per sample, not including the initial one-time purchase of barcoded adaptors that can be used

across a large number of sequencing libraries. �us for an experiment sequencing hundreds

of samples, the costs of library preparation for WGS can dwarf the sequencing costs, while a

reduced representation method like RADseq is far more cost-e�ective, and library preparation

costs remain a fraction of sequencing costs.

4.4.3 Recombination rates in S. cerevisiae

�ere are two general approaches taken in estimating the recombination landscape by mapping

recombination events in a laboratory cross. �e �rst approach, tetrad analysis, has been used ex-

tensively for geneticmapping of thousands of genes (Cherry et al., 1997) and genotyping (Mancera

et al., 2008) all four individual products of meiosis in S. cerevisiae. �e main drawback of the

tetrad approach is that it only captures a single meiosis event per tetrad and all four spores

are required to infer CO rates. We found that this limitation can be overcome either by using

a sparser marker density or by lowering the overall coverage (or both) and using a HMM to

probabilistically assign ancestry to loci. �e second general approach to estimating recombina-

tion rates is serially mating advanced �lial generations and sequencing a subset of the progeny

(Illingworth et al., 2013). �is approach can be applied to a wide range of systems in which it is

di�cult to obtain the complete genotypes for all four meiotic products. Additionally, increasing

the number of meiotic generations increases the number of recombination events represented in

each sample, thus increasing the probability of detecting recombination hot spots and cold spots.

As with tetrad analysis, the use of a HMM can be useful by allowing lower sequencing coverage

and inferring blocks of ancestry. �e major drawback of this advanced intercross approach is

the inability to detect NCO events and other gene conversion information. In addition, multiple

generations of an intercross line may be subject to laboratory selection that can decrease the

apparent recombination rate, as we observed here in our F6 population.

Focusing only on CO events, we can compare across studies using di�erent methods to

estimate recombination rates in S. cerevisiae. Table 4.4 summarizes average rates of COs from
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a subset of published studies, highlighting the dependence of recombination rate estimates on

marker density. �e data fromMancera et al. (2008) have been reanalayzed 3 additional times, al-

lowing comparison of statistical methods as well. Our CO/NCO inference algorithm (Figure 4.3)

produced similar results asMancera et al. (2008)’s andAnderson et al. (2011)’smethods, but these

rates di�ered from Illingworth et al. (2013)’s estimate.

�e detection of NCO events depends more strongly on marker density, because NCOs are

relatively small (about 1kb on average; Table 4.2). Mancera et al. (2008) usedmicroarrays to geno-

type 51 tetrads, formed from crossing s288c with YJM789, with ca. 52,000 markers, intermediate

between our WGS and RADmarker sets. Overall WGS marker density was 41% larger than that

of Mancera et al. (2008) and we observed 87 NCOs per meiosis in WGS – 1.9 times the amount

detecting in Mancera et al. (2008). In our approach, recombination rate can also be estimated

from the transition rate parameter in the HMM. At the level of individual chromosomes our ML

estimates for transitionswere high (ĉRAD = 2.0 cM/kb, ĉWGS = 3.1 cM/kb, ĉDIP = 1.1 cM/kb). �ese

rates, however, correspond to transition rates between states along individual chromosomes and

not the CO rate per se. Because a CO is o�en associated with a detectable GC event (Table 4.2)

there can be two or more “recombinations” for every CO; similarly, every NCO event has at least

two transitions. �us, it is not surprising that our ML estimates of genome-wide recombination

are higher than previously reported rates or when considering the tetrad as a whole.

At the chromosome level we found a tight linear relationship between the number of CO

and NCO events and chromosome size (Table 4.3), which is consistent with previous work. Our

estimate of CO rate (6.2 per Mb for RAD; 6.4 per Mb for WGS) aligns with that of Mancera

et al. (2008) (6.1 per Mb), while our estimates of NCO density (4.0 per Mb for RAD; 7.1 per Mb

for WGS) were slightly higher than that of Mancera et al. (2008)’s (3.4 per Mb). We also found

that gene conversion tracts were generally longer when associated with a CO event than when

associated with a NCO event (Table 4.2).

Analysis of our diploid F6 AIL dataset (DIP) revealed a surprising result: many large blocks of

ancestry that were strongly biased towards one or the other parents (Figure 4.6). Several factors

could cause this striking pattern. Segregation distortion, deviation from the expectedMendelian

segregation ratio (Zhan and Xu, 2011), is unlikely to be the explanation. High rates of segregation

distortionwould create frequent non 2:2 segregation at theHis3 locus in our tetrad dissections for
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Table 4.4: Recombination rate considering only crossovers (cM/kb) per meiosis event in S.
cerevisiae

Method Rate Marker density Notes Reference(s)

Tetrad analysis 0.37 >2,600 genes genetic mapping Cherry et al. (1997, 2012)

Tetrad analysis 0.45 ca. 52,000 markers Microarray*** Illingworth et al. (2013)

Tetrad analysis 0.75 ca. 52,000 markers Microarray*** Mancera et al. (2008)

Tetrad analysis 0.78 ca. 52,000 markers Microarray*** Anderson et al. (2011)

Tetrad analysis 0.74 ca. 52,000 markers Microarray*** this study

Tetrad analysis 0.68 7,918 – 32,193 SNPs** RAD this study

Tetrad analysis 0.75 35,069 – 72,329 SNPs** WGS this study

F12 AIL* 0.17 52,466 SNPs 2-way cross Illingworth et al. (2013)

F12 AIL* 0.32 82,910 SNPs 4-way cross Illingworth et al. (2013)

F6 AIL* 0.88 8,478 – 33,354 SNPs** DIP this study

* Advanced Intercross Lines

** All 73,294 SNPs were used to infer COs, though the number of informative SNPs varied

across individuals.

*** Reanalysis of data originally published by Mancera et al. Mancera et al. (2008).
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the WGS and RAD datasets. Instead, we observed a high frequency of successful dissections in

which all four spores formed colonies and proper 2:2 segregation was observed (data not shown).

Could there be a high rate ofmisclassi�cation that leads to an excess of homozygotes? Simula-

tions show that at low sequencing coverage there is a greater propensity for our HMM tomisclas-

sify loci (Figure 4.2). We also found these few, misclassi�ed loci tended to be false homozygotes;

however, this e�ect is not associated with reduced coverage (Figure c.4), and is expected to be

dispersed across the genome instead of in large blocks. To con�rm this, we performed an ad hoc

simulation usingHMMancestry of 96 diploid individuals using the empirically derived estimates

of the WGS recombination pro�le (number of loci = 73,294, displacement between each SNP =

175 bp, c = 3.1, p = 0.993, coverage = 2.8X, frequency of COs = 0.51, frequency of conversion =

0.85, length of conversion = 1,920 bp). �ese simulated data showed that 70.7% of genotyping

errors were false homozygotes, but that the overall error rate was small (squared correlation =

0.998) and misclassi�ed loci rarely occurred adjacent to each other (Figure c.5). �erefore, the

large blocking pattern of pure ancestry that we see in the F6 AIL dataset is unlikely due to low

sequencing coverage or heterogeneous bias detected in the HMM.

It is possible that genetic dri� and (or) selection has occurred during the repeated rounds of

sporulation. Our sporulation protocol was designed to systematically cull haploid and diploid

cells lacking the HIS3/URA3 heterozygosity at the His3 locus (see Materials and Methods). Fol-

lowing each bottleneck, the remaining diploid cells were sporulated to induce sexual reproduc-

tion. �is process of selecting heterozygote diploids is expected to leave a selective pattern of

overdominance at the His3 locus, which is indeed what we observed (Figure 4.6). Despite grow-

ing this AIL in rich media, there may be strong selection for particular genotypes as a result of

our sporulation protocol that leads to large blocks of homozygosity across the F6 genomes.

4.5 concluding remarks

We developed and validated a set of methods for e�ciently estimating rates of recombination

events (CO and NCO GC). Our results demonstrate some heterogeneity in recombination rate

across the yeast genome, but overall a consistent pattern of the number of recombination events

across chromosomes. Further, we demonstrated that NCO GC events occur at roughly equal
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frequency to CO events. NCO events have important e�ects on how meiotic recombination

structures genetic variation in diploid populations and on linkage-based mapping approaches

(Slatkin, 2008; Lynch et al., 2014). However, they may o�en be overlooked because they are

more di�cult to observe empirically. We have shown that NCO tracts tend to be small, requiring

a dense marker set, and they typically cannot be detected in advanced intercross lines or diploid

samples. However, there are methods for estimating rates of gene conversion from population

genetic data inmodel organisms such as humans, although rate estimatesmay comewith high un-

certainty (Gay et al., 2007; Padhukasahasram and Rannala, 2011, 2013). Our results re-emphasize

the importance of considering both crossover and non-crossover recombination processes in

understanding linkage disequilibrium and the haplotype structure of genetic variation.

4.6 materials and methods

4.6.1 �e Forward-Backward Algorithm

Weused the Forward-Backward algorithm (Durbin et al., 1998) to probabilistically assign parental

ancestry to each locus. �is approach has four parts: 1) calculate the emission probabilities

2) calculate the forward probabilities 3) calculate the backward probabilities and 4) combine

forward and backward probabilities to infer the most likely ancestral state at each SNP.

For both the haploid and diploid variants of the Forward-Backward algorithm the input con-

sists of a vector of SNP locations along a chromosome and two vectors, k0 and k1, containing the

read counts of alternative parental alleles at each locus. We calculate the emission probabilities

for each locus i ∈ (0, 1, ..., I). �ese probabilities correspond to the probability of observing the

read counts given an underlying ancestral state, or the likelihood of each ancestral state at the

locus given the data.

For the haploid case there are two hidden states corresponding to ancestry from each parent.

For the diploid case there are three hidden states: two homozygous states for either parent and

one heterozygous state. �e emission probability for state j and locus i is calculated by:

e( j)i = (
n
k j
)pk j(1 − p)n−k j (4.1)
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where n is the sum of the number of sequence reads from both parents at SNP i. For the

haploid case and for homozygous states in the diploid case, p is the assignment probability (see

Introduction) and k j is the count of reads corresponding to parent j. For the heterozygote state,

p is set to 0.5. Equation 4.1 assumes that polymorphisms are biallelic (sequence reads that do

not correspond to either parental state are discarded) and there is no sequencing bias such that

one allele is more likely to be observed, and assignment errors at a heterozygous locus are equal

between parental alleles.

�e forward probabilities are calculated by starting at the �rst position of each chromosome

with equal probabilities for each state in the haploid case, and a 1:2:1 ratio of probabilities for

diploid states. For loci i = 2 through i = I of each chromosome we then recursively use the

following formula to calculate the forward probabilities. Using matrix notation, the vector of

forward probabilities across states at locus i is:

fi = Ei Ti fi−1 (4.2)

where Ei is a matrix with the emission probabilities (equation 4.1) for each state on the diago-

nal and zeros on the o�-diagonal,Ti is a 2-by-2 (haploid) or 3-by-3 (diploid)matrix describing the

transition (recombination) probabilities between states, and fi−1 is the forward probability at the

previous position along the chromosome (5’ of position i). To avoid under�ow (computational

issues with small probabilities) and to calculate the total log likelihood of the data, we rescale

the forward probabilities at each SNP by dividing each element of fi by the sum of whole vector

(Rabiner, 1989).

�e transition probabilities in matrix Ti are calculated for each SNP position and specify the

rate of transition from one hidden state to another. For haploids, the transition matrix is:

Ti =
⎛
⎜
⎝

1 − r r

r 1 − r

⎞
⎟
⎠

(4.3)

and the transition matrix for diploids recombinants is:
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Ti =

⎛
⎜
⎜
⎜
⎜
⎝

(1 − r)2 2r(1 − r) r2

r(1 − r) (1 − r)2 + r2 r(1 − r)

r2 2r(1 − r) (1 − r)2

⎞
⎟
⎟
⎟
⎟
⎠

(4.4)

where r in equations 4.3 and 4.4 is the probability of getting an odd number of crossovers be-

tween loci and is based onHaldane’s mapping function (Haldane, 1919; Kosambi, 1943; Gjuvsland

et al., 2007a):

r =
1 − e−2dc

2
(4.5)

where d is the physical distance (bp) between loci and c is the genome-wide recombination

rate (expressed here in terms of Morgans/bp).

�e backward probabilities are calculated in a similar manner, but in the reverse (i.e., 3’ to 5’)

direction. We assume that the backward probability at locus I is 1 for each state (i.e., we assume

the chromosome can end at any state). At each SNP position i ∈ (I − 1, l − 2, ..., 0) the vector of

backwards probabilities are given by:

bi = Ti Ei+1 bi+1 (4.6)

Lastly, the posterior probability that the hidden state at SNP i is j given the observed sequence

of read counts, X, is calculated as:

P(si = j ∣ X) =
f( j)i b

( j)
i

fibi
(4.7)

HmmAncestry returns these posterior probabilities. �is has the bene�t of retaining uncer-

tainty in the genotypic calls. For example, one could throw out genotypes where the posterior

probability was less than a speci�ed cuto� value. For our analyses, however, we simply called

the ancestral state by picking the highest posterior probability. In some cases the denominator

in equation 4.7 can be zero. �is rarely occurs unless under extremely low signal (i.e., sequence

coverage < 0.1X). Under those cases we omitted ambiguously assigned ancestry for that SNP.
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4.6.2 Numerically estimating the maximum likelihood parameter values

�ere are two parameters in the Forward-Backward algorithm that are speci�ed by the user: the

assignment probability, p, and the genome-wide recombination rate, c. �ese two parameters

can also be estimated in HMMancestry from the data using an ML approach. �e function has

a coarse and �ne scale method to estimate these parameters. �e coarse scale estimates the log

likelihood (LnL) of the data across a coarse grid of varying proposed p̂ or ĉ and the �ne scale

using a hill-climbing algorithm.

For the coarse scale, we picked the default number of grid points 5-by-5 = 25. �e distance

between p gridpoints was set to dx = 10−4; distance between c gridpoints was dy = 10−5. For each

parameter combination we ran the above Forward-Backward algorithm and obtained estimates

of the LnL calculated by summing up all the scaling factors at each SNP (Rabiner, 1989). We

picked the grid point that had the highest LnL.

For the �ne-scale step we performed a custom hill-climbing procedure as follows. We used a

two-variableNewton-Raphsonmethod to iteratively �nd better approximations to themaximum

LnL parameter estimates p̂ and ĉ. Speci�cally, we calculated LnL at four points dx and dy

distance away in the four cardinal directions, a point (x1 − dx , y1 − dy), and a new, proposed

point for iteration n + 1, calculated from the other points by:

(x , y)n+1 = (x , y)n −H−1▽ (4.8)

where (x , y)n is the vector of parameter values at iteration n,H is the Hessian matrix for the

likelihood surface L:

H =
⎛
⎜
⎝

∂2L
∂2x

∂2L
∂x∂y

∂2L
∂x∂y

∂2L
∂2 y

⎞
⎟
⎠

(4.9)

and▽ is the gradient in the x and y directions.

Initially, the distance between points (dx and dy) is identical to that of the coarse scale search.

If the proposed point has a higher LnL than all of the six pointswe accept it; otherwise, we pick the

point among the six that had the highest LnL. We repeat the above procedure for a maximum of

25 iterations. For each iteration n we decrease the distance between the six points by dividing the
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initial distance by the integer n. If the Euclidean distance between points identi�ed at iteration

n − 1 and n is less than a speci�ed tolerance level (here 10−4) we terminated the search. We

bounded the parameter space such that p̂ ∈ (0.5, 1) and ĉ > 0.

4.6.3 Simulations

For each simulation we considered a 250 kb chromosome with 1,000 loci spaced evenly. We were

speci�cally interested in how accuracy changed with ploidy, mean recombination rate, mean

sequencing coverage, and the assignment probability. For simulating meiosis events we used

HmmAncestry to simulate individual tetrads for a given ploidy, c, coverage, and p. We considered

haploids or diploids, three levels of recombination rate (0.1, 0.5, & 1 cM/kb, corresponding to a

map distance between adjacent SNPs of 0.025, 0.125, and 0.25 cM, respectively), ten levels of

coverage spanning 0.2X to 2X, and 3 levels of assignment probability (0.90, 0.95, & 0.99). For

each unique combination of parameterswe carried out 50 simulation replicates of 50 independent

meiosis events.

To simulate meiosis, we crossed two simulated parents. Each parent consisted of a vector

of zeros or ones at each locus such that the diploid F1 was heterozygous at each SNP position.

Recombination events between each pair of neighboring loci were randomly sampled using Hal-

dane’s mapping function (Haldane, 1919; Kosambi, 1943; Gjuvsland et al., 2007a) to produce a

vector of recombination events (0=no recombination, 1=recombination), where the length of

the vector was one minus the number of loci. During a simulated meiosis, parental chromatids

double creating two pairs of sister chromatids. We allowed recombination to occur between non-

sister chromatids. �is was done by starting at the beginning of the chromosome and crossing

over non-sister chromatids if the corresponding element of the recombination index was 1. For

all simulations described herein we ignored any possibility for a non-crossover events or gene

conversion events to occur.

�e results of the above algorithm give the true parental states at each locus and for each

chromatid. To simulate sequence coverage we sampled the total number of reads that map

to a given locus following a Poisson random variable with mean equal to the experimentally

varied coverage level. Next we simulated sequencing error; this was done by sampling from a

binominal distribution: X ∼ Binom(n, p) where n equaled the total number of reads and p is
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the assignment probability. �us, when p is very high (i.e., close to 1) most of the reads at a given

locus map to the correct parental state.

We then appliedHMMancestry to each simulation replicate. We estimated the genome-wide

recombination rate and assignment probability parameters and the parental ancestry at each

locus, taken to be the state with the highest posterior probability.

4.6.4 Yeast strains, crosses, and media

We crossed two heterothallic and haploid S. cerevisiae strains of opposite mating types to create

a diploid F1 progeny. Speci�cally we crossed YPS128 (mat α, ho△::Hyg, ura3△::KanMX; NCYC#

3632) with DBVPG1106 (mat a, ho△::Hyg, ura3△::KanMX; NCYC# 3596). �ese strains were

chosen because they crossed easily in the lab but are genetically distinct (Liti et al., 2009). Dis-

ruption of the homothallic switching gene, HO, was necessary for isolating and sequencing of

haploid recombinants. Details of these strains’ initial construction can be found in Cubillos et al.

(2009).

To create the haploid recombinants we sporulated F1 cells using the following protocol. We

harvested 1 mL of F1 cells grown in standard rich medium (Yeast Peptone Dextrose, YPD; Sher-

man, 2002) and washed cells in 1 mL of presporulation medium (Yeast Peptone Acetate; Codón

et al., 1995). We incubated cells in 1 mL YPA for 12-15 hours at 30C. Following the presporulation

incubation, we washed cells in SPO2 sporulation medium (2% KAc, pH 7; Codón et al., 1995).

We incubated cells in 1 mL of SPO2 in a roller drum placed in a chilled growth chamber at 22C

for 1 to 3 d. �is method generally produced high sporulation e�ciency (> 95% of cells formed

tetrads a�er 2 days).

Next we killed o� unsporulated cells and disrupted the asci of sporulated cells with a combi-

nation of heat and enzymatic perturbation. Following the 1 to 3 d incubation in SPO2 we chilled

the cells for 15 m at 4C. To kill any unsporulated cells we adapted a protocol from Khare et al.

(2011) used to kill unsporulated Schizosaccharomyces pombe cells. We placed 1 mL of chilled cells

in SPO2 into a 55C water bath for 30 m. To digest the asci we removed the supernatant and

resuspended cells in 40 µL of Zymolyase Solution (1 U/µL Zymolyase [MP Biomedicals] in 1 M

sorbitol) and incubated them in a 37C water bath for 15-20 m. We added 460 µL of dH2O to

stop the reaction dissected tetrads immediately using standard dissection techniques (Sherman,
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2002). Dissected cells were grown on YPD plates for 2 d at 30C and colonies were placed in 15%

glycerol and stored at -80C until DNA extraction.

For the haploidwhole genomedataset (WGS)we used the above technique to isolate 56 spores

(from 14 individual meiosis events). However, two spores from two separate tetrads (Tetrads

3 and 11) appeared to have diploid genotypes (data not shown) and so we report on only 48

haploids. �e most likely cause of this error was cross contamination during tetrad dissection.

To mitigate this issue we engineered strains using the protocol from Gietz and Schiestl (2008)

for the second sequencing run (RAD) so we can check for the presence of a 2:2 segregation

pattern at a single locus before sequencing samples. We disrupted His3 in DBVPG1106 (mat

a, ho△::Hyg, ura3△::KanMX) and replaced it with a functional copy of URA3 from an amplicon

from plasmid YEp24 (Struhl et al., 1979). Primers used to amplify URA3 and its promoter region

fromYEp24were designed so that the �anking ends had homology to genomicHis3. Oligos were

long enough so that they only occurred once in the genome. Speci�cally, the forward 90-mer

contained a 34 bp region of 5’ homology to genomic His3 and included the start codon (AAAT-

GAGCAGGCAAGATAAACGAAGGCAAAGATG) followed by 18 bp tag (GATGTCCACGAG-

GTCTCT), a 20 bp barcode (AATTCCGGGCATGCGGCCTT), and ended with a 18 bp region

of 5’ homology upstream of Ura3 in YEp24 (AGTAACAAAAGAGTGGTA). �e downstream

primerwas constructed similarly with a 34 bp regionwith 3’ homology of genomicHis3 including

the stop codon (CGTATGCTGCAGCTTTAAATAATCGGTGTCACTA), and 18 bp tag (CGGT-

GTCGGTCTCGTAGA), a 20 bp barcode (AACCTTGGCCGCTCGGTTCC), and �nally a 18 bp

region that has 3’ homology to YEp24’s Ura3 gene (CGATGCGTCCGGCGTAGA). We used the

resulting 1798 bp amplicon as the template for recombineering. Successful transformation was

con�rmed 2 ways. First, we selectively grew transformants onUracil dropoutmedium (Sherman,

2002) since the parental strain was prototrophic for Uracil. �e transformants grown on Uracil

dropout were unable to grow onHistidine dropout indicating that the cells that regain Uracil aux-

otropy simultaneously became prototrophic for Histidine. Second, we PCR ampli�ed the His3

region of a single transformant colony using forward primer TTCCACCTAGCGGATGACTC

and reverse primer TGATGCATTACCTTGTCATCTTC. �e native size of the resulting frag-

ment is about 900 bp while the size of a properly placed integrated fragment was about 2 kb. We

choose one transformant (DBVPG1106mat a, ho△::Hyg, ura3△::KanMx his3△::URA3) that met
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the above criteria tomate with YPS128 (mat α, ho△::Hyg, ura3△::KanMX, HIS3+). �e resulting

F1 progeny are genetically identical to the F1 progeny of the WGS except for their heterozygosity

at His3.

For RAD we dissected 188 spores from 47 meiosis events using the modi�ed diploids de-

scribed above. For each tetrad we con�rmed a 2:2 segregation pattern at His3 gene by selectively

growing each spore onUracil dropout andHistidine dropout. �e 2:2 segregation wasmutatively

exclusive (i.e., the 2 spores that grew onUracil dropout could not grow onHistidine dropout and

visa versa).

4.6.5 Library preparation and sequencing

Yeast samples were grown up overnight in YPD. A�er at least 24 h growth, approximately 1.5

mL of overnight culture was harvested and DNA was extracted using the Gentra Puregene kit

for yeast (Qiagen #158567). DNA samples were quanti�ed using Quant-It High Sensitivity kit

(Q33120) and a subset of samples were haphazardly ran on a 1.5% agarose gel to ensure high

quality. For PAR and WGS, samples were submitted to the Institute for Bioinformatics and

Evolutionary Studies’ Genomics Resources Core Facility at the University of Idaho for whole-

genome shotgun library preparation and sequencing (PE250 MiSeq).

For RAD and DIP, we followed the protocol of Ali et al. (2015). A total of 150 ng from each

sample were standardized to a concentration of 5 ng/µL, then divided in half, with each half

being digested by either 0.7 U of nsiI (NEB #R0127S) or 1.5 U of pstI (NEB #R3140S) for 1 h

at 37C and 20 m at 65C. Each restriction digest included 1X concentration of Cutsmart bu�er.

A�er digestion, samples were barcoded, in parallel, with adapters including both a sticky end

compatible with pre-existing restriction enzymes and an sbfI cutsite to facilitate DNA liberation

from streptavidin SPRI beads (see Ali et al., 2015, for BestRAD adapter sequences). Two µmol

adapter was ligated onto each sample using 320 U of T4 DNA ligase (NEB #M0202M), 1X NEB-

u�er 4 (NEB #B7004S), and 0.016 µmol rATP (�ermo Fisher #R0441) and incubated for 1 h at

20C and 20 m at 65C. Approximately 7 ng DNA from both restriction-enzyme treatments from

each sample were pooled en masse, puri�ed using 1.2X Ampure (Beckman Coulter #A63881)

beads, and sonicated for approximately 700 bp fragments using a Covaris M220 ultrasonicator

at the Institute for Bioinformatics and Evolutionary Studies. Sheared DNA was incubated with
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1X Dynabead M-280 Streptavidin magnetic beads (Invitrogen #11205D) for 20 m at room tem-

perature and washed �ve times using 1X Binding and Wash bu�er (5 mM Tris-HCl; 0.5 mM

EDTA; 1 M NaCl). DNA + streptavidin beads were washed once with and resuspended in 1X

NEBu�er 4 prior to restriction digestion with sbfI-HF (NEB #R3642L) to liberate DNA from the

streptavidin beads. A�er DNA liberation, we used NEBNext Ultra DNA Library Preparation

with the following modi�cations: we used 3.75 µmol of Truseq Adapters for Illumina in lieu of

the NEBNext Adapters and omitted the USER enzyme step during the adapter ligation. To size

select our library we used AMPure beads to select for 500-700 bps. To ensure that the library was

in our desired size range and that the TruSeq adapters were ligated on correctly, we did a “test”

PCR under the following conditions: 98C for 30 s; (98C for 10 s; 60C for 30 s; 72C for 30 s) x 19

cycles; 72C 5 m. Nineteen cycles ensured enough product to visualize library on a gel to verify it

was in the desired size range. Final sequencing libraries had the same PCR pro�le but with fewer

cycles (12). Post PCR, libraries were equimolarly pooled to a �nal concentration of 10.5 nM and

sequenced at the Genomics Core Facility in the Institute for Molecular Biology at the University

of Oregon.

4.6.6 Bioinformatic pipeline

A major advantage of HMMancestry is that the input format, a data frame specifying the allele

counts for each parent/population at each SNP, is relatively simple and independent of the choice

of bioinformatic pipeline. Here we detail the pipeline used in our analysis. �is pipeline is

freely available online (https://github.com/tylerhether/Scripts). We used the subprogram pre-

proc_experiment in seqyclean (Zhbannikov, 2015) to preprocess the 48 recombinant haploids that

were whole-genome sequenced (WGS). We deduplicated the raw reads and used the program

�ash (Magoč and Salzberg, 2011) to merge reads that overlapped by at least 10 bps. Merging was

necessary since allele counts fed into HmmAncestry would be arti�cially in�ated if read pairs

overlapped at SNP loci.

We whole-genome sequenced each of the parental haploid strains (PAR) to identify SNPs

between them. As with the WGS recombinant data, we used preproc_experiment to preprocess

the raw reads and separate them into merged (single-end) and unmerged (paired-end) �les. To

obtain a high quality SNP list we �ltered parental reads in preproc_experiment with a quality

https://github.com/tylerhether/Scripts
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cuto� of 10. Next we aligned each parental set of merged single-end and unmerged paired-end

reads to the s288c reference genome (Cherry et al., 2012) and merged the corresponding single-

and paired-end BAMalignment �les. From these alignment �les we created consensus sequences

for each parent using samtool’s subprogramsmpileup and vcfutils (Li et al., 2009). Fastq �les were

converted to fasta �les using a custom perl script and fed into nucmer (Kurtz et al., 2004) where

we performed a global alignment without rearrangements, set theminimum alignment length to

10kb, and only retained unambiguous SNPs. We removed multi-base pair indels with a python

script from Anderson et al. (2011) to create a list of SNPs between the two parental genomes.

We carried out the following steps to process theRADseq data from 188 individually barcoded

haploid recombinants (RAD) and 96 barcoded F6 diploids (DIP). Because the barcodes from

our RAD procedure can be located on either the single end or paired end read, we �rst ran the

raw reads through a custom perl script that �ipped any reads in which the barcode was located

on the paired-end read. �is script was also used to demultiplex the raw reads based on the

restriction enzyme and to remove any reads that lacked a restriction site at one end. Second, we

used process_radtags in the Stacks program (Catchen et al., 2013) separately on the pstI-only and

nsiI-only data to demultiplex samples based on barcode. �ird, for each barcodewe concatenated

the cleaned reads obtained from the pstI-only and nsiI-only �ltering. As with the WGS dataset,

we merged any pairs that overlapped with �ash and retained the variable length single-end data

and the unmerged paired-end data for each sample.

To obtain read counts for each SNP, we �rst aligned both the merged and unmerged �les for

WGS, RAD, and DIP datasets using bowtie2 (Langmead and Salzberg, 2012). For the paired end

�les we allowed for variable insert size of 400-800 bps, based on the size selection during the

library preparation. We then merged the single end and paired end alignment �les for each sam-

ple using samtools. Lastly, we used vc�ools to include only the SNPs identi�ed between YPS128

and DBVPG1106 and used a custom perl script to parse the VCF �les into the number of reads

that mapped to each parent at each SNP. �ese read count data are the input for HmmAncestry.

Custom scripts for this pipeline are available on github (https://github.com/tylerhether/Scripts).

Using HmmAncestry, we estimated the global assignment probability p̂ and mean recombi-

nation rate ĉ. We did this procedure separately for each dataset (WGS, RAD, DIP). For each

dataset, we used a 10-by-10 grid for the coarse maximum LnL search and ran the �ne-scale, hill-

https://github.com/tylerhether/Scripts


92

climbing search for amaximumof 30 iterations or until the distance between parameters between

iterations was less than the tolerance of 10−4. We then estimated the posterior probability of

belonging to each hidden state, and took the maximum probability state to be the ancestral state

at each SNP locus for each individual.
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chapter 5

Uplift and erosion of genomic islands with standing genetic

variation4

5.1 summary

Details of the processes that generate biological diversity have long been of interest to evolution-

ary biologists. A common theme in nature is diversi�cation via divergent selection with gene

�ow. Empirical studies on this topic �nd variable genetic di�erentiation throughout the genome,

that genetic di�erentiation is non-randomly distributed, and that loci of adaptive signi�cance

are o�en found clustered together within “genomic islands of divergence”. �eoretical models

based on new mutations show how these genomic islands can arise and grow as a result of a

complex interaction of various evolutionary and genic processes. In the current study, we ask

if such genomic islands can alternatively arise from divergent selection from standing genetic

variation and we test this using a simple two locus model of selection. �ere are numerous ways

in which standing genetic variation can be partitioned (e.g., between alleles, between loci, and

between populations) and we tested which of these scenarios can give rise to an island pattern

compared to no genomic di�erentiation or complete genomic di�erentiation. We found that

divergent selection, even without reciprocal gene exchange between populations, following a

bout of admixture can relatively quickly produce an island pattern. Moreover, we found two

pathways in which islands can form from divergence from standing variation: 1) through the

build up of islands and 2) through the breakdown of larger, genome-wide di�erentiation. Lastly,

similar to new mutation theory, we found that the frequency of recombination is an important

determinant of island formation from standing genetic variation such that mating behavior of a

species (e.g., facultative or obligate sexual) can impact the likelihood of island formation.

4Manuscript in preparation for submission to Evolution (Brief Communications)
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5.2 introduction

It is increasingly evident that phenotypic and taxonomic diversity arises despite ongoing gene

�ow between populations or incipient species (Sullivan et al., 2014). Predicting the genomic

response to divergence with gene �ow (DGF) in nature is di�cult, however, because several

interacting evolutionary and genetic factors can occur simultaneously. Moreover, some of these

factors can themselves have multiple levels of interaction. For example, divergent selection con-

tributes to genetic divergence both directly by its e�ect on actual selected loci and indirectly by

‘divergent hitchhiking’ (DH) of nearby neutral loci (Via, 2012).

�e metaphor of “genomic islands of divergence” has been used recently to integrate the

dynamics of migration and divergent selection a�ecting selected loci and recombination and

selection a�ecting the degree of genetic hitchhiking (Smith and Haigh, 2009; Nosil et al., 2009a).

Here, inter-population gene �ow homogenizes the neutrally evolving “sea �oor” whereas DH

creates genomic isolation, reducing the e�ective migration rate at selected loci as well as loci in

tight physical linkage with these selected loci (Via, 2012). Such reduction in e�ective migration

owing to DH can further diverge weakly selected, de novo mutations at nearby loci (Yeaman

andWhitlock, 2011) that would otherwise be trumped by migration experienced at the sea �oor.

�us, over time these divergent islands are hypothesized to grow (widen) with the inverse of the

product of migration and recombination whereas height (extent of di�erentiation) is expected

to be proportional to strength of divergent selection.

Mathematical models of GI formation has almost exclusively focused on divergent selection

based on new mutations even though many research programs �nd adaptation from standing

genetic variation (SGV; Schluter, 2000; Colosimo, 2005; Carlborg et al., 2006;Michel et al., 2010;

Hohenlohe et al., 2012; Nadeau et al., 2012). Adaptation from SGV can lead to faster evolution,

�xation of more small-e�ect alleles, and an increase frequency of bene�cial recessive alleles (Orr

and Betancourt, 2001) relative to adaptation from newmutations (Hermisson, 2005; Barrett and

Schluter, 2008). With regards to GI architecture, however, less is known about the role of SGV

in part because such variation can be partitioned several di�erent ways both within and between

populations. For example, two populations might be �xed for alternate alleles at all polymor-

phic loci such that each population is in linkage equilibrium but there is a high degree of cross-

population linkage disequilibrium (X-LD) between loci. In such a case all the SGV is partitioned
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between populations. In other cases, a varying level of polymorphism can occur within one

or more populations at one or more loci. It is reasonable to suspect that varying how SGV is

partition would likely a�ect the overall magnitude and localization of genetic di�erentiation

nearby loci under divergent selection.

�e arrangement of genetic di�erentiation that occurs across the genome varies widely in

the literature (Nosil et al., 2009a) which makes drawing conclusions on the nature of genomic

di�erentiation di�cult. It has been postulated that islands form by DH, with growth of such

chromosomal regions possible by further divergent selection occurring at loci that are them-

selves linked to an already established divergently selected locus (Nosil et al., 2009a; Yeaman

and Whitlock, 2011). We hypothesize that another, perhaps more frequently used mechanism

for island formation is from the segregation of existing genetic variation between populations

experiencing di�erent selection regimes. Herein we modeled genetic divergence from SGV to

explore the parameter combinations likely to give rise to islands versus those that generate either

genome-wide divergence or no divergence between populations. We considered seven di�erent

demographic scenarios that di�er in terms of how SGV is partitioned within and between a pair

of populations, the mating type, and the migration frequency between diverging populations.

Our results highlight how the balance of migration and selection together with meta-population

demography can strongly a�ect short term genome-wide patterns of di�erentiation.

5.3 methods

5.3.1 Modeling divergence from standing genetic variation

We were interested in identifying the parameter range likely to give rise to islands (i.e., local

di�erentiation only) from those that give rise to other genomic patterns (i.e., no or genome-wide

di�erentiation). We considered scenarios in which 1) a pair of populations were completely iso-

lated for a period of time that a�ected the partitioning of genetic variation between populations

followed by 2) secondary contact and 3) divergence with gene �ow. Wewere concerned here with

SGV only and so we assumed that the genomic response to a given demographic scenario occurs

without new mutations or that is on a shorter timescale than is relevant for new mutations. We

examined the genome-wide and temporal dynamics of di�erentiation for 7 speci�c evolutionary
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scenarios that vary in how SGV is partitioned within and between populations, the degree of

admixture between populations that occurred during secondary contact, the periodicity of mi-

gration, and whether individuals are obligate or facultative sexual (Table 5.1). In all scenarios,

the initial type of SGVwas a parameter of the model and we explore di�erent levels of migration,

divergent selection, and recombination.

�e general life-history cycle during the divergence with gene �ow following secondary con-

tact is as follows. Migration between populations occurs at rate m between populations every

m f generations. For obligate sexual cases, random mating occurs every generation, following

migration if applicable. For facultative sexual cases, random mating occurs following migration

only, as in the case of the yeast experiment (see Chapter 6). In other words, for the facultative

sexual scenarios, cell division occurs asexually and there are m f rounds of viability selection

occurring between migration and randommating. Viability selection within populations occurs

at the last step of the life cycle.

In each evolutionary scenario we tracked genetic di�erentiation between populations at neu-

tral loci linked to a single locus under divergent selection. Locus A is under divergent selection

between these two populations and it is linked to a neutral locus B. �e dynamics of neutral

divergence between populations can be tracked by following haplotype frequencies through time.

Because there is only a single locus under selection, we can obtain genomic patterns of di�erenti-

ation by varying the recombination rate, r, between lociA and B, migration between populations,

and the strength of selection at locus A.

Let g(k)i j be the frequency of haplotypes in population k with allele i at selected locus A and

allele j at neutral locus B. For convenience we can summarize the gamete frequencies for each

population k as a vector, pk:

pk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(k)11
g(k)12
g(k)21
g(k)22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.1)
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Migration and random mating — Migration between the two populations experiencing

divergent selection follows a simple two-island model with a migration ratem. For example, the

vector of new haplotype frequencies following migration for population 1 is:

p(new)1 = (1 −m)p1 +mp2 (5.2)

Mating is assumed to occur at random amongst the individuals within a given population.

�e change in haplotype frequency a�er random mating is:

△ gi j = ±rDk (5.3)

where r is the recombination rate between loci A and B and Dk is the disequilibrium coe�-

cient (Dk = g(k)11 g(k)22 −g
(k)
12 g(k)21 ). For the coupling gametes (i.e., i = j) the quantity rDk in Equation

5.3 is subtracted and it is added otherwise.

Viability selection — A matrix describing the �tness values for all zygotes in population 1

is given by the matrix S1:

S1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 − sh 1 − sh

1 1 1 − sh 1 − sh

1 − sh 1 − sh 1 − s 1 − s

1 − sh 1 − sh 1 − s 1 − s

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.4)

where s and h are the selection and dominance coe�cients, respectively. For simplicity in

the current model we assume heterozygotes have intermediate �tness between the homozygote

genotypes (i.e., h = 0.5). In equation 5.4 rows and columns correspond to the elements in pk. In

population 2 the �tness matrix is constructed similarity but the quantity 1 − s is replaced with

1 and vise versa. �e change in haplotype frequencies for each population can be calculated by

considering the marginal �tness values for each haplotype. Following Rice (2004), the vector of

marginal �tness values is:

w⋆k = p
T
k Sk (5.5)
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�e change of haplotype frequencies due to viability selection depends on the mean relative

�tness of a given population, the current haplotype frequency, and its marginal �tness. �emean

relative �tness is the dot product of the haplotype frequencies and their corresponding marginal

�tness values:

w̄k = pk ⋅w⋆k
T

(5.6)

�us, the vector of change of haplotype frequencies a�er a bout of selection is then:

△pk = w̄−1
k (pk ⋅ (w

⋆
k − w̄k)

T) (5.7)

Numerical methods — Since we were interested in the short-term dynamics of genomic

di�erentiation following secondary contact, we ran each scenario for 500 generations for varying

migration rates and strengths of selection and recorded the extent genetic di�erentiation (FST ,

Hartl and Clark, 2007; Hedrick, 2011) at each locus along a simulated chromosome.

5.4 results

5.4.1 Genomic di�erentiation under DGF from secondary contact

No admixture during secondary contact — Under the evolutionary scenarios in which

no admixture during secondary contact occurred (i.e., scenarios 1-3, Table 5.1) we found that the

extent of genetic di�erentiation depended on the relative magnitudes of migration and selection

(Figure 5.1). When initial divergence was strong (i.e., scenario #1) the small increases in the

migration rate greatly reduced overall di�erentiation in about 100 generations. Here, under weak

to intermediate migration (i.e., 0.001 ≥ m ≥ 0.01) and under intermediate to strong selection (i.e.,

s ≥ 0.05) genomic di�erentiation occurred only under tight linkage, consistent with genomic

islands. �is same general pattern was observed when the initial divergence was weaker (LD=0,

X-LD=0.125, scenario #2, Figure d.1) but with less overall di�erentiation. As expected, when SGV

was partitioned completely within populations no di�erentiation occurred in any migration and

selection range (scenario #3, Figure d.2).
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Figure 5.1: Dynamics of divergence with gene �ow under scenario #1 – obligate sexual, m f = 1,

LD=0, X-LD=0.25. For each panel, the extent of divergence (FST) at neutral loci are given across
time. Rows indicate migration rate,m, between diverging populations and columns indicate the
strength of divergent selection, s, at selected locus A.
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Brief admixture during secondary contact — We found that brief admixture between

diverged, locally adapted populations immediately before DGF strongly promoted island forma-

tion. Indeed, when DGF was initiated with F1 individuals – the parents of which were locally

adapted to their respective environment – we found that the only divergence that was detected

occurred locally within the genome (scenario #4, Figure 5.2). �is island pattern was also ob-

served when two rounds of random mating occurred prior to DGF (scenario #5, Figure d.3).

We found a strong e�ect of mating type on the pattern of genetic di�erentiation from SGV.

As predicted, for obligate sexual mating and when migration occurs periodically (e.g., every 50

generations, scenario #6) selection is relatively strong compared to migration resulting in island

formation and persistence even undermaximummigration (m = 0.5; migration per generation =

0.01). Whenmating type is facultative, however, the joint contribution of selection andmigration

can create genome-wide di�erentiation in addition to islands (Figure 5.4). Here, genome-wide

di�erentiation occurs under strong selection and weak migration.

We identi�ed two pathways in which islands form, depending on the relative strength of

selection and migration. First, under strong selection (s ≥ 0.05) and strong migration (m ≥

0.2) islands form from the breakdown of genomic di�erentiation with time (e.g., upper right

panels of Figures 5.3 and 5.4). Second, under weak selection (s=0.01) and weak to moderate

migration (0.01 < m < 0.05), neutral genetic di�erentiation began low and increased (“grew”)

over time (e.g., Figures 5.3 and 5.4). �e size (width) of islands di�ered between the two mating

types – with larger islands found in facultative compared to obligate mating types. Interestingly,

migration was not need for island growth to occur when admixture occurred during a single

bout of secondary contact (m = 0, s = 0.01, Figures 5.2, d.3, 5.3, and 5.3). �is is in stark contrast

to scenarios in which no admixture occurred in secondary contact (scenarios 1-3, Figures 5.1, d.1,

and 5.1).

5.5 discussion

5.5.1 Islands from standing genetic variation

We found that localized genetic di�erentiation can readily occur under a wide range of demo-

graphic scenarios, depending on the relative strength of migration and divergent selection. Link-
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Figure 5.2: Dynamics of divergence with gene �ow under scenario #4 – obligate sexual, m f = 1,

LD=0.25, X-LD=0.25. For each panel, the extent of divergence (FST) at neutral loci are given
across time. Rows indicate migration rate, m, between diverging populations and columns
indicate the strength of divergent selection, s, at selected locus A.
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Figure 5.3: Dynamics of divergence with gene �ow under scenario #6 – obligate sexual, m f = 1,

LD=0.25 - 0.25r, X-LD=0.25 - 0.25r. For each panel, the extent of divergence (FST) at neutral
loci are given across time. Rows indicate migration rate, m, between diverging populations and
columns indicate the strength of divergent selection, s, at selected locus A.
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Figure 5.4: Dynamics of divergence with gene �ow under scenario #7 – facultative sexual,m f =

50, LD=0.25 - 0.25r, X-LD=0.25 - 0.25r. For each panel, the extent of divergence (FST) at neutral
loci are given across time. Rows indicate migration rate, m, between diverging populations and
columns indicate the strength of divergent selection, s, at selected locus A.
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age disequilibrium within and between isolated populations can be generated a number of ways

prior to the onset of a divergent selection regime. For example, genetic dri� can �x alternative

alleles between two isolated populations such that there is no LD within but maximum LD

between populations. Of course, the �xation of alternative alleles in each isolated population

can occur due to preexisting divergent selection on new mutations. In general, the breakdown

of linkage disequilibrium under divergence is required for islands to form.

5.5.2 Islands upli� and islands erode

Under new mutation theory of island formation, divergent hitchhiking allows for increase estab-

lishment probability of new mutations (Yeaman and Otto, 2011) and so islands can “upli�” from

the metaphorical sea when seeded with divergently selected loci. We found that such upli�ing

can also occur from standing genetic variation. An admixture event between genotypically dis-

tinct populations creates a high degree of within population LD (Hedrick, 2011). Such a case may

occur between hybridizing sister species or through the ephemeral breakdown of a migration

barrier. When divergent selection occurs following such an event there are two mechanisms

in which islands can form, depending the strength of selection relative to gene �ow. During

the time in which LD is broken down within a population by random mating, di�erentiation

at both selected and neutral loci increases (though this increase is faster at the selected locus;

Figure 5.5E-F). In the case of no migration between populations (e.g., le� column of Figure 5.5),

neutral di�erentiation will remain steady since no migration (or mutation) is occurring. Islands

can also buildup quickly and erode. For example, under strong divergence with moderate gene

�ow there is a rapid breakdown of LD early with a slower breakdown of LD later (Figure 5.5D).

During the rapid breakdown phase, where the change in haplotype frequencies is dominated by

selection and FST increases with time for both selected and linked neutral sites. During the slow

breakdown of LD phase, the change in haplotype frequencies are dominated by migration. Here,

di�erentiation at the selected locus is stable whereas di�erentiation decreases at the neutral locus

(Figure 5.5F) owing to recombination. With tighter (weaker) linkage the decrease of FST will be

slower (higher). �us, under divergence with gene �ow we would expect islands to erode with

time.
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Figure 5.5: Temporal dynamics of genotype frequencies, LD, and di�erentiation at the selected

and linked neutral loci (scenario #4). Two speci�c examples (le� and right columns) of island

formation are given. For each example we plotted the results for population #1 only so that

genotypes g11 and g12 are favored and g22 and g21 are disfavored. Le� column, migration is absent.
Right column, migration is weak (m = 0.01). For each condition the selection coe�cient was

strong (s = 0.1) and the recombination rate between the selected and neutral loci was 0.01.
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chapter 6

The genomic response to adaptation from standing genetic

variation in experimental yeast populations5

6.1 summary

�e recent �ood of population genomic data has provided exciting new insights and challenged

our understanding of how evolution structures genomes. Rather than simply “population ge-

netics with more markers”, population genomics promises a transformative shi� in our under-

standing of real-time evolution. For example, markers exhibiting elevated genetic di�erentiation

between populations have traditionally been used to detect loci under divergent selection and

genomic data reveal that regions of elevated di�erentiation o�en extend across large, physically

linked regions of chromosomes. �ese “genomic islands of divergence” are not simply the pre-

dictable result of divergent selection – rather they re�ect complex interactions among selection,

epistasis, demography, migration, and recombination. Comparative population genomic data

exhibit wide diversity in the number, size, nature, and dynamic behavior of islands, presumably

re�ecting di�erences in underlying evolutionary processes. Beyond simply detecting such re-

gions, the volume of data produced by next-generation sequencing has the potential to provide

the statistical power necessary to test speci�c hypotheses about how interacting evolutionary

forces structure genomic variation. Herein we use experimental evolution to test the overall

hypothesis that such genomic islands of divergence can manifest from divergent selection on

standing genetic variation. We test this hypothesis by crossing two haploid strains of budding

yeast to generate an admixed polymorphic population from their F2 o�spring. We then evolved

replicate populations in two di�erent stress environments – sodium dodecyl sulfate and sodium

chloride – for 12 days and looked for genomic regions that di�erentially responded to these

environments. We found that genomic islands can readily evolve a�er an episode of introgression,

without further gene �ow or de novo mutations, which may broadly explain the prevalence of
5Manuscript in preparation for submission to Molecular Biology & Evolution
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genomic islands seen in nature. Next we tested the e�cacy of gene �ow in reducing the size and

extent of genomic islands. We found that gene �ow between locally adapted populations did not

correlate with island size. Instead, we found that the genomic response to additional divergence

(with gene �ow) created a genome-wide and stochastic pattern of divergence.

6.2 introduction

Evolutionary biologists have long been interested in identifying genes of adaptive signi�cance,

especially in populations experiencing divergent selection pressures. In this spirit several early

empirical studies – reviewed in Nosil et al. (2009a) – report loci with ‘outlier’ status in genome

scans (Beaumont and Nichols, 1996). �ese studies report on the order of 5-10% of the markers

surveyed exceed neutral expectations (Via, 2012). More recently, genomic studies have put ge-

netic di�erentiation in a genomically explicit context and show that such outlier loci can cluster

together along chromosomes – creating regions of localized genetic di�erentiation or “genomic

islands of divergence”.

Nosil et al. (2009a) summarized the metaphor of genomic islands of divergence. Brie�y,

when a pair of populations are experiencing divergent selection pressures, gene �ow is e�ectively

weaker nearby divergently selected loci. Under these regions of “divergent hitchhiking” de novo

mutations can further expand the region under divergent selection. Over time these genomic

islands can grow and merge with other islands, eventually creating a genome-wide pattern of

divergence between pairs of populations or sister species (Wu, 2001).

One question that remains, however, is whether such islands can form from standing genetic

variation. All studies that we are aware of look at dynamics and patterns of genomic islands

using a retrospective approach (i.e., natural experiments). While this approach has been useful

in identifying and cataloging the size, number, and dispersion of genomic islands that occur

in nature, it has its drawbacks. Namely, the compounding of evolutionary history over time

in these natural experiments can erode the signal of early divergence, making it di�cult to

genomically reassemble the genetic roots of adaptation to divergent environments (Nadeau et al.,

2012). �erefore, while the ultimate source of new genetic variation is new mutations, is it

necessary that the heterogeneous nature of genetic di�erentiation is mainly a result of de novo
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mutations occurring at loci experiencing divergent hitchhiking or can these patterns be explained

from standing genetic variation? In Chapter 5 we used a simple diploid, two-locus model and

found that genomic islands indeed can assemble quickly from standing variation when recently

admixed populations diverge.

Selection can be multifarious, acting across genetically independent traits and among loci

across the genome (Nosil et al., 2009b). Empirical studies have cataloged extensive genomic

island patterning (Turner et al., 2005; Via and West, 2008; Nadeau et al., 2012; Hohenlohe et al.,

2012) as a result of selection acting in concert with migration, dri�, and other evolutionary

processes. �e biggest limitation to these empirical studies, however, is that they necessarily

only take snapshots of genomic islands at a point in time a�er divergent selection has taken

place, and so it is di�cult to assess whether standing genetic variation or new mutations were

involved in island formation. At the same time, our previous mathematical models showed that

island formation is possible from standing genetic variation but ignores complex selection and

dri�.

One approach to test if genomic islands can form from standing genetic variation is to ex-

perimentally evolve recently admixed populations in divergent environments. �e yeast Saccha-

romyces cerevisiae can be grown in a range of environmental conditions, have a short generation

time, and populations can be frozen and later revived for direct comparison to their ancestors

or sequenced to create a catalog of genomic di�erentiation through time. Yeast can reproduce

asexually as diploids or haploids, haploids can be crossed to form diploids, and diploids can

be induced to sporulate, which means a single diploid cell undergoes meiosis to produce four

haploid spores. Genetic manipulation in yeast is common (Scannell et al., 2011). �us, cross-

ing two genetically diverse strains to create standing genetic variation and maintaining these

population as diploids via genetic engineering can be accomplished relatively easily. Moreover,

arti�cial selection combined with high-throughput sequencing has been applied successfully for

association andQTLmapping, so the identi�cation of loci responsible for phenotypic divergence

has become routine as well (Ehrenreich et al., 2010; Parts et al., 2011). One approach that is

particularly useful in identifying loci of adaptive signi�cance in yeast is extreme QTL (X-QTL,

Ehrenreich et al., 2010). In X-QTL, parental strains are crossed and aliquots of progeny are

selected for a period of time in either a stress medium or in a control medium. Comparing
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the allele frequency di�erences between treatment and control allows for the identi�cation of

both large and small e�ect QTL associated with tolerance to the stress. A direct but unexplored

extension of this approach is to evolve aliquots in two di�erent stress environments to tease apart

genomic regions under directional selection and those under divergent selection.

While the above attributesmake yeast an ideal system inwhich to study the genomic response

to divergent adaptation, it is necessary to take their life history into account. Saccharomyces

cerevisiae is facultatively sexual. Indeed, clonal reproduction occurs about 25,000 - 35,000 times

more frequently than sexual reproduction (Magwene et al., 2011), though sexual reproduction

can certainly occur more frequently in the laboratory (e.g., Nishant et al., 2010). �us, while

most models of divergence with gene �ow consider obligate sexual organisms, the quick gen-

eration time of yeast (ca. 100 minutes; Herskowitz, 1988) prohibits them from evolving solely

in this manner. In our previous models (Chapter 5) we found that the strength of selection

is enhanced relative to migration for facultative sexual organisms such as yeast that mate and

migrate periodically (Figure 5.4).

�e genomic island metaphor holds promise to integrate many evolutionary processes that

act in natural populations. However, it is unclear whether new mutations or standing genetic

variation drive genomic island growth more commonly in natural populations. Herein we exper-

imentally evolved polymorphic yeast populations to test the hypothesis that genomic islands can

quickly form from standing genetic variation. Weperformed two complementary experiments to

test this hypothesis. First, we created standing genetic variation by crossing two diverged strains

and evolved replicate F2 populations in isolation in alternative stress environments: SDS or NaCl

supplemented media. We measured the evolutionary response to growth in these alternative

environments by quantifying the degree of adaptation and the genomic pattern of di�erentiation

between replicates and 1) their ancestors and 2) replicates grown in alternative stress environ-

ments. Second, we tested the e�cacy of migration and recombination to reduce the extent and

size of genomic islands from locally adapted pairs of populations. Here we tested 4 levels of

gene �ow. We evolved populations without migration and either with or without mating. Sex

in yeast in harsh environments has been shown to increase the rate of adaptation (Goddard

et al., 2005) and so we predicted that mating would have a measurable e�ect on island size.

Also, we evolved populations with mating and either intermediate (0.2) or high (0.5) migration
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between populations grown in alternative environments and tested the prediction that island size

decreases with increasing migration rate.

6.3 methods

6.3.1 Yeast strain crosses, media & methods

Crossing strains — Details of the yeast strain construction and media used have been de-

scribed in detail in Chapter 4. Brie�y, to create an admixed ancestral population we crossed

two heterothallic and haploid S. cerevisiae strains: YPS128 (mat α, ho△::Hyg, ura3△::KanMX;

NCYC# 3632) and DBVPG1106 (mat a, ho△::Hyg, ura3△::KanMX; NCYC# 3596). See Cubillos

et al. (2009) for initial strain construction. Previouswork shows that these two strains have 73,294

high quality SNPs between them (see Chapter 4).

�e presence of haploids during divergent selection represents a confounding factor since

these haploids may outcompete the diploids under certain conditions (Zeyl, 2006; Otto and

Gerstein, 2008) yet not survive the sporulation procedure (see below). �us, to promote diploid

growth (i.e., select for diploids) we disrupted His3 in strain DBVPG1106 and replaced it with

a functional copy of URA3 from an amplicon from plasmid YEp24 (Struhl et al., 1979) using

the protocol from Gietz and Schiestl (2008). We then mated a single transformant with YPS128

described above. �e resulting F1 progeny are heterozygous at the His3 locus for both HIS3 and

URA3 alleles and so can successfully grow on Histidine-Uracil double dropout medium. Proper

placement of homologous recombination was con�rmed via PCR (see Table 6.1 for recombineer-

ing and con�rmation oligos). We sporulated a single F1 individual using the sporulation protocol

below and randomly mated recombinant spores together to create an admixed F2 population.

Speci�cally, we spread 100 µL of washed (YPD) spore solution and mated the spores onto YPD

plates for 36-48 h (30C). Using a toothpick, we swabbed cells from each YPDplate and inoculated

them in 2 mL of Ura-His dropout medium incubated on a roller drum at 30C. Only the diploid

F2 recombinants are expected to be heterozygous at the His3 locus (URA3/HIS3). �is admixed

F2 population was used to seed the initial divergence (see below).
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Table 6.1: Oligos used for the construction of the deletion cassette and the con�rmation of

correct integration into the genomic His3 locus of the target DBVPG1106 strain.

Step Primer Template Sequence (5’→ 3’)

Deletion cassette Forward YEp24 AAATGAGCAGGCAAGATAAACGAA

GGCAAAGATGGATGTCCACGAGG

TCTCTAATTCCGGGCATGCGGCC

TTAGTAACAAAAGAGTGGTA

Deletion cassette Reverse YEp24 CGTATGCTGCAGCTTTAAATAATC

GGTGTCACTACGGTGTCGGTCTC

GTAGAAACCTTGGCCGCTCGGTT

CCCGATGCGTCCGGCGTAGA

Con�rmation PCR Forward gDNA TTCCACCTAGCGGATGACTC

Con�rmation PCR Reverse gDNA TGATGCATTACCTTGTCATCTTC
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Sporulation — During the initial crossing of F2 ancestors and during the course of the evolu-

tion experiment we induced meiosis to produce haploid spores. We used the following protocol

to sporulate diploid cells. For each population we harvested 1 mL of cells grown in standard rich

medium (Yeast Peptone Dextrose, YPD; Sherman, 2002), washed them with 1 mL of presporu-

lation medium (Yeast Peptone Acetate; Codón et al., 1995), and we incubated them in 1 mL YPA

for 12-15 hours. Next we washed cells in SPO2 sporulation medium (2% KAc, pH 7; Codón et al.,

1995) and incubated cells in 1 mL of SPO2 in a roller drum. Unsporulated cells were killed o�

using heat and enzymatic perturbation. Asci were removed using 40 µL of Zymolyase Solution

(1 U/µL Zymolyase [MP Biomedicals] in 1 M sorbitol). To recover spores from sporulation we

allowed them to grow on YPD plates for 2 days. Next we transferred 1 swab of cells to 2 mL of

Histidine-Uracil double dropout medium to enrich for diploids.

6.3.2 Experimental evolution

We conducted two evolution experiments. In “Experiment I” we allowed admixed (F2) pop-

ulations to diverge from one another in isolation. �is initial divergence was done to select

for alternative alleles between the SDS and NaCl environments. In “Experiment II” we split

populations at the end time point of Experiment I into 4 di�erent migration treatments and

evolved them under a divergence with gene �ow scenario. A schematic of the experimental

design is presented in Figure 6.1 and detailed below.

Experiment i, admixture followed by isolation — We aliquoted the F2 ancestral pool

into 6 populations. We subjected three of these populations to YPD containing 0.04% SDS in

daily (batch) transfers. �e remaining three populations were grown in batch with YPD with

3% NaCl. Each population was grown for 23 hours in 100 µL reactions in a 96-well microtiter

plate with continuous shaking. Following incubation, cells were washed twice with water and

resuspended with YPD. A total of 5 µL of resuspended cells were added to 95 µL of their re-

spective (matched) stress medium as well as 95 µL of the opposite (unmatched) stress medium.

Population growth in the unmatched medium was only used to assess local adaptation (see

below) and so these cells were not propagated further. Approximately every 6 minutes during

the shaking incubation the optical density (600nm) was automatically measured for all samples,
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Figure 6.1: Schematic of the experimental design used in the current study. A) �e starting

F2 recombinant pool was constructed by mating haploid YPS128 and DBVPG1106 strains and
sporulating a single F1 zygote. B)�is F2 ancestral pool was used to seed Experiment I in which 3
replicate populations (only one of which is diagrammed) were grown in SDS stress (blue circles)

and 3 replicates were grown in NaCl stress (red circles) and propagated in batch (curved arrows).

�is propagation occurred 11 times during Experiment I. C)�e last time point of Experiment I

– indicated by black rectangle – was used to seed Experiment II. Here we only show one “cycle”

of divergence with gene �ow from one replicate population pair. Within this cycle populations

are sporulated and the resulting spores are migrated at one of three levels (m = 0, 0.2, & 0.5) and
allowed to mate (except for the no migration, no sporulation treatment). Resulting diploids are

propagated in batch for 7 days. �is cycle of divergence, sporulation, and gene �ow occurred a

total of 4 times.
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giving daily growth curves for each population in its local and in its foreign stress environment.

We performed 11 transfers (12 days total) of growth in isolation so that local adaptation could

evolve.

Experiment ii, divergence with gene flow — We also evolved populations under a diver-

gence with gene �ow (i.e., multiple bouts of admixture) scenario. For this experiment we contin-

ued to evolve populations at the end time points of Experiment I. Speci�cally, the 6 populations

from the end time point of Experiment I were split into 4 di�erent treatments: 1) no migration

& no mating 2) no migration with mating (within populations) 3) migration at rate m = 0.2

with mating and 4) migration at rate m = 0.5 with mating. In each treatment and each replicate

(n=3) we grouped one SDS evolved population with one NaCl evolved population, resulting in 3

population pairs in eachmigration treatment. Based on simulated results (Chapter 5)we tested

for genomic island formation under 3 migration levels (m = 0, 0.2, & 0.5). �e divergence with

gene �ow scheme used here consisted of daily batch transfers in selective media with periodic

migration. We grew populations asexually in 100 µL of their matched and unmatched media

under daily transfers for 7 days (i.e., about 50 generations of asexual growth). As with Experi-

ment I above, the unmatched populations were only used to assess local adaptation. To better

estimate growth curves we performed two “technical” replicates of each population and report

on the average growth curve for each condition. For the matched populations we sporulated

diploid individuals. We standardized all sporulated populations to the same concentration (ca.

7.5x106/mL) and mixed spores between population pairs at the experimental varied migration

level. We selected for diploids as described above. A�er growing in Ura-His dropout medium

for 24 h we transferred 5 µL of washed (YPD) cells to 95 µL matched and unmatched stress

medium. Weperformed 4 of these selection/gene �ow cycles for a total of 28 asexual days (ca. 200

asexual generations). Interestingly, newly formed diploid zygotes grew poorly – or not at all – in

0.04% SDS which cause poor estimates of growth curves fromwell to well and between technical

replicates (results not shown). �us, for Experiment II we reduced the selective concentration of

SDS by 25% (0.03% SDS).
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6.3.3 Data analysis

Measuring initial change in fitness — We tested whether and how populations of F2

individuals responded to a given stress environment over time during the initial 12 days of batch

transfer in isolation (Experiment I). For each day we �t growth curves (optical density, OD,

at 600nm) for each of the six populations (3 evolving in SDS and 3 evolving in NaCl) using

a generalized logistic (Richards) curve in the R package gro�t (Kahm et al., 2010). Like the

logistic growth equation, the Richards curve increases monotonically with time but the latter is

more �exible since the maximum growth rate can occur anywhere between the lower and upper

asymptotes (Birch, 1999). �is �exibility is accomplished via a shape parameter, v. When v is 1,

the curve resembles the logistic and as v increases themaximumgrowth rate is found closer to the

upper asymptote. �is latter case more closely resembled our data – especially when populations

were tested in the SDS environment.

Tomeasure population growthwe�tRichards curves to the data using gro�t and extracted the

four model parameters: lag, rate, shape and carrying capacity (see Figure 6.2A). Prior to �tting

the data we zeroed optical densities such that the �rst measurement was set to zero. Additionally,

to measure overall population growth in a given environment we took the integral of the model

�t. �is area under curve (AUC) metric was used as a single estimate that encompasses all four

parameters of the model. For each metric, we averaged the values between the two technical

replicates to mitigate well-to-well variation.

To test if these growth curve metrics changed with time or between stress environments

during initial divergence we used a repeated measures ANOVA on each of the 4 growth metrics

and their composite statistic, AUC.

Measuring local adaptation — At a given time in Experiment I and Experiment II there

are two values for each metric and for each environmental patch – one for the local population

and one for the foreign population. Our measure of local adaptation follows the “local-foreign”

criterion (Kawecki and Ebert, 2004). For example, to estimate local adaptation in AUC we

subtracted the AUC value of the foreigners from that of the locals. In this way, values greater

than zero indicate local adaptation.
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Testing for differences in local adaptation — We tested for di�erences in local adap-

tation between stress environments (Experiment I and Experiment II) and between migration

treatments (Experiment II only). To test if local adaptation increased over time in Experiment

I we used a repeated measures ANOVA for each growth metric as above. Additionally, to test

for di�erences at the �nal time point of each experiment we �t two separate MANOVAs: one for

the last time point of each experiment. �e dependent variables were local adaptation metrics

for each of the four Richards curve parameter estimates. For Experiment I we �t a one-way

MANOVAwith the independent variable being environment tested in (2 levels). For Experiment

II, we added an additional independent variable: migration with three levels. We also tested for

an interaction of environment-by-migration on the multivariate response to local adaptation.

Sequence preparation — To identify the genomic response to adaptation, we sequenced

Restriction-site Associated DNA (RAD) markers in 25 populations: the T-11 F2 ancestor, the 6

populations at the end of time point T0 (i.e., end of Experiment I) and the 18 populations at the

end of time point T28 (i.e., end of Experiment II). We used the general RADseq methodology

of Chapter 4 to estimate genome-wide di�erentiation during the �nal time point of each

population.

Bioinformatic pipeline — To process RADseq data we used the general method described

in Chapter 4. Broadly, this pipeline preprocesses raw paired-end fasta �les, demultiplexes sam-

ples (i.e., individual populations), maps each to the reference S. cerevisiae genome, and estimates

allele frequencies of the previously identi�ed SNP sequences.

We used the following methods to process the raw data. We ran the raw paired-end data

through a custom perl script to remove any reads that lacked any sample barcodes. �is script

also �ipped the forward and reverse read if the barcode was detected on the paired-end read, as

is expected given our RADseq library preparation (see above). �is �ipping was necessary to

ensure reads were processed correctly in downstream programs that expect the barcode to occur

on the forward read. Lastly, this script parsed out nsiI and pstI RAD sites into separate paired-

end fasta �les. Since these two restriction enzymes di�er by only a single basepair, inclusion of
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both of them into a single process_radtags run resulted in poor quality scores of reads (data not

shown).

To call alleles at predetermined SNPs we �rst used process_radtags in the Stacks program

(Catchen et al., 2013) on each enzyme separately. �is procedurewas done to demultiplex samples

based on barcode. We then concatenated the process_radtags results for each sample into a single

pair of forward and reverse fasta �les andused�ash (Magoč and Salzberg, 2011) tomerge any pairs

that overlapped by 10 bp or more. To obtain reliable estimates of change in allele frequencies we

targeted high sequencing coverage. �eRADprotocol we used randomly shears the end opposite

of the restriction site which results in SNPs in these regions having lower sequence coverage

compared to regions nearby the restriction site. �us to obtain higher overall coverage of SNPs

we mapped only the forward or �ashed reads to the s288c reference genome (Cherry et al., 2012)

using bowtie2 (Langmead and Salzberg, 2012). We then merged and sorted the forward and

�ashed mapping results with samtools. In a previous study we identi�ed a list of >73,000 high

quality diagnostic SNPs between haploid strains YPS128 and DBVPG1106 and we �ltered the

mapping data with this SNP list. Such �lter e�ectively ignores any variation introduced by new

mutations and previously �xed positions.

We had three classes of pairwise comparisons for which we estimated per-SNP genetic dif-

ferentiation. First, we compared allelic change at replicates at the end of Experiment I with

their F2 ancestor (6 comparisons). Second, we compared the three population pairs at the end

of Experiment I (3 comparisons). �ird, we compared 3 replicate population pairs in each of

the migration treatments at the end of Experiment II (12 comparisons). For each of these 21

pairwise comparisons, we used mpileup (Li et al., 2009) and PoPoolation2 (Ko�er et al., 2011)

to obtain counts of alleles at each of the predetermined SNPs. For each dataset, we further

�ltered to remove any SNPs with less than 30 alleles in either population using a custom python

script. To estimate FST at each SNP position we used PoPoolution2with the following parameters:

minimumminor allele frequency, 1%; pool size, 1000; maximum coverage, 5000; window size, 1;

step size, 1. We estimated FST following Hartl and Clark (2007).

�e results of the above pipeline yield values of FST across each of the 21 pairwise comparisons.

We used the following methods to characterize the genomic landscape of di�erentiation in our

yeast data and to test the e�ect of migration on the change of size of islands. First, because FST
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is a relative measure of divergence, two populations can appear di�erentiated in the presence

of directional selection that is in the same direction but with di�erent magnitudes. Such cases

might occur when populations are adapting to laboratory conditions that are not associated with

SDS or NaCl tolerance (e.g., adaptation to speci�c YPD, aeration, or temperature). Since we were

only interested in divergent loci, we subset the total number of SNPs to include only those that

showed evidence of a divergent selective response between the two stress environments. Here we

implemented a novel extension of the X-QTL method (Ehrenreich et al., 2010). Speci�cally, we

identi�ed divergent loci from Experiment I by the following criterion. First, all three replicate

populations evolving in SDS needed to exhibit identical response to selection (e.g., all show an in-

crease in the YPS128 allele frequency relative to the F2 source population). Second, and similarly,

all three replicates of the NaCl evolved treatment needed to have identical selective response.

Loci under parallel directional selection occur when all replicates (in both environments) show

identical responses. �is might occur for loci responding to general laboratory conditions. Loci

under divergent selection can be inferred by opposite and repeatable responses to each treatment.

�e chances of each condition (directional or divergent) happening by chance is low (ca. 3% for

each unlinked locus). We made an additional �lter such that we discard SNPs in which the

average magnitude of di�erences between treatments was less than 15% unless they occurred

within 43.27 kbp of a SNP with a larger di�erence. �is size was chosen based on the median

tract length of a non-recombining chromosome (see Table 4.2 in Chapter 4).

Within a given pairwise population comparison we estimated island “clumpiness” by the

average (within chromosomes) Moran’s I at a 1 Kbp distance lag. When nearby locations of the

genome are more similar in FST than by chance, they are autocorrelated (Moran’s I > 0) and the

size of their correlation is captured by themagnitude of I. Additionally, within each chromosome

we estimated the distance at which autocorrelation is expected to be 0; this “neighborhood size”

can be an indication of the width of islands when they are present. We used these two statistics

to test the hypothesis that increased migration breaks down genomic islands. Finally, to test the

similarity of genomic response between replicates with a given treatment or across treatments

we estimate Pearson’s correlation coe�cient for each pairwise population combination.
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6.4 results

6.4.1 Divergence following admixture in yeast populations

Comparing individual growth curve parameters across time revealed a di�erence in how popu-

lations initially adapted to the stress environments. In general, SDS evolved populations showed

the greatest change over the initial 12 days (Figure 6.2) and these changes were most pronounced

in lag, carrying capacity, shape, and AUC.We detected a change in population growth over time

in all growthmetrics thatwe analyzed using a two-way repeatedmeasuresANOVA (alpha value =

0.05). Moreover, we detected signi�cant interaction between NaCl and SDS stress environments

and time for lag (P<0.0034), carrying capacity (P<0.00026), shape (P<0.0017), andAUC (P<7.6e-

05). No environment-by-time interaction was observed for growth rate (P<0.5436; Figure 6.2C)

though populations in both stress environments showed an increase in growth rate with time.

We estimated the genomic response to growth in each environment following 11 days of

batch transfer by comparing evolved replicates to their F2 ancestors. We found that our RADseq

method yielded a high overall alignment rate (mean=92.9%, SD=4.1) with high average coverage

per SNP (Table 6.2). Within a given treatment, selection responses were highly similar across

replicates (Figure 6.3) yet there was little correlation between replicates in alternative environ-

ments (Figure 6.4). Using short read (75bp) sequencing of RAD loci we obtained highly con�-

dent allele frequencies estimates for 2,933 SNPs across the genome (about 4% of the total SNPs

identi�ed using whole genome sequencing). Of those SNPs, 420 met our criteria for divergent

selection (purple regions in Figure 6.3B) and a cuto� of 15% or more extreme di�erence (15%

cuto� value for allelic di�erence = 0.145). Taking into account SNPs nearby given the previous

estimate of recombination blocks for F2s we recovered an additional 738 SNPs to have a total of

1,158 SNPs for which island size could be estimated.

�emagnitude and location of individual FST peaks exhibited both high within-environment

and low cross-environment repeatability (Figures 6.4 & 6.5). In agreement with the phenotypic

data above, SDS evolved replicates showed the greatest degree of genetic di�erentiation through-

out the genome with multiple moderately sized (e.g., FST > 0.2) peaks identi�ed and a larger

average extent of autocorrelation in the �rst distance class compared to NaCl evolved replicates

(Figure 6.4). We identi�ed several peaks (e.g., in chromosome IV, X, & XV) that exhibited high
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Figure 6.2: Raw growth curve parameter estimates through time during the initial build up of

adaptation in isolation. Panel A shows a representative growth curve over time (purple dots).

Here, the carrying capacity (red line, units = OD600), rate (black line, units =△OD600/ △ time,
and lag (blue line, units = hours) are indicated. �e combined statistic, AUC, is indicated by

the grey shading. Panels B-F show the four parameters used in the Richards curve and their

composite statistic (AUC). Within each panel populations (dashed lines) are plotted through

time with the group mean (solid lines) given. Purple and gold lines denote populations evolving
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FST but as a result of the di�erences in the degree of change in the YPS128 allele frequency (i.e.,

not di�erences in the sign of change in YPS128 allele frequency; grey shading in Figure 6.5).

6.4.2 Local adaptation following admixture in yeast populations

In terms of local adaptation between populations at time T0, we found that local individuals

increasingly outperformed foreign individuals in lag (P<0.027; Figure 6.6B), carrying capacity

(P<0.0017; Figure 6.6D), andAUC (P<0.0009; Figure 6.6F). Growth rate only showed amarginal

signi�cant increase across time (P<0.066; Figure 6.6C). While populations overall adapted to

their respective environments, we did not detect a signi�cant di�erence between the extent of

local adaptation between environments at the end of Experiment I when taking into consider-

ation all four local adaptation metrics together (MANOVA; Wilks’ lambda=0.052, F(4,1) = 4.52,

P<0.337).

We found that genetic di�erentiation a�er 12 days of isolation between population pairs was

dominated by the genetic di�erences accrued in SDS evolved populations (compare Figure 6.5A-

C with Figure 6.7A-C). Indeed, we found that peaks in the T0 (SDS) vs T0 (NaCl) comparisons

were highly correlated with peaks in the T0 (SDS) vs F2 ancestral pool comparisons but not in the

T0 (NaCl) vs F2 comparisons (Figure 6.4). For much of the genome, the genomic response from

evolving alternative habitats showed a similar pattern in the direction and magnitude of allele

frequency change; however, we uncovered several regions that showed a di�erential selective re-

sponse between SDS andNaCl (Figure 6.3). Notably, regions of variable size along chromosomes

IV, V, VI, VII, IX, XIII, XIV, & XVI displayed an abundance of SNPs in which all three replicates

of SDS evolved populations exhibited a similar response and opposite from all three replicates

that evolved in NaCl.

6.4.3 DFG from isolated, locally adapted yeast populations

Across allmigration treatments, local adaptation in both environments was generallymaintained

(Figure 6.8; see also Figures e.1, e.2, e.3, & e.4). At the end time point of Experiment II (T28)

we found that the SDS environment contained more locally adapted individuals than the NaCl

environment (MANOVA; Wilks’ lambda=0.19, F(4,13) = 14.13, P<0.0001). Interestingly, we did
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Figure 6.6: Local adaptation (LA) of local populations relative to foreign populations during

divergence a�er secondary contact. Panel A shows an example of local adaptation using the

local-foreign criterion. Here, AUC for populations are plotted as means (±SD). �e color of the

population averages and associated errorbars correspond to the environment in which they were

grown. �e mean AUC value for each of the foreign populations is subtracted from the local

population’s AUC value (vertical solid lines). �is method produces two LA values – one for

each stress environment. Panels B-F show the LA values four parameters used in the Richards

curve and their composite statistic (AUC). Gold and purple lines denote NaCl and SDS habitats,

respectively, and group means are denoted by solid color lines. For clarity, the LA value for lag

was multiplied by -1 such that positive values indicate the temporal advantage (in hours) that the

locals have compared to their foreign counterpart.
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not detect any di�erences in local adaptation among the migration treatments (P<0.29) or in

environment-by-migration interactions (P<0.47) at time point T28. However, we found that

local adaptation tended to increase within a “cycle”. For example, at time point T22 the only

signi�cant di�erence in local adaptation occurred among the migration treatments (MANOVA;

Wilks’ lambda=0.25, F(12,34.7) = 14.13, P<0.04) – not between environments (P<0.17). �us, it

appears that the e�ect ofmigration (and recombination) diminishes with asexual growth in these

stress environments.

Whereas there was a high degree of repeatability found at the end of Experiment I, we found a

greater degree of stochasiticity and variance in genetic di�erentiation at the end of Experiment II

(Figures 6.9&6.10). Within a replicate population pair, averageMoran’s I at the �rst distance class

remained similar as Experiment I butwithin-treatment and across-treatment Pearson correlation

coe�cients were weak (Figure 6.4). We detected a signi�cant di�erence between average neigh-

borhood size and migration treatment (ANOVA; F(3,105) = 4.66, p<0.004) but this pattern was

primarily driven by the intermediate migration level, which exhibited smaller size islands than

either no migration (without mating) or high migration treatments (Figure e.5). Considering

only those migration treatments in which mating occurred, we found that increasing migration

decreased overall mean FST (y = -0.21x + 0.19, R2 = 0.15, p<1e-04).

6.5 discussion

It is increasingly evident that the genomic response to adaptation in nature is the result ofmultiple

interacting evolutionary, demographic, and genic processes. Here we explore such a response in

pairs of replicate populations evolving from standing genetic variation in SDS and NaCl. Our

results show that many regions of the genome are responding to di�erent types of selection and

at various strengths, that genomic islands can form over short time scales, and that stochastic

patterns of di�erentiation are likely due to genetic dri� and/or latent selection pressures. We

discuss each of these main �ndings in turn.
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Figure 6.8: �e extent of local adaptation (LA) during divergence with a given amount of

migration. For each migration rate the extent of LA is given for each stress environment. Gold

and purple denote NaCl and SDS habitats, respectively, and group means are denoted by solid

color lines. Black vertical lines show where sporulation and migration (if applicable) occur

between periods of asexual growth in batch.
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6.5.1 Divergent QTL

Natural selection can act multifariously on di�erent genetically independent traits (Nosil et al.,

2009b). When a population enters a novel environment, di�erent types of selection pressures can

act on several traits (e.g., morphological, behavioral, physiological) simultaneously. �e result is

a mosaic of genetic di�erentiation between populations evolving in alternative environments

(e.g., Figure 6.5). Molecular biology approaches (e.g., bulk segregant analysis, X-QTL) have been

applied to identify genomic regions associated with trait variation (Wenger et al., 2010; Bloom

et al., 2013) but to our knowledge these approaches have not yet been applied in the context of

divergently evolving populations. Here we used these approaches to identify and di�erentiate

the e�ects of various selection pressures occurring within the genome of populations evolving

in alternative environments. As a result we found hundreds of loci under selection (Figure 6.3).

�is approach can be further modi�ed to more precisely delineate di�erent types of selection.

Indeed, experimentally evolving more advanced �lial generations (e.g., Parts et al., 2011) would

result in �nemapping of loci under directional selection in one or both environments from those

evolving from divergent selection.

6.5.2 Genomic islands from standing genetic variation

One possible explanation for the growth of genomic islands of divergence is from divergent

hitchhiking, where there is a reduced e�ective gene �ow in genomic regions linked to divergently

selected loci (Via andWest, 2008). Divergence hitchhiking theory, however,maynot fully explain

patterns seen in nature (Yeaman, 2013). We previously modeled (Chapter 5) how genomic

islands can arise from standing genetic variation via the breakdown of linkage disequilbrium

within populations undergoing divergence in isolation following secondary contact (i.e., with-

out gene �ow between populations). Moreover, in a recent reanlaysis of published datasets on

genomic islands, Cruickshank and Hahn (2014) found little support for the divergent hitchhik-

ing hypothesis. Finally, in the current study we provide experimental evidence that clusters of

localized genetic di�erentiation can occur in isolation following secondary contact. We are not

arguing that the growth of genomic islands from de novo mutations cannot occur but rather

highlight that alternative approaches can readily evolve and might better re�ect natural systems.
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It is worth noting that these two hypotheses need not be mutually exclusive as newmutations are

continually supplying new genetic variation and that divergent hitchhiking can be acting from

islands previously established by divergence originated by standing genetic variation.

We con�rmed that genetic di�erentiation accompanying local adaptation can manifest as

“islands” in less than 100 generations of populations evolving in isolation a�er a bout of secondary

contact. We also found that the pattern of genomic islands was characterized by a mixture of

divergently and non-divergently selected loci. Interestingly, some of these regions are adjacent

to or overlap one another (Figures 6.5, 6.7, 6.9, & 6.10). By crossing two diverged strains of yeast

we seeded populations with several thousand single nucleotide variants and even more combina-

tions of genes for selection to act upon. In our experiment, divergence from secondary contact

likely involved multifarious selection acting as well as responses to common stress-related gene

networks. Further research is needed to better distinguish between genomic islands of divergence

and the broader classi�cation of genomic islands of di�erentiation.

To con�dently estimate allele frequency di�erences between populations we used high cov-

erage PoolSeq of reduced representation (RADseq) libraries and estimated FST at each SNP.�e

main drawback of this approach is that FST , a relativemeasure of divergence, depends on the av-

erage within population heterozygosity and that regions of limited diversity (e.g., recombination

cold spots, centromeres) are expected to show in�ated di�erentiation (Cruickshank and Hahn,

2014). An alternative method is based on absolute di�erences between populations without con-

sideration of within population diversity. Our short read PoolSeq method, however, prohibited

us from reliability estimating absolute measures of divergence (e.g., dXY ) because we could not

reliably reconstruct large haplotype information and the variance in SNP estimates would be

high (Cruickshank andHahn, 2014). However, we circumvented this problem in our experiment

by i) starting o� with admixed individuals with roughly equal allele frequencies at each of the

predetermined SNPs (Figure 6.1A) and ii) only including loci that showed evidence of opposing

allelic responses between alternative environments when compared to the admixed ancestral

pool (Figure 6.3).
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6.5.3 Stochastic islands

We observed a highly stochastic pattern of di�erentiation under divergence with gene �ow (Ex-

periment II), �nding little evidence that migration erodes islands of divergence on a genome-

wide scale. One hypothesis for the high variance in FST seen within and between replicates here

is that adaptation to one or both of the stress environments has resulted in large-scale genomic

rearrangements. Indeed, Yeaman (2013) showed how genomic shu�ing via transposition is one

way that adaptive mutations can build up in genomic clusters with tight linkage over relatively

short timescales and stress has been shown to create genomic instability – but not large scale rear-

rangements – in fermenting lager yeast (James et al., 2008). Since our allele calling was based on

mapping reads to a reference genome, large-scale genomic rearrangements may not adequately

capture the realized relationship of clusters of genes under divergent selection. However, this hy-

pothesis is unlikely to be accepted in our case for the following reason. In our RADseq approach

we sequenced paired-end reads with an insert size of approximately 400 bp. When counting

alleles at each locus we discarded the paired-end reads due to variability in sequence coverage

introduced from the random shearing process (see Methods). �ese paired-end data, however,

can still be used to test if a high proportion of pairs of reads map discordantly to the reference.

Mapping these paired-end data to the reference genome identi�ed an average of 6.7% (SD=1.8) of

the reads for all samples aligned discordantly when specifying a conservative 100-1000 bp insert

size range. �us, genomic rearrangements are not likely to contribute meaningfully to the high

variance in FST clustering that we found within and between replicates of Experiment II.

It may be possible that additional and unforeseen selection occurred during the experimental

procedure. For each of the four treatments in Experiment II we froze samples. For the three

mating treatments we revived and sporulated them. A�er sporulation, we grew all treatments

(included the no mating control) in YPD before continuing with the divergent selection batch

transfer. During this procedure there are many potential selection events that could occur which

would obstruct or disrupt our expected results. For example, in a previous study we created

advanced intercross lines by serially mating progeny generated from crossing haploid YPS128

and DBVPG1106 strains (Chapter 4). �is mating procedure was similar as performed in the

current study (seeMethods) but without a period of growth in a stress environment. Genotyping
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96 F6 diploid individuals revealed a strong departure from HWE expectations. �e repeatability

of this result is unknown since only one replicate population was serially mated. If, however,

di�erent replicates of intercrossing resulted in vastly di�erent ancestry painting (e.g., Figure 4.6)

then genetic dri� in our experiment would also be likely.

6.6 concluding remarks

Our results underscore how multiple concurrent evolutionary and genic processes can a�ect

the genomic response to adaptation from standing genetic variation. Here we show that such

adaptation can produce a pattern of heterogeneous genetic di�erentiation relatively rapidly as a

result of multifarious selection to novel environments. We also found that the genomic response

to selection can be strongly in�uenced by genetic dri� – either directly via population bottlenecks

or indirectly as a result of strong multifarious selection.
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appendix a

Supplementary Information to Chapter 2

a.1 genotype-to-phenotype equations

�eequations in this section describe the “Genotype-to-Phenotype”map for the system ofODEs.

�ey are in terms of genotypic values α1 and α2, which represent the summed additive contribu-

tion of both parental alleles for gene 1 and 2, respectively. Parameters are the amount of regulator

needed to yield a 50% response (θ) and decay rate of expressed product (γ).

a.1.1 Motif “A” - single dependency, positive

x1 =
α1
γ

(a.1)

x2 =
α1α2

γ(θ + α1)
(a.2)

a.1.2 Motif “B” - single dependency, negative

x1 =
α1
γ

(a.3)

x2 =
θα2

θγ + α1
(a.4)
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a.1.3 Motif “C” - double dependency, negative feedback loop

x1 =
2θα1

(θγ − α1) +
√
4α1α2 + (θγ + α1)2

(a.5)

x2 =
(θγ − α1) +

√
4α1α2 + (θγ + α1)2

2γ
(a.6)

a.1.4 Motif “D” - double dependency, both positive

x1 =
−θγ + α1 − α2 +

√
4θγα1 + (−θγ + α1 − α2)2

2γ
(a.7)

x2 =
−θγ − α1 + α2 +

√
4θγα1 + (−θγ + α1 − α2)2

2γ
(a.8)

a.1.5 Motif “E” - double dependency, both negative

x1 =
α1α2 − θ2

γ(θ + α2)
(a.9)

x2 =
α1α2 − θ2

γ(θ + α1)
(a.10)

a.1.6 Motif “F” - no dependency

x1 =
α1
γ

(a.11)
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x2 =
α2
γ

(a.12)

a.2 stability of equilibria

Stability of equilibrium values was determined by analyzing the eigenvalues of the Jacobian ma-

trix for each system of ODEs. Below we provide the Jacobian and the eigenvalues.

a.2.1 Motif “A” - single dependency, positive

J(x1, x2) =
⎛
⎜
⎝

−γ 0

α2
(θ+x2)2 −γ

⎞
⎟
⎠

(a.13)

λ1, λ2 = −γ (a.14)

a.2.2 Motif “B” - single dependency, negative

J(x1, x2) =
⎛
⎜
⎝

−γ 0

−α2θ
(θ+x1)2 −γ

⎞
⎟
⎠

(a.15)

λ1, λ2 = −γ (a.16)

a.2.3 Motif “C” - double dependency, negative feedback loop

J(x1, x2) =
⎛
⎜
⎝

−γ −α1θ
(θ+x2)2

α2θ
(θ+x1)2 −γ

⎞
⎟
⎠

(a.17)
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λ1, λ2 = {±
√
−α1α2θ2(θ + x1)2(θ + x2)2

−γθ4 − 2γθ3x1 − 2γθ3x2 − γθ2x12

−4γθ2x1x2 − γθ2x22 − 2γθx12x2

−2γθx1x22 − γx21 x22} ⋅ ((θ + x1)(θ + x2))−1

(a.18)

a.2.4 Motif “D” - double dependency, both positive

J(x1, x2) =
⎛
⎜
⎝

−γ −α1θ
(θ+x2)2

−α2θ
(θ+x1)2 −γ

⎞
⎟
⎠

(a.19)

λ1, λ2 = {±
√
−α1α2θ2(θ + x1)2(θ + x2)2

−γθ4 − 2γθ3x1 − 2γθ3x2 − γθ2x12

−4γθ2x1x2 − γθ2x22 − 2γθx12x2

−2γθx1x22 − γx21 x22} ⋅ ((θ + x1)(θ + x2))−1

(a.20)

a.2.5 Motif “E” - double dependency, both negative

J(x1, x2) =
⎛
⎜
⎝

−γ α1θ
(θ+x2)2

α2θ
(θ+x1)2 −γ

⎞
⎟
⎠

(a.21)

λ1, λ2 = {±
√
−α1α2θ2(θ + x1)2(θ + x2)2

−γθ4 − 2γθ3x1 − 2γθ3x2 − γθ2x12

−4γθ2x1x2 − γθ2x22 − 2γθx12x2

−2γθx1x22 − γx21 x22} ⋅ ((θ + x1)(θ + x2))−1

(a.22)
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a.2.6 Motif “F” - no dependency

J(x1, x2) =
⎛
⎜
⎝

−γ 0

0 −γ

⎞
⎟
⎠

(a.23)

λ1, λ2 = −γ (a.24)

a.3 phenotype-to-genotype equations

Below are equations that describe the “Phenotype-to-Genotype” map – equations that provide

the genotypic values, calculated as the sum of parental allelic values, required to give a particular

two-trait phenotype, given the parameters θ and γ.

a.3.1 Motif “A” - single dependency, positive

α1 = γx1 (a.25)

α2 =
γx2(θ + x1)

x1
(a.26)

a.3.2 Motif “B” - single dependency, negative

α1 = γx1 (a.27)

α2 =
γx2(θ + x1)

θ
(a.28)
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a.3.3 Motif “C” - double dependency, negative feedback loop

α1 =
γx1(θ + x2)

θ
(a.29)

α2 =
γx2(θ + x1)

x1
(a.30)

a.3.4 Motif “D” - double dependency, both positive

α1 =
γx1(θ + x2)

θ
(a.31)

α2 =
γx2(θ + x1)

θ
(a.32)

a.3.5 Motif “E” - double dependency, both negative

α1 =
γx1(θ + x2)

x2
(a.33)

α2 =
γx2(θ + x1)

x1
(a.34)

a.3.6 Motif “F” - no dependency

α1 = γx1 (a.35)
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α2 = γx2 (a.36)

a.4 license agreement

�e body of Chapter 2 was previously published in Evolution (see Hether and Hohenlohe,

2014). Figures a.10 through a.14 are the license terms and conditions for reprinting in this

dissertation.
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Figure a.1: Dimensionality of M across trait space. For each network motif (A-F), dimensional-
ity was calculated as the sum of eigenvalues divided by the leading eigenvalue for eachM-matrix
along a 20-by-20 grid.
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Figure a.2: �e additive genetic (co)variance matrix G across phenotypic space. For each
network motif (A-F), G matrices for nine populations are plotted as 95% con�dence ellipses of
breeding values (i.e., posterior mode of individual’s random e�ects for each trait).
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Figure a.3: �e epistatic (co)variancematrix E across phenotypic space. For each networkmotif
(A-F), E matrices for nine populations are plotted as 95% con�dence ellipses of the posterior
mode of individual’s residual e�ects for each trait.
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Figure a.4: Evolvability across trait space when mutation is limiting. For each network motif

(A-F), evolvability was calculated as the average of the eigenvalues of M. Note that the scales are
di�erent across panels.
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Figure a.5: �e extent of local adaptation through time across 15 simulated replicates for

Population “1” (le� column) and “2” (right column). Rows denote seperate variance of stabilizing

selection, ω. Shown here are data from migration = 0.
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Figure a.6: �e extent of local adaptation through time across 15 simulated replicates for

Population “1” (le� column) and “2” (right column). Rows denote seperate variance of stabilizing

selection, ω. Shown here are data from migration = 0.0001.
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Figure a.7: �e extent of local adaptation through time across 15 simulated replicates for

Population “1” (le� column) and “2” (right column). Rows denote seperate variance of stabilizing

selection, ω. Shown here are data from migration = 0.001.
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Figure a.8: �e extent of local adaptation through time across 15 simulated replicates for

Population “1” (le� column) and “2” (right column). Rows denote seperate variance of stabilizing

selection, ω. Shown here are data from migration = 0.01.
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Figure a.9: �e extent of local adaptation through time across 15 simulated replicates for

Population “1” (le� column) and “2” (right column). Rows denote seperate variance of stabilizing

selection, ω. Shown here are data from migration = 0.1.
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appendix b

Supplementary Information to Chapter 3

b.1 joint allele frequency change in a single locus, three

allele model

In this section we describe the deterministic change in allele frequencies for a single locus under

selection that contains three alleles. We denote the 3 alleles – labeled 1, 2, & 3 – in vector form:

p =

⎛
⎜
⎜
⎜
⎜
⎝

p1

p2

p3

⎞
⎟
⎟
⎟
⎟
⎠

(b.1)

To calculate the joint change in allele frequencies a�er selection we modi�ed formula given

in Rice (2004). Consider a matrix of genotype �tness values F for genotype wi j derived from the

simulated example in Chapter 3:

F =

⎛
⎜
⎜
⎜
⎜
⎝

w11 = 0.07 w12 = 0.99 w13 = 0.78

w21 = 0.99 w22 = 0.07 w23 = 0.23

w31 = 0.78 w32 = 0.23 w33 = 0.53

⎞
⎟
⎟
⎟
⎟
⎠

(b.2)

�e change of allele frequencies a�er selection can be calculated as:

△ p =
1

2w̄
G(2w⋆)T (b.3)

where G is the allelic (co)variance matrix:

G =

⎛
⎜
⎜
⎜
⎜
⎝

p1(1 − p1) −p1p2 −p1p3

−p2p1 p2(1 − p2) −p2p3

−p3p1 −p3p2 p3(1 − p3)

⎞
⎟
⎟
⎟
⎟
⎠

(b.4)

In Equation b.3, w⋆ is equal to pF and w̄ is calculated similarly to Equation 5.5 but here we

only consider a single locus. �at is, w̄ is the sum of the dot product of p and w⋆.
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A ternary plot showing the change in allele frequencies for di�erent starting values of p is

given in Figure b.1. �ere are two stable heterozygous equilibrium points that correspond to

ridges B and C in Figure 3.11. �e �rst occurs when the ‘-’ allele and the ‘0’ allele are equal at 0.5.

�e second occurs when the ‘-’ allele and ‘+’ allele is approximately 0.26 and 0.74, respectively.
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w−/− =
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Figure b.1: Vector �eld of change in allele frequencies a�er a bout of selection given the two sets

of genotype �tness values dervived from the simulated example in Chapter 3 (see also Equation

b.2). Each vertix indicates the �xation of a given allele and allelic polymorphism occurs within

the simplex. Vectors show the direction of allele frequency change a�er selection given regularly

spaced starting allele frequencies. Values inside the plot show the relative allele frequencies. �e

two stable, heterzygote allele frequencies are denoted by dots (blue = “-/0” heterozgyote; red =

“-/+” heterozgyote). A) Fitnesses during which the ‘+’ allele failed to �x (i.e., dashed vertical lines

in Figure 3.9; generation 1,942,134). B) Fitnesses while the ‘+’ allele rose to �xation (i.e., dotted

vertical lines in Figure 3.9; generation 1,951,254).
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Figure b.2: Distribution of F1 hybrid incompatibility between 20 population pairs through time.
At the beginning of the simulation each population was initialized at point x1 = 1000, x2 = 1000
(upper right panel). Each sub-panel shows frequency counts of F1 incompatibility through time
(orange to purple shows early to later generations, respectively). Columns and rows show the

location of the new x1 and x2 optimum, respectively.
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Figure b.3: Distribution of F2 hybrid incompatibility between 20 population pairs through time.
At the beginning of the simulation each population was initialized at point x1 = 1000, x2 = 1000
(upper right panel). Each sub-panel shows frequency counts of F2 incompatibility through time
(orange to purple shows early to later generations, respectively). Columns and rows show the

location of the new x1 and x2 optimum, respectively.
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appendix c

Supplementary Information to Chapter 4

�is section contains supplemental �gures for Chapter 4.
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Figure c.1: Performance of HMMancestry in estimating genome-wide recombination rate.
Shown is the di�erence between theML estimate and the simulated (true) value of recombination

rate c in cM/kb, for di�erent levels of recombination rate (rows), assignment probability
(columns), ploidy (colors), and sequencing coverage (x-axis). Box and whisker plots show

median (plus �rst and second quartiles) of 50 simulated replicates for each parameter

combination.
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Figure c.2: Performance of HMMancestry in estimating assignment probability.Shown is the
di�erence between the ML estimate and the simulated (true) value of assignment probability

p, which is the probability of a sequence read correctly assigning to one parent, for di�erent
levels of ploidy (rows), true assignment probability (columns), recombination rate (colors),

and sequencing coverage (x-axis). Box and whisker plots show median (plus �rst and second

quartiles) of 50 simulated replicates for each parameter combination.



178

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

2.5

5.0

7.5

10.0

0.4 0.8 1.2
Chromosome Size (Mbps)

M
ea

n 
nu

m
be

r 
of

 C
ro

ss
ov

er
 e

ve
nt

s

Sequence Run

●

●

RAD

WGS

Type of Event

● CO with GC

CO without GC

Figure c.3: �e average number of crossover events with or without a gene conversion tract as

a function of chromosome size for WGS and RAD datasets.



179

●

●

●

●

●●

●●

●● ●

●

●

●

●●

●●●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●● ●●

●

●

●

●

●●

●● ●

●

●

● ●

●

●

●●●●●
●●

●●●● ●●

●
●

●●
●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

0.90 0.95 0.99

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Simulated Coverage

P
ro

po
rt

io
n 

of
 fa

ls
e 

ho
m

oz
yg

ot
es

w
ith

in
 th

e 
m

is
cl

as
si

fie
d 

lo
ci

Recombination Rate
(cM/kb)

0.1

0.5

1

Figure c.4: Misclassi�cation of homozygous sites as heterozygous from simulated data. Box

plots show variation across 50 replicate runs. Y-axis shows the proportion of the misclassi�ed

loci there were erroneously assigned to one of two parental types. Columns denote the simulated

assignment probability (p).
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Figure c.5: Frequency spectrum of the size of misclassi�ed regions in simulated data.

Histograms show the chromosome size of continuous loci that were misclassi�ed in the HMM.

Singletons, in which a single, misclassi�ed locus was �anked correctly assigned loci on either

side were given a size of zero. Parameter values in the simulated data we derived from empirical

estimates. Number of loci = 73,294, displacement between each SNP = 175 bp, c = 3.1, p = 0.993,
coverage = 2.8X, frequency of COs = 0.51, frequency of conversion = 0.85, length of conversion

= 1,920 bps.
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appendix d

Supplementary Information to Chapter 5

�is section contains supplemental �gures for Chapter 5.
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Figure d.1: Dynamics of divergence with gene �ow under scenario #2 – obligate sexual, m f = 1,

LD=0, X-LD=0.125. For each panel, the extent of divergence (FST) at neutral loci are given across
time. Rows indicate migration rate,m, between diverging populations and columns indicate the
strength of divergent selection, s, at selected locus A.
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Figure d.2: Dynamics of divergence with gene �ow under scenario #3 – obligate sexual, m f = 1,

LD=0, X-LD=0. For each panel, the extent of divergence (FST) at neutral loci are given across
time. Rows indicate migration rate,m, between diverging populations and columns indicate the
strength of divergent selection, s, at selected locus A.
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Figure d.3: Dynamics of divergence with gene �ow under scenario #5 – obligate sexual, m f = 1,

LD=0.25 - 0.25r, X-LD=0.25 - 0.25r. For each panel, the extent of divergence (FST) at neutral
loci are given across time. Rows indicate migration rate, m, between diverging populations and
columns indicate the strength of divergent selection, s, at selected locus A. Note the change of
migration rates investigated in this �gure compared to Figure 5.2

.
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appendix e

Supplementary Information to Chapter 6

�is section contains supplemental �gures for Chapter 6.
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Figure e.1: �e extent of local adaptation (LA) for lag during divergence with a given amount

of migration. For each migration rate the extent of LA is given for each stress environment.

Gold and purple denote NaCl and SDS habitats, respectively, and group means are denoted by

solid color lines. Black vertical lines show where sporulation and migration (if applicable) occur

between periods of asexual growth in batch.
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Figure e.2: �e extent of local adaptation (LA) for rate during divergence with a given amount

of migration. For each migration rate the extent of LA is given for each stress environment.

Gold and purple denote NaCl and SDS habitats, respectively, and group means are denoted by

solid color lines. Black vertical lines show where sporulation and migration (if applicable) occur

between periods of asexual growth in batch.
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Figure e.3: �e extent of local adaptation (LA) for rate during divergence with a given amount

of migration. For each migration rate the extent of LA is given for each stress environment.

Gold and purple denote NaCl and SDS habitats, respectively, and group means are denoted by

solid color lines. Black vertical lines show where sporulation and migration (if applicable) occur

between periods of asexual growth in batch.
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migration = 0.0 (no mating)
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Figure e.4: �e extent of local adaptation (LA) for rate during divergence with a given amount

of migration. For each migration rate the extent of LA is given for each stress environment.

Gold and purple denote NaCl and SDS habitats, respectively, and group means are denoted by

solid color lines. Black vertical lines show where sporulation and migration (if applicable) occur

between periods of asexual growth in batch.
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Figure e.5: Average island size vs migration rate. A signi�cant di�erence (Tukey’s HSD) occur

between migration m = 0.2 and non-mating m = 0.0 (P<0.041).
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