
 

 

The Effect of Leaf Litter Legacies and Nutrient Additions on Microbial 

Function 

 

 

 

A Thesis 

Presented in Partial Fulfillment of the Requirements for the  

Degree of Master of Science 

with a 

Major in Soil and Land Resources 

in the 

College of Graduate Studies  

University of Idaho 

by 

Peter J. Hoch 

 

 

 

 

Major Professor: Michael S. Strickland, Ph.D. 

Committee Members: Zachary Kayler, Ph.D.; Deborah S. Page-Dumroese, Ph.D. 

Department Administrator: Jodi Johnson-Maynard, Ph.D. 

 

 

 

 

December 2019 



ii 

 

Authorization to Submit Thesis 

This thesis of Peter Hoch, submitted for the degree of Master of Science with a Major in Soil 

and Land Resources and titled "The Effect of Leaf Litter Legacies and Nutrient Additions on 

Microbial Function," has been reviewed in final form. Permission, as indicated by the 

signatures and dates below, is now granted to submit final copies to the College of Graduate 

Studies for approval.  

 

 

 

 

Major Professor:        _____________________________________ Date: ___________ 

Michael S. Strickland, Ph.D. 

 

Committee Members: _____________________________________ Date: ___________ 

Zachary Kayler, Ph.D. 

 

_____________________________________ Date: ___________ 

Deborah S. Page-Dumroese, Ph.D. 

 

 Department 

Administrator:           _____________________________________ Date: ___________ 

Jodi Johnson-Maynard, Ph.D. 

  



iii 

 

Abstract  

Microorganisms are integral to ecosystem carbon and nutrient cycling, yet we still lack 

a holistic understanding of the roles microorganisms play in these ecosystem processes. This 

thesis explores the role microbial communities play in leaf litter decomposition, as well as 

how micronutrient additions influence the function of microbial communities. 

The way that microbes decompose litter can be assessed via the indexes of home-field 

advantage and functional breadth. Often, past studies have focused on home-field advantage 

and ignored functional breadth as it is believed that the two are interchangeable. We 

performed a full factorial leaf litter by soil mesocosm experiment to compare how different 

microbial communities decompose substrates. We found an unimodal relationship between 

home-field advantage and functional breadth, as well as several other correlated variables that 

may help explain the presence or absence of these indexes in other scenarios. This unimodal 

relationship suggests that these two indexes, while related to each other are not ultimately the 

same, and should each be considered carefully in future studies. 

There is relatively little known about how micronutrients influence microbial 

communities, compared to the influence of macronutrients. In order to study the influence of 

micronutrients on microbial communities, we added micro- and macronutient fertilizer inputs 

to field soils and measured differences in microbial function (i.e., carbon mineralization, 

substrate-induced respiration, catabolic response profiles). We found that microbial 

communities responded to the addition of multiple types of fertilizer, rather than just one 

single type. This response to different nutrients suggests there is a possible colimitation of 

nutrients. 

Understanding how microbial communities regulate decomposition and nutrient cycling is 

a fundamental question for soil scientists. This work on the relationship between home-field 

advantage and functional breadth provides insight into a key component of the decomposition 

process. Similarly, this research on how macronutrients and micronutrients influence 

microbes shines light on what factors regulate microbial community assembly and diversity. 

Combined this work provides important insight into the roles and importance of microbial 

communities in global carbon cycling and ecosystem function. 
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Chapter 1: Introduction 

1.1  Soil Nutrient Cycling 

 

Figure 1.1: Thesis topics discussed in each chapter. The first chapter is an introduction to nutrient cycling in 

terrestrial systems, as well as the specific topics covered in greater detail in the following chapters. The second 

chapter is a study involving leaf litter decomposition and the mechanisms (home-field advantage (HFA) and 

functional breadth (FB)) related to the role of microbial communities. The third chapter is an investigation of 

organic matter (OM) in soil and what roles calcium and sodium play in the microbial efficiency-matrix 

stabilization (MEMS) framework. 

Soil is critical to life on earth (Amundson et al. 2007). Soil provides many essential 

services such as the production of 99.7% of food calories worldwide (Pimentel and Burgess 

2013). Other services include habitat provisioning (Weber 2007), water filtration (Wall et al. 

2004), erosion control (Lavelle et al. 2006), and biological control of pests and diseases 

(Porter et al. 2009; Dominati et al. 2010).  Soil is also a key component of carbon and nutrient 

cycling; it is estimated that on average 120 gigatons of carbon (C) is sequestered each year as 

organic matter inputs to soil (Kirchman 2018). However, much of this sequestered C is also 

returned to the atmosphere through organic matter degradation and one of the main processes 

of this degradation is leaf litter decomposition.  
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Decomposition is the breakdown of leaf litter by physical and chemical processes to its 

elemental chemical constituents (Aerts 1997). The rate of leaf litter decomposition is 

regulated by hierarchically organized, interacting factors (Lavelle et al. 1993; Adair et al. 

2008; Wall et al. 2008). Of these factors, three of the most influential include climate, litter 

chemistry, and soil biota. Climate and litter chemistry are often considered to be more 

important in determining leaf litter decomposition despite the fact that microbial communities 

are the agents of decomposition (Lavelle et al. 1993; Cornwell et al. 2008; Currie et al. 2010; 

Carrillo et al. 2012). One aspect that could be leading to this belief is that microbial 

communities are often thought to be functionally homogenous, meaning that decomposition 

by microbial biota is determined solely by contemporary environmental conditions rather than 

the historical conditions of the site (Cardinale et al. 2007; Jiang 2007; Verity et al. 2007). 

However, there is growing evidence to suggest that microbial communities play a more 

dynamic and influential role in leaf litter decomposition than was previously considered 

(Hattenschwiler and Gasser 2005; Ayres et al. 2009; Schimel and Schaeffer 2012; Strickland 

et al. 2015).  

1.2 Microbial Communities’ Role in Leaf Litter Decomposition 

Microbes are everywhere doing nearly everything (Buol et al. 2011; Kirchman 2018). 

Microorganisms serve a regulatory role for the vital processes of non-symbiotic nitrogen 

fixation, nitrification, and denitrification in soil (Rosswall 1982; Hodge 2010). Plant growth is 

stimulated by the presence of microbes in the rhizosphere in the form of mycorrhizal fungi 

(Jeffries et al. 2002) and rhizobacteria are capable of promoting plant growth by colonizing 

the plant root (Hayat 2010). Fungi and other microorganisms can alter pore size distribution 

and increase the volume of mesopores (Strong et al. 1998; Chenchu and Cosentino 2011). 

Microorganisms also serve an important role as the foundation of food chains for other soil 

organisms (Mikola and Setala 1998). All of the above functions are important and have been 

the subject of much research, but of particular interest to this thesis is the role microbes play 

in the degradation of organic matter.  

Two distinct and complementary mechanisms have been proposed for microbial 

regulation of decomposition rates. The first mechanism is home-field advantage (HFA). This 
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suggests that a microbial community displaying high HFA will have an advantage when 

decomposing litter that it shares a common history with, much in the same way that a sports 

team is hypothesized to have an advantage when playing in their home stadium (Gholz et al. 

2000; Strickland et al. 2009b). The first usage of HFA in the context of microbial 

communities decomposing litter was by Gholz et al. (2000), where they found that litter from 

Central American broadleaf species decomposed much faster than pine litter from North 

America in the broadleaf habitat. This suggested a potential HFA effect in which the 

microbial community was historically adapted to better decompose its co-occurring litter as 

compared to a novel litter. This is in direct contrast to the general theory that contemporary 

climatic conditions are more important drivers of rates of decomposition. Similarly, 

Strickland et al. (2009b) performed a common garden experiment measuring decomposition 

of two different types of litter with different soil inocula. Microbial communities from 

different habitats decomposed litter at differing rates, suggesting that litter quality alone 

cannot predict rates of decomposition, but rather that microbial communities are important 

predictors as well. Veen et al. (2015) performed a meta-analysis of 35 studies that examined 

HFA effects based on climate and litter quality and found a general global trend of the HFA 

effect. However, there are also a number of studies which find no HFA effect or even a 

negative HFA effect (Gießelmann et al. 2011, John et al. 2011, Kagata & Ohgushi 2013, Veen 

et al. 2015). Though home-field advantage likely plays an important role in litter 

decomposition globally, we still lack an understanding of why HFA is sometimes present and 

sometimes not.  

The second mechanism for how litter communities regulate decomposition is functional 

breadth (FB). Functional breadth suggests that a microbial community capable of 

decomposing recalcitrant litter is a “better decomposing community” because of a suite of 

characteristics and therefore will be able to decompose a wider array of litters (Van der 

Heijden et al. 2008; Keiser et al. 2011, 2014). Van der Heijden et al. (2008) was the first to 

hypothesize that microbial communities in nutrient-poor systems are functionally more 

diverse than communities in nutrient-rich environments. This is because microbes in nutrient-

poor environments need specific adaptions to obtain resources. Keiser et al. (2013) found that 

across an elevational gradient, soil communities derived from the nutrient-poor higher 
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elevation sites were able to decompose different litters more evenly than the communities 

derived from the nutrient-rich lower elevation sites which had difficulty decomposing 

recalcitrant litter, providing support for the FB hypothesis. In a full factorial study of 3 

inoculum communities sourced from different ecosystems of varying leaf litter input, it was 

found that communities which were gathered from areas with recalcitrant litter inputs 

(rhododendron and pine) were able to mineralize the other litters relatively well, while 

communities from labile litter inputs (grass) were poor at decomposing litter aside from grass, 

lending more weight to the FB hypothesis (Strickland et al. 2009a; Keiser et al. 2014). 

Recently, there has been a tendency to consider HFA and FB to be interchangeable 

(Palozzi & Lindo 2018) as HFA effects have been observed to be most prominent when 

microbial communities are decomposing recalcitrant litter (Milcu & Manning 2011) such as 

with FB. However, there is evidence to suggest that HFA and FB, although potentially 

related, are separate mechanisms. In 2014, Keiser et al. found that by calculating HFA and FB 

using modified sporting statistics, the expressions of HFA and FB were not the same for each 

microbial community, lending evidence to the notion that these are unique mechanisms which 

describe different aspects of the microbial communities’ role in decomposition. 

Understanding the relationship between these two mechanisms is an important next step in 

determining the role microbial communities play in leaf litter decomposition.  

1.3 Abiotic Soil Matrix 

      Soil microorganisms, while being the agents of leaf litter decomposition and critical to 

plant diversity and productivity, are influenced by the abiotic factors of the soil (Fierer and 

Jackson 2006; Andrew et al. 2017). Abiotic factors are the nonliving characteristics of soil 

(e.g., pH, temperature, soil moisture, nutrient content). Fierer and Jackson (2006) assert that 

edaphic characteristics are the primary control on microbial biogeography with pH, in 

particular, explaining a high level of differences in microbial community diversity and 

richness. Angel et al. (2010) examined microbial community diversity along a precipitation 

gradient in Israel and found that soil water content was correlated with the distribution of 

bacteria and archaea. A study of soil communities along an elevation gradient in a wetland on 

the Gulf of Mexico found that community diversity was influenced by salinity and soil water 
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content (Lee et al. 2019). While a broad range of abiotic factors can influence microbial 

communities, my work focuses on how soil communities and their function are shaped by the 

availability of macro- and micro-nutrients. 

There have been numerous studies that highlight how microbial communities are 

influenced by macronutrients. Jonasson et al. (1995) found that when arctic soils were 

fertilized with nitrogen, phosphorus, and potassium (NPK), there was a 30% increase in soil 

respiration. A 20-year fertilization study on microbial communities in paddy fields found that 

the addition of NPK influenced the microbial communities’ functional diversity (Chen et al. 

2015). A study on fertilizer application over a 54-year long experiment found that different 

NPK volumes had little impact on the functionality of the microbial community, but there was 

an impact on bacterial community composition (Pan et al. 2014). While there has been a great 

deal of attention brought to the impacts of NPK, there have been relatively few studies on 

how micronutrient content influences soil communities and their functions. 

Micronutrients are any nutrient that is important for life, however in trace amounts 

(Fageria et al. 2002). In grassland ecosystems, calcium (Ca) and sodium (Na) are considered 

micronutrients that can have complex ecosystem effects (Osimani et al. 2017). Sodium is 

necessary for plant life, but at high concentrations, it can become toxic (Jennings 1976; 

Kronzucker et al. 2013). Calcium is well known for its role in plant nutrition as it is involved 

in membrane stability and cell integrity maintenance (Bussler 1972). However, too much Ca 

reduces membrane permeability which restricts the flow of solutes in plants, leading to 

potential toxicity (Kirkby 1984; Daniel et al. 2007). These two elements also play important 

roles in soil systems. Excessive sodium ions at the root surface disrupt plant potassium 

nutrition which restricts plant growth (Zhu 2001). Increasing levels of Na beyond what is 

needed for growth can stress microbial communities and reduce both microbial biomass and 

function (Rietz and Haynes 2003). Calcium acts as a polyvalent cation which can form 

bridges between negatively charged soil organic matter (SOM) and phyllosilicates (Six et al. 

2004; Cotrufo et al. 2013). These bridges result in a more stable soil matrix which may lead to 

greater microbial biomass. However, the benefits of Ca inputs on microbial growth may be 

diminished due to increased chemical stabilization of dissolved organic matter (DOM) 

(Cotrufo et al. 2013). 
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     Understanding what regulates decomposition and nutrient cycling is fundamental to soil 

science. In this thesis, I will examine how microbial community composition can influence 

rates of decomposition, and how nutrient availability shapes soil communities and their 

function. Understanding the relationship between HFA and FB will provide insight into a key 

component of the decomposition process. Knowledge of how macronutrients and 

micronutrients influence microbes will shine light on what factors regulate microbial 

community assembly and diversity. This work can also be incorporated into climate models to 

increase our accuracy in predicting C cycling globally. As critical as microorganisms are to 

the function of ecosystems worldwide and the services they provide, there is relatively little 

known about such an important aspect of the planet. Combined this work will provide critical 

insight into the roles and importance of microbial communities in global C cycling and 

ecosystem function. 
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Chapter 2: The role of functional breadth and home-field advantage in leaf 

litter decomposition 

2.1 Introduction 

Leaf litter decomposition is central to global nutrient cycling and is a major 

contributor to ecosystem respiration (Raich & Schlesinger 1992). Rates of litter 

decomposition are controlled by three hierarchically-organized, interacting factors – climate, 

litter quality, and soil biota (Adair et al 2008). Soil biota, microbial communities, in 

particular, have been thought of as beholden to the effects of climate and substrate quality 

(Keiser et al. 2017) thus their contribution has been minimized. However, recent research 

suggests that soil biota may be of equal or greater importance to climate and litter quality in 

determining the rate of decomposition (Strickland et al. 2009b, & Ayres et al. 2009a, 

Glassman et al. 2018, & Bradford et al. 2017). 

Due to their important role in the decomposition process, microbial communities are 

beginning to be incorporated into biogeochemical models (Bradford et al. 2017 & Strickland 

et al. 2009a, Weider et al. 2015). Yet, before this incorporation into models should be 

undertaken, we must first clearly identify the indexes which describe the microbial influence 

on decomposition dynamics. One such index is home-field advantage (HFA). This index 

posits that microbial communities may decompose litter faster than expected if they share a 

common history with the litter being decomposed (Gholz et al. 2000). For example, a 

microbial community sourced from a pine forest should decompose pine litter more rapidly 

than a community-sourced from a grassland or a rhododendron stand. While HFA has been 

used to describe decomposition rates in a variety of studies (Ayres et al. 2009b, Chomel et al. 

2015, Strickland et al. 2009b, & Yu et al. 2015), there are some studies, such as Fanin et al. 

2016, which dispute its importance, claiming that <5% of decomposition is explained by 

HFA. There are other studies where the presence of HFA or even an inverse HFA effect has 

been found (Veen et al. 2015). The absence of HFA has often been attributed to factors such 

as litter quality or plant successional stage (Palozzi & Lindo 2018).  

Another index of microbial influence is functional breadth (FB). Functional breadth 

suggests that a microbial community that is capable of decomposing recalcitrant litter is more 
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functionally wide and therefore will be able to decompose a wider array of litters (Keiser et al. 

2011, 2014). The presence of FB is associated with the recalcitrance of leaf litter input, the 

hypothesis being that the more complex a litter is the more functionally diverse a community 

will need to be in order to mineralize the various compounds in the litter (Van Der Heijden et 

al. 2008). Conversely, if a community is associated with litter considered to be higher quality 

and therefore less complex in composition, that community will not develop the same kind of 

wide functionality, but rather will favor a strategy where the community adapts to 

decomposing that particular type of litter quickly to compete with other microbes trying to 

decompose that litter. 

As with FB, HFA has also been associated with complex and/or recalcitrant litter 

substrates (Milcu & Manning 2011, Veen et al. 2015 & Palozzi & Lindo 2018). Since an 

association of HFA to leaf litter chemistry complexity has been recorded, FB is often 

mistaken as a symptom of communities that exhibit HFA (Veen et al. 2015 & Palozzi & 

Lindo 2018). However, Keiser et al. (2014) found evidence to suggest that decomposer 

communities exhibiting HFA are not synonymous with communities exhibiting a high degree 

of FB. These results indicate that invoking FB as the same as HFA is incorrect and that, in 

fact, these are independent (or semi-independent) characteristics of microbial communities. A 

clear mechanism that accounts for the presence, absence, or inverse of HFA has yet to be 

proposed and experimentally verified. The key to the presence or absence of HFA may 

ultimately lie in the functionality of the microbial community.   

Research Objectives 

Here we explore the relationship between HFA and FB, demonstrating that it is more 

complex than a positive linear relationship. We predict a unimodal relationship between HFA 

and FB, with HFA being greatest at intermediate levels of FB (Fig. 2.1). This prediction is 

based on the assumption that HFA is indicative of the relative increase in decomposition that 

a microbial community exhibits on its ‘home’ litter versus ‘away’ litters, and as such if a 

microbial community has a high degree of FB, then the community will be so good at 

decomposing any kind of litter that the ‘home’ litter may elicit no benefit in terms of the rate 

of decomposition. Alternatively, a community that exhibits very low FB will only be capable 

of decomposing a small array of litter compounds and will exhibit no HFA because it is poor 
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at decomposing even a litter it has an association with. At intermediate levels of FB we expect 

to observe the greatest HFA because FB will not override the manifestation of HFA. We also 

investigated separate factors that could be used to indicate the presence or absence of HFA 

and FB, such as edaphic attributes, litter chemistry, and microbial community identity. 

 

Figure 2.1: A comparison of the “classic model” and our new proposed conceptual model of how home-

field advantage (HFA) and functional breadth (FB) are related to one another. We propose that HFA will be 

greatest at intermediate levels of FB and lowest at both high and low levels of FB. This is contrasted by the 

linear relationship of the “classic model” in which higher FB is will mean higher HFA. At low FB (A), the 

community performing decomposition will not be able to decompose a wide array of litter including the 

community’s home litter and will therefore not exhibit HFA. At intermediate FB (B), HFA will be expected to 

be highest because FB will not be overriding. And at high FB (C), the microbial community will be able to 

decompose litter equally well without HFA.  

 

2.2 Materials and Methods 

Site and sample description 

To determine the potential drivers of home-field advantage and functional breadth, we 

conducted a full factorial litter by soil inoculum mesocosm experiment. We collected soil and 

litter samples from 6 unique locations across the United States. The species include blue 

bunch wheatgrass (Pseudoroegneria spicata) collected from the Hudson Biological Reserve 

at Smoot Hill, WA  (46°49’ N, 117°14’ W), trembling aspen (Populus tremuloides) from 

University of Idaho’s Arboretum, ID (46°43’ N, 117°1’ W), and ponderosa pine (Pinus 
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ponderosa) from University of Idaho’s Agricultural Experiment Station, ID (46°55’ 

N,116°49’ W), rhododendron (Rhododendron maximum) collected from Pandapas farm, 

Montgomery County, VA  (37°17’ N, 80°28’ W), tulip poplar (Liriodendron tulipifera) and 

white pine (Pinus strobus) both collected from Kentland farm, Montgomery County, VA  

(37°11’ N, 80°34’ W). All samples were collected from sites where the named plant species 

created the dominant leaf litter substrate, although the tulip poplar site was also a mixed forest 

stand. We selected litter to vary in chemical complexity from labile to recalcitrant (Table 2.1).  

Table 2.1: Leaf litter chemistry of the species collected for the study. The range in quality is based on 

the lignin to nitrogen ratio. 

 

Trembling aspen, ponderosa pine, rhododendron, tulip poplar, and white pine litters 

were collected as recent litterfall and blue bunch wheatgrass litter was collected as standing-

dead material. In the laboratory, litter samples were sorted to remove unwanted additions 

(seed, fruits, etc.), air dried, and milled (4mm). Litter was sterilized in an autoclave (121ºC, 

30 min). 

Microbial inocula sources were collected as 5-6 soil cores (5 cm depth) at each site 

with a standard soil auger 8 cm in diameter. The BBW site soil is a from the Tekoa series 

classified as an Argixeroll. The TA site soil is a Lathco-Thatuna complex classified as an 

Argixeroll. The PP site soil is from the Taney series classified as an Argixeroll. The RM site 

soil is from the Jefferson series classified as a Hapludult. The TP and WP site soils are a 

Wurno-Newbern-Faywood complex classified as a Eutrudept. Soil samples were passed 

through a no. 4 sieve, homogenized, and then stored at 5°C until analysis. Each microbial 

community derived from soils is named after the dominant plant species present at the site of 

collection, the same as the litter substrates.  

Mesocosm Design  

Species % Lignin Lignin/Nitrogen % Nitrogen % Carbon

Bluebunch wheatgrass 2.8 8.6 0.3 40.2

Trembling aspen 11 12.4 0.9 46.2

Ponderosa pine 14.7 21.8 0.7 49.5

Rhododendron 11.1 33.2 0.3 48.6

Tulip poplar 13.2 11.8 1.1 45.8

White pine 16.7 33.8 0.5 50.3
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In order to calculate HFA and FB, we created a full factorial litter by microbial 

inocula incubation to measure each litter’s decomposition in the presence of each microbial 

inocula. Six litter species were crossed with six microbial inocula with five replicates each 

(n=5) to create a total of 180 experimental units. We placed the experimental units in 50mL 

centrifuge tubes, where 1g of litter substrate was inoculated with 0.25g of dry mass equivalent 

soil for the inoculum source. We maintained the mixture at 65% water holding capacity 

(WHC) and 20ºC to facilitate microbial activity during the 150-d incubation. We determined 

litter decomposition by measuring CO2 production over the course of 150 days. We took 

respiration measurements on days 2, 3, 7, 10, 14, 17, 22, 24, 28, 35, 46, 51, 57, 64, 72, 80, 86, 

93, 101, 107, 122, 136, and 150, using a static incubation technique where all units were 

capped and then flushed with CO2 free air and allowed 24 hrs to incubate, after which the 

headspace CO2 was measured using an infrared gas analyzer (IRGA; Model LI-7000, Li-Cor 

Biosciences, Lincoln, Nebraska, USA). Total litter decomposition (cumulative CO2-C (mg g 

dry wt litter
-1

)) was calculated by integrating CO2 production values across time. 

Determining initial leaf litter & edaphic characteristics 

Prior to our mesocosm experiment, we determined litter quality and chemistry for all 

litter types in order to be investigated as potential indicators of HFA and FB. We analyzed 

total C and N of each litter using an ECS 4010 Nitrogen / Protein Analyzer (Costech, 

Valencia, CA, USA). Litter pH was determined in water (2:1 ratio of DI water: litter) using a 

benchtop pH meter (Mettler Toledo, Columbus, OH, USA). Lignin, calcium, phosphorus, 

magnesium, potassium, sodium, iron, zinc, copper, manganese, and molybdenum content 

were determined by DairyOne Laboratories through their forage lab (Ithaca, NY, USA) using 

traditional wet chemistry procedures (Ibanez and Bauer 2014). 

We determined gravimetric soil moisture (GVM), 100% WHC, soil pH, and soil bulk 

density on all soil samples. Both GVM and WHC (after wetting to field capacity) were 

determined by drying soil at 105ºC for 24 h as per Strickland et al. 2009a. Soil pH was 

determined using the same methods as the leaf litter pH.  

Determining initial microbial inocula characteristics 
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The microbial community composition of initial soil inocula was determined for 

bacterial and fungal communities using a 16S/ITS metabarcoding technique. For each 

microbial community, we extracted DNA using the MoBio© PowerSoil kit (MoBio 

Laboratories, Inc., Carlsbad, CA, USA), according to the manufacturer’s protocols. We 

amplified ribosomal marker genes using 2 step PCR in accordance with the Earth Microbiome 

Project protocol for 16S and ITS sequencing (www.earthmicrobiome.org). We used the 

ITS1F/ITS2 and the 515f/806r primer pairs for fungi and bacteria, respectively.  After the first 

round of PCR, sequences were cleaned using ExoSAP-ITTM PCR clean-up reagent 

(Affymetrix Inc., Santa Clara, CA, USA), according to the manufacturer’s protocol. During 

the second round of PCR, unique barcoded primers were added to each sample. After the 

second round of PCR, we cleaned and normalized samples using SequelPrepTM 96-well 

plates (Invitrogen, Carlsbad, CA, USA). We pooled equimolar DNA, and these amplicon 

pools were sequenced on an Illumina MiSeq instrument using 2 × 300 bp sequencing kits at 

the IBEST sequencing facility at the University of Idaho. Controls were used throughout the 

laboratory process to ensure there were no contaminants 

Raw sequences were first demultiplexed by the IBEST genomic resource core using 

the program dbcAmplicons (Uribe‐Convers et al. 2016). This process also removed barcodes 

and primers from sequences. We processed paired sequences using the DADA2 pipeline 

(Callahan et al. 2016), which is designed to resolve exact biological sequences from Illumina 

sequence data and does not involve sequence clustering (Leff et al. 2018). Paired sequences 

were trimmed to uniform lengths, dereplicated, and the unique sequence pairs were denoised 

using the ‘dada’ function, accounting for errors through the model generated with the 

‘learnErrors’ command. We then merged paired-end sequences and removed chimeras. We 

assigned taxonomy using the Silva (ver. 132, Quast et al. 2013) and the UNITE dynamic 

general release (ver 01.12.2017, Abarenkov et al. 2010) databases for bacteria and fungi, 

respectively. To account for differences in sequencing depths, we rarified samples to 3160 

and 6400 sequences per sample for fungi and bacteria, respectively. 

To determine total active microbial biomass, we measured substrate-induced 

respiration (SIR) as per Strickland et al. (2015). Briefly, SIR was determined using soil 

slurries (4 g dry mass equivalent soil) of microbial community source that were incubated for 
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5 h with autolyzed yeast as the substrate. After the 5 h incubation, respiration was determined 

using the static incubation technique used for the mesocosm described above. Then, in order 

to determine community function, including catabolic evenness, a catabolic response profile 

(CRP; Degens and Harris 1997) was performed using the same protocol for SIR except with 

six different substrates (DI water, glucose, oxalic acid, glycine, cellulose, and chitin; as per 

Strickland et al. (2017). We shook inoculated substrates for 1 hour then flushed with CO2 free 

air. After flushing each substrate was incubated for a specific period of time. The DI water, 

glucose, oxalic acid, and glycine substrates were incubated for 5 h while the cellulose and 

chitin were incubated for 24 h. Respiration measurements were taken at the conclusion of the 

appropriate incubation period. The chosen substrates represent a variety of different classes of 

C compounds. 

To determine bioavailable C of each initial microbial community, we determined C-

mineralization through weekly measurements of respiration produced during a 30-day 

incubation using the same static incubation technique described above. Units for the 

incubation were 6 g of inoculum source soil with no substrate maintained at 20ºC and 65% 

WHC, which is considered favorable conditions for microbial growth. We calculated total 

mineralizable C (cumulative CO2-C (mg g dry wt litter
-1

)) by integrating CO2 production 

values across time. 

Statistical Analysis 

We analyzed cumulative litter mineralization as CO2 production from the mesocosm 

using an ANOVA to determine if differences existed between litter types and inocula and if 

there was an interaction between litter and inocula. The cumulative CO2 data was then used as 

the input for the model created by Keiser et al. (2014) to calculate HFA and FB. This model 

states that carbon mineralization (Yi) is equal to litter ability (βl) plus soil ability (γs) plus a 

home interaction term (ηh): 

𝑌𝑖 = 𝛼 + ∑ 𝛽𝑙  Litter𝑙𝑖

𝑁

𝑙=1

+ ∑ 𝛾𝑠 Soil𝑠𝑖

𝑀

𝑠=1

+ ∑ 𝜂ℎ Homeℎ𝑖

𝑘

ℎ=1

+ 𝜀𝑖  
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Where Yi is the carbon mineralization for observation i, βl is the ability of litter species 

l (from species 1 to N), γs is the ability of the soil community s (from community 1 to M), ηh 

is the HFA of h (from home combinations 1 to K), and Homeh = Litterl * Soils when l and s 

are home-field pairings. The parameters to be estimated are βl, γs and ηh. The intercept term is 

defined by α and represents the average carbon mineralization rate for all observations in the 

dataset after controlling for litter, soil and home-field pairings. Negative parameter estimates 

indicate lower carbon mineralization than the average rate observed across all samples. The 

error term is defined by ε. Using this model, we calculated the ability of soil microbial 

communities (FB), and the interactions between litter and soil (HFA) on net cumulative 

carbon mineralization. This model also creates a quality index term (QI), which is a measure 

of the litter quality determined from the average decomposition from microbial communities, 

or rather it is the quality of litter from the perspective of the microbial communities. 

We determined the relationship between HFA and FB using a linear model: HFA ~ FB 

+ FB
2
. We squared FB to create a polynomial fit. We performed an ANOVA and Tukey HSD 

on HFA and FB to test for significance between microbial communities. We created a 

correlation matrix using Pearson’s correlation coefficient in order to identify if initial leaf 

litter and edaphic characteristics are associated with HFA and FB serving as indicators. 

Correlations that were found to be significant were further tested using linear models. We 

performed all statistical tests using R software (version 3.1.1, The R Foundation for Statistical 

Computing, Vienna, Austria) and SAS software (version 9.0, SAS Institute, NC, USA). 
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2.3 Results 

Litter mineralization, Home Field Advantage, Functional Breadth, and Litter Quality 

 

Fig 2.2: Cumulative CO2 production (mg g dry wt litter
-1

) from the full factorial microcosm. Each bar represents 

a different inoculum as it decomposes each type of litter as shown in groups along the x-axis (blue bunch 

wheatgrass (BBW), trembling aspen (TA), ponderosa pine (PP), rhododendron (RM), tulip poplar (TP), and 

white pine (WP)). Values are means ± SE. Main effects of litter type and inoculum were significant (Litter; 

P<0.001, Inoculum; P<0.001). No significant interaction between litter and inoculum was detected for 

cumulative CO2 production. Bars displaying inoculum that share a historical association with the litter are 

patterned. 
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Fig 2.3: Boxplots describing home-field advantage (A) and functional breadth (B) of each inoculum 

source (blue bunch wheatgrass (BBW), trembling aspen (TA), ponderosa pine (PP), rhododendron (RM), tulip 

poplar (TP), and white pine (WP)) as parameter estimates calculated using the quantitative model approach from 

Keiser (2014). Also displayed are boxplots describing the QI (C) of each litter substrate which shares names with 

inoculum source. The line in the box represents the median. The circles represent data points. 
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In order to examine differences between inocula and litter, we monitored litter 

mineralization across 150 days. We observed both a significant inoculum effect (P < 0.001, 

Figure 2.2) and a litter effect for cumulative CO2 produced during this 150-day experiment (P 

< 0.001, Figure 2.2).  No significant inoculum by litter type interaction was observed (Figure 

2.2). The litter effect was likely driven by greater cumulative mineralization associated with 

both TP and TA, low mineralization for RM and WP, and intermediate respiration for BBW 

and PP. The inoculum effect was primarily attributed to lower cumulative mineralization 

associated with TA compared to all the other inocula except for BBW (Fig A.1). 

Using the model proposed by Keiser et al. (2014), we found no significant HFA term (Fig 

2.3 A; P = 0.3086). While there may not have been a significant HFA term, inocula still 

exhibited a range in HFA. Additionally, both the PP and WP inocula were significantly 

greater than zero exhibiting a positive HFA, while the other inocula exhibited no HFA (Fig 

2.3 A). We did observe a significant FB term (Fig 2.3 B; P<0.01), with both BBW and TA 

inocula exhibiting a negative FB, and RM and TP inocula values exhibiting a positive FB. 

The FB term corresponds with the differences observed in litter mineralization for the inocula 

(Fig A.1). We also observed a significant QI term as all litters were significantly different 

from zero except for BBW (Fig. 2.3 C; P<0.01). The TA and TP litters exhibited positive QI 

values, and the PP, RM, and WP exhibited negative QI values. The QI index corresponds with 

the differences observed in litter mineralization for the litter species (Fig 2.2). 

Relationships between HFA, FB, and QI  

We examined relationships between HFA, FB, and QI. We found that only the HFA by 

FB relationship was significant when including all of the data. Specifically, we observed a 

unimodal relationship between HFA and FB (r
2
 = 0.8256, Figure 2.4 A). This unimodal 

relationship was due to the greatest HFA observed at intermediate FB (i.e. when FB is ~ 0), 

and the lowest HFA observed for both high and low values of FB. While the relationship 

between QI and FB was not significant (r
2
 = 0.19; Fig 2.4 B), this appeared to be driven by a 

single data point (i.e. TP). After removing TP from the analysis, we observed a significant 

negative linear relationship between QI and FB (r
2
 = 0.85; P<0.05; Fig 2.4 B) whereby lower 

QI values were associated with greater FB values. We observed no significant relationship 

between HFA and QI (Fig 2.4C).  
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Figure 2.4: Relationship between the parameter estimates of HFA and FB (A; Adjusted r
2
:0.82; P < 0.05), 

QI~FB (B), and HFA~QI (C). Each point represents the different inoculum sources or litters that were studied. 

BBW is blue bunch wheatgrass, TA is trembling aspen, PP is ponderosa pine, RM is rhododendron, TP is tulip 

poplar, and WP is white pine. Error bars are included for each axis. The grey line in B is the potential negative 

linear relationship observed if TP is removed. The black unimodal line in B is not significant. The methods used 

were non-linear models (A; HFA ~ FB + FB
2
/ B; QI ~ FB + FB

2
/ C; HFA~QI+QI

2
). 
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Relationship of indexes to starting inoculum characteristics and litter chemistry 

Table 2.2: Pearson’s correlation coefficients of home-field advantage (HFA), functional breadth 

(FB), and quality index (QI) by catabolic response profile results, initial inoculum, and litter 

characteristics. Values are colored blue based on the degree of correlation, with values closer to 

correlation having stronger colorization. Values considered to be correlated (> 0.8 and < -0.8) are in 

bold. All correlations with microbial taxon use rarefied relative abundances of the taxon. The taxon 

included are the 95% most abundant taxon in the initial microbial communities. Bacteria are identified 

to phyla except for α-Proteobacteria, δ-Proteobacteria, and γ-Proteobacteria which are classes of the 

phyla proteobacteria. All fungi are identified to class. 

 

HFA FB QI

Bacteria

Planctomycetes 0.24 -0.48 0.84

Actinobacteria 0.78 -0.35 -0.19

Gemmatimonadetes 0.85 -0.35 0.28

Verrucomicrobia 0.86 -0.20 -0.17

Acidobacteria -0.60 0.94 -0.48

Bacteroidetes -0.54 -0.51 0.27

Proteobacteria 0.50 -0.42 -0.24

α-Proteobacteria 0.31 0.41 -0.68

 δ-Proteobacteria 0.07 -0.88 0.64

γ-proteobacteria -0.05 -0.06 0.12

Fungi

Dothideomycetes 0.07 -0.63 0.27

Pezizomycetes 0.00 0.09 -0.34

Sordariomycetes 0.06 -0.25 0.71

Leotiomycetes -0.27 -0.53 0.86

Mortierellomycetes -0.32 -0.50 0.75

Agaricomycetes 0.22 0.28 -0.66

Catabolic Response Profile

Chitin -0.49 -0.51 0.71

Cellulose -0.83 0.30 0.54

Glucose 0.60 0.40 -0.45

Glycine 0.65 -0.84 0.21

Oxalic acid -0.55 0.65 -0.67

Catabolic Evenness -0.71 -0.19 0.68

Substrate Induced Respiration 0.81 -0.14 -0.31

Litter Characteristics

% Nitrogen -0.11 -0.06 0.85

Carbon/Nitrogen -0.14 0.26 -0.85

% Phosphorus 0.07 -0.72 0.89

% Sodium 0.34 -0.97 0.46

PPM Iron 0.16 -0.93 0.75

correlation coefficient



20 

 

To observe potential indicators of HFA, FB, and QI we examined correlations between 

these three indexes and microbial taxa, CRP, edaphic properties, and litter characteristics of 

the source location. Overall, we observed multiple significant correlations associated with 

both the initial inoculum and litter characteristics. We found fewer correlations with HFA 

than with FB and QI. For HFA we found correlations with the relative abundance of two 

bacterial taxa, the proportional respiration of one CRP substrate, and active microbial biomass 

(i.e. SIR). Specifically, for bacterial taxa, HFA was positively correlated with the relative 

abundance of Verrucomicrobia (r
2
 = 0.74; P<0.05; Figure 2.4A), and the relative abundance 

of Gemmatimonadetes (r
2
 = 0.72; P<0.05; Figure 2.4A). For CRP, HFA was negatively 

correlated with the respiration of cellulose (r
2
 = 0.69; P<0.05; Figure 2.4B). That is the greater 

the percent contribution of cellulose to the overall CRP profile of the starting inoculum, the 

lower the HFA index. For SIR, an indicator of active microbial biomass, we observed a 

positive relationship with HFA (r
2
 = 0.66; P<0.05; Figure 2.4C). 

We found correlations between the FB index and the relative abundance of two bacterial 

taxa, the proportional respiration of another CRP substrate, and two components of litter 

chemistry. Specifically, for the bacteria taxa, FB was positively correlated with the relative 

abundance of Acidobacteria (r
2
 = 0.88; P < 0.01; Figure 2.5A) and negatively correlated to the 

relative abundance of δ-Proteobacteria (r
2
 = 0.77; P < 0.05; Figure 2.5A). For CRP, FB was 

negatively correlated with the respiration of glycine (r
2
 = 0.71; P<0.05; Figure 2.5B). For 

litter chemistry components, FB was negatively correlated with the percent of Na in the litter 

(r
2
 = 0.95; P<0.01; Figure 2.5C) and the PPM of Fe in the litter (r

2
 = 0.86; P<0.01; Figure 

2.5D).  

Finally, we found correlations between the QI with two microbial taxa (one bacteria and 

one fungi) and with three litter chemistry components. The QI was shown to be positively 

correlated to the relative abundance of Planctomycetes (r
2
 = 0.71; P<0.05; Figure 2.6A) and 

the relative abundance of Leotiomycetes (r
2
 = 0.75; P<0.05; Figure 2.6B). For litter chemistry, 

QI was positively correlated with the percent of N in litter (r
2
 = 0.72; P<0.05; Figure 2.6C). 

There was a negative correlation between QI and the ratio of C to N in litter (r
2
 = 0.73; 

P<0.05; Figure 2.6D). The last litter chemistry component was the percent of P in litter which 

was positively correlated with QI (r
2
 = 0.79; P<0.05; Figure 2.6F). 
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Figure 2.5: Linear models of the relationships of home field advantage (HFA) and the relative abundances of 

Verrucomicrobia and Gemmatimonadetes (A), the respiration of cellulose (B), and the substrate-induced 

respiration (SIR; C). Each point represents the different inoculum sources that were observed. blue is blue bunch 

wheatgrass, orange is trembling aspen, grey is ponderosa pine, gold is rhododendron, light blue is tulip poplar, 

and green is white pine. 
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Figure 2.6: Linear models of the relationships of functional breadth (FB) to the relative abundances of 

Acidobacteria and δ-Proteobacteria (A), the respiration of glycine (B), the percent of sodium in litter (C), the 

ppm of iron in litter (D). Each point represents the different inoculum sources that were observed. blue is blue 

bunch wheatgrass, orange is trembling aspen, grey is ponderosa pine, gold is rhododendron, light blue is tulip 

poplar, and green is white pine. 
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Fig 2.7: Linear models of the relationships of quality index (QI) to the relative abundances of Planctomycetes 

(A) and Leotiomycetes (B), the percent nitrogen in the litter (C), the ratio of carbon to nitrogen in the litter (D), 

and the percent of phosphorus in the litter (E). Each point represents the different inoculum sources that were 

observed. blue is blue bunch wheatgrass, orange is trembling aspen, grey is ponderosa pine, gold is 

rhododendron, light blue is tulip poplar, and green is white pine. 

2.4 Discussion 

We examined relationships between HFA, FB, and, QI as well as the relationships of 

these indices to initial inoculum and litter characteristics. Comprehension of these 

relationships is critical to understanding the role microbial communities play in litter 

decomposition and how these communities are likely to respond to future perturbations (e.g. 

overstory tree species shifting north, forest harvest, land-use change, etc.). We argued that 
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HFA and FB are not interchangeable. That is a high level of FB is not necessarily indicative 

of a community that also exhibits strong HFA, in fact, communities that exhibit strong or 

weak FB may actually exhibit no HFA.  

Relationships between HFA, FB, and QI  

Of the relationships between HFA, FB, and QI examined, the relationship between HFA 

and FB was significant (Fig 2.4A). The HFA index was least at the highest and lowest 

expressions of FB because FB was masking the HFA effect. For example, communities with 

high FB such as RM and TP have such high functionality that they did not show a HFA effect 

as these communities decomposed all leaf litter species equally including the litter these 

communities are historically associated with. Conversely, communities with extremely low 

FB such as TA and BBW did not have high HFA because the communities are so poor at 

decomposition that they have no advantage even when decomposing litter that they are 

associated with. Communities that had high HFA in response to intermediate FB such as PP 

and WP were caused by FB not being too high or low and therefore not masking HFA. 

Although there are a few studies that present HFA and FB as the same (Milcu & Manning 

2011 and Palozzi & Lindo 2018) it is evident from our findings that high FB does not 

necessarily equate to high HFA (Keiser et al. 2014).  

There was a potential negative linear relationship between FB and QI, but it was only 

present if the TP data are ignored (Fig 2.4B). This potential relationship is not surprising 

because more complex litter will require a community to be more functionally diverse in 

order to mineralize the various compounds in the litter (Van Der Heijden et al. 2008) and QI 

is a measure of leaf litter quality based on average decomposition by microbial communities. 

The TP data point is unusual because it is both the second-highest quality litter and the second 

most functionally wide inocula. Of all the litters collected, TP was the only litter to be 

gathered from a mixed forest stand, which could mean that the FB index is not shaped solely 

by the most dominant type of litter, but rather FB is shaped by the aggregate of all the various 

litter components in the system. While only six inocula by litter combinations were examined 

in this study, our results indicate that the primary driver of the microbial community’s 

influence on litter decomposition is its FB and not HFA. This is not to say that historical 

legacies do not shape the function of decomposer communities. On the contrary, FB is likely a 
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product of litter quality but this exposure to litters of high or low quality may lead to 

communities with high or low FB, respectively.     

Relationship of indexes to starting inoculum characteristics and litter chemistry 

The previously explored indexes of HFA, FB, and QI are useful in understanding how soil 

communities are influenced by changes in leaf litter substrate, but calculating these indices 

could be prohibitively time consuming an undertaking for every study and other more readily 

available information about a site could be useful as proxies or indicators to the presence and 

magnitude of HFA, FB, and QI. Thus, potential indicators were investigated by finding the 

relationships of other site variables with HFA, FB, and QI. These site variables included 

biological characteristics for each initial community, litter characteristics of each litter source, 

and edaphic characteristics. We found that HFA, FB, and QI were correlated with particular 

microbial taxa, the respiration of certain substrates from the CRP, and a number of litter 

characteristics. However, some of the variables tested were correlated with each other making 

it difficult to disentangle what is truly driving the relationship. There was minimal overlap 

between the variables correlated to HFA, FB, and QI suggesting further these are separate 

indexes (Table 2.2).  

The HFA index was correlated with the relative abundance of Verrucomicrobia and 

Gemmatimonadetes, the respiration of cellulose, and the SIR (Fig 2.5). The positive 

correlation between HFA and Verrucomicrobia abundance could be present because high 

Verrucomicrobia abundance has been associated with soils that have experienced less 

disturbance (Strickland et al. 2017 & Fierer et al. 2013) and a site with less disturbance will 

lead to longer adaption time and in turn higher HFA. The reason we did not see this same 

correlation with FB is possibly because the specificity to a certain litter involved with HFA 

requires a different time scale for adaption to legacy effects. The positive relationship 

between HFA and Gemmatimonadetes is potentially due to Gemmatimonadetes being 

correlated with site moisture (DeBruyn et al. 2011) and the sites with higher quality leaf litter 

tended to be the sites with higher moisture, suggesting that there is some potential for a 

connection between HFA and litter quality. There were a few correlations which are more 

difficult to explain. The negative relationship between HFA and cellulose respiration could be 

a link to litter quality as cellulose content is often indicative of lower quality litter (Talbot and 
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Treseder 2012) and the increased respiration of cellulose might be indicative of a community 

with higher FB, which would mask the HFA index. The positive correlation between HFA 

and SIR, or community activity (Anderson and Domsch 1978; West and Sparling 1986), is 

possibly explained by microbial activity being negatively associated with site disturbance 

(Mummey, Stahl, & Buyer 2002; Banning & Murphy 2008), which could be another 

indication that a site needs time in order to develop HFA. 

The FB index was found to be correlated with two bacteria taxa, Fe, Na, and glycine 

respiration from the catabolic response profile. These variables include the relative 

abundances of Acidobacteria, and δ-Proteobacteria, the decomposition of glycine, and the 

litter Fe and Na content (Fig 2.6). There is evidence to suggest that the phyla of Acidobacteria 

and Proteobacteria are oligotrophic and copiotrophic, respectively (Fierer, Bradford, and 

Jackson 2007). Oligotrophs are associated with poorer litter quality (Semenov 1991) and 

copiotrophs are associated with higher litter quality environments (Fierer, Bradford, and 

Jackson 2007; Singh et al. 2010). This shift in the relative abundance of these taxa could 

indicate the microbial community’s direct response to litter quality and the subsequent FB. 

The negative correlation with the presence of Na and Fe in litter components is another 

example of FB’s relationship to litter quality as high Fe and Na content are considered 

indicative of higher quality litter (Lousier and Parkinson 1978). A difficult relationship to 

disentangle was the negative relationship between FB and glycine respiration. This 

relationship could potentially be explained by the fact that glycine turnover is associated with 

high C-mineralization (McFarland et al. 2010) and therefore litter quality which would mean 

that communities able to respire glycine are from communities that share a historical legacy 

with high-quality litter, or in other words, communities with low FB.  

The QI index was found to correlate with the relative abundances of Planctomycetes 

and Leotiomycetes and elemental litter characteristics (%N, C/N ratio, and %P (Fig 2.7)). The 

abundance of Planctomycetes is often related to the N cycling in systems, which is potentially 

an indicator of higher quality litter (Schlesner and Stackebrandt 1986; Strous et al. 1999; 

Isobe and Ohte 2014) and the abundance of Leotiomycetes has been correlated with higher 

quality litter substrates (Strickland et al. 2009b). A litter with a higher content of N, and 

therefore a smaller C/N ratio, and a higher content of P is also considered to be higher quality 
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(Lousier and Parkinson 1978; Melillo, Aber, and Muratore 1982; McClaugherty et al.1986). 

Given that the QI index is a measure of how microbial communities perceive litter quality, it 

is not surprising that litter chemistry could serve as an indicator of QI. 

Our results reveal a distinction between HFA and FB as separate indices of a microbial 

community’s influence on leaf litter decomposition. In previous studies, there has been a 

strong emphasis on HFA (Veen et al. 2015) and leaf litter quality (Meentemeyer 1978; Aerts 

1997), with relatively few articles mentioning, let alone studying FB. Ignoring FB could lead 

to confounding HFA and FB with one another instead of considering them as separate indexes 

(Milcu & Manning 2011 and Palozzi & Lindo 2018). This confounding may also explain why 

in some studies HFA is observed and in some studies, it is not (John, Orwin, & Dickie 2011; 

Gießelmann 2011). It is therefore imperative that FB is considered as equally as HFA and 

litter quality when the role of microbial communities in the C cycle is considered.  

It is through the understanding of HFA, FB, and QI collectively that we can learn more 

about the influence of historical legacy effects (Crowther et al. 2019) on microbial community 

composition and functioning in response to changes in litter input. The historical conditions of 

an ecosystem may influence microbial community composition and functioning for years or 

even decades after litter input has changed (Bond-Lamberty et al. 2016; Hawkes et al. 2017) 

by events such as deforestation, land-use change, and vegetation species shifting north 

(Schwartz, Iverson, & Prasad 2001; Iverson & Prasad 2002). These changes may influence 

communities differently based on their overall level of HFA or FB. For instance, to a 

community with high (or low) FB, it will matter relatively little if there is a change in leaf 

litter since the community is so well equipped (or poorly equipped) to decompose anything. 

However, if a community with high HFA is exposed to a dramatic transition in leaf litter, 

there could be a serious impact on overall C cycling because that community is specifically 

adapted to decomposing a particular kind of litter. Over time, microbial community 

composition and functioning will adjust to novel conditions, but not without a period of time 

where communities will be placed in unfamiliar and potentially unideal situations, affecting 

the entire process of carbon cycling in their own ecosystem and potentially worldwide if 

many ecosystems experience disruption in tandem.   
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Chapter 3: Effects of macro- and micronutrient availability on soil carbon, 

and microbial community biomass and function in a coastal grassland 

3.1 Introduction 

Soil microbial communities perform many functions as part of the belowground 

ecosystem such as mediating carbon (C) cycling (Kandeler, Stemmer, & Gerzabek 2005), 

regulating nitrogen (N) fixation (Rosswall 1982; Hodge 2010), and stimulating plant growth 

(Jeffries et al. 2002; Hayat 2010). Although microbial communities influence the 

environment, the environment also influences microbial community biomass and overall 

functioning. For example, sites with increased soil moisture have been found to exhibit 

greater microbial growth rates (Barros et al. 1995) and soil pH has long been considered a 

major determinant for microbial community composition and abundance, particularly for 

bacteria (Rousk et al. 2010). Of particular interest is the influence of nutrient abundance on 

microbial communities. 

Numerous studies have highlighted how macronutrients shape microbial communities. 

Jonasson et al. (1995) found that when arctic soils were fertilized with plant macronutrients 

(i.e. N, P, and K), there was an increase in the inorganic microbial N and P concentrations. A 

20-year fertilization study on microbial communities in paddy fields found that the addition of 

macronutrients significantly increased microbial biomass and functional diversity (Chen et al. 

2015). A 54-year long experiment on fertilizer application found that different macronutrient 

volumes had little effect on the functionality of the microbial community, but there was an 

effect on bacterial community composition (Pan et al. 2014). While there has been a great 

deal of attention brought to the effects of macronutrients, there have been relatively few 

studies concerned with how micronutrients – elements required in small amounts to sustain an 

organism (Gernand et al. 2016) – influence soil communities and their functions. 

Micronutrient additions can influence a range of ecosystem properties and processes, 

including plant biomass (Hepler 2005), decomposition rates (Kaspari et al. 2009, Powers and 

Salute 2011), soil aggregation (Six et al. 2004), and invertebrate herbivore abundance 

(Kaspari et al. 2009, Kaspari et al. 2017). In our study we consider Ca, Na, and K to be 

microbial micronutrients as they are not considered macronutrients (Kirchman 2012), but are 
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still important to microbial physiology (Wackett et al. 2004) and improving microbial 

functioning (Kaspari and Powers 2016). Excess soil Na can lead to stressed communities 

leading to biomass and function reduction (Rietz and Haynes 2003). The addition of Ca, 

however, forms cation bridges between negatively charged soil organic matter and negatively 

charged phyllosilicates which results in greater microbial biomass (Cortufo et al. 2013). Also, 

Ca in the form of CaCO3 is well known to raise pH in a process known as liming (Derome et 

al., 1986; Lehto 1994). The role of K in microbial biomass could be relatively small (Turner 

& Wright 2014), but evidence suggests that greater K levels are linked with more stable soil 

environments (Belay, Claassens, & Wehner, 2002; van Groenigen, et al. 2006). However, 

there is still much unknown about the influence on micronutrients, in particular how they 

potentially limit microbial biomass and function. 

Belowground community growth and function are limited by nutrient availability 

(Sinsabaugh, Hill, & Shah 2009; Hartman & Richardson 2013). Although, it is unknown if 

microbial communities are limited by a single nutrient or by a combination of nutrients. In 

ecology, the concept known as Liebig’s law (Van der Ploeg & Kirkham 1999) maintains that 

a population of organisms is limited by one resource which has the highest demand to supply 

ratio. With regards to plant populations, however, Liebig’s law has been contested recently in 

favor of co-limitation which is the concept that more than one resource is responsible for 

limiting populations simultaneously (Harpole et al. 2011, 2017; Fay et al. 2015). There is 

growing evidence to suggest the concept of co-limitation is not limited to plants alone 

(Raubenheimer & Simpson 2004; Sperfeld et al. 2012; Simpson et al. 2015; Kaspari & 

Powers 2016) and could also apply to terrestrial microbial communities (Mills et al. 2008; 

Zhang et al. 2015). 

Here we test how macronutrients (N and P), micronutrients (Ca, Na, and K) and their 

interaction shape belowground community biomass and function, as well as the influence of 

these nutrients on soil C stores. We predict that the addition of Na will decrease microbial 

biomass and C mineralization in the belowground communities due to increased osmotic 

stress and dehydration (Galinski 1995; Oren 1999). In contrast, we predict that Ca additions 

will increase microbial biomass and decrease C mineralization ability because of the long-

term soil organic matter stabilization provided by cationic bridges that are formed between 
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negatively charged soil organic matter and phyllosilicates (Cortufo et al. 2013; Rowley et al. 

2018) which act to sequester C in the soil via entrapment. Furthermore, the addition of K will 

create a more stable soil environment because of increased plant root growth leading to an 

increase in microbial biomass and bioavailable C (Belay, Claassens, & Wehner, 2002; van 

Groenigen, et al. 2006). Finally, we predict that similar to herbivore and plant communities 

(Prather et al. 2018, Harpole et al. 2011, 2017; Fay et al. 2015), microbial communities will 

be co-limited by macro- and micronutrient concentrations (Sperfeld et al. 2016). Therefore, 

we predict enhanced functionality and substrate utilization in plots with all nutrients added, as 

compared to plots with single nutrient additions. Combined, this study provides an important 

first look at how varying levels of nutrient availability regulates grassland ecosystems 

belowground.  

3.2 Materials and Methods 

Site and sample collection 

The sampling site location was a coastal tallgrass prairie in Texas at the University of 

Houston’s Coastal Center (UHCC; 29°23’26.96″ N; 95°1’51.95″ W; Prather et al. 2018). The 

site is a part of the Lake Charles soil series, classified as a Hapludert with a clay texture. 

Treatments for the study consisted of fertilizing with macronutrients (N and P combined) and 

three micronutrients (Ca, K and Na, each manipulated individually). Fertilization began in 

2016. Hurricane Harvey occurred on-site in late summer of 2017 creating heavy rainfall 

which led to flooding of the study site. Separate N and P treatments were not feasible or 

needed for our study as the main focus was the influence of individual micronutrients rather 

than macronutrients. As per Prather et al. (2018), the experiment consisted of large fertilized 

(30 x 30 m
2
) plots using a fully-crossed, factorial design: 2 macronutrient levels (ambient vs. 

fertilized) × Ca levels (ambient vs. fertilized)  × K levels (ambient vs. fertilized)  × Na levels 

(ambient vs. fertilized) × 8 replicates of each treatment combination for a total of 16 

treatments and 128 plots across eight blocks. Each block contains a single replicate of each 

treatment. We collected three soil cores at 0-10 cm at each plot with a standard steel soil 

auger 8 cm in diameter. 
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Macronutrient fertilizer was in the form of a combination of granular monoammonium 

phosphate and urea. The micronutrients were added as granular calcium carbonate for Ca, 

granular potassium chloride for K, and granular soda ash for Na. The fertilizer was applied in 

late winter in 2016 and 2017 before the growing season. The macronutrients of N and P were 

added at a concentration of 10 g m
-2

. The macronutrient concentration was chosen because it 

is common in fertilization experiments (e.g. Nutrient Network: Borer et al. 2014). Treatments 

with micronutrient additions were targeted to have concentrations ~ 30% higher than average 

ambient levels (≈ 1 standard deviation above the average) found in the top 10 cm of the soil. 

Accordingly, fertilizer was added to create micronutrient concentrations of 46.5 g m
-2

 for Ca, 

3.1 g m
-2 

for K, and 6.2 g m
-2 

for Na. 

Water holding capacity, pH, carbon mineralization, and plant biomass  

We performed water holding capacity (WHC), gravimetric water content (GVM), soil 

pH, C-mineralization, and substrate-induced respiration (SIR) analyses each year. Soil pH 

was determined in water (2:1 ratio of DI water: litter) using a benchtop pH meter (Mettler 

Toledo, Columbus, OH, USA). In order to determine the correct volume of soil needed for the 

other analyses performed, we first calculated WHC and GVM of our soils. We determined 

both GVM and WHC (after wetting to field capacity) by drying soil at 105ºC for 24 h 

following the protocol outlined in Strickland et al. (2009a). Plant biomass was determined by 

taking five 0.25m
2
 quadrats per plot. Plant biomass samples were then dried and weighed. 

After we determined WHC and GVM, we performed soil respiration analyses. The 

first analysis we performed was C-mineralization, a measure of the bio-available C in each 

soil sample. This analysis was performed via 30 day incubations of each soil sample in 50 mL 

test tube where units were capped, flushed with CO2 free air, allowed to incubate for 24 hours, 

and then the headspace gas was sampled for CO2 content using an infrared gas analyzer 

(IRGA; Model LI-7000, Li-Cor Biosciences, Lincoln, Nebraska, USA) on a weekly basis. We 

weighed 6 g of inoculum source soil for each unit maintained at 20ºC and 65% WHC, which 

is considered favorable conditions for microbial growth (Strickland 2009a).  Total 

mineralizable C was calculated by integrating CO2 production values across time.  
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To test for total active microbial biomass, we measured SIR. This analysis involves a 

similar process to the one described for C-mineralization except that the incubation is one 

time only rather than over a 30-day period and an autolyzed yeast substrate is added. Four 

grams of dry weight equivalent soil was mixed with autolyzed yeast, which is considered to 

maximize the growth of microbial organisms, and then left for 5 hours to respire. After the 5 

hours, CO2 measurements were taken using an infrared gas analyzer (IRGA; Model LI-7000, 

Li-Cor Biosciences, Lincoln, Nebraska, USA). 

Catabolic response profiles and soil organic matter fractions 

For samples collected in 2018, we measured the catabolic response profile (CRP), 

particulate organic matter (POM) C and mineral-associated organic matter (MAOM) C. The 

CRP analysis was performed to measure community function, including catabolic evenness 

(Degens and Harris 1997). The analysis was performed using the same protocol as SIR except 

that this analysis was performed four times, once for each of the different substrates (DI 

water, glucose, oxalic acid, and glycine; as per Strickland et al. (2017)). To determine 

mineral-associated and POM C and N pools, the fractionation method described in Bradford 

et al. (2008) was used. Briefly, duplicate soil samples (10 g of air-dry soil) from each plot 

were dispersed with NaHMP (30 mL sample
-1

) via shaking (18 h) and then passed through a 

53 µ sieve. Material <53 µ is considered mineral-associated and material >53 µ is considered 

POM. Both mineral and POM material were dried (105 °C), ball-milled to a fine powder, and 

percentage C determined using an ECS 4010 CHNS-O analyzer (Costech Analytical 

Technologies, Valencia, CA, USA). Of these two fractions, mineral-associated C pools are 

expected to turn over more slowly than POM C pools (Schlesinger & Lichter, 2001). Mineral-

associated C pools are presumed to be primarily microbial-derived C whereas POM pools are 

primarily plant-derived (Grandy & Robertson, 2007). 

Statistical Analysis 

We performed linear mixed effect models for the time course data (pH, C-

mineralization, and SIR). We then performed an ANOVA for the POM and MAOM data to 

test for differences across treatments from 2018 samples. Lastly, we performed a 

permutational MANOVA on the CRP data to test for significant differences across treatments 
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of 2018 samples divided by whether or not the treatments had NP additions. We performed all 

linear mixed effect models and ANOVA tests using R software (version 3.1.1, The R 

Foundation for Statistical Computing, Vienna, Austria) and the permutational MANOVA was 

performed using Primer 6 (version 6.0, PRIMER-e, Albany, New Zealand). 

3.3 Results 

pH, aboveground plant biomass, carbon mineralization, and substrate-induced respiration  

For soil pH (Figure 3.1; Table B.1), we observed significant main effects of sample 

year (P<0.001) and Ca (P<0.001). We also observed significant interactions between Ca and 

sample year (P<0.001), and Ca, NP, and sample year (P<0.01). In general, we observed that 

treatments with added Ca exhibited an increase in soil pH.  Additionally, it appears that the 

addition of NP tended to amplify the differences between treatments with Ca added and those 

that did not (Figure 3.1A). It also appears that when NP was added but Ca was absent, soil pH 

tended to decline through time (Figure 3.1A), but in the absence of NP and Ca soil pH tended 

to remain the same (Figure 3.1B).    

  



34 

 

 

Figure 3.1: Soil pH of samples collected from 2015 to 2018. Each point represents the average pH of each 

treatment either with NP additions (A) or without NP additions (B). There is a noted difference in pH across 

sample years: P <0.001. Samples with Ca additions treatments tended to have higher pH: P <0.001. There are 

also two interactions noted. There is a two-way interaction between year and Ca: P <0.001, as well as a three-

way interaction between year, NP, and Ca: P <0.01. Each treatment is labeled by what fertilizer additions it 

included, either being nothing (None), Ca (calcium), K (potassium), Na (sodium), or any combination of those 

three nutrients. 

For the above-ground plant biomass (Figure 3.2; Table B.2), we observed significant 

main effects of sample year (P<0.001) and NP (P<0.001). We also observed significant 

interactions between sample year and NP (P<0.001), and sample year, NP, K, and Na 

(P<0.05). Plant biomass was lowest in 2017. Additionally, we observed that treatments 

containing NP exhibited greater plant biomass compared to treatments that did not receive NP 

(Figure 3.2A and B). The interaction between sample year, NP, K, and Na appears to be 

because of an interaction between K and Na in 2017 for the plots receiving NP. Specifically, 

for the NP treatments in 2017, plant biomass was lowest for those treatments that received 

either K or Na, but greater for treatments receiving combinations of both K and Na or neither 

K or Na. 

W/ NP W/O NP 
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Figure 3.2: Aboveground plant biomass collected from 2016 to 2018. Each point represents the average 

plant biomass collected from each treatment either with NP additions (A) or without NP additions (B). There is a 

noted difference in plant biomass across sample years: P <0.001. Samples with NP additions tended to have 

higher plant biomass: P <0.001. There are also two interactions noted. There is a two-way interaction between 

year and NP: P <0.001, as well as a four-way interaction between year, NP, K, and Na: P <0.05. Each treatment 

is labeled by what fertilizer additions it included, either being nothing (None), Ca (calcium), K (potassium), Na 

(sodium), or any combination of those three nutrients. 

For mineralizable-C (Figure 3.3; Table B.3), an indicator of bioavailable C, we 

observed main effects of sample year (P < 0.001), NP (P < 0.001), and Ca (P < 0.05). For the 

sample year, we observed a general increase in mineralizable-C (Figure 3.3A and B). We also 

observed that the addition of NP (Figure 3.3A) tended to increase mineralizable C compared 

to treatments that did not receive NP (Figure 3.3B). The addition of Ca tended to decrease 

mineralizable C, regardless of the sample year or NP addition (Figure 3.3C).  

W/ NP 
W/O NP 
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Figure 3.3: Carbon mineralization (mg g dry wt soil
-1

) of samples from 2015 to 2018. Each point represents the 

average mineralization of each fertilizer treatment either with NP additions (A) or without NP additions (B). 

Panel C displays the total average carbon mineralization across the sample years divided by samples with and 

without Ca additions. Samples collected from later years had higher rates of mineralization: P <0.001. In 

addition, samples with NP additions had higher mineralization rates: P <0.001. Finally, it was found that samples 

with Ca additions displayed lower rates of mineralization: P <0.05. Each treatment is labeled by what fertilizer 

additions it included, either being nothing (None), Ca (calcium), K (potassium), Na (sodium), or any 

combination of those three nutrients. 

For SIR (Figure 3.4; Table B.4), an indicator of total active microbial biomass, we 

observed main effects of sample year (P < 0.001) and NP (P < 0.01). We also observed a 

significant interaction between sample year and NP (P<0.01). For the sample year, we 

observed that SIR was lower in the years 2015 and 2018, and generally greater in 2016 and 

2017 (Figure 3.4A and B). The interaction between sample year and NP is caused by a less 

dramatic change in SIR across sample years for treatments that did not receive NP versus 

those that did receive NP (Figure 3.4B). For treatments receiving NP, we observed a more 

dramatic increase in SIR for 2016 and 2017 (Figure 3.4A).  

W/ NP W/O NP 
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Figure 3.4: Substrate induced respiration (µg CO2-C g dry wt soil
-1

 h
-1

) of samples collected from 2015 to 2018. 

Each point represents the average substrate-induced respiration of each fertilizer treatment either with NP 

additions (A) or without NP additions (B). There is a significant difference in samples collected from different 

years: P <0.001 as well as samples collected from plots with or without NP additions: P <0.01. There is also an 

interaction between year and NP additions: P <0.01. Each treatment is labeled by what fertilizer additions it 

included, either being nothing (None), Ca (calcium), K (potassium), Na (sodium), or any combination of those 

three nutrients. 

Soil organic matter C and catabolic response profiles 

For soil organic C fractions (Figure 3.5; Table B.5, B.6, and B.7) we observed main 

effects of NP (P < 0.05) and K (P < 0.05) for POM C. These main effects can be attributed to 

greater POM C with all treatments containing NP and all treatments containing K (Figure 

3.5A). We observed no treatment effects for the mineral-associated organic matter (MAOM) 

C fraction (Figure 3.5B). However, for total soil organic C (Figure 3.5C; likely due to change 

in POM C) we observed a significant main effect of NP (P < 0.05), and a marginally 

significant effect of K (P = 0.08). These effects mirrored those observed for POM C. 

W/ NP W/O NP 
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Figure 3.5: Different C fractions of particulate organic matter (POM) of 2018 samples from each treatment 

divided by whether samples included NP additions or did not. The C fractions include the particulate organic 

matter fraction (> 53µ A), the mineral-associated organic matter (MAOM) fraction (< 53 µ B), and the total C of 

those two fractions (C). In the particulate organic matter fraction, the samples with NP treatments showed higher 

C (P <0.05) and the samples with K treatments showed higher C (P <0.05). There was no difference among 

treatments in the mineral-associated organic matter fraction. The total C showed that samples with NP additions 

were still higher (P <0.05), while samples with K treatments were marginally significantly higher still (P =0.08). 
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For catabolic response profiles (Figure 3.6 and 3.7; Tables B.8 and B.9), an indicator of 

community function, we observed a main effect of NP additions (P<0.001), and a significant 

NP × Ca × K interaction (P<0.01). Examining this interaction further, we observed a 

significant main effect of Ca (P<0.05) and a Ca × K interaction (P<0.05) with NP. This 

interaction appears to be driven by similar profiles when Ca, K, or both (i.e. CaK) are present 

but distinct profiles when absent (Figure 3.6). Additionally, when Ca and/or K is absent, 

microbial communities tend to elicit greater mineralization rates of the three CRP substrates 

(glucose, glycine, and oxalic acid; Figure 3.6). When NP was absent, we again observed a 

significant Ca × K interaction (P<0.05) but this interaction appears largely due to distinct 

profiles associated with treatments containing only K versus treatments that received Ca or 

the combination of Ca and K (i.e. None), the Ca and CaK treatments were intermediate 

between K and None (Figure 3.7). The observed difference between K and None treatments 

appears to be driven by greater mineralization of all three CRP substrates for soils that 

received only K (Figure 3.7).  
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Figure 3.6: Non-metric multidimensional scaling plots of data derived from a permutational MANOVA of the 

catabolic response profile assay performed on 2018 samples with NP additions. There is a noted Ca effect on 

samples (P <0.05) as well as an interaction between Ca and K (P <0.05).  
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Figure 3.7: Non-metric multidimensional scaling plots of data derived from a permutational MANOVA of the 

catabolic response profile assay performed on 2018 samples with NP additions. There is a Ca by K interaction (P 

<0.05). 

3.4 Discussion 

 In order to study the influence of micronutrients on microbial communities, we added 

micro- and macronutrient fertilizer inputs to field soils and measured differences in microbial 

function (i.e., carbon mineralization, substrate-induced respiration, catabolic response 

profiles), edaphic properties (soil pH and total soil C), and plant biomass. We found that 

microbial communities responded to the addition of multiple types of nutrient additions, 

rather than just one single type. This response to different nutrients suggests there is a 

possible co-limitation (the concept that more than one resource is responsible for limiting a 

characteristic of a population simultaneously (Harpole et al. 2011, 2017; Fay et al. 2015)) on 

belowground community function.  
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pH, aboveground plant biomass, carbon mineralization, and substrate-induced respiration  

The significantly higher pH in plots with Ca additions was a consequence of the Ca 

fertilizer being Ca carbonate (i.e. lime). The application of Ca carbonate to raise pH is a well-

known technique (Tisdale et al.  1993). The increased pH in plots with both Ca and NP 

additions is likely due to a chemical reaction between the basic Ca carbonate fertilizer and the 

acidic phosphate fertilizer (Bull et al. 1964). Inorganic phosphate fertilizers are known to be 

sorbed by Ca carbonate thereby depressing the solubility of the phosphate and preventing the 

acidic nature of the phosphate fertilizer to influence the soil. Since the phosphate fertilizer 

solubility is reduced there is a greater influence on soil pH of the basic urea and Ca carbonate 

fertilizers (Cole, Olsen, and Scott 1954). This also explains why there was a reduction in pH 

in plots with NP additions but no Ca additions, since the phosphate fertilizer is no longer 

being sorbed and will freely be able to acidify the soil. Soil pH is a major determining factor 

in microbial diversity, with diversity and richness of soil bacteria being highest in neutral pH 

soils and lowest in acidic soils (Fierer and Jackson 2005). The application of these fertilizers 

may alter the microbial diversity of these soils, but additional research aimed at assessing 

bacterial diversity is needed. 

Unsurprisingly, additions of N and P increased aboveground plant mass. However, 

with NP additions there is a more distinct effect of the addition of other nutrients (i.e. Na and 

K) which is potentially difficult to disentangle. It seems that plant growth limitations are 

removed by adding NP fertilizer and therefor other nutrient additions had a more marked 

effect on plant biomass. For instance, we observed in 2017 that the addition of NP led to an 

interaction between K and Na, whereby individual additions of either micronutrient led to a 

decrease in plant biomass. When both K and Na were added together, or neither was added an 

increase in plant biomass was observed. The reduction in plant biomass with the addition of 

both Na and NP may be accounted for by increased herbivory. In fact, Prather et al. (2018) 

observed an increased abundance of grasshoppers, and likely increased herbivory, associated 

with these same treatments in 2017 which could account for the decrease in plant biomass 

associated with treatments receiving both NP and Na. However, Prather et al. (2018) did not 

observe a similar increase in herbivory with K but did note a shift in grasshopper community 

composition. While individually, additions of Na and K may decrease plant biomass via an 
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herbivory response, combined additions may increase plant biomass via increased 

photosynthesis (Krishnasamy et al. 2014). While it typically expected that additions of plant 

limiting nutrients will increase plant biomass, this expectation often fails to consider what 

additional factors, such as herbivory, might also increase with nutrient additions.  

The enhanced bioavailable C created by NP additions was potentially caused by an 

increase in above and belowground plant biomass leading to more plant detritus and or root 

exudates entering the soil. Further, there was a reduction in bioavailable C in plots with Ca 

additions, likely a result of C being entrapped through organic-mineral interaction via cation 

bridging (Muneer and Oades 1989; Clough and Skjemstad 2000). This reduction in 

bioavailable C possibly means that more C is being successfully sequestered and there could 

be an opportunity to enhance C sequestration efforts with Ca additions, although more C 

might be freely available if there are NP additions present as well as the Ca additions. 

Unsurprisingly, the consumption of increased inorganic nutrients led to higher total 

active microbial biomass in plots with NP additions (Roberge 1976). We expected 

micronutrient additions to also influence the active microbial biomass rather than there simply 

being a difference between the presence or absence of macronutrients. These results would 

indicate that the only limiting nutrient in terms of active microbial biomass is NP, although 

additional research should be conducted that determines the effect of micronutrient additions 

on microbial growth efficiency (Geyer et al. 2016). This may be especially important 

considering that multiple nutrients likely control microbial function (Wackett et al. 2004; 

Manzoni et al. 2012; see catabolic response profiles below).  

Soil organic matter C and catabolic response profiles 

Higher levels of POM fraction C in soils with NP additions have been linked to an 

increase in organic material inputs from enhanced plant biomass (Yan et al. 2007), which was 

reflected in our own study (Figure 3.2). The addition of K increased in POM C as well, 

possibly the result of stimulated root growth leading to greater belowground inputs of C 

(Belay, Claassens, & Wehner, 2002; van Groenigen, et al. 2006). There was no influence of 

fertilizer on the MAOM fraction because the mean residence time of the MAOM fraction is 

decades to centuries (Lavallee, Soong, & Cotrufo 2019). Such as with the POM C fraction, 
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the NP additions enhanced total soil organic matter C, and the K additions had a marginally 

significant influence. Since there was an increase in total soil C in soils with various nutrient 

additions, it might be possible to sequester more C through specific fertilization treatments 

(Yan and Gong 2010). 

For microbial community function, as assessed via catabolic response profiles, we 

observed complex interactions between the additions of NP, Ca, and K. For instance, with NP 

additions, the further additions of K and/or Ca tended to lead to lower overall mineralization 

of the CRP substrates. This could potentially indicate that microbes are limited 

simultaneously by multiple nutrients (i.e. co-limitation) and that once these limitations are 

alleviated then mining of organic substrates decreases (Fontaine et al. 2004). While additions 

of Ca and/or K in combination with NP tended to suppress the mineralization of CRP 

substrates, K tended to stimulate mineralization in the absence of NP. This may suggest 

increased microbial mining of organic substrates with K additions, especially since K limits 

microbial cellulase activity (Kaspari et al. 2007). However, future research should further 

investigate the potential influence of multiple limiting nutrients on soil microbial community 

function, particularly with an eye towards whether such additions increase or decrease soil C 

stores. 

We found that microbial communities and edaphic characteristics responded to the 

addition of multiple types of macro- and micronutrient additions, rather than just one single 

type. We found that the additions of NP combined with Ca and/or K led to a reduction in 

overall CRP substrate mineralization, suggesting that the need for mining organic substrates 

had been reduced. This response to different nutrients suggests there is a possible co-

limitation of nutrients in microbial biomass and function. Future studies could improve this 

work by studying N and P separately as well as investigating differences in community 

composition in the presence of multiple micronutrient additions. The results of this study 

suggest that combinations of micro- and macronutrients impact microbial community function 

and biomass differently. As microbial communities are integral parts of global carbon cycling 

and ecosystem-wide nutrient cycling it is important to understand the magnitude nutrient 

availability will have on soil microbial communities and the ecosystem processes that these 

communities regulate.  
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Appendix A: Chapter 2 

 

Figure A.1: Average inoculum cumulative CO2 production (mg g dry wt litter
-1

) from the full factorial 

microcosm of chapter 2. Each bar represents the average decomposition total of each inoculum which are named 

after the litters they are associated with (blue bunch wheatgrass (BBW), trembling aspen (TA), ponderosa pine 

(PP), rhododendron (RM), tulip poplar (TP), and white pine (WP)). Values are means ± SE.  
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Appendix B: Chapter 3 

Table B.1: Linear mixed effect model results for soil pH in chapter 3. There were significant effects of Year and 

Ca. There was also a significant two-way interaction of Year: Ca and a significant three-way interaction of Year: 

NP: Ca. Each term in the left-most column is either a treatment, either being Ca (calcium), K (potassium), Na 

(sodium), or any combination of those three nutrients, or the influence of sample year. 

  

numDF denDF F-value p-value

(Intercept) 1 224 142575.5 <.0001

Year 2 224 41.2 <.0001

NP 1 105 2.2 0.15

Ca 1 105 100.7 <.0001

K 1 105 0.1 0.71

Na 1 105 0.8 0.36

Year:NP 2 224 0.4 0.66

Year:Ca 2 224 12.1 <.0001

NP:Ca 1 105 4.8 0.03

Year:K 2 224 1.9 0.15

NP:K 1 105 0.0 0.87

Ca:K 1 105 0.4 0.54

Year:Na 2 224 0.7 0.48

NP:Na 1 105 0.1 0.78

Ca:Na 1 105 0.3 0.60

K:Na 1 105 0.0 0.91

Year:NP:Ca 2 224 3.0 0.05

Year:NP:K 2 224 0.5 0.60

Year:Ca:K 2 224 2.1 0.12

NP:Ca:K 1 105 1.3 0.26

Year:NP:Na 2 224 1.6 0.20

Year:Ca:Na 2 224 0.6 0.56

NP:Ca:Na 1 105 0.3 0.59

Year:K:Na 2 224 3.0 0.05

NP:K:Na 1 105 3.1 0.08

Ca:K:Na 1 105 0.2 0.68

Year:NP:Ca:K 2 224 0.0 0.99

Year:NP:Ca:Na 2 224 0.8 0.48

Year:NP:K:Na 2 224 1.5 0.22

Year:Ca:K:Na 2 224 0.1 0.92

NP:Ca:K:Na 1 105 0.3 0.57

Year:NP:Ca:K:Na 2 224 0.1 0.91
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Table B.2: Linear mixed effect model results for above-ground plant biomass in chapter 3. There were 

significant effects of Year and NP. There was a significant two-way interaction of Year: NP and a significant 

four-way interaction of Year: NP: K: Na. Each term in the left-most column is either a treatment, either being Ca 

(calcium), K (potassium), Na (sodium), or any combination of those three nutrients, or the influence of sample 

year. 

  

numDF denDF F-value p-value

(Intercept) 1 224 2297.6 <.0001

Year 2 224 184.5 <.0001

NP 1 105 71.0 <.0001

Ca 1 105 0.6 0.43

K 1 105 1.1 0.30

Na 1 105 0.3 0.57

Year:NP 2 224 27.7 <.0001

Year:Ca 2 224 2.9 0.06

NP:Ca 1 105 1.6 0.21

Year:K 2 224 0.2 0.81

NP:K 1 105 1.8 0.18

Ca:K 1 105 0.2 0.69

Year:Na 2 224 0.7 0.51

NP:Na 1 105 0.5 0.47

Ca:Na 1 105 1.7 0.19

K:Na 1 105 2.1 0.15

Year:NP:Ca 2 224 0.5 0.61

Year:NP:K 2 224 0.1 0.88

Year:Ca:K 2 224 0.2 0.83

NP:Ca:K 1 105 1.0 0.31

Year:NP:Na 2 224 1.2 0.30

Year:Ca:Na 2 224 0.3 0.77

NP:Ca:Na 1 105 0.0 0.91

Year:K:Na 2 224 2.1 0.12

NP:K:Na 1 105 0.1 0.82

Ca:K:Na 1 105 1.0 0.32

Year:NP:Ca:K 2 224 1.3 0.28

Year:NP:Ca:Na 2 224 0.0 0.97

Year:NP:K:Na 2 224 3.7 0.03

Year:Ca:K:Na 2 224 0.5 0.61

NP:Ca:K:Na 1 105 0.0 0.89

Year:NP:Ca:K:Na 2 224 0.4 0.64
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Table B.3: Linear mixed effect model results for carbon mineralization in chapter 3. There were significant 

effects of Year, NP, and Ca. Each term in the left-most column is either a treatment, either being Ca (calcium), K 

(potassium), Na (sodium), or any combination of those three nutrients, or the influence of sample year. 

  

numDF denDF F-value p-value

(Intercept) 1 224 1640.9 <.0001

Year 2 224 69.3 <.0001

NP 1 105 41.3 <.0001

Ca 1 105 4.8 0.03

K 1 105 0.1 0.78

Na 1 105 0.0 0.88

Year:NP 2 224 1.1 0.32

Year:Ca 2 224 0.7 0.51

NP:Ca 1 105 2.0 0.16

Year:K 2 224 0.1 0.87

NP:K 1 105 0.0 0.93

Ca:K 1 105 0.5 0.50

Year:Na 2 224 1.4 0.24

NP:Na 1 105 0.2 0.68

Ca:Na 1 105 1.2 0.27

K:Na 1 105 0.1 0.78

Year:NP:Ca 2 224 1.6 0.20

Year:NP:K 2 224 0.9 0.41

Year:Ca:K 2 224 1.7 0.19

NP:Ca:K 1 105 0.1 0.72

Year:NP:Na 2 224 0.0 0.98

Year:Ca:Na 2 224 1.7 0.18

NP:Ca:Na 1 105 0.0 0.90

Year:K:Na 2 224 1.4 0.24

NP:K:Na 1 105 0.0 0.99

Ca:K:Na 1 105 0.3 0.57

Year:NP:Ca:K 2 224 2.3 0.10

Year:NP:Ca:Na 2 224 0.4 0.64

Year:NP:K:Na 2 224 3.6 0.03

Year:Ca:K:Na 2 224 0.3 0.71

NP:Ca:K:Na 1 105 3.4 0.07

Year:NP:Ca:K:Na 2 224 1.4 0.26
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Table B.4: Linear mixed effect model results for substrate-induced respiration in chapter 3. There were 

significant effects of Year and NP. There was a significant two-way interaction of Year: NP. Each term in the 

left-most column is either a treatment, either being Ca (calcium), K (potassium), Na (sodium), or any 

combination of those three nutrients, or the influence of sample year. 

 

  

numDF denDF F-value p-value

(Intercept) 1 224 2342.9 <.0001

Year 2 224 26.3 <.0001

NP 1 105 7.6 0.01

Ca 1 105 0.8 0.36

K 1 105 0.2 0.70

Na 1 105 0.4 0.53

Year:NP 2 224 4.6 0.01

Year:Ca 2 224 0.2 0.82

NP:Ca 1 105 0.5 0.50

Year:K 2 224 1.1 0.35

NP:K 1 105 0.0 0.87

Ca:K 1 105 0.6 0.44

Year:Na 2 224 0.2 0.79

NP:Na 1 105 0.0 1.00

Ca:Na 1 105 1.3 0.27

K:Na 1 105 0.3 0.57

Year:NP:Ca 2 224 0.3 0.71

Year:NP:K 2 224 0.0 1.00

Year:Ca:K 2 224 0.4 0.70

NP:Ca:K 1 105 0.5 0.50

Year:NP:Na 2 224 0.1 0.89

Year:Ca:Na 2 224 0.9 0.40

NP:Ca:Na 1 105 0.3 0.56

Year:K:Na 2 224 0.9 0.40

NP:K:Na 1 105 0.1 0.81

Ca:K:Na 1 105 3.2 0.08

Year:NP:Ca:K 2 224 0.7 0.50

Year:NP:Ca:Na 2 224 0.0 0.98

Year:NP:K:Na 2 224 0.9 0.41

Year:Ca:K:Na 2 224 0.6 0.53

NP:Ca:K:Na 1 105 0.7 0.41

Year:NP:Ca:K:Na 2 224 1.0 0.38
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Table B.5: Linear mixed effect model results for particulate organic matter carbon in chapter 3. There were 

significant effects of NP and K. Each term in the left-most column is a treatment, either being Ca (calcium), K 

(potassium), Na (sodium), or any combination of those three nutrients. 

 

Table B.6: Linear mixed effect model results for mineral associated organic matter carbon in chapter 3. There 

were no significant effects of treatments. Each term in the left-most column is a treatment, either being Ca 

(calcium), K (potassium), Na (sodium), or any combination of those three nutrients. 

 

numDF denDF F-value p-value

(Interecept) 1 105 198.1 <.0001

NP 1 105 4.7 0.03

Ca 1 105 2.2 0.14

K 1 105 4.1 0.04

Na 1 105 0.0 0.88

NP:Ca 1 105 0.5 0.50

NP:K 1 105 1.5 0.23

CA:k 1 105 0.0 0.83

NP:Na 1 105 0.3 0.61

CA:Na 1 105 1.8 0.19

K:Na 1 105 0.0 0.98

NP:Ca:K 1 105 0.0 0.89

NP:Ca:N 1 105 0.2 0.63

NP:K:Na 1 105 0.2 0.64

Ca:K:Na 1 105 0.5 0.46

NP:Ca:K:Na 1 105 0.6 0.45

numDF denDF F-value p-value

(Interecept) 1 105 1513.2 <.0001

NP 1 105 1.7 0.19

Ca 1 105 1.6 0.21

K 1 105 0.5 0.49

Na 1 105 0.0 0.93

NP:Ca 1 105 0.0 0.83

NP:K 1 105 0.2 0.64

CA:k 1 105 0.1 0.81

NP:Na 1 105 0.8 0.37

CA:Na 1 105 1.8 0.19

K:Na 1 105 0.1 0.73

NP:Ca:K 1 105 0.1 0.81

NP:Ca:N 1 105 0.5 0.46

NP:K:Na 1 105 0.0 0.96

Ca:K:Na 1 105 0.1 0.74

NP:Ca:K:Na 1 105 0.0 0.87
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Table B.7: Linear mixed effect model results for total soil organic matter carbon in chapter 3. There were 

significant effects of NP and almost K. Each term in the left-most column is a treatment, either being Ca 

(calcium), K (potassium), Na (sodium), or any combination of those three nutrients. 

 

Table B.8: Pairwise comparisons of catabolic response profile data of plots with NP additions as evaluated in 

primer for a nonmetric multidimensional scaling plot considering the groups as plots that contained Ca, K, both, 

or neither.  

 

  

numDF denDF F-value p-value

(Interecept) 1 105 619.3 <.0001

NP 1 105 4.7 0.03

Ca 1 105 0.1 0.73

K 1 105 3.0 0.08

Na 1 105 0.0 0.96

NP:Ca 1 105 0.1 0.73

NP:K 1 105 0.3 0.56

CA:k 1 105 0.1 0.79

NP:Na 1 105 0.0 0.91

CA:Na 1 105 0.0 0.84

K:Na 1 105 0.0 0.87

NP:Ca:K 1 105 0.0 0.97

NP:Ca:N 1 105 0.0 0.96

NP:K:Na 1 105 0.1 0.77

Ca:K:Na 1 105 0.1 0.74

NP:Ca:K:Na 1 105 0.2 0.66

              Unique

Groups       t P(perm)  perms

None, CaK 1.66 0.07 693

None, Ca 2.84 0.00 629

None, K 1.77 0.06 612

CaK, Ca 1.08 0.30 658

CaK, K 0.63 0.70 691

Ca, K 0.95 0.38 589



62 

 
Table B.9: Pairwise comparisons of catabolic response profile data of plots without NP additions as evaluated in 

primer for a nonmetric multidimensional scaling plot considering the groups as plots that contained Ca, K, both, 

or neither. 

 

 

              Unique

Groups       t P(perm)  perms

None, CaK 0.58 0.79 9906

None, Ca 1.45 0.12 9923

None, K 1.66 0.06 9912

CaK, Ca 1.04 0.34 9920

CaK, K 1.33 0.17 9925

Ca, K 0.55 0.79 9928


