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Abstract

The ever-growing development in high-speed digital systems in speed and complexity

is greatly facilitated by creating macro-model for representing electronic packages. Signal

Integrity (SI) engineers extensively use macro-model of digital systems in electronic circuit

simulators to verify the validity and integrity of different circuits and their behavior upon

simulation. When creating the macro-models for future simulation and design, verifying the

stability, passivity, and causality of the data is a very important task. In this thesis, we

primarily focus our discussion on causality of the system.

Causality verification of linear interconnect system in high speed digital systems is of

paramount importance. A real physical system is always causal, but the measured S-

parameter of such systems may contain causality violations. Different techniques of causality

detection have been introduced in literature over time. We analyze some of these techniques

and focus on their merits and demerits. A new method for checking causality in frequency-

domain is proposed along with two ways of enforcing causality on original data. We compare

error in these methods after enforcement.

Analysis of proposed techniques and conclusions brought about on these techniques are

supported by appropriate numerical examples. We performed tests on both artificial systems

and actual physical system models for verification. Additionally, we demonstrated tests in

both time domain and frequency domain for verification and enforcement of causality.
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CHAPTER 1

Introduction

1.1 Objective

Modern industry standards are constantly aiming at reaching higher speeds with lower power

consumption. Naturally, theses attempts increase the complication of electrical interfaces.

Henceforth, the role of signal integrity analysis is growing continuously. Electrical signals

have to travel between I/O through packages, connectors, traces, and vias of the printed

circuit boards, backplanes, and more. The goal of signal integrity analysis is to provide an

accurate assessment of electrical link-paths, connecting a set of transmitting and receiving

devices to estimate the reliability of the link for signal propagation. This process is facilitated

by using macro-model of digital systems in electronic circuit simulators to verify the validity

and integrity of the circuits. Stability, passivity and causality are the fundamental criteria

for ensuring an appropriate model that portrays the actual structure.

The objective of this thesis is to investigate different methods of causality test and address

some issues associated with these. We propose some modifications of the existing techniques

and discuss the results we obtain after improvising these modifications. The main part of the

thesis proposes a new method of causality verification and enforcement in frequency-domain

by applying direct Hilbert Transform on filtered data. We show that the method overcomes

some fundamental issues associated with previously proposed techniques in literature. We

also investigate some sensitivities of the proposed method on detecting causality accurately

and specify an appropriate range for detecting causality violation correctly.

1.2 Overview

We have organized the thesis into several chapters. We begin with literature review - starting

from the initial development on causality to the state of the art. Different methods of
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causality verification and enforcement have been introduced over time, which are mentioned

and analyzed in chapter 2. In the next chapter, we focus on existing issues with a newly

proposed technique of causality verification in time-domain by applying minimum-phase

low-pass filters. We investigate thoroughly with test cases which raises the validity of the

technique in different scenarios. In the fourth chapter we discuss the frequency-domain

approach for causality test and emphasize on sensitivities of some key parameters (location

of subtraction points, number of subtraction points etc.) on this method. In chapter 5,

we propose a new technique for causality verification and enforcement that solves some of

the issues with the previously mentioned time-domain and frequency-domain approaches.

Finally, we conclude in chapter 6 with suggestions on future prospects of this research work.
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CHAPTER 2

Literature Review

Causality verification has been an existing problem for a long time. We can trace back

to mid-twentieth century for early developments on causality, mostly found in physics and

optical science. In this chapter, we describe a chronological discussion on causality verifica-

tion and enforcement. In our analysis, we critically discuss advantages and shortcomings of

different approaches found in literature.

2.1 Introduction

The ever-growing advancement in enhanced rendering digital systems in rapidity and com-

plexity simultaneously is greatly advanced by creating macromodel presentation of electronic

packages. Signal Integrity (SI) engineers extensively use macromodel of digital systems in

electronic circuit simulators to verify the validity and integrity of different circuits and their

behavior upon simulation [2], [3]. When creating the macromodels for future simulation and

design, verifying the stability, passivity and causality of the data is a very important task [4].

For model extraction, engineers employ a common procedure that involves two main

steps. First, the frequency domain response of a structure under test is obtained through

numerical simulation or measurement. For example, we can consider the scattering matrix of

any interconnect system [4]. It creates a set of responses of the structure under investigation

in the frequency domain, in discrete sampled form. The later step involves developing

a suitable model to represent the system and to further analyze or modify the system.

Following these steps, a model that represents the measured data is obtained, although that

does not ensure the convergence of simulation [5]. In order to take into account of these

concerns, we must consider model behavioral checking which involves passivity, stability and

causality verification. In this chapter, we focus on causality verification and enforcement of

electrical interconnect models.



4

Through rigorous effort and research, it is widely validated that models containing causal-

ity violations lead to artifacts upon transient simulations. These artifacts may include early

arrival of the signal, inaccurate amplitude and delay. If the modelling is inaccurate in the

sense of frequency dependent losses, it may produce non-causal results [6–8]. The other

possible factors that may lead to the development of a non-causal model includes improper

choice of criteria of convergence, sample frequency and additional options for setup [9]. As

a result, causality verification of models is of tremendous importance. All physical systems

are by nature causal, but the models used for simulation and design may possess causality

violations at certain frequencies. To get appropriate result from simulation, the models must

be checked for causality violation and modified - if there is any violation, keeping the change

to a minimum level. This thesis addresses each of these subjects in a chronological fashion.

We have organized this chapter into several sections, starting with the formal definition

of causality in section 2.2. The time domain and frequency domain characteristics along with

dispersion relations are described here. We describe the validity of Scattering parameters in

section 2.3, along with the challenges associated with causality verification of band-limited

sampled data. In section 2.4, we discuss different methods of checking causality in physical

systems. Section 2.5 deals with several techniques of causality enforcement.

2.2 Definition of Causality

Causality is referred to the cause and effect characteristic of physically realizable systems. A

system is causal if any response of that system does not arise before applying an input that

generates the response. Any output occuring before the cause is referred to as non−causal

[10]. Every physical structure has to abide by this definition. Causality is defined when a

system with an impulse response h(t), is zero whenever t < 0, in time domain. In other

words, any change in its output is not visible till there is a change in the input signal.
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2.2.1 Causality and Dispersion

While discussing causality, another physical phenomenon arises inevitably, which is ’Dis-

persion’. Dispersion refers to the relation between phase velocity and frequency. When a

wave is propagating in a medium that is dispersive in nature, the shape of the time-localized

wave can change. The initial development on the relationship between phase velocity and fre-

quency was demonstrated in the solutions of spring coupled point masses in vibration [11,12].

Early in the 1870s, dependence between attenuation and dispersion was established. Later,

Krönig [13] and Kramers [14] argued that, the real and imaginary part of the refraction elec-

tromagnetic index (i.e., c0/cp (ω), the ratio between the speed of light and phase velocity)

are related to the Hilbert transform of each other, as a result of causality and linearity. This

concept was developed in the 1920s. The fact that the dispersion and loss are related to each

other - is the significance of this relationship. The term ”Kramers-Krönig relations” (or K-K

relations) is broadly referred to the dependency among quantities that are mathematically

represented by Hilbert transforms. One simple example could be when the two quantities

may be considered as the real and imaginary parts of a complex function. In this case, we

can express each pair as the integral over the other. Let us assume H(ω) is the Fourier

transform of h(t), which is defined as the transfer function. Then, the following expres-

sions (2.1a)-(2.1b) show a pair of Kramers-Krönig (K-K) relations for a complex function

H(ω) [10, 13–15]:

U(ω) =
1

π
−
∫

V (ω′)

ω − ω′
dω′ (2.1a)

V (ω) = − 1

π
−
∫

U(ω′)

ω − ω′
dω′ (2.1b)

where H(ω)= U(ω)+ jV(ω). These equations express the dependence between real and

imaginary part of the transfer function and they are valid for all causal systems. An im-
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portant finding from these relationships is that, to determine Re{H(ω)} (or Im{H(ω)})

at any specific frequency, information of Im{H(ω)} (or Re{H(ω)}) at all frequencies is

needed. Hilbert transform can be performed in many different ways such as direct numerical

integration [16, 17] or interpolating indirectly using different kernels such as Hermitan [18],

sinc [19] and rational [20] functions.

2.2.2 Kramer-Krönig Relations

Since their discovery, the K-K relations have occupied a significant role in the research

of almost all forms of wave propagation. Some of the imporant areas of application are

electromagnetics and optics [21], particle physics [10], electronics [22], quantum mechanics

[23], nuclear magnetic resonance [24], and acoustics [25,26]. Initially, this type of dispersion

relations were considered as general restrictions on physical theories. We can test the validity

of the basic assumptions such as causality by comparing these dispersion relations with

experiment [10].

We can assume a simple causal and non-causal function pair fc(t) and fnc(t) for validating

the K-K relations, which are defined as:

fnc(t) = u(t+ 1)u(−t+ 2) (2.2a)

fc(t) = u(t)u(−t+ 3) (2.2b)

The frequency domain response of the signals are obtained by taking Fourier Transform

of the equations (2.2a)-(2.2b) that can be expressed as:

Fnc(ω) =
cos πω sin 3πω

πω
− sin πω sin 3πω

πω
(2.3a)

Fc(ω) =
sin 6πω

2πω
− sin (3πω)2

πω
(2.3b)
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Then we determine the Hilbert Transform the real part of Fnc and Fc and compare them

with the imaginary part of Fnc and Fc, respectively. According to the K-K relationships, the

two functions should match only if the original signal is causal. We can clearly see in Figure

2.2 that the two curves match perfectly in case of a causal signal. On the other hand, the

responses does not match when the original signal is non-causal as in Figure 2.4.
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In this work, we primarily focus on the effect of dispersion relations on determining

causality of high-speed interconnect models. As interconnects are all real physical systems,

they must be causal in nature, hence the dispersion relations should be validated in these

systems. One way of checking the causality of the system under consideration is to validate

the dispersion relations on them. If these relations hold for the model, then we can assume

that the model is causal and therefore, shows consistency with the actual physical system.

2.3 Causality of Sampled Data

2.3.1 The S-matrix

In the early work on causality of dispersive systems, notable contribution by Heisenberg [27]

and Wheeler [28] led to the development of the concept of Scattering matrix or S-matrix.

The basic idea is that the interaction of the particles in a dispersive media can be represented

by the S-matrix. Such interactions are observed by allowing particles to collide, which may

result in several possible outcomes. Conceptually the collision process can be divided into

three stages. The representation of the S-matrix is incorporated in the transition as:

initial stage
S−matrix−−−−−−→ final stage

The S-matrix stores all the information needed for computing any observable quantity in

the system. The causality condition is the fundamental assumption for the system to hold.

By rigorous effort and mathematical analysis, causality conditions are described in literature

in many different aspects. The K-K relations are one of the conditions that is widely used

for verifying causality of physical systems. Titchmarsh’s theorem [15] provides us with four

statements that are equivalent, i.e., if any one of them is true, the others will definitely be

true. Later on, Schützer and Tiomno [29] formulated a causality condition for the scattering

of nonrelativistic particles, which implies regularity of the S-function in the upper half of the
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complex energy plane.

2.3.2 Challenges of Determining Causality of Sampled Data

While developing the dispersion relation of H(ω), it was assumed to be a square integrable

function, which may not be valid in practice. As the argument presented in [10], if H(ω) is

bounded, then for any input X(ω) that is a causal transformation will generate an output

Y (ω) that is also a causal transformation. This does not imply that H(ω) is causal. For

instance, if H(ω) = B, where B is a constant, satisfies above statements. On the other

hand, Re{H(ω)} and Im{H(ω)} could be totally unrelated and equation (2.1a)-(2.1b)

would be meaningless for this choice of H(ω). As a solution, an arbitrary constant K must

be specified before relating Re{H(ω)} and Im{H(ω)}.

A different formulation of the causality condition in nonrelativistic scattering was pro-

posed by Van Kampen [30], which refers to the conservation of probability. His work suggests

that the maximum probability of detecting a particle outside of the scatterer at any given

moment is unity. Although Van Kampen’s causality condition readily led to more detailed

information about the analytic behavior of the S-function than Schützer and Tiomno’s con-

dition, it still does not exclude singularities other than the poles from the negative real

axis, nor does it nullify the probability of analytic discontinuation to the lower half-plane.

Therefore, only partial results can be extracted from this proposal.

Reference [17] addressed the Hilbert transformation as a means of verifying causality

of measured continuous-wave data. In this section, a numerical formulation of the Hilbert

transformation is demonstrated with several examples. Assuming a real valued signal f(t),

the spectrum F (ω) has the following property [31]:

F (−ω) = F ∗(ω) (2.4)

This implies Re{H(ω)} = U(ω) is an even function of ω and Im{H(ω)} = V (ω) is



14

an odd function of ω. In this case, which is restrictive but practical at the same time, the

Hilbert transform can be written as follows [32]:

U(ω) =
2

π

∫ ∞
0

ω′V (ω′)

(ω2 − ω′2)
dω′ +K (2.5a)

V (ω) = −2ω

π

∫ ∞
0

U(ω′)

(ω2 − ω′2)
dω′ (2.5b)

As a result, we can determine one part of the transform within a range given by a constant

K, if the other part is known. Using these equations, the reconstruction of a waveform is

possible for determining transient response from the spectral data, which is also minimum

phase. The outcome of this procedure is accurate only if the original data is minimum

phase. Although, for real system data, we can not be certain that the reconstruction will

be excellent [17]. However, the numerical evaluation of the Hilbert transformation involves

integral over a singular point, which may lead to large errors. It is important to add the

contribution of values at higher frequencies to the total integral. If the high frequency

components are neglected, it can result in significant errors in the phase at high frequencies.

Two major challenges emerge when equation (2.1a)-(2.1b) are used numerically for scat-

tering parameters (S-parameters). Firstly, integrals have to be approximated to the limited

frequency range, which creates a large truncation error. Secondly, these relations are valid

only for square-integrable functions as they decay to zero as frequency increases, which is

not the case for general S-parameters [33].

2.3.3 Dispersion Relation With Subtractions

Considering these facts, alternate methods have been applied for direct causality check on

sampled data (readily available as S-parameters). These methods are derived from the

original dispersion relations (2.1a)-(2.1b) and based on approximations and assumptions

related to the situation at hand. One of the early proposed method for causality check is
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Dispersion Relations with Subtractions [34, 35].

As we mentioned before regarding the constant K that appears for relating Re{H(ω)}

and Im{H(ω)}, it is specified by giving the value of H(ω) for some real frequency ω = ω0.

Using the mathematical operations on the dispersion relation around ω = ω0 as described

in [10], we come up with the modified dispersion relation:

H(ω) = H(ω0) +
ω − ω0

π
−
∫

[H(ω′)−H(ω)]

ω′ − ω0

dω′

ω′ − ω
(2.6)

This relation is a typical dispersion relation for a function H(ω) that satisfies the bound-

ness condition. It requires the subtraction of the constant H(ω0), therefore is named Disper-

sion Relations with one Subtraction. The usual practice is to choose the reference frequency

at ω0 = 0, as such the subtracting constant is the static value of H(ω0). However, the

method can be extended to more than one subtraction [36,37]. In literature, this technique

has been widely used for causality verification by distributing ω0 frequencies over the entire

bandwidth [38].

2.4 Different Methods of Causality Verification

Since the introduction of S-parameters in the field of science and engineering, different meth-

ods of causality verification and enforcement have been introduced. In this section, we try

to summarize some of the important methods of verifying and enforcing causality. We begin

with early developments and gradually introduce more recent updates on causality check.

We can graphically represent the classification of causality check as shown in Fig. 2.5.
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2.4.1 Direct Hilbert Transform

In the novel work by Antonini [16], direct Hilbert Transform is used to verify causality of

sampled S-parameters. Numerical examples given in this work shows small but distributed

error along the entire bandwidth. The root mean square (rms) value is used to verify causality

(i.e., rms error less than 5% is assumed to be causal). In this method, the reconstructed

responses (both magnitude and phase) fail to match the original at the borders because of

the inherent approximations of the numerical application of Hilbert Transform. To minimize

the error at upper boundary values, the measured bandwidth should be chosen in a way that

the network function is measured beyond the frequency of interest. However, no rigorous

estimate of the error bound is defined in this work.

2.4.2 Generalized Dispersion Relations

In order to overcome the challenges that arise when K-K relations are directly applied on

S-parameters, causality verification for tabulated data using dispersion relation with subtrac-

tions was first demonstrated in reference [39]. An explicit error bound calculation technique

was presented in this novel work. Additionally, a detailed analysis regarding the resolution

of the proposed method is described. The validation of the method is further established

in [40]. The direct discretization of (2.1a)-(2.1b) fails because of the finite bandwidth of the

sampled data and finite number of discrete samples. Therefore, an error arises when trying

to correlate the real and imaginary part of the data. The most significant contribution of

this work is to formulate the error bound. Instead of directly using equations (2.1a)-(2.1b),

a modified pair of dispersion relations are used [39]:

U(ω) = αU(ω) +
ωn

π
−
∫
V (ω′)− αV (ω′)

(ω′)n
dω′

ω − ω′
(2.7a)

V (ω) = αV (ω)− ωn

π
−
∫
U(ω′)− αU(ω′)

(ω′)n
dω′

ω − ω′
(2.7b)
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where

αU(ω) =
n−1∑
V=0

U (V )(0)

V !
ωV , αV (ω) =

n−1∑
V=0

V (V )(0)

V !
ωV

Here, the number of subtractions is given by n. These expressions are extracted using

two steps. First step involves subtracting the n-th order Taylor polynomial from H(ω)

and dividing the result by ωn. Afterwards, the Hilbert Transform is applied on the result

to get the expressions in equation (2.7a)-(2.7b). Although numerical evaluation of these

relations requires the n-th order Taylor polynomial, which gets ill-conditioned for sampled

data. This problem is solved in reference [39] by distributing the roots of the polynomial ωn

at frequencies other than ω = 0:

U(ω) = βU(ω) +

∏n
q=1(ω − ω̄q)

π
−
∫
V (ω′)− βV (ω′)∏n

q=1(ω′ − ω̄q)
dω′

ω − ω′
(2.8a)

V (ω) = βV (ω)−
∏n

q=1(ω − ω̄q)
π

−
∫
V (ω′)− βV (ω′)∏n

q=1(ω′ − ω̄q)
dω′

ω − ω′
(2.8b)

where βF (ω) =
∑n

q=1 lq(ω)F (ω̄q) for F = {U, V } and lq(ω) =
∏n

p=1,p 6=q
(ω−ω̄p)

(ω̄q−ω̄p)
(Lagrange

Interpolation Polynomial). The optimal placement of the subtraction points is ensured by

implying a Chebyshev distribution, which guarantees minimal truncation error. A bound for

the truncation error is estimated assuming |H(ω)| ≤ 1. Using these assumptions, causality

verification is done by reconstructing the imaginary part and comparing it to the raw data.

Examples in reference [39] shows excellent resolution of the causality check.

A similar approach with more practical examples is stated in [41]. Comparison with

previous methods have been presented and it clearly shows the effectiveness of the proposed

method mainly because the generalized Hilbert transform was utilized instead of the Hilbert

transform. Moreover, the inaccuracy because of the truncation error was minimized and the

effect of discretization error was reduced. A rigorous upper limit of the truncation error made

the reduction of truncation error possible. Lastly, the difference of result in two different
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methods of numerical integration (namely, Simpson’s rule and Trapezoidal rule) were used

to take care of the numerical error associated with integration.

However, the causality check given in [41] and [39] has some limitations. The strategies

depicted beforehand might be oversensitive while deciding causality infringement, conse-

quently they may falsely declare an input as non-causal, which may not result in an erroneous

transient simulation. Likewise, the testing strategies that actualize the current definition nu-

merically are delicate to false-positive results (i.e., causal data inaccurately announced as

non-causal).

More recently, in [5], [42] sampled S-parameters are to be guaranteed for causality prior

to macromodeling, trying to diminish faulty result. The method described here are based

on Hilbert Transform as given in [39,41]. Unfortunately, this method can likewise dispose of

S-parameters that might not have brought about a mistaken transient simulation on account

of the oversensitive way of the causality check. The reason behind the oversensitivity of the

current method is that the threshold for the detection of violation is sometimes fixed at a

littler number than required for acceptable transient simulation [43]. Thus, violations that

would not have brought about a wrong transient simulation might be accounted for by the

current detailing. Although, it is suggested in references [5, 42] that isolated single point

causality violations may arise when the error threshold of the reconstructed data is small or

model frequency points are widely spread. In most cases, ignoring the single point violations

does not affect the convergence of simulation [5]. Additionally, the experiments in [5] suggests

that it is more challenging to generate causal models having lower loss dielectrics.

2.4.3 Minimum Phase and All-pass Decomposition

Another approach based on minimum phase and all-pass decomposition was introduced in

reference [44]. By using the locations of the poles and zeros of the all-pass function, we can

obtain the phase plot graphically. According to the argument presented in [44], stable poles

(confined within the unit circle) for a causal system results in a monotonically diminishing
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and negative phase plot. On the other hand, if the model is non-causal by nature, it would

be positive. Numerical examples and one practical case is demonstrated that follows this

claim. This method is less susceptible to the available bandwidth of the system and more

able to withstand numerical blunders because of inadequate data and Gibbs phenomenon.

However, in some cases the method could fail if too few information are given. The authors

did found non-causality report on some loss-less cases, which are obviously incorrect, which

suggests that the proposed method might require improvements.

2.4.4 Causality Check by Analog Integration

A couple of new testing techniques were introduced in [43,45,46] to decrease false-positive test

results. It was achieved by carefully taking the discretization error bound into account while

approximations were made on the sampled data by interpolation/approximation functions.

The principal difference between the method described in [45] and that in [41] is that, in this

work, cubic splines are utilized to interpolate the frequency response. The causality test is

performed on the analytic function obtained by cubic spline, rather than the actual sampled

data. Because of achieving Generalized Hilbert Transform analytically, the run time of the

operation is reduced with good accuracy.

The amount of non-causality detectable by this method, as in reference [45], is also

larger than the previous methods because of applying analytic integration – thus overcoming

the sensitivity problems of previous methods. However, the technique in [45] can prompt

unbounded results in the presence of large non-uniform frequency steps in the tabulated data

(e.g., logarithmic spaced frequency samples). In [46], this problem is resolved by improving

the algorithm by using a global (i.e., non-piecewise) rational function approximation for

tabulated frequency responses, whether piecewise cubic spline interpolation technique was

applied in [45]. However, the speed might be compromised for data that has large delays.
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2.4.5 Estimation of Causality Metric

In practical cases and simulations, causality is to be considered as a metric quantity, not an

absolute property, as described in [47], [48]. A polar plot of the sampled data can be used

to estimate the Causality Measure (CM) of a system. It is calculated as the proportion of

clockwise rotation to aggregate rotation in percentage. Although the algorithm is consistent

for numerical models, but not as effective for measured data due to noise.

According to recent works by Tsiklauri, [1,49] physical systems should not only be causal,

they should be delay causal. Therefore, a signal should arrive at the output after system

delay. Considering this concept, causality is considered to be a metric quantity, instead of an

absolute property, as the proportion of energy that arrives before delay to the total energy.

It is demonstrated in these papers that using little phase perturbation, causality property

can be changed significantly. The major challenge is however to minimize numerical error

brought about by band limited nature of the measured data.

2.4.6 Low Pass Filtering Approach

The methods described so far analyzes the system in frequency domain, although causality

is characterized in the time space more explicitly. As mentioned above, frequency domain

analysis of causality is complicated and sometimes misleading. Therefore a time domain

approach is described in [50], where a sampled scattering parameter is passed through a

low-pass filter to attenuate truncation error. The technique is further extended and justified

in [51], [52] where the application of the filtering is rigorously validated.

Although the method is effective in detecting causality violations in most cases, it is also

sensitive to the filter specification to a major extent [53]. The paper focuses on the reduction

of numerical error by attenuating out-of-band frequency region, but does not specify the

filter parameters. Investigation shows that the method yields different result when filter

parameters (such as knee frequency, filter order and pass-band ripple etc.) are varied [53].
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There should be a relationship to the error bound and filter parameters that is yet to be

determined. Therefore, the choice of the appropriate filter is still an area of research.
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2.5 Enforcement of Causality

The enforcement of causality is as equally important for reliable time domain simulation as

detection. Often the frequency domain characteristic of the system is modified to meet the

causality condition. Recently, time domain modification algorithms have been developed

and successfully implemented for enforcing causality in systems, which have been reported

for causality violation. An illustration showing different methods of enforcing causality is

presented in Fig. 2.6.

2.5.1 Causality Enforcement in Numerical Solutions of Maxwell’s

Equations

Perhaps the first attempt of enforcing causality was made by Clapp [54]. According to

the novel work, the causality condition is fulfilled if the Maxwell hypothesis is presented in

integral-equation form, with alteration embedded in the integrands. At exactly that point, a

solution utilizing numerical integration will be physically realizable. The argument presented

here is strictly confined to numerical solutions of Maxwell’s equations.

2.5.2 Causality Enforcement by Hilbert Transform

Later in 1993, a novel work by Arabi in reference [55] utilized the Hilbert transform for

enforcing causality on the EM fields for high speed digital systems. This technique uses

the minimum phase portion of the system to calculate the causal transfer function. Finally,

the total phase of the transfer function is obtained by the summation of the linear and

non-linear minimum phase functions. Similar approaches have been applied in literature

(see in reference [17, 56–58]). Although it is shown in these papers that the method works,

one should be careful while implementing this method on measured spectra with a positive

phase [17].
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2.5.3 Causality Enforcement by Delay Extraction

Another technique based on port-to-port delay extraction is described in reference [59]. At

first, a technique to extract delay from S, Y and Z parameters is explained and demonstrated.

After extracting the port-to-port delay of the system, the determined impulse response in

time domain can be adjusted so that the delay in the system can be correctly measured.

Afterwards the impulse response is transferred back to frequency domain data via Fourier

Transform. Numerical examples are presented to validate this technique. Alternatively, the

’base delay’ for a device under test can be considered. The ’base delay’ is the first time

instant in the positive time axis at which emergence of the output is expected [60]. There

are several approaches to get the ’base delay’, although it is a function of frequency, that

means the delay actually varies with frequency.

However, if we consider a distributed network with delays that are not closely grouped,

this methodology may not produce accurate results [61]. A general distributed network

that has more than one delays no longer acts as a minimum phase response because of the

significant phase contributions of each delay elements. Consequently, applying Hilbert trans-

form could result in incorrect estimation of the system [17]. Moreover, since this technique

discards transient response before delay, there is loss of energy for the signal.

2.5.4 Causality Enforcement by Iterative FFT and IFFT

An improved method using iterative Fast-Fourier Transform (FFT) and Inverse Fast-Fourier

Transform (IFFT) was introduced in reference [62]. This advanced method is able to preserve

the energy of the signal more accurately. However, both of the methods in reference [59,62]

deals with causality violations in interconnects. A new method of causality enforcement

by magnitude equalization was introduced in the novel work of Song et. al., (see [63]).

As the magnitude equalizer does not have any physical length, the equalizer’s phase is

obtained using DHT assuming no delay. The errors from non-causal responses are adjusted by
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applying the synthesized phase to the simulation. Although being a straightforward method,

because of the IFFT, a convolution is applied numerically for the transient simulation that

involves complex higher order calculations. This complexity can be reduced by adopting fast

convolution methods [64].

2.5.5 Causality Enforcement by Extracting Dominant Delay

An alternative method given in reference [65] seeks to calculate the losses due to attenuation

of the transfer function as sampled data utilizing a Hilbert transform approach and then

the outcome of the Hilbert transform is used to estimate the largest delay. This technique

specifically upholds the finite delay for the excitation to go from the input to the output,

providing more appropriate results compared to the direct application of IFFT. However, like

the previous approaches, this method could also produce inaccurate results when a network

with more than one unextracted higher order delays is put to test.

2.5.6 Causality Enforcement by Extrapolation of Spectrum

According to the novel work by Rao et. al. (see [66]), one of the most effective, general

purpose method for time-domain simulation and analysis is the time-domain convolution.

This work demonstrates the requirement for another model for impulse response and pro-

poses a system for its consideration in transient simulation, which is described in details in

the patent [67]. In this method, optimized extrapolation is used to extend the truncated

spectrum beyond the maximum sample frequency. This reduces the difference between com-

puted and original imaginary part in the in-band frequency range, therefore ensuring a causal

impulse response that accurately represents the original spectrum.



27

2.5.7 Phase Perturbation Technique of Causality Enforcement

It is possible to form Kramers-Krönig relations among amplitude and phase of the transfer

function [68, 69]. Therefore, phase can be completely reconstructed by attenuation. More-

over, if magnitude is frequency dependent, delay causal system cannot have perfectly linear

phase [70]. In reference [49], these principles are used to show that if there is causality

unfulfillment for the system, a small alteration in phase makes significant improvement to

the causality condition, keeping the change in magnitude to a minimum level.

If we consider a system H(ω) = e−α(ω)−θ(ω), where θ(ω) is the phase and α(ω) is the

attenuation. Then the following system of equations can be used for phase reconstruction

[49]:

θ(ω) =
ω

π
−
∫

α(ω′)

ω2 − ω′2
dω′ (2.9a)

α(ω) = α(0)− ω2

π
−
∫

θ(ω′)

ω′(ω2 − ω′2)
dω′ (2.9b)

where α(0) is a constant. The principal value integrals can be numerically computed by

dispersion relations with subtractions as mentioned previously. The method produces same

numerical error, which requires optimum number of subtractions to minimize numerical error.

2.5.8 Stable Recursive Method for Causality Enforcement

Recently another approach for causality enforcement has been adopted by Tsiklauri et. al.

(see [1], which involves a stable recursive convolution in time-domain. The enforcement

technique ensures a delay causal response. Actual physical systems have delay, therefore

the system should be delay causal. Mathematically, if the impulse response of a system is

h(t), then condition for delay causality is: h(t) = 0, for t < τ ; where τ is the system delay.

Causality is enforced by taking the part of impulse response before the delay and adding its

mirror image regarding the delay point to the part after the delay. Finally, the part before
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the delay is set to zero. The technique used in this work is to decompose the original impulse

response into even and odd functions, then applying the following operation [1]:

henforced(t) = he(t) + sign(t− τ)he(t) (2.10)

where he(t) is the even part of the impulse response. To illustrate the procedure, we take

a fictitious impulse response hnc(t), which is not delay causal. We assume the delay time

of the system is 0.5s. We obtain the enforced delay causal impulse response hc(t) according

to the formula given in equation (2.10). The two responses are depicted in Fig. 2.7. A

stable recursive algorithm is given in reference [1] that produces good result on measured

S-parameters. Although the work is novel and efficient in implementation, it heavily depends

on detecting the delay time accurately for the system.
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2.6 Summary and Discussion

We reviewed an important physical characteristic of high speed interconnect system with

wide applications in modern technology. The importance of causality in macro-models de-

veloped for future modeling, design and simulation is described. We start our discussion

with early development on the concept of causality in chronological order that shows differ-

ent steps of development towards state of the art techniques for causality verification and

enforcement. As it is an immensely important property of data that describes real-world

systems, violation of this property usually leads to erroneous results.

In our discussion, we focus on important milestones in achieving advanced techniques.

Perhaps the most important criterion for causality is the Kramers-Krönig dispersion rela-

tions. Many of the techniques for verifying causality are some derivative of the original

dispersion relations. Although causality is defined in time-domain, the K-K relations are

specified in frequency domain, which make them appropriate for the sampled data that are

the most available. However, each method have some advantages/disadvantages over others

that are critically analyzed throughout this work. Causality enforcement is also treated the

same way - we have discussed different methodologies in chronological order to focus on the

gradual development of causality enforcement.
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CHAPTER 3

Causality Verification by Filtering

Among different methods, in this chapter we concentrate on a time domain approach for

detecting causality violation. Although simple in implementation, the method is sensitive

to certain filter parameters. The detailed analysis with numerical examples are presented in

this chapter.

3.1 Introduction

Scattering parameters (S-parameters) are extensively used in the field of signal/power in-

tegrity to define components in the frequency domain. In order to obtain well-posed models

for transient analysis, the raw frequency data must be causal, stable and passive [4]. The

main focus in this chapter is on the sensitivity of parameters of a method used for detecting

causality violations. Mathematically, a causal system having impulse response h(t) must

follow the condition [4]:

h(t) = 0 for t < 0, (3.1)

In frequency domain, the system under consideration must follow the Kremars-Krönig

dispersion relationship [13, 14], which states a relation between real and imaginary part of

the frequency response.

A method for causality check is described in [41], where a minimum-phase low-pass filter

is used to reduce the truncation error. This chapter carefully examines some cases where the

method produces inaccurate results. The following section refers to a method of checking

causality as described in [41]. In section 3.3, through numerical examples we have shown the

effect of choosing different filter parameters.
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3.2 Formulation

3.2.1 Scattering parameters

Scattering parameters are widely used in microwave engineering to characterize linear devices

such as transmission lines, microstrip filters, antennas and active devices operating in small-

signal conditions [41]. It is common practice to treat the incident waves as the independent

quantities; we denote these as an, and express their contributions to the reflected or outward

traveling wave bn at port N by a series of scattering coefficients. In matrix form:


b1

...

bn

 =


S11 · · · S1n

...
. . .

...

Sn1 · · · Snn

 ·

a1

...

an

 (3.2)

For a two-port network, the S-parameter representation of the system in matrix form can

be written as:

b1

b2

 =

S11 S12

S21 S22

 ·
a1

a2

 (3.3)

Generally, a scattering matrix is applied to represent the properties of a physical mi-

crowave junction; certain relationships exist within the scattering matrix as a result of the

familiar laws of reciprocity and conservation of energy [71]. The condition of reciprocity

requires that the S-matrix is symmetric.

3.2.2 Filtered Fourier Transform

Causality of a system can be determined by observing the impulse response in the time

domain whether it meets the condition given in (3.1). From measured data, generally the

frequency domain responses are available in form of scattering parameters up to a maximum

frequency. If the sampled transfer function is given by S(ω) for a single port system, the
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corresponding time domain response can be calculated by inverse Fourier Transform of the

samples [41]:

h(t) =
1

2π

ωm∫
−ωm

S(ω)eωtdω +
1

2π

∫
|ωm|>ωm

S(ω)eωtdω, (3.4)

where  =
√
−1, ωm = maximumfrequency.

If the sampled data is available up to a certain frequency (ωm), only the first part of the

integral in (3.4) can be computed. Hence, the obtained impulse response differs from the

actual response by a truncation error. Reference [41] addressed this issue through filtering

the sampled response by a low-pass filter. The filtered response is obtained using following

equations [41]:

HFi,j
(ω) = F (ω)Si,j(ω), (3.5)

where i, j ∈ {1, 2}, and F (ω) is the filter transfer function. Taking inverse Fourier Transform

of these responses give us the time domain response as follows [41]:

hfi,j(t) =
1

2π

ωm∫
−ωm

HFi,j
(ω)eωtdω +

1

2π

∫
|ωm|>ωm

HFi,j
(ω)eωtdω, (3.6)

where i, j ∈ {1, 2}.

In this section, we have performed the inverse Fourier Transform by evaluating numerical

integration using equation (3.6) for a two port network. The time parameter ’t’ is fed into the

integral over the frequency range. Thus we are able to determine time domain response of

the transfer function for any time instance, either in positive or negative axis. The theorem

1 described in [41] suggests that, if the filter is minimum phase, the causality of hf11(t),

hf12(t), hf21(t) and hf22(t) are equivalent to the causality of the given S-parameter. The

steps to follow the causality checking is given below:

Step 1: Acquiring band-limited samples of S-parameters

Step 2: Passing the samples through a minimum phase low-pass filter to attenuate out-of-
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band samples

Step 3: Determining the error-threshold based on the filter parameters

Step 4: Performing inverse Fourier Transform of the filtered response to obtain time domain

response

Step 5: Checking whether the response exceeds the error threshold in the region t < 0

3.2.3 Error Threshold

In this work, we have selected a Chebyshev low pass minimum phase filter because of its

steeper roll-off characteristic. The error threshold (E) is obtained as in [41]:

E = M
1

2π

∫
|ωm|>ωm

|F (ω)|dω (3.7)

where F(jω) is the frequency response of the minimum phase filter and M is the value of the

frequency response of the system beyond ω > ωm. We assume M = 1 for passive devices [41].

Therefore, the conditions for the S-parameter to be causal is [41]:

|hfi,j(t)| < E for t < 0 (3.8)

3.3 Numerical Example

3.3.1 Analytic Example

Through an analytic example, we can demonstrate the validity of causality checking of the

S-matrix. At first, we consider a fictitious two port S-matrix, elements of which are known
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as functions of frequencies beforehand. We define them as follows:

H11(ω) =
1

ω + 20
;H12(ω) = H21(ω) =

1

ω4 + 20

H22(ω) =
1

ω5 + 15
+

0.5

ω + 1
eω10

Clearly, H11(ω) and H12(ω) are causal and their time domain response should show

causal properties as given in (3.1). On the other hand, H22(ω) is non-causal because of

the presence of the anticipation factor eω10. Since sampled data is used to obtain the time

domain response, and samples are only available up to a maximum allowed frequency (in

this case, we fixed it to ωm = 2π∗50 rad/s), the time domain response of the two frequency

responses are not exactly zero for negative time instances, but should be limited to an error

bound given by (3.8).

Each of the frequency responses are sampled at 100 points up to ωm. At first the time

domain response is obtained for each elements of the S-matrix. A 4th order Chebyshev (type

1) low-pass filter is used with cut-off frequency 2π∗25 rad/s and pass-band ripple of 2 dB.

The output graph of the impulse response (Fig. 3.1) shows causality violation of H22(ω).

For further verification, we omit the eω10 term from H22(ω) and perform the verification

again. The results are shown in Fig. 3.2.
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Figure 3.1: Impulse response obtained from the filtered frequency responses given in (3.9).
The dashed lines denote the threshold error bound. (Source: Md Aminul Hoque, Ata Zade-
hgol, On the Sensitivity of Causality Filter Parameters. Copyright c©2016, IEEE Electrical
Design of Advanced Packaging and Systems (EDAPS) Symposium 2016.)
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Figure 3.2: Impulse response obtained from the modified filtered frequency responses given
in (3.9), leaving out the non-causal part. It is observed that the impulse response stays
within the threshold limit for t < 0. (Source: Md Aminul Hoque, Ata Zadehgol, On the
Sensitivity of Causality Filter Parameters. Copyright c©2016, IEEE Electrical Design of
Advanced Packaging and Systems (EDAPS) Symposium 2016.)
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However, the test is sensitive to the filter specification. If we increase the cut-off frequency

to 2π∗30 rad/s, the test fails to detect violation (Fig. 3.3). We show another case where the

filter cut-off frequency is reduced down to 2π∗20 rad/s, which declares a causal system to

be non-causal (Fig. 3.4).
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Figure 3.3: As a result of increased cut-off frequency, the time response stays within the
threshold value, even though it is non causal, given in (3.9).(Source: Md Aminul Hoque,
Ata Zadehgol, On the Sensitivity of Causality Filter Parameters. Copyright c©2016, IEEE
Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium 2016.)
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Figure 3.4: Decreasing the cut-off frequency yields non-causal characteristic of a purely
causal sequence. (Source: Md Aminul Hoque, Ata Zadehgol, On the Sensitivity of Causality
Filter Parameters. Copyright c©2016, IEEE Electrical Design of Advanced Packaging and
Systems (EDAPS) Symposium 2016.)
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Another important parameter to consider is the maximum frequency of the samples. If

we consider the transfer functions in (3.9) and take the samples up to ωm = 2π∗40 rad/s,

the test fails to detect the causality violation as shown in Fig. 3.5. On the other hand,

by increasing ωm to 2π∗60 rad/s, causality check generates causality violations for causal

functions, which is depicted in Fig. 3.6. There is no methodology provided in [41] regarding

maximum frequency, although it clearly makes an impact on detection of causality violation.

Therefore, relationship between the maximum frequency of samples, cut-off frequency of the

filter, pass-band ripple and other filter parameters should be established.
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Figure 3.5: Impulse response of the functions in (3.9). Clearly the H22(ω) is non-causal but
it can not be detected when ωm is reduced to 2π∗40 rad/s. (Source: Md Aminul Hoque,
Ata Zadehgol, On the Sensitivity of Causality Filter Parameters. Copyright c©2016, IEEE
Electrical Design of Advanced Packaging and Systems (EDAPS) Symposium 2016.)
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Figure 3.6: Impulse response of the functions in (3.9) when ωm is increased to 2π∗60 rad/s.
The anticipation factor of H22(ω) is left out, so all functions are causal. But the result
displays causality violation for H11(ω). (Source: Md Aminul Hoque, Ata Zadehgol, On
the Sensitivity of Causality Filter Parameters. Copyright c©2016, IEEE Electrical Design of
Advanced Packaging and Systems (EDAPS) Symposium 2016.)
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3.3.2 Practical case

Now we consider the 2-port S-parameters extracted for a set of power-plane that contains

1351 frequency points up to 5 GHz. The filter chosen in this case is a 4th order type 1

Chebyshev low-pass filter with pass band ripple of 7 dB and cut-off frequency at 2.8 GHz.

Since the network is passive, M = 1 [41]. By checking each element of the S-matrix, we

obtain the output in Fig. 3.7, which appears to be causal. However, one question remains,

that is how much further we need to check in the negative time for causality violation? If

we go further back into the negative time axis, causality violation does show up as depicted

in Fig. 3.8.
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Figure 3.7: Impulse response of the elements of S-matrix for the 1351 frequency point S-
parameters. It is observed that the impulse response stays within the threshold limit for t <
0 up to t = -25s. (Source: Md Aminul Hoque, Ata Zadehgol, On the Sensitivity of Causality
Filter Parameters. Copyright c©2016, IEEE Electrical Design of Advanced Packaging and
Systems (EDAPS) Symposium 2016.)
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Figure 3.8: Impulse response of the elements of S-matrix. Causality violation is seen at
t = -37s and t = -58s as the time response of the S11 and S22 go beyond the threshold
value. (Source: Md Aminul Hoque, Ata Zadehgol, On the Sensitivity of Causality Filter
Parameters. Copyright c©2016, IEEE Electrical Design of Advanced Packaging and Systems
(EDAPS) Symposium 2016.)
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3.4 Summary

We examine an existing proposed method [41] for verification of causality of sampled S-

parameters. Our investigation reveals that while the proposed method is novel in its sim-

plicity and ease of implementation, in practice it is quite sensitive to the filter parameters,

the duration of negative time, and the maximum sampled frequency. Specifically, the choice

of filter’s knee frequency plays a significant role in the method’s ability to accurately detect

non-causality. Additionally, it is not clear how far back in negative time the impulse response

must be checked to conclusively demonstrate causality. Moreover, the effect of maximum

frequency available for sampled data can significantly affect the detection of non-causality.

While the proposed method [41] appears promising, the above parameters must be precisely

specified in order to make the method useful for solving practical problems.
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CHAPTER 4

Causality Verification by Generalized Hilbert Transform

We have discussed about time domain approaches of causality verification in previous

chapters. In this chapter, we discuss a frequency domain approach for the same purpose.

The formulation is based on the original dispersion relations, but typical issues of applying

the K-K relations are solved by using a modified formulation. The important parameters

and their recommended values for generating fruitful result are discussed in details.

4.1 Generalized Dispersion Relations

Hilbert transform is applied on tabulated S-parameters that evokes a frequency domain

causality test. It was first formulated in reference [10]. However, the complete implementa-

tion with practical examples are provided in reference [39]. An explicit error bound calcula-

tion technique was presented in this novel work. Additionally, a detailed analysis regarding

the resolution of the proposed method is described. The validation of the method is further

established in [40]. The direct discretization of the original dispersion relation (2.1a)-(2.1b)

fails because of the finite bandwidth of the sampled data and finite number of discrete sam-

ples. Therefore, an error or mismatch is inevitable when trying to correlate the real and

imaginary part of the data. One significant contribution of this work is the formulation

of the error bound. Instead of directly using equations (2.1a)-(2.1b), a modified pair of

dispersion relations are used [39]:

U(ω) = αU(ω) +
ωn

π
−
∫
V (ω′)− αV (ω′)

(ω′)n
dω′

ω − ω′
(4.1a)

V (ω) = αV (ω)− ωn

π
−
∫
U(ω′)− αU(ω′)

(ω′)n
dω′

ω − ω′
(4.1b)
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where

αU(ω) =
n−1∑
V=0

U (V )(0)

V !
ωV , αV (ω) =

n−1∑
V=0

V (V )(0)

V !
ωV

Here, the number of subtractions is given by n. These expressions are extracted using

two steps. First step involves subtracting the n-th order Taylor polynomial from H(ω)

and dividing the result by ωn. Afterwards, the Hilbert Transform is applied on the result

to get the expressions in equation (4.1a)-(4.1b). Although numerical evaluation of these

relations requires the n-th order Taylor polynomial, which gets ill-conditioned for sampled

data. This problem is solved in reference [39] by distributing the roots of the polynomial ωn

at frequencies other than ω = 0:

U(ω) = βU(ω) +

∏n
q=1(ω − ω̄q)

π
−
∫
V (ω′)− βV (ω′)∏n

q=1(ω′ − ω̄q)
dω′

(ω − ω′)
(4.2a)

V (ω) = βV (ω)−
∏n

q=1(ω − ω̄q)
π

−
∫
V (ω′)− βV (ω′)∏n

q=1(ω′ − ω̄q)
dω′

(ω − ω′)
(4.2b)

where βF (ω) =
∑n

q=1 lq(ω)F (ω̄q) for F = {U, V } and lq(ω) =
∏n

p=1,p 6=q
(ω−ω̄p)

(ω̄q−ω̄p)
(Lagrange

Interpolation Polynomial).

4.2 Location of Subtraction Points

Placing the subtraction points is of great importance for this method to work. According to

several references [36–38], a Chebyshev distribution ensures optimal placement of the sub-

traction points (also known as the anchor points). The subtraction points can be extracted

by the zeros of the N-th order Chebyshev polynomial which can be written as:

ω̄q = −ωmax(1− ε)cos
(q − 1)π

n− 1
, q = 1, 2, . . . n (4.3)

Here, ω̄q are the subtraction points, ωmax is the maximum frequency in radians per second,

and ε is an arbitrarily small number ( ε << 1). The number of subtraction points can be
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increased or decreased based on the density of samples and variation in input. The increased

number of subtraction points reduces the truncation error obtained from it. However, it also

makes the test more sensitive in detecting causality violation. We shall discuss these issues

in more details in later part of this chapter.

Because of the finite bandwidth of available samples, the reconstructed output does not

perfectly match with the input. However, we can estimate the maximum deviation of the

output caused by the bandlimited nature of data. A bound for the truncation error is

estimated assuming |H(ω)| ≤ 1. Using these assumptions, causality verification is done by

reconstructing the imaginary part and comparing it to the raw data. The truncation error

bound Tn(ω) is given as [40]:

Tn(ω) =
1

π

n∑
q=1

[∣∣∣∣lnωmax − ω̄qωmax − ω

∣∣∣∣− (−1)n
∣∣∣∣lnωmax + ω̄q

ωmax + ω

∣∣∣∣]× n∏
p=1,p 6=q

|ω − ω̄q|
ω̄p − ω̄q

(4.4)

However, the value of ε can lead to ambiguity, as it has an effect on placing the subtraction

points. In the original paper, the only assumption on the value of ε is specified by ε <<

1, which does not give an insight on what the specific value should be. Based on our

investigation, we found out that the test is sensitive to the value of ε. By setting the value of

ε = 0.1, we obtain truncation error bound that is depicted in Figure 4.1. The error bound is

determined using equation (4.3), for three different values of subtraction points, n = 4, 8, 12.

For most of our simulations afterwards, we shall choose 12 subtraction points as it gives

lower truncation error bound.
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Figure 4.1: Truncation error bound vs. normalized angular frequency with ε = 0.1
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4.3 Reconstruction Operation

Due to discrete nature of the band-limited data, direct application of Hilbert Transform

produces erroneous results. Therefore, a modified version of Hilbert Transform is adopted

in literature which takes the nature of the data into account. As given in equations (4.2a)-

(4.2b), this technique uses a number of anchor points to apply the Hilbert kernel on the

frequency samples. A generalized reconstruction operator Rn is defined that maps the data

onto itself if the data is causal. If there exists violation of causality, the reconstruction

generates large error. The error threshold can be specifically determined that allows us a

check whether the test reports causality violation or not. The reconstructed output Hn(jω)

can be obtained from the original sampled frequency domain data H(jω) as [10,72]:

Hn(jω) = RnH(jω) = LH(jω) +

∏n
q=1(ω − ω̄q)

jπ
×−
∫
H(jω′)− LH(jω′)∏n

q=1(ω′ − ω̄q)
dω′

(ω − ω′)
(4.5)

Here, the term LH(jω) refers to the Lagrange interpolation polynomial for H(jω) [73].

It can be mathematically expressed as:

LH(jω) =
1

π

n∑
q=1

H(jω̄q)
n∏
q=1

ω − ω̄q
ω̄p − ω̄q

(4.6)

Here, the subtraction points are used as interpolation knots. The detailed proof of the

reconstruction operation can be found in references [10, 74]. Equation (4.5), also known as

generalized Hilbert transform [75], defines a generalized reconstruction operator Rn. Only

causal frequency responses are mapped onto themselves by the reconstruction operator Rn.

This generalized reconstruction operator has two major advantages. First advantage is gen-

erality, since results well defined for any frequency response having a polynomial growth up

to ωn−1 . Second, its sensitivity to the high-frequency behavior of H(jω) results drastically

reduced. This is essentially due to the presence of the polynomial at the denominator in
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(4.5), which acts as a sort of ”low-pass” filter.

However, Integration in equation (4.5) is performed over the whole real line. Application

to band-limited responses imposes a restriction of the integration interval to Ω defined as:

Ω = [−ωmax, ωmax] (4.7)

In practical cases, we have band-limited response available to us, therefore only an ap-

proximate reconstruction Ĥn(jω) can be evaluated. The modified reconstruction equation

can be expressed as:

Ĥn(jω) = LH(jω) +

∏n
q=1(ω − ω̄q)

jπ
−
∫

Ω

H(jω′)− LH(jω′)∏n
q=1(ω′ − ω̄q)

dω′

(ω − ω′)

+

∏n
q=1(ω − ω̄q)

jπ

∫
ΩC

−LH(jω′)∏n
q=1(ω′ − ω̄q)

dω′

(ω − ω′)
(4.8)

Here, the integration is split into two parts, the first part containing the bandwidth

where frequency samples are available, and where the singular nature of the integral exists

(which accounts for the first integral term of equation (4.8). The process to determine this

singular integral is discussed in a later section. The last term of the integral in equation (4.8)

accounts for the bandwidth beyond the maximum available frequency. Since the frequency

sample beyond this point is not available, it is assumed to be zero. If this contribution is

not included in the computation, the result turns out to be very inaccurate, thus wasting

the effort in using the more sophisticated generalized dispersion relations.

4.4 Numerical Integration

The reconstruction equation as described in equation (4.8), can be interpreted as the applica-

tion of the original dispersion relation with the auxiliary frequency response by subtracting

the polynomial trend LH(jω′) from H(jω) and dividing by the polynomial normalization
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factor at the denominator:

G(jω) =
H(jω′)− LH(jω′)∏n

q=1(ω − ω̄q)
(4.9)

The first integral of equation (4.8) contains singularities and special care should be taken

so that the discretization error does not become unbounded. To regularize the integral, we

adopt a singularity extraction procedure [76]. The singular part of the integrand function is

subtracted from the integral and added separately, as shown in the following equation:

−
∫

Ω

G(ω′)

ω − ω′
dω′ =

∫
ω

[G(ω′)−G(ω)]
dω′

ω − ω′
+G(ω)−

∫
Ω

dω′

ω − ω′

=

∫
Ω

[G(ω′)−G(ω)]

ω − ω′
dω′ +G(ω)ln

∣∣∣ωmax + ω

ωmax − ω

∣∣∣ (4.10)

The first term in equation (4.10) still contains the singularity. If we assume that the

function φ(ω′, ω) is of class C1 for fixed ω and variable ω′, where

φ(ω′, ω) =
G(ω′)−G(ω)

ω − ω′
(4.11)

we can write φ(ω, ω) = G′(ω), and the integral has no difficulties associated with it [77–80].

For evaluating the first derivative, we have used the center difference formula to determine

G′(ω). Alternatively, we can use Taylor series expansion to evaluate the derivative more

accurately, but in our case we have adopted the center difference formula for simplicity.

Since the center difference formula requires two neighboring sample values to determine the

derivative, we were not able to reconstruct exactly at the edge of the spectrum. Instead, we

continued the reconstruction operation till the point immediately before last the available

sample.

As stated before, the last part of equation (4.8) accounts for the contribution of the

Lagrange interpolation polynomial beyond the available bandwidth. Since the Lagrange
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polynomial is known analytically, the quantity that accounts for the last integral (which we

denote as Cn(jω) can be evaluated by the following equation:

Cn(jω) =
n∑
q=1

H(jω̄q)

jπ
[L(ω)− L(ω̄q)]

n∏
p=1
p6=q

ω − ω̄p
ω̄q − ω̄p

(4.12)

Therefore, the total reconstruction operation can be taken as the sum of three individual

components: the Lagrange interpolation term, numerical integral term and the Cn(jω) term,

that can be summarized as follows:

Ĥn(jω) = LH(jω) + In(jω) + Cn(jω) (4.13)

Where In(jω) refers to the numerical integration of samples within the available band-

width.

4.5 Error Thresholds

Because of the numerical approximations and band-limited, truncated nature of the data,

the reconstruction will not match the original. However, the reconstruction operation should

be contained within a definite threshold value which is well defined in literature if the orig-

inal response is causal. The total error consists of two main parts: truncation error and

discretization error. We can determine accurate formulation for both the error terms.

4.5.1 Truncation Error

A rigorous upper limit of the truncation error made the reduction of truncation error pos-

sible. The truncation error term depends on the number of subtraction points used for the

reconstruction operation. It also depends on the location of the subtraction points. If we

obtain Chebyshev distribution and span the entire bandwidth of the frequency spectrum, we

obtain our desired truncation error bound. The formulation is given in equation (4.4). Since



56

the equation is independent of frequency response, it can be determined solely based on the

locations of the subtraction points and frequency spectrum spanned for the reconstruction.

4.5.2 Discretization Error

The discretization error arises from the numerical evaluation of the integral in equation

(4.8). The discretization error may be very large if no special care is taken in handling

the singular kernel of the Hilbert transform. A detailed procedure for handling the singular

integral was described in section 4.4. For estimating the discretization error introduced by

numerical integration, we can choose between two different strategies, depending on the

application. We have opted the method which involves taking the difference of result in two

different methods of numerical integration (namely, Simpson’s rule and Trapezoidal rule).

Mathematically we can express the error as:

D̃n(ω) =
∣∣∣H̃ν1

n (jω)− H̃ν2
n (jω)

∣∣∣ ' |Dn(jω)| (4.14)

Here, we assume ν1 < ν2, which are the order of the quadrature routine. For our analysis,

we have selected the Simpson’s rule as the higher order numerical integration technique and

Trapezoidal rule as the lower order integration technique. We further assume that the higher

order quadrature rule provides a much better result, which can be used as the reference for

the error estimate.

4.6 Numerical Simulation and Discussion

In this section, we present the numerical simulations and experiments with this technique.

We have performed causality verification and enforcement both on analytic transfer functions

and sampled S-parameter data. We have tested different specification parameters and found

the optimal values of these parameters for successful implementation of the algorithm.



57

4.6.1 Analytic Example

We construct a fictitious transfer function in rational form to identify causality easily and do

the test on the sampled version of this function. Let the analytic function be Hc(jω) which

is described as:

Hc(jω) =
−20 + 180j

jω − (−1200 + 15000j)
+

−20− 180j

jω − (−1200− 15000j)
+

60 + 450j

jω − (−3000 + 35000j)

+
(60− 450j

jω − (−3000− 35000j)
(4.15)

The transfer function is sampled in the range ω = [−50000, 50000]rad/s with 100 sampled

points. Then the transfer function is normalized by dividing it with the maximum absolute

value of Hc(jω) too keep consistency with the error thresholds as S-parameters. The real and

imaginary parts of the transfer function is depicted in figure 4.2. Since real part of all the

poles of Hc(jω) are negative, the system should be causal. If we perform the reconstruction

operation on this system, the reconstructed real and imaginary parts should be limited to

the error threshold value specified in the previous section. This result is shown in figure 4.3,

4.4. For performing these reconstructions, we chose ε = 10−4 and the number of subtraction

points, n = 12.
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Figure 4.2: Real and Imaginary part of the input transfer function
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Figure 4.3: Reconstructed Real part of the input transfer function. Since the reconstructed
output stays within the threshold, the system is causal
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Figure 4.4: Reconstructed Imaginary part of the input transfer function. Since the recon-
structed output stays within the threshold, the system is causal
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To check whether this method could detect violation, we introduce Gaussian perturbation

to the transfer function of the following form:

P (jω) = A exp

{
−
(
ω − ω0

2πB

)2
}

(4.16)

For our simulation, we set A = 0.05, which is a fairly small amplitude for perturbation.

The Gaussian is centered at the lower frequency region and the value of B is 0.064. The

perturbation adds an uncorrelated component to the real part of Hcjω. Therefore, the real

and imaginary part no longer follows the dispersion relations. We can see the result is figure

4.5. Since the real part was perturbed, the reconstructed imaginary violated the causality

condition. If we consider the reconstructed real part as the causality enforced response, then

the effect of the Gaussian perturbation is removed. These effects are depicted in figure 4.5

and 4.6. In figure 4.5, the deviation in the real part of the transfer function can be seen

clearly. In figure 4.6, the reconstruction based on the imaginary part corrects the deviation

due to the perturbation, thus causality enforcement has been achieved.
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Figure 4.5: Real and Imaginary part of the input transfer function, with Gaussian pertur-
bation
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Figure 4.6: Reconstructed Real part of the input transfer function. Since the reconstructed
output goes beyond the threshold, the system is non-causal
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Now we perform the test on S-parameters (courtesy of Micron Technology). We ran the

causality test on a 6 port S-parameter with samples available from 1Hz to 10GHz, with 3

samples per decade. On our test, we set ε = 10−4 and number of subtraction points n = 12.

In this configuration, we performed our test on the S11 response of the S-parameter. The

test results are shown in figure 4.7, 4.8.
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Figure 4.7: Reconstructed Real part of the input transfer function (in log scale). Since the
reconstructed output does not go beyond the threshold, the system is causal
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Figure 4.8: Reconstructed imaginary part of the input transfer function (in log scale). Since
the reconstructed output does not go beyond the threshold, the system is causal
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As before, if we introduce causality violation into the sampled S-parameter, the recon-

structed output goes beyond the threshold value. However, depending on which part of

the reconstruction violates causality, we can enforce by replacing the original input with

the reconstructed output, as shown in previous example. In this case also, we add similar

perturbation for manually injecting causality violation. The reconstructed outputs are given

in figure 4.9 and figure 4.10.

These tests show the validity and the advantage of causality detection and enforcement for

high-speed interconnect models. Although, we need to carefully choose different parameters

to run the test smoothly and accurately. Proper use of the variables can ensure useful

application of this technique in large scale.
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Figure 4.9: Reconstructed Real part of the input transfer function (in log scale) with the
perturbation. The reconstructed output can be used as the causality enforced response



69

100 101 102 103 104 105 106 107 108 109 1010 1011

Frequency, ω rad/s

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Im
{
S

(1
,1

)(
jω

)}

Original
Reconstructed
Threshold

Figure 4.10: Reconstructed imaginary part of the input transfer function (in log scale) which
shows causality violation.
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4.7 Summary

In this chapter, we discuss and analyze the frequency-domain causality verification and en-

forcement techniques based on the Generalized Hilbert Transform with subtractions. The

method is fairly complicated and difficult to implement. Moreover, the detection threshold is

largely dependent on the number and location of the subtraction points. Increasing number

of subtraction points makes the threshold value become too narrow, which may report false-

positive outcome. On the other hand, as the bandwidth spanned by subtraction points go

closer to the actual bandwidth, the threshold becomes wider, which may declare all systems

as causal. Therefore, the parameters have to be carefully chosen. Additionally, the computa-

tion time for running the test increases exponentially with number of frequency samples. For

larger systems with dense frequency samples, the use of this technique becomes impractical.

In the following chapter, we introduce a method which is much simpler and faster compared

to this technique, and is able to detect causality violation with good precision.
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CHAPTER 5

Causality Verification and Enforcement of Signal Power Integrity

Models by Filtered Hilbert Transform on Extrapolated Systems

In this chapter, we propose a method for checking causality in frequency-domain by

applying direct Hilbert Transform on the system; however, using direct Hilbert Transform on

sampled transfer functions may result in significant detection errors. To address these issues,

we develop a frequency-domain method based on Hilbert Transform that apply a minimum

phase filter on extrapolated data beyond maximum sampled frequency. We demonstrate that

a minimum phase low-pass filter with suitable parameters reduces the error and provides a

definite threshold which may be used to accurately determine the causality of the system

under consideration. Also, we demonstrate two ways to enforce causality using this technique,

and provide several examples that highlight the strengths and weaknesses of the proposed

method.

5.1 Introduction

In this chapter, we propose a technique that overcomes the issues associated with both

time-domain [50] and frequency-domain method [41] discussed above. We take a a minimum-

phase low-pass filter and set the cutoff frequency to the maximum available frequency that

has a sampled value (ωmax), so that no valuable frequency response is attenuated. We also

extrapolate the sampled frequency response to a certain extent so that after applying the

filter, the response becomes asymptotically decaying in nature. On the filtered response, we

apply direct Hilbert Transform to compare: a) the real part of the sampled response with the

reconstructed real part (Hilbert Transform of the imaginary part); b) the imaginary part of

the sampled response with the reconstructed imaginary part (Hilbert Transform of the real

part). Since we are using finite number of samples to apply the Hilbert Transformation, an



72

error will be introduced. We analytically find an expression for determining the error, which

acts as the detection threshold for verifying causality. The technique is tested with different

filter configurations (filter order and pass-band ripple) and we declare an appropriate range

for the method to be effective. Numerical examples are shown both for causal and non-causal

frequency responses. The main contributions of this work can be summarized as:

a) We propose that the cutoff frequency of the filter to be equal to the maximum fre-

quency, which removes the sensitivity of the filter cutoff frequency. Also, the analysis is

done in frequency-domain, so no error is introduced for frequency-domain to time-domain

conversion.

b) In this work, we use direct Hilbert Transform instead of the dispersion relation with

subtractions [41]. As a result, the dependency on the location of the subtraction points are

removed. Also, the proposed technique is much faster and simpler to implement.

c) We derive an analytic expression for estimating error that arises from performing direct

Hilbert Transform, which to the best of our knowledge has not been developed before. We

demonstrate the effectiveness of this threshold value in the numerical examples.

The chapter is organized into several sections to describe the method. Section 5.2 de-

scribes the methodology for Hilbert transform and its utility in detecting causality violations.

In Section 5.3, we introduce a minimum-phase low-pass filter for improved results. Section

5.4 shows the utility of extrapolating the data and then applying the filter. Here, we deter-

mine the error bound for detecting causality violations. Section 5.5 shows few more analysis

and examples related to the technique. In the following section (section 5.6), we discuss the

effect of different filter parameters and their effect on the causality test. In section 5.7 we

discuss how the proposed technique can be used to enforce causality on non-causal system.

We have a concluding discussion and probable future prospects of this technique in section

5.8.
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5.2 Dispersion Relations and the Hilbert Transform

The close relationship of causality and dispersion relations has been discussed previously in

chapter 2. In this chapter, we primarily focus on the effect of applying the K-K relation

directly on sampled frequency-domain data. For causal systems, the dispersion relations

should be validated. One way of checking the causality of the system under consideration is

to validate the dispersion relations on them.

Reference [17] addressed the Hilbert transformation as a means of verifying causality of

measured continuous-wave data. In this paper, a numerical formulation of the Hilbert trans-

formation is demonstrated with several examples. Assuming spectral symmetry, Re{H(ω)}

= U(ω) is an even function of ω and Im{H(ω)} = V (ω) is an odd function of ω. As a

consequence of these relations, if only one part of the transform is known, the other may

be determined. However, these relations only hold for square-integrable functions as they

asymptotically decay to zero as frequency increases, which may not occur for general S-

parameters. To show the kind of error that arises from direct Hilbert transform of sampled

functions, we take a fictitious system Hc(ω) of the following form:

H(s) =
N∑
n=1

( cn
s− pn

+
c∗n

s− p∗n

)
(5.1)

Where, the Laplace variable s = σ+ ω; for our analysis we assume that the real part of the

frequency parameter σ = 0 and ω is the angular frequency in the units of rad/sec. cn, c∗n

refers to the complex conjugate pair of residues and pn, p∗n refers to the complex conjugate

pairs of poles. N refers to the total number of pairs; in our example we have N = 3. The

three pairs of causal complex conjugate sets of poles and residues listed in Table 5.1:

By observing the poles of the system, we can confirm that the system is causal. Now, we

take sample values of H(s) upto ωmax = 8000 rad/s with 1000 equidistant frequency points

to obtain the frequency response Hs and normalize the function to obtain a causal sampled

version of H(s). The reason for normalizing will be apparent in the following discussion
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Table 5.1: Poles and residues for realizing the causal system H(s)
n cn pn

1 −20± 180 −120± 1500

2 −10± 160 −140± 2000

3 60± 450 −300± 6500

about error estimation. Then, using the spectral symmetry described in equation (5.2), we

obtain the double sided frequency response Hds that is defined in the range [−ωmax, ωmax].

After normalizing Hds with respect to its absolute value, we finally obtain Hc(ω) that is

ready for Hilbert transform:

Hs(ω)
extend−−−→ Hds(ω)

normalize−−−−−−→ Hc(ω)

After obtaining the normalized sampled causal function, we perform the Hilbert trans-

form using equations (2.1a)-(2.1b). There are numerous methods of performing numerical

evaluation of the Hilbert Transform in literature [81,82]. As expected, the Hilbert transform

of the real part of Hc(ω) does not match with the imaginary part of the same transfer

function. This result is shown in Figure 5.1.

Similarly, the Hilbert transform of the imaginary part of Hc(ω) does not match with the

real part, which is depicted in Fig. 5.2. We see a violation of the K-K relation even when

the transfer function is clearly causal.
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Figure 5.1: Comparison of imaginary part of Hc(ω) and the Hilbert Transform of the real
part of Hc(ω). Although the function is causal, reconstructed imaginary does not match
with the original.
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Figure 5.2: Comparison of real part of Hc(ω) and the Hilbert Transform of the imaginary
part of Hc(ω). Although the function is causal, reconstructed real does not match with the
original.
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Although, from the figure we can visualize that the reconstructed output follows the

variations and trends of the original response. The mismatch occurs because of the finitely

truncated signal at ωmax. But there is no quantitative measure of how much error can we

expect from the direct Hilbert transform of such a band-limited signal. Since we know that

the K-K relations are valid for square-integrable functions, for the functions that does not

decay as ω →∞, direct Hilbert transform produces large error. In the following section, we

discuss a possible way of reducing the error of this nature.

5.3 The Low-pass Filter Approach

5.3.1 Minimum Phase Filter

Previously, in reference [50], a theorem is provided that stated that applying a minimum-

phase filter preserves the causality characteristic of the original signal. The method described

in [50] uses a low-pass filter on the sampled response and performs inverse Fourier Transform

to find the impulse response in time-domain. However, performing inverse Fourier Transform

on a finite sequence introduces error. Additionally, the technique is heavily dictated by the

filter parameters, which are described in details in reference [53]. Another ambiguity of this

method is that, there is no definite limit on how much in negative time the impulse response

should be determined.

In order to alleviate the ambiguity with the negative time, we decided to stay in the

frequency-domain for the causality test. The most dominant filter parameter is the cutoff

frequency of the filter, hence we have fixed the cutoff frequency equal to the maximum

available sample frequency (ωcutoff = ωmax). Therefore, the sensitivity due to the variation

of cutoff frequency goes away.

Therefore, our approach is to apply a minimum-phase low-pass filter on the transfer

function. The filter will tend to drive the signal into a decaying nature after the cutoff

frequency. According to the theorem described in [50], the filtered version will still retain
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the causality characteristic of the original signal. To demonstrate the effectiveness of applying

a filter, we apply a low-pass Chebyshev type-I filter with order, nn = 3 and pass-band ripple

rp = 3 dB on Hc(ω) and then perform Hilbert Transform on the real and imaginary part

of the signal. The results are shown in Fig 5.3 and 5.4. The filter operation can be shown

as follows:

Hcf (ω) = Hc(ω)F (ω) (5.2)

Here, Hcf is the filtered transfer function and F (ω) is the frequency response of the low-pass

filter.
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Figure 5.3: Comparison of imaginary part of Hcf(ω) and the Hilbert Transform of the real
part of Hcf(ω). The reconstruction error is much less than Fig. 5.2, but still significant
close to ωmax). Here, nn = 3 and rp = 3 dB.
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Figure 5.4: Comparison of imaginary part of Hc(ω) and the Hilbert Transform of the
imaginary part of Hc(ω). Here, nn = 3 and rp = 3 dB.
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5.3.2 Error Estimation

The use of a low-pass filter allows us to estimate the truncation error accurately. Since we

are normalizing the system before applying the filter, the individual real or imaginary part

of the signal is restricted between [-1,1]. The following analysis helps us to determine the

maximum error bound that may occur upon using the Hilbert Transform. Let us assume

that:

Hc(ω) = U(ω) + V (ω)

F (ω) = Fr(ω) + Fi(ω)

Here, V (ω) and V (ω) are the real and imaginary parts of the input system Hc(ω), respec-

tively. Similarly, Fr(ω) and Fi(ω) are the real and imaginary parts of the minimum phase

filter F (ω). From equation (5.2), we can determine the filtered response Hcf (ω) as:

Hcf (ω) = Hc(ω)F (ω)

= (U(ω) + V (ω))(Fr(ω) + Fi(ω))

= Fr(ω)U(ω)− Fi(ω)V (ω)

+ (Fr(ω)V (ω) + Fi(ω)U(ω))

(5.4)

Now, we consider the original Hilbert Transform as provided in equation (2.1a), with the

imaginary part of Hcf (ω) as input, we can obtain the reconstructed filtered real part Uf (ω)

as follows:
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Uf (ω) = HT{Im{Hcf (ω)}}

=
1

π
−
∫
Im{Hcf (ω

′)} dω′

ω − ω′

=
1

π
−
∫ ωmax

−ωmax

Im{Hcf (ω
′)} dω′

ω − ω′︸ ︷︷ ︸
rF (ω)

+
1

π
−
∫
|ω′|>ωmax

Im{Hcf (ω
′)} dω′

ω − ω′︸ ︷︷ ︸
eF (ω)

(5.5)

Here, rF (ω) refers to the reconstructed real part that is calculated by applying equation

(2.1a) numerically. The term eF (ω) refers to the associated error after applying the filter,

which accounts for the frequencies beyond ωmax). We can further simplify the expression of

the absolute error associated with the filtering as follows:

eF (ω) =
1

π
−
∫
|ω′|>ωmax

Fr(ω)V (ω) + Fi(ω)U(ω)

(ω − ω′)
dω′

We have already normalized Hc(ω), therefore U(ω) and V (ω) can not exceed 1. At the

worst case, we can assume U(ω) and V (ω) equal to 1 when |ω′| > ωmax. We also notice that

the real part of the filter is even symmetric and imaginary part of the filter is odd symmetric.

Therefore, the integral reduces to:

eF (ω) =
2

π

∫ ∞
ωmax

Fr(ω
′)

ω − ω′
dω′ (5.6)

Throughout our analysis, we use the above derived expression of maximum error bound

for causality detection using direct Hilbert Transform. If the reconstructed output stays

within the original value added with the error threshold, the system can be regarded as

causal. If the reconstructed output goes beyond the threshold at any point, then we can

decide that the real and imaginary part of the system is not related by the K-K relations,

therefore the sample has causality violation.

However, in figure 5.3 and 5.4, although the input is causal, the reconstructed output
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has significant mismatch at the extreme end of the spectrum, where it should be within

the maximum error limit defined by the error threshold. The reason for this mismatch

is the abrupt truncation at the end of the spectrum. For the direct Hilbert Transform

to converge, the data needs to be asymptotically decay, which is not guaranteed when we

abruptly truncate the samples at ωmax. In the following section, we try to provide a possible

solution for this issue.

5.4 Numerical Extrapolation

One way to ensure that the system goes into decaying nature is to apply a low-pass filter. But

applying a low-pass filter raises the probability of losing valuable information of the signal at

high frequency. Primarily for this reason, we have selected the cutoff frequency of the filter

being used to be at the maximum frequency. However, the abrupt truncation causes the

Hilbert Transformation to diverge at the high frequency end. One possible solution would

be to extrapolate the original data to some extent and then applying the filter. This ensures

the preservation of information up to ωmax and only the extrapolated data will be attenuated

by the filter. In this section we discuss two possible extrapolation techniques that can be

used.

5.4.1 Linear Extrapolation

For our first approach, we use simple linear extrapolation technique on the original sampled

response to get the result. We have used the same filter to conduct this test. The data was

extrapolated up to 50% of the original data, therefore the last sample point of the new data

would be ωex = 1.5×ωmax. Applying the filter and then taking the Hilbert Transform yields

the results depicted in the following figures.

We can observe from these plots that for the causal case, the reconstructed response stays

within the error threshold, therefore detecting a causal system appropriately.
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Figure 5.5: Comparison of imaginary part of Hcf(ω) and the Hilbert Transform of the
real part of Hcf (ω) using Linear extrapolation. The reconstruction error in the vicinity of
ωmax is removed. Filter parameters: nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s,
ωex = 12000 rad/s
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Figure 5.6: Comparison of imaginary part of Hcf(ω) and the Hilbert Transform of the
real part of Hcf (ω) using Linear extrapolation. Here, nn = 3 and rp = 3 dB and ωmax =
8000 rad/s, ωex = 12000 rad/s.
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5.4.2 Three Point Extrapolation

We have implemented another technique for extrapolating the original system, which is

referred to as Three point frequency-domain extrapolation. An elaborate approach to obtain

high frequency extrapolated data could be a rational polynomial to curve-fit the tabulated

data [83], which implicitly extrapolates the data beyond the original range. We use the

algorithm provided in reference [83] to fit the last three points of the available frequency

response to obtain a rational function with complex conjugate pair of poles and residues.

Details about the formulation of the fitted response can be found in reference [84]. The

fitted polynomial is attached to the original response beyond the maximum frequency (ωmax)

and up to the extrapolated frequency (ωex). Using the updated frequency response, the

reconstruction operation is again performed to verify causality. The filter parameters are

kept the same as before. The results are shown in Fig. 5.7, 5.8.
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Figure 5.7: Comparison of imaginary part of Hcf(ω) and the Hilbert Transform of the real
part of Hcf (ω) using Three-point extrapolation. The reconstruction error in the vicinity
of ωmax is removed. Filter parameters: nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s,
ωex = 12000 rad/s
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Figure 5.8: Comparison of imaginary part of Hcf(ω) and the Hilbert Transform of the
real part of Hcf (ω) using Three-point extrapolation. Here, nn = 3 and rp = 3 dB and
ωmax = 8000 rad/s, ωex = 12000 rad/s.
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From these figures, it is evident that this extrapolation technique improves the causality

detection from detection without using extrapolation.

5.5 Detecting Causality Violation

So far, we have shown the validity of our proposed technique for causal examples and it ap-

pears that when using a low-pass filter and extrapolation, the above described technique

detects causal responses correctly. For our next analysis, we take a pair of non-causal

pole/residue to show whether the method can detect causality violations. For this purpose,

we make modification to the existing system by adding the non-causal part as follows:

Hx(ω) = (
−30 + 150

ω − (−170 + 2500)

+
−30− 150

ω − (−170− 2500)
)× 0.1e0.03ω

(5.7)

Because of the presence of the exponential anticipatory term e0.03ω, which in time-domain

accounts for a negative delay, Hx(ω) becomes non-causal, although the amplitude of the

non-causal poles and residues are multiplied by a factor of 0.1. When added with Hc(ω),

the result becomes non-causal as well:

Hnc(ω) = Hc(ω) +Hx(ω) (5.8)

If we apply the same 3rd order filter with cutoff frequency at ωmax = 8000 rad/s and

extrapolate up to ωex = 12000 rad/s, we obtain the results depicted in the following figures.

These results show that the non-causality can be detected based on the technique pro-

posed in this work. From the examples we clearly observe that it reports violation only

where we added the non-causal pole, which provides effectiveness of this technique.
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Figure 5.9: Comparison of imaginary part of Hncf (ω) and the Hilbert Transform of the real
part of Hncf (ω) using linear extrapolation. The reconstruction goes beyond the threshold
around 2500 rad/s, where the non-causal pole location is located. It is more clearly visible
in the zoomed box. Filter parameters: nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s,
ωex = 12000 rad/s
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Figure 5.10: Comparison of real part of Hncf (ω) and the Hilbert Transform of the imaginary
part of Hncf (ω) using linear extrapolation. The reconstruction goes beyond the threshold
around 2500 rad/s, where the non-causal pole location is located. It is more clearly visible
in the zoomed box. Filter parameters: nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s,
ωex = 12000 rad/s.
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5.6 Effect of Filter Parameters

One of the major contribution of this work is reducing the sensitivity of filter parameters.

Since we have set the cutoff frequency at the maximum available frequency, the sensitivity

due to different cutoff frequencies are removed [53]. However, there are still two important

filter parameters that may drive the test over-sensitive: filter order and pass-band ripple. In

our experiments, we have seen that by increasing the filter order, the roll-off becomes steeper

making the error threshold narrower, which may declare a causal system as non-causal. Such

a case is illustrated in Fig. 5.11, where we used a 6th order type-I Chebyshev low-pass filter

with 6 dB ripple. The threshold becomes very narrow which may produce false positive

results. Although the response Hfc(ω) is causal, the reconstructed imaginary part goes

beyond the threshold value at several points.

On the other hand, if filter order and ripple is reduced to a very low level, the roll-off

gets much slower causing the threshold value to become very large. This way, small causality

violations could be impossible to detect, as shown in Fig. 5.12, where a 2nd order type-I

Chebyshev low-pass filter with 3 dB ripple is used on the non-causal response Hfnc(ω). It

is clearly visible that the threshold value becomes too large to detect the violation in the

input.

Therefore, we have to select a suitable filter order and ripple in order to make the tech-

nique work accurately. Upon our experiments, we have selected filter order nn = 3 and

rp = 3 dB, which was able to generate consistent results. For all other simulations and

plots, this configuration of the filter was used.

5.7 Causality Enforcement

We have demonstrated that we can use our Filtered Hilbert Transform technique to detect

causality violation. An important task after detecting violation would be to enforce causality

on the original sample, which ensures that the modified system response will be causal. We
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Figure 5.11: Hilbert Transform performed on real part of Hfc(ω) with filter parameters:
nn = 6 and rp = 6 dB. Here linear extrapolation is used with ωmax = 8000 rad/s, ωex =
12000 rad/s.



94

0 2e3 4e3 6e3 8e3 10e3 12e3
ω (rad/s)

1.0

0.5

0.0

0.5

1.0

v
a
lu

e

Re{Hfnc}
HT{Im{Hfnc}}
Threshold

Figure 5.12: Hilbert Transform performed on real part of Hfnc(ω) with filter parameters:
nn = 2 and rp = 3 dB. Here linear extrapolation is used with ωmax = 8000 rad/s, ωex =
12000 rad/s.
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propose two techniques on enforcing causality on frequency responses if there is causality

violation found, which are:

Option A) Perform Hilbert Transform on the real part and Enforce causality by replacing

the imaginary part with the reconstructed imaginary part (illustrated in Fig. 5.13 and 5.14)

Option B) Perform Hilbert Transform on the imaginary part and Enforce causality by

replacing the real part with the reconstructed real part (illustrated in Fig. 5.15 and 5.16)
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Figure 5.13: Enforcing causality by Option A using Linear Extrapolation. That imagi-
nary part is again used for generating the real part, which is shown here and we observe
a full match. Filter parameters: nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s,
ωex = 12000 rad/s.
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Figure 5.14: Enforcing causality by Option A using Thre-point Extrapolation. That imag-
inary part is again used for generating the real part, which is shown here and we observe
a full match. Filter parameters: nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s,
ωex = 12000 rad/s.
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Figure 5.15: Enforcing causality by Option B using Linear Extrapolation. Here, the recon-
struction does not fully match, but stays within the threshold limit. Filter parameters: nn
= 3 and rp = 3 dB. Here, ωmax = 8000 rad/s, ωex = 12000 rad/s.
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Figure 5.16: Enforcing causality by Option B using Thre-point Extrapolation. Here, the
reconstruction does not fully match, but stays within the threshold limit. Filter parameters:
nn = 3 and rp = 3 dB. Here, ωmax = 8000 rad/s, ωex = 12000 rad/s.
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Both the options generate a modified system that is causal according to the methodology

described in our paper so far. However, our experiments show that if we follow option A,

the reconstructed imaginary part matches perfectly with the original real part. Since we are

replacing either the original real or imaginary part of the non-causal response, an amount or

error will be introduced. The magnitude of the error depends on the amount of non-causality

existing in the system. We can represent the error due to the enforcement graphically for

option A (see Fig. 5.17) and option B (see Fig. 5.18). We can see from the plots that the

error is maximum around ω = 2500 rad/s, which is the location of the non-causal pole.
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Figure 5.17: Absolute error reported from Enforcing causality by Option A (Both linear and
three-point extrapolation. Filter specification are as in Fig. 5.15.
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Figure 5.18: Absolute error reported from Enforcing causality by Option B (Both linear and
three-point extrapolation. Filter specification are as in Fig. 5.16.
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5.8 Summary

In this chapter, we present a novel technique for causality verification and enforcement in the

frequency-domain. Previous works have been shown to be sensitive on certain parameters,

especially in time-domain technique involving inverse Fourier Transform suffers from over-

sensitivity of filter parameters. The proposed technique suffers less from filter parameters, as

the cutoff frequency is set at a fixed point (at the maximum available frequency), which also

prevents valuable data attenuation. Generalized Hilbert transformation using subtraction

points also suffer from the sensitivity of the location of subtraction points, whereas the

proposed technique does not require any subtractions points. The subtraction method is

fairly complicated to implement, whereas our proposed technique is simple and easy to

implement. Moreover, the complexity of operation is significantly reduced in this technique.

Additionally, it provides a useful way to perform causality enforcement as well. However,

the method is still sensitive to filter order and pass-band ripple, which can be considered as

a drawback of this technique. Although for most cases, the configuration that we specified

in this chapter should produce accurate results. Full automation of the filter specification is

a topic for future research.
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CHAPTER 6

Summary and Conclusions

In this thesis, I have addressed an important characteristic for signal/power integrity for

high speed digital circuits. Verification of causality for macro-models is an important task

for ensuring convergent transient simulation. An actual physical system is bound to possess

causality, although several issues may compromise the construction of a successful model

such as error in measurement or numerical simulation inaccuracy.

We have tested several techniques and discussed their advantages/disadvantages in de-

tecting causality violations. Specially, the newly proposed filtering technique has been an-

alyzed in details. The main drawback of this technique is the dependency of the threshold

value on the cutoff frequency of the filter. Additionally, it is not clear how far back in

negative time the impulse response must be checked to conclusively demonstrate causality.

Moreover, the effect of maximum frequency available for sampled data can significantly affect

the detection of non-causality. The fundamental issues associated with this technique has to

be addressed in order to apply this technique effectively.

We have analyzed the frequency-domain causality verification and enforcement techniques

based on the Generalized Hilbert Transform with subtractions thoroughly. For this method,

the detection threshold is largely dependent on the number and location of the subtraction

points. The threshold value is largely dependent on the number and location of subtraction

points. These parameters have to be carefully chosen in order to correctly implement this

work. Due to the complexity of the algorithm, long run time of this method makes it

impractical for large systems.

The newly proposed method, which is the main contribution of this thesis, provides

effective solutions to some of the issues of the existing methods of causality testing. It

has less dependency on filter parameters, and the threshold value is more stable than the

previous methods. The method is simpler and faster compared to the subtraction method,
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which makes it suitable to apply on large systems. The method also provides a way to enforce

causality on non-causal systems with minimum error introduced. Although, the threshold

value may become too narrow or too wide if filter order and ripple are chosen inappropriately.

It is worth noting that, there is still scope for future extension to this work. In this work,

we show that the proposed method is free from the sensitivity that arises from the filter

cutoff frequency. The order and ripple has a strong impact on the threshold value as well.

Although we demonstrate that for most cases, the method is effective for the specified range

of filter parameters. Further research is needed to fully automatize these parameters.

We also explain in details why we use extrapolation for producing accurate results. Other

extrapolation methods can be tested to see which method produces better result in detecting

causality. Upon our investigation, we have identified that when the extrapolated data is

decaying, direct Hilbert Transform converges. One can certainly utilize this property of the

transform to ensure convergence of simulation.
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