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Abstract 

In this thesis, the Finite-Difference Time Domain (FDTD) method is used to implement 

the Schrödinger equation in Python.  This method is used to find the ground eigenstate 

and to simulate an electron within a three-dimensional torus.  The magnetic dipole 

moment operator is developed, both with and without an applied magnetic field, and 

the equations describing a magnetic field applied to the torus are developed using the 

FDTD method.  The magnetic dipole moment operator and implementation of a 

magnetic field are verified using a classical method.  The magnetic dipole moment 

operator is used to calculate the magnetic susceptibility of a grated torus. 
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Chapter 1: Introduction 

Nonlinear optics (NLO) studies the nonlinear response of a material to the strength of 

an optical field, such as the strength of the electric field [1].  The nonlinear response 

may be quadratic, cubic, or higher order [2].   Nonlinear properties can lead to many 

different phenomena such as a change of the refractive index as in the Kerr effect, or in 

a change of frequency as in second harmonic generation.   

 

Materials with nonlinear properties are used in many ways.  Applications include 

optical switching [1], lasers, photovoltaic cells [3], imaging [3], and cancer therapy [4], 

[5].  To improve applications, it is important to establish good methods and models to 

explore the optimization of nonlinear effects by increasing the nonlinear response.  This 

work provides a way of calculating the nonlinear response of nanostructures.  This 

helps in designing new systems without the need for doing difficult and time-

consuming measurements. 

 

The Finite-Difference Time Domain (FDTD) method offers a method of directly 

implementing the Schrödinger equation in a three-dimensional structure.  This method 

has been described for use in quantum mechanical simulation to find eigenfunctions of 

arbitrarily shaped structures [6].  The hyperpolarizability of a nanostructure near an 

electric dipole has also been investigated [7].  This work develops the FDTD method to 

calculate the magnetic dipole moment in a torus structure with a time-varying magnetic 

field.  This allows the magnetic susceptibilities to be found and will allow a way to 

simulate and optimize structures to enhance the nonlinear properties in the presence of 

a magnetic field. 

 

This work implements the FDTD simulation in Python.  Python is a widely-used free 

open source programming language that focuses on clean, high-level, readable syntax.  



2 
 

Python has been widely adopted for use in scientific computing and visualization due to 

extensive libraries such as SciPy, Matplotlib, NumPy, Seaborn, and Jupyter Notebook.  

Python additionally has easy interoperability with other languages such as C and 

Fortran.  The Numba library takes advantage of this, automatically compiling and 

optimizing time-consuming Python functions into machine code with similar 

performance to low level languages such as C, C++, or Fortran. 

 

Research Goals 

1.  Implement the FDTD method in Python 

2. Simulate and verify the behavior of the ground eigenstate of a three-dimensional 

torus 

3. Find the magnetic dipole moment operator, implement it in the FDTD simulation 

and verify its accuracy 

4. Implement an applied magnetic field in the FDTD method, find the magnetic 

dipole operator used with a magnetic field, and verify its accuracy 

5. Calculate the magnetic susceptibility of a structure at a given frequency 
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Chapter 2: FDTD Method 

The FDTD method has been developed for use in quantum mechanics, and this chapter 

draws heavily from Sullivan [8], [9].  The FDTD method is used in this work to 

implement the Schrödinger equation.  The first section describes the general 

implementation in simulations for three-dimensional problems.  The second section 

describes how it is used to find eigenenergies and eigenstates. 

 

Schrödinger Equation Implementation 

The time dependent Schrödinger equation is  

 𝑖ℏ
𝜕𝛹(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= [−

ℏ2

2𝑚𝑒
𝛻2 + 𝑉(𝑥, 𝑦, 𝑧)]𝛹(𝑥, 𝑦, 𝑧, 𝑡), (1) 

where ℏ is Planck’s constant (1.055×10−34 J ⋅ s), 𝛹 is the state variable and is a function 

of space and time, 𝑚𝑒  is the mass of an electron (9.1×10−31 kg), and 𝑉(𝑥, 𝑦, 𝑧) is the 

potential in V as a function of space.  Eq. (1) can be rearranged to obtain  

 
𝜕𝛹(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= [𝑖

ℏ

2𝑚𝑒
𝛻2 −

𝑖

ℏ
𝑉(𝑥, 𝑦, 𝑧)]𝛹(𝑥, 𝑦, 𝑧, 𝑡). (2) 

From [9], 𝛹 contains both a real and an imaginary component, 

 𝛹(𝑥, 𝑦, 𝑧, 𝑡) = 𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡) + 𝑖 ⋅ 𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡). (3) 

This separation of 𝛹 allows Eq. (2) to be written as a set of equations, 

𝜕𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= [−

ℏ

2𝑚𝑒
𝛻2 +

1

ℏ
𝑉(𝑥, 𝑦, 𝑧)]𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡), (4𝑎) 

𝜕𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= [

ℏ

2𝑚𝑒
𝛻2 −

1

ℏ
𝑉(𝑥, 𝑦, 𝑧)]𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡), (4𝑏) 

eliminating imaginary components [9].  This creates two equations which can be 

evaluated sequentially. 
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Eq. (4𝑎) and (4𝑏) can be expanded and rearranged to  

 
𝜕𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
=

1

ℏ
𝑉(𝑥, 𝑦, 𝑧)𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡)                                                      

−
ℏ

2𝑚𝑒
(
𝜕2𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2
+

𝜕2𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
+

𝜕2𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2
)

, (5𝑎) 

 
𝜕𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= −

1

ℏ
𝑉(𝑥, 𝑦, 𝑧)𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡)                                                

+
ℏ

2𝑚𝑒
(
𝜕2𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2
+

𝜕2𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
+

𝜕2𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2
)

. (5𝑏) 

Time will be discrete with a step size of 𝛥𝑡.  A derivative may be approximated by  

 
𝜕𝛹(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
≅

𝛹(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ (𝑛 + 1)) − 𝛹(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ (𝑛))

𝛥𝑡
. (6) 

The time step is indicated by 𝑛. 

 

Physical space can be represented by a three-dimensional array, with each element, or 

cell, representing a discrete portion of space.  Each cell will be given an index of 𝑖, 𝑗, and 

𝑘 for the x, y, and z directions, respectively.  Each cell has a length, width, and height of 

𝛥𝑥, 𝛥𝑦, and 𝛥𝑧.  From [9], the second derivative in space for 𝛹𝑟𝑒𝑎𝑙 may be approximated 

by   

 
𝜕2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡)

𝜕𝑥2
+

𝜕2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡)

𝜕𝑦2
+

𝜕2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡)

𝜕𝑧2
                                                

≅
𝛹𝑟𝑒𝑎𝑙(𝑖 + 1, 𝑗, 𝑘, 𝑡) − 2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖 − 1, 𝑗, 𝑘, 𝑡)

(𝛥𝑥)2

+
𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗 + 1, 𝑘, 𝑡) − 2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗 − 1, 𝑘, 𝑡)

(𝛥𝑦)2

+
𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘 + 1, 𝑡) − 2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘 − 1, 𝑡)

(𝛥𝑧)2

. (7) 

𝑖 + 1 and 𝑖 − 1 refer to the adjacent cells along the x-axis, 𝑗 + 1 and 𝑗 − 1 refer to 

adjacent cells along the y-axis, and 𝑘 + 1 and 𝑘 − 1 refer to adjacent cells along the z-

axis for a cell with indices 𝑖, 𝑗, and 𝑘.  A similar equation can be created for 𝛹𝑖𝑚𝑎𝑔. 
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For simplicity, 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧 will be identical within this work and be called 𝛥𝑥.  Eq.  

(7) can then be approximated as 

 
𝜕2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡)

𝜕𝑥2
+

𝜕2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡)

𝜕𝑦2
+

𝜕2𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡)

𝜕𝑧2
                                             

≅
1

(𝛥𝑥)2
[

−6𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖 + 1, 𝑗, 𝑘, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖 − 1, 𝑗, 𝑘, 𝑡)

                                  + 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗 + 1, 𝑘, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗 − 1, 𝑘, 𝑡)

                                  + 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘 + 1, 𝑡) + 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗, 𝑘 − 1, 𝑡)
]

. (8) 

Eq. (6) and (8) can be used with Eq. (5𝑎) and (5𝑏) to create a pair of coupled equations:  

 
𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘) − 𝛹𝑟𝑒𝑎𝑙
𝑛 (𝑖, 𝑗, 𝑘)

𝛥𝑡
=    

1

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)                                                

     −
ℏ

2𝑚𝑒(𝛥𝑥)2

[
 
 
 
 −6𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘) + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖 − 1, 𝑗, 𝑘)

                                  + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗 − 1, 𝑘)

                                  + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘 − 1)]
 
 
 
  , (9𝑎) 

  

𝛹𝑖𝑚𝑎𝑔
𝑛+3/2(𝑖, 𝑗, 𝑘) − 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)

𝛥𝑡
= − 

1

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘)                                           

+
ℏ

2𝑚𝑒(𝛥𝑥)2
[

−6𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖 − 1, 𝑗, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗 − 1, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘 − 1)

].            

(9𝑏) 

The 𝑛 representing the time step is now in the superscript.  The 1/2 in the superscript 

indicates a half step offset.  This offset of the real and imaginary parts will allow the 

equations to be run sequentially. 

 

This can be rearranged into  
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 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) = 𝛹𝑟𝑒𝑎𝑙

𝑛 (𝑖, 𝑗, 𝑘) + 
𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)                                             

−
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2

[
 
 
 
 −6𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘) + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖 − 1, 𝑗, 𝑘)

                                 + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗 − 1, 𝑘)

                                 + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘 − 1)]
 
 
 
 , (10𝑎) 

 𝛹𝑖𝑚𝑎𝑔
𝑛+3/2(i, j, k) = 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(i, j, k) − 
𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘)                                            

+
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2
[

−6𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖 − 1, 𝑗, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗 − 1, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘 − 1)

].           
(10𝑏) 

Each time step iteration will run the equation for the new 𝛹𝑟𝑒𝑎𝑙 followed by the 

equation for the new 𝛹𝑖𝑚𝑎𝑔.  This process may be repeated for the desired number of 

time steps.  These equations must be evaluated for each cell in the three-dimensional 

array at each time step.  Eq. (10𝑎) and (10𝑏) are easily programmable. 

 

To ensure stability, the conditions   

 
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2
≤ 0.15, (11𝑎) 

𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘) ≤ 0.15 (11𝑏) 

must be met [9].  Otherwise small values can quickly reach numbers large enough to 

cause memory overflow from stability problems.  For example, if a large potential 

barrier is used, 𝛹 is initially contained in the low potential.  However, Eq. (10𝑎) and 

(10𝑏) will cause the cells in the high potential area, but adjacent to the low potential, to 

have a small value for 𝛹.  If the potential of the barrier is large enough, this value will 

get larger on each successive iteration and eventually cause problems. 
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FDTD Method to Find Eigenenergies and Eigenstates 

The method used to find the eigenenergies and eigenfunctions using the FDTD 

implementation follows the methodology described by Sullivan [9], [10]. 

 

Finding the Eigenenergy 

The most general wavefunction can be expressed as a summation of the eigenstates and 

sinusoids with frequencies corresponding to the eigenenergies, as in  

 𝛹(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑐𝑛

∞

𝑛=1

𝜙𝑛(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑛𝑡. (12) 

The relationship between frequency and energy is 

 𝜖𝑛 = ℎ𝑓𝑛 = ℏ(2𝜋𝑓𝑛) = ℏ𝜔𝑛. (13) 

Propagating a test function with the form given by Eq. (12) can be used to find the 

eignestates.  The main consideration for the shape is whether it contains the desired 

eigenstate.  A narrow test pulse will contain components of many eigenstates, allowing 

each eigenenergy associated with those eigenstates to be found. 

 

If 𝛹 is monitored only at one specific test location, Eq. (12) becomes,  

 𝛹(𝑥0, 𝑦0, 𝑧0, 𝑡) = ∑ 𝑐𝑛

∞

𝑛=1

𝜙𝑛(𝑥0, 𝑦0, 𝑧0)𝑒
−𝑖𝜔𝑛𝑡, (14) 

which is only time dependent.  This will create a one-dimensional array if 𝛹 is recorded 

over time. 

 

Eq. (14) is still a summation of sinusoids, each at a frequency corresponding to an 

eigenenergy.  These frequency-dependent components can be examined without any 
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knowledge of the eigenstates simply by examining the value of 𝛹 at a specific point over 

time.  The 𝛹 over time values are multiplied by a Hanning window of the form of  

 𝐻(𝑡) =
1

2
(1 − 𝑐𝑜𝑠 (

2𝜋 ∙ 𝑡

𝑁
)) , (15) 

where N is the number of iterations.  This is to reduce errors introduced from the 

abrupt start of the simulation. 

 

The frequency components of 𝛹 over time can be extracted using a Fourier transform.  

Since the frequency can be converted to energy using Eq. (13), the Fourier transform 

can be displayed in terms of energy.  This can be used to find the eigenenergies.  The 

“spike" at the lowest energy will be the ground state eigenenergy (if the test pulse 

contained a component of the ground eigenstate). 

 

Finding the Eigenfunction 

The eigenstate can be found with a corresponding known eigenenergy.  The ground 

eigenfunction is of the form: 

 𝜙0(𝑥, 𝑦, 𝑧, 𝑡) = 𝑐0𝜙0(𝑥, 𝑦, 𝑧)𝑒−𝑖
𝜖0
ℏ

𝑡. (16) 

Instead of 𝜔0, the frequency associated with the ground eigenstate, 
𝜖0

ℏ
 is used since the 

ground eigenenergy, 𝜖0, is known. 

 

The function 𝜙0(𝑥, 𝑦, 𝑧) is the ground eigenstate. In order to isolate this from the test 

pulse that was shown in Eq. (12), the following equation is used: 

 ∫ [∑ 𝑐𝑛

𝑁

𝑛=1

𝜙𝑛(𝑥, 𝑦, 𝑧)𝑒−𝑖
𝜖𝑛
ℏ

𝑡]
∞

−∞

𝑒𝑖
𝜖0
ℏ

𝑡𝑑𝑡 = 2𝜋𝑐0𝜙0(𝑥, 𝑦, 𝑧), (17) 
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where only the first 𝑁 are relevant.  This is essentially a Fourier transform to isolate the 

eigenstate corresponding with the applied eigenenergy.  This result can be 

implemented with a computer program by approximating a Fourier transform by using 

a summation over a large number of points.  A longer summation running a larger 

number of iterations will be more accurate.  The summation equivalent is   

 𝜙0(𝑥, 𝑦, 𝑧) = ∫ 𝛹
∞

−∞

(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑖
𝜖0
ℏ

𝑡𝑑𝑡 ≅ ∑ 𝛹

𝑀

𝑚=1

(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑚)𝑒𝑖
𝜖0
ℏ

𝛥𝑡⋅𝑚. (18) 

For simplicity, the 2𝜋𝑐0 is dropped from the left-hand term at this point.  This will be 

accounted for at the end of this section.  Eq. (18) would need to be calculated at every 

iteration, resulting in large computational time.  However, it can be observed that each 

iteration will simply add a new term to the summation.  This way a running total of the 

Fourier transform can be saved, and only one additional term is added per cycle as in 

 𝜙0
𝑀(𝑥, 𝑦, 𝑧) = ∑ 𝛹

𝑀−1

𝑚=1

(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑚)𝑒𝑖
𝜖0
ℏ

𝛥𝑡⋅𝑚 + 𝛹(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑒𝑖
𝜖0
ℏ

𝛥𝑡⋅𝑀

= 𝜙0
𝑀−1(𝑥, 𝑦, 𝑧) + 𝛹(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑒𝑖

𝜖0
ℏ

𝛥𝑡⋅𝑀

. (19) 

The identity  

 𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖 ⋅ 𝑠𝑖𝑛(𝑥) (20) 

can be used with Eq. (19) to create 

 𝜙0
𝑀(𝑥, 𝑦, 𝑧) = 𝜙0

𝑀−1(𝑥, 𝑦, 𝑧)                                                                                                          

+𝛹(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀) [𝑐𝑜𝑠 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀) + 𝑖 ∙ 𝑠𝑖𝑛 (

𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)] . (21)

 

The separation of 𝛹 into real and imaginary parts, as was done in Eq. (3), can be used to 

create a function ready to be implemented in the computer program using:  
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 𝜙𝑟𝑒𝑎𝑙,0
𝑀 (𝑥, 𝑦, 𝑧) = 𝜙𝑟𝑒𝑎𝑙,0

𝑀−1 (𝑥, 𝑦, 𝑧) + 𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑐𝑜𝑠 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

− 𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑠𝑖𝑛 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

, (22𝑎) 

 𝜙𝑖𝑚𝑎𝑔,0
𝑀 (𝑥, 𝑦, 𝑧) = 𝜙𝑖𝑚𝑎𝑔,0

𝑀−1 (𝑥, 𝑦, 𝑧)  + 𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑐𝑜𝑠 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

+ 𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑠𝑖𝑛 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

. (22𝑏) 

Further details regarding this implementation can be found in Sullivan [11].  In a similar 

manner to the way the Hanning window in Eq. (15) was used in the eigenenergy 

calculation, the Hanning window 𝐻(𝑡) is also used to reduce some of the dependency on 

when the simulation ends and removes effects of an abrupt start.  Thus, the simulation’s 

length is defined at the beginning of the simulation.  A simulation cannot simply be run 

for additional time for a more accurate eigenstate once a simulation ends.  The Hanning 

window is applied as in  

 𝜙𝑟𝑒𝑎𝑙,0
𝑀 (𝑥, 𝑦, 𝑧) = 𝜙𝑟𝑒𝑎𝑙,0

𝑀−1 (𝑥, 𝑦, 𝑧)                                                                   

+ 𝐻(𝛥𝑡 ⋅ 𝑀)𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑐𝑜𝑠 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

− 𝐻(𝛥𝑡 ⋅ 𝑀)𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑠𝑖𝑛 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

, (23𝑎) 

 𝜙𝑖𝑚𝑎𝑔,0
𝑀 (𝑥, 𝑦, 𝑧) = 𝜙𝑖𝑚𝑎𝑔,0

𝑀−1 (𝑥, 𝑦, 𝑧)                                                              

+ 𝐻(𝛥𝑡 ⋅ 𝑀)𝛹𝑖𝑚𝑎𝑔(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑐𝑜𝑠 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

+ 𝐻(𝛥𝑡 ⋅ 𝑀)𝛹𝑟𝑒𝑎𝑙(𝑥, 𝑦, 𝑧, 𝛥𝑡 ⋅ 𝑀)𝑠𝑖𝑛 (
𝜖0

ℏ
𝛥𝑡 ⋅ 𝑀)

, (23𝑏) 

giving the final version of the equation used for finding the ground state’s shape. 

 

One final adjustment is needed.  Eq. (17) showed the Fourier transform at a specific 

frequency (associated with a specific eigenenergy) resulted in 2𝜋𝑐0𝜙0(𝑥, 𝑦, 𝑧).  The 

2𝜋𝑐0 was dropped for the above evaluation.  Eq. (23𝑎) and (23𝑏) then ignore the effects 

of this term.  Since it is known that eigenstates are orthonormal, and  

 ∫ 𝜙0
∗

∞

−∞

(𝑥, 𝑦, 𝑧)𝜙0(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 1 (24) 
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holds, the eigenstate found using Eq. (23𝑎) and (23𝑏) must be normalized.  This will 

allow a true eigenstate to be found.  This normalization can be done using the 

procedure in  

 𝜙𝑟𝑒𝑎𝑙,0,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦, 𝑧) =
𝜙𝑟𝑒𝑎𝑙,0(𝑥, 𝑦, 𝑧)

√(𝜙𝑟𝑒𝑎𝑙,0(𝑥, 𝑦, 𝑧))2 + (𝜙𝑖𝑚𝑎𝑔,0(𝑥, 𝑦, 𝑧))2
, (25𝑎) 

𝜙𝑖𝑚𝑎𝑔,0,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦, 𝑧) =
𝜙𝑖𝑚𝑎𝑔,0(𝑥, 𝑦, 𝑧)

√(𝜙𝑟𝑒𝑎𝑙,0(𝑥, 𝑦, 𝑧))2 + (𝜙𝑖𝑚𝑎𝑔,0(𝑥, 𝑦, 𝑧))2
. (25𝑏) 

Other ground states may be found simply by using a different eigenenergy, 𝜖𝑛. 
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Chapter 3: Simulation of a Torus 

This chapter details the simulation of a torus, as in Fig. 1, using the FDTD method 

described in Chapter 2.  The torus is chosen in this work as a model for a loop of wire. 

 

Figure 1. Torus structure  

 

The first section will detail the setup of the simulation, including the perfectly matched 

layer (PML) that is used to dampen the discontinuity at the edge of the simulation 

space.  The second section describes the setup of the potential to create a torus.  The 

third section will address details of the eigenenergy and eigenstate generation.  The 

final section will verify the behavior of the ground eigenstate over time. 

 

Simulation Setup 

The simulation is set up in three dimensions.  The problem space is 100x100x30 cells, 

with each cell representing one Å3.  The number of cells is chosen as a balance between 
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computational time and accuracy.  Simulation time is drastically increased with 

additional cells, but more granularity leads to more precise results. 

 

Each dimension of the cell (𝛥𝑥) measures one Å so the time step size (𝛥𝑡) is chosen to 

be 1.09×10−17 s based on Eq. (11𝑎).  A smaller 𝛥𝑡 would also work. 

 

The torus has a radius of 35 Å and a tube radius of six Å.  The goal is to create a torus 

with a high torus radius to tube radius ratio, while maintaining good behavior from the 

simulation.  The torus is defined according to  

 𝑟𝑡𝑢𝑏𝑒
2 = (𝑟𝑡𝑜𝑟𝑢𝑠 − √𝑥2 + 𝑦2)

2

+ 𝑧2, (26) 

with 𝑟𝑡𝑜𝑟𝑢𝑠 as the torus radius and 𝑟𝑡𝑢𝑏𝑒 as the tube radius. 

 

The problem space is illustrated in Fig. 2 and is split as detailed below.   

 Five cells on each side are a PML (detailed in subsequent section).  This leaves 

90x90x20 cells for the torus structure. 

 The torus radius is 35 cells and the tube radius is six cells, meaning it occupies a 

maximum of 82x82x12 cells.   

 A minimum of four cells are between the edge of the torus and the PML on each 

side, in each dimension. 
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(a) (b) 

Figure 2.  Problem space (defined in cells and not drawn to scale) in the (a) x-y 
direction, and (b) x-z direction. 

 

Perfectly Matched Layer (PML) 

A five-cell boundary is used for a PML to absorb outgoing waves around the periphery.  

This is necessary to avoid waveforms reflecting at the boundary of the problem space 

and creating errors.  The PML was originally developed for FDTD electromagnetic 

simulations [12].  The PML was subsequently modified for the Schrödinger equation [13].  

The version used in these simulations was previously described [14].  The cells at the lower 

boundary of each direction are described by 

 𝑃𝑀𝐿𝑥 = 1 − 0.5 ∙ (
𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠 − 𝑖

𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠
)
3

, (27𝑎) 

𝑃𝑀𝐿𝑦 = 1 − 0.5 ∙ (
𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠 − 𝑗

𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠
)
3

, (27𝑏) 

𝑃𝑀𝐿𝑧 = 1 − 0.5 ∙ (
𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠 − 𝑘

𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠
)
3

. (27𝑐) 
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A similar set of equations is used at the upper boundaries.  The cell’s index in the array 

is defined as 𝑖, 𝑗, and 𝑘, and the number of cells in the PML is 𝑃𝑀𝐿𝑐𝑒𝑙𝑙𝑠.  The PML applies 

to cells 0 to 4 at the lower boundary, and to cells 95 to 99 at the upper boundary in the 

x- or y-directions.  The PML applies to cells 0 to 4 at the lower boundary and cells 25 to 

29 at the upper boundary in the z-direction. 

 

𝑃𝑀𝐿𝑥, 𝑃𝑀L𝑦, and 𝑃𝑀𝐿𝑧 are each three-dimensional arrays of size 100x100x30 cells.  

Any cells outside the PML are set to one.  All three arrays are then multiplied together 

so     

 𝑃𝑀𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑀𝐿𝑥 ∙ 𝑃𝑀𝐿𝑦 ∙ 𝑃𝑀𝐿𝑧 . (28) 

The result is an array with the same dimensions as the problem space.  It has a value of 

one assigned to the majority of the cells.  The five cells along the peripheral in any 

direction show a drop from one to zero.  Cells in the corners show a sharper drop. 

 

This complete PML layer, 𝑃𝑀𝐿𝑡𝑜𝑡𝑎𝑙 , is then used in the FDTD simulation as in  

 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) = 𝑃𝑀𝐿𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗, 𝑘) ∙ 𝛹𝑟𝑒𝑎𝑙

𝑛 (𝑖, 𝑗, 𝑘) + 
𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)            

−
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2

[
 
 
 
 
 −6𝛹

𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖, 𝑗, 𝑘) + 𝛹

𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘) + 𝛹

𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖 − 1, 𝑗, 𝑘)

                                + 𝛹
𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖, 𝑗 + 1, 𝑘) + 𝛹

𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖, 𝑗 − 1, 𝑘)

                                + 𝛹
𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖, 𝑗, 𝑘 + 1) + 𝛹

𝑖𝑚𝑎𝑔

𝑛+
1
2 (𝑖, 𝑗, 𝑘 − 1)]

 
 
 
 
 

,
(29𝑎) 

 𝛹𝑖𝑚𝑎𝑔
𝑛+3/2(𝑖, 𝑗, 𝑘) = 𝑃𝑀𝐿𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗, 𝑘) ∙ 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘) − 
𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘)      

+
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2
[

−6𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖 − 1, 𝑗, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗 − 1, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘 − 1)

],        
(29𝑏) 

a modification of Eq. (10𝑎) and (10𝑏) that were previously derived. 
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Setting up the Potential 

The basic idea when setting up the potential is to create a low potential within the 

torus, and a high potential outside the torus.  This confines the electron to the torus, 

which allows it to move freely within.  The background potential is 4.6 eV, which is the 

work function of silver.  It is high enough to contain the electron, while still allowing 

stability from Eq. (11𝑏).  The goal will be to create a three-dimensional array to 

represent the potential, 𝑉(𝑖, 𝑗, 𝑘). 

 

One method of creating a torus is to look at each cell, and to calculate the results of the 

inequality   

𝑟𝑡𝑢𝑏𝑒
2 > (𝑟𝑡𝑜𝑟𝑢𝑠 − √(𝑖 − 𝑋𝐶)2 + (𝑗 − 𝑌𝐶)2)

2

+ (𝑘 − 𝑍𝐶)2, (30) 

where 𝑋C, 𝑌C, and 𝑍𝐶  are the centers of the problem space in the x, y and z directions, 

respectively.  The cells are indexed with i, j, and k, and 𝑟𝑡𝑢𝑏𝑒 and 𝑟𝑡𝑜𝑟𝑢𝑠 are given in cells.  

This inequality will allow the formation of a solid torus.  Eq. (26) is the equation for the 

surface of a torus.  

 

The potential is then set to 0 eV if the expression is true, and 4.6 eV if it is not true.  Each 

cell will then have one of two possible values.  This method can work well for a large 

problem space.  However, in a limited problem space, the individual cells will cause 

irregularities in the torus.  This in turn creates irregularities in the results, particularly 

in the eigenstates.   

 

Another option is to calculate an average potential as described in [15].  By averaging, a 

larger problem space can be imitated.  This can be done by dividing each cell into 

subcells, and calculating what the potential should be at the position of the subcell.  The 

final cell’s potential is assigned a percentage of the full surrounding potential.  For 

example, if half the subcells of a given cell are contained within the torus and half are 
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outside the torus, the cell is assigned half the surrounding potential.  An illustration of 

this concept in two dimensions for a circle is shown in Fig. 3. 

 

 Figure 3.  Illustration of subcells  

 

The potential for a torus is calculated by  

𝑟𝑡𝑢𝑏𝑒
2 > (𝑟𝑡𝑜𝑟𝑢𝑠 − √(𝑖 −

𝑖𝑠𝑢𝑏

𝑁
− 𝑋𝐶)

2

+ (𝑗 −
𝑗𝑠𝑢𝑏

𝑁
− 𝑌𝐶)

2

)

2

+ (𝑘 −
𝑘𝑠𝑢𝑏

𝑁
− 𝑍𝐶)

2

, (31) 

where N indicates the number of subcells and 𝑖𝑠𝑢𝑏, 𝑗𝑠𝑢𝑏, and 𝑘𝑠𝑢𝑏 refer to the subcell 

(indexed from –(N-1)/2 to (N-1)/2).  Again i, j, and k are the cell indices and all values 

are in terms of cells.  Twenty-nine subcells were used in this work to determine the 

torus potential used in calculations.  This means the expression had to be calculated 

293=24389 more times than the method without averaging.  Since the potential only 
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needs to be calculated once for a given structure, the extra computational time is not 

problematic. 

 

Fig. 4 illustrates the difference between the two methods of calculating the potential of 

the torus.  The first set of images shows a cross section through the center of the z-axis, 

and the second set shows a cross section through the center of the y-axis.  The torus 

looks significantly smoother using the averaging method, and the averaging method 

was used in this work. 
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(a) 

 

(b) 

  

(c) (d) 

Figure 4.  Contour plots of the potential (a) without averaging over subcells through 
center of z-axis, and (b) with averaging over subcells through center of z-axis, (c) 

without averaging over subcells through center of y-axis, and (d) with averaging over 
subcells through center of y-axis 

 

Determining the Ground State Eigenfunction of the Torus 

Before finding the ground eigenstate, the ground state eigenenergy is found.  First a 

small pulse is initialized within the torus, as is shown in Fig. 5.  This pulse is a three-

dimensional sine wave contained within a Gaussian envelope.  This will be a 

superposition of many eigenstates.   
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Figure 5.  Test pulse initialized within a torus  

 

The ground state’s eigenenergy is found as described in Chapter 2.  The test pulse is the 

initial 𝛹𝑟𝑒𝑎𝑙 used in Eq. (29𝑎) and (29𝑏).  A similar pulse generated with a cosine wave 

within a Gaussian envelope is used for 𝛹𝑖𝑚𝑎𝑔.  At this point, each term in Eq. (29𝑎) and 

(29𝑏) is defined.   

 

At each iteration, 𝛹𝑟𝑒𝑎𝑙 is monitored at a test location within the torus at (XC + rtorus, YC, 

ZC) where XC, YC, and ZC represent the center array index along the x-, y-, and z-

directions.   This is multiplied by the Hanning window of Eq. (15), and the Fourier 

transform is taken.  The x-axis of the Fourier transform has the step size, ∆𝐸, shown in   

∆𝐸 =
2𝜋ℏ

𝛥𝑡
∙

1

𝑁𝑁
, (32) 

where NN is the number of time steps for the simulation.  The equation is based off the 

relationship between frequency and energy in Eq. (13).  The spike at the lowest energy 

is the ground state eigenenergy. 
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An example of 𝛹𝑟𝑒𝑎𝑙 over time is shown in Fig. 6, and the output of the Fourier 

transform is shown in Fig. 7.  The output in Fig. 7 was created with only 10,000 

iterations so the resolution in the Fourier transform graph is fairly low.  To obtain an 

accurate eigenenergy, far more iterations are necessary (on the order of 100,000). 

 

Figure 6.  𝛹𝑟𝑒𝑎𝑙 over time using 10,000 iterations of a test pulse 



22 
 

 

Figure 7.  Eigenenergy distribution using 10,000 iterations of a test pulse 

 

Table 1 shows the number of iterations run (NN in Eq. (32)), with the calculated ground 

state eigenenergy and the eigenenergy step size (∆𝐸 in Eq. (32)).  This shows the 

relationship between the eigenenergy accuracy and the number of iterations run.  

200,000 iterations was chosen for this work since there was little difference between 

eigenenergies at 200,000 and 300,000 iterations, and the eigenenergy step size was less 

than 2 meV, which is adequate resolution. 
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Table 1.  Eigenenergy compared with the number of iterations of the FDTD simulation 

Number of Iterations Ground State Eigenenergy 

[eV] 

Eigenenergy Step Size 

[meV] 

10,000 0.912 38.0 

25,000 0.912 15.2 

50,000 0.912 7.6 

100,000 0.897 3.8 

150,000 0.900 2.5 

200,000 0.899 1.9 

300,000 0.898 1.3 

 

A test pulse will work well for finding the eigenenergies, since it will contain a 

combination of many eigenstates.  This ideally will allow the Fourier transform to 

reveal a complete set of eigenenergies.  However, a test pulse requires many iterations 

to calculate a stable ground eigenstate.  It would take several hundred thousand 

iterations to obtain an accurate ground eigenstate. 

 

An alternative method is to create a test structure that mimics the desired eigenstate.  

Since the final shape of the ground eigenstate of the torus is generally known, it is 

possible to estimate what the shape of the ground eigenstate will be.  This shape can be 

used for the initial test function instead of a pulse.  Fig. 8 shows the initial shape used to 

estimate the ground eigenstate of a torus. 
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Figure 8.  Test function initialized within a wire 

 

The values of 𝛹𝑟𝑒𝑎𝑙 over time within a Hanning window are shown in Fig. 9, and the 

corresponding Fourier transform is shown in Fig. 10.  Both graphs use a test function as 

shown in Fig. 8.  These results were again created with only 10,000 iterations to allow 

for a clear plot of 𝛹𝑟𝑒𝑎𝑙 over time; a larger number of iterations would yield a higher 

resolution plot of the eigenenergies with a more distinct peak.  These graphs can be 

compared with Fig. 6 and Fig. 7, which showed the results using a test pulse.  It is clear 

the test function only allows the ground eigenenergy to be found, but the test pulse 

allows many eigenenergies to be found.  The test function is a good estimate for the 

final shape of the ground eigenstate, since only components of the ground eigenenergy 

were prominent in the Fourier transform’s single, distinct peak. 
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Figure 9.  𝛹𝑟𝑒𝑎𝑙 over time using 10,000 iterations of a test function 

 

Figure 10.  Eigenenergy distribution using 10,000 iterations of a test function 

 

The ground eigenstates are generated by running the FDTD simulation with Eq. (29𝑎) 

and (29𝑏) again, with a known ground state eigenenergy, and calculating Eq. (23𝑎) and 
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(23𝑏) on each iteration.  At the end of the simulation, 𝜙𝑟𝑒𝑎𝑙,0(𝑥, 𝑦, 𝑧) and 𝜙𝑖𝑚𝑎𝑔,0(𝑥, 𝑦, 𝑧) 

are normalized to yield the final ground eigenstate. 

 

The test pulse is effective in generating the ground eigenstate for certain shapes, but 

this method takes a long time for a torus.  Fig. 11 shows a comparison of the ground 

eigenstates generated after 10,000 iterations using the test pulse compared with the 

test function.  The ground eigenstate generated by the test function has settled into a 

fairly even ground eigenstate after 10,000 iterations, but the ground eigenstate 

generated using the test pulse is still uneven. 
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(a) 

 

(b) 

Figure 11.  Ground eigenstate generated over 10,000 iterations (a) using a test pulse, 
and (b) using a test function 
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An accurate ground eigenstate is necessary, so the test function is far more efficient.  

200,000 iterations created an even ground eigenstate using the test function; this 

number was chosen based on the eigenenergy accuracy.  This was later verified using 

dipole moment calculations, which are described in Chapter 4.  The ground eigenstate 

used in this work is shown in Fig. 12. 

 

Figure 12.  Ground eigenstate generated over 200,000 iterations using a test function 

 

Ground Eigenstate Verification 

The ground eigenstate must oscillate with a period given by  

𝑇 =
ℎ

𝜖0
, (33) 

and it must maintain normalization [9].  𝜖0 is the ground state eigenenergy.  The period 

can be a way to verify the eigenstate and eigenenergy are accurate.  𝛹𝑟𝑒𝑎𝑙, initially in the 

generated ground eigenstate, can be monitored during an FDTD simulation to ensure it 

retains its shape and revives after the correct number of cycles predicted by the 

equation. 
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The ground eigenenergy of the torus described in this chapter is 0.899 eV when 

generated over 200,000 iterations.  This means the revival time will be 4.601 fs from 

𝑇 =
4.136×10−15𝑒𝑉 ⋅ 𝑠

0.899𝑒𝑉
= 4.601𝑓𝑠. (34) 

With a 𝛥𝑡 = 1.09×10−17𝑠, the revival time will be approximately 422 time steps.  This 

can be verified by loading the ground eigenstate as 𝛹𝑟𝑒𝑎𝑙 and 𝛹𝑖𝑚𝑎𝑔, and then running 

the FDTD program a designated number of iterations to ensure that the result is the 

expected behavior, as shown in Fig. 13.  A full period was shown to be 422 time steps, 

with the ground eigenstate inverted after 211 time steps. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 13.  Ground eigenstate after (a) 0 iterations (initial state), (b) 106 iterations 
(quarter cycle), (c) 211 iterations (half cycle), (d) 317 iterations (three-quarters of a 

cycle), and (e) 422 iterations (full cycle). 
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Chapter 4: Magnetic Dipole Moment Operator and the Simulation of a 

Magnetic Field 

This chapter describes the magnetic dipole moment operator and the effects of a 

magnetic field on the torus.   

 

Calculating the Magnetic Dipole Moment 

The magnetic dipole moment operator (𝒎) is  

𝒎 =
𝑞

2𝑚𝑒
𝒍, (35) 

where 𝒍 is the angular momentum, q is the charge of an electron, and 𝑚𝑒 is the mass of 

an electron [16].  This equation uses MKS units.  The canonical angular momentum is 

defined as   

𝒍 = 𝒓×𝒑, (36) 

where 𝒓 is the position and 𝒑 is the linear momentum. 

 

The position, 𝒓, is defined in three dimensions.  In the case of the torus, the position 𝒓 

will be referenced from the center of the torus as 

𝒓 = (𝑥 − 𝑋𝐶) �̂� + (𝑦 − 𝑌𝐶) �̂� + (𝑧 − 𝑍𝐶) �̂� , (37) 

where XC, YC, and ZC represent the center array index along the x-, y-, and z-directions. 

 

The momentum operator in quantum mechanics, 𝒑, is defined as 

𝒑 = −𝑖ℏ𝛻 =  −𝑖ℏ (
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
�̂� +

𝜕

𝜕𝑧
�̂�) . (38) 

Eq. (37) and (38) can be combined to determine the angular momentum operator, 𝒍, 

using Eq. (36).  The result is 
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𝒍 = [(𝑥 − 𝑋𝐶) �̂� + (𝑦 − 𝑌𝐶) �̂� + (𝑧 − 𝑍𝐶) �̂�]× [−𝑖ℏ(
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
�̂� +

𝜕

𝜕𝑧
�̂�)] . (39) 

Since an electron in a torus will move in the x-y plane, only the z components of the 

angular momentum will be significant.  Eq. (39) can then be reduced to 

𝒍 = −𝑖ℏ [(𝑥 − 𝑋𝐶)
𝜕

𝜕𝑦
�̂� − (𝑦 − 𝑌𝐶)

𝜕

𝜕𝑥
�̂�] . (40) 

To get the expectation value of the magnetic dipole moment, the operator must be 

integrated as shown:   

 < 𝒎 > = ∭𝛹∗ ∙

∞

−∞

𝒎 ∙ 𝛹𝑑𝑥𝑑𝑦𝑑𝑧, (41) 

where 𝛹∗ is the complex conjugate of 𝛹.  Combining Eq. (35), (40), and (41) result in 

 < 𝒎 > = [−
𝑖𝑞ℏ

2𝑚𝑒
∭𝛹∗ ∙ ((𝑥 − 𝑋𝐶)

𝜕𝛹

𝜕𝑦
− (𝑦 − 𝑌𝐶)

𝜕𝛹

𝜕𝑥
)

∞

−∞

𝑑𝑥𝑑𝑦𝑑𝑧] �̂� (42) 

to find the expectation value of the magnetic dipole moment.   

 

Implementing the Magnetic Dipole Moment Operator using the FDTD Method 

Eq. (42) can be implemented using the FDTD method and be rewritten as  

< 𝒎 >= −
𝑖𝑞ℏ

2𝑚𝑒
∭𝛹∗ ∙ (𝑑𝑒𝑟𝑌 − 𝑑𝑒𝑟𝑋)

∞

−∞

 𝑑𝑥𝑑𝑦𝑑𝑧, (43) 

with   

𝑑𝑒𝑟𝑌 = (𝑥 − 𝑋𝐶)
𝜕𝛹

𝜕𝑦
, (44𝑎) 

𝑑𝑒𝑟𝑋 = (𝑦 − 𝑌𝐶)
𝜕𝛹

𝜕𝑥
. (44𝑏) 

The direction of the magnetic dipole moment will be along the z-axis. 
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By dividing 𝛹 into real and imaginary components as in Eq. (3), 𝑑𝑒𝑟𝑌 and 𝑑𝑒𝑟𝑋 can be 

approximated as  

𝑑𝑒𝑟𝑌(𝑖, 𝑗, 𝑘) =  (𝑥 − 𝑋𝐶) ∙ 𝛥𝑥

[
 
 
 
      

𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗 + 1, 𝑘) − 𝛹𝑟𝑒𝑎𝑙(𝑖, 𝑗 − 1, 𝑘)

2 ∙ 𝛥𝑦

+𝑖 ∙
𝛹𝑖𝑚𝑎𝑔(𝑖, 𝑗 + 1, 𝑘) − 𝛹𝑖𝑚𝑎𝑔(𝑖, 𝑗 − 1, 𝑘)

2 ∙ 𝛥𝑦 ]
 
 
 
 

, (45𝑎) 

𝑑𝑒𝑟𝑋(𝑖, 𝑗, 𝑘) =    (𝑦 − 𝑌𝐶) ∙ 𝛥𝑦

[
 
 
      

𝛹𝑟𝑒𝑎𝑙(𝑖 + 1, 𝑗, 𝑘) − 𝛹𝑟𝑒𝑎𝑙(𝑖 − 1, 𝑗, 𝑘)

2 ∙ 𝛥𝑥

+𝑖 ∙
𝛹𝑖𝑚𝑎𝑔(𝑖 + 1, 𝑗, 𝑘) − 𝛹𝑖𝑚𝑎𝑔(𝑖 − 1, 𝑗, 𝑘)

2 ∙ 𝛥𝑥 ]
 
 
 
. (45𝑏) 

As mentioned in Chapter 2, 𝛥𝑥 and 𝛥𝑦 are equal.  The derivative was approximated 

using the two adjacent cells to provide symmetry. 

 

Therefore, the expectation value of the magnetic dipole moment is given by 

< 𝒎(𝑖, 𝑗, 𝑘) >  = −
𝑖𝑞ℏ

2𝑚𝑒
𝛹∗(𝑖, 𝑗, 𝑘) ∙ [𝑑𝑒𝑟𝑌(𝑖, 𝑗, 𝑘) − 𝑑𝑒𝑟𝑋(𝑖, 𝑗, 𝑘)]. (46) 

The integral must cover the total problem space, from the first cell to the total number 

of cells, 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, and 𝑍𝑚𝑎𝑥 .  This can be done by using a summation,  

 < 𝒎 > = ∑ ∑ ∑ < 𝒎(𝑖, 𝑗, 𝑘) >

𝑋𝑚𝑎𝑥 

𝑖=1

𝑌𝑚𝑎𝑥 

𝑗=1

𝑍𝑚𝑎𝑥 

𝑘=1

, (47) 

with < 𝒎(𝑖, 𝑗, 𝑘) > defined in Eq. (46). 

 

Verifying the Accuracy of the Magnetic Dipole Moment Calculation 

The accuracy of the expectation value of the magnetic dipole moment, described in Eq. 

(47), can be verified by comparing it with the classical magnetic dipole moment given 

by 

𝒎 = 𝐼𝜋 ∙ 𝑟𝑡𝑜𝑟𝑢𝑠
2 �̂� , (48) 
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where 𝐼 is the current and 𝑟𝑡𝑜𝑟𝑢𝑠 is the radius of the torus [17]. 

 

In order to simulate the current in a loop, a wavepacket is used to indicate the position 

of an electron.  This is initialized as shown in Fig. 14 at t = 0 fs.  The FDTD simulation is 

allowed to run, and the wavepacket will travel around the torus.  The progression of the 

wavepacket in a complete loop is shown in Fig. 14. 

  

  

Figure 14.  Progression of wave packet over time 

 

From [9], the expectation value of the position is 

< 𝑥 > = ∫ 𝛹∗𝑥𝛹𝑑𝑥
∞

−∞

, (49𝑎) 

< 𝑦 > = ∫ 𝛹∗𝑦𝛹𝑑𝑦
∞

−∞

, (49𝑏) 
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where 𝛹∗ is the complex conjugate.  Since the wavepacket is initiated to move around 

the torus, it has no initial momentum in the z-direction and only the x and y locations 

are monitored.  The expectation value of the position over time is shown in Fig. 15.  

Because the wavelengths of the wavepacket have different momenta, the peaks and 

troughs of the wavelength do not reach the same values after a complete cycle.  The 

amount of time taken to complete a cycle (84.0 fs--8,400 iterations) was measured from 

the initial trough of the expectation value of the y position to the next trough. 

 

Figure 15.  The expectation value of the position in the x- and y-directions over time 

 

The wavepacket represents a single electron, so the charge of the wavepacket is 

approximately 𝑒 = 1.6×10−19 𝐶.  The current may be determined from, 

 𝐼 =
𝑒

𝑃𝑒𝑟𝑖𝑜𝑑
=

1.6×10−19𝐶

84.0×10−15𝑠
= 1.91×10−6𝐴. (50) 

Using Eq. (48) and the current, the magnetic dipole moment is 

𝒎 = (1.91×10−6𝐴) ∙ 𝜋 ∙ (35 Å)
2

= 0.0073 𝐴 ∙ Å2, (51) 
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where A represents amperes.  Implementing Eq. (47) directly results in a magnetic 

dipole moment of 0.0072 𝐴 ∙ Å2, which is close to the value calculated by using the 

period of a particle traveling around a torus.  This implies that the FDTD 

implementation is accurate to within about one percent. 

 

Adding a Magnetic Field 

In this section, a static magnetic field 𝐵0 is applied in the z-direction.  It is perpendicular 

to the torus as seen in Fig. 16. 

 

Figure 16.  Direction of magnetic field applied to the torus 

 

A magnetic field will complicate the Schrödinger equation shown in Eq. (1) since there 

are now additional forces acting on the electron.  From [9], the Hamiltonian when a 

magnetic field is applied is given by  

 𝐻 =
1

2𝑚𝑒
(
ℏ

𝑖
𝛻 − 𝑞𝑨)

2

+  𝑉(𝑥, 𝑦, 𝑧)                                

=  −
ℏ2

2𝑚𝑒
𝛻2 −

ℏ𝑞

𝑖𝑚𝑒
𝛻 ⋅ 𝑨 +

𝑞2

2𝑚𝑒
𝑨 ⋅ 𝑨 + 𝑉(𝑥, 𝑦, 𝑧)

, (52) 
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where q is the charge of an electron and 𝑨 is the vector potential.  From [9] and [18], 𝑨  

is defined as 

 𝑨 =
1

2
[−(𝑦𝐵𝑧 − 𝑧𝐵𝑦) �̂� + (𝑥𝐵𝑧 − 𝑧𝐵𝑥) �̂� − (𝑥𝐵𝑦 − 𝑦𝐵𝑥) �̂�], (53) 

and it is related to the magnetic field by 

 𝑩 = 𝛻×𝑨. (54) 

The magnetic field is assumed to be uniform across the x-y plane since the torus 

structure is much smaller than the wavelength of the electromagnetic field.  Since the 

magnetic field is applied only in the z-direction, 𝐵𝑧 = 𝐵0 and Eq. (53) can be reduced to 

 𝑨 =
1

2
[−(𝑦𝐵0) �̂� + (𝑥𝐵0) �̂�]. (55) 

Eq. (52) and Eq. (55) can be combined to result in  

𝐻 = −
ℏ2

2𝑚𝑒
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) + 𝑖

ℏ𝑞𝐵0

2𝑚𝑒
(−𝑦

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑦
)

+
𝑞2𝐵0

2

8𝑚𝑒

(𝑥2 + 𝑦2) + 𝑉(𝑥, 𝑦, 𝑧)                                  

,                     (56) 

the Hamiltonian used with the magnetic field applied.  

 

FDTD with a Magnetic Field Applied 

The same process described in Chapter 2 can be used to implement the Hamiltonian of 

Eq. (56) in the FDTD method.  The first and last term of the Hamiltonian is the same as 

that used in Chapter 2.  The FDTD implementation including the two new terms is 

shown as a pair of coupled equations: 
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 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) = 𝑃𝑀𝐿𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗, 𝑘) ∙ 𝛹𝑟𝑒𝑎𝑙

𝑛 (𝑖, 𝑗, 𝑘) + 
𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)   

−
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2

[
 
 
 
 −6𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘) + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖 − 1, 𝑗, 𝑘)

                                + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗 − 1, 𝑘)

                                + 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘 − 1) ]
 
 
 
 

+
(𝛥𝑡)(𝛥𝑥)2𝑞2𝐵0

2

8𝑚𝑒ℏ
[(𝑖 − 𝑋𝐶)2 + (𝑗 − 𝑌𝐶)2]𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)                                    

+
(𝛥𝑡)𝑞𝐵0

4𝑚𝑒
[
−(𝑗 − 𝑌𝐶) ∙ [𝛹𝑟𝑒𝑎𝑙

𝑛 (𝑖 + 1, 𝑗, 𝑘) − 𝛹𝑟𝑒𝑎𝑙
𝑛 (𝑖 − 1, 𝑗, 𝑘)]

+(𝑖 − 𝑋𝐶) ∙ [𝛹𝑟𝑒𝑎𝑙
𝑛 (𝑖, 𝑗 + 1, 𝑘) − 𝛹𝑟𝑒𝑎𝑙

𝑛 (𝑖, 𝑗 − 1, 𝑘)]
]                       

, (57𝑎) 

𝛹𝑖𝑚𝑎𝑔
𝑛+3/2(𝑖, 𝑗, 𝑘) = 𝑃𝑀𝐿𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗, 𝑘) ∙ 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗, 𝑘)  − 
𝛥𝑡

ℏ
𝑉(𝑖, 𝑗, 𝑘)𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘)     

+
ℏ𝛥𝑡

2𝑚𝑒(𝛥𝑥)2
[

−6𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖 + 1, 𝑗, 𝑘) + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖 − 1, 𝑗, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗 + 1, 𝑘) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗 − 1, 𝑘)

                              + 𝛹𝑟𝑒𝑎𝑙
𝑛+1(𝑖, 𝑗, 𝑘 + 1) + 𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘 − 1)

]           

−
(𝛥𝑡)(𝛥𝑥)2𝑞2𝐵0

2

8𝑚𝑒ℏ
[(𝑖 − 𝑋𝐶)2 + (𝑗 − 𝑌𝐶)2]𝛹𝑟𝑒𝑎𝑙

𝑛+1(𝑖, 𝑗, 𝑘)                                         
            

+
(𝛥𝑡)𝑞𝐵0

4𝑚𝑒
[
−(𝑗 − 𝑌𝐶) ∙ 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖 + 1, 𝑗, 𝑘) − 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖 − 1, 𝑗, 𝑘)

+(𝑖 − 𝑋𝐶) ∙ 𝛹𝑖𝑚𝑎𝑔
𝑛+1/2(𝑖, 𝑗 + 1, 𝑘) − 𝛹𝑖𝑚𝑎𝑔

𝑛+1/2(𝑖, 𝑗 − 1, 𝑘)
]                     

. (57𝑏) 

Since 𝑥 and 𝑦 are measured from the center of the torus, 𝑥 is replaced with (𝑖 − 𝑋𝐶) and 

𝑦 is replaced with (𝑗 − 𝑌𝐶), with 𝑋𝐶 and 𝑌𝐶  representing the midpoint along the x-axis 

and y-axis, respectively. 

 

Since the new set of equations contains two additional terms, the stability conditions 

will expand from Eq. (11𝑎) and (11𝑏) to also include 

 
(𝛥𝑡)𝑞𝐵0

4𝑚𝑒
(𝑖 − 𝑋𝐶) ≤ 0.15, (58𝑎) 

 
(𝛥𝑡)(𝛥𝑥)2𝑞2𝐵0

2

8𝑚𝑒ℏ
[(𝑖 − 𝑋𝐶)2 + (𝑗 − 𝑌𝐶)2] ≤ 0.15. (58𝑏) 
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For the simulation described in this chapter, these values are small and are not a 

concern.  Since the torus is symmetric about the center along the z-axis, (𝑖 − 𝑋𝐶) and 

(𝑗 − 𝑌𝐶) will have the same maximum value. 

 

Magnetic Dipole Moment Operator with a Magnetic Field 

The magnetic dipole moment operator previously described in Eq. (35) uses the 

canonical momentum.  When a magnetic field is applied, the effects due to the vector 

potential must be taken into account.  This is accomplished by calculating the magnetic 

dipole moment using the mechanical momentum.  A new term is added to the magnetic 

dipole moment operator from Eq. (35).  From [19], the new operator is  

𝒎 =
𝑞

2𝑚𝑒
𝑙 −  

𝑞2

2𝑚𝑒

(𝒓 × 𝑨). (59) 

The first term in the equation was found in Eq. (35).  The second term must be 

expanded and uses Eq. (37) and (55), to obtain 

𝒎 = −𝑖
𝑞ℏ

2𝑚𝑒
[(𝑥 − 𝑋𝐶)

𝜕

𝜕𝑦
− (𝑦 − 𝑌𝐶)

𝜕

𝜕𝑥
] − 

𝑞2𝐵(𝑡)

4𝑚𝑒

[(𝑥 − 𝑋𝐶)2 + (𝑦 − 𝑌𝐶)2]. (60) 

This is entirely in the z-direction.  Again, 𝑥 and 𝑦 are measured from the center of the 

torus.  This can be implemented using the FDTD method in the same manner described 

earlier in this chapter. 

 

Verifying the Accuracy of the Magnetic Dipole Moment Calculation with a Static Magnetic 

Field 

The accuracy of the new magnetic dipole operator from Eq. (60) must be verified.  As 

was done without a magnetic field, a wavepacket is initialized within the torus and 

allowed to run.  This is shown in Fig. 17 for a complete loop around the torus with a 25 

T static magnetic field applied. 
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Figure 17.  Progression of wave packet over time with a static 25 T magnetic field 

 

The expectation value of the position is again monitored as shown in Fig. 18. 
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Figure 18.  The expectation value of the position in the x- and y-directions over time 
with a static 25 T magnetic field 

 

The classical magnetic dipole moment can be found using Eq. (48).  The result of using 

Eq. (48) along with using the quantum operator is shown in Table 2.  The table includes 

several magnetic field strengths.  The classical and quantum approaches give values 

that are the same within about three percent, verifying the magnetic dipole moment 

operator and the magnetic field implementation using the FDTD method.  

 

Table 2.  Classical and quantum magnetic dipole moment with a static magnetic field 

Magnetic Field [T] Classical 𝒎 [𝐴 ∙ Å2] Operator 𝒎 [𝐴 ∙ Å2] Difference 

-50 0.0078 0.0076 2.6% 

-25 0.0075 0.0074 1.3% 

0 0.0073 0.0072 1.4 % 

25 0.0071 0.0070 1.4% 

50 0.0069 0.0068 1.5% 
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Chapter 5: Simulation of a Time-Harmonic Magnetic Field 

The FDTD method provides a direct way to implement and use the Schrödinger 

equation to simulate a magnetic field while measuring the magnetic dipole moment.  

This chapter describes those simulation results and how they can be used to find 

magnetic susceptibility.  It also discusses possibilities for future work and 

considerations when using the FDTD method. 

 

Effects of a Time-Harmonic Field on a Particle in the Torus 

The FDTD simulation can be run with a magnetic field applied as described, using the 

ground eigenstate for the initial 𝛹𝑟𝑒𝑎𝑙 and 𝛹𝑖𝑚𝑎𝑔 .  For this chapter, the applied magnetic 

field is a sinusoidal function, 

𝑩(𝑡) = 𝐵𝑚𝑎𝑥𝑠𝑖𝑛(2𝜋𝑓0𝑡) �̂� , (61) 

 

with 𝑓0 representing the applied frequency and t the time.  This will be multiplied by a 

Hanning window [Eq. (15)].  The Hanning window is used to reduce the effects of the 

abrupt addition of a magnetic field.  The effects of the magnetic field may be monitored 

by observing the magnetic dipole moment using the operator in Eq. (60).   

 

Fig. 19(a) shows the applied 30 T, 20 THz magnetic field multiplied by a Hanning 

window.  Fig. 19(b) shows the magnetic dipole moment over time.  The magnetic dipole 

moment oscillates at the same frequency as the applied magnetic field.  Fig. 19(c) and 

Fig. 19(d) show the Fourier transforms of the magnetic field and the magnetic dipole 

moment, respectively.  The Hanning window affects the magnitude of the values 

generated with the Fourier transforms, so the values in Fig. 19(c) and Fig. 19(d) are 

multiplied by two.  Then the peak for the magnetic field is 30 T in Fig. 19(c), as 

expected. 
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(a) (b) 

  

(c) (d) 

Figure 19.  The results of a simulation of a particle in a torus under the influence of a 
sinusoidal magnetic field with a maximum magnitude of 30 T and a frequency of 20 

THz.  (a) The magnetic field, (b) the magnetic dipole moment, (c) the Fourier transform 
of the magnetic field, and (d) the Fourier transform of the dipole moment. 

 

The peak values of the magnetic dipole moment generated with the Fourier transform 

are determined at 𝑓0.  These are shown to have a linear relationship with the applied 

magnetic field strength, as shown in Fig. 20.   
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Figure 20.  The magnetic dipole moment versus the magnetic field strength for a 
magnetic field of 20 THz 

 

Magnetic Dipole Moment without a Magnetic Field Applied 

The results of these simulations will have inaccuracies because of the finite number of 

cells used.  The magnetic dipole moment without a magnetic field can be used to find a 

base level of uncertainty in the calculations and also to examine the accuracy of the 

ground eigenstate generated.  The magnetic dipole moment should ideally be zero for 

the ground eigenstate of a torus since there is no angular momentum; 𝛹 will simply 

oscillate in a steady manner with the period described in Eq. (33).  

 

For the torus and ground eigenstate used in these simulations, the maximum magnetic 

dipole without a magnetic field applied is approximately 2×10−15 𝑚𝐴 ∙ Å2.  This value 

represents an intrinsic magnetic dipole moment due to simulation inaccuracies.  The 

magnetic dipole moment results will be distorted if the magnetic dipole moment caused 

by the applied magnetic field is on the same scale as the intrinsic magnetic dipole 
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moment.  The intrinsic magnetic dipole moment is not a concern for the results in this 

chapter.  

 

Magnetic Susceptibility 

The FDTD method described makes it possible to determine the magnetic susceptibility 

from the magnetic dipole moment.  The magnetic dipole moment generated using the 

Fourier transform, as in Fig. 19(d), can be used to find the magnetic susceptibility.   

 

From [1], the bulk polarizability is given by 

𝑃(𝑡) = 𝜒(1)𝐸(𝑡) + 𝜒(2)𝐸2(𝑡) + 𝜒(3)𝐸3(𝑡) + ⋯ , (62) 

where 𝜒(1) is the linear susceptibility, 𝜒(2) is the second-order nonlinear optical 

susceptibility, and 𝜒(3) is the third-order nonlinear optical susceptibility.  This response 

is in the z-direction only, which is the direction of the applied magnetic field.  The bulk 

polarizability is related to the dipole moment of a molecule by 

𝑃(𝑡) = 𝑁𝑝(𝑡), (63) 

where N is the number density and many conditions are met [1].  The dipole moment 

equation may then be written as  

𝑝(𝑡) =  𝛼𝐸(𝑡) +  𝛽𝐸2(𝑡) +  𝛾𝐸3(𝑡) + ⋯ . (64) 

An analogous equation for the magnetic dipole moment 𝑚 using the magnetic field 𝐵(𝑡) 

results in 

𝑚(𝑡) =  𝛼𝐵(𝑡) + 𝛽𝐵2(𝑡) +  𝛾𝐵3(𝑡) + ⋯ . (65) 

The following calculations will focus on α (the polarizability), β (the 

hyperpolarizability), and γ (the second hyperpolarizability) [3].  The response is 

needed in the frequency domain so the magnetic dipole moment is written as 

𝑚(𝜔) =  𝛼𝐵(𝜔) + 𝛽𝐵2(𝜔) +  𝛾𝐵3(𝜔). (66) 
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A Fourier transform is performed to obtain the magnetic dipole moment in the 

frequency domain. 

 

The polarizability will occur at the fundamental frequency, 𝜔0.  The time varying 

magnetic field was previously described in Eq. (61).  This means the hyperpolarizability 

will have a magnetic field component 

𝐵2(𝑡) =
1

2
(𝐵𝑚𝑎𝑥

2 − 𝐵𝑚𝑎𝑥
2 𝑐𝑜𝑠(2𝜔0𝑡)), (67) 

which has a frequency component at 0 and at 2𝜔0 [2].  

 

Similarly, the second hyperpolarizability will have a magnetic component  

𝐵3(𝑡) =
1

4
(3𝐵𝑚𝑎𝑥

3 𝑠𝑖𝑛(𝜔0𝑡) − 𝐵𝑚𝑎𝑥
3 𝑠𝑖𝑛(3𝜔0𝑡)). (68) 

This means the second hyperpolarizability will have frequency components at 𝜔0 and 

3𝜔0. 

 

Grated Torus 

The Fourier transform of the torus in Fig. 19(d) showed only a small component at 3𝑓0.  

A grated torus, one in which a periodic potential is added, is used in an attempt to find a 

high nonlinear response.  Any structure may be examined using the FDTD method 

simply by specifying the potential 𝑉(𝑥, 𝑦, 𝑧).   

 

The grated torus is shown in Fig. 21.  The torus shown has 20 peaks, and the difference 

between the peaks and the troughs is 0.6 eV.   
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Figure 21.  Potential showing a grated torus; cross section shown at z = ZC 

 

The ground eigenstate of the grated potential is shown in Fig. 22.  The irregularities 

affect the shape of the ground state, as expected. 

 

Figure 22.  Ground eigenstate for the grated potential; cross section shown at z = ZC  
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Magnetic Susceptibility Results for a Grated Torus 

In this section the results of applying a sinusoidal magnetic field to a particle in the 

grated torus are described.  The sinusoidal magnetic field is applied so the frequency 

components of the grated torus can be calculated.  The magnetic field is described by 

Eq. (61) where 𝐵𝑚𝑎𝑥 = 30 𝑇 and 𝑓0 = 20 𝑇𝐻𝑧.  The results are illustrated in Fig. 23.  Fig. 

23(a) shows the magnetic field and Fig. 23(b) shows the resulting magnetic dipole 

moment.  Their respective Fourier transforms are shown in Fig. 23(c) and Fig. 23(d).  

The red vertical lines show 𝑓0.  The majority of the signal for the magnetic dipole 

moment is at 𝑓0, but there is also a significant component at 3𝑓0, as shown in Fig. 23(d).   

This corresponds with the second hyperpolarizability.  This component is much more 

prominent than that seen in the plain torus. 
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(a) (b) 

  

(c) (d) 

Figure 23.  The results of a simulation of a particle in a grated torus under the influence 
of a sinusoidal magnetic field with a maximum magnitude of 30 T and a frequency of 20 
THz.  (a) The magnetic field, (b) the magnetic dipole moment, (c) the Fourier transform 

of the magnetic field, and (d) the Fourier transform of the magnetic dipole moment. 

 

Fig. 24 shows the component of the magnetic dipole moment determined at 20 THz, 𝑓0, 

across several magnetic field strengths.  Because the hyperpolarizability has a cubic 

component at 𝑓0, as shown in Eq. (68), a best fit line is created using a linear and a cubic 

response to match the calculated values.  The linear coefficient, 𝛼, is dominant and gives 
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the polarizability.  The cubic coefficient, γ, is a component of the second 

hyperpolarizability.  These coefficients are used to create the solid line on the graph. 

 

Figure 24.  The magnetic dipole moment determined at 𝑓0 versus magnetic field 
strength for a particle in a grated torus.  α = 7.74×10−3 and γ = −6.33×10−10 

 

Similarly, the magnetic dipole moment from the Fourier transform can be determined 

at 2𝑓0, which is the frequency of the second harmonic.  If there is significant 

hyperpolarizability, the dipole moment plotted across magnetic field magnitudes will 

show a quadratic response.  The coefficient of the quadratic response is the 

hyperpolarizability.  In the case of both the plain and grated torus, this component is 

not present in any significant amount.   

 

Fig. 25 shows the component of the magnetic dipole moment at 3𝑓0.  The coefficient of 

the cubic response is a component of 𝛾, the second hyperpolarizability.  The cubic fit 

line is also shown in Fig. 25.  The ratio of 𝛾 determined at 3𝑓0 to 𝛾 determined at 𝑓0 is 

approximately -0.35, which is close to the ideal value of -1 3⁄ .  This ratio can be seen in 

Eq. (68). 
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Figure 25.  The magnetic dipole moment determined at 3𝑓0 versus magnetic field 
strength.  γ = 2.20×10−10 

 

Discussion 

One of the strengths of the FDTD method is that any structure can be simulated, subject 

only to the resolution of the cell size and the dimensions of the problem space.  This 

allows different nanostructures to be simulated, tested, and modified to obtain optimal 

nonlinear properties.  

 

It is possible to increase the resolution of a structure by increasing the number of cells 

used in the problem space.  Increasing the resolution allows the discrete cells to be less 

of a problem and the artificial dipole moment effects to be smaller, even if longer 

simulations are necessary.  The resolution and the types of structures that can be 

evaluated are dependent on computational power and an acceptable level of accuracy. 
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It is also important to monitor the shape of  𝛹𝑟𝑒𝑎𝑙 and 𝛹𝑖𝑚𝑎𝑔 to ensure they are not 

distorted.  This may indicate perturbation theory is breaking down.  𝛹𝑟𝑒𝑎𝑙 and 𝛹𝑖𝑚𝑎𝑔 

must remain normalized throughout a simulation just as the initial ground state is 

normalized as in Eq. (24).  As mentioned, the conditions for stability in Eq. (11𝑎) and 

(11𝑏) and in Eq. (58𝑎) and (58𝑏) must be carefully monitored.  This also affects the 

selection of various parameters.  The size of the structure and the time step size may 

limit the magnetic field strength, for example.     
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Chapter 6: Summary 

Summary 

The FDTD method, which has been used to implement the Schrödinger equation and 

find the eigenstates of a wide array of structures, was discussed for a three-dimensional 

simulation.  The primary structure chosen for this work was a torus; this shape behaved 

in the expected manner when the revival time was simulated.  For the sake of efficiency, 

a test function was used to generate the ground eigenstate as opposed to a test pulse. 

 

The magnetic dipole moment operator was described, and the implementation for 

measuring the expectation value of the magnetic dipole moment was detailed.  The 

method was verified by using a classical model of an electron moving in a torus in a 

given time. 

 

This work also used the FDTD method to simulate the Schrödinger equation with an 

applied magnetic field.  The Hamiltonian used to describe the system and the magnetic 

dipole moment operator were derived.  This was again verified by using a classical 

model of an electron moving in the torus. 

 

The expectation value of the magnetic dipole moment was found with an applied time-

varying magnetic field to calculate the magnetic susceptibility.  The response of a torus 

was found to be linear, with no significant frequency components aside from that of the 

applied frequency.  

 

Since the plain torus did not show many nonlinear characteristics, a grating was added 

to the torus to obtain second hyperpolarizability characteristics.  The magnetic dipole 

moment at the third harmonic displays a cubic response to magnetic field strength, as 

expected. 
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Tradeoffs and considerations were also discussed.  For simulation convergence, 

parameters such as time step size, magnetic field strength, and structure size must be 

carefully chosen. 

 

Conclusions for Implementation in Python 

The implementation of the FDTD formulation of the Schrödinger equation into Python 

is straight-forward and similar to using MATLAB, the software used in [9].  The Python 

library NumPy makes for clear and concise programs, eliminating most loops.  

However, simulations of the 100x100x30 cell problem space were extremely time-

consuming using NumPy functions.  When running a hundred thousand iterations, the 

simulation would take 1.5-2 hours to complete running on a laptop computer.   

 

Python offers a way to speed up certain operations by using the Numba library.  This 

allows the performance of segments of code to be comparable to C and Fortran while 

keeping a program written in Python.  With some minor modifications, the main FDTD 

process can be implemented efficiently using Numba to reduce the 1.5-2 hour 

simulation time to about 10 minutes on the laptop.  The laptop used in this work has a 

2.2 GHz processor and 8 GB of RAM. 

  

Because NumPy has no optimized function for the main FDTD loops, the final program 

implemented those loops in Numba using simple “for” loops operating on NumPy 

arrays.  All other NumPy calculations operated quickly enough that optimization with 

Numba was not necessary.  This strategy of using high-level library functions and 

optimizing time-consuming code with Numba was effective in implementing the FDTD 

method.  
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