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Abstract 

Infrastructure systems are the backbone of modern societies and are critical for well-functioning 

communities. Natural and human-induced hazards have the potential to disrupt the services provided 

by these systems, thus impacting normal community functions. For a community to assess risk from 

any hazard it must first understand its dependency on the services provided by supporting 

infrastructure and, in turn, how the infrastructure is not only vulnerable to the hazard, but dependent 

on other infrastructure systems that may also be vulnerable. However, merely understanding the 

consequences and impacts of interdependent infrastructure failures on critical community services, let 

alone prioritizing capital investments to shore up aging, failing, or otherwise vulnerable systems, is a 

daunting and often unachievable challenge for communities with limited resources. 

This dissertation proposes a novel all-hazards analysis (i.e., AHA) methodology and knowledge 

management framework to enhance our understanding of risks to interconnected infrastructure, 

systems, and networks. The methodology advances risk analytic capabilities through the integration 

of concepts from graph theory, knowledge representation, and function-based engineering design. 

Infrastructure systems are modeled as multilayer networks and their behavior is simulated through the 

application of scalable function-failure logic designed to enhance risk mitigation guidance, while 

reducing the need for high-fidelity engineering data. In addition, the AHA Text Analytic System is 

proposed to enhance the population of the knowledge base through the development and application 

of infrastructure-specific named entity recognition. 
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Chapter 1: Introduction 

Motivation 

Infrastructure systems are the backbone of modern societies and are critical for well-functioning 

communities. Through agriculture, industrial, and technology innovation, the human species has been 

uniquely able to modify their habitat to effectively increase carrying capacity and allow a high degree 

of individual specialization among its population. Much of this success can be attributed directly to 

humankind’s ability to design and develop infrastructure systems that optimize the production and 

transportation of commodities, services, and information for industrial and domestic consumption. 

The engineering and technology innovations that occurred during and after the Industrial and 

Information Revolutions (IIR) created global and regional supply chains that have overcome 

significant geographic barriers between centralized commodity production and final consumption. 

Driven by economies of scale, these infrastructure systems and supply chains are often automated and 

optimized to allow for continued growth at the minimum cost possible. Hazards such as the COVID-

19 pandemic, Hurricane Maria, and recent, debilitating cyberattacks attest that this practice can result 

in overtaxed infrastructure systems and single points-of-failures that, if disrupted, lead to widespread 

goods and services shortages that transverse local, state, and national borders. Further, these 

infrastructure systems have coevolved into highly interconnected network-of-networks which are 

potentially vulnerable to cascading, escalating, and common cause failures [1, 2]. 

Since the PCCIP report raised awareness about the need to maintain, protect, and enhance the 

resilience of these infrastructure systems, many governments (e.g., United States) have developed 

critical infrastructure and emergency response programs to assess the risk of infrastructure failures, 

aid in mitigating vulnerabilities, and assistance in recovering from disruption. For example, 

presidential policy directive (PPD)-8 directed the U.S. Department of Homeland Security (DHS) to 

establish a national preparedness goal which states: “[a] secure and resilient nation with the 

capabilities required across the whole community to prevent, protect against, mitigate, respond to, 

and recover from the threats and hazards that pose the greatest risk” [3]. Core to achieving this goal 

is understanding how infrastructure systems enable critical community and government services and 

identify potential vulnerabilities that could pose significant risk to their operations [4, 5]. Further, 

PPD-21 established an additional policy intended to strengthen and maintain secure, functioning, and 

resilient critical infrastructure and redefined critical infrastructure as “[t]he physical and cyber 

systems and assets that are so vital to the United States that their incapacity or destruction would 

have a debilitating impact on our physical or economic security or public health or safety. The 

Nation's critical infrastructure provides the essential services that underpin American society” [6]. In 
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response, many federal, state, and local government agencies and organizations have developed 

infrastructure protection and risk mitigation plans, such as the National Infrastructure Protection Plan 

(NIPP), to address these policies’ requirements [7]. 

These policies, directives, and plans have resulted in the need for advanced analytic techniques to 

better identify, understand, and analyze infrastructure system criticality, risks, and resilience, 

including improving our ability to understand their interdependencies [8-11]. Since the PCCIP report 

was published in 1997, a substantial body of research has been devoted to this task. The increase in 

situational awareness brought about by this research has enabled resource planners and emergency 

response organizations to effectively mitigate many vulnerabilities and direct response-and-recovery 

efforts following a natural or human-induced event. However, events like the February 2021 Texas 

polar vortex, where a complex series of cascading disruptions to power, natural gas, and water 

infrastructure left homes and businesses without power and water, crippled supply chains and 

transportation networks, and sadly was directly or indirectly responsible for over 100 deaths [12]. 

This and analogous events demonstrate our ability to routinely identify and mitigate cross-sector 

vulnerabilities from an all-hazards perspective is critical but remains an open and difficult problem. 

This is primarily because critical infrastructures display a wide range of spatial, temporal, operational, 

organizational, and interdependent characteristics which can affect their ability to adapt to changing 

conditions. The inherent complexity of these systems can introduce subtle interactions and feedback 

mechanisms that often lead to unintended behavior and consequences during a disruption [13]. 

Understanding of the vulnerabilities and risks from an all-hazards perspective is further complicated 

by the fact that in most cases, cyber, physical, and supply domains have been addressed 

independently of one another. This separation has led to lack of a shared understanding of the threat 

and hazard landscape. All-hazards refers to the full spectrum of emergencies or disasters, from natural 

to technology to human-induced disruptions.  

From a research and technology point-of-view, there are three major implementation issues that 

impact the efficacy of currently available vulnerability and risk assessment methods and tools for 

critical infrastructure from an all-hazards perspective.  

• First is the lack of a holistic understanding of the vulnerability, hazard, and threat landscape 

from an integrated cyber, physical, supply, and interdependency perspective.  

• Second is the availability of actuarial data on the characteristics, operational state, and 

(inter)dependencies of critical infrastructure assets, facilities, and systems.  
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• Third is the accessibility of usable knowledge discovery and decision support capabilities that 

results in actionable information across all critical infrastructure sectors for vulnerability, 

risk, and consequence-driven decision-making. 

To effectively address these challenging national needs, a comprehensive knowledge discovery and 

decision support framework for critical infrastructure vulnerability and risk analysis must be 

developed. This will lead to enhanced understanding of these critical infrastructure systems’ 

dependencies and interdependencies. 

Problem Statement 

Due to the complexity of modeling the behavior of interconnected infrastructure systems, there has 

been an absence of analysis methods, tools, and technologies that can be used to investigate the risks 

to and resilience of interconnected infrastructure under all-hazard conditions at a national scale. This 

is partially due to the debate regarding what type of analytic methods are most appropriate to evaluate 

both risks and resilience when accounting for dependencies within complex network-of-networks 

environment. In addition, the lack of a consistent knowledge model to collect, store, and analyze 

critical infrastructure information across domains further complicates the analytic process. As a 

result, numerous federal and state organizations have developed suboptimal and sometimes 

duplicative solutions to address risk and resilience knowledge gaps. Moreover, these solutions fail to 

consider the need to provide a scalable, robust, and repeatable process for developing dependency 

models of interconnected infrastructure systems and document their spatial and temporal 

characteristics under all-hazard conditions for risk and resilience analysis. Therefore, an all-hazards 

analysis knowledge model and analysis capability needs to be developed, which can be used for 

infrastructure protection, continuity of operations, and by emergency management organizations to 

aid in whole community and mission resilience assessments from local to national scales.  

Research Objectives and Contributions 

This dissertation’s contribution is a novel all-hazards analysis framework (i.e., the AHA Framework) 

for critical infrastructure dependency modeling and analysis in defense of the following thesis: 

• Functional-basis-informed graphs are ideal for describing and analyzing 

interconnected infrastructure system behavior under all-hazard conditions.  

• Functional-basis-informed graphs provide an ideal structure for modeling 

function, commodity, and service flows of interconnected systems and facilitate 

scalable and repeatable assessments of system behaviors suitable for 

vulnerability, consequence, and risk analysis. 
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A functional basis for engineered systems is a standardized set of terminology and concepts required 

to develop meaningful infrastructure models. The proposed framework and supporting research will 

address the fundamental need for scalable and repeatable assessments capabilities to evaluate risks to 

and resilience of interconnected critical infrastructure across scales. This framework will provide 

three primary functions: (1) a standardized knowledge model for the collection, ingestion, and 

transformations of critical infrastructure dependency information, (2) cross-domain infrastructure 

dependency model development for all-hazard vulnerability and risk analysis, and (3) geospatially 

enable knowledge discovery and decision support methods for vulnerability, risk, and consequence 

analyses. 

The main contributions of this dissertation are: 

1. Novel application of advanced computer science techniques to enhance infrastructure 

resilience. 

2. Functional basis for engineered infrastructure systems providing a formal language to 

describe interconnected infrastructure systems. 

3. A scalable platform to collect, store, and model interconnected infrastructure systems 

information. 

4. A scalable and robust functional-spatio-temporal approach for interconnected infrastructure 

behavior analysis. 

Objective 1: Develop a Functional Basis for Engineered Infrastructure Systems to 

Facilitate a Scalable, Robust, and Repeatable Process for Developing Dependency Models 

of Interconnected Infrastructure Systems. 

Objective 1 seeks to develop a robust and adaptable knowledge model based on a functional basis of 

infrastructure systems to facilitate the collection, storage, and analysis of dependency information 

suitable for risk and resilience analysis in support of crisis action and strategic risk mitigation 

activities. Current methods used for the analysis and visualization of dependency information are 

often challenged by the high volume and variety of data associated with infrastructure systems and 

supply chains. These issues are further compounded by the dynamic nature of infrastructure networks 

and the need to correlate data collected from multiple organizations across a region or the Nation. 

Hypothesis: 

Developing a functional basis of engineered infrastructure systems will improve our ability to 

collect consistent dependency information of infrastructure systems which is suitable for the risk 

and resilience analysis. 
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Objective 2: Develop a Functional-flow Network Modeling Framework to Model the 

Behavior of Engineered Infrastructure Systems for the Purpose of Risk and Resilience 

Assessments. 

Objective 2 seeks to determine whether functional-flow models are suitable for conducting scalable 

and repeatable assessments as well as risk and resilience assessments of an engineered infrastructure 

system and supply chains at different scales and resolutions. A functional-flow models is a graph-

based description of a system or supply chain in terms of the elementary functions that are required to 

achieve its overall function or purpose. 

Hypothesis: 

Functional-flow models are suitable for modeling the behavior of infrastructure systems and 

supply chains. 

Objective 3: Investigate the Scalability and Robustness of Functional-flow Network 

Models for Simulating the Behavior of Interconnected Infrastructure Systems. 

Objective 3 seeks to determine whether functional-flow models are suitable for conducting scalable 

and repeatable assessments as well as risk and resilience assessments of an interconnected engineered 

infrastructure system and supply chains at different scales and resolutions. 

Hypothesis: 

Functional-flow dependency models are suitable for simulating the behavior of interconnected 

infrastructure systems. 

Objective 4: Develop a Graph-based Knowledge Management System to Enable the 

Collection, Processing, and Analysis of Structured and Unstructured Infrastructure Data 

Required to Model Infrastructure Behavior under All Hazards. 

Objective 4 seeks to develop a graph-based knowledge management system to automate data 

collection and processing pipelines to increase the efficiency of infrastructure dependency model 

development. Advances in information extraction and retrieval, such as natural language 

processing and understanding research, show great potential in optimizing the collection, 

processing, and synthesis of large volumes of infrastructure data. 

Hypothesis:  

Advances in information extraction and retrieval can increase the efficiency of dependency model 

creation and improve knowledge management. 
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Dissertation Organization 

The following chapters discuss how functional-flow dependency models and automated data 

collection methods can be used effectively to analyze the risk to and resilience of interconnected 

infrastructure systems. The remainder of the dissertation is organized as follows: 

1. “Chapter 2: Background and Literature Review” provides a background and a review of 

works related to infrastructure dependency modeling and simulation. 

2. “Chapter 3: All-Hazards Analysis (AHA) Methodology” develops and evaluates a proposed 

all-hazards analysis framework and knowledge model for all-hazards analysis of 

interconnected infrastructure systems in support of infrastructure protection and emergency 

management. 

3. “Chapter 4: AHA Knowledge Management System” presents the AHA knowledge 

management system for collecting and analyzing dependency information of interconnected 

infrastructure systems for all-hazards risk and resilience analysis. 

4. “Chapter 5: Application of the AHA Methodology to the Colonial Pipeline System” presents 

the development and analysis of cascaded function-flow models for the Colonial Pipeline 

System. The resulting model is validated against the 2021 Ransomware attack. 

5. “Chapter 6: Preliminary Cyber-Physical Functional-Flow Model Analysis” presents the 

application of the proposed approach to cyber-physical systems and preliminary results. 

6. “Chapter 7: AHA Data Collection and Processing” proposes the AHA Text Analytic System 

(TAS) to aid in knowledge base population. TAS leverages named entity recognition to 

extract facility information from unstructured infrastructure system information. 

7. Finally, “Chapter 8: Conclusions and Future Work” discusses the conclusions of the research 

findings, including limitations and potential future work. 
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Chapter 2: Background and Literature Review 

Due to the complexity of infrastructure dependencies and interdependencies, advanced computer 

science techniques are required to collect and analyze them. This chapter provides an overview of key 

concepts and work related to dependency analysis and knowledge creation for risk and resilience 

studies of interconnected infrastructure systems.  

Infrastructure System Concepts 

The following section provides a description of key concepts related to infrastructure systems. 

Infrastructure 

Understandably, infrastructure itself is at the core of infrastructure analysis; for the purpose of this 

dissertation, infrastructure is defined as engineered systems and/or facilities that enable and enhance 

a community’s ability to meet societal demands by facilitating the production, transport 

(transmission), and consumption of goods and services. An engineered system is defined as a system 

designed or adapted to interact with an anticipated operational environment to achieve one or more 

intended purposes while complying with applicable constraints [14]. These systems can be composed 

of multiple interconnected facilities/assets, components, and software that perform specific actions to 

enable the functions of the system. It is reasonable to assume that engineered systems were 

deliberately designed and constructed to perform specific functions, thus their functions and purpose 

can be known. 

Infrastructure Dependency 

Infrastructure dependencies have been widely reported as a topic in scientific and engineering 

literature, and there are numerous papers that propose different taxonomies to characterize specific 

types of dependencies. However, many of these frameworks expand the concept for dependency 

beyond functional requirements and include dependency classes that are more akin to operational 

influencers (i.e., policy and regulatory requirements) and hazards (i.e., spatial proximity/geography) 

[10, 15]. For this reason, the U.S. DHS’s 2013 NIPP is used which defines a dependency as “[t]he 

one-directional reliance of an asset, system, network, or collection thereof—within or across 

sectors—on an input, interaction, or other requirement from other sources in order to function 

properly” [7]. 

Linking this definition with the definition of infrastructure provides a coherent description of 

interconnected infrastructure systems that can be leveraged to clearly articulate both their functional 

(i.e., cyber and physical) requirements and consequences of failure. 
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Key Resources 

Key resources are human and natural resources that are utilized, extracted, or managed to meet 

societal demands by facilitating the production and consumption of goods and services. 

Supply Chain 

There are many definitions for a supply chain such as “the series of linked stages in a supply network 

along which a particular set of goods or services flows” [16]. The DHS Supply Chain Resilience 

Guide defines a supply chain as “the socio-technical network that identifies, targets, and fulfills 

demand. It is the process of deciding what, when, and how much should move to where” [17]. 

However, for the purpose of this dissertation, a modified version of the definition provide in National 

Institute of Standards and Technology (NIST) SP 800-161 will be used, and supply chains will be 

defined as a network of retailer, distributor, transporter, storage, and production facilities that 

participate in the sale, delivery, and production of a particular good or service [18]. 

Risk 

DHS defines risk as the “potential for an adverse outcome assessed as a function of threats, 

vulnerabilities, and consequences associated with an incident, event, or occurrence” [19]. The 

concept of risk in infrastructure systems is based on identifying the threat and hazards and the 

possible consequences and losses associated with their occurrence [20]. The authors contend it is not 

feasible to fully protect infrastructure systems from all hazards due to a constantly evolving threat 

landscape; however through careful analysis and planning, mitigations can be put in place to reduce 

risk to an acceptable level. Significant amounts of research have been conducted on infrastructure risk 

[21, 22]. 

Resilience 

The concept of resilience has widely been reported in academic research to assess critical 

infrastructure [8, 20, 23-29]. DHS defines resilience as the “ability of systems, infrastructures, 

government, business, communities, and individuals to resist, tolerate, absorb, recover from, prepare 

for, or adapt to an adverse occurrence that causes harm, destruction, or loss” [19]. In the context of 

infrastructure systems, this often refers to the robustness, survivability, and recoverability of a system, 

asset, or component performance when exposed to a threat or hazard and is generally measured by its 

quality of service as shown in Figure 2-1. Most current research on resilience is focused on the 

development of metrics to better inform the risk mitigation and resilience decision-making process. 
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Figure 2-1 Resilience Curve. 

All Hazards 

All hazards “means any threat or incident, natural or artificial, that warrants action to protect life, 

property, the environment, and public health or safety, and to minimize disruptions of government, 

social, or economic activities. It includes natural disasters, cyber incidents, industrial accidents, 

pandemics, acts of terrorism, sabotage, and destructive criminal activity targeting critical 

infrastructure” [6]. When considering the concept of all hazards, it is important to consider “that 

warrant action” component of the definition, which helps limit the number of hazards or threats to a 

specific asset or component that requires attention. For example, landslides are not a direct concern 

for facilities that are not located in mountainous areas. 

Infrastructure Analysis Concepts 

Infrastructure systems and the supply chains they enable have evolved to form a dynamic and highly 

interconnected spatial network-of-networks that require cross-system and time-dependent interactions 

to function properly. Understanding these interactions has interested researchers from a variety of 

fields from engineering to social science; interdisciplinary efforts to quantify risk and improve 

resilience have incorporated modeling of infrastructure systems and simulations of disruptions to 

prepare or respond to hazard events. To understand and characterize the resulting complex network-

of-networks behaviors, numerous analytic approaches have been proposed and findings published in 

the scientific and engineering literature, including multiple review and survey articles [8, 9, 11, 26, 

29, 30]. For this reason, an overview of the more significant literature reviews of dependency 



10 

 

research contributions, such as Satumtira and Dueñas-Osorio [11] and Ouyang [9], which focus on 

the variety of modeling and simulation approaches to describe and quantify dependencies, risk, 

cascading impacts, and their impact on overall resilience across time and space, will be provided. 

Satumtira and Dueñas-Osorio examined the available recurring themes and dimensions of 

infrastructure dependency modeling and simulation research in the published literature [31]. In their 

review, they found the chosen mathematical modeling method provided the strongest distinction 

between approach and included input-output, agent-based, and network (graph theory) techniques. 

Other cited dimensions of study include the objective of the modeling effort (e.g., risk and 

vulnerability analysis, mitigation measures, prediction, and failure propagation awareness), scale of 

analysis (system of systems) to specific networks and assets, and the targeted discipline (engineering 

[e.g., to study optimization of resources for reliability], economics [e.g., to study financial risk], and 

social sciences [e.g., to study decision-making and governance]). 

Ouyang’s review of infrastructure interdependency research centered on the emerging concept of 

infrastructure system resilience [9]. While the focus was on the modeling approaches to evaluate 

resilience, the author provided a classification of interdependency types—not all are physical (based 

on materials input and output between systems) but can be cyber (information), geographical (based 

on proximity), logical (policy, regulatory, or market-based), and even more conceptual (quantified by 

criticality or exclusivity); these distinctions are expanded typologies of [10] and [32]. Models, in their 

context, include empirical approaches, based on historical accidents or disaster data and expert 

experience, that reconstruct interdependencies from reports and records of past events such as 

hurricanes [33] or terror attacks [34]. Similar to [11], the review delineates agent-based and economic 

approaches and details the growing body of dependency research that leverages network-based 

approaches, further differentiating between those based on topology of networks [1], [31] and flow-

based methods that represent capacities and storage at nodes and along links [35]. 

In both reviews, discussions of limitations to infrastructure interdependency studies began with the 

challenge of data access and collection. Empirical approaches to infer interdependencies are limited 

in scope because they are based on the type of hazard or incident and the incident context [36] and 

lack a uniform data collection method (including definitions of key concepts like resilience or types 

of interdependencies). Relevant data for useful modeling can be difficult to access due to 

confidentiality, business sensitivity, or liability concerns [10], and research innovations include the 

discovery of novel techniques for handling such sensitivities. 
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Data acquisition and the availability of accurate validation techniques using limited data is one of the 

several interdependency research gaps noted recently by Haggag and Ezzeldin while reviewing the 

interdependence of infrastructure to analyze the resilience of cities [8]. Their text-processing meta-

analysis of over 120 publications in the area led to an inductive classification into nine topic areas, 

including definitions and descriptions of resilience, risk, and critical infrastructure in general, a 

survey of infrastructure interdependency modeling techniques (similar to the focus of other reviews), 

and a focused topic area of applying complex network theory, which continues to generate particular 

interest in the field. Further distinction in this analysis was between physical and functional networks, 

mirroring the topology vs. flow distinctions in [35]. Along with the challenge of data access and 

completeness, other gaps in research are presented by the authors, including the incomplete 

quantification of dependency types, the inability of research to scale entire systems of systems, the 

lack of linkages between hazards to the performance of systems, and the challenge of incorporating 

time and the dynamic behavior of systems to respond to shocks and changes. 

The following subsections provide additional background on system engineering (SE), geographic 

information systems, network theory, and discrete event simulation approaches due to their relevance 

to this research. These concepts were selected because the SE provides domain-specific concepts 

related to the design and construction of infrastructure, and network theory provides intuitive and 

natural mathematical constructs to describe, model, and simulate infrastructure behavior. 

System Engineering 

SE is defined as “a methodical, multi-disciplinary approach for the design, realization, technical 

management, operations, and retirement of a system” [37]. As such, SE provides a suite of 

engineering-based design techniques to ensure that a proposed system will achieve the stakeholders’ 

functional, physical, and operational performance requirements once built [38-40]. The methods and 

techniques used during the design phase, which is composed of establishing stakeholder expectations, 

generating technical requirements, preforming logical decomposition, and evaluating design 

solutions, are of particular interest to this research. Adapting SE design approaches and techniques, 

such as integrated definition for function modeling (or IDEF) methods, can provide robust and 

repeatable techniques to reverse-engineer existing infrastructure systems to better understand their as-

built operating envelope and consequences of disrupting one or more of a functional requirement’s 

components. Additional techniques include functional-flow block diagrams (FFBD), data flow 

diagrams, enhanced FFBD, and behavior diagrams [41]. 

As one might expect, functional modeling has become a critical task in SE to describe the intent of a 

system or products. Reference [42] proposed the concept of a functional basis to provide a consistent 
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approach to describe and model a product’s function independent of a specific physical design. The 

author’s primary goal was to provide a tool to aid mechanical engineers in evaluating design 

decisions earlier in a product life cycle by modeling flows (inputs/outputs) required to enable the 

products intended functions and sub-functions. The resulting functional basis decomposed flows into 

three primary classes, energy, materials, and signals, and functions into eight classes and 24 basic 

functions/operations (e.g., store, supply, and extract). The complete functional basis can be found in 

[43], and a comparison of other functional basis approaches can in found in [44]. 

One of the major steps in the SE design process is the functional design review which is intended to 

evaluate functions and determine what effects their disruption would have on system behavior prior to 

the more costly physical design phase. An example of tools used during this phase include failure 

mode and effects analysis, fault tree analysis, and model-based diagnosis; however, the functional-

failure identification and propagation (FFIP) framework presented in [45] is the most relevant for this 

research. The FFIP framework utilizes behavioral simulations to evaluate fault propagation under 

different event scenarios. The FFIP framework leverages a functional basis to describe component 

functionality and configuration flow graphs (CFG) to define the system topology. The behavior of the 

system is modeled by linking the reusable behavior models of the systems components that represent 

both discrete nominal and faulty modes which are derived from input-output relations and underlying 

first principles. Transitions between modes are controlled by stated variables and are encoded as state 

transition diagrams, which the author refers to as function-failure logic (FFL). 

Network (Graph) Theory Approaches 

Most infrastructure systems are composed of a network of interconnected assets and components that 

facilitate the production, transport (transmission), and consumption of a good or service. This 

characteristic makes network-based analysis techniques ideal for evaluating both the structure, 

function, and behavior of interconnected infrastructure systems. This section provides an overview of 

the key network theory concepts and recent research related to the analysis of existing real-world 

interconnected infrastructure systems. 

There have been significant works on the concept of network theory including [46-49]. In [48, 49], 

the authors review the body of research related to multilayer networks and establish they are well 

suited for the study of interconnected real-world infrastructure systems. Reference [48] defines 

multilayer networks as networks that “explicitly incorporate multiple channels of connectivity and 

constitute the natural environment to describe systems interconnected through different categories of 

connection: each channel (relationship, activity, category) is represented by a layer and the same node 

or entity may have different kinds of interactions (different set of neighbors in each layer).” 
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Reference [49] highlights that the rapid expansion of research literatures in this domain has resulted 

disparate terminology and lack of consensus on mathematical formulations, thus each of these 

reviews provides detailed mathematical definitions of several variations of multilayer networks. 

For infrastructure related studies, [50] provides one of the first known works demonstrating that 

multigraphs provide a solid mathematical foundation for representing infrastructures and their 

dependencies. In [51], the authors extend the directed multigraph model to include the concepts of 

production, consumption, and storage of a dependency type and apply the model to synthetic 

representations of interconnected power, communication, and natural gas infrastructure systems. 

Inclusion of these time-dependent variables enabled dynamic analysis of integrated system behavior. 

Similarly, the authors in [52] advanced the use of multilayer networks models in their study of the 

New York City power, communication, and transport (train) infrastructure by including 

multicommodity system capacity. Reference [25] leverages these multilayer network analysis 

techniques to evaluate the behavior of interdependent infrastructure systems during disruptive events 

as well as the recovery phase to provide two novel metrics for the quantification of risk and 

resilience. 

Geographic Information Systems 

Infrastructure systems and supply chains form spatial networks which are inherently influenced by 

geography, thus geographic information systems (GIS) provide powerful platforms to collect, store, 

and visualize information about them and model phenomena that affect their operations. Reference 

[47] provides a review of spatial networks, which the author defines as a network with nodes located 

in a space equipped with a metric. Recognizing that infrastructure systems and supply chains 

inherently form spatial networks, researchers have long used GISs to map, analyze, and visualize 

infrastructure system information as well as the risks posed to them by artificial and natural hazards 

[52-55]. 

System Dynamics and Discrete Event Simulation 

System dynamics (SD) and discrete event simulation (DES) models are used to understand system 

behavior with respect to time and compare their performance under different conditions [56, 57]. SD 

is a methodology commonly used to capture flows and feedback between components of the model in 

a causal-loop diagram. SD approaches are generally perceived to be ideal for strategic decision-

making support. In contrast, DES, as the name implies, is a simulation technique that is driven by 

deterministic or stochastic events and used to simulate dynamic system behavior and is considered a 

better fit to inform tactical decisions. Reference [58] defines DES as “the modelling of a system as it 

evolves over time by a representation in which the state variables change instantaneously at separate 
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points in time. These points in time are the ones at which an event occurs, where an event is defined 

as an instantaneous occurrence that may change the state of the system.” Both SD and DES 

approaches also have advantages over high-fidelity physics-based techniques by requiring less 

detailed engineering information. This makes them useful for evaluating interconnected infrastructure 

behavior, especially when access to real-time data is not available. For example, [59] leveraged DES 

to simulate the functional loss and restoration of the Napa water system following the 2014 

earthquake. For a more in-depth discussion on the difference of the two approaches, refer to [56, 57]. 

Knowledge Representation, Generation, and Curation 

Knowledge Graphs 

Understanding interconnected infrastructure system behavior across scales and under all hazards 

requires integrating and synthetizing disparate concepts and information across many engineering, 

modeling, and scientific domains. This requirement has challenged researchers’ ability to develop 

scalable and robust methods to study their structure and behavior; however, recent research on 

knowledge graphs has demonstrated researchers ability to overcome many of the challenges [60]. 

Through an analysis of related work, Ehrlinger and Wöß [61] define a knowledge graph, as a graph 

that “acquires and integrates information into an ontology and applies a reasoner to derive new 

knowledge.” As such, knowledge graphs represent a formal understanding of a domain or topic and 

can be more clearly defined as “a structured representation of facts, consisting of entities, 

relationships, and semantic descriptions. Entities can be real-world objects and abstract concepts, 

relationships represent the relation between entities, and semantic descriptions of entities, and their 

relationships contain types and properties with a well-defined meaning [62].” This is supported by 

Gruber’s [63] description of an ontology as formally represented knowledge that is based on a 

specification of a conceptualization or a “abstract, simplified view of the world that we wish to 

represent for some purpose.” Gruber goes on to propose the following definition of an ontology as 

“the names of entities in the universe of discourse (e.g., classes, relations, functions, and other 

objects) with human readable text describing what the names mean and formal axioms that constrain 

the interpretation and well-formed used of these terms.” Similarly, [42, 43] present a functional basis 

for engineering design which they describe as a “formal function representation” that consists of “a 

standardized set of function-related terminology” which is intended to provide a common design 

language for functional modeling in engineering. Thus, a functional basis can be considered a specific 

type of ontology, and the two terms may be used to describe the same concept. 
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Further, Bryant et al. [64] argue that based on the ontologies in Robert G. Chenhall’s Nomenclature 

for Museum Cataloging, logical naming systems should provide three levels of relationships based on 

the function of the object: 

1. A controlled list of major categories, which are limited and easily remembered functional 

classes. 

2. A controlled list of classification terms, which are subdivisions of the major categories. 

3. An open vocabulary of object names used to identify individual artifacts. 

The authors contend the use of a component function as a central and unifying concept provides the 

ideal structure for engineered system design and alignment through the “theory of knowledge capture 

and representation and the theory of design” [64]. This is supported by [65], which describes and 

defines the concept of domain-specific knowledge graphs as “an explicit conceptualization to a high-

level subject-matter domain and its specific subdomains represented in terms of semantically 

interrelated entities and relations.” These properties make the concept of a domain-specific 

knowledge graph ideal for constructing a knowledge base for conducting risk and resilience analysis 

of existing infrastructure systems based on the idea that existing infrastructure systems were designed 

and built to provide specific functions. Additionally, the authors present a taxonomy for knowledge 

graph construction shown in Figure 2-2 below. 

 

Figure 2-2 A Taxonomy for KG Construction [65]. 

Web Content Mining 

Web content mining is a field of research that focuses on developing methods for the automated 

discovery of information and knowledge from unstructured and semi-structured Web data [66-71]. It 
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leverages methods and techniques from the fields of information retrieval (IR), information extraction 

(IE), machine learning, natural language processing (NLP), and data mining. Web content mining is 

also closely related to web structure (link) and web usage mining. Web content mining is challenging 

due to the diversity and quality of content, which is often noisy and dynamic. A brief overview of IR 

and IE is provided in this section. 

Historically, information retrieval research focused on the automated retrieval of relevant documents 

from structured resources such as databases; however more recently, IR research has expanded to 

include retrieval of Web documents and resources by indexing, categorizing, and classifying 

unstructured text [66-71] and had been recently defined by Manning et al. as the processes of “finding 

material (usually documents) of an unstructured nature (usually text) that satisfies an information 

need from within large collections (usually stored on computers) [69]”. IE can be considered a 

subdomain of IR and is based on NLP with the intent to derive structured information for 

unstructured text [68, 70]. In general, IE identifies concepts related to a specific domain while 

ignoring irrelevant information. 

Natural Language Processing 

NLP is a field of research that seeks to develop computational methods to automatically analyze the 

human language through deep understanding [72-75]. NLP research encompasses both written and 

spoken language processing, with three primary levels of processing: syntactic, semantic, and 

pragmatic. Early research in the field focused on developing syntactic approaches. These approaches 

centered on detecting and tagging the syntactic structure of written language, such a part of speech 

and sentence detection [75]. More recent research has focused the extraction of semantic content to 

better understand context through techniques such as the word-sense disambiguation process [76]. 

Pragmatic research attempts determine meaning from the context of the text to infer hidden meaning, 

which is critical for deep understanding [73, 74]. 

Historically, the primary approach used to develop natural language systems was statistical NLP [74, 

77]. The statistical NLP approach is generally preferred because it can leverage machine-learning 

techniques to facilitate automated learning, and it reduces the need to maintain complex rule sets [77]. 

This approach is strongly rooted in probability, Bayesian, and information theories and had been 

shown to be very robust when tested with a large volume of text [78]. Since most statistical NLP 

techniques are considered supervised techniques, providing a “large enough” training set can become 

challenging. More recently, advances in machine-learning research, specifically the application of 

artificial neural networks (ANN), have reported great progress in domain-specific NLP tasks [68, 73]; 

however as [79] concludes, many of these studies are highly engineered, thus lack board applicability 
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and only report the best case results. Furthermore, the authors highlight the need for greater research 

on pretraining methodologies to overcome the variability of available domain-specific corpora. 

Text Corpus 

As stated above, corpus development is one of the most important and essential tasks for NLP 

applications. As defined by Sinclair, a corpus is “a collection of pieces of language text in electronic 

form, selected according to external criteria to represent, as far as possible, a language or language 

variety as a source of data for linguistic research. [80]” Further, Sinclair proposes ten guiding 

principles that should be considered when developing a corpus for linguistics research. These 

principles are shown in Figure 2-3. An excellent example of a corpus that generally adheres to these 

principles is the standard sample of Present-day English, commonly referred to as the Brown Corpus 

[81]. It was intended to capture a diverse range American English usage to facilitate comparative 

analysis. The Brown Corpus was published in 1964 and contains over 1 million words from 500 

sources divided into hierarchical categories. It was later revised in 1979. The 1979 revision included 

“tagged” annotation content, making it suitable for supervised machine-learning applications, and it 

has been widely used for document categorization research. 

 

Figure 2-3 Summarization of Sinclair's Guiding Principles for Corpus Development. 

In corpus development, markup or annotation is one of the most important tasks needed to make a 

corpus useful for linguistic IE. Examples of commonly used annotations include parts of speech, 
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phrase structure (syntactic parsing), and named entities. Parts of speech are the most widely used 

annotation and critical for many other natural language process tasks [82]. It involves tagging every 

token in a corpus with the proper part of speech (i.e., <noun>computer</noun>). Other word-level 

features include case, punctuation, digit, morphology, and function. This is compared to phrase 

structure parsing which is conducted at the sentence level and annotates noun and verb phrase 

structures. 

Documents Categorization 

Document categorization is an essential task when organizing and processing large collections of 

documents for IR and extraction applications. Document categorization methods seek to bin 

documents into topics and typically utilize machine-learning techniques such as support vector 

machines (SVM), hidden Markov models (HMM), and convolutional neural networks (CNN) [83, 

84]. There are two general approaches to document categorization which either use unsupervised or 

supervised methods. Unsupervised methods are typically referred to as topic modeling and attempt to 

derive classes by structuring the content as a bag of words. Supervised methods attempt to assign 

input documents to predefine classes based on priori knowledge obtained from an annotated training 

set. Typically, the most effective supervised learning approach has utilized a hierarchical 

classification scheme to mimic relationship of concepts within a domain [83-85]. 

Name Entity Recognition and Classification 

Name entity recognition and classification (NERC) is a subdomain of NLP and is commonly used for 

text-based IE, retrieval, and mining applications, such as web content mining and knowledge base 

population (KBP) [86-89]. The first and most common application of NERC is the extraction of 

proper names relating to persons, locations, and organizations [90-92]. However, NERC techniques 

have also been widely applied in numerous domains to extract domain-specific terms [93]. Figure 2-4 

shows an example of marked up text utilizing the Message Understand Conference (MUC) 7 

annotation classes [94]. 

 

Figure 2-4 Named Entity Example. 

Numerous conferences and workshops have been devoted to addressing the challenges of NERC, 

including the MUC, Automated Content Extraction program, and Conference on Natural Language 
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Learning (CoNLL) [91]. This has resulted in many diverse approaches and strategies. The simplest 

approach to name entity recognition (NER) is the use of a dictionary or keyword list of all known 

entities of interest that is used to iteratively search each resource for entities contained within a 

gazette or dictionary. However, this approach is challenged by the difficulties of creating and 

maintaining comprehensive lists of all possible entities, as well as resolving ambiguities [95]. To 

overcome this limitation, methods for automatically labeling textual features as named entities have 

been developed using rule-based approaches and machine-learning algorithms, such as maximum 

entropy and continuous random fields [96-98]. More recently, ANN and other deep-learning methods 

have been applied to the NER task, such as the work by Chen and Nichols [99] that applied a 

bidirectional long-short term memory (LSTM) unit and CNN to achieve superior NER performance 

over traditional methods. These results are consistent with a surveys of deep-learning approaches 

conducted by [79, 100]; however as [79] concludes, these results come with significant data 

requirements. It is also important to note that Schmitt et al. [101] found contrary results when directly 

comparing five publicly available NER software libraries against two well-known test corpora, where 

the CNN base solution was the least performant. 

Currently, there are several publicly available NER models that can be utilized within open-source 

NLP machine-learning toolkits, such the Apache Software Foundation’s OpenNLP Name Finder, 

Stanford NER, SpaCy, and Flair [101, 102]. The OpenNLP Name Finder algorithm is based on the 

maximum entropy (MAXENT) algorithm which is a statistical technique that maintains as much 

uncertainty as possible based on a set of constraints to classify without any prior assumptions about 

the probability distribution. For a comprehensive review of MAXENT as it applies to NLP, review 

Berger et al. [103]. The Stanford NER is a probabilistic-named entity classifier based on conditional 

random fields (CRF) [104]. It incorporates non-local structures using Gibbs sampling, a Markov 

chain Monte Carlo algorithm, and simulated annealing to produce long distance dependency models 

often found in natural languages and has been demonstrated to be effective for named entity 

extraction. These models are most often trained to recognize named entities defined on the MUC-7 

classes; including people, locations, date, and organizations [94]. As noted above, [101] made a direct 

comparison of widely available NER solutions, and they found the Stanford NER outperformed the 

other solutions test. 

Summary 

In this chapter, a review of selected works that are relevant to the analysis of interconnected 

infrastructure systems and knowledge base population were presented. A few observations from this 

literature review include: 



20 

 

• Real-world infrastructure systems can be modeled as networks (graphs) 

o (Physical) engineered systems are not random 

▪ Physical infrastructure form static topologies 

• Physical infrastructure cannot change in real time and is not adaptive in an 

operational context 

▪ The state of components can be dynamic, allowing for adaptive operational 

topologies. 

o Different types of infrastructure form different topologies depending on the intended 

purpose/function of the system, such as 

▪ Transmission, distribution, or gathering 

▪ Production, transmission. consumption  

• Recent advancement of knowledge graphs makes them ideal for capturing knowledge about 

real-world infrastructures 

• NLP techniques can enhance knowledge base populations. 

The research presented in the following chapters joins this body of literature in addressing the 

challenges of analyzing interconnected infrastructure systems, utilizing graph representation 

techniques to model nodes and links in systems (and between systems), and proposing novel 

techniques to create defensible and verifiable infrastructure dependency data with a multi-source 

approach. The framework differentiates types and quantities of dependencies, models generic types of 

infrastructure to enable rapid development of dependency information for high-level analysis, and 

builds capabilities to enhance situational awareness and assess resilience.
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Chapter 3:  All-Hazards Analysis (AHA) Methodology 

In this chapter, the all-hazards analysis (AHA) methodology, an analytic framework developed to 

evaluate critical infrastructure dependencies and therefore identify potential vulnerabilities and 

consequences of system disruption, is introduced. AHA methodology’s objective is to provide a 

scalable, robust, and repeatable process for developing and analyzing functional dependency models 

of interconnected infrastructure systems and document their spatial and temporal characteristics under 

all-hazard conditions. The AHA methodology is influenced by and attempts to synthesize the 

concepts presented in [42, 44, 45, 50-52, 55] and is intended to be dynamic and adaptive to enable 

analysis of emerging threat and hazards events. 

Since the primary goal of this research is to evaluate the use of functional-basis-informed graphs for 

the purpose of modeling and simulating the behavior of interconnected infrastructure systems under 

all-hazard conditions for vulnerability, consequence, and risk analysis; the AHA methodology is 

influenced by and aligned to a simulation project life cycle, such as the one present by Robinson 

[105] as shown in shown in Figure 3-1. 

 

Figure 3-1 The Conceptual Model in the Simulation Project Life Cycle [105]. 

As Robinson acknowledges, the verification and validation activities are not explicitly described in 

the figure above but should be carried out in parallel with each of the four key process: conceptual 
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modeling, model coding, experimentation, and implementation. The following sections provide a 

review of the research thesis and objectives, as well as a detailed description of the proposed AHA 

methodology. 

Research Thesis and Objectives 

• Thesis: Functional-basis-informed graphs are ideal for describing and analyzing 

interconnected infrastructure system behavior under all-hazard conditions. Functional-basis-

informed graphs provide an optimal structure for modeling function, commodity, and service 

flows of interconnected systems and facilitate scalable and repeatable assessments of system 

behaviors suitable for vulnerability, consequence, and risk analysis. 

• Objective 1: Develop a functional basis for engineered infrastructure systems to facilitate a 

scalable, robust, and repeatable process for developing dependency models of interconnected 

infrastructure systems. 

• Objective 2: Develop a functional-flow network modeling framework to model the behavior 

of engineered infrastructure systems for the purpose of risk and resilience assessments. 

• Objective 3: Assess the ability of functional-flow network models to simulate the behavior of 

interconnected infrastructure systems, including their scalability and robustness. 

• Objective 4: Develop a graph-based knowledge management system to enable the collection, 

processing, and analysis of structured and unstructured infrastructure data required to model 

infrastructure behavior under all hazards. 

Terminology 

One of major characteristics of a knowledge graph is a clear, standardized, and interlinked set of 

terminology used to describe the domain interest. Table 3-1 provides a list of terms that are core to 

the AHA knowledge representation and are defined here for clarity. Where possible, every attempt 

was made to align definitions from [42, 43, 64] and Sector-Specific Agency reports.  
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Table 3-1 Knowledge Graph Terminology. 

Terminology Definition Source 

Functional Basis A design language consisting of a set of functions and a 

set of dependencies that are used to enable a system 

function. 

Adapted from [30] 

System Function The primary input/output relationship of an infrastructure 

system, having the purpose of performing an overall task, 

typically stated in verb-object form. 

Adapted from [30] 

Function A description of an operation to be performed by an asset 

or device, expressed as the active verb of the sub-

function. 

Adapted from [30] 

Dependency 

Type (Flow) 

A commodity, service, or datum that are exchanged 

between facilities/sub-facilities with respect to time. 

Expressed as the object of the function, a flow is the 

recipient of the function’s operation. 

Adapted from [30] 

Facility/Assets A structure or facility that has value and supports the 

provisioning of a commodity or service. 

Adapted from the 

DHS Lexicon 

Sub-Facility/ 

Components 

An independently deployable device that exposes its 

functionality through a set of services accessed via 

well-defined interfaces and has value and support the 

provisioning of a good or service. 

Adapted from the 

DHS Lexicon 

Dependency 

Profile 

A description of a facility or sub-facility in terms of 

dependencies that are required to achieve its overall 

function or purpose. 

— 

Dependency 

Model 

A graph-based description of a system or supply chain in 

terms of the elementary functions that are required to 

achieve its overall function or purpose. 

Adapted from [30] 

Specific Property An attribute or parameter that describes or characterizes a 

facility or dependency relationship. 

— 

 



24 

AHA Real-World Problem Situation 

Federal, state, and local risk and emergency management organizations, as well as infrastructure 

owners require information on infrastructure systems and their dependencies to inform their risk and 

recovery decision-making processes. For example, the Cybersecurity and Infrastructure Security 

Agency (CISA) has the goal “to reduce risks, and strengthen resilience of, America’s critical 

infrastructure,” which they intend to achieve by [106]: 

• Expanding visibility of risks to infrastructure, systems, and networks 

• Advancing CISA’s risk analytic capabilities and methodologies 

• Enhancing CISA’s security and risk mitigation guidance and impact 

• Building greater stakeholder capacity in infrastructure and network security and resilience 

• Increasing CISA’s ability to respond to threats and incidents. 

Similarly, the chair of the Joints Chiefs of Staff (CJCS) has recently published the Joint Risk Analysis 

Methodology (JRAM) to establish a common risk lexicon to promote consistency across the across 

the Department of Defense (DoD) complex to better inform decisions and action on whether to 

accept, avoid, mitigate, or transfer risks related DoD operations [107]. The joint risk framework is 

shown in Figure 3-2 below. 
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.  

Figure 3-2 CJCS Joint Risk Framework. 

For federal, state, local, territorial, tribal, and private sector organizations to realize these objectives, 

they need to be able to address several critical questions at each stage of the risk management and 

emergency response continuum. Figure 3-3 provides a breakdown of the major activities across the 

risk management and recovery continuum, and Table 3-2 provides a set of core questions by each 

stage derived from [4, 5, 17, 107-110]. 
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Figure 3-3 Risk and Resilience Management Continuum. 

Table 3-2 Core Infrastructure System Risk and Resilience Questions. 

Core Infrastructure System Risk and Resilience Questions by Stage 

Stage Question and Context 

Strategic Risk and 

Resilience 

Are there national, regional, or local risks associated with the disruption of an 

infrastructure system, and is there a potential for cascading or escalating 

failures? Requires knowledge of consequences, threats, and vulnerabilities in 

the context of the system’s operational environment, dependencies, and 

system geography. 

Strategic Risk and 

Resilience 

What are the potential threats and hazards that could impact the operation of 

an infrastructure system? Requires knowledge of operational environment 

requirements, dependencies, system geography, and threat/hazard potential. 

Strategic Risk and 

Resilience/ 

Mitigation-COOP 

What are the potential mitigation options that can reduce risks and enhance 

resilience of an infrastructure system? Requires knowledge of operational 

environment requirements, dependencies, system geography, threat/hazard 

potential, and consequences of disruption. 
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Table 3-2 Continued. 

Core Infrastructure System Risk and Resilience Questions by Stage 

Stage Question and Context 

Mitigation-COOP What mitigation options are most effective in reducing national, regional, or 

local risks from potential cascading or escalating failures and enhancing 

overall community resilience? Requires knowledge of operational 

environment requirements, dependencies, system geography, threat/hazard 

potential, consequences of disruption, and mitigation options. 

Mitigation-COOP What activities must occur to effectively respond to and recover from a 

disruptive event? What training is required to enable an optimal response? 

Crisis Action If an infrastructure failure occurs, what are the national, regional, and local 

impacts? What is the significance of the failure? 

Crisis Action How long until impacts of an infrastructure failure are realized? What 

mitigations are in place to buffer the event? 

Crisis Action Is there a potential for cascading or escalating failures? 

Crisis Action What activities are required to stabilize or recover service from a disrupted 

infrastructure system? 

 

AHA Knowledge Graph 

The AHA knowledge base leverages a knowledge graph paradigm to construct, represent, and provide 

interlinked and semantically rich infrastructure information for the purpose of conducting risk and 

resilience assessments of interconnected infrastructure systems. In total, the AHA knowledge graph 

contains seven dimensions which are a system/facility/asset taxonomy, sub-facility/component 

taxonomy, dependency-type (e.g., good and services) taxonomy, hazard-type taxonomy, functions, 

dependency profiles, owner/operator, and knowledge artifacts (i.e., sources). The knowledge graph 

was derived from functional decompositions of infrastructure systems and leverages a modified 

version of the functional basis for the engineering design proposed by [43] for the purpose of fault 

identification and propagation modeling [45]. Following [62], a knowledge graph is defined as 

𝐺 = (ℇ , ℛ, ℱ) 
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Where ℰ, ℛ, and ℱ are sets of entities, relations, and facts. The following provides a description of 

the computational subgraph of the knowledge graph used for modeling and simulation of 

interconnected infrastructure systems. 

The AHA computational knowledge graph is modeled as a directed multidimensional network or 

multigraph and, in its simple form, can be represented as [48] 

𝐺 = (𝑉, 𝐸, 𝐷) 

Where V is a set of infrastructure nodes, D is a set of labels representing dependency types, and E is a 

set of labeled directed edges representing dependencies such as 

𝐸 = {(𝑢, 𝑣, 𝑑); 𝑢, 𝑣 ∈ 𝑉, 𝑑 ∈ 𝐷}. 

Since the primary goal of the AHA methodology is to support the simulation of interconnected 

infrastructures behavior, this formulation needs to be extended to include both time-dependent 

behavior and strength of dependency. The objective is to determine the systems state under different 

disruption scenarios at discrete events that result in component state transitions. To address this 

requirement, the concept of a time-marked or temporal graphs as described in [49, 111] is leveraged, 

defined as 

𝐺 = (𝑉𝑐 , 𝐸𝑑 , 𝐷, 𝐶, 𝑡, 𝑥) 

Where V is a set of nodes, E is a set of labeled directed edges representing dependencies, C is a set of 

system states, D is a set of labels representing dependency types, t is a time event, and 𝒳: 𝑉𝑐 ⟶ 𝐶 is a 

function that indicates node state. In this context, a node in G represents a computational element, and 

each edge represents the flow of a strength-based dependency type. The strength of dependency of 

each edge is modeled as weights shown below. 

𝐸 = {(𝑢, 𝑣, 𝑑, 𝑐); 𝑢, 𝑣 ∈ 𝑉, 𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶} 

Where c is an integer number representing the strength of the dependency relationship between nodes 

𝑢, 𝑣 ∈ 𝑉 and labeled with both 𝑑 ∈ 𝐷 and 𝑐 ∈ 𝐶. 

AHA Methodology 

The AHA methodology is designed to facilitate developing dependency models of interconnected 

infrastructure systems to simulate the effects of disruptions on intra- and inter-system operations in 

support of risk and resilience decision-making. The methodology is divided into three processes 

shown in Figure 3-4: knowledge model development, dependency model development, and system 
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behavior simulation. These processes are aligned to the conceptual modeling, model coding, and 

experimentation processes described by [105]. The following subsection provides more detailed 

descriptions of each process. 

 

Figure 3-4 AHA Methodology. 

AHA Knowledge Model Development Process 

The primary objective of the knowledge model development process is constructing conceptual 

dependency models of general infrastructure systems, facilities, and components based on the 

infrastructure system’s primary functions. The outcomes of this process are a function-based 

infrastructure asset/component taxonomy and a dependency-type taxonomy. When combined, these 

taxonomies result in a functional basis for engineered infrastructure systems. In addition, a hazard and 

threat taxonomy were constructed to achieve the overall purpose of the AHA methodology. 
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AHA Knowledge Model 

The initial stage of the process is developing a function-based system/asset taxonomy which 

enumerates a standard set of functions and flows by asset types. This process is based on the concept 

of functional decomposition and leverages a modified version of the functional basis approach first 

proposed by Stone and Wood [30] which was later refined by Hertz et al. [31]. This results in a 

taxonomy of function-based asset models which are referred to as dependency profiles. Breaking 

down infrastructure systems in this manner provides a scalable systematic and precise mechanism to 

collect and communicate domain-specific SE knowledge [42, 44]. 

AHA Facility and Flow Knowledge Model 

Structurally, the AHA function-based asset taxonomy is developed around the primary purpose or 

task (function) of a system and includes two primary structures, facility/sub-facility types 

(asset/components) and dependency types (flows). The system taxonomy is created through an 

iterative process that incorporates the following steps: (1) facility-type enumeration, (2) dependency-

type enumeration, and (3) dependency profile generation which is described in greater detail below. 

AHA Asset and Component Taxonomies 

The facility-type enumeration step provides the ability to enumerate the type of facilities associated 

with a particular infrastructure system and is broken into two major categories: (1) facilities/assets 

and (2) sub-facilities/components. This step results in an ordered list or taxonomy of facility types 

that is used to enable the function of an infrastructure system. The taxonomy is modeled as an 

acyclic-directed graph where the nodes represent system, facility/assets, and component class objects, 

and the edges encode the subclass relationship as shown in Figure 3-5. This restricts the ability of 

facility or component type form being both parent and child node. The hierarchical approach allows 

for the inheritance of properties and aggregation of functions eliminating the need create entries for 

all potential functional combinations [55]. A facility type represents a major infrastructure type (e.g., 

data center), and a sub-facility represents internal components and devices which are used to facilitate 

operations of internal or external systems and facilities (e.g., uninterruptable power supply). Each 

type can be assigned specific properties which enable additional capabilities such as advanced 

modeling and simulation. These properties describe important characteristics about the facility type, 

such as storage capacity or generation capability.  
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Figure 3-5 Facility/Asset Model. 

AHA Dependency (Flow) Taxonomy 

The dependency-type enumeration step provides the ability to enumerate the commodities, services, 

and data types that are required, transported, or produced by an infrastructure system, facility, or 

asset. Dependency types are broken down into three distinct categories: general, network, and 

transportable. A general dependency type represents a commodity or service that can be directly 

mapped between two facility types. A network dependency type represents a service network that can 

transport a transportable dependency type. For example, freight rail transport dependency type is a 

network and thus can be utilized to transport other commodities, such as agricultural products. Each 

dependency type can be assigned specific properties to enable additional capabilities such as 

advanced modeling and simulation. 

AHA Dependency Profile Model 

Dependency profiles are modeled after CFGs described in [112], which facilitate the creation of 

generic facility conceptual models that describe the range of inputs and outputs required by a 

particular system, facility/asset, or component/device type, and the relationship is described in a verb-

object form (e.g., requires or provides electricity). Definition of function classes are provided in Table 

3-3. Dependency profiles represent black boxes of operational flows of commodities and services, 

and as implemented, dependency relationships are passed up the taxonomic tree to facilities 

comprehensive sector and system-level profile development. Further, with each dependency 

relationship, a categorical measure of criticality is assigned based on the following DoD protection 

failure criticality levels [113] as shown in Table 3-4, which used to model impacts functional 

degradation utilizing FFL described in [45]. It is important to note these are guides and can be altered 
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when developing facility-specific dependency relationships between actual facilities. An example 

dependency profile is shown in Figure 3-6. 

Table 3-3 Function Class Definitions. 

Class Graph Property Definition Source 

Require 

(Import) 

Dependent On To bring in a flow (material, energy, signal) from 

outside the system/asset/component boundary. 

Example: a natural gas generation plant imports dry 

natural gas into the facility. 

Adapted 

from [30]. 

Provide 

(Export) 

Provider of To send a flow (material, energy, signal) outside the 

system/asset/component boundary. Example: a 

natural gas compressor station exports dry natural 

gas into a natural gas transmission pipeline. 

Adapted 

from [30]. 

Provide Provider of: 

Source 

To produce a flow (material, energy, signal) for the 

purpose of exporting. Example: a natural gas 

processing plants produces dry natural gas. 

— 

Provide Provider of: 

Store 

To accumulate a flow for later use. Example: a 

refined fuel terminal stores refined fuels. 

Adapted 

from [30]. 

Provide Provider of: 

Transport 

To move or convey a flow from one 

system/asset/component to another 

system/asset/component. 

Adapted 

from [30]. 
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Table 3-4 AHA Criticality Levels. 

Name 
Criticality 

Level 
Definition 

Critical/Facility 

Down 

4 Production down or major malfunction resulting in an 

inoperative condition. Operators are unable to reasonably 

perform their normal functions. Consumers without service. The 

specific functionality is mission critical to the system, and the 

situation is considered an emergency. 

Significant Impact 3 Critical loss of functionality or performance resulting in 

abnormal operation. Operators are unable to perform their 

normal functions. Major feature/product failure; inconvenient 

workaround or no workaround exists. The facility is usable but 

severely limited. Consumers with limited or impaired service. 

Moderate/Minor 

Impact 

2 Moderate loss of functionality or performance resulting in 

abnormal operations. Operators impacted in their normal 

functions. Minor feature/product failure; convenient workaround 

exists/minor performance degradation/not impacting production. 

Low/No Impact 1 Minor loss of functionality, product feature requests, how-to 

questions. The issue consists of "how-to" questions including 

issues related to one or multiple modules and integration, 

installation, and configuration inquiries, enhancement requests, 

or documentation questions. 

 

 

Figure 3-6 Generic Dependency Profile. 

Finally, each output relationship is assigned a functional type, which includes source, storage, and 

transport (default). Source type indicates a facility or device type can produce a commodity, service, 
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or datum. Storage type indicates a facility or device type can store a commodity, service, or datum. 

Transport type indicates a facility or device type simply passes or diverts a commodity, service, or 

datum. 

When carefully applied, this stage results in a comprehensive, scalable, and non-redundant functional 

basis of an infrastructure system, and when combined with coherent definitions, it provides a 

universal assessment language and conceptual model. Further, this process can be used to create 

conceptual models or generic, integrated CFGs of infrastructure systems; for example, a generalized 

version of the electric system is shown in Figure 3-7. 

 

Figure 3-7 Generalized Electric System Conceptual Model. 

AHA Dependency Profile Component Models & Templates 

Dependency profile component models represent internal systems that support a facility’s function 

and are generally composed of multiple components. For example, a back-up power model could be 

developed to simulate the transition from commercial power to generator power. If applicable, a 

model can be converted to a template to facilitate reuse of the component across similar facilities or 

facility types. An example of component model template is shown in Figure 3-8. 
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Figure 3-8 Notional Refined Fuels Pump Station Component Model. 

Threat and Hazard Model 

The threat and hazard model describes the taxonomic structure of the threat and hazard domain 

relevant to critical infrastructure, where the resulting categories can be assigned to specific systems, 

facilities/assets, and components/devices. In addition, each specific threat and hazard type is assigned 

a default risk level. Risk levels were derived from NIST’s Guide for Conducting Risk Assessments 

and are based on the likelihood of the threat or hazard event resulting in adverse impacts (see Table 

3-5) [114]. Actual facility and component risk levels can be adjusted during the risk analysis phase. 

The taxonomic structure consists of three primary categories: cyber, human-induced, and natural 

hazards. The following subsections provide additional information on each of the categories. 

Table 3-5 Likelihood of Threat and Hazard Impact Levels [114]. 

Qualitative 

Values 

Semi-Quantitative 

Values 
Description 

Very High 96–100 10 
If the threat event is initiated or occurs, it is almost certain 

to have adverse impacts 

High 80–95 8 
If the threat event is initiated or occurs, it is high likely to 

have adverse impacts 

Moderate 21–79 5 
If the threat event is initiated or occurs, it is somewhat 

likely to have adverse impacts 

Low 5–20 2 
If the threat event is initiated or occurs, it is unlikely to have 

adverse impacts 

Very Low 0–4 0 
If the threat event is initiated or occurs, it is highly unlikely 

to have adverse impacts 
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Cyber Hazard Model 

The AHA cyber hazard model leverages MITRE’s adversarial tactics, techniques, and common 

knowledge (ATT&CK) and ATT&CK-industrial control systems (ICS) models to define the cyber 

hazard types [115-117]. The ATT&CK framework is a knowledge base of enumerated cyber 

adversary behaviors and builds upon the concepts like Lockheed Martin’s intrusion kill chain [118]. 

Its design is intended to aid network defenders in developing behavior analytics and assessing defense 

gaps. This is accomplished by the decomposition of actual observed adversarial behaviors into tactics 

and techniques. Tactics describe the attacker’s objectives, and techniques describe how the attacker 

achieves them. This structure aligns directly to the attack phase paradigm to organize the techniques 

that may be used to compromise cyber system components or services enabling business and 

operations functions. 

Artificial Hazard Model 

The AHA artificial hazard model leverages Federal Emergency Management Agency’s Threat and 

Hazard Identification and Risk Assessment and Stakeholder Preparedness Review Guide to provide 

an initial model for artificial threat and hazard enumeration [5]. However, as noted above, the cyber 

threat and hazards are modeled separately. 

Natural Hazard Model 

The AHA natural hazard model leverages the comprehensive review of natural hazards conducted by 

Gill and Malamud to provide the base enumeration of 21 different natural hazards which were 

categorized into six distinct hazard groups [119]. Their taxonomy was extended and refined to 

incorporate additional hazards enumerated by the International Panel on Climate Change [120, 121]. 

AHA Infrastructure Dependency Knowledge Base 

The second stage of the AHA methodology is developing system- and facility-specific dependency 

models, which are modeled as a directed multidimensional network [48] leveraging a modified 

version of the approach described by Svendsen and Wolthusen [51]. A graph data model was selected 

as the primary method to represent the AHA knowledge base because interconnected infrastructure 

systems can be intuitively represented as graphs. Further, graphs provide ideal structures to represent 

relationships between entities such as an organization’s ownership of an infrastructure system. 

This stage is a three-step process that requires the loading of system facilities/components, which 

represent the vertices of the graph, assignment of dependency links between system facilities, and 

assignment of intersystem dependency links. This includes the initialization of storage and link 
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parameters. A comprehensive mapping will trace the commodity, service, or datum type from the 

time it enters until it is converted or exits the system or facility.  

Facility/Asset Loading 

The first step in developing a system-specific dependency model is the loading of system facilities 

and components. During the loading process, individual facilities will receive their taxonomic 

assignment, and they will inherit the respective dependency profile. In addition to facility type, the 

following elements of information can also be included during the loading process: name (required), 

alias, owner, operator, address, zip, state, county, country, confidence, latitude (required), and 

longitude (required). Confidence category assignments are assigned to each facility based on the 

underlying source information and include the values shown in Table 3-6. Depending on available 

information, specific properties and profile exceptions can also be defined. For example, the 

production capacity of a petroleum refinery or the IP address of a server could be included.  

Table 3-6 Knowledge Model Confidence Levels. 

Confidence Type Level Definition 

Vetted 4 Infrastructure owner/operator has recently confirmed information. 

High 3 Information has been confirmed by infrastructure owner/operator in 

the past or derived from recently published and openly available 

owner/operator or derived for recent provided regulatory data. 

Moderate 2 Information has been published in the past by owner/operator or in 

regulatory data or derived from recently published third party 

sources. Some heuristics. 

Low 1 Outdated information or heuristics. 

 

Dependency Model Generation 

The second step in this stage is the assignment of dependency relationships between facilities based 

on their respective profile. Profiles enforce how a facility functions and defines its dependency 

interfaces resulting in a consistent and defensible model. Creating a dependency relationship between 

facilities will require that one of the facilities can provide a commodity or service, while the other 

requires the same commodity for operations. As implemented, the AHA application automatically 

enforces these rules and presents potential facility relationships in an ordered list by distance. 

Configurable dependency relationship parameters are defined in Table 3-7. 
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Table 3-7 Standard Dependency Relationship Parameters. 

Dependency Parameter Definition 

Strength/Criticality 

Level 

As defined above and can be inherited from the profile or overridden 

based on facility-specific information. 

Confidence As defined above. 

Precent Commodity Defines the degree to which a specific dependency relationship can 

provide the entire required amount for normal operation. 

Contingency Type Categorizes a dependency relationship as either primary or contingent. 

Dependency relationships are considered primary by default. 

Contingent relationships are alternate sources that are used in the event 

a primary dependency source is disrupted. A contingent relationship 

requires a time-to-switch variable to be set. 

Storage Duration Number of minutes a dependency relationship can be maintained after 

initial disruption if defines as a storage type dependency. 

 

The third and final step of regional dependency model creation is the aggregation of distinct system 

dependency model into a single cohesive representation. The result is a functional dependency model 

of interconnected infrastructure systems, with documented spatial and temporal characteristics 

directly related to system operations. The resulting model enables direct simulation of system 

behavior based on steady-state design parameters. 

AHA Knowledge Base Metamodel 

The AHA knowledge base metamodel serves as a supporting capability to increase confidence in the 

analytic and simulation outcomes of the AHA methodology. The metamodel leverages the Office of 

the Director of National Intelligence to Intelligence Community Directive 206, “Sourcing 

Requirements for Disseminated Analytic Products,” as a guide to implementation and seeks to 

capture the sourcing information for the asset, component, and dependency information contained 

within the AHA knowledge management system [122]. Source information captured includes the 

title, description, publisher (owner/author of data), source (URL [universal resource locators] or 

repository), data of information access, date of information, sector tags, analyst-defined tags, base 

document/information product, and refined information product. This information is used to enhance 

the credibility and transparency of the dependency model and simulation analysis outcomes for risk 

and resilience decision-making processes. 
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As described in Table 3-6, source information is utilized to establish confidence levels of the model 

elements, and parameters are recorded in the AHA knowledge graph. Confidence levels are 

determined by the pedigree of the source documents or heuristics used to identify the infrastructure or 

its assigned dependency relationships. If source information is explicitly identified in an artifact, it is 

assigned a confidence value based on the date of the information. If the source information is 

established through heuristics, it receives a low confidence rating. 

All-Hazard Disruption Simulation Techniques 

The AHA methodology and knowledge management system were designed to provide a flexible set 

of simulation capabilities to inform the risk and recovery decision-making processes of federal, state, 

and local risk and emergency management organizations, as well as infrastructure owners based on 

their best available data. The approach seeks to provide an integrated simulation platform that draws 

from a common topology model of interconnect infrastructure systems to generate executable 

simulation models for the desired system or region of interest required to inform the decision-making 

process. To accomplish this objective, the modeling principles outlined by [111, 123] act as 

guidelines to our approach and include: 

• Keeping the models as simple as possible to meet simulation objectives (Occam’s razor) 

• Promoting ease of analysis, limiting computational complexity where possible 

• Allowing for versatility and extendibility 

• Promoting ease of result interpretation. 

The following subsections describe the initial set of simulation approaches that have been fully 

implemented within the framework thus far. 

Simple Cascade Simulation 

The simple cascade simulation is a qualitative approach to evaluating the cascading impacts of 

infrastructure disruptions and is intended to enable a range of influence for the analytic results best 

suited for crisis-action situational awareness and initial strategic risk and resilience assessments. The 

technique integrates and simplifies the approaches described by [45, 124] to reduce the model 

parameter requirements while still providing sufficient information to begin addressing many of the 

core questions outlined in Table 3-2 above. The approach implements the concept of FFL described 

in [45] and the strength of dependency described in [124] without the consideration of time, 

contingent dependency relationships, or component-level mitigations. In this manner, the asset state 

transitions are instantaneous and are determined entirely by the strength of the dependency value 

encoded on the output dependency relationships from the initial disruption. Accordingly, the system 
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states that are described by a disruption simulation can be used to answer questions about the range 

and degree of impact. The pseudo code of the algorithm is shown in Figure 3-9 below, and the 

verification model used to test the proposed model logic is presented in Figure 3-11. 

Algorithm 1 Simple Cascade 

Input: User selected graph G 

 User selected disrupted node V 

Output: Impact graph I such that I is a subset of G 

Variables:  DPi  Set of all O-D pairs related to impacted node 

 di  O-D pair in the set DPi 

 OS  Origin state as defined by state values 

 DS  Destination state as defined by state values 

 di
CT  Dependency type continuity category 

 di
CL  Strength of dependency as defined by state values 

State Values: 

5: Disrupted, 4: Critical, 3: Significant, 2: Moderate, 1: 

Low,  

 0: Steady State 

Contingency Type (CT): Primary, Contingent 

     

Simple Cascade Function-Failure Logic (G, O) 

1: Get DPi (V)  

2: For Each (d) in DPi 

3:  Get OS (O), CT (di), CL(di), D
S (D) 

4:  If CT = Primary 

5:   If DS < Min (OS, CL) 

6:    Set DS = Min (OS, CL) 

7:    Simple-Cascade FFL (D) 

8: Return I     

Figure 3-9 Algorithm 1: Simple-Cascade (). 

Time-Dependent Cascade Event Simulation 

The time-dependent cascade event simulation is an event-driven semiquantitative approach that 

augments the range-of-influence simulations with time to better understand failure propagation both 

within and between systems, facilities, and components. The technique incorporates concepts from 

both systems dynamics and DES to form a hybrid solution to provide estimates of time-to-impact 

based on a predefined user scenario. Time is addressed with storage duration and time-to-switch 

parameters of contingent relationships which buffer state transitions of nodes in the initial graph 

depending on the offset from the initiating event. In addition, the approach enforces the requirement 
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of the initial graph to contain a source or temporary source node for all dependency types included. 

The pseudo code of the algorithm is shown in Figure 3-10 below, and the verification model used to 

test the proposed model logic is presented in Figure 3-11. 

Algorithm 2 General Time-Dependent Cascade 

Input: User selected graph G  

 Set of user defined events EL = {EV1(V, ET, t), ..., EVi (V, ET, t)} 

Output: Set of impact graphs Ii such that Ii is a subset of G at time t 

 Master Scenario Event List (MSEL) 

Variables:  t Simulation Time 

 DPi  Set of all O-D pairs related to impacted node 

 di  O-D pair in the set DPi 

 OS  Origin state as defined by state values 

 DS  Destination state as defined by state values 

 di
DT  Dependency type 

 di
CL  Strength of dependency as defined by state values 

 di
CT(TTS) Dependency type continuity category 

 di
RL  Contingency Restoration Level 

 di
ST(SD)  Dependency type source category 

 TTS Time-to-switch in minutes 

 SD Storage Duration in minutes 

      

State Values(S): 7: Disrupted, 6: Storage Depleted, 5: Discharging, 4: Critical,  

 3: Significant, 2: Moderate, 1: Low, 0: Steady State 

Criticality 

Levels (CL) 
4: Critical, 3: Significant, 2: Moderate, 1: Low, 0: Steady State 

Contingency 

Type (CT): 
Primary, Contingent (TTS) 

Source Type 

(ST): 
1: Source, 2: Transmission, 3: Storage (SD) 

Event Type 

(ET): 
Disruption, Restoration  

      

Time-Dependent Cascade Function-Failure Logic (G, S) 

1: Validate Source Nodes Exist (G) 

2: Generate MSEL (S)  

3:  For EV in S (Min (t), Max (t)) 

4:   if ET = Disruption 

5:    Disrupt (V, 7) 

6:   if ET = Restoration 
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Algorithm 2 General Time-Dependent Cascade Continued 

7:    Restore (V, 0) 

8:  Clean Events 

9: Disrupt (V, S)    

10:  Set OS = S  

11:  For Each (di) in DPi 

12:  
 If CT = Primary, Set DS = Max (DS, CL) 

13:  
 If D → DT & DST = 3 

14:  
  

If DT source unreachable 

15:  
  

 Add Storage Depletion Event (DS, SD) 

16:  
 If CT = Contingent & Primary di disrupted 

17:  
  

 Add Restore Event (DS, RL, TTS) 

20:   Disrupt (D, DS) 

21: Restore (V, S)   

22:  Set OS = max(←CL) 

23:  For Each (di) in DPi 

24:  
 If CT = Primary, Set DS = Max (DS, CL) 

25:  
 If D → DT & DST = 3 

26:  
  

If DT source unreachable 

27:  
  

 Add Storage Depletion Event (DS, SD) 

28:  
 If CT = Contingent & Primary di disrupted 

29:  
  

 Add Restore Event (DS, RL, TTS) 

30:     Disrupt (D, DS) 

Figure 3-10. Algorithm 2: Time Dependent-Cascade (). 

 

Figure 3-11 Verification and Validation Graph. 
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Table 3-8 Node Event and State Table. 

 t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=10 

x1 (0, 0)  D(2, 5)    R(6, 0)   

x2 (0, 0) D(1, 5)       R(10, 0) 

x3 (0, 0) (1, 2) (2, 4)    (6, 2)  (10, 0) 

x4 (0, 0) (1, 2) 
SD1,t=(t+5) 

C1t=(t+2) 
(3, 4) R1(4, 3) (5, 3) (6, 2) SD(7, 4) (10, 0) 

x5 (0, 0)         

x6 (0, 0) (1, 2) (2, 3) C1,t=(t+1) R2(4, 3)  (6, 2)  (10, 0) 

x7 (0, 0)         

y1 (0, 0)         

y2 (0, 0)   D(3, 5)  R3(4,0)    

z1 (0, 0) (1, 2) (2, 3) (3,4) (4, 3)  (6, 2)  (10, 0) 
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Chapter 4: AHA Knowledge Management System 

In this chapter, the AHA knowledge management system (KMS), designed around the concept of a 

dynamic and function-based infrastructure system data model which can be represented as a 

multilayer network, is described. The process-centered ontology-driven approach of the AHA-KMS 

represents information about entities in the form of nodes (e.g., infrastructure facilities and 

organization), links (e.g., dependency relationships), and specific properties/attributes (e.g., labels) 

which describe characteristics of an entity or relationship as a knowledge graph. The flexible 

knowledge graph structure provides the ability to incorporate multiple existing infrastructure 

schemas, such as the DHS infrastructure taxonomy [125] or generate new custom schemas. The 

dynamic framework also allows the base knowledge model to be modified to enable the rapid capture 

of new infrastructure types, dependency types, and properties as well as information related to 

organizational and mission support. The dynamic nature of the knowledge model is critical to address 

risk and resilience decision processes with respect to the evolving infrastructure and threat and hazard 

landscapes. The following sections of this chapter describe the overall architecture and major 

elements of the AHA-KMS. 

AHA Framework Architecture 

Figure 4-1 illustrates the overall system design of the AHA-KMS which include six distinct 

dimensions that are designed to enhance knowledge capture, analysis, and visualization of 

infrastructure systems information. Each of the components will be described in greater detail in the 

following sections of this chapter. 
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Figure 4-1 AHA Architecture Diagram. 

To facilitate efficient IR and analysis of the multilayer network knowledge structure of the 

AHA-KMS, it leverages both a Neo4j graph store and MongoDB document store database 

technology. 

All-Hazards Ontology and Knowledge Graph Module 

The all-hazards ontology and knowledge graph module is the core element of the AHA-KMS and was 

designed to enable the dynamic development of the AHA knowledge graph structure. Thus, the 

module supports the design and development of the asset, component, dependency type, and 

threat/hazard taxonomies, as well as dependency profiles as described in the “AHA Knowledge 

Graph” section above. A subgraph of the AHA knowledge graph from the Neo4j database is shown in 

Figure 4-2. Currently, the knowledge base contains 330 unique infrastructure types and 288 unique 

dependency types. These have resulted in the development of 330 dependency profiles that describe 

the general functional requirements and outputs of infrastructure assets and component types. 
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Figure 4-2 Subgraph of the AHA Knowledge Graph. 

The development of the knowledge graph is facilitated by the GUI shown in Figure 4-3. Part 1 (see 

first blue circle below) provides a selectable tree view representation of the facility/asset, sub-

facility/component, dependency (flow), and threat and hazard knowledge object models depending on 

which menu item is selected (see part 2). Part 3, shown in its collapsed form, contains the asset type 

name, description, and source information used to generate the asset type. In addition, the three-dot 

icon to the right of the name is clickable and will expose additional editing and visualization 

capabilities which will be described in more detail below. Part 4 is the specific properties edit and 

visualization window, clicking on the blue plus sign (+) on the right side will allow new specific 

properties to be associated with the facility type. Part 5 is the dependency-type association edit and 

visualization window, clicking on the blue plus sign (+) on the right side will allow an analyst to 

associate additional dependency types defined in the dependency-type taxonomy with the profile. For 

dependent-on dependency-type associations, a general dependency strength must be defined. For 

provider-of associations, the general strength and source type (i.e., source, transmission, and storage) 

are defined. If the asset type selected has additional children facility types defined, their profile 

dependencies will be shown in part 6; however, they are not editable on the parent’s profile page. 

Additional parts not shown in Figure 4-3 include the threat and hazard association and the sub-

facility/component template editing-and-visualization window. 
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Figure 4-3 Knowledge Graph Graphical User Interface. 

Knowledge Base Population 

The information and knowledge generation module was designed to enable the loading and 

translation of infrastructure information from multiple sources. The core capabilities of this module 

are intended to enhance loading of both structured and unstructured information artifacts. The “AHA 

Methodology” section describes the methodology used as a guide for the population of the AHA 

knowledge base. Currently, there are over 1.3 million systems, assets, and components contained in 

the knowledge base with approximately 1 million unique dependencies. 

The development of the knowledge graph is facilitated through multiple GUIs that support both 

manual and bulk loading of infrastructure assets and dependencies. Data checks are conducted during 

the load process to ensure that the required elements of information are present, and a source has been 

identified to support the data element as described in the “AHA Infrastructure Dependency 

Knowledge Base” section. Figure 4-4 shows the manual entry form for loading asset-level data. 
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Figure 4-4 Manual Facility Asset Entry Screen. 

Infrastructure System and Dependency Models 

The infrastructure system and dependency models are constructed from the system, asset, and 

component information stored within the knowledge base as multilayer networks of interconnected 

infrastructure to enable simulation and analysis activities. “Chapter 3: All-Hazards Analysis (AHA) 

Methodology” describes the AHA infrastructure system and dependency knowledge model 

development process. Dependency models are dynamically generated from the knowledge base 

through analyst-defined queries and can be stored for later use or shared between users of the system. 

In addition, generated models are utilized for the time-dependent cascade simulation project files. 

Figure 4-5 depicts a simple three-node dependency model generated from an owner query; the nodes 

represent facilities, and the lines represent dependency between facilities. The pink-highlighted node 

indicates the selected facility. It should be noted that by examining the dependency graph at the 

bottom of the GUI, an additional first order dependency for the selected infrastructure has been 
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defined in the knowledge base. To add this entity to the selected model, the user would increment the 

upstream dependency parameter to one (1) and resubmit the query. 

 

Figure 4-5 Example of an AHA Infrastructure Dependency Model via Map GUI. 

Simulation and Analysis 

The simulation and analysis capability was designed to simulate the behavior of interconnected 

infrastructure systems in support of all-hazard risk and resilience assessments to include the 

identification of systematically important critical infrastructure (SICI). This capability consists of 

qualitative system behavior/cascade simulation and a semiquantitative time-dependent cascade 

simulation depicting state transitions at discrete time events. The “AHA Infrastructure Dependency 

Knowledge Base” section describes in detail the AHA simulation and analysis approach.  

The simulation capabilities transform the facility-type multilayer representation into facility-state 

multilayer graph representation. The simple cascade simulation can be run directly from the map GUI 

as shown in Figure 4-6 and Figure 4-7. Figure 4-6represents steady-state operations, and Figure 4-7 

represents the post-disruption state. In this case, the substation powering a natural gas compressor 

station has been disabled (black node), and the cascading effects are shown in red, indicating critical 

impacts at the compressor station and the downstream natural gas pipeline. The FFL is described in 

“Chapter 3: All-Hazards Analysis (AHA) Methodology.” Simulation results are reported in data 

tables to support development of additional analytic products and decision-making requirements. 
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Figure 4-6 Simple Simulation GUI: Prior to Disruption. 

 

Figure 4-7 Simple Simulation GUI - Post Disruption. 

The time-dependent cascade simulations are run from a dedicated GUI due to the configuration 

required for each project developed. Step 1 for running a time-dependent cascade is to select and 

validate a simulation graph, which includes ensuring all dependency types have a source, or a 
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temporary source assigned as described in “Chapter 3: All-Hazards Analysis (AHA) Methodology.” 

After validation, user-defined events are created. A minimum of one disruption event is required as 

shown in Figure 4-8. In this example, two substations are disable, one at 15 minutes and another at 18 

minutes. It is also possible to select facilities based on their assigned hazard risk levels or by a map-

based spatial query. If desired, restore points may be set through the same interface. 

 

Figure 4-8 Time-dependent Cascade Simulation Configuration. 

Step 2 is creating the master event list, which is derived from a union of the user-defined events with 

the asset and component storage and time-to-switch parameters. This is transparent to the user and 

results in the creation of the simulation timeline which can be played by the users; in this case, five 

events are generated from the disruption of the substations. The GUI is shown in Figure 4-9. 

 

Figure 4-9 Time-dependent Simulation Timeline. 

Step 3 of the simulation is to play the events. The example results of these events are shown in Figure 

4-10. At simulation start (minute 0), all steady-state assets are operational, which is indicated by 

green and includes the three substations, automatic transfer switch, and high-performance computing 

servers. The contingent components are indicated by gray, which include the UPS and back-up 
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generator. At minute 15, the first user-defined disruption event is fired, which disables the first 

substation and is followed by the second substation disruption at minute 18. When commercial power 

is lost, the first contingent event is triggered, which results in the UPS becoming active. This is 

indicated by the blue color. At minute 33, the second contingent event is triggered, and the generator 

becomes operational. At day 1 and 33 minutes, the generator goes offline, and UPS is reactivated. 

Finally, the UPS loses charge, and the entire system in deenergized. 

 

Figure 4-10 Time-dependent Cascade Simulation Results. 

Metamodel 

The metamodel contains the source documents and their metadata for systems, assets, and 

components entered into the AHA-KMS. This information includes the name, description, author, 

source, information access date, date of information, sector assignments, and user-defined tags. If 

applicable, the source documents or artifacts can be uploaded, including derivative products. The 

metamodel upload screen is shown in Figure 4-11. 
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Figure 4-11 Metamodel Upload GUI. 

User & Data Management Module 

The user and data management module was designed to provide access to administration functions of 

the AHA-KMS. The primary functions of this module include: (1) user and role management, (2) 

access and change logging, and (3) online training material. The user and data management functions 

of the AHA-KMS are outside this research’s scope and will not be covered. 
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Chapter 5: Application of the AHA Methodology to the Colonial 

Pipeline System 

Refined fuel products are critical input commodities for most, if not all, modern industrial and 

community functions, such as electricity generation, transportation, manufacturing, and residential 

heating. To supply these commodities in sufficient quantities, pipeline systems are essential 

infrastructure for most aspects of the petroleum supply chain including production (gathering), 

transportation, and distribution. Thus, private and public infrastructure operators with dependence on 

petroleum products, as well as emergency management organizations, must have a sufficient 

understanding of general pipeline operations and how specific pipeline systems support their needs to 

ensure continuity of operations. In this chapter, the AHA methodology is used to develop a 

conceptual model of a refined fuel pipeline system, including first order dependencies, and apply it to 

the Colonial Pipeline (CPL) for the purpose of informing risk and resilience decision-making. The 

resulting model is used to simulate the 2021 Colonial Pipeline ransomware cyberattack and explore 

the potential impacts to airport operations. 

Colonial Pipeline Ransomware Attack 

On May 7th, the Colonial Pipeline Company reported they curtailed operations of their 2.5 million-

barrel-per-day refined product pipeline due to a ransomware cyberattack [21]. The Colonial Pipeline 

is one of the primary sources of refined fuels for the East Coast of the Unites States with a capacity 

3.5 times greater than its primary competitor, the Kinder Morgan Product (SE) Pipeline. So, the 

pipeline company’s media release left fuel service providers and companies scrambling to secure 

alternate sources of fuel and emergency response and government organizations trying to understand 

and mitigate the potential impacts of the disruption. This included looking at alternative sources of 

transportation for petroleum products such as rail, marine, and truck systems. However, the carrying 

capacity of these systems severely limit their usefulness and would have required almost 3,600 rail 

cars or 12,500 tanker trucks to match the Colonial Pipeline volume. Although the event did not result 

in sustained widespread fuel shortages across the East Coast, mostly due to the existing terminal 

storage supplies, some areas did experience significant price inflation and shortages at retail locations. 

Retail shortages have been mostly attributed to panic buying by retail consumers. 

This event provides an ideal empirical use case to demonstrate the utility of the AHA Framework as a 

scalable approach to understanding the operation of interdependent critical infrastructure systems and 

the potential consequence of their disruptions. The use case walks through the functional 
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decomposition of a refined fuel system and the creation of a functional dependency model for the 

Colonial Pipeline, including its primary first order dependencies. 

Refined Fuel Systems Functional Asset Taxonomy Creation 

The Colonial Pipeline is the largest and possibly most complex refined product pipeline system in the 

United States, and its continuous operation requires a diverse set of input and output commodities and 

services to perform it primary function of providing refined petroleum products. According to the 

Energy Information Agency, the primary uses of refined fuels are for transportation, heating, and 

power generation. Thus, the primary function of a refined petroleum product pipeline system can be 

expressed as: provide and transport fuels for transportation, heating, and power generation. 

As described in “Chapter 3: All-Hazards Analysis (AHA) Methodology,” the next step in the process 

is the decomposition of a typical refined fuel product pipeline system into its major component 

facility types. The decomposition process resulted in identifying four primary types including a 

refined fuel product pipeline, refined fuel product pump station, refined fuel product valve station, 

and refined fuel product terminal [22]. It is important to note it might be possible to decompose each 

of these facility types further. For example, a refined product valve station could be decomposed into 

a metering station, a block valve, and pipeline inspection gauge terminal stations; however, this 

additional layer of decomposition is not required for this use case. This step also included defining 

specific properties for each facility type that would be necessary to model the high-level behavior of 

the system, such as storage capacity for refined product terminals. In addition, to pipeline-specific 

facility types, it is also important to consider refined fuel production (e.g., refinery) and consumer 

facility types (e.g., airports).  

With major asset facility types identified, the dependency link decomposition step looked to 

enumerate the functional requirements for each type. Table 5-1 provides the list of the commodities 

and services, including their general purpose, which were identified for this use case. Table 5-2 

provides a description of the primary function of each facility type, including additional facility types 

required to demonstrate the cross-sector capability.  
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Table 5-1 Refined Fuel Pipeline Systems Dependencies. 

Dependency Types Function 

Refined Fuels 

— 
Used for transportation, heating, and power 

generation. 

Aviation Gasoline Used for engine fuel in light aircraft. 

Diesel 
Used for engine fuel in heavy-duty trucks, trains, 

heavy equipment, and back-up generators. 

Fuel Oils 
Used for space heating and electric power 

generation. 

Gasoline 
Used for engine fuel in passenger cars and light 

trucks. 

Jet Fuel Used for engine fuel in jet aircraft. 

Electricity — Used to power equipment and devices. 

Network Connectivity — 

Provides communication paths for enterprise 

systems, operational technologies, and other 

communication-enabled devices. 

 

Table 5-2 Refined Fuel Pipeline System Functional Basis. 

Facility Types Function Verb-Object Form 

Refined 

Product 

Pipeline System 

— 

Collection of physical facilities 

designed to transport refined 

fuels between locations 

Provides Refined Fuels 

Requires Electricity 

Refined Product 

Pipeline 

Pipeline designed to transport 

refined fuels 
Provides Refined Fuels 

Refined Product 

Pump Station 

Facility designed to pump 

refined fuels through a pipeline 

Provides Refined Fuels 

Requires Electricity 

Refined Product 

Storage Terminal 

Facility designed to store 

refined fuels 

Provides Refined Fuels 

Stores Refined Fuels 
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Table 5-2 Continued. 

Facility Types Function Verb-Object Form 

 
Refined Product 

Valve Station 

Facility designed to control 

and measure refined fuel flows 

within a pipeline system 

Provides Refined Fuels 

Petroleum 

Refinery 
— 

Facility designed to produce 

refined fuels 

Produces Refined Fuels 

Requires Electricity 

Requires Crude Oil 

Substation — 
Facility designed to distribute 

electric energy 
Provides Electricity 

Airport — 
Facility designed to facility air 

transportation services 
Requires Refined Fuels 

 

With a representative example of facility types required to produce, transport, and store refined fuels 

identified, basic dependency profiles were generated for each type. Figure 5-1 below presents the 

profile for a refined product pump station. In this example, refined fuels and electricity dependencies 

are considered critical dependencies for pump station, where the disruption of their flow would result 

in an inoperative condition. In general, network connectivity is considered a significant input 

dependency for a pump station because its disruption would most likely only result in a reduced 

quality of service due to potential workarounds for its intended functions. As an output dependency, 

network connectivity from a pump station is generally considered to have low criticality on network 

operation because as an endpoint, its disruption would have minimal impacts on overall network 

operations. It is important to note; however, as a network dependency type, functions or signals 

transported by the network connectivity dependency type could have varying levels of impacts to 

system components. 
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Figure 5-1 Refined Fuels Pump Station. 

The final step in creating the functional basis for a refined product pipeline system is creating a 

conceptual model. Figure 5-2 below, provides a simplified model developed for the Colonial Pipeline 

use case; however by design, this model could be used for other refined fuel delivery systems. The 

model seeks to describe the major functions, facilities/assets (sources, storage, and capacity), flow 

(primary/contingent, capacity), and high-level behaviors of a general system. 

 

Figure 5-2 Refined Fuel System Conceptual Model. 

The resulting model serves two primary purposes: one is to act as a guide for developing system-

specific models, and the other is to provide a general mechanism to answers high-level questions 

regarding the operation of a refined product pipeline system and the potential consequences of a 

disruption. For example, the question “what functions does a refined fuel pipeline system enable?” 

can be directly answered by evaluating a functional basis of a typical refined system as shown below 

(Figure 5-3). This capability is valuable during crisis actions where system-specific information may 

not be readily available, Further, the information can be combined with a high-level system to provide 

greater situational awareness. The system state matrix shown in Figure 5-4 was used to validate the 
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typical dependency relationship and strength of the conceptual model components shown in Figure 

5-2. For example, the table should be interpreted as follows: if a petroleum refinery is directly 

providing refined fuels to a refined product pump station, the pump station’s dependency on refined 

fuels is considered critical and would cause the pump station to become inoperable without an 

alternate source of refined fuels. Finally, the conceptual model for the refined fuel product pipeline 

was entered into the AHA-KMS as described in “Chapter 4: AHA Knowledge Management System.” 

Table 5-3 Refined Product Pipeline Conceptual Model Question and Answer. 

QUESTION: What functions does a refined fuel system enable? 

Facility Type Facility Function Dependency-Type Function 

Refined Fuel System Provide Refined Fuels Used for transportation, heating, 

and power generation 

ANSWER: Refined fuel systems provide refined fuels for transportation, heating, and power 

generation. 

 

Table 5-4 Refined Product Pipeline System State Matrix. 
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Colonial Pipeline Systems Functional Model Creation 

The second phase of the AHA methodology is developing a system-specific model from the general 

conceptual model; in this case, the focus was on developing a function-flow model of the Colonial 

Pipeline system which is shown in Figure 5-3. The model incorporated known Colonial Pipeline 

facilities, petroleum refineries (i.e., refined fuel product production), petroleum storage terminals (i.e., 

refined fuel storage facilities), substations (i.e., electrical power for facilities), and airports (i.e., 

consumers of refined fuels). It is important to note the model’s facilities, dependency links, and 

parameters were identified from multiple sources, including GIS data layers, pipeline reports, news 

articles, and estimates from subject-matter experts; however, they have not been validated with the 

Colonial Pipeline Company. 

 

Figure 5-3 Colonial Pipeline Dependency Model. 

Overall, the dependency model consists of 807 nodes with 346 nodes representing Colonial Pipeline 

facilities. The remaining 461 nodes represent other connected pipeline assets, refineries, product 

terminals, and airports. A count of the facilities by their degrees of separations from the Colonial 

Pipeline system is provided in Table 5-5. 
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Table 5-5 Colonial Pipeline Dependency Model Facility Count. 

 
 

Initial validation of the system’s dependency model was conducted utilizing the simple cascade 

simulation to ensure the modeled flows were sufficiently accurate to support range-of-influence 

analysis for risk and resilience assessments. The approach used was a supervised iterative n-1 

removal of system nodes. Figure 5-4 illustrates the results of a refined product injection site and a 

main line disruption, where downstream pipeline facilities are only moderately impacted by the 

injection site disruption (shown in yellow) as opposed to the main line disruption resulting in both 

critical (shown in red) and significant impacts (shown in orange) to facility operations. The transition 

from critical impacts to significant impacts is due to the presence of a bulk storage terminal buffering 

the loss of the main inputs.

 

Figure 5-4 Colonial Pipeline Cascade Simulation Validation Example. 

After initial validation of the flows and FFL, the model’s facility nodes were enriched with 

contingency, system storage, and system recovery information, based on their respective dependency 
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profile. For the Colonial Pipeline, model storage duration was assigned to each refined product 

storage terminal based on subject-matter expert input on the average time a typical terminal could 

supply a product before it would be depleted. Considerations included location (e.g., rural vs. urban) 

and terminal capacity if known, values ranged from 1 to 7 days. In addition, open-source information 

was leveraged to assign storage durations for many terminals supporting airport operations. This 

resulted in a cross-sector time-sequenced functional-flow model (shown in Figure 5-5) intended to 

support system behavior simulations to assess potential impacts of facility-level disruptions. The 

resulting model of the Colonial Pipeline was validated against the 2021 ransomware attack events. 

 

Figure 5-5 Colonial Pipeline Generalized Discrete Event Model. 

2021 Colonial Pipeline DarkSide Ransomware Attack Scenario 

On April 29th, 2021, the DarkSide Cybercrime Group’s ransomware-as-a-service was thought to have 

been used to gain access to and compromise the business systems of the Colonial Pipeline Company. 

As a result of the compromise, the company was forced to preemptively shut down pipeline 

operations on May 7th to investigate the integrity of the systems operational technology (OT) control 

environment [126]. As a consequence, fuel transportation from Gulf Coast refineries to terminals 

along the entirety of the 5,500-mile system was curtailed, effectively sequestering products already in 

route and at the system’s multiple breakout terminals. Table 5-6 provides a timeline of events as 

reported by the Colonial Pipeline Company. 

The Colonial Pipeline dependency model was simulated under four scenarios. Scenarios NR1 and 

NR2 simulated system behavior without restoration activities, where NR1 consisted of only Colonial 
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Pipeline assets and their known downstream assets (up to three orders), and NR2 included Kinder 

Morgan SE product pipeline assets and additional upstream assets. Scenarios R1 and R2 simulated a 

set of plausible restorations activities taken to recover the pipeline system after the curtailment, again 

with and without the SE product pipeline assets. 

Table 5-6 Colonial Pipeline Ransomware Attack Recovery Timeline. 

 
 

To replicate the initial shutdown for all scenarios, the 346 Colonial Pipeline assets were disable at 

simulation time of hour 1, which was correlated to 8 a.m. eastern standard time. For the restoration 
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scenarios, disruption and restoration events were generated through analysis of the Colonial Pipeline 

Company’s media releases outlined in Table 5-7 and engineering judgment. Restoration events as 

described above were offset based on the differential between real and simulation time. In many 

cases, details about the timing of specific lateral restoration were not reports, so subject-matter expert 

input was used in conjunction with Colonial Pipeline Company’s media statements to generate a 

plausible restoration scenario. The following general rules were considered when determining lateral 

restoration:  

1. Laterals needed to be connected directly to bulk storage facilities 

2. Markets not serviced by the Kinder Morgan pipeline were prioritized 

3. Larger urban markets were prioritized. 

The primary scenario event lists (MSEL) for both scenarios are shown in Table 5-7 and Table 5-8. 

Table 5-7 No Restoration Primary Scenario Event List (NR1 & NR2). 

Date Time Event 
Simulation 

Time 
Notes 

May 7th 7:00 Simulation Start 0:0:00:00  

May 7th 8:00 Curtailed Operations 0:1:00:00  

 

Table 5-8 Restoration Primary Scenario Event List (R1 & R2). 

Date Time Event 
Simulation 

Time 
Notes 

May 7th 8:00 Curtailed Operations 0:1:00:00  

May 9th 8:00 Belton Restoration 2:1:00:00  

May 9th 11:00 Linden Restoration 2:4:00:00  

May 9th 14:00 Woodbury Restoration 2:7:00:00  

May 9th 17:00 Spartanburg Restoration 2:10:00:00  

May 9th 17:10 Media Release 2:10:10:00 
Small Laterals 

w/Terminals 
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Table 5-8 Continued. 

Date Time Event 
Simulation 

Time 
Notes 

May 9th 20:00 Charlotte Restoration 2:13:00:00  

May 9th 23:00 Atlanta Market Nashville 2:16:00:00  

May 10th 2:00 Atlanta Market Bainbridge 2:19:00:00  

May 10th 5:00 Atlanta Market Knoxville 2:22:00:00  

May 10th 8:00 Athens Market Restoration 3:1:00:00  

May 10th 11:00 Greensboro Market Restorations 3:4:00:00  

May 10th 14:00 Mitchell Market Restoration 3:7:00:00  

May 10th 19:00 
Greensboro-Woodbury Manual 

Operation 
3:12:00:00  

May 10th 19:50 Media Release 3:12:50:00 Manual Restart 

May 10th 22:00 Port Arthur Delivery Restoration 3:15:00:00  

May 11th 1:00 Port Neches Delivery Restoration 3:18:00:00  

May 11th 5:00 Beaumont Delivery Restoration 3:22:00:00  

May 11th 8:00 TEPPCO Restoration 4:1:00:00  

May 11th 12:00 Collins Restoration 4:5:00:00  

May 11th 15:00 Pasadena Injection Restoration 4:8:00:00   

May 11th 17:15 Media Release 4:10:15:00 
Delivery from 

Refineries 

May 12th 16:00 
Collins To Epes Mainline 

Restoration 
5:9:00:00  

May 12th 17:10 Media Release 5:10:10:00 Restart Initiated 

May 12th 19:00 Houston to Hebert 5:11:00:00  
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Table 5-8 Continued. 

Date Time Event 
Simulation 

Time 
Notes 

May 12th 20:00 Epes To Pelham 5:12:00:00  

May 12th 22:00 Hebert to Lake Charles 5:14:00:00  

May 12th 23:00 Pelham to Atlanta 5:15:00:00  

May 12th 0:00 Lake Charles to Baton Rouge 5:17:00:00  

May 13th 1:00 Baton Rouge to Collins 5:18:00:00  

May 13th 3:00 Woodbury to Liden 5:20:00:00  

May 13th 4:00 Atlanta to Belton 5:21:00:00  

May 13th 5:00 Belton to Charlotte 5:22:00:00  

May 13th 6:00 Charlotte to Greensboro 5:23:00:00  

May 13th 9:00 Media Release 6:2:00:00 Restart Progress 

May 13th 9:00 Raleigh Lateral Restoration 6:2:00:00  

May 13th 11:00 Pelham Market Restoration 6:4:00:00  

May 13th 13:00 Baltimore Lateral Restoration 6:6:00:00  

May 13th 16:40 Media Release 6:9:40:00 
System Restart 

Complete 

 

Scenario Results 

The summary results for the four use cases are presented below with a focus on airports and refined 

product storage terminal status. These facility types represent the downstream interconnection points 

between the refined fuel pipeline systems and the consumers of refined fuels. 

No Restoration Baseline Scenario Results 

In the baseline scenarios NR1 & NR2, there is a single initiating event, which is the preemptive 

shutdown of all the Colonial Pipeline assets at t=D0:H1. From this event, seven or eight subsequent 
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events were autogenerated based on the time-to-switch and storage durations parameters set for each 

asset participating in the respective simulation scenario.  

NR1 - No Restoration without SE Products Pipeline 

The NR1 scenario consists of 633 total assets, which include 346 Colonial Pipeline facilities. The 

remaining 287 assets represent both upstream and downstream facilities. For the NR1 scenario, the 

system-generated state changes occur at: D3:H1 (2), D4:H1 (3), D5:H1 (4), D6:H1 (5), D7:H1 (6), 

and D11:H1 (7); which are driven entirely by the storage duration parameter of the refined fuel 

terminals. Figure 5-6a presents the count of airport by state for each timestep, and Figure 5-6b 

presents the count of refined product terminals by state for each timestep based on the failure-

function-logic simulation. 

 

Figure 5-6 NR1 Airport (a) and Terminal (b) States by Timestep. 

As expected, the storage capacity of the connected fuel terminals buffered initial impacts of the 

pipeline curtailment; however, leveraging the criticality measures, airports and terminal operators are 

understood to have transitioned into a state of operations where they would be unable to perform their 

normal functions and services. As defined, this would result in major feature/product failure (e.g., 

spot markets drying up), inconvenient workarounds (e.g., utilizing rail/trunk systems), and limited or 

impaired consumer services. Without major behavioral changes, the simulation suggests that the 

region would begin to experience significant system wide shortages in 3–4 days.  

NR2 - No Restoration with SE Products Pipeline 

The NR2 scenario consists of 842 assets. The NR2 scenario incorporates the Kinder Morgan 

Southeast product pipeline into the simulation model. The SE product pipeline supplies refined 

products to many of the same airports, product terminals, and market area that the Colonial Pipeline 

services. The system-generated state changes occur at D1:H1 (1), D2:H1 (2), D3:H1 (3), D4:H1 (4), 

D5:H1 (5), D6:H1 (6), D7:H1 (7), and D11:H1 (8). Figure 5-7a presents the count of airports by state 
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for each timestep, and Figure 5-7b presents the count of refined product terminals by state for each 

timestep based on the failure-function-logic simulation.  

\

 

Figure 5-7 NR2 Airport (a) and Terminal (b) States by Timestep. 

The scenario provides insight into the alternative supplies and identifies airports and markets that 

would have at least a portion of their steady-state supplies. In this case, the Kinder Morgan pipeline 

could help at least four major international airports remain at least partially operational and keep 

many of the major market areas completely drying up. 

Restoration Scenario Results 

In the restoration scenarios R1 & R2, there is a single initiating event, which is the preemptive 

shutdown of all the Colonial Pipeline assets at t=D0:H1; however, 33 restoration events were also 

added to the scenario’s MSEL as shown in Table 5-8. As a result of these 34 events, an additional 

eight and ten autogenerated events were added to the MSEL based on the time-to-switch and storage 

durations parameters set for each asset participating in the respective simulation scenarios. 

R1 - Restoration without SE Products Pipeline 

For the R1 scenario, the estimated restoration activities greatly reduced the number of airports and 

terminals that were critically impacted by the event. In this case only, the Piedmont Triad 

International and Thurgood Marshall Baltimore-Washington International Airports were predicted to 

have extended fuel shortages with Washington-Dulles International Airport having a potentially brief 

disruption seen at timestep 10 as shown in Figure 5-8. At timestep 35 (D6:H4), the final airport is 

returned to operational status. 

For the refined product terminals, 146 of terminals transition to a discharging state immediately 

following the pipeline curtailment. Over the next eight timesteps, as segments of the Colonial 
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Pipeline were restored, many terminals were able to receive fuels stored in the pipeline breakout tank 

farms. Then, at t=10 (D3:H1), terminals that remained disconnected with estimated storage capacities 

of 3 days transitioned to a critical or depleted state. In this case, a maximum of 53 terminals went dry, 

which occurred at T=20 (D5:H1). 

 

Figure 5-8 R1 Airport Status by Timestep. 

 

Figure 5-9 R1 Refined Product Terminals by Timestep. 

R2 - Restoration with SE Products Pipeline 

For the R2 Scenario, the Kinder Morgan SE product pipeline is incorporated allowing, as expected, 

many airports and terminals to receive fuels throughout the simulation reducing the number of 

airports and terminals that were critically impacted by the event. In this case only, the Piedmont Triad 

International and Thurgood Marshall Baltimore-Washington International Airports were predicted to 

be impact by fuel disruptions, while the Washington-Dulles International Airport fuel disruption is 

mitigated by its connection to the Kinder Morgan pipeline as shown in Figure 5-10. At timestep 35 
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(D6:H4), the final airport is returned to operational status. For the refined product terminals, the 

number of terminals that immediately transition to a discharging state was reduced from 146 to 106, 

which represents approximately a 28 percent reduction. Again, over the next eight timesteps, 

segments of the Colonial Pipeline were restored, which enabled many terminals to receive fuels from 

the pipeline’s tank farms. In this case, a maximum of 33 terminals were estimated to go dry, which 

represents approximately a 37 percent reduction in critically impacted terminals (Figure 5-11). 

 

Figure 5-10 R2 Airport State by Timestep. 

 

Figure 5-11 R2 Refined Product Terminal State by Timestep. 

Discussion 

The purpose of this study was to (1) assess the ability of functional-flow network models to simulate 

the behavior of interconnected infrastructure systems and (2) demonstrate the AHA functional-flow 

network modeling framework can support risk and resilience assessments. As the Colonial Pipeline 
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scenarios illustrates, knowledge graphs based on a functional basis for engineered systems provide a 

robust and scalable approach to simulate system behavior through the application of FFL which 

makes them ideal for conducting both risk and resilience assessments when high-fidelity operational 

and engineering information is not available. 

The four scenario cases demonstrate how the AHA methodology can be used to assess and evaluate 

the potential consequences of infrastructure disruptions and the supply chains they support. The 

methodology provides an effective means to account for functional, non-functional, spatial, and 

temporal characteristics of interdependent critical infrastructure systems. In addition, incorporating 

FFL provides emergency management, infrastructure owners, and other organizations with a better 

understanding of their exposure to potential disruptions so they can plan more effective mitigations. 

Further, reviewing the core infrastructure system risk and resilience questions presented in “Chapter 

2: Background and Literature Review,” the AHA methodology provides a scalable approach to 

address crisis action, mitigation, and strategic risk concerns, such as identifying systematic important 

critical infrastructure. The AHA methodology provides an effective approach to answer the following 

questions: 

• If an infrastructure failure occurs what are the national, regional, and local impacts?  

o What is the significance of failure? 

• How long until impacts of an infrastructure failure are realized?  

o What mitigations are in place to buffer the event? 

• Is there a potential for cascading or escalating failures? 

However, there are several limitations of the proposed AHA methodology. First, the ability to account 

for dynamic behavior exhibited by fuel consumers is currently not captured by the proposed 

approach. For example, many airlines modified their operational practices to reduce the demand for 

fuel at affected airports by implementing a practice known as tankering (i.e., carrying extra fuel on an 

inbound aircraft). In addition, many motorists began to panic buy, which strained the last-mile 

distribution networks causing localized disruption at gas stations. In the first case, the airlines 

extended the operational status of the impacted by reducing demand; while in the second case, 

motorists exacerbated the shortages by outpacing fuel truck deliveries for regional terminals. Adding 

stochastic-based approaches could help to address this shortcoming. Second, collecting the required 

information to effectively assess cross-sector dependencies and the potential consequence of their 

disruption at a national level is still a significant challenge. In the scenario cases presented in this 

study, actual consumers of refined products from the terminals are not known and is often difficult to 
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determine from open-source information. Finally, incorporating additional specific properties such as 

terminal capacity would also provide a refined estimate of impact. 

Overall, this study achieved its goal of demonstrating that functional-basis-informed graphs are ideal 

for describing and analyzing interconnected infrastructure system behavior under all-hazard 

conditions. Functional-basis-informed graphs provide an optimal structure for modeling function, 

commodity, and service flows of interconnected systems and facilitate scalable and repeatable 

assessments of system behaviors suitable for vulnerability, consequence, and risk analysis. 

Conclusion 

In this chapter, the AHA methodology was applied to the refined fuel pipeline systems and validated 

against the Colonial Pipeline ransomware attack. Like many other hazard events, the Colonial 

Pipeline attack highlighted significant regional dependencies on a single critical infrastructure system, 

which, when disrupted, had far reaching impacts including cascading and escalating failures of other 

critical infrastructure systems. Understanding critical dependencies and the consequence of disruption 

is essential for effective policymaking, continuity of operation planning, community resilience 

planning, and emergency management and response. For example, policy makers need to fully 

understand the refined fuel systems and the markets they support to appropriately incentivize 

investments in resilience enhancement by the system owners and the communities they support. 

Similarly, community resilience planners need sufficient understanding of the systems supporting 

their region to plan and prepare for potential disruption. 

This will require developing effective decision support methods and tools that can be used by both 

decision makers and analysts across industry and government. Successful approaches will accept 

varying levels of data fidelity, reducing the burden of information sharing on critical infrastructure 

owner and operators, and provide the ability to evaluate different courses of action related to both 

policy and infrastructure investment. 

Finally, additional efforts will need to be made to address the community resilience planners’ need 

for enhanced information sharing with the legal and information security professionals’ desire to limit 

or totally restrict sharing. 
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Chapter 6: Preliminary Cyber-Physical Functional-Flow Model 

Analysis 

As discussed throughout this dissertation, infrastructure is ubiquitous in modern societies, and their 

reliable and resilient operation is of paramount importance to national security and economic vitality 

[2]. Recent trends have been to optimize the operation of these systems by integrating information 

and communication technologies, resulting in a tight coupling of cyber and physical components. 

These cyber-physical systems (CPSs) consist of computational and communication systems 

embedded within physical systems to monitor, coordinate, and control the continuous dynamics of the 

physical system [127, 128]. CPSs are commonly referred to as ICS, supervisory control and data 

acquisition (SCADA) systems, and distributed control systems. CPSs promise to provide increased 

capacity, reliability, and efficiency over physical systems alone. One example is the proposed smart 

grid. However, the integration of cyber technology has the potential to expose these systems to 

interruptions in the underlying information and communication components due to equipment failure 

or malicious intent and may lower their resiliency if not properly designed and secured [129-131]. 

Over the last couple of decades numerous cyberattacks have been reported that targeted CPS, 

including Natanz (Stuxnet), Ukraine (BlackEnergy 3), and the Oldsmar Water Plant compromises. In 

each of these cases, the attackers were able to deny, disrupt, or destroy the intended operation of the 

impacted CPS, demonstrating their vulnerability to malicious attacks [132-134]. Further, cases like 

the Ukraine power grid attack highlight the potential for widespread consequences of a successful 

attack. In order to reduce the potential for high-consequences events, engineers and operators need 

effective methods to identify and mitigate risks of successful attacks in the design and operation of 

CPS. In response, the U.S. Department of Energy developed the National Cyber-Informed 

Engineering (CIE) Strategy to help increase security, reliability, and resilience in American’s energy 

sector through awareness, education, design, and assessment of SICI [135]. 

To achieve many of the goals outlined by the DOE’s CIE Strategy, new methods, techniques, and 

tools are needed to design future systems, identify existing vulnerabilities, and train the next 

generation of CPS engineers, operators, and emergency responders. These stakeholders require highly 

scalable and customizable modeling/simulation and training environments that mimic realistic CPS 

behavior, including their spatial and temporal dynamics. Ideally, the evaluation environment would 

be a replica of the actual systems under evaluation; however, it would be unrealistic to develop 

physical copies of all interconnected systems for design, assessment, and training purposes. Software-

based simulation provides an alternative to physical systems; however, these modeling and simulation 
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approaches are also problematic because CPSs are composed of the process equipment, control 

devices, software, and information networks that operate in continuous and discrete time [127, 128, 

134]. Thus, Lee contends that modeling CPS behavior requires understanding both continuous 

processes, as well as discrete events which require utilizing and linking multiple categories of model 

types which present implementation challenges. Rai and Shu categorize the different modeling and 

simulation types as (1) physics based, (2) state machine based, (3) rule or agent based, and (4) data 

driven [136]. However, these options do not consider the potential for hardware-in-the-loop (HIL) 

approaches that would enable scalability and more closely mimic the operational process 

environment. 

HIL-based approaches have been shown to be effective in conducting both security and risk research 

[137-139]. Potteiger et al. evaluated a HIL-based approach to evaluate the effects of human-in-the-

middle attacks on railway network behavior by demonstrating its ability to capture the attack 

propagation as well as the systems cyber and physical behavior [139]. Similarly, Liu et al. leveraged a 

HIL co-simulation environment to model a cyberattack on a power-system CPS to evaluate the 

impact of communication disruptions on system response [138]. HIL simulation capabilities also 

provide ideal training environments for system operators due to the enhanced ability to account for 

physical system behavior without having to build a replica of an entire system. 

In this chapter, a HIL-based environment that extends the DHS Control Environment Laboratory 

Resource (CELR) environment by integrating the AHA simulation capability is proposed. CELR is an 

HIL environment that was developed by DHS to provide ICS stakeholders with a resource to perform 

security research and training related to cyberattack scenarios. CELR incorporates physical control 

system equipment with connected information technology (IT) to emulate actual sector-specific 

processes using OT found throughout U.S. infrastructure. Such a capability has the potential to create 

a highly customizable and immersive environment that could be tailored for CPS design, mitigation, 

and training needs. Incorporating the AHA capability provides the ability to simulate cascading 

impacts that could affect CPS operations or be affected by disruptions in a CPS. This initial effort 

focuses on the evaluation of the AHA time-dependent FFL for modeling CPS behavior for the 

purpose of risk identification and training. This research further establishes that functional-basis-

informed graphs provide an optimal structure for modeling function, commodity, and service flows of 

interconnected systems and facilitate scalable and repeatable assessments of system behaviors 

suitable for vulnerability, consequence, and risk analysis. 
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CELR Testbed and Proposed HIL Architecture 

The proposed architecture seeks to integrate the AHA simulation capability within the CELR 

environment to enhance consequence analysis and training scenario generation for cyber-based 

disruptions.  

Control Environment Laboratory Resource Overview  

The CELR is an ICS testbed environment developed by CISA for the purpose of conducting ICS and 

SCADA systems security research. The environment is also intended to aid in training government 

and industry stakeholders by allowing them to experience simulated kinetic effects of successful 

cyberattacks on control system environments. Currently, the CELR has testbed resources for oil and 

natural gas compressor stations, electrical substations, building automation, and chemical 

manufacturing, as well as the supporting network system devices.  

AHA Simulation Environment 

The AHA simulation environment provides a potential mechanism to enhance consequence analysis 

and training beyond the CELR physical hardware environment. AHA leverages a robust knowledge 

graph for the development of dependency models for critical infrastructure and supply chain analysis. 

Integrating the AHA capability could provide enhanced ability to (1) develop testing and training 

scenarios, (2) visualize results, and (3) assess consequences beyond the CELR testbed environment. 

These capabilities would allow for both cyber-informed engineering prototyping and advanced 

training experiments designed to evaluate the effects of cyberattacks on a CPS. By leveraging the 

AHA knowledge graph approach, scenarios can by designed to test and compare various CPS 

reference architecture to identify potential vulnerabilities and assess their risk and resilience. 

Case Study 

The objective of this case study is to test the ability of the AHA knowledge graph to model CPSs and 

if the proposed FFL is suitable for CPS behavior simulation research. The case study is based on a 

notional natural gas pipeline system which leverages the CELR natural gas compressor station 

platform and the Integrated Enterprise SCADA System Architectures for Safe and Efficient Pipeline 

Operations proposed by Schneider Electric and Cisco Systems [142].   

CELR Oil & Natural Gas Pipeline Platform Overview  

The CELR Oil & Natural Gas (ONG) Pipeline Platform provides a physical representation of a 

commonly configured pipeline compressor station and associated ICS and communications network, 

including the human-machine interface, which can be used for demonstrations and simulations of 

cybersecurity attacks to cause visible physical effects. A process flow diagram is shown in Figure 6-1.  
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Figure 6-1 CELR ONG Platform Pipeline and Instrumentation Diagram. 

Natural gas enters the compressor station through the M-100 compressor shown on the bottom left of 

the diagram. After the gas enters the station, it passes to pressure valve (PV-100) and flow valve (FV-

100) which can be adjusted on the human-machine interface (HMI) to influence the pressure or flow 

rates. The valves supply the main line that flows into the simulated scrubber. Temperature (TI-100), 

flow (FIC-101), and pressure (PIC-100) transmitters relay the respective instrumented rates at 

different portions of the process to ensure they are within identified thresholds for safe operations. 

From the scrubber, gas flows into the compressors (M-200-1, 2, 3, and 4) which increase the pressure 

to push the natural gas through the pipeline to the next hub or compressor station. From the 

compressor, the line runs through a pressure valve (PV-400) followed by additional instrumented 

temperature (TI-300), flow (FIT-410), and pressure (PIT-310) transmitters for the second portion of 

the process. Cooling fans (M-300-1, 2, 3, and 4) are also represented to ensure the temperature of the 

gas is maintained at optimal temperatures to maximize efficiencies in transport. Gas is then pumped 

through the flow valve (FV-410) for distribution to the customer or through the pressure valve (PV-

420) to the flare stack to burn off excess gas or impurities in the system. 

The platform control component hardware contains a PLC, HMI, and supporting field devices. The 

PLC is an Emerson Bristol Babcock ControlWave process automation controller (PAC). The PAC is 

housed in a 10-slot chassis and interfaces with the field devices via the input/output (I/O) modules. 

The HMI is a Maple Systems 15” or an OASyS HMI. Communication between the PAC, HMI, and 

OT network devices is accomplished through an integrated 10/100M Ethernet Interface in the CPU 

Module. Field devices are monitored and/or controlled by the PAC I/O modules via pre-wired cables, 
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except for PV-420, which is connected via a Prosoft Technologies 900 MHz wireless radio kit to the 

PAC. This provides valve position control and feedback via 900 MHz radio communications. 

Electric Connected Pipeline Reference Architecture  

The Electric Connected Pipeline Reference Architecture developed by Cisco and Schneider Electric 

was designed to enable pipeline operations and management while maintaining system integrity, 

safety, security, and reliability. The architecture provides a comprehensive design guide for 

communication network required for operations and management of a pipeline system. In such, it 

provides an ideal structure for modeling a notional system that includes its physical assets as well as 

its cyber components. The reference architecture considers control centers, compressor stations, pump 

station, metering stations, PIG stations, terminal stations, and block valve stations. 

AHA Notional Pipeline System 

For this research, a notional natural gas pipeline systems model was developed leveraging AHA 

methodology described in “Chapter 3: All-Hazards Analysis (AHA) Methodology.” The notional 

system model was based on the natural gas system, communication component, and control system 

component knowledge models, which were validated against CELR and the Cisco reference 

architecture. The corresponding functional dependency model is shown in Figure 6-2 and consists of 

a control center, compressor station, two pipeline segments, two substations, and their internal 

components. Each of the compressor station components could be mapped to the physical resource 

devices for HIL research and training purposes. 



78 

 

Figure 6-2 Notional CPS Natural Gas System Model. 

Test Case 1: Physical Pipeline Disruption 

Test case 1 was developed to test the time-dependent FFL ability to evaluate the impacts of a physical 

process disruption on the OT and IT functions of the notional CPS. In this case, the pipeline segment 

responsible for feeding natural gas to the compressor station was disabled. This would be 

representative of a pipeline rupture or leak. The results of the test case are shown in Table 6-1. The 

disruption of the pipeline impacts the compressor station components that require natural gas to 

maintain a normal operational state, and because the strength of dependency is considered critical, the 

compressors, control valves, scrubber, and aftercooler are set to a critical state. As constructed, the 

model indicated metering equipment would experience low impacts; however, the absence of gas 

through a control valve would not impact the operational state of a metering device. The leak 

detection and historian components also were shown to be impacted due to the failure propagation of 

the metering devices via degraded metering requirements not being met. 

Test Case 2: Network Router Disruption 

Test case 2 was developed to test the time-dependent FFL ability to evaluate the impacts of a 

communication network device disruption on the OT and IT functions of the notional CPS. In this 

case, the control center aggregation router was disabled. The aggregation routers consolidated traffic 

from local area networks that is intended to be transmitted over wide area networks and vice versa. 

The results of the test case are shown in Table 6-1. In test case 2, we observe impacts to the function 
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of the process equipment and the SCADA components within the compressor station as well as in the 

SCADA and decision support domains of the control center. This test case demonstrates that the FFL 

is able to capture component impact from the disruption of the single path for control and metering 

between the control center and the compressor station.   

Test Case 3: Programmable Logic Controller Disruption 

Test case 3 was developed to test the time-dependent FFL ability to evaluate the impacts of a control 

device disruption on the OT and IT functions of the notional CPS. In this case, the PLC controlling 

the compressor station was disabled. The results of the test case are shown in Table 6-1. The 

disruption of the PLC impacts the compressor station components that require control signals to 

maintain a nominal operational state and because the strength of dependency is considered critical for 

compressors, control valves, and cooling fans. This test case demonstrates that the FFL can capture 

component impact from the disruption of the PLC. 

Test Case 4: Engineering Workstation Disruption 

Test case 4 was developed to test the time-dependent FFL ability to evaluate the impacts of a 

engineering workstation disruption on the OT and IT functions of the notional CPS. In this case, the 

workstation provides control logic to the PLC and was intended to represent a workstation 

compromise. The results of the test case are shown in Table 6-1 and have similar results to test case 3. 

However, this test case highlights the need for critical analysis of model results. The simple 

disruption of an engineering workstation would not result in impacts described by the model; 

however, if the disruption was due to a threat actor who had the intention of modifying control logic, 

it is plausible.       

Table 6-1 CPS Component States by Test Case. 

CPS Component States by Test Case 

      Case 1 Case 2 Case 3 Case 4 

Components Component Type t=0  t=1  t=1  t=1  t=1  

Compressor Station   

M-200-4 Compressor Compressor OP Crit Sig Crit Crit 

M-200-3 Compressor Compressor OP Crit Sig Crit Crit 

M-200-2 Compressor Compressor OP Crit Sig Crit Crit 

M-200-1 Compressor Compressor OP Crit Sig Crit Crit 

M-100 Compressor Compressor OP Crit Sig Crit Crit 

FV-410 Control Valve OP Crit Sig Crit Crit 



80 

Table 6-1 Continued. 

CPS Component States by Test Case 

      Case 1 Case 2 Case 3 Case 4 

Components Component Type t=0  t=1  t=1  t=1  t=1  

Compressor Station   

PV-420 Control Valve OP Sig Sig Sig Sig 

PV-400 Control Valve OP Crit Sig Crit Crit 

FV-101 Control Valve OP Crit Sig Crit Crit 

PV-100 Control Valve OP Crit Sig Crit Crit 

M-300-4 Fan Cooling Fan OP Nom Sig Crit Crit 

M-300-3 Fan Cooling Fan OP Nom Sig Crit Crit 

M-300-2 Fan Cooling Fan OP Nom Sig Crit Crit 

M-300-1 Fan Cooling Fan OP Nom Sig Crit Crit 

Aftercooler Gas Cooler OP Crit Sig Crit Crit 

Scrubber Gas Scrubber OP Crit Sig Crit Crit 

Maple Systems HMI Human-Machine 

Interface (HMI) 

OP Sig Sig Crit Crit 

PIT-200 Meter Meter OP Low Low Low Low 

TIT-310 Meter Meter OP Low Low Low Low 

FIT-410 Meter Meter OP Low Low Low Low 

PIT-310 Meter Meter OP Low Low Low Low 

TIT-300 Meter Meter OP Low Low Low Low 

PIT-120 Meter Meter OP Low Low Low Low 

FIT-110 Meter Meter OP Low Low Low Low 

TIT-100 Meter Meter OP Low Low Low Low 

CELR Compressor 

Firewall 

Network Firewall OP Nom Nom Nom Nom 

CELR Compressor 

Aggregation Router 

Network Router OP Nom Nom Nom Nom 

CELR Compressor 

Network Switch 

Network Switch OP Nom Nom Nom Nom 
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Table 6-1 Continued. 

CPS Component States by Test Case 

      Case 1 Case 2 Case 3 Case 4 

Components Component Type t=0  t=1  t=1  t=1  t=1  

Control Center   

CELR SCADA 

Application Server 

(Leak Detection) 

Control System 

Applications Server 

OP Sig Sig Sig Sig 

CELR Master 

SCADA Historian 

Control System 

Historian 

OP Sig Sig Sig Sig 

CELR ETRM System Database Server OP Nom Nom Nom Nom 

CELR SCADA 

Domain Controller 

Domain Controller OP Nom Nom Nom Nom 

CELR Engineering 

Workstation 

Engineering 

Workstation 

OP Nom Nom Nom Dis 

CELR Decision 

Support Firewall 

Network Firewall OP Nom Nom Nom Nom 

WAN Firewall Network Firewall OP Nom Nom Nom Nom 

CELR SCADA 

Firewall 

Network Firewall OP Nom Nom Nom Nom 

CELR Decision 

Support Router 

Network Router OP Nom Nom Nom Nom 

CELR SCADA 

Router 

Network Router OP Nom Nom Nom Nom 

CELR SCADA MCC 

Aggregation Router 

Network Router OP Nom Dis Nom Nom 

CELR Operator 

Workstation 

Operator Workstation OP Nom Nom Crit Nom 

CELR Nomination 

System 

Web Application 

Servers 

OP Nom Nom Nom Nom 
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Discussion 

The four test cases demonstrate how the AHA knowledge graph and time-dependent FFL provide an 

approach to evaluate CPS systems. These test cases provide evidence that the FFL could be used to 

enable cyber-informed engineering and potentially enhance training by integrating with CELR or 

other HIL resources. Careful analysis of the propagation paths can inform system design, inform 

mitigation requirements, or aid in understanding the consequence of disruptions. In addition, this 

method overcomes the spatial and temporal limitations described by [45]. However, there are several 

limitations of the current approach which include the ability to evaluate combinatorial degradations 

and modeler bias. For example, the loss of single metering dependency would have little or no impact 

on overall pipeline operations, but if the ability to receive readings from multiple sensors was 

impacted, the event would have significant impacts to pipeline operations.       

Conclusions 

This chapter demonstrated how the AHA time-dependent simulation capability can be used to model 

and simulate disruptions of CPS functions and their potential impacts for risk and resilience 

assessments of a notional natural gas pipeline by leveraging the Electric Connected Pipeline 

Reference Architecture developed by Schneider Electric and Cisco and CELR Natural Gas 

Compressor Skid. In addition, this research proposed a HIL CPS architecture that could be used to 

enhance CPS security research, mitigation testing, and stakeholder training.  

By demonstrating how the AHA knowledge graph and time-dependent FFL could be used to test CPS 

designs, this research provides evidence that functional-basis-informed graphs provide an ideal 

structure for modeling function, commodity, and service flows of interconnected systems and 

facilitate scalable and repeatable assessments of system behaviors suitable for vulnerability, 

consequence, and risk analysis. In addition, a potential approach for constructing a HIL-based CPS 

that can enable future consequence-driven cyber-informed engineering research was provided.   

Future work will consider the possibility of HIL simulation to more accurately account for the 

continuous nature of physical processes. Capabilities like the DHS CELR might provide ideal 

mechanisms to create highly customizable and immersive environments that could be tailored for 

CPS design, mitigation, and training needs. 
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Chapter 7: AHA Data Collection and Processing 

The process of assessing the risks and resilience of interconnected infrastructure at scale is 

challenging because there is not a comprehensive data set that describes all infrastructure and their 

dependency relationships [8]. This is partly due to their dynamic nature, spatial distribution, and 

diverse ownership, with approximately 85 percent of the critical infrastructures in the United States 

owned and operated by the private sector entities. This makes collecting information on their 

existence, location, condition, and dependency relationships difficult to achieve at scale. However, for 

many infrastructure sectors, there are significant amounts of information contained in both structure 

and unstructured data sources, such as regulatory databases and after-action reports. However, the 

ability to effectively leverage this publicly available information requires new methods and tools to 

sift through, extract, and transform the content pertaining to infrastructure into actionable knowledge. 

A knowledge system such as this requires the development of novel approaches that leverage 

advances in the fields of NLP, IE, and IR. This chapter describes the proposed AHA TAS and the 

Infrastructure Miner (I-Miner) algorithm that was developed to address the initial requirement to 

identify and extract references to named infrastructures from unstructured text. 

Natural Language Processing for Critical Infrastructure Information 

This section discusses the NER Critical Infrastructure project, which includes both the Corpus 

Development and Training Tool (CDTT) and the Infrastructure Miner (I-Miner) algorithm. CDTT is a 

java-based application designed for corpus development to facilitate training of OpenNLP supervised 

document categorization and named entity recognition models. I-Miner is a supervised, named entity 

classification system developed to optimize and address issues with extracting named infrastructure 

from web content. I-Miner leverages the OpenNLP Libraries [33], in conjunction with sector-specific 

infrastructure dictionaries, to detect named infrastructure more efficiently with minimal training. I-

Miner has also been integrated with CDTT to facilitate rapid testing. Figure 7-1 outlines the CDTT 

and I-Miner process flow. 
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Figure 7-1 I-Miner Process Flow. 

As implemented, potentially configurable parameters are static. The DocumentCategorizerME 

parameters are set to 8 for cutoff and 1,000 for iterations. The NameFinderME parameters are set to 

only process the FAC tag and the default of 100 iterations. NER is an NLP task and is commonly 

used for IE and retrieval applications, such as web content mining and knowledge base population 

(KBP) [1][2]. NER addresses the need to identify and tag certain types of entities in unstructured text 

resources. The simplest approach to NER is using a gazetteer of all known entities of interest to 

iteratively search each resource for entities contained within the gazetteer. However, this approach is 

challenged by the difficulties of creating and maintaining comprehensive lists of all possible entities, 

as well as resolving ambiguities [3]. To overcome these limitations, methods for automatically 

labeling textual features as named entities were developed based on machine-learning algorithms, 

such as MAXENT [4][5]. These models are most often trained using a manually annotated corpus of 

documents and typically include the following entities: people, locations, and organizations [6]. 

Currently, there are a number of trained NER models freely available such as those included with 

Apache’s OpenNLP Name Finder [7]. While these models work very well in many applications that 

require the labeling of the above mentioned entities, they are limiting in domain-specific applications 
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[8]. To utilize this type of algorithm, it would require that a new corpus of documents be collected 

and manually annotated to train a new model specific to that domain. This is the preferred approach 

when the use case and domain is well-defined; however for dynamic use cases, this becomes 

restrictive due to the potential for overfitting. For example, in the infrastructure domain, a researcher 

may be only interested in certain type or class of infrastructure, so the ability to design a method or 

tool that provides flexibility and reduces the need to collect and annotated a significant number of 

corpora is desired. In order to realize the benefits of web content, data, and documents, more efficient 

methods for web content mining must be developed. 

In this section, the Infrastructure Miner algorithm is presented as a method to optimize and address 

the issues with extracting named infrastructure from web content. Infrastructure Miner combines 

existing robust NER models provided with OpenNLP Name Finder [7] and the Stanford Named 

Entity Recognizer [9] with a keyword infrastructure list and several heuristics in order to efficiently 

detect infrastructure with minimal training. 

This next section will cover related work, and the following is a section on “Corpus Development.” 

The “Algorithm” section is dedicated to an in-depth discussion of the Infrastructure Miner algorithm. 

Results are present in the “Experimental Results” section, and future work is cover in this chapter’s 

final section. 

Related Work 

The algorithm contains as its essential idea the concept of using classifiers to identify and extract 

infrastructure from web content. It is, therefore, worthwhile to review the concept of the classifier and 

examine the way it is used in the Infrastructure Miner algorithm. The two approaches covered in this 

section are the Stanford Named Entity Recognizer [9] and the Apache OpenNLP Name Finder [7]. 

The Stanford NER is a probabilistic-named entity classifier based on CRF [9]. It incorporates non-

local structures using Gibbs Sampling, a Markov chain Monte Carlo algorithm, and simulated 

annealing to produce long distance dependency models often found in natural languages and has been 

demonstrated to be effective for named entity extraction. 

The OpenNLP Name Finder is based on the MAXENT algorithm [4]. MAXENT is a statistical 

technique that maintains as much uncertainty as possible based on a set of constraints to classify 

without any prior assumptions about the probability distribution. For a comprehensive review of 

MAXENT as it applies to NLP, review Berger et al. [10]. 
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Corpus Development 

The test corpus was constructed from 100 web-based new articles collected over a 1-month period 

that specifically identified named infrastructures, for example the “Golden Gate Bridge.” Care was 

taken to ensure that no single source (e.g., New York Times) contributed a significant number of 

articles. Each article was examined and manually annotated to identify named infrastructures. During 

the annotation process, a keyword list of specific infrastructure was also generated. See Table 7-I for 

a complete list. The test corpus contained 180 total named infrastructures and a total of 393,114 

words. 

Algorithm 

The algorithm can be broken down into four parts as describe in Figure 7-2 These are the classifiers, 

the acronym heuristic, the capital letter heuristic, and false positive removal. The process begins with 

a document being passed into the algorithm. This study is limited to HTML documents since web 

content is being targeted which is usually in HTML format. The documents used were downloaded 

from the Internet and stored on the computer running the algorithm. Next, the HTML formatting is 

stripped; HTML Cleaner [11] was used to accomplish this, and the text is formatted to construct a 

continuous string of text. Excessive spacing is removed leaving a single space between words. This is 

necessary to keep from introducing unconventionally structured content to the classifiers. The text is 

passed into both the Stanford NER classifier and the Apache OpenNLP Name Finder classifier. The 

classifiers have been given the models necessary to allow them to look for people, organizations, and 

locations. Obtaining these entities is done with the motivation of extracting the complete name of the 

infrastructure being searched for. It can be noted that a large amount of infrastructure is named in the 

structure of having one of these entities (people, organizations, or locations) followed by the type of 

infrastructure. For example, “George P. Burdell Bridge” is the name of a person followed by the type 

of infrastructure that is being searched for.  
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Pseudo Code for Infrastructure Miner 

1. Input: a web document d 

2. L is an empty list  

3. LI is a list containing infrastructure 

4. LS is an empty list for solutions 

5. do  

6. read in document 

7. strip HTML formatting  

8. eliminate extra spacing 

9. compute Stanford classification 

10. compute Apache OpenNLP classification 

11. add the entities found to L 

12. for each entity e in L 

13. for each infrastructure i in LI 

14. if e is next to i in d 

15. add e to LS 

16. end for 

17. end for 

18. compute Acronym Heuristic 

19. compute Capital Letter Heuristic 

20. add the entities found to LS 

21. compute false positive removal on LS 

22. Output: list LS containing the infrastructure found 

 

It is important to note that the classifiers will often extract the whole name of the infrastructure 

meaning the substring extracted already includes the type of infrastructure being looked for. This is 

addressed by first checking to see if the last word of the entity found is in the list of infrastructure 

desired. The whole name is added to the list of solutions if this is the case. If this is not the case, then 

the algorithm sees if the named entity found by the classifiers is next to an infrastructure in the text. If 

this is the case, the entity is added to the list of solutions. The performance is highly dependent on the 

general type of infrastructure being in the list the algorithm uses. New infrastructure can be readily 

added to this list. If the structure is not in this list, it is highly unlikely that the algorithm will find it. 

This is a defining feature because it allows the user to narrow down the type of infrastructure that will 



88 

be searched for. This can optimize computational complexity, memory usage, and time because 

unneeded structures will not be looked for. The selected infrastructure systems for this study are 

presented in Table 7-1. 

Table 7-1 Selected Infrastructure Systems. 

Sector Infrastructures 

Air Travel Airport, international airport, airfield, and airstrip. 

Examples: “Boston International Airport,” “John Doe Airfield,” and “Idaho Falls Airport.” 

Water Works 

Aqueduct, treatment plant, wastewater treatment plant, water treatment 

plant, water treatment facility, water reclamation facility, wastewater 

control facility, sewage treatment plant, sewage plant, reservoir, 

reservoir canal, bridge, dam, tunnel, dock, basin, drainage, flow control 

structure, diversion, levee, canal, canal enclosure, seaport, retaining 

wall, retaining walls, culvert, embankment, flood bank, and stop bank, 

flowline. 

Examples: “Point of the Mountain Water Treatment Plant,” “Rhode Island Water Reclamation 

Facility,” “Red Basin,” and “Idaho Wastewater Control Facility.” 

Power Generation 

Plant, electrical generating station, power plant, nuclear power plant, 

power facility, power station, generation station, generating station, 

solar power plant, and wind farm. 

Examples: “Utah Electrical generating station,” “Austin Nuclear Power Plant,” and “Colorado 

Generation Station.” 

Research Facilities National laboratory, national laboratories, and observatory. 

Examples: “Idaho National Laboratory,” “Sandia National Laboratories,” and “Australia 

Observatory.” 

General Services 

Landfill, subway, tower, police station, railroad, fire department, fire 

station, hospital, medical center, medical care center, hospital center, 

teaching hospital, healthcare clinic, health care center, and medical 

agency. 

Examples: “New York Subway,” “Dalton Fire Department,” and “California Teaching Hospital.” 
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The first heuristic to be discussed is the acronym heuristic. This is based on the observation that some 

text’s infrastructure will occasionally have an acronym of its whole name immediately after the 

infrastructure has been mentioned. It is posited that following a brute force search for an 

infrastructure, if there is an acronym next to the name of the infrastructure, then it is a sound 

assumption that an abbreviation of the infrastructure’s name is contained in the acronym. This can be 

taken advantage of because the first letter within the acronym will indicate how far back to look 

within the text to extract the whole name of the infrastructure. In summary, the process is to look for 

the first word starting with the first letter of the acronym found and then select the whole phrase 

starting from the word that starts with the first letter in the acronym and ending with the name of the 

infrastructure. 

The next heuristic used is the capital letter heuristic. A brute force search for the infrastructure being 

looked for is performed, and the indexes of each are stored. The words to the left of the structure are 

examined, and if they start with capital letters, they keep being incorporated into a possible entity 

until no more capital letters at the beginning of a word are found. Words such as “of the” and “of” are 

skipped in the sense that they do not need to be capitalized, and this heuristic will keep searching for 

words starting with a capital letter after skipping these words because they are often a part of an 

entity. For example, for the entity “Point of the Mountain Aqueduct,” if the words “of the” were not 

skipped, this heuristic would only extract “Mountain Aqueduct” because it would find that “of the” 

do not begin with capital letters and thus assume it has already extracted the entire entity. The found 

entities are then put into the list of possible solutions in which both the classifiers and acronym 

heuristic have deposited their findings. 

Finally, the list of possible solutions must be processed for false positives. The first task is to remove 

duplicates from the list. Duplicates can arise because each of the classifiers could have identified the 

same entity or because either of the heuristics could have identified the same entity. Next, it was 

noted that many of the entities in the list started with the word “the;” this seems to be an error that is 

being made by the classifiers. The word “the” is removed, and the remaining of the string is placed 

back into the list, but first one should check that it is not already present in the list, as this would 

make it a duplicate. All the instances of infrastructure that do not carry any additional information 

with them are also removed. 

There seems to be an error being made by both the classifiers and the heuristics, which has been 

designated as the “chaining problem.” This occurs whenever there is a list of infrastructure in the text 

or when an error has been made in the initial processing and formatting of the text causing the 
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concatenation of multiple words without correct spacing in between them. The entire sequence is 

identified as an entity, and because it ends with an infrastructure, the sequence is incorrectly 

designated as a solution. The chaining problem is partly addressed by iterating over the proposed 

solutions and checking if a single unit contains more than one infrastructure. If this is the case, the 

algorithm backtracks starting from the end of the string toward the beginning of the string dividing 

the unit into fragments upon encountering an infrastructure present in the list mentioned previously. 

This mechanism mostly works if the chain was caused by a list of infrastructure. For the other type of 

chain, the one caused by formatting errors, the algorithm does not currently have an effective method 

of unraveling it. One procedure that appears to work decently well is to just remove the chain from 

the list of possible solutions if it is significantly longer than the rest. At this point, the algorithm is 

finished, and the remaining units in the list of solutions is the output. 

Experimental Results 

Infrastructure Miner’s performance was evaluated on the test corpus. Table 7-2 presents a condition 

matrix of the results, which was achieved by running the algorithm against all 100 articles. Of the 180 

manually identified entities, 157 were correctly identified, 23 were missing, and 72 were falsely 

identified. Table 7-3 presents the Infrastructure Miner’s performance metrics. 

Table 7-2 Condition Matrix of the Results. 

 

Condition 

Positive Negative 

O
u
tc

o
m

e Positive 157 72 

Negative 23 NA 

 

Table 7-3 Infrastructure Miner’s Performance Metrics. 

Performance Metrics 

Precision 0.68 

Recall 0.87 

F-Measure 0.76 

 

It is pertinent to describe what has been defined as a “correct” entity. For a sequence to be considered 

correct, it must be the entire name of the infrastructure and nothing else before or after it. It is 
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important to note that many of the false positives found in the study were truncated sections of the 

whole name of an entity. It appears to be relatively simple to resolve this by checking if an entity is a 

substring of another and eliminating it if it is. However, the algorithm does not know whether the 

smaller sequence is the correct entry, and the longer one has unneeded information. This has been left 

as is in an attempt to consolidate the struggle between precision, in other words obtaining all the 

entities present and recall. For this study, precision is the most important metric since the objective is 

to correctly extract all the infrastructure available in the text. 

There is an overwhelmingly large portion of negative cases as shown by the true negative measure, 

which is at 99.9 percent. Consequently, the accuracy is also at 99.9 percent because the negative cases 

were accurately categorized as being negative, and the positive samples can hardly disturb the 

accuracy because of their small weight in proportion to the negative samples. This highlights the 

difficulty of obtaining positive samples since they are truly rare in relation to the total number of 

samples. In fact, when the articles were parsed by hand, a total of 180 instances of infrastructure were 

found. For simplicity, it can be assumed that each entity is two words in length. This would mean the 

proportion of positive samples to negative samples is 0.00009. This is given by taking the 180 entities 

and dividing them by 196,557, which is the total number of words present in the articles divided by 

two since it is being assumed that an entity is two words in length. 

Special attention was given to selecting a wide variety of articles to submit to the algorithm in this 

study. The motivation for this is that it creates a more realistic testing environment given the purpose 

of this work. This poses a few challenges, especially for the initial parsing of the document. Different 

newspapers structure their content in different manners. The structures of the web pages also differ, 

which creates a challenge in regard to parsing and setting up the text for processing. The sidebars are 

particularly difficult to parse since they can also contain infrastructure. They are not in a regularly 

structured manner, which makes it difficult for the classifiers to pinpoint an entity since they do not 

have context to work with. The heuristics are much more efficient at pulling the infrastructure from 

the sidebars, but they can still be challenged by the structuring. Entities not visible but are present on 

the web page are also problematic since they cannot be accounted for in the initial manual parsing but 

make themselves existent when they are read by a computer. These were counted as missed entities in 

the interest of this study’s integrity. 

The infrastructure miner framework has a few limitations that need to be discussed. The most 

pertinent one is that the text being analyzed must explicitly name a structure for it to be extracted. 

Another limitation which may in fact be a feature depending on the user case is that only the 
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infrastructure residing in the list will be distinguished as being an entity. This is a limitation if one 

wishes to look for all the existent infrastructure in a text and a feature if one wants to look for specific 

types of infrastructure. The general recognition technique is not exclusively limited to infrastructure. 

This domain has been targeted, but any entity which follows the pattern of having people, 

organizations, or locations preceding the general type of entity or for which the heuristics can apply 

can be found using Infrastructure Miner. 

Future Work 

One of the most crucial areas in need of further work is false positive removal. Specifically, the 

problem of having an entity that is a truncated version of a whole entity being present in the list of 

solutions along with the whole entity needs to be addressed. This algorithm does not have any way of 

differentiating between these. Another area for improvement is the need for a better parser and 

HTML format remover. It would be of benefit to have a parser that could distinguish between main 

body text and sidelines in a web news article. This would give way to allow for creating techniques 

for mining specifically the sidelines and keep from confusing the classifiers with unconventionally 

structured text. Some of the HTML formatting code was not removed by the stripper used; this could 

also help improve the metrics.  

This algorithm cannot extract non-explicitly mentioned infrastructure. This is a more advanced 

problem which is worth looking into for the sake of obtaining more data from the processed texts. 

Finally, this algorithm is the first step toward a complete solution to the problem of analyzing 

infrastructure interdependence in each locale. Connecting the found entities with each other in respect 

to interdependence is the next step. 
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Chapter 8: Conclusions and Future Work 

Research Overview and Objectives 

Understanding the risk to and resilience of the interconnected infrastructure systems and the supply 

chain they enable are essential for federal, state, and local governments, as well as for the 

infrastructure owner and operators themselves. However, the wide range of spatial, temporal, 

operational, organizational, and interdependent characteristics of these interconnected systems poses 

unique challenges. Analysis of their risks and resilience is further complicated by the convergence of 

cyber-physical technologies, completing business demands, and the ever evolving threat and hazard 

landscape, where unseen interdependencies can result in uncontrollable cascading impacts [140]. 

In response, considerable resources have been expended to reduce risk and increase resilience of 

America’s infrastructure systems; however, to address this grand challenge, federal agencies, state 

and local government, infrastructure owners and operators, security, emergency management, and 

business continuity functions still seek to [106]: 

• Expand the visibility of risks to infrastructure, systems, and networks to help mitigate risks 

• Advance risk analytic capabilities and methodologies 

• Enhance security and risk mitigation guidance and impacts 

• Build greater stakeholder capacity in infrastructure and network security resilience. 

To address these objectives, academic, government, and private sector organizations have conducted 

significant amount of research to better understand and characterize the risk to and resilience of 

infrastructure systems, which have resulted in developing analytic frameworks, system-of-system 

modeling techniques, and advance decision support systems. This dissertation seeks to add to and 

advance this body of knowledge by proposing a novel all-hazard analysis methodology and KMS that 

encodes foundational engineering principles into a comprehensive knowledge graph for the purpose 

of understanding infrastructure behavior to better inform risk and resilience decision-making, as well 

as crisis action response. Due to the flexibility of the approach, it can be easily extended to analyze 

business function for continuity of operations planning, as well as incorporate additional modeling 

and simulation capabilities through an integrated python interface. 

The remainder of this chapter reviews the research objectives outlined in “Chapter 1: Introduction” 

and discusses how the research presented in this dissertation addresses those objectives in defense of 

the following thesis statement. 
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Thesis: Functional-basis-informed graphs are ideal for describing and analyzing interconnected 

infrastructure system behavior under all-hazard conditions. Functional-basis-informed graphs 

provide an optimal structure for modeling function, commodity, and service flows of interconnected 

systems and facilitate scalable and repeatable assessments of system behaviors suitable for 

vulnerability, consequence, and risk analysis. 

Objective 1: A functional basis for engineered infrastructure systems was developed to facilitate a 

scalable, robust, and repeatable process for the development of dependency models of interconnected 

infrastructure systems. 

“Chapter 3: All-Hazards Analysis (AHA) Methodology” describes the development process for and 

resulting functional basis for engineered infrastructure systems generated by leveraging the AHA 

methodology. Currently, the functional basis contains three core facility functions, which include 

produce, store, and transport, and 288 unique dependency types, which represent the flows. These 

have resulted in the development of 330 unique dependency profiles that describe the general 

functional requirements and outputs of infrastructure assets and component types. This approach has 

been shown to provide a robust and adaptable knowledge model required to facilitate the collection, 

storage, and analysis of dependency information suitable for risk and resilience analysis in support of 

crisis action and strategic risk mitigation activities through the use case presented in “Chapter 5: 

Application of the AHA Methodology to the Colonial Pipeline System.” “Chapter 6: Preliminary 

Cyber-Physical Functional-Flow Model Analysis” further validates the approach by applying it to 

CPSs. 

Objective 2: A functional-flow network modeling framework was developed to model the behavior 

of engineered infrastructure systems for the purpose of risk and resilience assessments. 

“Chapter 3: All-Hazards Analysis (AHA) Methodology” describes the development of the AHA 

methodology which models infrastructure dependencies as functional flows of commodities, services, 

or datum between infrastructure entities. The methodology provides a structured approach to 

decompose infrastructure systems into their core functional assets and components through a dynamic 

application function-based engineering design. Encoding the formal function representations from the 

functional basis as dependency profiles in a hierarchical taxonomy provides a standardized and 

scalable set of infrastructure models needed to support system-of-systems behavior modeling. 

Furthermore, this approach provides the flexibility to model systems at different levels of fidelity 

based on the best available data, while still providing actionable information to the risk and resilience 

decision-making process. Finally, the knowledge graph concept provides an efficient structure for 



95 

encoding the knowledge model, storing the modeled infrastructure information, and linking the 

entities to knowledge artifacts in the metamodel. To date, over 1.3 million nodes, approximately 1 

million dependency relationships have been added to the AHA knowledge base. 

Objective 3: The ability of functional-flow network models to simulate the behavior of 

interconnected infrastructure systems, including their scalability and robustness, was assessed. 

“Chapter 3: All-Hazards Analysis (AHA) Methodology” describes the development of the simple 

cascade and time-dependent cascade simulation approaches currently implemented in the AHA 

Framework and validates them against the 2021 Colonial Pipeline ransomware attack in “Chapter 5: 

Application of the AHA Methodology to the Colonial Pipeline System.” This application 

demonstrated that both methods provide the ability to generate actionable information to inform the 

risk and resilience decision process. For example, the qualitative results of the simple simulation 

demonstrate the ability to rapidly understand the range of a particular systems of interest’s influence 

and identify the potential for cascading impacts. The time-dependent cascade simulation can provide 

time sequenced cascades and incorporate corrective course-of-actions if desired. A benefit of this 

semiquantitative approach is that it is tolerant to missing temporal information defaulting to simple 

cascade method as necessary. This feature can be used as a guide to identify potential knowledge gaps 

and focus future data gathering activities and analysis. In addition, to the Colonial Pipeline 

dependency model described in this dissertation, the AHA Framework has also been utilized to 

inform real-world risk and resilience decision-making, as well as table top exercises like the Army 

Cyber Institute’s Jack Voltaic 3.0 exercise [141]. 

Objective 4: A graph-based KMS was developed to enable the collection, processing, and analysis of 

structured and unstructured infrastructure data required to model infrastructure behavior under all 

hazards. 

Chapters 4 and 7 describe the AHA-KMS and TAS, respectively. “Chapter 4: AHA Knowledge 

Management System” provides an overview the AHA-KMS architecture and overview of the 

graphical user interfaces that facilitate the dynamic developing of the knowledge model, its 

population, and infrastructure behavior simulations. While “Chapter 7: AHA Data Collection and 

Processing” provides an overview the natural language process pipeline for the processing of internet-

based artifacts including document categorization and NER. Initial results demonstrate the potential 

these approaches have in reducing the amount of time an analyst would be required to review, 

process, and synthesize the large volumes of infrastructure data contained on the world wide web. 
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Contribution and Limitations 

The primary contribution of this dissertation is the development of a novel all-hazard analysis 

methodology and KMS for interconnected infrastructure systems. The methodology leverages 

research findings from multiple disciplines to construct function-based dependency models of 

infrastructure systems and simulate their behavior to identify cascading consequences of their 

disruption. The results of these simulations have the potential to inform both strategic risk and 

resilience decision-making processes at the federal, state, and local levels of government, as well as 

used to inform response-and-recovery courses of action during a crisis. In addition, this research 

demonstrates that the use of engineering design principles can overcome incomplete knowledge of the 

actual system, asset, or component under investigation.  

However, a limitation of this research includes a lack of actuarial data on the system states and action 

taken by the Colonial Pipeline, terminal operators, and airports operators during the response-and-

recovery efforts incident to assess model results more accurately. 

Future Research 

Events like the Colonial Pipeline ransomware attack, Texas polar vortex, Hurricane Maria, and many 

other have demonstrated the significant risk our infrastructure systems and supply chains where 

unseen interdependencies can result in uncontrollable cascading impacts. To mitigate the potential 

impacts of future events like these, additional research must be conducted to develop methods to 

enhance: 

• The ability to design more resilient infrastructure solutions, identify potential vulnerabilities 

in existing systems, and evaluate mitigation strategies to better inform government and 

infrastructure owners on ways to optimize their investments 

• The ability to better characterize and assess existing infrastructure systems and their 

dependency relationships for risk and resilience decision-making 

• The understanding of the operational environment that influences the interdependent CPS’s 

behavior 

• The ability to more accurately model cyberattacks events utilizing HIL approaches 

• The knowledge base population and visualization by leveraging advancements in machine 

learning.  



97 

References 

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, "Catastrophic cascade of 

failures in interdependent networks," Nature, vol. 464, no. 7291, pp. 1025-1028, 2010. 

[2] PCCIP. (1997). Critical Foundations: Protecting America’s Infrastructure.  

[3] P. P. Directive, "Presidential policy directive (PPD)-8: National preparedness," in US 

Department of Homeland Security, ed: The White House Washington, DC, 2011. 

[4] U. S. D. o. H. Security, "Federal Continuity Directive 1: Federal Executive Branch National 

Continuity Program and Requirements1 (FCD 1)," in Federal Executive Branch National 

Continuity Program and Requirements, F. E. M. Agency, Ed., ed, 2017. 

[5] U. S. D. o. H. Security, "Threat and Hazard Identification and Risk Assessment Guide: 

Comprehensive Preparedness Guide 201," 3rd ed: Homeland Security Washington, DC, 

USA, 2018. 

[6] P. P. Directive, "Presidential policy directive (PPD)-21: Critical infrastructure security and 

resilience ", ed: The White House Washington, DC, 2013. 

[7] U. S. D. o. H. Security, National Infrastructure Protection Plan. US Department of 

Homeland Security, 2013. 

[8] M. Haggag, M. Ezzeldin, W. El-Dakhakhni, and E. Hassini, "Resilient cities critical 

infrastructure interdependence: a meta-research," Sustainable and Resilient Infrastructure, 

pp. 1-22, 2020, doi: 10.1080/23789689.2020.1795571. 

[9] M. Ouyang, "Review on modeling and simulation of interdependent critical infrastructure 

systems," Reliability Engineering & System Safety, vol. 121, pp. 43-60, 2014/01/01/ 2014, 

doi: https://doi.org/10.1016/j.ress.2013.06.040. 

[10] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly, "Identifying, understanding, and analyzing 

critical infrastructure interdependencies," IEEE control systems magazine, vol. 21, no. 6, pp. 

11-25, 2001. 

[11] G. Satumtira and L. Dueñas-Osorio, "Synthesis of Modeling and Simulation Methods on 

Critical Infrastructure Interdependencies Research," in Sustainable and Resilient Critical 

Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering, K. 

Gopalakrishnan and S. Peeta Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 

1-51. 

[12] C. W. King, J. D. Rhodes, and J. Zarnikau, "The Timeline and Events of the February 2021 

Texas Electric Grid Blackouts," Energy Institute, University of Texas at Austin, 2021.  

[13] O. Heino, A. Takala, P. Jukarainen, J. Kalalahti, T. Kekki, and P. Verho, "Critical 

Infrastructures: The Operational Environment in Cases of Severe Disruption," Sustainability, 

vol. 11, no. 3, p. 838, 2019. [Online]. Available: https://www.mdpi.com/2071-1050/11/3/838. 

[14] INCOSE. "Engineered Systems." https://www.incose.org/about-systems-engineering/system-

and-se-definition/engineered-system-definition (accessed June 14th, 2021. 

[15] R. Setola and M. Theocharidou, "Modelling dependencies between critical infrastructures," in 

Managing the complexity of critical infrastructures: Springer, Cham, 2016, pp. 19-41. 

[16] "supply chain," ed. 

[17] U. S. D. o. H. Security, "Supply Chain Resilience Guide," F. E. M. Administration, Ed., ed. 

Washington, DC, USA: Homeland Security, 2019. 

[18] J. Boyens, C. Paulsen, R. Moorthy, N. Bartol, and S. Shankles, "NIST Special Publication 

800-161, Supply Chain Risk Management Practices for Federal Information Systems and 

Organizations," NIST. April, 2015. 

[19] U. D. o. H. S. R. S. Committee, "DHS Risk Lexicon," Homeland Security, 2010. 

[20] C. Curt and J. M. Tacnet, "Resilience of critical infrastructures: Review and analysis of 

current approaches," Risk Analysis, vol. 38, no. 11, pp. 2441-2458, 2018. 



98 

[21] R. E. Bloomfield, P. Popov, K. Salako, V. Stankovic, and D. Wright, "Preliminary 

interdependency analysis: An approach to support critical-infrastructure risk-assessment," 

Reliability Engineering & System Safety, vol. 167, pp. 198-217, 2017. 

[22] G. Giannopoulos, R. Filippini, and M. Schimmer, "Risk assessment methodologies for 

Critical Infrastructure Protection. Part I: A state of the art," JRC Technical Notes, vol. 1, no. 

1, pp. 1-53, 2012. 

[23] R. Francis and B. Bekera, "A metric and frameworks for resilience analysis of engineered and 

infrastructure systems," Reliability Engineering & System Safety, vol. 121, pp. 90-103, 

2014/01/01/ 2014, doi: https://doi.org/10.1016/j.ress.2013.07.004. 

[24] N. Goldbeck, P. Angeloudis, and W. Y. Ochieng, "Resilience assessment for interdependent 

urban infrastructure systems using dynamic network flow models," Reliability Engineering & 

System Safety, vol. 188, pp. 62-79, 2019/08/01/ 2019, doi: 

https://doi.org/10.1016/j.ress.2019.03.007. 

[25] R. Guidotti, "Regional risk and resilience analysis of interdependent critical infrastructure," 

University of Illinois at Urbana-Champaign, 2018.  

[26] W. Liu and Z. Song, "Review of studies on the resilience of urban critical infrastructure 

networks," Reliability Engineering & System Safety, vol. 193, p. 106617, 2020. 

[27] F. Petit et al., "Resilience measurement index: An indicator of critical infrastructure 

resilience," Argonne National Lab.(ANL), Argonne, IL (United States), 2013.  

[28] C. Poulin and M. B. Kane, "Infrastructure resilience curves: Performance measures and 

summary metrics," Reliability Engineering & System Safety, vol. 216, p. 107926, 2021. 

[29] J. Wang, W. Zuo, L. Rhode-Barbarigos, X. Lu, J. Wang, and Y. Lin, "Literature review on 

modeling and simulation of energy infrastructures from a resilience perspective," Reliability 

Engineering & System Safety, vol. 183, pp. 360-373, 2019/03/01/ 2019, doi: 

https://doi.org/10.1016/j.ress.2018.11.029. 

[30] S. Saidi, L. Kattan, P. Jayasinghe, P. Hettiaratchi, and J. Taron, "Integrated infrastructure 

systems—A review," Sustainable Cities and Society, vol. 36, pp. 1-11, 2018. 

[31] I. Hernandez-Fajardo and L. Dueñas-Osorio, "Probabilistic study of cascading failures in 

complex interdependent lifeline systems," Reliability Engineering & System Safety, vol. 111, 

pp. 260-272, 2013. 

[32] D. D. Dudenhoeffer, M. R. Permann, and M. Manic, "CIMS: A framework for infrastructure 

interdependency modeling and analysis," in Proceedings of the 2006 winter simulation 

conference, 2006: IEEE, pp. 478-485.  

[33] S. E. Chang, T. L. McDaniels, J. Mikawoz, and K. Peterson, "Infrastructure failure 

interdependencies in extreme events: power outage consequences in the 1998 Ice Storm," 

Natural Hazards, vol. 41, no. 2, pp. 337-358, 2007/05/01 2007, doi: 10.1007/s11069-006-

9039-4. 

[34] D. Mendonça and W. A. Wallace, "Impacts of the 2001 world trade center attack on new york 

city critical infrastructures," Journal of Infrastructure Systems, vol. 12, no. 4, pp. 260-270, 

2006. 

[35] M. Ouyang, L. Hong, Z.-J. Mao, M.-H. Yu, and F. Qi, "A methodological approach to 

analyze vulnerability of interdependent infrastructures," Simulation Modelling Practice and 

Theory, vol. 17, no. 5, pp. 817-828, 2009/05/01/ 2009, doi: 

https://doi.org/10.1016/j.simpat.2009.02.001. 

[36] T. Brown, W. Beyeler, and D. Barton, "Assessing infrastructure interdependencies: the 

challenge of risk analysis for complex adaptive systems," International Journal of Critical 

Infrastructures, vol. 1, no. 1, pp. 108-117, 2004. 

[37] S. R. Hirshorn, L. D. Voss, and L. K. Bromley, "NASA systems engineering handbook," 

2017. 



99 

[38] INCOSE, International council on systems engineering. systems engineering handbook: a 

guide for system life cycle processes and activities, 4th ed. Hoboken, New Jersey, USA: John 

Wiley & Sons, Inc, 2015. 

[39] A. I. McInnes, B. K. Eames, and R. Grover, "Formalizing Functional Flow Block Diagrams 

Using Process Algebra and Metamodels," IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, vol. 41, no. 1, pp. 34-49, 2011, doi: 

10.1109/TSMCA.2010.2048749. 

[40] D. Ward, M. Rossi, B. P. Sullivan, and H. V. Pichika, "The Metamorphosis of Systems 

Engineering through the evolution of today’s standards," in 2018 IEEE International Systems 

Engineering Symposium (ISSE), 1-3 Oct. 2018 2018, pp. 1-8, doi: 

10.1109/SysEng.2018.8544426.  

[41] J. E. Long, "Relationships between common graphical representations used in system 

engineering," INSIGHT, vol. 21, no. 1, pp. 8-11, 2018. 

[42] R. B. Stone and K. L. Wood, "Development of a Functional Basis for Design," 1999. 

[Online]. Available: https://doi.org/10.1115/DETC99/DTM-8765. 

[43] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood, "A functional basis for 

engineering design: reconciling and evolving previous efforts," Research in engineering 

Design, vol. 13, no. 2, pp. 65-82, 2002. 

[44] D. van Eck, D. A. McAdams, and P. E. Vermaas, "Functional Decomposition in Engineering: 

A Survey," 2007. [Online]. Available: https://doi.org/10.1115/DETC2007-34232. 

[45] T. Kurtoglu and I. Y. Tumer, "A graph-based fault identification and propagation framework 

for functional design of complex systems," 2008. 

[46] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks. 

Cambridge university press, 2008. 

[47] M. Barthélemy, "Spatial networks," Physics Reports, vol. 499, no. 1-3, pp. 1-101, 2011. 

[48] S. Boccaletti et al., "The structure and dynamics of multilayer networks," Physics Reports, 

vol. 544, no. 1, pp. 1-122, 2014/11/01/ 2014, doi: 

https://doi.org/10.1016/j.physrep.2014.07.001. 

[49] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, 

"Multilayer networks," Journal of complex networks, vol. 2, no. 3, pp. 203-271, 2014. 

[50] S. D. Wolthusen, "Modeling critical infrastructure requirements," in Proceedings from the 

Fifth Annual IEEE SMC Information Assurance Workshop, 2004., 2004: IEEE, pp. 101-108.  

[51] N. K. Svendsen and S. D. Wolthusen, "Connectivity models of interdependency in mixed-

type critical infrastructure networks," Information Security Technical Report, vol. 12, no. 1, 

pp. 44-55, 2007/01/01/ 2007, doi: https://doi.org/10.1016/j.istr.2007.02.005. 

[52] I. E. E. Lee, J. E. Mitchell, and W. A. Wallace, "Restoration of Services in Interdependent 

Infrastructure Systems: A Network Flows Approach," IEEE Transactions on Systems, Man, 

and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 6, pp. 1303-1317, 2007, doi: 

10.1109/TSMCC.2007.905859. 

[53] B. Arvidsson, J. Johansson, and N. Guldåker, "Critical infrastructure, geographical 

information science and risk governance: A systematic cross-field review," Reliability 

Engineering & System Safety, vol. 213, p. 107741, 2021. 

[54] A. Dierich, K. Tzavella, N. J. Setiadi, A. Fekete, and F. M. Neisser, "Enhanced Crisis-

Preparation of Critical Infrastructures through a Participatory Qualitative-Quantitative 

Interdependency Analysis Approach," in ISCRAM, 2019.  

[55] R. K. McNally, S.-W. Lee, D. Yavagal, and W.-N. Xiang, "Learning the critical infrastructure 

interdependencies through an ontology-based information system," Environment and 

Planning B: Planning and Design, vol. 34, no. 6, pp. 1103-1124, 2007. 

[56] A. Sweetser, "A comparison of system dynamics (SD) and discrete event simulation (DES)," 

in 17th International Conference of the System Dynamics Society, 1999, pp. 20-23.  



100 

[57] A. A. Tako and S. Robinson, "The application of discrete event simulation and system 

dynamics in the logistics and supply chain context," Decision Support Systems, vol. 52, no. 4, 

pp. 802-815, 2012/03/01/ 2012, doi: https://doi.org/10.1016/j.dss.2011.11.015. 

[58] A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and analysis, 5 ed. 

McGraw-Hill New York, 2015. 

[59] A. Tomar, H. V. Burton, A. Mosleh, and J. Yun Lee, "Hindcasting the Functional Loss and 

Restoration of the Napa Water System Following the 2014 Earthquake Using Discrete-Event 

Simulation," Journal of Infrastructure Systems, vol. 26, no. 4, p. 04020035, 2020. 

[60] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker, and M. E. Vidal, "Towards a 

Knowledge Graph for Science," presented at the Proceedings of the 8th International 

Conference on Web Intelligence, Mining and Semantics, Novi Sad, Serbia, 2018. [Online]. 

Available: https://doi.org/10.1145/3227609.3227689. 

[61] L. Ehrlinger and W. Wöß, "Towards a definition of knowledge graphs," SEMANTiCS 

(Posters, Demos, SuCCESS), vol. 48, no. 1-4, p. 2, 2016. 

[62] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, "A survey on knowledge graphs: 

Representation, acquisition, and applications," IEEE Transactions on Neural Networks and 

Learning Systems, vol. 33, no. 2, pp. 494-514, 2021. 

[63] T. R. Gruber, "Toward principles for the design of ontologies used for knowledge sharing?," 

International journal of human-computer studies, vol. 43, no. 5-6, pp. 907-928, 1995. 

[64] A. C. R. Bryant, R. B. Stone, J. L. Greer, D. A. McAdams, T. Kurtoglu, and M. I. Campbell, 

"A function-based component ontology for systems design," in DS 42: Proceedings of ICED 

2007, the 16th International Conference on Engineering Design, Paris, France, 28.-31.07. 

2007, 2007, pp. 575-576 (exec. Summ.), full paper no. DS42_P_478.  

[65] B. Abu-Salih, "Domain-specific knowledge graphs: A survey," Journal of Network and 

Computer Applications, vol. 185, p. 103076, 2021. 

[66] S. Chakrabarti, Mining the Web: Discovering knowledge from hypertext data. Morgan 

Kaufmann, 2002. 

[67] R. Kosala and H. Blockeel, "Web mining research: A survey," ACM Sigkdd Explorations 

Newsletter, vol. 2, no. 1, pp. 1-15, 2000. 

[68] P. K. Mallick, S. Mishra, and G.-S. Chae, "Digital media news categorization using Bernoulli 

document model for web content convergence," Personal and Ubiquitous Computing, pp. 1-

16, 2020. 

[69] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. 

Cambridge University Press, 2008. 

[70] T. Poibeau, H. Saggion, J. Piskorski, and R. Yangarber, Multi-source, multilingual 

information extraction and summarization. Springer, 2013. 

[71] K. Pol, N. Patil, S. Patankar, and C. Das, "A survey on web content mining and extraction of 

structured and semistructured data," in 2008 First international conference on emerging 

trends in engineering and technology, 2008: IEEE, pp. 543-546.  

[72] E. Cambria and B. White, "Jumping NLP curves: A review of natural language processing 

research," IEEE Computational intelligence magazine, vol. 9, no. 2, pp. 48-57, 2014. 

[73] Y. Gu et al., "Domain-Specific Language Model Pretraining for Biomedical Natural 

Language Processing," ACM Transactions on Computing for Healthcare, vol. 3, no. 1, pp. 1-

23, 2022, doi: 10.1145/3458754. 

[74] D. W. Otter, J. R. Medina, and J. K. Kalita, "A survey of the usages of deep learning for 

natural language processing," IEEE transactions on neural networks and learning systems, 

vol. 32, no. 2, pp. 604-624, 2020. 

[75] H. Schmid, "Part-of-speech tagging with neural networks," arXiv preprint cmp-lg/9410018, 

1994. 



101 

[76] D. Yarowsky, "Unsupervised word sense disambiguation rivaling supervised methods," in 

33rd annual meeting of the association for computational linguistics, 1995, pp. 189-196.  

[77] C. Manning and H. Schutze, Foundations of statistical natural language processing. MIT 

press, 1999. 

[78] A. Halevy, P. Norvig, and F. Pereira, "The unreasonable effectiveness of data," IEEE 

intelligent systems, vol. 24, no. 2, pp. 8-12, 2009. 

[79] D. W. Otter, J. R. Medina, and J. K. Kalita, "A Survey of the Usages of Deep Learning for 

Natural Language Processing," IEEE Trans Neural Netw Learn Syst, vol. 32, no. 2, pp. 604-

624, Feb 2021, doi: 10.1109/TNNLS.2020.2979670. 

[80] J. Sinclair, "Corpus and text-basic principles," Developing linguistic corpora: A guide to 

good practice, vol. 92, pp. 1-16, 2005. 

[81] W. N. Francis and H. Kucera, "Brown corpus manual," Letters to the Editor, vol. 5, no. 2, p. 

7, 1979. 

[82] J. Pustejovsky and A. Stubbs, Natural Language Annotation for Machine Learning: A guide 

to corpus-building for applications. " O'Reilly Media, Inc.", 2012. 

[83] C. N. Kamath, S. S. Bukhari, and A. Dengel, "Comparative Study between Traditional 

Machine Learning and Deep Learning Approaches for Text Classification," presented at the 

Proceedings of the ACM Symposium on Document Engineering 2018, Halifax, NS, Canada, 

2018. [Online]. Available: https://doi.org/10.1145/3209280.3209526. 

[84] M. E. Ruiz and P. Srinivasan, "Hierarchical text categorization using neural networks," 

Information retrieval, vol. 5, no. 1, pp. 87-118, 2002. 

[85] P.-Y. Hao, J.-H. Chiang, and Y.-K. Tu, "Hierarchically SVM classification based on support 

vector clustering method and its application to document categorization," Expert Systems with 

applications, vol. 33, no. 3, pp. 627-635, 2007. 

[86] M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin, "Entity disambiguation for 

knowledge base population," in Proceedings of the 23rd International Conference on 

Computational Linguistics, 2010.  

[87] H. Ji, R. Grishman, H. T. Dang, K. Griffitt, and J. Ellis, "Overview of the TAC 2010 

knowledge base population track," in Third text analysis conference (TAC 2010), 2010, vol. 

3, no. 2, pp. 3-3.  

[88] X. Lin, H. Li, H. Xin, Z. Li, and L. Chen, "KBPearl: a knowledge base population system 

supported by joint entity and relation linking," Proc. VLDB Endow., vol. 13, no. 7, pp. 1035–

1049, 2020, doi: 10.14778/3384345.3384352. 

[89] D. Rao, P. McNamee, and M. Dredze, "Entity linking: Finding extracted entities in a 

knowledge base," in Multi-source, multilingual information extraction and summarization: 

Springer, 2013, pp. 93-115. 

[90] M. Ehrmann, A. Hamdi, E. L. Pontes, M. Romanello, and A. Doucet, "Named entity 

recognition and classification on historical documents: A survey," arXiv preprint 

arXiv:2109.11406, 2021. 

[91] A. Goyal, V. Gupta, and M. Kumar, "Recent Named Entity Recognition and Classification 

techniques: A systematic review," Computer Science Review, vol. 29, pp. 21-43, 2018/08/01/ 

2018, doi: https://doi.org/10.1016/j.cosrev.2018.06.001. 

[92] D. Nadeau and S. Sekine, "A survey of named entity recognition and classification," 

Lingvisticae Investigationes, vol. 30, no. 1, pp. 3-26, 2007. 

[93] A. P. Quimbaya et al., "Named Entity Recognition Over Electronic Health Records Through 

a Combined Dictionary-based Approach," Procedia Computer Science, vol. 100, pp. 55-61, 

2016/01/01/ 2016, doi: https://doi.org/10.1016/j.procs.2016.09.123. 

[94] A. Douthat, "Appendix G: The Message Understanding Conference Scoring Software User’s 

Manual," in Seventh Message Understanding Conference (MUC-7): Proceedings of a 

Conference Held in Fairfax, Virginia, April 29-May 1, 1998, 1998.  



102 

[95] A. Mikheev, M. Moens, and C. Grover, "Named entity recognition without gazetteers," in 

Ninth Conference of the European Chapter of the Association for Computational Linguistics, 

1999, pp. 1-8.  

[96] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning, "Named entity recognition with 

character-level models," in Proceedings of the seventh conference on Natural language 

learning at HLT-NAACL 2003, 2003, pp. 180-183.  

[97] L. F. Rau, "Extracting company names from text," in Proceedings the Seventh IEEE 

Conference on Artificial Intelligence Application, 1991: IEEE Computer Society, pp. 29, 30, 

31, 32-29, 30, 31, 32.  

[98] G. Zhou and J. Su, "Named entity recognition using an HMM-based chunk tagger," in 

Proceedings of the 40th annual meeting of the association for computational linguistics, 

2002, pp. 473-480.  

[99] J. P. Chiu and E. Nichols, "Named entity recognition with bidirectional LSTM-CNNs," 

Transactions of the association for computational linguistics, vol. 4, pp. 357-370, 2016. 

[100] V. Yadav and S. Bethard, "A survey on recent advances in named entity recognition from 

deep learning models," arXiv preprint arXiv:1910.11470, 2019. 

[101] X. Schmitt, S. Kubler, J. Robert, M. Papadakis, and Y. LeTraon, "A replicable comparison 

study of NER software: StanfordNLP, NLTK, OpenNLP, SpaCy, Gate," in 2019 Sixth 

International Conference on Social Networks Analysis, Management and Security (SNAMS), 

2019: IEEE, pp. 338-343.  

[102] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky, "The 

Stanford CoreNLP natural language processing toolkit," in Proceedings of 52nd annual 

meeting of the association for computational linguistics: system demonstrations, 2014, pp. 

55-60.  

[103] A. Berger, S. A. Della Pietra, and V. J. Della Pietra, "A maximum entropy approach to 

natural language processing," Computational linguistics, vol. 22, no. 1, pp. 39-71, 1996. 

[104] J. R. Finkel, T. Grenager, and C. D. Manning, "Incorporating non-local information into 

information extraction systems by gibbs sampling," in Proceedings of the 43rd annual 

meeting of the association for computational linguistics (ACL’05), 2005, pp. 363-370.  

[105] S. Robinson, "Conceptual modelling for simulation Part I: definition and requirements," 

Journal of the Operational Research Society, vol. 59, no. 3, pp. 278-290, 2008/03/01 2008, 

doi: 10.1057/palgrave.jors.2602368. 

[106] (2022). CISA 2023-2025 Strategic Plan. [Online] Available: 

https://www.cisa.gov/sites/default/files/publications/StrategicPlan_20220912-V2_508c.pdf 

[107] (2021). Joint Risk Analysis Methodology (JRAM) Manual. [Online] Available: 

https://www.jcs.mil/Portals/36/Documents/Library/Manuals/CJCSM%203105.01A.pdf?ver=

y3cH4s5UNyqJAXwxAYCL5Q%3d%3d#:~:text=The%20JRAM%20presents%20a%20com

mon,risk%20communication%20and%20decision%20making. 

[108] NIPP, "National Infrastructure Protection Plan: Partnering for Critical Infrastructure Security 

and Resilience," 2013. 

[109] C. NIST, "Community Resilience Planning Guide for Buildings and Infrastructure Systems, 

Volume II," Special Publication 1190, 2015.  

[110] D. o. H. Security, "Risk management fundamentals: Homeland security risk management 

doctrine," ed: Department of Homeland Security Washington, DC, 2011. 

[111] J. Teich, L. Thiele, and E. A. Lee, "Modeling and simulation of heterogeneous real-time 

systems based on a deterministic discrete event model," presented at the Proceedings of the 

8th international symposium on System synthesis, Cannes, France, 1995. [Online]. Available: 

https://doi.org/10.1145/224486.224535. 

[112] T. Kurtoglu, M. I. Campbell, J. Gonzalez, C. R. Bryant, R. B. Stone, and D. A. McAdams, 

"Capturing empirically derived design knowledge for creating conceptual design 



103 

configurations," in International Design Engineering Technical Conferences and Computers 

and Information in Engineering Conference, 2005, vol. 4742, pp. 249-257.  

[113] (2013). Defense Acquisition Guidebook.  

[114] R. M. Blank, "Guide for conducting risk assessments," 2011. 

[115] O. Alexander, M. Belisle, and J. Steele, "MITRE ATT&CK® for industrial control systems: 

Design and philosophy," The MITRE Corporation: Bedford, MA, USA, 2020. 

[116] A. Amro, V. Gkioulos, and S. Katsikas, "Assessing Cyber Risk in Cyber-Physical Systems 

Using the ATT&CK Framework," Preprint at http://dx. doi. org/10.13140/RG, vol. 2, no. 

16531.40484, 2021. 

[117] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington, and C. B. 

Thomas, "MITRE ATT&CK: Design and Philosophy," MITRE CORP MCLEAN VA, 2018.  

[118] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, "Intelligence-driven computer network 

defense informed by analysis of adversary campaigns and intrusion kill chains," Leading 

Issues in Information Warfare & Security Research, vol. 1, no. 1, p. 80, 2011. 

[119] J. C. Gill and B. D. Malamud, "Reviewing and visualizing the interactions of natural 

hazards," Reviews of Geophysics, vol. 52, no. 4, pp. 680-722, 2014. 

[120] V. Masson-Delmotte et al., "Climate change 2021: the physical science basis," Contribution 

of working group I to the sixth assessment report of the intergovernmental panel on climate 

change, vol. 2, 2021. 

[121] H.-O. Pörtner et al., "Climate change 2022: Impacts, adaptation and vulnerability," IPCC 

Sixth Assessment Report, 2022. 

[122] (2015). Intelligence Community Directive 206. Sourcing Requirements for Disseminated 

Intelligence Products. [Online] Available: 

https://www.dni.gov/files/documents/ICD/ICD%20206.pdf 

[123] S. Robinson, "Conceptual modelling for simulation Part II: a framework for conceptual 

modelling," Journal of the Operational Research Society, vol. 59, no. 3, pp. 291-304, 

2008/03/01 2008, doi: 10.1057/palgrave.jors.2602369. 

[124] P. R. Garvey and C. A. Pinto, "Introduction to functional dependency network analysis," in 

The MITRE Corporation and Old Dominion, Second International Symposium on 

Engineering Systems, MIT, Cambridge, Massachusetts, 2009, vol. 5.  

[125] Infrastructure Data Taxonomy (IDT).  

[126] CESER, "CyOTE Case Study: DarkSide," Office of Cybersecuity, Energy Security, and 

Emergency Response, 2021. Accessed: September 25, 2022. [Online]. Available: 

https://ceser-design.gravisdev.com/wp-content/uploads/2021/12/DarkSide-CyOTE-Case-

Study.pdf 

[127] P. Derler, E. A. Lee, and A. S. Vincentelli, "Modeling cyber–physical systems," Proceedings 

of the IEEE, vol. 100, no. 1, pp. 13-28, 2011. 

[128] E. A. Lee, "The past, present and future of cyber-physical systems: A focus on models," 

Sensors, vol. 15, no. 3, pp. 4837-4869, 2015. 

[129] A. Amro, V. Gkioulos, and S. Katsikas, "Assessing cyber risk in cyber-physical systems 

using the ATT&CK framework," ACM Transactions on Privacy and Security, vol. 26, no. 2, 

pp. 1-33, 2023. 

[130] A. Kim, J. Oh, K. Kwon, and K. Lee, "Consider the consequences: a risk assessment 

approach for industrial control systems," Security and Communication Networks, vol. 2022, 

2022. 

[131] A. Tantawy, S. Abdelwahed, A. Erradi, and K. Shaban, "Model-based risk assessment for 

cyber physical systems security," Computers & Security, vol. 96, p. 101864, 2020. 

[132] R. L. Grubbs, J. T. Stoddard, S. G. Freeman, and R. E. Fisher, "Evolution and Trends of 

Industrial Control System Cyber Incidents since 2017," Journal of Critical Infrastructure 

Policy, vol. 2, no. INL/JOU-21-65119-Rev000, 2021. 



104 

[133] K. Hemsley and R. Fisher, "A history of cyber incidents and threats involving industrial 

control systems," in Critical Infrastructure Protection XII: 12th IFIP WG 11.10 International 

Conference, ICCIP 2018, Arlington, VA, USA, March 12-14, 2018, Revised Selected Papers 

12, 2018: Springer, pp. 215-242.  

[134] T. Miller, A. Staves, S. Maesschalck, M. Sturdee, and B. Green, "Looking back to look 

forward: Lessons learnt from cyber-attacks on industrial control systems," International 

Journal of Critical Infrastructure Protection, vol. 35, p. 100464, 2021. 

[135] U.S. Department of Energy (DOE), "National Cyber-Infromed Engineering Strategy," E. S. 

Office of Cybersecurity, and Emergency and R. (CESER), Eds., ed, 2022, p. 37. 

[136] R. Rai and C. K. Sahu, "Driven by data or derived through physics? a review of hybrid 

physics guided machine learning techniques with cyber-physical system (cps) focus," IEEE 

Access, vol. 8, pp. 71050-71073, 2020. 

[137] L. Faramondi, F. Flammini, S. Guarino, and R. Setola, "A hardware-in-the-loop water 

distribution testbed dataset for cyber-physical security testing," IEEE Access, vol. 9, pp. 

122385-122396, 2021. 

[138] Z. Liu, Q. Wang, and Y. Tang, "Design of a cosimulation platform with hardware-in-the-loop 

for cyber-attacks on cyber-physical power systems," IEEE Access, vol. 8, pp. 95997-96005, 

2020. 

[139] B. Potteiger, W. Emfinger, H. Neema, X. Koutosukos, C. Tang, and K. Stouffer, "Evaluating 

the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop 

simulation testbed," in 2017 Resilience Week (RWS), 2017: IEEE, pp. 177-183.  

[140] J. W. Busby et al., "Cascading risks: Understanding the 2021 winter blackout in Texas," 

Energy Research & Social Science, vol. 77, p. 102106, 2021. 

[141] E. Mitchell et al., "Jack voltaic 3.0 cyber research report," 2021. 

 


