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Abstract

Brian Dennis and William Kemp (et al.) in ”Stochastic Model of Insect Phenology Es-

timation and Testing” use a Multinomial Maximum likelihood approach to estimate model

parameters via ratios between variables. The model in this paper attempts to estimate de-

terministic epidemiological population parameters for the Kermack-McKendrick SIR model

using simulated sample survey data. Ratios between populations in the SIR model are used

as probabilities in the Multinomial distribution and resulting estimates of population pa-

rameters are analyzed via Bootstrap confidence intervals, visual analysis, and mean squared

error (MSE) estimates. The results show that certain surveys schemes perform better than

others based on survey sample size, number of surveys, and survey spacing. All simulations

generally produce unbiased estimates with some producing smaller variances than others.

Applications include the estimating of infectious disease dynamics using small survey sam-

pling in rural or small town universities and populations.
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CHAPTER 1

Introduction

Much has been achieved on the topic of parameter estimation in epidemiology, especially

in light of pandemics such as influenza, the 2019 measles outbreak, and the novel COVID-19.

Many researchers use least squares curve fitting and other maximum likelihood approaches

based on hospital incidence or positive test case data. One example is the stochastic model

for the 2009 H1N1 pandemic in rural Washington [2]. Although these approaches are well

respected, incidence data from clinics or hospitals does not randomly sample the population

overall. Random survey samples capture population dynamics more realistically, and in

small university towns such as Pullman, WA or Moscow, ID, random survey samples are

achievable. In this paper, I describe how I used random survey samples of a small city or

town to estimate model parameters.

The Kermack-McKendrick Susceptible-Infected-Recovered (SIR) deterministic model was

the focus of all my investigations. It was used by researchers in modeling the 2009 H1N1

pandemic in Pullman, WA [1]. I chose this model because it is the foundation of most other

epidemiology models. My investigations, however, can certainly be extended to other models

with more complicated terms. One natural extension would be SIR models capturing the

effect of vaccination or quarantine[5]. All variables in the model are continuous and follow

a system of three ordinary differential equations. The model was not solved using any

analytical methods but only with numerical packages in the software R. I wrote all of the

code in R myself but found some basic ideas in a paper that modeled measles in Niger [3].

Though I did not borrow their code literally, I gained ideas from their use of certain packages

in R for optimization and numerical solutions of ODEs.

For the random sampling of the population, I investigated how well I can estimate pa-

rameters from data generated by hypothetical surveys. Though I did not carry out the

surveys myself, if researchers were to do so, they would only need to ask two very simple

questions from a respondent about a particular infectious disease: (1) Do you currently have
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the disease? and (2) Have you had the disease recently and recovered? These questions

could be asked as part of a larger health survey by the university or asked in a short survey

given in various locations on campus. Surveys bring their own challenges, such as whether

people actually know they have contracted a particular disease. This is not always obvi-

ous in the case of influenza, but more likely to be known in a disease such as measles or

rare diseases where people have unusual symptoms and tend to visit a hospital or clinic for

testing. Random population clinical testing, if it were efficient, could also produce suitable

data. There would likely be other typical survey problems such as nonresponse as well. In

my investigations I assumed reasonably accurate and reliable survey data. In Brian Dennis’

paper estimating the proportion of insects at various stages of development, he takes random

samples from a multinomial distribution for the probabilities and then estimates parameters

in his model using maximum likelihood [4]. I applied this approach to the numerically solved

deterministic SIR model and built a multinomial log-likelihood function, based on the one

from Samaniego [6]. Overall my goal was to examine how effective multinomial-generated

surveys can estimate population parameters of the SIR model using numerical maximum

likelihood optimization.
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CHAPTER 2

Model

2.1 Susceptible-Infected-Recovered (SIR)

The Kermack-McKendrick SIR model is given by the following three ordinary differential

equations:

dS

dt
= −βSI

N
dI

dt
=
βSI

N
− γI

dR

dt
= γI

The three populations are Susceptible in time S(t), Infected in time I(t), and Recovered

in time R(t). I chose not to scale the equations so all numbers represent actual people

at time t in the population. The parameter N is the population size, set constant for all

simulations, and time is measured in days. The parameter β is scaled by N so that it

is in the range of 10−1 rather than 10−5. The parameter β measures the rate of disease

transmission and the parameter γ measures the rate of recovery from the disease. If one is

not familiar with the terms in this model, notice that the term involving β is removed from

the Susceptible population S(t), representing the proportion of those who interact with those

infected and therefore join the infected population. That same term is added as recruitment

to the infected population I(t), and finally the term with γ leaves the infected population

(for those healed) and enters the recovered population.

All simulations in my investigation were based on one initial population with specific

parameter values for β and γ as well as the three initial conditions S(0), I(0), R(0). The

specific values are given in Table 2.1, and I chose them as general parameters representing

various diseases found in the literature. In the original population, the infected population
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reaches a peak in about 30 days and the susceptible population levels off over time at about

half the original size. Though each disease will have its own underlying disease parameters,

for the sake of simulation and efficiency, I chose to focus on one in this paper. The total

population size is representative of a small city or large town, such as the combined Moscow-

Pullman area, using a value of N = 80, 000.

Table 2.1: The initial conditions and parameters were set to reflect a realistic disease start.
The multinomial maximum likelihood function estimated back these population parameters
and initial conditions.
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2.2 Multinomial Surveys and Likelihood Function

Figure 2.1 shows plotted trajectories for the three populations early in time (first 40 days),

with vertical lines at different spacing. The parameters of the multinomial distribution are

sample sizes and probabilities of success. The probabilities in the context of an SIR model

were calculated as ratios in the number of each population over the total sum of all three

populations at each time point. For example, take time t = 8 days as a time point, as shown

by the first vertical line in plot A of Figure 2.1. The probabilities associated with this time

point are the ratios: ps1 = S(8)
S(8)+I(8)+R(8)

, pi1 = I(8)
S(8)+I(8)+R(8)

, and pr1 = R(8)
S(8)+I(8)+R(8)

. The

corresponding ratios from the data sample were calculated with sample size n and susceptible

( s1
n

), infected ( i1
n

), and recovered ( r1
n

) at t = 8. The subscript refers to the number sample,

with the first sample shown here.

Sampling schemes were chosen so as to cover various different sampling scenarios. Each

scenario or scheme can be identified by three parameters: n, the sample size, q, the number of

survey samples, and x, the number of days between survey samples (i.e. spacing of samples).

Although in my investigation I chose to keep the sample size consistent at every time step, my

code actually allows for differing sample sizes at each time point. For each sampling scheme I

calculated the population proportions at each spacing based on the numerically solved ODE

trajectories. The population proportions became the underlying multinomial probabilities for

all parameter estimations. It was assumed that the underlying population disease dynamics

follow these proportions. Though I assume knowledge of population parameters for the

simulations, in reality one doesn’t actually know them and would use simulations to produce

estimates. The purpose of the simulations was to see how well the multinomial maximum

likelihood with smaller sample sizes estimates back the population proportions.

The q-by-3 data matrix was generated from q samples of size n: each row is a sample at

a specific time point and each column is the resulting number of Susceptible, Infected, and

Recovered randomly drawn at that time. The simulated data matrix depended both on the
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overall chosen sampling scheme and on randomness derived from the R function rmultinom .

A total of 1000 random draws were made with the same underlying population probabilities,

sample size, and sampling scheme. The multinomial log likelihood function used each data

matrix and estimated proportions that generated the best fit SIR equations to the data. For

each random sample it tested and searched for parameters and initial conditions leading to

maximum likelihood probabilities. Output data took the form of 1000 maximum likelihood

estimates for each SIR parameter or initial condition. The likelihood function is as follows:

L(p) =

q∏
k=1

nk!

sk!ik!rk!
(psk)sk(pik)ik(prk)rk
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Figure 2.1: The four chosen examples of the S-I-R plotted trajectories from the ODE model.
Vertical lines represent four sampling schemes. In all cases, the S-I-R model was the model
described in Section 2.1, with A being q = 2 sample surveys at x = 8 days apart, B being
q = 3 sample surveys at x = 12 days apart, C being q = 7 sample surveys at x = 1 day
apart, and D being q = 5 sample surveys at x = 2 days apart. All four give an example of
the sampling scheme for any sample size. The solid line is the Susceptible, the dotted line is
the Recovered, and the dashed lined is the Infected populations.
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2.3 Computational Methods in R

All resulting plots will show five estimated quantities: β, γ, S(0), I(0), R(0). However,

in my actual code, in order to increase computational efficiency, I forced an assumption,

which may or may not be true, but can be changed if further simulations were carried

out. I set the initial condition R(0) = 0.5I(0), which as a consequence also fixed S(0) =

N − R(0) − I(0) since population size N was constant. The program essentially estimated

only three parameters: β, γ, and I(0), with S(0) and R(0) derived from the estimates of

I(0).

I used the deSolve package to numerically solve the SIR equations, and I implemented

the mle2 package. The main optimization program in mle2 is optim . My choice of

algorithm was Nelder-Mead, which was also used in the insect phenology paper [4]. As an

unbounded search algorithm, Nelder-Mead only required starting values for each simulation,

which I set to lower but roughly nearby values: β = 0.1, γ = 0.1, and I(0) = 100. The

only problem I found with it was computational expense, since each set of simulations for

one sampling scheme took on average 20 minutes. In turn, I ran all simulations on cloud

computing in parallel through multiple sessions of R Studio Cloud.

Sampling schemes were set to try to cover most situations throughout the epidemic.

Values for survey size and spacing were set to: q = 2 with x = 3, 8, 15 and q = 3 with x =

8, 12, 18 then q = 5 with x = 2, 8 and q = 7 with x = 1, 3, 8. Two sample sizes were set for

each of the 11 schemes: n = 500 and n = 3000. Given the initial results of all 22 simulations,

I decided to run further simulations: q = 2, 3, 4, 5, 6, 7, 8 while x = 1 for sample sizes n

= 500 and n = 3000. The reasons for doing further simulations for specific numbers will be

explained in the Results section.
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CHAPTER 3

Results

3.1 Histograms and QQ Plots

One hypothesis before running the simulations was that the best scheme would be the

one with several samples spaced widely, so as to cover the trajectories. The best should

visually follow a symmetric, Normal-appearing distribution centered around the population

estimate, which is known and pre-set as in Table 2.1. Numerically the best should also have

a smaller variance, also shown by thinner histograms. In the simulations I found that all

estimates were centered adequately in their mean around each population parameter. Both

sample sizes n = 500 and n = 3000 did comparably well in this respect, appearing to be

unbiased estimators. However, the histograms and the data tables show that some performed

more precisely than others and surprisingly different than my original hypothesis.

The histograms appearing the least Normal and with widest variance in the n = 500

sample size were {q = 2, x = 3}, { q = 2, x = 8} and {q = 2, x = 15}. These had the

minimum number of samples but spaced within roughly a week and two weeks apart. At

q = 3 samples x = 8 days apart, the estimates for β and γ improved but the estimates for the

initial conditions were poor. The split between good estimates of the model parameters and

mediocre estimates for the initial conditions continued for all other simulations in sample

size 500, except at {q = 7, x = 1} and {q = 7, x = 3}, which were slightly better than all

others. The worst case can be seen in Figure 3.4. A full set of histograms and all other plots

and tables are available in the Appendix link for Supplementary Material.

For sample size n = 3000, which is six times the sample size of the first set of simulations,

all schemes did generally well for both parameters and initial conditions. As expected an

increase in sample size produced better estimates. The scheme {q = 2, x = 3} again per-

formed the poorest just as in the n = 500 case, but the rest of the cases perform adequately.

The most exceptional were {q = 7, x = 1} and {q = 7, x = 3}, but even better than the
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n = 500 case. The scheme {q = 5, x = 2} for some reason was the third most successful. In

other words if a researcher wanted to estimate back these population parameters it would

be best to give a survey every day for a week. Estimates early on in short intervals were

all better than over time and spread out. Even ones that cover time over the entire course

of the disease outbreak were not as good. For histograms of the best results refer to Figure

3.1, Figure 3.2, and Figure 3.3.

Given the peculiar nature of the better estimators, I decided to run a few more simulations

with the one-day-apart scenarios. I ran further simulations for both sample sizes again

n = 500 and n = 3000 but for q = 2, 3, 4, 5, 6, 7, 8 while holding x = 1 for all of them. It

turned out that all of them except {q = 2, x = 1} were decent, and as the number of surveys

increased, the accuracy and variance improved as well. The increase in sample size also

improved estimation again. The last one {q = 8, x = 1} was the best.

As for assessing Normality, I examined QQ Plots for all parameters for all 1000 runs for

each scheme, producing 110 QQ Plots in total, plus QQ Plots for the further simulations.

The better schemes mentioned had the best QQ Plots, appearing most Normal, and the

poorer ones had heavy tails with less conformity to Normality. One of the QQ plots is shown

for the best scheme overall in Figure 3.5 and the poorest scheme overall in Figure 3.6.
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Figure 3.1: Histograms of the five estimated parameters β, γ, S(0), I(0), R(0) resulting from
1000 simulations of Multinomial Maximum Likelihood with sample size n = 3000 people.
Each histogram can be identified by its parameter in square brackets. This was the best
estimator over all simulations, following the setup q = 7 surveys, x = 1 day apart.
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Figure 3.2: Histograms of the five estimated parameters β, γ, S(0), I(0), R(0) resulting from
1000 simulations of Multinomial Maximum Likelihood with sample size n = 3000 people.
Each histogram can be identified by its parameter in square brackets. This was the best
estimator over all simulations, following the setup q = 7 surveys, x = 3 days apart.



13

Figure 3.3: Histograms of the five estimated parameters β, γ, S(0), I(0), R(0) resulting from
1000 simulations of Multinomial Maximum Likelihood with sample size n = 3000 people.
Each histogram can be identified by its parameter in square brackets. This was the best
estimator over all simulations, following the setup q = 5 surveys, x = 2 days apart.
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Figure 3.4: Histograms of the five estimated parameters β, γ, S(0), I(0), R(0) resulting from
1000 simulations of Multinomial Maximum Likelihood with sample size n = 500 people.
Each histogram can be identified by its parameter in square brackets. This was the best
estimator over all simulations, following the setup q = 2 surveys, x = 3 days apart.
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Figure 3.5: QQ Plots of the five estimated parameters β, γ, S(0), I(0), R(0) resulting from
1000 simulations of Multinomial Maximum Likelihood with sample size n = 3000 people.
Each QQ Plot can be identified by its parameter in square brackets. Shown is the best
estimator over all simulations, following q = 7 surveys, x = 1 days apart. Normality appears
more than adequate.
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Figure 3.6: QQ Plots of the five estimated parameters β, γ, S(0), I(0), R(0) resulting from
1000 simulations of Multinomial Maximum Likelihood with sample size n = 500 people. Each
QQ Plot can be identified by its parameter in square brackets. Shown is the best estimator
over all simulations, following q = 2 surveys, x = 3 days apart. Normality appears generally
not acceptable, especially with deviations in the tails.
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3.2 Selected Confidence Intervals Plots

In Figures 3.7- 3.10 plots of confidence intervals are shown for the parameter β over all

simulations at both sample sizes. One can see that apart from the first one or two schemes,

the schemes within a sample size were roughly the same width. The widths did not change

much in the original simulations but did change slightly in the further simulations. Almost

all schemes produced good numerical estimates. The trend shown was similar for other

parameters and it lead me to perform a more robust analysis using Mean Squared Errors.
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Figure 3.7: Shown are bootstrap Confidence Intervals for β estimates for all initial simula-
tions of sample size n = 500. Sampling Schemes are in the same order as Table 3.5. The
true population parameter is β = 0.25, seen as a dashed line.

Figure 3.8: Shown are bootstrap Confidence Intervals for β estimates for all initial simula-
tions of sample size n = 3000. Sampling Schemes are in the same order as Table 3.6. The
true population parameter is β = 0.25, seen as a dashed line.
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Figure 3.9: Shown are bootstrap Confidence Intervals for β estimates for all further simu-
lations of sample size n = 500. Sampling Schemes are in the same order as Table 3.7. The
true population parameter is β = 0.25, seen as a dashed line.

Figure 3.10: Shown are bootstrap Confidence Intervals for β estimates for all further simu-
lations of sample size n = 3000. Sampling Schemes are in the same order as Table 3.8. The
true population parameter is β = 0.25, seen as a dashed line.
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3.3 Mean Maximum-Likelihood-Estimate (MLE) Tables

The following tables give the mean of the 1000 maximum likelihood estimates for each

parameter and initial condition. The numerical results confirmed the visual analysis since

they were mostly centered at the population parameters and initial conditions.

Table 3.1: Shown are means of all 1000 Maximum Likelihood estimates for all initial simu-
lations of sample size n = 500.

Table 3.2: Shown are means of all 1000 Maximum Likelihood estimates for all initial simu-
lations of sample size n = 3000.
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Table 3.3: Shown are means of all 1000 Maximum Likelihood estimates for all further simu-
lations of sample size n = 500.

Table 3.4: Shown are means of all 1000 Maximum Likelihood estimates for all further simu-
lations of sample size n = 3000.
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3.4 Mean-Squared-Error (MSE) Tables

I relied on the Mean Squared Error as a numerical assessment of the parameters. For

an estimated parameter, θ̂, the MSE was calculated as MSE(θ̂) = var(θ̂) + (mean(θ̂)− θ)2.

Here θ was the true parameter value from Table 2.1, and the variance and mean of θ̂ were

calculated on the data sets of each 1000 estimates for each parameter. The results are shown

in Tables 3.5 - 3.8 for the first simulations and the further simulations. The reason I used

MSE was that it captured both the variability and the biasedness in all estimates. Lower

MSE values I deemed better estimators. The highest MSE value of β turned out to be in

the {n = 500, q = 2, x = 1}, then {n = 500, q = 3, x = 1}, then {n = 500, q = 2, x = 3}.

This confirms comparable results to the visual analysis. One of the difficulties with assessing

the MSE values was that there were five different parameters with MSE values. In turn,

I created a column for total sum of MSE over all parameters. The lowest MSE values

over all simulations were found to be (in order of lowest): {n = 3000, q = 7, x = 1},

{n = 3000, q = 7, x = 3}, then {n = 3000, q = 5, x = 2}. I also confirmed that the ranks

were roughly matched up by calculating the rank of each column. The conclusions therefore

stayed the same. The {n = 3000, q = 6, x = 1} and {n = 3000, q = 8, x = 1} simulations

also performed comparably well.
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Table 3.5: Shown are Mean Squared Error (MSE) values of all 1000 Maximum Likelihood
estimates for all initial simulations of sample size n = 500.

Table 3.6: Shown are Mean Squared Error (MSE) values of all 1000 Maximum Likelihood
estimates for all initial simulations of sample size n = 3000.
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Table 3.7: Shown are Mean Squared Error (MSE) values of all 1000 Maximum Likelihood
estimates for all further simulations of sample size n = 500.

Table 3.8: Shown are Mean Squared Error (MSE) values of all 1000 Maximum Likelihood
estimates for all further simulations of sample size n = 3000.
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CHAPTER 4

Example: 2009 H1N1 Pandemic in Pullman Washington

4.1 Least Squares Fitting to H1N1 Data

In order to verify results I applied simulations to the 2009 H1N1 pandemic in Pullman,

WA. Taking clinical data from the campus hospital on reported cases, I ran my own curve-

fitting to obtain parameters for the SIR ODE equations. The data is from [2] and is shown

as unfilled circles in Figure 4.1 along with the least-squares fit in red for I(t). The resulting

parameters in Table 4.1 were set according to my own fit, along with initial conditions from

[2]. I ran 1000 simulations to estimate back these specific population parameters by using the

best scenario: {q = 7, x = 1}. This example shows how a real random survey scheme could

be carried out in a small university town such as Pullman. To reflect Pullman’s population

of 18,223 at the time I chose survey sample sizes of n = 500 and n = 1500.

4.2 Example H1N1 Results

The resulting histograms generally appeared centered at the population parameters and

also mostly symmetric, with small variances (refer to Figures 4.2 and 4.3). The larger sample

size again proved better at capturing the dynamics. The QQ plots looked adequate, though

not very Normal due to heavy tails. The confidence intervals and MSE values decreased in

width and size for the larger sample size n = 1500. The total normalized MSE value for the

n = 500 sample was of similar value to the normalized MSE value of the best estimator in the

main simulations above {n = 3000, q = 7, x = 1}, which means a satisfactory performance

with real data.
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Figure 4.1: Shown are the Number of Cases over time (Days) for H1N1 in Pullman, WA
plotted with the least squares fit of the SIR ODE model, showing in red the estimated I(t)
trajectory.

Table 4.1: Shown is the set up for the initial population parameters and initial conditions
for H1N1. Population dynamics are estimated back with Multinomial Maximum Likelihood.
The best sampling scheme resulted in q = 7, x = 1 at both sample sizes, n = 500 and n =
1500.
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Figure 4.2: Shown are histograms of the five estimated parameters β, γ, S(0), I(0), R(0)
resulting from 1000 simulations of Multinomial Maximum Likelihood estimates with sample
size n = 500 people. Each histogram can be identified by its parameter in square brackets.
The setup used: q = 7 surveys, x = 1 day apart.
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Figure 4.3: Shown are histograms of the five estimated parameters β, γ, S(0), I(0), R(0)
resulting from 1000 simulations of Multinomial Maximum Likelihood estimates with sample
size n = 1500 people. Each histogram can be identified by its parameter in square brackets.
The setup used: q = 7 surveys, x = 1 day apart.
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CHAPTER 5

Discussion

My original hypothesis was that more samples further apart (larger q and x) would best

capture the dynamics, as well as a larger sample size n. Larger sample size generally produced

better estimates; however, larger q and x did not necessarily improve estimates. I had initially

thought more samples spread apart would capture more changes in the ratios between the S,

I, and R curves in the trajectory plots. Surprisingly, the better estimators were short spurts

of at least 5 samples, 1 day apart, with the best being {n = 3000, q = 7, x = 1}, the second

best being {n = 3000, q = 7, x = 3}, and the third best {n = 3000, q = 5, x = 2}. This leads

to the conclusion that giving several surveys close together, early in the disease progression,

will produce the best estimates of disease dynamics. In other words, counter-intuitively,

knowing how a disease takes off early with precision is the best way to predict its eventual

course. It is important to remember that though these shorter spurts were the best, most

sampling schemes overall, except a few, were generally still good estimators. This leaves a

good degree of flexibility for researchers conducting surveys with limited resources and time.

In some cases, it is unknown early on as to when the disease has actually taken off, so surveys

are more likely to be conducted a little later than the very beginning. However, the above

simulations estimated not only the transmission parameters but also the initial conditions,

so potentially, the results imply success for surveys conducted at different starting points.

Overall, the multinomial model estimated the original parameters independent of the

original population size. This is key because the two sample sizes could be changed and

run with further simulations, even while original population size N and initial conditions

aren’t the same. One major implication for researchers is that they can run the surveys on

a small scale such as a small town or university town, capture the dynamics of the disease

well, and then, presuming the disease strain is the same elsewhere, set up a model with these

parameters for other towns or cities. Not only would this save resources, but examining

a smaller closed population such as a university would likely capture the dynamics better.
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Conducting one week of surveys every day, one could examine the same disease in another

area promptly, such as a city with a larger population. This might prove helpful in outbreaks

such as influenza and measles where transmission takes place at different times in different

locations. If one conducts the surveys early on in one location, one can use the results to

predict outcomes on the populations effected later in time. In all cases I would recommend

running a selection of simulations with hypothetical surveys and see how well they estimate

back before conducting an actual survey.

One of the major disadvantages in the simulations was time inefficiency in the algorithm.

The optimization technique relied entirely on the high precision Nelder-Mead algorithm, but

the code took 20 minutes per sampling scheme, for a total of 440 minutes for the main results.

Some of the code could be improved by writing parallel computations and possibly trying

other optimization techniques, including Monte Carlo and Simulated Annealing algorithms.

Another improvement would be running the code on high computing machines or cloud

computing platforms. With greater efficiency or computing power, the code could certainly

be turned into an R package or applet for epidemiologists or other researchers in the field.

This project can and should be extended to alternate original population parameters,

different sample sizes, and further sampling schemes. In other words, the simulations should

be extended to other sets of q and x (number of samples and spacing of samples), as well

as to various possibilities for n and for N, β, γ, I(0), R(0), S(0). To truly examine how well

the multinomial model performs, it would be better to run all the above simulations with

various examples for starting population parameters and then compare results. In addition,

the investigation can certainly be extended to other epidemiological models, such as SIR

models with vaccine, SEIR models, SIS models, and stochastic models. It remains unknown

how well these can be estimated. Complexity increases when there are more parameters to

be estimated and the survey becomes difficult to design. For example, how does one create

a survey for the exposed class in an SEIR model? With vaccine models, whether one has

been vaccinated would need to be included as a question. Due to computational limitations
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I chose to focus on the most basic model, but eventually I hope to extend the investigation

to these other models and sampling scenarios.
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Appendix

All further simulated histograms, QQ plots, and summary tables can be accessed online

via Supplemental Material at the following link:

https://github.com/hull1893/masters-thesis-supplemental


