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Abstract

DNA microarrays and high throughput sequencing (HTS) have allowed 

investigators to characterize nucleic acids (DNA and RNA) across tissues, 

treatments, samples, and species, providing a wealth of information in efficient and 

cost-effective ways. This dissertation presents an application of DNA microarrays 

and two novel methods for analysis of HTS data.

Bacterial and fungal species that live in and on the human body are believed 

to play important roles in the maintenance of health and prevention of disease. To 

study these communities in the human vagina, we developed the VChip, a DNA 

microarray with probes representing 313 strains of bacteria as well as 716 human 

immunity genes. This array was validated using mock bacterial communities and 

tested using DNA and cDNA from vaginal swabs. The VChip produced results that 

accurately reflected the composition of the mock bacterial communities, and 

produced results similar to those obtained from 16S rRNA amplicon 

pyrosequencing.

Assembly by Reduced Complexity (ARC), is a software package that 

facilitates iterative, reference seeded assembly of HTS datasets. This strategy is 

useful for datasets that can be divided into several discreet subsets that can each 

be assembled independently. A set of reference or “target” sequences is used to 

recruit initial subsets of reads, each subset is assembled independently into contigs,

these contigs are then used to recruit a new set of reads. This process is iterated, to

grow assemblies until stopping conditions are met. I showed that ARC works well 

even with moderately divergent references, and is not plagued by reference bias, a 

serious limitation of mapping based strategies. 

StopGap is a strategy for improving genome assemblies. Gap spanning 

Pacific Biosciences continuous long reads are identified and used to guide 

assembly of high quality Illumina or 454 reads with the ARC pipeline. Two assembly

merging programs were tested for their ability to take advantage of these gap-

bridging contigs. I show that this approach was able to produce more contiguous 
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assemblies and better represent repeated sequences within the assembly.  

Although StopGap was used here to improve the assembly of a bacterial genome, 

this approach could be used in the assembly of more complex eukaryotic genomes 

as well.
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Chapter 1

Introduction

The use of DNA microarray and high throughput DNA sequencing (HTS) 

technologies have driven major developments in biological research and stimulated 

collaborations with experts in computer science and statistics. The large and often 

complicated datasets produced by these technologies have made it necessary to 

combine expertise from each of these disciplines to extract biological meaning from 

otherwise obtuse data. Both DNA microarrays and HTS technologies produce large 

and complex data sets that pose significant challenges for analysis, requiring the 

development of many new methods and creating a growing need for scientists with 

the necessary skills and training to analyze these data. Interestingly, both of these 

technologies attempt to gain insight into the biology of a sample through analysis of 

nucleic acid sequences (DNA and RNA), the information storage and transfer 

systems [1] thought to be common to all of known of life. Although both of these 

technologies are routinely used to study nucleic acids, microarray analysis 

ultimately results in a matrix of numeric values representing nucleic acid 

abundance, while HTS produces millions of short sequences known as 'reads'. 

These very different types of data require equally different approaches for analysis. 

Early developments in DNA sequencing [2, 3] and the invention and 

marketing of automated DNA sequencing instruments in 1986 by Applied 

Biosystems [4] occurred concomitantly with the development of early microarray-like

strategies [5]. However, microarrays proved to be much easier and cheaper to scale

up. This was achieved either by using robots that could print (or “spot”) DNA probe 

sequences onto glass slides quickly and efficiently [6] or through processes of 

synthesizing oligonucleotide sequences directly on a substrate [7, 8]. A comparably 

compact and automated commercial solution for HTS did not appear until much 

later with the first publicly available release of a pyrosequencing system from 454 

Life Sciences in 2004 [9].  

Eventually, microarrays became well established as a standard tool in 

biological laboratories and a consensus for best practices regarding experimental 
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design and data analysis emerged [10]. In contrast, no consensus for best practices

has emerged for the analysis of HTS data as evidenced by Assemblathon 2, a 

recently published competition in which strategies for assembly of three vertebrate 

genomes were compared [11]. The authors conclude that “the clear take-home 

message from this exercise was the lack of consistency between assemblies”. 

Similarly, this conclusion was also drawn from another comparison of assemblers 

for bacterial genomes [12] in which assemblies were quite variable across eight 

sequence assemblers tested on twelve data sets. At the same time, other authors 

have noted serious discrepancies between algorithms used for identifying single 

nucleotide variants [13], and the need for continued development of algorithms for 

identifying insertions and deletions [14].

In this thesis, I present results from studies involving both microarray, and 

HTS technologies. Chapter 2 details a study in which we leveraged mature 

microarray design, fabrication, and analysis technologies and developed a novel 

platform, the VChip, for studying the gene content of bacterial communities within 

the human vagina. This array was developed using recent data on the species 

composition of vaginal microbiota in a large cohort of healthy women [15, 16]. It 

targets coding sequence from 313 bacterial strains representing 184 species, as 

well as probes for 716 genes that encode components of the human immune, stress

response, and other systems. The array was designed using 1.4 million probes with 

the NimbleGen three-plex 4.2 million probe custom format, making it possible to 

hybridize three samples per slide. We validated the VChip by characterizing species

and gene composition of mock communities and with human vaginal community 

samples. 

Chapter 3 describes the development of a novel method and software 

package for the analysis of HTS data called Assembly by Reduced Complexity 

(ARC). In many cases, only a subset of the reads produced as the result of high 

throughput sequencing are of interest. For example, a sequencing library may be 

prepared from total DNA extracted from a tissue, but only an assembly of reads 

derived from the mitochondrial genome is of interest (in the context of HTS, the term

'library' is used to indicate a set of DNA fragments prepared for sequencing). 
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Alternatively, in the case where “target enrichment” strategies such as sequence 

capture [17] are employed, a set of DNA probes (targets) are used to enrich a 

library for a specific subset of template sequences through hybridization. This 

“captured” library contains a mix of sequences, some of which are associated with 

the DNA probes of interest and others of which simply were not washed away 

completely during the capture process. After sequencing, the reads associated with 

the targets of interest are referred to as “on target” while the rest are “off target”.

A major challenge for analysis of these types of datasets is the large number 

of reads that are not of interest. These reads make de novo assembly time 

consuming and in some cases intractable. An alternative strategy is to align (map) 

reads against an existing reference sequence, however mapping software is 

sensitive to differences (divergence) between sample and reference sequences 

making it difficult to map reads in regions of the reference where divergence exist 

[14]. 

The ARC approach was designed for situations like this, in which the primary 

objective is not the assembly of entire genomes. It facilitates recruitment and 

assembly of subsets of reads associated with a set of reference sequences (called  

“targets” here) and uses an iterative approach to account for divergent regions. ARC

was shown to work well, even when references are divergent enough to completely 

preclude a traditional mapping based approach. I describe the algorithm as an 

iterative, reference seeded approach for assembly of homologous sequences 

because ARC only uses the target sequences on the first iteration and works well 

with divergent targets.

In Chapter 4 I describe an alternative use of the ARC pipeline as a strategy 

for improving genome assemblies. Currently, one can expect that assembly 

algorithms will produce assemblies that only poorly represent the original DNA 

sequence. Instead of a single long sequence representing each chromosome, 

assemblies tend to be “fragmented” into multiple sequences (contigs) and have little

or no information about the order and orientation of these contigs. The typical cause

for assembly fragmentation is repeated sequences that commonly occur in most 

genomes [18, 19]. The emergence of single molecule real time sequencing 
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[currently only available from Pacific Biosciences (PacBio)], presents the 

opportunity to solve this problem due to the exceptionally long read length produced

by this technology. However, PacBio reads have such low quality it is difficult to 

directly incorporate them into genome assemblies. To overcome this, I explored the 

feasibility of using ARC to combine the length of PacBio reads and Illumina or 454 

reads to generate high-quality contig assemblies that bridge repeats, making it 

possible to incorporate them into the genome assembly, thereby closing gaps and 

reducing DNA sequence fragmentation overall.

In summary, Chapter 2 describes the VChip, a microarray designed and 

validated for characterizing the gene content of the vaginal microbiome. Chapter 3 

describes a software tool designed for reference seeded assembly of homologous 

sequences and shows that this tool is effective for assembly of mitochondrial 

genomes under a variety of circumstances. Chapter 4, presents a strategy to 

reduce the fragmentation of a genome assembly by using long PacBio reads in 

combination with Illumina or 454 short reads.
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Chapter 2

VChip, a DNA microarray for exploratory analysis of the
vaginal microbiome

Abstract 

We report on the development and validation of the VChip, a DNA microarray for 

exploratory analysis of the species and gene composition of vaginal microbiota. The

three-plex glass slide microarray consists of 1.4 million 60-mer probes per sub-array

derived from the coding genome sequences of 313 strains representing 184 

bacterial species commonly found in the vagina and 716 human immunity genes. 

We performed a series of validation experiments with the VChip to demonstrate its 

efficacy with both mock bacterial communities and clinical vaginal swabs. Through 

these experiments we confirmed that the VChip correctly detected expected species

in DNA from mock communities and in both DNA and cDNA from vaginal swabs. 

Furthermore, it was highly sensitive for both high- and low-abundance bacterial taxa

and human immunity genes. While not strictly quantitative, the VChip produced 

similar overall patterns of species and gene presence as high-throughput 

sequencing methods including 16S rRNA amplicon pyrosequencing and Illumina 

shotgun sequencing of vaginal swab metagenomes and metatranscriptomes. We 

conclude the VChip is suitable for exploratory qualitative analysis of the vaginal 

microbiome in both research and clinical settings with a variety of potential 

applications including association of gene expression with health outcomes or 

rapidly screening a large number of samples for patterns of interest. 
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Introduction

The vaginal microbiota is a complex assemblage of microbes believed to 

play a significant role in the maintenance of health and prevention of disease [1, 2]. 

Numerous studies employing cultivation-independent techniques have found that 

bacterial communities in the vaginas of healthy, reproductive-age women vary 

markedly, both within and among individuals as well as over time [3-8]. Community 

structure and composition differ considerably, with some communities highly 

skewed toward a single predominant species (most often Lactobacillus spp.) and 

others characterized by a more even distribution of assorted anaerobic bacterial 

taxa. There appear to be at least five major community types among reproductive 

age women, and their prevalence varies somewhat across racial and ethnic groups 

[6]. Furthermore, vaginal microbial community composition is dynamic in many 

women with patterns ranging from constant to rapidly fluctuating, and those patterns

may vary over time within an individual [8, 9]. The causes and consequences of 

variation in community composition and structure are presently not well understood 

and are thus an active area of research.

 Along with other advancements in understanding the human microbiome, 

recent discoveries about the vaginal microbiome have been facilitated by high-

throughput sequencing technologies, decreased costs and improved efficiency. 

Most cultivation-independent studies to date have relied primarily on phylogenetic 

analysis of partial 16S rRNA gene sequences or other conserved genes to survey 

bacterial taxa [10-15]. More recently, however, there has been growing interest in 

determining not only which taxa are present in various host-associated microbial 

communities, but also their function and how they modulate human health. Analyses

of this nature warrant a more comprehensive approach that takes into account not 

just a single gene, but rather a larger suite of genes present or expressed within a 

microbial community. In response to our limited understanding of the relationships 

between specific genes and metabolic and ecological functions, more 

comprehensive community metagenomics techniques enable characterization of the

total genomic content of microbial communities [16, 17]. These approaches have 

fundamentally changed microbial ecology research and our understanding of 
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microbial community function in human and environmental health. However, while 

many bioinformatic tools and pipelines have been or are actively being developed to

handle and interpret such data, the functional assignment of metagenomic 

sequence data remains a significant challenge [18]. 

Despite major advances in sequencing technologies, the analysis and 

interpretation of vast quantities of sequence data require non-trivial bioinformatics 

expertise and computational resources, posing a barrier to rapid analysis of 

samples in many smaller research or clinical settings. Because a central goal of 

human microbiome research is to develop strategies of personalized medicine 

tailored to an individual’s microbial makeup [13], there is a pressing need for 

research tools that enable fast, simplified analysis of greater numbers of samples. 

One strategy to fulfill this need is the development of straightforward research tools 

that require simplified and streamlined bioinformatics analysis.

 DNA microarrays are a faster, less expensive alternative to DNA 

sequencing. They are relatively simple to use, rely on established laboratory 

techniques and can be analyzed using statistical methods shown to be robust 

across many datasets [19]. Microarrays have been used in microbial ecology 

research for more than a decade [20, 21]. These have primarily consisted of 

phylogenetic microarrays that probe group-specific marker genes (e.g., 16S rRNA) 

used to classify taxa in a community or estimate species richness [22-25] much the 

same way that 16S rRNA amplicon sequencing is used to characterize community 

composition. In addition, some arrays also contain probes for genes of functional 

relevance to assess specific functional characteristics of a sample [26-28]. 

Numerous microarrays have been developed for both environmental (terrestrial and 

aquatic) and human-associated bacterial communities, and these have previously 

been reviewed [21, 29, 30]. Arrays differ in both the number of probes and 

taxonomic level assessed, the array platform used, accommodation of DNA or RNA 

samples, and the specific environment(s) for which they are applicable. 

We developed a DNA microarray, termed the VChip, for exploratory analysis 

of community gene content and expression in the vaginal microbiome. The 

motivations for this project were an incomplete understanding of the ecological 
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functions of vaginal microbiota and their role in women’s health as well as a lack of 

high-throughput research tools to rapidly evaluate the composition of vaginal 

microbial metagenomes and metatranscriptomes. Using recent data on the species 

composition and relative abundance of vaginal microbiota in a large cohort of 

healthy women [6] and publicly available genome sequences of host-associated 

vaginal bacteria, we designed an extensive probe set (1.4 million 60-mer probes per

sub-array of a three-plex glass slide array) targeting the genomes of 313 strains 

representing 184 bacterial species found in the vagina as well as 716 human 

immunity genes. We performed a series of validation experiments with the VChip to 

demonstrate its efficacy for both mock bacterial communities as well as DNA and 

cDNA prepared from clinical vaginal swabs from healthy adult women. We 

compared output from the VChip with 16S rRNA amplicon pyrosequencing data and

demonstrated that it performs well in detecting DNA and cDNA from both well-

represented and low-abundance taxa. Our findings support the utility of VChip as a 

discovery tool with a variety of potential applications, including identification of 

genes or taxa that contribute to community ecological function or health outcomes 

of the host, as well as rapidly screening a large number of samples for interesting 

patterns to select a manageable subset for more in depth investigations.

Methods

Probe set design and array production

Data from previous studies of the vaginal microbiome [6, 8] and bacterial 

genomes (draft and complete) available in the Genomes Online Database 

(http://www.genomesonline.org) guided the selection and design of probes for the 

DNA array. The NimbleGen array format was a three-plex 4.2 million custom 

designed array (1.4 million probes per sub-array). Development of the probe sets 

began with the coding genome sequences of 336 bacterial strains of 200 species 

associated with the vaginal microbiota, including a wide range of bacteria that are 

common and often highly abundant (e.g., Lactobacillus species) as well as 

numerous species that are only detected occasionally or in low relative abundance 

(this was later reduced to 313 strains/184 species due to maximum capacity of the 
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microarray; see Results for explanation). Gene sequences less than 10 bp or 

greater than 9,999 bp were excluded, and the remaining sequences were clustered 

based on 80% identity and 80% coverage thresholds using the clustering program 

Cd-hit [31]. Multiple sequence alignments were performed in MUSCLE [32] to 

generate a representative consensus sequence for each cluster, replacing 

ambiguous or heterogeneous alignment sites with “N”. Consensus sequences were 

submitted to Roche NimbleGen (Madison, WI, USA) to design unique 60-mer 

probes for each cluster. Final array design and production were completed in 

collaboration between Roche NimbleGen and the Institute for Bioinformatics and 

Evolutionary Studies (IBEST) Genomics Resources Core at the University of Idaho.

Bacterial strains and human vaginal swabs

Nine mock communities with different combinations and proportions of 

genomic DNA from six bacterial strains in addition to human female genomic DNA 

(Promega, Madison, WI, USA) were created as shown in Table 1. The latter was 

included to evaluate the effect of human DNA burden on bacterial species detection 

and the level of cross-hybridization with probes targeting bacteria. The mock 

communities consisted of varying combinations of bacterial and human female 

genomic DNA, wherein bacterial DNA ranged from 0-100% of the total amount of 

DNA (2.5 µg total). The bacterial strains included three type strains: Lactobacillus 

crispatus ATCC 33820, Atopobium vaginae ATCC BAA-55, and Gardnerella 

vaginalis ATCC 14018. Additionally we included three bacterial isolates collected 

from vaginal swabs that were classified as Finegoldia magna, Anaerococcus 

tetradius, and Anaerococcus hydrogenalis based on >97% similarity in the V1-V5 

region of 16S rRNA gene sequences in the NCBI GenBank database 

(http://www.ncbi.nlm.nih.giv/genbank/).

In addition to the mock communities, three clinical vaginal swabs from a 10-

week longitudinal study of the vaginal microbiome (Gajer et al., unpublished) were 

included in the analysis. The study received Institutional Review Board approval 

from the University of Maryland School of Medicine. Sample VM-1 was from an 

individual (subject 1) whose vaginal microbiota was stably dominated by 

http://www.ncbi.nlm.nih.giv/genbank/
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Lactobacillus iners over the course of the study (Fig. 1A). Samples VM-2 and VM-3 

were from two time points in a second individual (subject 2) collected at a time when

her microbiota experienced an apparent disturbance that shifted the community 

composition during the eighth week of the study before returning to a Lactobacillus 

spp.-dominant state shortly thereafter (Fig. 1B). DNA and RNA were extracted from 

these samples for evaluation with the VChip.

Extraction of genomic DNA from vaginal swabs and bacterial cultures

Genomic DNA was extracted from vaginal swabs that had been stored in 

Amies transport media at -80°C. A validated procedure [6, 33, 34] was used that 

includes steps for enzymatic and physical lysis of bacterial cells followed by 

purification of genomic DNA using a QIAsymphony robotic platform and Qiagen 

CellFree500 kits (Qiagen, Venlo, Limburg, Netherlands) according to the 

manufacturer’s protocol. The same protocol was performed manually for extracting 

genomic DNA from bacterial pure cultures used to construct the mock communities.

V1-V2 16S rRNA Roche 454 pyrosequencing and Illumina RNA-Seq 

metatranscriptome sequencing of vaginal swabs

The three vaginal swabs tested on the microarray were characterized using 

Roche 454 pyrosequencing of 16S rRNA gene V1-V2 hypervariable regions as 

previously reported [8]. These data served as a comparison to the VChip microarray

hybridization results to determine whether the species detected were reasonably 

consistent between methods.

Metatranscriptomic cDNA were prepared by extracting total RNA from vaginal

swabs that had been stored in RNAlater and depleted of rRNA using a combination 

of Epicentre (Madison, WI, USA) Ribo-Zero rRNA removal kits for bacteria and 

human/mouse/rat kits. The remaining mRNA was reverse transcribed, and the 

resulting double stranded cDNA (~200 ng) was used to construct sequencing 

libraries for sequencing on an Illumina HiSeq 2000 instrument (Illumina, San Diego, 

CA, USA) at the University of Maryland Institute for Genome Sciences (IGS) using 

protocols recommended by the manufacturer and modified by the Genomic 



11

Resource Center at IGS. The abundances of individual transcripts were determined 

based on the depth of read coverage.

Sample processing, microarray hybridization and analysis

Genomic DNA from mock communities and vaginal swabs and cDNA from 

vaginal swabs were processed in the Genomics Resources Core facility of the 

Institute for Bioinformatics and Evolutionary Studies (IBEST) at the University of 

Idaho following NimbleGen’s protocols for comparative genomic hybridization 

(CGH) arrays (version 8.1, July 2011) [35]. Briefly, 0.5 µg of purified, unamplified, 

unfragmented genomic DNA or cDNA was labeled with high-efficiency Cy5 Random

Nonamers, followed by hybridization and washing as described in the manual. 

Prepared samples were analyzed on a Roche NimbleGen MS200 scanner (Roche 

NimbleGen, Madison, WI, USA) along with standard quality controls.

Hybridization intensity signals were normalized using the Robust Multichip 

Average (RMA) method [19]. To perform comparisons between microarray 

hybridization results and expected mock community composition as well as data 

from 16S rRNA gene pyrosequencing and Illumina metatranscriptome sequencing, 

we converted each species' RMA-normalized hybridization intensity value to a 

percentage of the total signal across the entire array as follows: first, the 95th 

quantile of the hybridization values for the probes associated with a given species 

was calculated. Next, the median of the 95th quantile values was subtracted from 

the 95th quantile values, and negative values were set to 0. Finally, percentages of 

each species’ signal were calculated from the un-logged values. The rationale for 

these steps is that in many cases, not all probe sets within a given species will 

produce hybridization signal. The 95th quantile represents probes with the highest 

signal within the group, while taking a median or mean results in values that are 

essentially indistinguishable from background signal. Following normalization, the 

minimum signal was 3.4, the mean was 4.2, and the 95th quantile was 4.6. This 

suggests that all values < 4.6 (approximately) are essentially equivalent to 0 and 

thus considered background signal. This procedure shifts the expression values to 

reflect this.
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Qualitative and statistical analyses were performed and visualized using 

custom R scripts and packages available from Bioconductor (http://bioconductor.org

[36]), including oligo [37], pdInfoBuilder [38], limma [39], qvalue[40, 41] and 

Biostrings [42].

Evaluation of VChip with mock community genomic DNA

　　　In order to compare the mock community hybridization results from the VChip 

with expected species proportions, it was necessary to scale the proportion of each 

species’ genomic DNA by its genome size. This was accomplished by dividing each 

species’ genomic DNA proportion in a community by its genome size to estimate the

expected proportion of genome copy equivalents (reported in parentheses in Table 

1). Since exact genome sizes were not known for most of the strains used in the 

mock communities, they were estimated from available genome assemblies of other

strains of the same species (up to three per species), excluding genomes that 

included plasmids or organelles and giving preference to contig- and chromosome-

level over scaffold-level assemblies (Supplementary Table S1). The adjusted 

expected proportions of genome copy equivalents were compared to the VChip 

species-specific normalized hybridization signal using computed Pearson 

correlation coefficients.

Comparison of the VChip-derived community composition and V1-V2 16S rRNA 

Roche 454 pyrosequencing data from vaginal swabs

To compare the VChip hybridization of DNA from vaginal swabs to 16S 

rRNA-derived community composition data, we considered only the subset of 

species in the VChip probe sets that could be matched to the 16S rRNA sequence 

data by name. This was necessary because many operational taxonomic units 

(OTUs) determined by bioinformatic analysis of the Roche 454 16S rRNA gene 

pyrosequencing data were not directly comparable due to nomenclature differences 

in the databases used for annotation. Comparisons were then carried out at the 

species level by plotting the results and calculating the Pearson correlation 

coefficient between relative abundances of taxa detected by different techniques.
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In silico probe assessment of Illumina RNA-Seq metatranscriptome reads

The 60 bp microarray probe sequences were mapped against the 100 bp 

Illumina RNA-Seq reads using Bowtie (v0.12.9, [43]) (parameters: “-v 3 --fullref 

--chunkmbs 512 --best --strata -m 20”). Alignments were then filtered to only those 

where the full length of each probe aligned to the read, allowing for two 

mismatches. The numbers of reads with mapped probes were summed and 

converted to a percentage of total reads with mapped probes. Finally, these were 

compared to the metatranscriptome cDNA array hybridization results for vaginal 

swab samples VM-1 and VM-2 by calculating Pearson correlation coefficients.

Assessment of changes in gene expression in subject 2

To demonstrate how the VChip could be used to compare samples and 

identify genes that were over- or under-expressed, we compared the hybridization 

signals from the cDNA hybridizations from samples VM-2 and VM-3. After 

normalization of the data following procedures referenced above [19], we calculated

the log2-fold difference in expression values between the two samples. The number

of gene clusters with >2 log2-fold difference (in magnitude) were determined for 

each species and averaged to evaluate whether overall change in gene expression 

within each species was up, down, or neutral in VM-3 relative to VM-2.

Results

VChip probe set design

The starting set of 336 bacterial strains (200 species) encompassed 812,653 

coding sequences (CDS) of which 119,091 were duplicates (i.e., redundant). 240 

CDS fell outside the range of 10-9,999 bp and these were excluded from further 

analysis. The remaining 693,322 CDS clustered into 473,709 clusters (364,808 

singletons), and a consensus sequence for each cluster was generated as 

described above and submitted to Roche NimbleGen for probe design. Initially five 

probes per cluster were designed, but because the total number exceeded the 

capacity of the array (~2.4 million probes versus 1.4 million available per sub-array),

we manually reduced the starting set of bacterial genomes to be represented down 
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to 313 (184 species). After excluding the removed strains, 307,860 of the original 

473,709 gene clusters were represented in the final array design in addition to 716 

human immunity genes (3,580 probes). 74.4% of the bacterial gene clusters 

(n=229,131) had five probes, and all had at least two probes. Supplementary Table 

S2 includes bacterial gene cluster information and annotations, and Supplementary 

Table S3 contains similar information about the human immunity genes. Of the 313 

strains represented on the array, 246 (78.6%) had strain-specific probe sets while 

the rest were represented by probe sets shared with other strains or species as 

listed in Supplementary Table S4. 165 of the 184 species on the array (89.7%) had 

species-specific probe sets (Supplementary Table S5). Supplementary Table S6 is 

the NimbleGen Design File (NDF) containing the probe sequences and detailed 

information about the design of the array. An explanation of the variables within this 

file can be found in the NimbleScan Software User’s Guide (version 2.5), pp. 93-94 

[44].

VChip hybridization with mock community genomic DNA

We first tested mock communities composed of bacterial and human 

genomic DNA (Table 1) to measure the sensitivity of the VChip to detect genes from

known species present in varying proportions relative to one another. Fig. 2 shows 

the proportions of normalized species-specific probe hybridization signal in the 

mock communities on the array compared to the expected proportions of genome 

equivalent copies. The VChip correctly and specifically detected both the bacterial 

species and human DNA present, and Pearson correlation coefficients ranged from 

0.34 to 0.95 (mean 0.77, median 0.85). Mock communities with only a single 

species had the highest correlations (MC-8, 100% L. crispatus: r=0.95; MC-9, 100%

human: r=0.92), while communities consisting of only bacteria in skewed 

proportions had the lowest correlations (MC-2: r=0.34; MC-3: r=0.60). Communities 

with both bacterial and human DNA also had relatively high correlation coefficients 

(MC-4: r=0.73; MC-5: 0.85; MC-6: r=0.85; MC-7: r=0.82), as did the mock 

community with balanced proportions of five bacterial species (MC-1: r=0.85; 

however, see below). These results demonstrate the VChip is capable of detecting 
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genes or DNA fragments from both high and low-abundance bacteria in mixed 

samples with or without human DNA. Because the correlations of expected and 

observed species proportions on the VChip appear to be influenced somewhat by 

the distribution of species’ abundance in the community, the VChip should not be 

used strictly as a quantitative tool; however, it may be useful for semi-quantitative 

(i.e., comparing relative differences across samples) or predictive purposes to be 

validated by further sequencing efforts. 

Hybridization signals for probe sets assigned to species that were not 

present in the mock communities accounted for approximately 10% of the total 

signal overall, indicated by the “other” category in Fig. 2. This signal was collectively

made up of very low relative proportions (typically <1%) of signal across many 

species and is essentially indistinguishable from background noise (the RMA signal-

to-percent conversion filters out most low-level signal, but some residual 

background noise remains). The species detected using the VChip were concordant

with our expectations in the mock communities but also indicated an unexpected 

presence of L. crispatus in one of our samples. L. crispatus probe sets on the array 

hybridized with mock community MC-1 showed strong signal for the presence of 

this species even though we had not knowingly added its DNA during sample 

preparation. Comparisons with other arrays hybridized with samples containing L. 

crispatus showed that the same set of probes had high levels of hybridization in 

both cases, suggesting contamination of this sample and not a failure of the array 

(see Supplementary Appendix S1).

Comparison of VChip-derived community composition and V1-V2 16S rRNA Roche 

454 pyrosequencing data from vaginal swabs

As with the mock communities, the VChip performed well in correctly 

detecting both high- and low-abundance bacteria in the vaginal swab metagenomic 

DNA. We compared the VChip-derived bacterial community composition from the 

three vaginal swabs with species relative abundances based on V1-V2 16S rRNA 

Roche 454 pyrosequencing using computed Pearson correlations. These 

comparisons were performed for 42 bacterial species that had species name 
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matches between the VChip probe dataset and the pyrosequencing dataset; 

collectively these accounted for at least 80% of the hybridization signal from the 

samples on the array. Of those 42 species, 15 had non-zero relative abundances in 

the 16S rRNA pyrosequencing dataset, and these comparisons are shown in Fig. 3. 

The Pearson correlation between percent hybridization signal on the VChip and 

relative abundance based on 16S rRNA sequencing was high when the community 

was highly skewed toward a single dominant species. For instance, sample VM-1 

was composed of >99% Lactobacillus iners, and the correlation coefficient of 

relative abundances of species based on DNA hybridization and 16S rRNA relative 

abundances was 1.00. Samples VM-2 and VM-3, which had a more even 

distribution of species relative abundances, had lower correlation values of 0.53 and

0.84, respectively. Similar to what we observed with the mock communities, the 

VChip was sensitive to low-abundance species that were barely detected by 

amplicon sequencing. This is evidenced by the points in the upper left region of 

Figure 3; these are species more highly detected by VChip than by V1-V2 16S 

rRNA pyrosequencing. These discrepancies could be due in part to a number of 

factors including differences in the total number of species-specific probe sets 

targeting each species, probe hybridization efficiency (i.e., GC-content of genes and

probes), gene copy number, or depth of sequencing in the 16S rRNA data. Although

we would not recommend using VChip to quantify species relative abundance in a 

community the same way 16S rRNA sequencing is often used, we consider the high

sensitivity of VChip to low-abundance taxa a strength of the microarray that could 

enable detection of important genes in species that might otherwise be overlooked. 

We also performed qualitative comparisons of cDNA hybridizations on the 

VChip with 16S rRNA pyrosequencing and Illumina shotgun sequencing data to 

evaluate overall similarity in the species detected. One interesting outcome from 

this assessment was the unexpected abundance of transcripts detected from 

Finegoldia magna in VM-1. The relative abundance of this species was just 0.05% 

by 16S rRNA Roche 454 pyrosequencing, and F. magna-specific signal constituted 

less than 1% of the normalized signal in the metagenomic DNA hybridization. The 

cDNA hybridization from the same sample, on the other hand, constituted 17.5% of 
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the normalized signal. Additionally, 3.41% of the Illumina RNA-Seq reads from this 

sample mapped to F. magna-specific VChip probe sets in the in silico analysis 

described below, providing further evidence to suggest F. magna was expressing 

genes. This possibility might have been overlooked based on 16S rRNA or 

metagenome sequencing due to the low relative abundance of this species. While 

observations like this could potentially spur further investigation, it would be 

necessary to perform this analysis with replicated samples to make statistically 

supported conclusions.

In silico analysis of Illumina RNA-Seq data and VChip from vaginal swabs

We performed in silico hybridization by mapping VChip probe sequences 

against Illumina RNA-Seq reads to determine whether the two approaches yielded 

comparable results. 2.26 million of the 100 bp RNA-Seq reads from sample VM-1 

(2.77% of 81.80 million reads) and 1.78 million reads from sample VM-2 (2.23% of 

79.44 million reads) were successfully mapped to VChip probe sequences 

(mapping was not performed for VM-3). There are several possible explanations for 

why a large proportion of the reads did not get mapped to the probe sequences. 

First, the percentage of the mapped reads is limited by the total number (1,443,693)

and design of the probes. Each gene cluster represented on the array had 

maximally five 60-mer probes, so only up to 300 bp of any given gene cluster could 

potentially be mapped onto by the RNA-Seq reads. In most cases, this would leave 

large portions of genes ‘unprobed’, even if other segments of the genes were 

accounted for in the reads. Additionally, any eukaryotic reads aside from the 716 

human immunity genes would not have been detected, nor would bacterial species 

or strains not present on the array. Finally, although a ribosomal RNA (e.g., 16S 

rRNA) depletion step was included prior to Illumina RNA-Seq sequencing, ~9% of 

the reads in each sample were identified as rRNA bioinformatically. Given these 

explanations, it is not surprising that a relatively low percentage of reads were 

mapped to VChip probes. Of the RNA-Seq reads that successfully mapped to 

VChip probes, the Pearson correlation coefficients for species-specific relative 

hybridization abundances between the in silico mapping and the cDNA hybridization
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on the VChip were 0.71 and 0.79 (Table 2). Although only a small fraction of the 

reads mapped to the probe sequences, the high degree of correlation with the 

actual cDNA hybridized on the array indicates good agreement in the detection of 

cDNA fragments using two very different technologies.

Relative gene expression differences between VM-2 and VM-3 in subject 2

The cDNA VChip-hybridizations of samples VM-2 and VM-3 were compared 

to observe differences in relative gene expression between the two time points, 

reported in Figure 4. A complete list of gene clusters with >2 log2-fold differences (in

magnitude) between VM-2 and VM-3 are included in Supplementary Table S7. 

Many species, including several Lactobacillus spp., showed a large number of 

species-specific genes with increased average relative expression in the latter time 

point, which is not surprising considering these species were increasing in relative 

abundance over the time frame observed (Fig. 1B). These included genes such as 

a GNAT family acetyltransferase, initator RepB protein and DNA methylase in L. 

iners, as well as a cell wall-associated hydrolase and endopeptidase O in L. 

gasseri, to name just a few examples. Interestingly, a large fraction of transcripts 

with the greatest number of differentially expressed genes with average positive 

change were attributed to less abundant taxa such as Peptoniphilus lacrimalis, 

Dialister microaerophilus and several others. A. vaginae had the greatest number of

down-expressed genes on average in the latter time point (indicating it was much 

more active during the earlier time point). Several other species including Prevotella

amnii, Anaerococcus tetradius, Clostridiales genomosp. and Mobiluncus curtisii had

large numbers of differentially expressed genes, but the average change across all 

species-specific genes was close to zero, meaning some genes were over-

expressed in the earlier time point and others in the latter. Additionally, 190 of the 

716 human immunity genes were differentially expressed based on the >2 log2-fold 

threshold; of these, two were down (a myeloperoxidase, NCBI reference 

NM_000250; and NLRC4, NCBI reference NM_021209) while the rest were up in 

the latter time point. 

While we cannot draw statistically sound conclusions from only a pair of 
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samples, our results demonstrate it is feasible to detect differences in patterns of 

gene expression between samples using the VChip. If similar comparisons were 

conducted on a larger scale with both sample and technical replicates, such 

changes in expression patterns could provide important insights into the 

mechanisms driving shifts in community composition and function in response to a 

purported disturbance.

Discussion

Tools for rapid, streamlined analysis of vaginal microbial communities are needed to

accelerate our understanding of the microbiome in relation to human health and 

devise more effective strategies for patient care. In response to this need, we 

developed the VChip, a DNA microarray that targets the vaginal microbiome more 

comprehensively than any previous microarray and is also the first to our knowledge

to include human immunity genes in addition to bacterial genes. The VChip offers a 

faster and more accessible approach to screening vaginal microbial communities for

interesting community metagenomic or gene expression patterns. Because it is 

based on a standard microarray platform, data can be analyzed in a straightforward 

manner using established methods, and the probe sets (provided in 

SupplementaryTable S6) can be tailored and reproduced on any oligonucleotide 

platform. The results of our validation experiments with both mock communities and

vaginal swab samples support the utility of VChip as an exploratory tool for 

assessing gene content and expression of vaginal metagenomes and 

metatranscriptomes, respectively. We found it to be specific at the species level and

also highly sensitive to both high- and low-abundance species in mixed 

communities. While the VChip did not accurately reflect species relative abundance 

in some of our samples, it reliably detected genes and transcripts from expected 

bacterial species and demonstrated the potential to reveal interesting patterns of 

gene expression. 

Microarrays developed previously for applications in human microbiome 

research include arrays targeting microbes residing in the human gastrointestinal 

tract [23, 25, 45], oral cavity [46, 47], vaginal tract [48] and general human 
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microbiota [24]. The vast majority are phylogenetic microarrays which are used to 

assess the species composition and relative abundance of microbes found in these 

various ecosystems based on a single gene or small set of genes. The array most 

similar to the VChip was developed by Dols et al. for detecting the presence of 

bacteria associated with bacterial vaginosis using 16S rRNA amplicons [48]. The 

VChip differs substantially from this and other human microbiota microarrays 

because it probes both species-specific and conserved genes spanning whole 

coding genome sequences rather than a limited set of marker genes (e.g., 16S 

rRNA) or a subset of characterized functional genes. Moreover, because the VChip 

also probes human immunity genes, it could be used to evaluate the local host 

immune response along with vaginal microbial community gene expression.

 A major advantage of the VChip’s more comprehensive design is that it can 

be used in an exploratory manner to identify potential interactions between the host 

and vaginal microbiota in health and disease. The process of gene selection for 

probe design of the VChip was agnostic toward metabolic or physiological function, 

so there are many genes represented on the array that have not yet been well 

characterized but could ostensibly be important for community ecology of the 

vaginal microbiota. Furthermore, species-specific probe sets are included for 165 

bacterial species, and strain-specific probe sets for 246 strains, representing a wide 

spectrum of taxa found in the vagina at varying degrees of incidence and relative 

abundance. This enables detection of gene expression patterns even with so-called 

“rare” or low-abundance bacteria, as was the case with F. magna in the vaginal 

community of sample VM-1. Similarly, an investigator might want to determine 

which species contribute most to differences or changes in gene expression 

patterns across samples. Our comparison of two metatranscriptome samples from 

subject 2 (VM-2 and VM-3) revealed that several species exhibited large changes in

transcript abundance from one time point to another, which could prompt more 

targeted analysis in future studies. However, the hybridization results need not be 

partitioned by species-specific probes at all; it is also feasible to compare the entire 

hybridization signals to represent the “total” community gene content or expression, 

with the caution that the “total” is limited to genes that are already on the array. This 
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information could be leveraged to gain a better understanding of community 

function as well as generate hypotheses to test in additional experiments. 

There are nonetheless some important caveats to using the VChip for certain

applications. The first is that VChip is not recommended for quantifying the relative 

abundance of species in a community. VChip may be informative for semi-

quantitative and predictive purposes, but high-throughput sequencing of 16S rRNA 

amplicons or quantitative PCR methods are better suited for characterizing species 

abundance. A second caveat is that the VChip is not intended to be a direct 

replacement for shotgun sequencing of metagenomes and metatranscriptomes if 

the goal is to characterize total genomic content or gene expression. As with all 

microarrays, the VChip can only detect genes that are highly similar to what is 

represented on the array (although fortunately, the VChip targets a majority of 

known bacterial species found in the vagina to date). A final caveat is that the three-

plex 4.2 million probe glass slide custom array format is no longer manufactured by 

Roche NimbleGen (Madison, WI, USA). However, future iterations of the VChip 

could be reproduced on alternative microarray platforms, and we have provided the 

necessary probe design files and additional information (Supplementary Tables S2, 

S3 and S6) to enable other investigators to reconstruct the array or a portion of it, 

depending on the platform of choice and intended application.

 In summary, we have demonstrated that the VChip produces similar overall 

patterns of species presence as 16S rRNA amplicon pyrosequencing and Illumina 

shotgun sequencing, and in fact it may be better suited at detecting genetic material

from low-abundance bacteria that might be missed with shallow depth of sampling 

or sequencing. We have shown the VChip is suitable for exploratory analysis of 

vaginal microbiota and that it could be particularly useful as a screening tool to 

characterize and select samples of interest to study in greater detail with more 

comprehensive sequencing methods. Additionally, it can be used in the same way 

as traditional microarrays to evaluate differences in gene expression of vaginal 

microbial communities among samples. Alternatively, the VChip could be used as a 

diagnostic tool in clinical settings if certain gene expression patterns (either from the

microbiota or host immune system) were shown to be associated with specific 
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conditions of interest. We conclude the VChip has potential to become a versatile 

research tool that could be adapted for a variety of applications.

Figures

Figure 2.1. Daily temporal dynamics of vaginal bacterial communities in two women
over 10 weeks. 
The vaginal microbiota of subject 1 is shown in (A) and subject 2 in (B). The relative
abundances of phylotypes in each community are depicted as interpolated bar plots
(top panel). Beneath these are profiles of Nugent scores (range 0-10) and vaginal 
pH (range 4-7). Occurrence of menses (red dots), vaginal intercourse (blue inverted
triangles) and vaginal symptoms (pink open circles) are indicated in the bottom 
panel, with samples selected for VChip analysis indicated directly below.
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Figure 2.2. Comparison of VChip-derived species composition of mock 
communities to expected proportions of species’ genome equivalent copies. 
Nine mock communities were constructed from genomic DNA as indicated in Table 
1, and the proportions of DNA were converted to proportions of expected genome 
equivalent copies per species. The left bar in each plot indicates the expected 
proportions of genome equivalent copies per species in the mock community, and 
the right bar indicates the observed proportions of normalized hybridization signal 
attributed to each species on the VChip. The header of each subplot indicates the 
mock community label (MC-1 through MC-9) along with the Pearson correlation 
coefficient between observed and expected values for each sample. Species are 
indicated in the legend to the right of the plots. In addition to the six bacterial 
species and human, the ‘other’ category encompasses very low relative proportions 
(typically <1%) of signal across many species and is indistinguishable from levels of
residual background noise.
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Figure 2.3. Comparison of species relative abundance in vaginal swabs detected 
by VChip and 16S rRNA V1-V2 pyrosequencing. 
DNA hybridizations of three vaginal swab samples (sample VM-1, orange; VM-2, 
teal; VM-3, blue) were analyzed on the VChip. Hybridization signals were 
normalized and converted to relative abundances per species (y-axis) and 
compared to relative abundance data determined from V1-V2 16S rRNA 
pyrosequencing (x-axis). The data are plotted on a log10 scale to clearly separate 
out low relative abundance species. The top 15 most abundant of 42 species with 
exact name matches between the VChip taxa and pyrosequencing dataset are 
plotted as indicated in the legend to the right of the graph. Pearson correlation 
coefficients based on all 42 species are 1.00 for VM-1, 0.53 for VM-2 and 0.85 for 
VM-3.
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Figure 2.4. Changes in gene expression in subject 2. 
The number of species-specific gene clusters with >2 log2-fold differences (in 
magnitude) in normalized cDNA hybridization signal between samples VM-2 and 
VM-3 are indicated on the y-axis. The coloring of each bar represents the average 
log2 fold-change difference in hybridization of species-specific probe sets in VM-3 
relative to VM-2. The bars are colored on a continuous scale ranging from red 
(greatest average negative change) to yellow (zero average change) to green 
(greatest average positive change).
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Tables

Table 2.1. Composition of mock communities tested on the VChip microarray. 
In order to compare VChip-derived community composition with expected proportions, 
proportions of genomic DNA were converted to proportions of expected genome copy 
equivalents based on individual species' genome sizes.

Table 2.2. Pearson correlation coefficients for VChip vs. in silico mapping of 
Illumina RNA-Seq reads against probe sequences.

Mock community MC-1 MC-2 MC-3 MC-4 MC-5 MC-6 MC-7 MC-8 MC-9

Species

- - - -

- - - -

- - - -

- - - -

- - - -

-

- - - -

Proportion of genomic DNA
(proportion of expected genome copy equivalentsa)

Anaerococcus hydrogenalis
(vaginal swab isolate)

0.200
(0.183)

0.100
(0.096)

0.010
(0.010)

0.010
(0.096)

0.001
(0.018)

Anaerococcus tetradius 
(vaginal swab isolate)

0.200
(0.165)

0.100
(0.087)

0.010
(0.009)

0.010
(0.087)

0.001
(0.016)

Atopobium vaginae
ATCC BAA-55

0.200
(0.246)

0.100
(0.130)

0.010
(0.014)

0.010
(0.129)

0.001
(0.024)

Finegoldia magna
(vaginal swab isolate)

0.200
(0.184)

0.100
(0.097)

0.010
(0.010)

0.010
(0.096)

0.001
(0.018)

Gardnerella vaginalis
ATCC 14018

0.200
(0.222)

0.100
(0.117)

0.010
(0.012)

0.010
(0.116)

0.001
(0.022)

Lactobacillus crispatus
ATCC 33820

0.500
(0.473)

0.950
(0.945)

0.050
(0.470)

0.050
(0.889)

0.050
(0.987)

0.010
(0.937)

1.000
(1.000)

Homo sapiens
(female genomic DNA)

0.900
(0.006)

0.945
(0.011)

0.950
(0.013)

0.990
(0.063)

1.000
(1.000)

VM-1 cDNA VM-1 reads VM-2 cDNA VM-2 reads

VM-1 cDNA 1.00 0.71 0.37 0.31
VM-1 reads 0.75 1.00 0.33 0.53
VM-2 cDNA 0.36 0.31 1.00 0.79
VM-2 reads 0.20 0.25 0.77 1.00

Genus (upper diag.) / 
Species (lower)
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Chapter 3

ARC: Assembly by Reduced Complexity

Abstract

High throughput sequencing (HTS) technologies produce millions of short 

reads. Analysis of these reads is a difficult problem, especially in the context of non-

model organisms where comparison of homologous sequences may be frustrated 

by the lack of a reference genome. Current read mapping based methods rely on 

the availability of a highly similar reference sequence while de novo assembly may 

be slow or intractable for large datasets. To partly overcome these problems I 

developed Assembly by Reduced Complexity (ARC), a software package for 

targeted assembly of homologous sequences. The algorithm consists of three 

steps. 1) Reads are mapped against a set of targets; 2) reads are then split into 

subsets based on the mapping results, and  3) assemblies are carried out for each 

target. This process is iterated using the newly assembled set of reads as mapping 

targets for the next iteration. ARC is implemented in Python and supports the 

Bowtie2 and BLAT mappers as well as the Roche/Newbler and Spades assemblers.

We show that ARC works effectively with divergent references, functions well with 

short ancient DNA reads, and compares favorably to de novo assembly in CPU and 

memory requirements.
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Introduction

High-throughput sequencing (HTS) techniques have become a standard 

method for producing genomic and transcriptomic knowledge about an organism 

[1]. Most currently available high-throughput sequencing platforms produce millions 

of short sequences referred to “reads” that range in length from 50 to 700 base 

pairs (bp) depending on the sequencing chemistry and platform. These short reads 

are typically produced at random from the much larger genome making them 

effectively meaningless without further analysis. Thus, the primary challenge in the 

analysis of HTS data is to organize and summarized the massive number of short 

sequences into a simpler form that provides insight into the underlying biology. Two 

analysis strategies, de novo sequence assembly, and sequence mapping have 

been widely adopted to achieve this end. 

The objective of de novo assembly is to piece together short read sequences

to form longer sequences known as contigs. Sequence assembly is a difficult 

problem, that is made more difficult by repeated elements in the genome, 

heterozygosity, short reads, and sequence read errors [2]. Additionally, assembly 

algorithms are computationally intensive for all but the smallest datasets, thus 

limiting their application [3]. Finally, de novo assembly of large datasets typically 

produces multiple contigs that can require significant additional organization and 

analysis. Despite many advances and a large selection of assembly software 

packages, fragmentation and missassembly are common problems and improving 

the quality of de novo sequence assemblies continues to be an area of active 

research [4]. 

Sequence mapping is often the first step carried out in resequencing projects

where a good reference sequence exists. The objective of mapping is to properly 

align short reads against the much longer reference sequence, thereby permitting 

comparisons between a sequenced sample and the reference. This approach is 

much faster than sequence assembly and it has proven to be very effective at 

identifying variants at a large scale [5]. Unfortunately successful read mapping  is 

entirely dependent on a reference sequence that is very similar at all loci to the 

reads being mapped. Differences between a sample and reference sequence such 
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as structural variations (SVs), novel sequences, an incomplete or misassembled 

reference, or sequence divergence all result in unmapped or poorly mapped reads. 

Poor quality mapping can result in false variant calls [6] and in the context of RNA-

seq experiments unmapped reads result in counting errors that make detection of 

differentially expressed genes more error prone [7]. In short, resequencing projects 

are done to identify differences between a sample and an established reference, 

however the regions that are most divergent are also the most difficult to map reads

against. Because of this, mapping based approaches are inherently biased by the 

reference used and only provide reliable results when divergence is below the 

threshold at which reads can be mapped accurately.

The two approaches described above (mapping and de novo assembly) have

primarily been developed and optimized for whole-genome analysis, however 

another class of problems exists in which specific regions of  a genome or subsets 

of the sequenced DNA are analyzed. This type of analysis is appropriate in many 

instances, including sequence capture, viral genome assembly from environmental 

samples, RNA-seq, mitochondrial or cholorplast genome assembly, metagenomics, 

and many more. In cases like these, it is often necessary to develop custom 

pipelines to carry out analysis as in the work of Gilbert et al. [8].

In an attempt to address these issues we introduce a hybrid strategy, 

Assembly by Reduced Complexity (ARC) that combines the strengths of mapping 

and de novo assembly approaches while minimizing their weaknesses. This 

approach is designed for the myriad of situations in which the assembly of entire 

genomes or datasets is not the primary objective, but instead the assembly of 

several discreet, relatively small, targets such as mitochondrial genome sequences 

is required. ARC is an iterative algorithm that uses an initial set of reference 

sequences (targets) to seed de novo assemblies. Reads are first mapped against 

these targets, and then the mapped reads are pooled and assembled in parallel on 

a per-target basis to form contigs. These assembled contigs then serve as 

reference sequences for the next iteration (see Figure 1). This method breaks the 

assembly problem down into multiple, small problems, thereby addressing the poor 

scaling issue inherent in some de novo assembly methods caused by large 
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numbers of reads.  It also reduces the reference bias inherent in mapping by 

including a de novo assembly component.

Methods

The ARC algorithm proceeds through a number of stages described below.

Initialization

During the initialization stage a configuration file is processed and a number 

of checks are carried out to ensure that data and executables specified in the 

configuration file are available. If any of these checks fail, ARC will report an 

informative error message providing details about the problem and then exit. If all 

checks pass successfully the initialization process continues to the next stage in 

which internal data structures are created to store information about the experiment 

and pipeline progress. Working directories and index files are also created for each 

sample, and names that are file-system safe are assigned to each target sequence. 

Finally the job queue, workers, and job management system is started, and 

mapping jobs are added to the job queue for each sample. With setup complete, 

ARC begins the iterative part of the pipeline. This algorithm consists of four steps: 

mapping, splitting, assembling, and finishing. This work flow is diagrammed in 

Figure 1 and the ARC process of assembling reads is illustrated in Figure 2.

Mapping: reads are recruited by mapping against a set of reference targets

In the first step, ARC recruits reads by mapping them against a set of 

reference targets using one of the two supported mappers, BLAT [9] or Bowtie 2 

[10] as specified in the configuration file. During all further iterations, the mapping 

reference consists of contigs assembled from previously recruited reads that must 

be highly similar to newly recruited reads. 

BLAT is a fast, seed-and-extend sequence alignment tool that supports 

gapped alignments and has proven effective at recruiting reads even in cases 

where global sequence identity is as low as 70%. In the first iteration, BLAT is run 

using default parameters (minIdentity=90, minScore=30) but on all subsequent 

iterations mapping stringency is increased (minIdentity=98, minScore=40) to reduce
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recruitment of  less similar reads. BLAT reports all alignments that meet the 

minimum score criteria, so it is possible to use the same read multiple times if it 

aligns successfully against more than one target. One serious drawback of using 

BLAT is that it does not support the fastq format. All current sequencing platforms 

produce quality information for reads and this information is typically encoded in 

fastq format, making this limitation of BLAT a significant problem for HTS data. To 

facilitate usage of ARC with fastq format data we include a code patch for BLAT that

adds support for fastq. Instructions for applying this patch can be found in the 

supplementary material.

Bowtie 2 is another fast, gapped, read aligner that was specifically designed 

for mapping HTS reads [10].  Bowtie 2 is run in local alignment mode (--local option)

which enables the recruitment of reads that partially map at the end of contigs and 

in low-homology regions. Additionally, the option to report up to five valid alignments

(-k 5) is used by default. This setting can be modified based on the user's 

expectations by setting the bowtie2_k parameter in the ARC configuration file. 

Setting bowtie2_k=1 will cause Bowtie 2 to run in default mode where only the best 

alignment found is reported.

Splitting: reads are split into subsets based on mapping results

In the second step ARC splits reads into subsets using mapping results. The 

supported mappers, BLAT and Bowtie 2 generate PSL or SAM [11] formatted output

files, respectively. The output file is processed by ARC and reads are then split by 

mapping target. This is accomplished by creating a set of output files corresponding

to each target. Reads which mapped to that target are then written to their 

respective files, making it possible to process each set of reads independently from 

the others. Splitting requires fast random access to the read files, and this is 

facilitated by storing read offset values in a SQLite database as implemented in the 

Biopython SeqIO module [12]. Two special considerations are taken into account 

during splitting. First, since the Newbler assembler has no mechanism to indicated 

paired reads it is necessary to reformat the read identifier to ensure compatibility 

with Newbler paired-end detection. This is done by ensuring that the read identifier 
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is made up of five fields separated by a colon, and ending in a sixth field indicating 

the pair number. Identifiers for single end reads are similarly reformatted, except 

that the sixth field which indicates pair number is left blank. Secondly, regardless of 

whether one or both ends of paired reads map to a target,  both members of the 

pair are recruited as long as at least one of them was mapped. Recruiting paired 

reads in this way takes advantage of the information stored in paired reads, and 

allows for faster extension of targets.

Despite using a fast strategy for randomly accessing the read files splitting is 

limited by system input/output latency and to using a single CPU core per sample. 

To optimize CPU use on modern multi-core systems, ARC immediately adds an 

assembly job to the job queue as soon as all reads for a target have been split. This

allows assemblies to proceed concurrently with the read splitting process. 

Assembling: subsets of reads are assembled using either the Spades or Newbler 

assemblers

Because the read splitting process is carried out sequentially across mapping

targets, an assembly  job can be launched as soon as all reads for a target have 

been written.  As soon as resources are available, the assembly job is started, 

allowing ARC to run the read splitting and assembly processes concurrently. Two 

assemblers are supported the Roche GS de novo Assembler (also known as 

Newbler) [13], and SPAdes [14]. Assemblies within ARC are always run with a 

timeout in order to gracefully handle the rare cases where the assembler crashes, 

does not exit properly, or takes longer than expected to run. This allows ARC to 

continue running efficiently on large projects where a small number of targets might 

otherwise be problematic (i.e. due to recruiting reads from repetitive elements). The 

timeout value can be controlled using the assemblytimeout setting in the 

configuration file. 

Newbler was originally designed to assemble reads generated by the 454 

pyrosequencing platform [13] but recent versions  have added support for Illumina 

PE reads. ARC supports two Newbler specific parameters that can sometimes 

improve performance. These can be set using urt=True which instructs Newbler to 
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“use read tips” in assemblies, and rip=True, which instructs Newbler to place reads 

in only one contig. We have found that setting urt=True can reduce the number of 

ARC iterations necessary to assemble a target.

 The SPAdes [14] assembler is also supported by ARC. SPAdes is an easy to 

use De Bruijn graph assembler that performed quite well in a recent evaluation of 

bacterial genome assemblers [15]. SPAdes tends to perform well in the ARC 

pipeline, but surprisingly is not as fast as Newbler for small read sets. This may 

partly be because SPAdes implements a number of steps in an attempt at improving

the often fragmented De Bruijn graph assembly results. These steps include read 

error correction, multiple assemblies using different k-mer sizes, and merging of 

these assemblies. In ARC, SPAdes is run using the default parameters.

In some cases the available reference targets may be so divergent from the 

sequenced specimen that only a small number of reads can be recruited on the first 

iteration.  If too few reads are recruited, the assemblers have very little data to work 

with, and, especially in the case of SPAdes, often fail to assemble contigs. In an 

attempt to address this situation, we provide a final pseudo-assembly option that 

skips assembly on the first iteration, and instead treats the recruited reads as 

contigs. These reads are then used as mapping targets in the second iteration.  

This option can be enabled by setting map_against_reads=True in the configuration

file. Although we have had some success with this strategy, its success varies 

across datasets and targets. In some cases using reads as mapping targets results 

in recruiting large numbers of reads from repeat regions, causing the assembly to 

fail. For this reason we only recommend using this approach after testing ARC with 

normal settings.

Finishing: assembled contigs are written as a new set of mapping targets or to 

finished output 

Once all assemblies are completed for a given sample, the final step in the 

ARC pipeline is initiated. During this step each target is evaluated and if stopping 

conditions are met then the contigs are written to the final output file and if not the 

contigs are written to a temporary file where they are used to recruit reads in the 
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next iteration (see the following section Folder structure: outputs and logging for 

details). Stopping conditions are defined as followed: 1) Detection that an assembly 

was killed will result in no further attempts at assembling this target, instead any 

contigs produced on the previous iteration will be written to the output file. 2) If no 

additional reads have been recruited since the previous iteration then no further 

extension of the target is possible. 3) Occasionally a target will be flanked by 

repeated sequence in the genome that can cause a sudden spike in the number of 

recruited reads. The max_incorporation parameter controls sensitivity to this 

situation and by default it will be triggered if five times the previous number of reads 

are incorporated. 

During output, contig identifiers are modified to reflect the sample, target, and

contig number. Contigs are also masked for simple tandem repeats using an 

approach that relies on frequency of trinucleotides in a sliding window. The repeats 

are masked by setting them to lower case, or by modifying the repeat sequence to 

the letter 'N' depending on whether the BLAT or Bowtie 2 mapper is used. 

Additionally, for all contigs that are written to the final output file, all reads that were 

mapped in the final iteration are also written, however their description field is 

modified to reflect which target they belong to.

If, after all targets have been processed, any remain unfinished, the 

processes is  reiterated using the newly assembled contigs as mapping targets. 

Description of input files

 Inputs to ARC consist of three types of files: a) a file containing reference 

sequences (referred to here as “targets”), b) files containing reads for each sample, 

and c) a configuration file.

a) The targets file contains each of the distinct sequences that are used as 

mapping references in the first iteration of ARC. These sequences must be in 

standard fasta format and should have informative, unique names. It is possible to 

use multiple sequences as a single target in cases where a number of homologous 

targets are available and it is not clear which of them is the most similar to the 

sequenced sample (e.g. in the case of ancient DNA extracted from unidentified 
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bone material). This can be accomplished by naming the targets using ARC's 

internal naming scheme in which each contig is labeled using an identifier made of 

three parts separated by “_:_” (e.g.  P1_:_P2_:_P3). During read splitting, ARC will 

treat all target sequences which have an identical value in P2 as a single target. 

b) Each biological sample can be represented by at most three read 

containing files; two paired end (PE) files, and one single end (SE) file. ARC will 

function with one SE file, a PE set of files, or all three files. If multiple sets of reads 

are available for a single biological sample (i.e. from different sequencing runs or 

technologies) they should be combined into at most three files. All reads for all 

samples must be in the same format (fasta or fastq) and this format should be 

indicated by the format parameter in the ARC configuration file. It is highly 

recommended that reads be cleaned to remove adapter sequences and low quality 

bases prior to analysis. Removing duplicate reads and trimming low-quality regions 

has also been observed to produce higher quality, less fragmented ARC 

assemblies, especially with capture data (data not shown). 

c) The final input to ARC is the configuration file. This plain text file describes

the data and sets various parameters that ARC will use during assembly, mapping, 

and output stages. By default the configuration file should be named 

ARC_config.txt, but any name can be used as long as the -c filename switch is 

passed to ARC. The configuration file is split into three types of entries, denoted by 

the first characters in the line. Lines starting with the characters “##” are treated as 

comments and ignored, lines starting with “#” are used to set parameters, and lines 

that don't begin with “#” indicate files belonging to samples. The one exception to 

this rule is the column header line, the first line which doesn't begin with “#”, and 

contains column names. This line is ignored by ARC, but is expected in the 

configuration file. An example of an ARC configuration file is included in the 

“test_data” folder that comes with ARC and an example listing of this file is included 

in the Supplementary Material. A comprehensive list of configuration options are 

presented in Table S1 of the Supplementary Material.

Folder Structure Outputs and Logging

To minimize memory usage and interact with assembler and mapper 
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programs, ARC relies heavily on temporary files. These files are organized into 

subdirectories under the path from which ARC is launched. During ARC processing 

a pair of folders is created for each sample. These folders have the prefixes 

“working_” and “finished_”. Temporary files used during ARC processing are stored 

in the “working_” folders while results and statistics are recorded to the “finished_” 

folders. 

Although the “working_” folders contain temporary files and can be safely 

deleted after an ARC run, they contain information that can be useful in some 

cases, especially for debugging. In particular, the contigs assembled during each 

iteration are stored in a set of files with file names “I00N_contigs.fasta” (where “N” 

corresponds to the iteration). Also potentially useful are the “t__0000N” directories 

(where “N” corresponds to the numeric index of the target) that contain the final 

assembly log and files generated by the assembler. These files can be informative 

in determining why an assembly failed or for examining assembly statistics of a 

particular target in more depth. Additionally, these folders provide the option of 

manually re-running an assembly with a different set of parameters than those 

chosen for ARC.

The “finished_” folders contain the following files: contigs.fasta, 

mapping_stats.tsv, PE1.fasta, PE2.fasta, SE.fastq. The contigs.fasta file stores the 

final set of assembled contigs for each target. Contigs are named according to the 

three part naming scheme previously described, sample_:_target_:_contig, to 

facilitate easy comparisons between samples. The mapping_stats.tsv file is a tab-

separated values file that stores information on the number of reads mapped to 

each target at each iteration. This file can be easily loaded into a spreadsheet, or 

statistical program such as R to generate plots or do other analysis. The final set of 

files, PE1.fasta, PE2.fasta, and SE.fasta contain all reads that were mapped on the 

final ARC iteration. If only pair-end or single-end files were provided then only reads

of this type will be reported. These files will be formatted in the same way as the 

input files (fasta or fastq) and have modified description fields to indicate the sample

and target to which they were mapped.
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Datasets used for testing 

ARC was tested using two datasets. The first dataset is made up of 

sequenced reads from two different exon capture experiments using samples 

collected from chipmunks (Tamias sp.). This combined dataset consists represents 

55 specimens, 3 of which were sequenced as part of [16] while the other 52 were 

sequenced as part of a separate study (Sarver et al. in prep). The second dataset 

consists of sequenced reads from a whole-genome shotgun sequencing experiment

using ancient DNA extracted from a mammoth hair shaft sample.

The chipmunk dataset was used to investigate ARC's sensitivity to divergent 

references as well as its utility and performance with large datasets. For all 55 

specimens, libraries were captured using an Agilent SureSelect custom 1M-feature 

microarray capture platform that contains 13,000 capture probes representing the 

mitochondrial genome and 9716 genes (designed by [16]). Libraries were then 

sequenced on the Illumina HiSeq 2000 platform (100bp paired end). The 55 

chipmunks represent seven different species within the genus Tamias with 

representatives of T. canipes: 5, T. cinereicollis: 9, T. dorsalis: 12, T. quadrivittatus: 

1, T. rufus: 5, and T. umbrinus: 10, collected and sequenced as part of (Sarver et al.

in prep) and T. striatus: 3 collected and sequenced by [16]. Reads from the T. 

striatus samples were obtained from Dr. Jeffrey M. Good (personal communication).

Prior to ARC analysis, reads were preprocessed through a read cleaning 

pipeline consisting of the following steps. In the first step, PCR duplicates (duplicate

reads resulting from multi-cycle PCR reactions carried out as part of library 

preparation) were removed using a custom Python script. Sequences were then 

cleaned to remove sequencing adapters and low quality bases using the software 

package Seqyclean (Zhbannikov et al. manuscript in prep, 

https://bitbucket.org/izhbannikov/seqyclean). Finally, because paired-end 

sequencing produces two reads sequenced from either end of a single template, it 

is often possible to overlap these reads to form a single long read representing the 

template in its entirety. This overlapping was carried out using the Flash software 

package [17].  Post-cleaning, the dataset consisted of 21.9 Gbp (giga base pairs) in 
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194,597,935 reads. 

ARC analysis for the first dataset was carried out using two different sets of 

references. To determine how well ARC could perform with divergent references, 

the mitochondrial genome of each specimen was assembled against eleven 

different mitochondrial references (see Table 1). We also tested ARC's performance

with a large number of targets by using a target set consisting of a manually 

assembled Tamias canipes mitochondrial sequence plus 11,976 exon sequences 

making up 7,627 genes. These sequences represent a subset of the 9716 genes 

that the capture probes were originally designed against.

A second dataset was used to test ARC's performance on short, poor quality 

reads that are typical of ancient DNA sequencing projects. Total DNA was extracted 

from ancient hair shafts and reads were sequenced on the Roche 454 platform by 

[8]. Although these reads represent shotgun sequencing of the nuclear and 

mitochondrial genomes, the authors report a high concentration of mitochondria in 

hair shaft samples resulting in high levels of mitochondrial DNA as compared to 

nuclear DNA. Sequenced reads for Mammuthus primigenius specimen M1 were 

obtained from the Short Read Archive using accession SRX001889 

(http://www.ncbi.nlm.nih.gov/sra/?term=SRX001889) and cleaned with SeqyClean 

(Zhbannikov et al. manuscript in prep, https://bitbucket.org/izhbannikov/seqyclean) 

to remove sequencing adapters and low quality bases. Following cleaning, this 

dataset contains a total of 19 Mbp (Mega base pairs) in 221,688 reads with an 

average length of 86.2 bp. Although these reads were sequenced on the Roche 454

platform which typically produces much longer reads (500-700bp), 75% of cleaned 

reads were 101 bp or less in length making them extremely short for this platform. 

ARC analysis was carried out using three mitochondrial references, the published 

Mammuthus primigenius sequence from another specimen, M13, Asian elephant 

(Elephas maximus) the closest extant relative of the mammoth [18], and a divergent

reference, mouse (Mus musculus) (accessions: EU153445, AJ428946, NC_005089 

respectively).
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Results

ARC is open source software implemented in the Python programming 

language with source code available for download from GitHub 

(https://github.com/ibest/ARC). ARC can be installed on most Linux servers, but will 

also work on many desktops or laptops provided that Linux and other requirements 

are installed. The installed size is only 3 Mb and system administrator access is not 

required making it easy to download and test. Configuration is done via a plain text 

file that can be distributed to make replication of results simple. Prerequisite 

software (Python 2.7.x, Biopython [12], BLAT [9] or Bowtie 2 [10] and Newbler [13] 

or SPAdes [14]) is easy to obtain, and may already be available on systems 

previously used for HTS analysis.

ARC was tested using the two datasets described in the Methods section. 

Tests were done to determine how well ARC performs when a divergent reference 

was used, whether it was effective in assembling sequences from short, poor quality

reads produced from ancient DNA, and to measure its performance on a large 

dataset. The results of these tests are presented below.

ARC performs well even with divergent references

A divergent reference sequence can result in unmapped and poorly aligned 

reads when using mapping based approaches [3]. To test how robust ARC was to 

divergent reference sequences we assembled mitochondrial genomes using reads 

from sequence capture experiments performed on 55 chimpmunk specimens 

representing seven different species within the Tamias genus (T. canipes, T. 

cinereicollis, T. dorsalis, T. quadrivittatus, T. rufus, T. umbrinus, and T. striatus). 

Assembly was done using a set of mitochondrial references spanning mammalia 

with differences in percent identity ranging from 71% to 94.9% with respect to 

Tamias cinereicollis (see Table 2).

Reference bias in the ARC result was assessed by considering how similar 

the set of recruited reads was across targets (similar is defined here as the 

difference between recruited reads and median recruited reads being less than 100 

reads). Detailed read counts are presented in Table S2 and summarized in Table 1. 
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For the majority of specimens (32 of 55) all targets recruited a similar number of 

reads. In 21 of the 55 cases, most targets recruited a similar number of reads, but 

one or more recruited a different number. In six of these cases, the Tasmanian devil 

reference caused incorporation of a large number of reads leading to assembly 

timeout, however in each of these cases the same core set of reads was 

incorporated even by the Tasmanian devil reference. Finally, in two specimens (S10

and S228) a large number of reads were recruited, causing ARC to terminate 

assemblies for all targets. Through further analysis of the contigs produced midway 

we found that these two samples contained an abundance of mitochondrial reads, 

with coverage depths >2000x in some cases.

To further characterize ARC's performance on a divergent set of references, 

we selected sample S152 (a Tamias cinereicollis specimen) for a more detailed 

analysis. As shown in Table 1, the number of ARC iterations required to complete 

the assembly of the mitochondrial genome for this specimen ranged from 3 to 16. 

This number is negatively correlated with the percent identity between the targets 

and the sequence for this specimen (Pearson correlation = -0.742). The relationship

between target and read recruitment is further illustrated in Figure 3 which shows 

that the most similar target, the Gray-footed chipmunk (T. canipes), recruited almost

the full set of reads (98.3%) in the first iteration and finished on the third iteration. At 

the other extreme, Platypus recruited a mere 6% of reads (2,305 of 38,388) on the 

first iteration, but after 15 iterations acquires the full set of reads.

ARC assembled a single contig for all 11 targets, however the contig lengths 

differed slightly between two groups of targets: Gray-footed chipmunk, Red squirrel,

and House mouse targets produced identical 16,726 bp contigs, all others produced

identical 16,730 bp contigs. A combination of pairwise alignments and dot-plots 

(data not shown) indicate that these differences are due to the way in which this 

circular sequence was linearized. The 16,726 bp contig has a 178 bp overlap 

between the beginning and end of the contig, while the 16,730 bp contig has a 182 

bp overlap. 
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ARC assembles large contigs from short, poor quality reads produced from ancient 

DNA

Methods that permit investigators to extract DNA from samples that are as 

much as 50,000 years old and prepare libraries for HTS have been developed [8, 

18, 19]. The DNA from these ancient samples tends to be partially degraded 

resulting in short, poor quality reads [19]. As illustrated in Figure 1, ARC relies on an

iterative process to extend assemblies into gaps. These gaps are filled by recruiting 

reads with partial, overhanging alignments at the edge of a contig. To test whether 

ARC can be used effectively with short, single-end reads produced from ancient 

samples, we attempted to assemble the mammoth (Mammuthus primigenius) 

mitochondrial genome using reads sequenced by Gilbert et al. [8] from DNA 

collected from hair samples.

Sequenced reads were obtained for Mammuthus primigenius specimen M1 

from the Short Read Archive (accession: SRX001889) and processed as explained 

in the Methods section. ARC analysis was done using three mitochondrial 

references, the published sequence from Mammuthus primigenius specimen M13, 

Asian elephant (Elephas maximus) the closest extant relative of the mammoth [18], 

and a more divergent reference, mouse (Mus musculus) (accessions: EU153445, 

AJ428946, NC_005089 respectively).

ARC results were assessed by alignment against the published Mammuthus 

primigenius M1 sequence (EU153444) that is 16,458bp in length. Results of this 

comparison are presented in Table 3. Percent coverage (> 99%) and identity (> 

98%) was high for the mammoth and elephant references. The mouse reference 

resulted in a slightly smaller assembly (total length 15,781bp), however coverage 

(95.9%) and identity (99.4%) were still very good. Surprisingly, the mouse reference

required 78 ARC iterations to build this final set of contigs, recruiting only 223 reads 

on the first iteration. Despite starting from such a small number of reads, by the 78 th 

iteration a total of 4507 reads had been recruited, almost the same number as the 

other much less divergent references.

All assembled contigs could be aligned to the published reference sequence,

however we noted that the assembled lengths (16,620 and 16,603 bp for mammoth 
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and elephant respectively) were longer than the published sequence length of 

16,458 bp. Also intriguing were two contigs from both the mammoth and elephant 

references that were forced to overlap when aligned against the publish M1 

sequence. This overlapping region showed much lower percent identity in the 

alignment than the rest of the aligned contig. To investigate whether this was due to 

a poor quality assembly on the part of ARC, or an error in the published sequence, 

we aligned the ARC contigs produced from the mammoth reference against the 

published Asian elephant sequence (Figure 4). This alignment showed that a 

number of gaps existed in the ARC assembly as compared to the published contigs.

Each of these gaps was associated with a homopolymer (consecutive identical 

bases, i.e. AAA), that are known to cause errors with pyrosequencing technology. 

More interesting was that the D-loop region of the published Mammuthus 

primigenius M1 sequence contains 10 'N' characters (indicated by an “N” annotation

in the figure) followed by a 370bp gap when aligned against the Asian elephant 

reference. ARC assembles 220bp of this sequence, including sequence that 

crosses the unknown, “N” bases in the published sequence. These assembled 

bases align with high identity against the Asian elephant reference suggesting that 

they represent an accurate assembly of this locus and that the published M1 

mitochondrial sequence may be missing sequence or be misassembled in this 

region.

ARC computational requirements for large datasets

 To be useful for modern genomic experiments ARC must be able to process 

large datasets with multiple samples and thousands of targets. We benchmarked 

ARC's performance with the previously described chipmunk dataset that contains 

reads from 55 specimens representing sequence capture of 9,716 genes as well as 

the full mitochondrial genome. After stringent read cleaning to remove adapters, 

PCR duplicates, and overlapping paired end reads with short inserts, this dataset 

contained 21.9 Gbp in 194,597,935 reads. For comparison purposes we also did de

novo assemblies of three libraries with Newbler v2.6 (Table 4). ARC required 77 

hours 45 minutes to process this dataset, carrying out 1.3 million assemblies in total
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and using a maximum of 31.19 GB of memory. On average this equates to 1 hour 

25 minutes per sample. Individual assemblies for the three specimens were 

variable, requiring between 6.71 GB and 17.54 GB of memory, with running times of

between 31 minutes and 13 hours 27 minutes to complete. Although time and 

memory requirements are smaller for each individual assembly, the total 

requirement for 55 samples would most likely be much higher than the time required

by ARC to process all samples. Additionally, the set of contigs resulting from each 

individual assembly have no annotation, requiring significant additional analysis 

before homologous sequences could be compared between samples. In contrast 

the results from ARC are annotated by target, making comparisons an easy next 

step (see Methods).

Since ARC breaks the assembly problem down into small pieces, we 

postulated that memory requirements would scale as a function of the number of 

CPUs used to do ARC assemblies rather than as a function of the number of total 

reads as is normally the case with sequence assembly [2]. To test this we 

performed nine ARC runs using between 10 and 50 CPU cores with the 55 

specimen chipmunk dataset. Instead of the full set of targets we used a subset of 

200 when running this experiment so that it could be completed in a reasonable 

amount of time. During each assembly we recorded maximum memory usage. The 

results showed a linear increase in memory usage as the number of cores is 

increased. A linear model was fit to this data resulting in an estimated slope of 0.07 

GB per CPU core (P < .005, R2 = 0.96). It is important to note that even though this 

dataset contained 21.9 Gbp of reads, analysis using a small number of CPU cores 

and a reduced dataset required less than 3 GB of RAM, making it possible to use 

ARC to analyze large datasets on a modern desktop computer.

Discussion

Here we have introduced ARC, a software package that facilitates targeted 

assembly of HTS data. This software is designed for use in situations where 

assembly of several discreet and relatively small targets is required and (potentially 

divergent) homologous reference sequences are available for seeding these 
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assemblies. ARC fills the gap between fast, mapping based strategies that can fail 

to map reads properly at divergent loci, and de novo assembly strategies that can 

be slow, resource intensive, and require significant additional analysis after 

assembly is completed. ARC was evaluated in three ways: 1) determine whether 

ARC results were biased by divergence of the reference 2) effectiveness of ARC on 

short, low quality reads 3) characterize performance on a typical HTS dataset with 

thousands of targets.

Assemblies using a divergent set of references with chipmunk specimens, 

show that ARC does not require a close reference to produce high quality final 

contigs. Figure 2 illustrates that on the initial iteration, ARC was able to map only a 

tiny fraction of the mitochondrial reads to all but the closely related Gray-footed 

chipmunk reference, yet was able to recover the full set of reads after 15 iterations 

with the platypus reference. This small set of reads represents the total number of 

reads that would have been recruited in traditional mapping and illustrates how 

sensitive read mapping is to high levels of divergence. A similar pattern emerged 

when we used a mouse reference to seed assembly of a mammoth mitochondrial 

genome. A mere 223 reads mapped on the first iteration, but this was sufficient to 

seed assembly of an almost full-length sequence composed of 4507 reads. In all 

cases where assemblies were completed the resulting set of reads and contigs 

were identical or nearly so, providing strong evidence that ARC was able to 

assemble high quality, unbiased contigs using even very divergent references to 

seed initial read recruitment. This capability makes ARC a very useful tool when 

analyzing sequence data from non-model organisms or when the identity of a 

sample is in question.

Repetitive sequences and large numbers of reads increase memory usage 

and slow assembly [2]. Although ARC addresses this problem by breaking the full 

set of reads up into small subsets before assembly it can still encounter this 

problem with very high coverage libraries or when a target with repetitive sequences

recruits a large numbers of reads. For example, when testing ARC's ability to 

handle diverse mitochondrial references, assembly could not be completed for two 

specimens, S10 and S228. In the case of the S10 specimen the depth of sequence 
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coverage was ~1500x for the mitochondrial genome. This depth is not suited for the

Newbler assembler which performs pairwise comparisons of every read and works 

best when coverage is between 20 and 100x. In addition to high coverage analysis 

of the intermediate ARC results for these specimens showed that a repetitive 

element was assembled from reads recruited at an early iteration in both 

specimens. This element then led to recruitment of many more reads and the 

assembly of multiple short contigs at later iterations. These repetitive reads resulted

in very long assembly times and eventual timeouts. Although the iterative ARC 

process did not run to completion in these cases intermediate contigs were still 

reported. In the case of S228 a full length mitochondrial genome was reported for 7 

of the 11 targets, however a number of short non-mitochondrial contigs were also 

reported.  A similar situation occurred for the six specimens in which ARC could not 

finish analysis using the Tasmanian devil mitochondrial reference. Recruitment of a 

large number of additional reads for this reference may be due to a “GT” rich repeat 

that is not present in the other mitochondrial sequences.

Repetitive sequence is a well known problem in HTS sequence analysis [20].

ARC has a number of built in mechanisms to mitigate problems caused by these 

sequences, including a masking algorithm that inhibits recruitment of reads by 

simple tandem repeats, tracking of read recruitment patterns that skips assembly if 

an unexpectedly large number of reads is recruited between iterations, and an 

assembly timeout that terminates assemblies that run beyond a specified limit. In 

addition to these strategies there is also an option to down-sample recruited reads 

in cases of very high legitimate sequence depth. Down-sampling was not used in 

any of the tests described here but it may have improved results for samples such 

as S10 which had large numbers of reads. During testing and development we have

observed improved behavior with each of these measures and implementing them 

has allowed ARC to run quickly and efficiently on large datasets while minimizing 

the impact of repeat elements. However it is clear that in rare cases recruitment of 

repeat elements can still cause problems for single targets or samples.

We tested ARC's ability to assemble contigs with short, low quality reads 

recovered from ancient mammoth DNA and found that it did surprisingly well. The 
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mitochondrial genome assemblies appear to be as good or better than the 

assembly of these reads published by Gilbert et al. [8] despite using a divergent 

reference with ARC. Assembly of the M1 mammoth sequence by Gilbert et al. [8] 

was achieved through mapping against another mammoth mitochondrial sequence 

published by Krause et al. [21] that was generated with a laborious PCR based 

strategy. Because ancient DNA sequencing projects are often targeted at extinct 

organisms [19] rarely is there a high quality reference from the same species 

against which to map reads during analysis unless labor intensive methods are 

used. This makes ARC an excellent choice for this type of data where a target 

sequence from a related extant organism is likely to successfully seed assembly. 

Even in the case where no closely related organism exists, a more distant reference

may still be appropriate as was demonstrated by the assembly of two large contigs 

representing ~96% of the mammoth mitochondrial genome using a mouse 

reference. Lastly, ARC is that it can be configured to use multiple reference 

sequences as a single target. In cases where specimens cannot be identified ARC 

can still be used by selecting a set of homologous targets from phylogenetically 

diverse taxa to seed assembly.

Analysis of HTS data can be computationally intensive and time and memory

requirements can become a serious limitation, especially with larger datasets [22]. 

With ARC, we have attempted to reduce these requirements using a 'divide and 

conquer' approach that breaks large HTS datasets up into multiple small problems, 

each of which can be solved quickly and with reduced resources. This approach 

allows the user to control memory usage simply by changing the number of CPU 

cores available to ARC as shown in Figure 4. Less than 3 Gb of RAM was required 

when using 10 cores, despite processing a large dataset that would require many 

times this amount of memory to analyze using traditional assembly. Of course, 

using fewer CPUs comes with the cost of longer analysis time so ARC has been 

designed to utilize larger computational resources when they are available. 

It is useful to think of the DNA sequence mapping problem as a trade-off 

between sensitivity and specificity [23]. To avoid mapping reads to multiple loci 

throughout the reference, mapping parameters must be tuned for high specificity. 
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However, when divergent loci exist within the reference sequence then high 

specificity limits the sensitivity of the mapper and reads are left unmapped. 

Assembly on the other hand can be seen as mapping reads against themselves 

thereby removing difficulties associated with divergent reference loci, but incurring 

the burden of all-by-all comparisons which is significant in large datasets. ARC 

circumvents these problems by removing divergence from the reference through an 

iterative mapping and assembly process. As the intermediate reference is improved 

more reads can be recruited without sacrificing specificity, allowing both specificity 

and sensitivity to remain high. At the same time, because only a small subset of 

reads is assembled, the all-by-all comparisons remain less burdensome. This 

process is carried out in an automated, easily configured manner, with standardized

output that simplifies additional analysis, or integration into existing sequence 

analysis pipelines.
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Figures

Figure 3.1. ARC flowchart

The ARC algorithm consists of an initialization stage, followed by four steps
that are iterated until stopping conditions are met, at which point a final set 
of contigs and statistics are produced.
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Figure 3.2. Iterative assembly
ARC is an iterative process for assembling homologous sequences. In iteration 1, a 
small number of reads and unmapped pairs are recruited to the more highly conserved
regions of the divergent reference. These reads are assembled and the resulting 
contigs are used as mapping targets in the next iteration. This process is iterated until 
no more reads are recruited. Mapped reads are indicated in yellow, unmapped reads 
in orange. Paired reads are indicated with a connector. Both members of a pair are 
recruited if only one maps.
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Figure 3.3. Read recruitment
Reads recruited at each iteration colored by target for specimen S152. The Gray-
footed chipmunk target is the most similar and requires only 3 iterations to recruit the 
full set of reads. Other targets require more iterations, with Platypus requiring the 
most, however all arrive at the same set of reads.
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Figure 3.5. Memory usage 
Memory usage scales linearly as a function of the number of CPU cores.
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Tables

Table 3.1. Assembly results
Assembly of chimpmunk mitochondrial genomes using 
divergent references summarized by the number of targets 
that recruited similar sets of reads.

All targets produce essentially the same results 32
Difference of > 100 reads in one target 15
Difference of > 100 reads in two targets 5
Difference of > 100 reads in four targets 1
No targets completed 2

Number of
Specimens

Table 3.2. Divergent references 
References used for assembly of chipmunk mitochondrial genomes. Percent 
identity is with respect to the Gray-Collared chipmunk (Tamias cinereicollis). 
Iterations columns indicate the number of ARC iterations required before 
assembly stopping conditions were met for this sample.

Reference Species Accession
Tasmanian devil Sarcophilus harrisii NC_018788 72.10% 9
Ring-tailed lemur Lemur catta AJ421451 75.60% 9

Red squirrel Sciurus vulgaris NC_002369 80.00% 6
Platypus Ornithorhynchus anatinus NC_000891 71.20% 16
Human Homo sapiens HM156679 74.20% 8

House mouse Mus musculus NC_005089 75.50% 10
Guinea pig Cavia porcellus NC_000884 74.00% 9

Tamias canipes (unpublished) 94.90% 3

Edible dormouse Glis glis NC_001892 76.60% 10
Cape hare Lepus capensis NC_015841 74.60% 7

Myotis macrodactylus KF440685 73.40% 13

Percent
Identity

S152
Iterations

Gray-footed
chipmunk

Eastern
long-fingered bat
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Table 3.3. Ancient DNA assembly results
ARC results for assembly of ancient mammoth DNA sequences. ARC 
produces a small number of  contigs in all cases with good coverage and 
identity between the assembled contigs and published reference. 

Reference Contigs Reads

4 16620 99.70% 98.10% 3 4633

Elephas maximus 4 16603 99.70% 98.20% 5 4631
Mus musculus 2 15781 95.90% 99.40% 78 4507

Total Contig
Length (bp)

Percent
Coverage

Percent
Identity

ARC
Iterations

Mammuthus 
primigenius

ARC Newbler: S151 Newbler: S152 Newbler: S223

Total running time 77hr, 45min 31 min 1hr 13min 13hr 27min

22.78 5.847 8.337 16.36

31.19 6.71 9.967 17.54

1,300,076 Not Applicable Not Applicable Not Applicable

7.03 Not Applicable Not Applicable Not Applicable

21913 243 367 629

Average 
Memory (GB)

Maximum
Memory (GB)

Total assemblies
performed

Average assemblies
per second

Mbp unassembled
reads

Table 3.4. ARC performance
ARC assembly of 55 specimens compared to individual de novo assemblies of 
three specimens (S151, S152, and S223). Maximum and average memory usage 
(RAM) is listed in gigabytes (GB). Total data processed is reported in millions of 
base pairs (Mbp).  
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Supplementary Material

Table S3.1. ARC parameters
A comprehensive list of parameters that can be used to control ARC behavior. An * 
indicates parameters that are required.

continued on next page..

Parameter Description
reference* A fasta file contain one or more reference sequences.

numcycles

max_incorporation

bowtie2_k

format* Format for files containing reads, can be fasta or fastq.
mapper* Mapper to use during read recruitment, can be bowtie2 or blat.

assembler*

urt

verbose

assemblytimeout

cdna

Maximum number of mapping and assembly cycles ARC will 
carry out Default: 1
Control for repeat elements. If total reads recruited in the current 
cycle is greater than max_incorporation X reads recruited in 
previous cycle, assembly will not be carried out. Default: 5
Controls the max number of matches Bowtie 2 will report for 
each read. Default 5

Assembler to use during assembly stage, can be newbler or 
spades
Newbler parameter “use read tips” may reduce the number of 
ARC iterations by instructing Newbler to extend contigs using 
single reads at the edges of contigs. Note that ARC will not use 
'urt' on the final iteration to ensure higher quality contigs. Default 
False
Output extensive logging details about ARC operation including 
all calls to external programs Default False
Amount of time (in minutes) ARC will wait for an assembly to 
finish before killing the assembly process. Adjusting this value 
can make assemblies of large targets possible, or reduce the 
impact of repeats on large ARC runs. Default 10.
Newbler parameter that enables experimental RNAseq 
assembly and read incorporation reporting. Newbler will be run 
in transcriptome assembly mode on the final ARC iteration. 
Default: False
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Listing S3.1. Downloading and installing ARC
• First, download the source:

◦ git clone https://github.com/ibest/ARC.git
• Choose an installation option: 

◦ Option 1: Run without installing
▪ Simply run ARC directly using: ./ARC/bin/ARC

◦ Option 2: Use a Python Virtual Environment
▪ mkdir pyenvironments
▪ cd pyenvironments
▪ virtualenv arc
▪ source arc/bin/activate
▪ cd /path/to/ARC/source
▪ python setup.py install

◦ Option 3: install to the system path:
▪ python setup.py install

Listing S3.2. Patching BLAT to support FASTQ
• This is process is modified from the instructions for a normal BLAT install. An 

additional step is added to add FASTQ support.
◦ wget http://users.soe.ucsc.edu/~kent/src/blatSrc.zip
◦ unzip blatSrc.zip
◦ patch -p0 </path/to/ARC/contig/blat+fastq_support.patch

Parameter Description

rip

subsample

maskrepeats

nprocs

fastmap

Newbler parameter that instructs Newbler to only place reads in 
a single contig. In some cases Newbler will split a read placing 
parts of it in more than one contig. Default: False
Subsample read depth to a percentage of the orginal number of 
mapped reads. In cases where sequencing depth is great 
(>100x) it is often beneficial to only assemble a random subset 
of the mapped reads. For example, subsample=0.4 would 
cause ARC to retain 40% of mapped reads for assembly. 
Default: 1
Causes ARC to mask simple tandem repeats in contigs before 
mapping. This results in recruitment of fewer reads contain 
repeats. Default: True
Number of processors ARC should use. ARC can effectively 
make use of at least 64 cores when processing large jobs. 
Default: 1
BLAT mapper parameter, runs BLAT in fastMap mode that 
requires high identity and doesn't allow insertions or deletions.

http://users.soe.ucsc.edu/~kent/src/blatSrc.zip
https://github.com/ibest/ARC.git
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◦ cd blatSrc
◦ export MACHTYPE=x86_64
◦ mkdir ~/bin
◦ mkdir ~/bin/x86_64
◦ make

• Executables for blat will now be located in the ~/bin/x86_64 folder. 

Listing S3.3. ARC configuration file

## Comments are indicated by double pound signs, e.g. ##
## Parameters are indicated by a single pound sign, e.g. # 
## parameters use a Name=value format
## Sample information is listed without a pound sign
# reference=targets.fa                                                                                       
# format=fastq                                                                                                    
# mapper=bowtie2                                                                                             
# assembler=newbler                                                                                        
# nprocs=7                                                                                                         
Sample_ID       FileName        FileType                                                             
Sample1 ./reads/Sample1_R1.fastq        PE1                                                   
Sample1 ./reads/Sample1_R2.fastq        PE2
Sample1 ./reads/Sample1_SE.fastq        SE
Sample2 ./reads/Sample2_R1.fastq        PE1
Sample2 ./reads/Sample2_R2.fastq        PE2
Sample3 ./reads/Sample3_SE.fastq        SE
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Table S3.2. Read recruitment
Reads recruited per target for 55 chipmunk samples. Values in red represent 
assemblies that were killed due to incorporation of repetitive reads. Values in blue 
indicate targets that recruited a different number of reads from the rest of the targets
(based on 100 or more reads differences from the median number of recruited 
reads). The “Common to All” column (in bold) displays the number of reads common
to all targets, and “Mbp Sequence Data” is the total megabases of sequence data 
for each specimen after cleaning.

Sample E. L. F. bat Cape hare Edible dormouse G. f. chipmunk Guinea pig House mouse Human Platypus Red squirrel Ring-tailed lemur Tasmanian devil Common Mbp Data

S10 268,251 312,652 299,857 258,005 264,670 231,992 229,953 268,459 305,340 286,007 111,576 0 971

S11 190,401 190,403 190,428 190,401 190,401 190,401 190,417 190,420 190,428 190,401 223,363 190,382 1,145

S12 238,138 238,121 238,138 238,156 238,146 238,143 238,132 238,130 238,129 238,129 252,644 238,058 1,143

S151 19,300 19,300 19,313 19,298 19,298 19,300 19,300 19,300 19,300 19,317 19,300 19,293 243

S152 38,388 38,388 38,388 38,389 38,388 38,389 38,388 38,388 38,389 38,388 38,388 38,383 367

S154 75,335 48,307 75,335 75,381 75,335 75,335 75,349 75,335 75,335 40,515 75,335 35,223 324

S155 109,443 109,443 109,443 109,460 109,443 109,440 109,443 109,443 109,439 70,089 46,312 35,673 635

S156 75,069 46,831 75,064 75,095 75,065 75,069 75,069 75,069 75,069 39,545 75,069 33,623 271

S158 21,921 21,921 21,921 21,926 21,921 21,921 21,921 21,921 21,921 21,921 21,921 21,921 346

S159 1,366 1,387 1,369 1,618 1,578 1,367 1,392 1,359 1,557 1,366 1,263 1,046 148

S160 2,448 2,448 2,448 2,448 2,448 2,448 2,448 2,448 2,448 2,448 2,321 2,321 68

S176 21,653 21,653 21,653 21,653 21,653 21,653 21,653 21,653 21,653 21,653 21,653 21,653 222

S185 8,637 8,637 8,637 8,637 8,637 8,637 8,637 8,637 8,637 8,637 8,637 8,637 108

S188 14,810 14,810 14,810 14,810 14,810 14,810 14,810 14,810 14,810 14,810 14,810 14,810 223

S201 14,888 14,886 14,888 14,889 14,888 14,888 14,888 14,888 14,888 14,888 14,966 14,885 614

S217 16,735 16,735 16,735 16,735 16,735 16,735 16,735 16,735 16,735 16,735 16,779 16,735 402

S218 6,399 6,399 6,399 6,399 6,399 6,399 6,399 6,399 6,399 6,399 6,440 6,399 266

S220 15,371 15,371 15,371 15,371 15,371 15,371 15,371 15,371 15,371 15,371 15,371 15,371 373

S222 30,352 30,344 30,352 30,368 30,344 30,352 30,352 30,344 30,352 30,352 30,352 30,337 559

S223 12,910 12,910 12,917 12,912 12,856 12,856 12,856 12,856 12,910 12,856 12,856 12,845 629

S225 9,136 9,136 9,136 9,163 9,136 9,136 9,136 9,136 9,162 9,162 9,188 9,136 543

S226 36,676 36,676 36,676 36,741 36,676 36,676 36,694 36,676 36,691 36,676 61,790 36,672 663

S228 46,457 54,191 49,404 46,821 46,457 49,671 49,648 46,457 46,469 46,457 61,729 0 316

S230 16,109 16,109 16,109 16,145 16,109 16,109 16,109 16,109 16,126 16,126 23,042 16,109 431

S231 54,832 54,832 54,832 54,893 54,832 54,832 54,832 54,832 54,832 54,832 22,595 22,538 487

S236 5,743 5,743 5,743 5,743 5,743 5,743 5,743 5,743 5,743 5,743 5,743 5,743 452

S237 84,987 84,987 84,987 84,993 84,987 84,987 84,987 84,987 84,987 84,987 34,103 34,094 587

S238 2,498 2,498 2,498 2,498 2,498 2,498 2,498 2,498 2,498 2,498 2,498 2,498 187

S250 9,959 9,959 9,959 9,979 9,959 9,959 9,959 9,959 9,959 9,959 9,959 9,959 510

S251 11,153 11,153 11,153 11,153 11,153 11,153 11,153 11,153 11,153 11,153 11,291 11,153 391

S256 8,096 8,096 8,096 8,096 8,096 8,096 8,096 8,096 8,096 8,096 8,137 8,096 370

S267 12,359 12,359 12,362 12,362 12,359 12,359 12,359 12,359 12,359 12,345 12,558 12,336 879

S324 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 100

S330 22,577 22,577 22,577 22,582 22,577 22,577 22,577 22,577 22,577 22,577 22,577 22,577 541

S335 17,712 17,712 17,712 17,712 17,712 17,712 17,712 17,712 17,712 17,712 17,712 17,712 182

S563 10,160 10,160 10,160 10,167 10,160 10,160 10,160 10,160 10,160 10,160 10,198 10,160 222

S572 20,922 20,922 20,922 20,922 20,922 20,922 20,922 20,922 20,922 20,922 20,922 20,922 104

S573 13,614 13,614 13,614 13,614 13,614 13,614 13,614 13,614 13,614 13,614 13,614 13,614 200

S574 17,632 17,632 17,632 17,632 17,632 17,632 17,632 17,632 17,632 17,632 17,632 17,632 246

S582 16,166 16,166 16,167 16,166 16,166 16,166 16,166 16,166 16,166 16,166 16,166 16,166 244

S587 22,785 22,785 22,785 22,789 22,785 22,785 22,785 22,785 22,785 22,785 22,785 22,784 384

S60 9,714 9,714 9,714 9,714 9,714 9,714 9,714 9,714 9,714 9,714 9,714 9,714 149

S600 37,871 37,871 37,871 37,872 37,872 37,872 37,872 37,872 37,872 37,871 15,898 15,766 391

S605 4,142 4,180 4,177 4,142 4,140 4,140 4,140 4,140 4,140 4,140 4,480 4,137 713

S613 17,008 17,008 17,008 17,008 17,008 17,008 17,008 17,008 17,008 17,008 58,009 17,007 388

S70 17,445 17,445 17,445 17,445 17,445 17,445 17,445 17,445 17,445 17,445 17,445 17,445 161

S700 5,082 5,082 5,082 5,082 5,082 5,082 5,082 5,082 5,082 5,082 49,113 5,082 609

S704 18,253 18,253 18,253 18,253 18,253 18,253 18,253 18,253 18,253 18,253 21,254 18,253 181

S705 4,815 4,815 4,815 4,809 4,815 4,809 4,809 4,815 4,809 4,809 19,318 4,803 292

S711 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,025 321

S713 2,043 2,043 2,078 2,078 2,078 1,908 2,078 2,078 2,078 2,043 1,961 1,734 511

S721 2,217 2,116 2,197 2,549 2,269 2,134 2,176 427 2,197 2,134 2,188 326 465

S781 31,547 31,547 31,547 31,547 31,547 31,547 31,547 31,547 31,547 31,547 31,588 31,547 279

S85 18,866 18,866 18,866 18,866 18,866 18,866 18,866 18,866 18,866 18,866 18,866 18,866 180
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Chapter 4

StopGap, an approach for improving genome assembly

Abstract

High throughput sequencing (HTS) has brought about a revolution in the way

that much of biological research is done. Despite wide application of these 

technologies, a number of problems during the data analysis stage remain 

unsolved. One of these is that the short sequences produced by HTS do not provide

sufficient information to resolve repeated regions common in most genomes, 

resulting in assemblies which are broken into multiple fragments. The optimal 

assembly would perfectly represent the genome producing fully contiguous 

chromosomes with all repeat regions represented and properly placed in the 

assembly. Here we explored a strategy for filling gaps between assembled contigs 

to produce less fragmented assemblies without relying on a reference genome 

sequence. Our approach (StopGap) identifies gap-spanning Pacific Biosciences 

continuous long reads that are used to guide assembly of high quality Illumina or 

454 reads with the Assembly by Reduced Complexity (ARC) pipeline. We evaluated

the effectiveness of two assembly merging algorithms, CISA and Mix, to incorporate

the contigs produced by ARC into assemblies produced with the Newbler and 

SPAdes assemblers. CISA was able to produce a more contiguous assembly and at

the same time incorporate a number of long repeat sequences Mix was less 

successful, producing an assembly which was much longer than expected, 

duplicating a pair of plasmids, and failing to incorporate many repeats.
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Introduction

High throughput sequencing (HTS) technologies have brought about a 

revolution in molecular biology [1]. Despite the popularity of these technologies, a 

number of outstanding problems remain to be solved for the analysis of HTS data. 

One of these is that short reads are difficult to assemble into a high quality “finished”

representation of the original sequence, often due to repetitive sequence [2]. 

Instead sequence assembly algorithms produce a number of short sequences, each

a fragment of the full genome with unknown order, orientation, and gap size 

between fragments. These fragmented assemblies can make it difficult to identify 

and annotate open reading frames, leading to errors in comparison of gene content 

between isolates [2]. Comparative structural analysis of genomes using fragmented 

assemblies is also difficult [3], particularly since large-scale changes such as 

inversions, duplications, insertions and deletions often occur in the context of repeat

sequences [4, 5]. Although the problem of fragmented genome assemblies is 

particularly serious for eukaryotic genomes, even relatively small and simple 

bacterial genomes are often difficult or expensive to assemble completely. Given 

sufficient sequencing depth and high quality reads, the typical cause for assembly 

fragmentation is repeated sequences in the genome [2, 6]. If these repetitive 

regions are longer than the length of sequenced reads then there is no way to 

correctly incorporate them into the assembly using information from the reads 

alone; a problem that is illustrated in Figure 1. Rather than risk incorporating the 

repeats incorrectly, assemblers typically break the assembly into a set of sequences

called contigs. Some of these contigs represent repetitive sequences which occur 

multiple times within the genome while others represent non-repetitive sequence.

A number of strategies have been developed to address the issue of 

fragmented assemblies. These strategies include long-insert sequencing using 

specialized library preparation protocols (e.g. Illumina “mate-pair”: 

http://www.illumina.com/technology/ mate_pair_sequencing_assay.ilmn and 

Roche/454 “paired-end”: http://454.com/ applications/whole-genome-

sequencing/#paired-end-sequencing) to bridge repeats and sequentially organize 
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contigs (often referred to as “scaffolding the genome” or “resolving repeats”) [7]. 

Alternatively, a genome sequence can be “finished” by closing gaps using a 

combination of PCR and Sanger sequencing (e.g. Sheppard et al., 2013), or by 

nonsequencing based approaches such as scaffolding contigs using optical 

mapping of restriction site patterns [9] (e.g. through OpGen MapIt Services: 

http://www.opgen.com). In addition to these, a large variety of bioinformatic 

approaches have been developed including tools such as ABACAS, which orders 

and orients contigs by aligning them against a closely related reference genome 

[10], and GapFiller, which recruits paired reads that fall within a gap of estimated 

size and attempts to assemble a sequence that fills this gap without violating the 

gap-size constraint. Another bioinfomatic strategy is to use multiple assemblers 

optimized for different data types, or a single assembler with multiple different 

settings to assemble a dataset. The resulting assemblies are then combined to form

a final set of contigs. A number of software packages have been developed for this 

task including Mix [11], MAIA [12], CISA [13], Graph Accordance Assembly (GAA) 

[14], minimus2 [15] and GAM-NGS [16] among others. Two of these (minimus2 and 

GAA) were evaluated by Magoc et al. [17] who report improved N50 size with GAA 

for some combinations of assemblies. To our knowledge, little additional work has 

been done to compare these contig integration strategies, and it is currently unclear 

whether they properly handle contigs representing repeated sequences.

The emergence of single molecule real time sequencing, which is currently 

only available from Pacific Biosciences (PacBio), has presented a number of new 

opportunities for genome assembly. Reads from this technology come in two 

varieties, both of which were analyzed by Ono et al. [18] while developing the 

PacBio read simulation program PBSIM. The first variety, continuous long reads 

(CLR), have lengths as high as 22 Kbp but have high error rates. When compared 

to error free sequence, percent identity ranges from 76.19 to 83.81, substitution 

rates from 0.67 to 1.75 percent,  insertion rates from 8.40 to 10.80 percent, and 

deletion rates from 1.60 to 4.63 percent for CLR reads. The second variety, circular 

consensus sequences (CCS), are shorter with maximum lengths of 2,605 bp, 

however percent identity is much better at 97.43 to 98.23, with lower substitution 
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(0.09 to 0.19), insertion (0.70 to 0.86), and deletion (1.04 to 2.34) rates. Despite 

their high error rate, PacBio CLR reads have attracted significant attention because 

of their potential to resolve repeats. For example, the software package PBjelly [19] 

attempts to close gaps between scaffolded contigs. This strategy recruits PacBio 

reads that map at the ends of scaffolded contigs and then assembles these reads in

an attempt to reduce error. English et al. [19] report that this strategy results in filled 

gaps that have 91.7% mean similarity to Sanger validation sequences suggesting 

that this attempt at error correction is only partially successful.

Although each of these approaches is developed for closing gaps in 

genomes where repeat sequences are commonly encountered, none take copy 

number into account when joining contigs. Additionally, with a few rare exceptions 

such as Sheppard et al. [8] who used read coverage relative to the chromosome to 

estimate copy number of nine native plasmids in Bacillus thuringiensis, few authors 

of draft genome assemblies include information about the number of copies of 

repetitive contigs, or even identify contigs as being repeats.

In this study we explore an alternative strategy for incorporating information 

from PacBio CLR reads into an existing assembly. We hypothesized that by using 

the repeat spanning PacBio sequences to recruit short, high quality Illumina or 

Roche/454 reads, we may be able to provide enough information for a sequence 

assembler to produce high-quality, repeat spanning contigs that could then be used 

for gap closure. To test this hypothesis we implemented StopGap, an extension to 

the Assembly by Reduced Complexity (ARC) pipeline that was originally designed 

to facilitate targeted assembly of homologous sequences. Instead of using 

homologous sequences from a related species as targets, we use low quality 

PacBio reads that span gaps between contigs. We then tested two recently 

published assembly merging algorithms, Mix [11] and CISA [13] to see if they could 

make use of the resulting ARC contigs to produce more contiguous assemblies both

in the presence and absence of known repeat contigs.



70

Methods

Datasets

Datasets for this analysis were produced as part of a study that examined 

how broad host range plasmids that encode multiple antibiotic resistance genes 

evolve to become stably maintained in novel bacterial hosts. The host bacterium, 

Pseudomonas moraviensis strain R28-s was isolated from the municipal 

wastewater treatment plant of Moscow, Idaho, USA as a transconjugant after it 

acquired plasmid pB10::rfp [20]. DNA from this bacterium was extracted and 

sequenced using three sequencing platforms, Illumina MiSeq, Roche 454 and 

PacBio RS II and protocols recommended by the manufacturer. A draft quality 

assembly of the host genome has been deposited in Genbank (accession: 

AYMZ00000000) and a genome announcement was recently published [21]. 

Illumina reads were sequenced in the Genomics Resources Core of the 

Institute for Bioinformatics and Evolutionary Studies (IBEST GRC) at the University 

of Idaho using an Illumina MiSeq sequencer and 300 bp paired end kit. This sample

was multiplexed with a number of others and produced 459 Mbp of sequence data 

in 1,528,717 paired reads. Prior to analysis the reads were preprocessed through a 

read cleaning pipeline consisting of the following steps. In the first step, duplicate 

read pairs (possibly resulting from multi-cycle PCR reactions carried out as part of 

library preparation) were removed using a custom Python script. Sequences were 

then cleaned to remove sequencing adapters and low quality bases using the 

software package Seqyclean (Zhbannikov et al. manuscript in prep, 

https://bitbucket.org/izhbannikov/seqyclean). Finally, because paired-end 

sequencing produces two reads from both ends of a single template, it is often 

possible to overlap these reads and form a single long read representing the 

template in its entirety. This overlapping was carried out using the Flash software 

package  [22]. The majority (83 percent) of paired reads could be overlapped in this 

dataset producing combined, single reads with an average length of 201 bp. After 

cleaning, a total of 273 Mbp (43x expected coverage) in 1,168,085 single end, and 

184,608 paired end reads was retained for further analysis.   
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454 reads were also sequenced at the IBEST GRC using the Roche 454 

Titanium chemistry. Reads were cleaned to remove sequencing adapters and low-

quality bases using the sequence cleaning pipeline Seqyclean (Zhbannikov et al. 

manuscript in prep, https://bitbucket.org/izhbannikov/seqyclean). After cleaning, 92 

Mbp (14.7x expected coverage) in 233,851 reads that mean length 395 bp were 

retained for further analysis.

PacBio reads were sequenced at the Mount Sinai School of Medicine DNA 

Core Lab using a single RS II SMRT cell that produced 336 Mbp of sequenced data

in 155,126 reads corresponding to approximately 53x coverage. Reads were 

cleaned by the sequencing center using PacBio processing protocols. After 

cleaning, the mean read length was 2,168 bp, the maxium read length was 21,990 

bp, and 7657 reads were greater than 5 Kbp in length. 

Genome Assembly

De novo shotgun assembly of Illumina and 454 reads was done using 

SPAdes v3.0 [23] with the –careful option, and Newbler v2.8 [24] using default 

parameters. SPAdes is a De Bruijn graph based assembler designed for bacterial 

genomes that utilizes a number of complex strategies for improving assemblies 

including a sequencing error correcting stage, automatic use of multiple k-mer 

lengths during assembly, incorporation of linkage information in paired reads, and 

support for highly variable coverage. SPAdes has performed well in two recent 

comparisons of genome assemblers [17, 25]. Newbler was originally designed to 

assemble reads generated by the 454 pyrosequencing platform [24] but recent 

versions  have added support for Illumina paired-end reads. 

PacBio Read Selection and ARC processing

PacBio CLR reads have high error rates which makes them unsuitable for 

most assemblers. We attempted to resolve this problem by using PacBio reads to 

recruit high quality Illumina and 454 reads, which could then be assembled, creating

a contig representative of the original PacBio read. To do this, we implemented an 

ARC extension called StopGap as a pre-processing step to incorporate information 
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from the long, error prone PacBio reads into the final assemblies. StopGap both 

identifies potentially repetitive contigs within an assembly, and assembles contigs 

which can resolve these repeats in the following sequence of steps:

1) Estimating Contig Copy Number and Identifying Repetitive Contigs
Bowtie2 is used to align short reads against contigs using default 

parameters, the resulting SAM file is then processed with Samtools [26] to calculate

per-position mapping depth. The global mean mapping depth across all contigs is 

calculated allowing for an estimate of copy number to be derived by dividing 

average mapping depth for each contig by the global mean mapping depth. Contigs 

with a ratio greater than 1.2 (indicating 1.2 copies of said contig relative to all other 

contigs) are classified as being potentially repetitive. Contigs representing putative 

repeats are annotated with the estimated copy number and written to a 

repeat_contigs.fasta file while all other contigs are written to norepeat_contigs.fasta.

A report file is also generated at this step indicating contig identifier, length, average

mapping depth, and copy number for all contigs. In some cases multi-copy contigs 

may also represent circular plasmids. StopGap makes no attempt to discriminate 

between these and genomic repeats, and it is left to the user to identify and handle 

these plasmid contigs properly. 

2) PacBio Read Selection
Putative gap-spanning PacBio reads are recruited using both single-copy, 

and repetitive contigs identified in the previous step. The ends of these contigs are 

trimmed back 100 bp in order to remove potential misassemblies, and then 500 bp 

sequences are cut from both ends. These “contig ends” are aligned against PacBio 

reads using the alignment tool BLAT [27] with minScore=300 and minIdentity=75 

parameters. All PacBio reads that align with two or more contig end sequences are 

recruited as potentially bridging gaps, and used in the next step.  

3) Assembly by Reduced Complexity
The Assembly by Reduced Complexity (ARC) pipeline (manuscript in 

preparation: https://github.com/ibest/ARC) was designed to facilitate assembly of 

discreet, homologous sequences given a divergent set of references. PacBio reads 

selected in the previous step were used as target sequences for ARC assembly. 

ARC was run with the following settings, mapper=blat, assembler=newbler, and 
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numcycles=1. 

The Blat sequence aligner supports a number of parameters for controlling 

alignment scoring and reporting. We found that increasing the minScore parameter 

to 90 (instead of the default setting of 30) reduced the number of reads recruited but

resulted in improved ARC assemblies (data not shown). Support for this more 

stringent setting was added to ARC and can be enabled by setting pacbio=True in 

the configuration file. Newbler was also tested in both mapping based, and de novo 

assembly modes. In mapping mode, Newbler first aligns reads to a reference and 

then does local-assembly of the reads using a multiple alignment step. This step 

allows Newbler to resolve differences between reads and recover insertions and 

deletions with respect to the reference (454 Sequencing System Software Manual, 

v2.8). Support for using Newbler mapping mode in ARC was added and can be 

enabled by setting NewblerMap=True. We found that using Newbler in mapping 

mode also improved the final ARC contigs even when the more stringent Blat 

parameters described above were not used. For the results reported in this study 

we used the following additional settings for ARC: NewblerMap=True, pacbio=False.

4) Screening ARC Assemblies for Gap-Spanning Contigs
The contigs produced by the ARC pipeline were aligned against the contig 

end sequences extracted in step 2, again with BLAT, but with a more stringent 

minIdentity=95 parameter. ARC contigs that aligned to two or more contig end 

sequences were retained for further analysis. This set of contigs is referred to as 

“bridge contigs” in the remainder of this manuscript.

Merging Assemblies

Two assembly merging algorithms, Mix [11] and CISA [13] were tested. We 

wished to compare the results of these algorithms both with and without ARC 

contigs, and also to explore how repeat contigs would be handled by these 

algorithms. To this end we merged four different combinations of the data using both

programs: 1) all contigs produced by Newbler and SPAdes de novo assemblies, 2) 

non-repetitive contigs produced by Newbler and SPAdes de novo assemblies, 3) 

bridge contigs plus all contigs produced by Newbler and SPAdes de novo 
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assemblies, 4) bridge contigs plus  non-repetitive contigs produced by Newbler and 

SPAdes de novo assemblies. 

CISA was run as per instructions in the manual (http://sb.nhri.org.tw/CISA) 

using all four combinations listed above. Configuration files were created and 

contigs were merged into a single file (python Merge.py Merge.config). The main 

CISA pipeline was then run to produce the final, combined assembly (python 

CISA.py CISA.config). 

Mix was also run for all four combinations listed above. Mix is slightly more 

complicated to run than CISA, but does not require a configuration file. The first step

combines contigs into a single fasta file, with a prefix included for the names of each

contig to distinguish which set it belongs to (preprocessing.py -o contigs.fa 

../AllNewblerContigs.fasta ../AllSPAdesContigs.fasta ). The second step (nucmer 

--maxmatch -c 30 -l 30 -banded -prefix=alignments contigs.fa contigs.fa ) aligns 

contigs against themselves using Nucmer, a many verses many DNA alignment 

algorithm that is part of the MUMmer package [28]. Next, alignment information is 

processed and summarized with show-coords, which is also part of the the Mumer 

package (show-coords -rcl alignments.delta > alignments.coords ). Finally, the Mix 

algorithm is run to combine contigs based on alignment information produced in the 

previous steps (Mix.py -g -a alignments.coords -c contigs.fa -o ./ -C 300 -A 200). 

Results

Assemblies and Repeat Contigs

In this study we explored a strategy for incorporating information from PacBio

CLR reads into an existing assembly with the objective of closing gaps between 

contigs and better incorporating repeat elements into the final assembly. To 

evaluate this strategy, we used a combination of Illumina, 454, and PacBio CLR 

reads sequenced from the bacterial isolate Pseudomonas moraviensis strain R28-s.

After preprocessing the Illumina and 454 reads, the first step in this analysis 

was to generate de novo assemblies of these reads using the Newbler v2.8 and 

SPAdes v.3.0.0 assemblers. Contigs produced in this step will be referred to here as

“de novo contigs”. Statistics for the resulting assemblies are presented in 
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supplementary table S1 and summarized in Table 1. Both assemblers produced 

relatively good assemblies for a genome of this size with some contigs greater than 

700 Kbp in length and similar total lengths (Newbler: 6,286,279 bp, SPAdes: 

6,297,403 bp). However, the SPAdes assembly was much less fragmented overall 

with higher mean contig length (217,200 vs 161,200 bp) and an N50 value which is 

more than twice as high as that produced by Newbler (853,530 vs 338,867 bp). The

N50 value represents a “balance point” at which half of the total assembled 

sequence length is accounted for in contigs as big or bigger than the N50 value. A 

large N50 value is therefore indicative of a less fragmented assembly.

Following assembly, Illumina and 454 reads were mapped against the 

assembled contigs to calculate mapping coverage and infer copy number. Results 

of this analysis are reported in Table 2, and in supplementary table S1. Nine contigs

greater than 500 bp in length were identified as being putative repeats in both 

assemblies, and an additional 3 repeat contigs less than 500 bp were reported for 

SPAdes. Two of the repeat contigs are plasmids known to exist in this isolate. Both 

were fully assembled by both assemblers. The plasmid assemblies have similar 

lengths (81,744 vs 81,973 bp and 13,120 vs 13,247 bp) and pairwise alignments 

showed that in both cases, the assembled plasmids were 100% identical to each 

other at all aligned sites. The slightly longer SPAdes contigs have a small overlap at

each end of the contig, while the Newbler assembly has no such overlap. These 

plasmids are circular, explaining this small difference and overlap, however it is 

interesting to note that both SPAdes and Newbler linearized these circular 

sequence at approximately the same position. The rest of the repeat contigs 

presented in Table 2 have less obvious analogs between the two assemblies. 

However, by using Blat to align the sets of contigs against each other, we have 

been able to resolve the relationships for all identified repeats. The naming 

schemes used by Newbler (contig000NN) and SPAdes (NODE_NN) are retained 

here to match the repeat contigs listed in Table 2. The relationships between the 

repeat contigs in both assemblies are summarized here: 

• Newbler contig00026 is part of three SPAdes contigs, overlapping NODE_15 

on one end, containing NODE_25 completely, and overlapping NODE_7 on 
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the other. Further analysis of mapping depth across this contig showed that it

is consistently high (data not shown), suggesting that the full-length 32 Kbp 

sequence is present twice within the genome.

• Newbler contigs contig00031 and contig00032, are represented in SPAdes 

NODE_16 overlapping the SPAdes contig at either end. Based on mapping 

depth and the Newbler results, it appears that contig00031 and contig00032 

may be connected to each other in some cases, but occur individually in 

others.

• Newbler contig00035 is partially represented in four SPAdes contigs, 

NODE_15, NODE_17, NODE_27, and NODE19. NODE_15 and NODE_17 

both have a 377 bp overlap with one end of contig00035, NODE_27 is fully 

contained within this contig, and NODE_19 has a 2,790 bp overlap at the 

other end.

• Newbler contig00036 and NODE_20 are perfect matches.

• Newbler contig00038 is contained entirely within NODE_3. The SPAdes 

NODE_3 contig is 890 Kbp long, and the putative Newbler repeat 

contig00038 (2,263 bp long) is present at one end of this much longer contig.

• Newbler contig00008 is contained twice within NODE_1, with 3,434 bp of 

sequence between the two copies

• SPAdes NODE_18 was identified as a putative repeat, and fully contains 

Newbler contig00034 which was not. Both have low average coverage as 

compared to the other putative repeats and may have been mis-identified as 

repeats.

• SPAdes NODE_24 is present in two Newbler contigs, contig0030 and 

contig0037, overlapping 590 bp at the end of each Newbler contig.

Repeat elements were clearly problematic for these assemblers. There is 

one repeat that was similarly represented in both assemblies (Newbler contig00036 

and SPAdes NODE_20). The remainder of the repeats were assembled in different 

ways by the two assemblers. In some cases a repeat is incorporated into a longer, 

non-repetitive contig by one of the two assemblers while at other times the repeat is
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broken into multiple smaller contigs in one of the two assemblies. Based on this 

comparison the following set of repeat contigs was chosen to characterize the 

behavior of Mix and CISA when repeat elements are present in the contigs: 

contig00023*, contig00026*, contig00028,  contig00031, contig00032, contig00035, 

contig00036, contig00038, and NODE_24. 

Putative Gap-filling PacBio Reads and ARC Results

Contigs assembled by Newbler were used as a starting point for recruiting 

PacBio reads that could aid in closing gaps. These reads were recruited by aligning 

the ends of Newbler contigs against the PacBio reads using Blat and then filtering 

the results for PacBio reads that had two or more high scoring hits. Using this 

strategy, 980 putative gap-bridging PacBio reads were identified. Of these, 808 

aligned to two contig ends, 130 aligned to three contig ends, 33 aligned to 4, and 9 

aligned to five or more. ARC was run using these PacBio reads as targets. ARC 

assembly produced a total of 3,319 sequences. These sequences were filtered, 

again by alignment against the contig ends used to screen PacBio reads. Of the 

3,319 sequences produced by ARC, 653 were identified as potentially bridging 

gaps, and were retained for further analysis. 

A similar process was carried out using the contigs assembled by SPAdes. 

Following the first round of filtering, 830 putative gap-bridging PacBio reads were 

identified. 489 aligned to two contig ends, 105 aligned to three contig ends, 103 

aligned to four contig ends, and 133 aligned to five or more contig ends. Using ARC 

with this set of 830 PacBio reads as targets produced 2,537 contigs, and of these 

646 were identified as potentially bridging gaps and retained.

All subsequent analysis steps involving ARC contigs used both sets of 

potentially gap-bridging contigs (653 based on the Newbler assembly, and 646 

based on the SPAdes assembly). This combined set of contigs are referred to as 

“bridge contigs” here.

Merging Assemblies

Bridge and de novo contigs were combined with two recently published tools,
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Mix [11], and CISA [13]. The resulting combined assemblies are summarized in 

Table 3. Merging was done with four different combinations of the de novo contigs 

and bridge contigs. These four combinations include the following:

1. Non-repetitive contigs produced by Newbler and SPAdes de novo 

assemblies, C and M in Table 3.

2. All contigs (including repeats) produced by Newbler and SPAdes de 

novo assemblies, C-R and M-R in Table 3.

3. Bridge contigs plus non-repetitive contigs produced by Newbler and 

SPAdes de novo assemblies, C-B and M-B in Table 3.

4. Bridge contigs plus all contigs produced by Newbler and SPAdes de 

novo assemblies, C-R+B and M-R+B in Table 3.

We used Mix and CISA with these four combinations because we wished to 

compare the results of these algorithms both with and without the bridge contigs 

produced by ARC and to explore how repeat contigs would be handled by these 

algorithms.

Mix and CISA performed similarly when combining assemblies without using 

bridge contigs. When combining only non-repeat contigs (C and M), CISA was more

aggressive than Mix, producing 10 contigs while Mix produced 14. The total length 

of Mix contigs was also higher by 31,203 bp, suggesting that CISA identified 

reasonably large overlaps. Using the full set of 39 Newbler contigs and 29 SPAdes 

contigs produced by de novo assembly (C-R and M-R), both CISA and Mix 

produced 17 contigs with the same maximum size and N50. The only difference 

was the total number of bases which differed by 1,077 bp. Both of these results 

represent a significant decrease in the total number of contigs, indicating a more 

contiguous assembly.

Differences between CISA and Mix became more pronounced when the 

bridge contigs were included. CISA again produced 10 contigs with and without 

repeat contigs (C-B and C-R+B), maximum contig length and N50 values both 

increased. In contrast Mix was able to combine fewer contigs after the addition of 

bridge contigs (M vs M-B and M-R vs M-R+B). The final number of contigs 

increased, but more troublesome was that the total length of the assembly grew 
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significantly, reaching values well above 7 Mbp. 

To characterize the behavior of Mix and CISA with respect to repeat 

sequences we counted the number of times a set of repeat contigs was 

incorporated into the combined assemblies (see Table 2 and associated text). We 

expected that CISA and Mix would be able to utilize bridge contigs to incorporate 

these repeats into the assembly and close gaps. Counts for repeated contigs are 

presented in Table 4. As expected, the two plasmids (contig00028* and 

contig00023*) appeared only once in each CISA output where repeat contigs were 

available. On the other hand, Mix duplicated the plasmids when both repeat contigs 

and bridge contigs were available, creating a single sequence for each plasmid 

which twice contained the plasmid. The authors of CISA and Mix do not mention 

support for circular sequences in their respective manuscripts, however CISA 

clearly performs better here. Neither CISA or Mix was able to improve incorporation 

of repeats contig00026, contig00035, and contig00038 into the assemblies. In all 

cases, either one, or no copies were represented in the final assemblies. 

Incorporation of the remaining repeat contigs, conti00036, NODE_24, 

contig00031, and contig00032 differed substantially between CISA and Mix. For all 

but contig00032, only a single copy of each repeat was represented in the Mix 

results, even when bridge contigs were available. In contrast, when bridge contigs 

were available CISA incorporated these repeats into the final assemblies in 

quantities that were comparable to the estimated copy number. With an estimated 

copy number of 2.55, Contig00036 was incorporated twice in both cases where 

bridge contigs were available. NODE_24 was already present twice in the de novo 

Newbler assembly, but was only represented once in all of the Mix results, while it 

was present twice in all CISA results with the exception of the CISA assembly where

no repeat contigs or bridge contigs were provided. Contig00031 and Contig00032 

showed especially large differences. Contig00031 has an estimated copy number of

5.36 and is present 4 times in CISA assemblies where bridge contigs were 

available. Mix appears to have been unable to make use of the bridge contigs, with 

one copy of contig00031 represented when repeats were available, and no copies 

without these contigs. Mix does slightly better with contig00032, incorporating it 
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twice in the final assemblies, but CISA was able to incorporate it three times.

Both algorithms were able to reduce fragmentation of the assembly as 

compared to the results from Newbler and SPAdes alone. However, CISA clearly 

outperformed Mix in these comparisons by producing more contiguous assemblies 

with fewer contigs,  incorporating more repeats and increasing N50, handling 

circular plasmids appropriately, and not bloating the assembly well beyond the 

estimated genome size of approximately 6.3 Mbp.  

Discussion

In this study we explored a strategy for improving de novo assemblies of 

short reads by incorporating information from PacBio CLR reads to resolve repeats 

and produce more contiguous assemblies. Because PacBio reads are of very poor 

quality they were not used directly for assembly, but were instead used as mapping 

targets in the ARC pipeline to recruit short, high quality Illumina and 454 reads that 

were then assembled on a per-target basis. Rather than attempting to use all of the 

PacBio reads available, we first screened the set of reads for those that were more 

likely to bridge gaps in the assemblies. Using this strategy, ARC was able to 

assemble bridge contigs for 71.76% of the PacBio reads. 

We then tested whether two recently released software packages, CISA and 

Mix, could use these bridge contigs to reduce fragmentation of the assembly and 

better represent the number of repeats estimated to exist in the genome based on 

mapping depth. Both of these packages were able to produce less fragmented 

versions of the genome when combining de novo assemblies from SPAdes and 

Newbler and performed similarly with this data alone. Fragmentation of the 

assembly was also reduced by both Mix and CISA after combining the de novo and 

bridge contigs. However, only CISA was able to incorporate repeats in numbers 

approaching our expectations based on mapping depth, while at the same time 

raising N50 and maintaining an expected total genome size. On the other hand, Mix

generally failed to incorporate repeats, despite producing assemblies that were 

much larger than expected, the largest being 7.5 Mbp instead of the expected 6.3 

Mbp. Additionally Mix duplicated a pair of circular plasmids, representing each twice
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in the final output.

Analysis of mapping depth for contigs produced by Newbler and SPAdes 

showed that this genome contains at least 8 repeats larger than 500 bp with the 

longest being 32 Kbp in length. However identification of repeats proved to be more 

difficult than expected, for example the large 32 Kbp repeat was incorporated into 

one of the non-repetitive contigs in the SPAdes assembly, while Newbler produced 

a separate contig for this sequence. Mapping depth was consistently higher than 

expected across the 32 Kbp region suggesting that this was in fact a repeat but that 

SPAdes incorporated it anyway. A similar situation occurred for NODE_16, which 

was split into Contig00031 and Contig00032 by Newbler. Mapping coverage for 

NODE_16 dips at the junction between these two contigs suggesting that it is in fact

a pair of repeats that sometimes occur together. Mapping these two contigs against 

the CISA results also support this interpretation with four copies of Contig00031 and

three copies of Contig00032 integrated into the assembly. Despite the complex 

nature of these repeats, identifying repeats and estimating their copy number is a 

useful exercise when attempting to finish a genome. For example, in this genome 

the longest repeat was 32 Kbp, while the longest PacBio read was much shorter at 

21.9 Kbp making it impossible to solve this repeat with the available PacBio data. 

Other repeats were shorter, 5.3 Kbp or less in length, however with only 7657 

PacBio reads longer than 5 Kbp, it is probable that some instances of these repeats

were not fully captured within a single PacBio read. 

Optimally, the final assembly for this bacterium would consist of three 

contigs, one for each plasmid plus a third 6.3 Mbp contig representing the entire 

genome and incorporating repeats the appropriate number of times. Neither Mix nor

CISA was able to produce this result when combining contigs produced by de novo 

assembly of the reads using the Newbler and SPAdes assemblers alone. However, 

addition of  bridge contigs assembled with ARC allowed CISA to get much closer, 

reducing the genome to just ten contigs, two of which were plasmids. In addition, 

the N50 for these CISA assemblies was improved, and the number of repeats more 

closely agreed with our expectations based on mapping depth. These 

improvements show that the StopGap strategy is an effective method for taking 
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advantage of PacBio CLR data for improving genome assemblies.

Figures

Figure 4.1. Repeat Elements

A simple example of a repeat element. The repeat element E exists at two different
loci within the DNA. Short sequenced reads are only sufficient to cover the 
junctions between E and its immediate neighbors. Assembly of these reads 
collapses E into a single sequence, resulting in an graph-structure which cannot be
resolved because it is impossible to determine whether A-E-D and B-E-C or A-E-C 
and B-E-D are correct. This results in 5 contigs (A, B, C, D, E), each broken at the 
junction with E. Note that twice as many reads would map to E because it actually 
exists twice in the genome. This puzzle may be resolved with the addition of a long
read (in red) which bridges the repeat, providing a sure path between A and D. 
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Tables

Table 4.1. Summary Statistics for 
Assembly
Summary statistics for Newbler and 
SPAdes assemblies.

Newbler SPAdes
Total Contigs > 500 bp 39 24
N50 338,867 853,530
Mean Length (bp) 161,200 217,200
Total Length (bp) 6,286,279 6,297,403
Repeats > 500 bp 9 9
Largest repeat (bp) 32,393 5,312

Table 4.2. Putative Repeat Contigs
Putative repeat contigs assembled by Newber v2.8 and SPAdes v3.0 on the same 
set of reads. Plasmids are indicated with *.  Average mapping depth is reported and 
estimated copy number is calculated as the ratio of contig mapping depth to global 
mapping depth.

Newbler Repeats SPAdes Repeats  

contig00023* 81,744 99 1.71 NODE_11* 81,973 99 1.74
contig00026 32,393 114 1.97 NODE_14* 13,247 306 5.37
contig00028* 13,120 307 5.29 NODE_15 5,312 115 2.02
contig00031 3,394 311 5.36 NODE_16 5,192 309 5.42
contig00035 3,314 112 1.93 NODE_18 3,775 69 1.21
contig00036 2,346 148 2.55 NODE_19 2,891 111 1.95
contig00038 2,263 99 1.71 NODE_20 2,346 148 2.60
contig00032 1,771 301 5.19 NODE_24 682 78 1.37
contig00008 1,079 95 1.64 NODE_25 514 123 2.16

NODE_26 500 74 1.30
NODE_27 452 106 1.86

Contig
Length

Mapping
Depth

Estimated 
Copy number

Contig
Length

Mapping
Depth

Estimated 
Copy number
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Table 4.3. Assembly Combination Results
Results of combining assemblies using CISA or Mix.

Method

769,200 338,867 39 6,286,279

1,041,000 853,530 29 6,297,403

C CISA N N 1,695,000 890,291 10 6,154,209
C-R CISA Y N 1,695,000 890,556 17 6,297,323
C-B CISA N Y 1,698,000 1,043,751 10 6,232,656

C-R+B CISA Y Y 1,698,000 1,057,801 10 6,319,052
M Mix N N 1,695,000 890,556 14 6,185,412

M-R Mix Y N 1,695,000 890,556 17 6,296,326
M-B Mix N Y 1,697,000 893,756 17 7,188,203

M-R+B Mix Y Y 1,697,000 857,314 20 7,541,383

Repeat Contigs
Included

Bridge
Contigs

Max Contig
Length

N50 Contig
Length

Number of
Contigs

Total Length
of Contigs

Newbler
Assembly
SPAdes

Assembly

Table 4.4. Repeat Incorporation
Repeat incorporation with CISA and Mix assembly combiner programs. Plasmids 
are indicated with an asterisk (*). 

Repeat Length C C-R C-B C-R+B M M-R M-B M-R+B
contig00028* 5.29 13,120 0 1 0 1 0 1 0 2
contig00023* 1.71 81,744 0 1 0 1 0 1 0 2
contig00026 1.97 32,393 0 1 1 1 1 1 1 1
contig00035 1.93 3,314 0 1 1 1 0 1 0 1
contig00036 2.55 2,346 0 1 2 2 0 1 1 1
contig00038 1.71 2,263 1 1 1 1 1 1 1 1
NODE_24 1.37 682 1 2 2 2 1 1 1 1
contig00031 5.36 3,394 0 1 4 4 0 1 0 1
contig00032 5.19 1,771 0 1 3 3 0 1 2 2

Estimated
Copy Number
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Supplementary Material

Table S4.1. Detailed Assembly Results
Results of assembly using Newber v2.8 and SPAdes v3.0 on the same set of 
Illumina and 454 reads. Repeat contigs are indicated in bold and plasmids are 
indicated with *. Average mapping depth is reported, and estimated copy number is 
calculated as the ratio of contig mapping depth to global mapping depth.

Newbler SPAdes

Contig ID Contig ID

contig00001 306,531 54 0.93 NODE_01 1,040,851 56 0.98

contig00002 101,300 55 0.95 NODE_02 977,721 54 0.95

contig00003 769,154 57 0.98 NODE_03 890,556 51 0.89

contig00004 30,718 53 0.91 NODE_04 853,530 59 1.04

contig00005 709,669 51 0.88 NODE_05 668,171 58 1.02

contig00006 727,235 59 1.02 NODE_06 594,296 58 1.02

contig00007 2,358 53 0.91 NODE_07 422,131 61 1.07

contig00008 1,079 95 1.64 NODE_08 360,200 58 1.02

contig00009 272,049 55 0.95 NODE_09 155,459 56 0.98

contig00010 413,022 55 0.95 NODE_10 122,459 58 1.02

contig00011 407,275 54 0.93 NODE_11* 81,973 99 1.74

contig00012 273,168 57 0.98 NODE_12 62,782 58 1.02

contig00013 129,282 58 1.00 NODE_13 23,817 54 0.95

contig00014 338,867 58 1.00 NODE_14* 13,247 306 5.37

contig00015 272,350 58 1.00 NODE_15 5,312 115 2.02

contig00016 265,376 59 1.02 NODE_16 5,192 309 5.42

contig00017 231,864 57 0.98 NODE_17 4,800 58 1.02

contig00018 189,634 57 0.98 NODE_18 3,775 69 1.21

contig00019 155,198 56 0.97 NODE_19 2,891 111 1.95

contig00020 147,285 49 0.84 NODE_20 2,346 148 2.60

contig00021 124,689 58 1.00 NODE_21 2,118 51 0.89

contig00022 109,535 51 0.88 NODE_22 793 2 0.04

contig00023* 81,744 99 1.71 NODE_24 682 78 1.37

contig00024 81,652 55 0.95 NODE_25 514 123 2.16

contig00025 36,591 55 0.95 NODE_26 500 74 1.30

contig00026 32,393 114 1.97 NODE_27 452 106 1.86

contig00027 16,183 65 1.12 NODE_27 382 25 0.44

contig00028* 13,120 307 5.29 NODE_28 315 18 0.32

contig00029 12,292 53 0.91 NODE_29 128 8 0.14

contig00030 11,777 56 0.97

contig00031 3,394 311 5.36 Summary Statistics

contig00032 1,771 301 5.19 Newbler SPAdes

contig00033 3,525 57 0.98 Total Contigs > 500 bp 39 24
contig00034 3,459 65 1.12 N50 338,867 853,530

contig00035 3,314 112 1.93 Mean Length (bp) 161,200 217,200

contig00036 2,346 148 2.55 Total Length (bp) 6,286,279 6,297,403

contig00037 2,293 50 0.86 Repeats > 500 bp 9 9

contig00038 2,263 99 1.71 Largest repeat (bp) 32,393 5,312

contig00039 511 2 0.03

Contig
Length

Mapping
Depth

Estimated 
Copy number

Contig
Length

Mapping
Depth

Estimated 
Copy number
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Abstract

We report the draft genome sequence of Pseudomonas moraviensis R28-S, 

isolated from the municipal wastewater treatment plant of Moscow, ID. The strain 

carries a native mercury resistance plasmid, poorly maintains introduced IncP-1 

antibiotic resistance plasmids, and has been useful for studying the evolution of 

plasmid host range and stability.

http://creativecommons.org/licenses/by/3.0/
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Genome Announcement

Pseudomonas moraviensis R28 is a member of the Gammaproteobacteria 

and was originally reported as Pseudomonas koreensis R28. The strain was 

isolated from activated sludge of the municipal wastewater treatment plant in 

Moscow, ID, as a transconjugant after a plate mating of a sludge sample with a 

donor plasmid pB10::rfp. The transconjugants were selected on defined aerobic 

basal (DAB) medium supplemented with succinate, acetate, and citrate and the 

antibiotics tetracycline (10 mg/liter) and streptomycin (50 mg/liter) [1]. In the 

laboratory, it has been a useful strain for studying the stability and evolution of 

broad-host-range multidrug resistance plasmids [1–3]. The first isolate of the 

species P. moraviensis was collected from oil-polluted soil in the Czech Republic 

and was shown to hydrolyze diverse carbohydrates and utilize an impressive array 

of substrates [4]. Strain R28-S, a streptomycin-resistant mutant of R28, was 

identified as a member of this species via an in-house four-gene-based (atpA, glnA, 

rpoB, and rpoD) multilocus sequence analysis (MLSA) scheme, which for each 

gene undoubtedly showed the highest match with the type strain P. moraviensis 

LMG 24280.

The genome of P. moraviensis R28-S was sequenced using a whole-genome

shotgun approach, with paired 150-bp reads generated on the MiSeq (Illumina) and 

454 (Roche) sequencing platforms. The sequencing adapters and low-quality bases

were trimmed using a custom script, and the reads were assembled using Newbler 

version 2.6. A total of 36 contigs >500 bp were produced. Of these, the largest is 

815,593 bp and the N50 contig size is 462,409 bp. The assembled contigs were 

ordered and oriented using a whole-genome map produced by OpGen optical 

mapping MapIt services. The optical mapping results were corroborated by aligning 

R28-S contigs against the closely related and so-called Pseudomonas fluorescens 

Pf0-1 (accession no. NC_007492) genome using r2cat [5]. Small contigs that could 

not be scaffolded with the optical map were placed using these alignments. 

Additional gaps were then closed using the program GapFiller [6], and the paired 

Illumina reads resulted in a final assembly consisting of 12 contigs with a total 



91

length of 6,226,470 bp (including estimated gap sizes).

Included in the set of contigs was a native 81,846-bp plasmid, pR28. The 

replication initiator gene (repA) and origin of replication gene (oriV) of pR28 bear 89 

and 84% nucleotide identities, respectively, to that of the IncP-9θ plasmid pSVS15 

isolated from Pseudomonas putida [7]. Although many IncP-9 plasmids are self-

transferable, pR28 does not encode a full conjugative system. Its genome contains 

multiple transposons, one of which encodes resistance to mercury. Based on its 

read coverage, its copy number is estimated at 2/cell (1.9× for each chromosome 

copy).

Nucleotide sequence accession numbers.

This whole-genome shotgun project has been deposited at GenBank under 

the accession no. AYMZ00000000. The version described in this paper is version 

AYMZ00000000.1. Strain R28-S is available from the LMG culture collection as 

LMG 28150 (http://bccm.belspo.be/about/lmg.php).
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Chapter 6

Conclusions and Future Directions

In this dissertation, I have presented three tools that are useful for the 

collection or analysis of data from nucleic acid sequences. The VChip, a microarray 

platform for studying DNA or RNA from the vaginal microbiota, ARC, a tool for 

reference seeded assembly of homologous sequences, and StopGap, an approach 

for closing gaps in assemblies using PacBio reads.

Insights

The genesis of ARC was based on two important insights. The first is that 

homologous sequences from different species often have highly conserved regions 

which remain largely unchanged even when the rest of the sequence is much more 

divergent. An initial “sloppy” mapping step can take advantage of these regions to 

recruit reads. Following up this initial recruitment stage with assembly and more 

stringent mapping in subsequent iterations allows ARC to address the trade-off 

between sensitivity and specificity which is inherent in traditional read mapping, and

incorporate reads from more divergent loci into the final assembly. The second 

insight is that it is often not necessary or efficient to process an entire HTS dataset 

at once. This makes divide and conquer strategies an obvious choice for processing

this type of dataset. In essence, this is what ARC is, an approach for simplifying the 

difficult problem of sequence assembly by splitting a large set of reads into multiple 

small subsets, each of which is much easier to assemble than the large set would 

have been.

High Throughput Sequencing

HTS technologies have developed rapidly since the commercial introduction 

of pyrosequencing in 2004. From this point until at least 2012, expense has dropped

rapidly, with the cost in base-pairs per dollar cut in half every 5 months [1]. This 

precipitous drop in prices, driven by rapid increases in throughput, has allowed for 

an equally impressive amount of sequence data to be collected. Currently 2,295 
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trillion (2.3 quadrillion) bases have been deposited in the Short Read Archive, a 

National Institutes of Health database that stores raw sequencing data generated by

high throughput sequencing  (http://www.ncbi.nlm  .nih.gov/Traces/sra/). This drive 

for ever higher throughput continues, and Illumina has claimed victory in the quest 

for a “$1000 human genome” in their January 2014 announcement of the HiSeq X 

Ten sequencing cluster. Already the Roche 454 platform has succumbed to the 

rapid pace of sequencer technology development. Despite having longer overall 

reads, the high cost of a sequencing run and low relative yield make it a poor choice

compared to options from Illumina and Ion Torrent. Although throughput is often 

considered the most important consideration in sequencing technology innovation, 

read length is a limiting factor in the ability to assemble sequence data and detect 

large structural variants such as inversions and other rearrangements within a 

genome. 

In fact, short read length is the root cause of most of the complexity involved 

in HTS data analysis. Short reads necessitate high coverage to ensure that all (or 

most) regions of the genome are properly represented. The requirement for high 

coverage leads to large datasets that are difficult to analyze. This is partially due to 

the sheer size of the data sets, but also because of the complex algorithms required

to resolve or remove errors within reads, detect variants, and address the 

challenges of assembly and mapping. The idealized sequencer would produce a 

single, error free, long read for each chromosome or other genetic element within a 

sample, requiring minimal further processing beyond sequencing. While it is 

impossible to say whether the technology necessary to produce such reads will ever

exist, some emerging “3rd generation” technologies are making major 

improvements on read length. Single Molecule Real Time sequencing (SMRT) from 

Pacific Biosciences has slowly but steadily improved both length and throughput, 

and actual data from Oxford Nanopore's long awaited implementation of nanopore 

DNA sequencing technology was presented at the February 2014 Advances in 

Genome Biology & Technology (AGBT) meeting. Few details are available for the 

Oxford Nanopore data but the cost for PacBio data is still too high for wide-spread 

adoption by the human genome resequencing community. However, the landscape 

http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm/
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of de novo bacterial genome assembly is already starting to change with the latest 

advancements from PacBio.

This leaves software packages such as ARC, StopGap, and the hundreds of 

other tools for analyzing high throughput sequencing data in a strange position. 

These tools were designed with the currently dominant sequencing platform 

(Illumina) in mind, and have great utility for the large number of unanalyzed 

datasets that were produced in the rush to become part of the HTS revolution. 

However, future improvements in throughput and read length for 3rd generation 

sequencing platforms could rapidly render many of these tools obsolete. 

The VChip

The VChip contains probes for gene sequences from 313 bacterial strains 

representing 184 bacterial species as well as 716 selected human genes. The 

microbial communities living on and in the human body have emerged as a major 

new frontier in research and medicine, particularly since investments from the NIH 

in the Human Microbiome Project have allowed for larger scale data collection and 

characterization efforts than had previously been possible. The interplay between 

these organisms and the human host appear to directly impact health, leading to 

illness when disturbed as in the case of bacterial vaginosis. The VChip represents 

an embodiment of this interplay, containing probes for both bacterial genes and a 

panel of human genes involved in a variety of functions that may be involved in 

maintaining, or responding to changes in the vaginal bacterial community. Collecting

information about simultaneous changes in gene expression in the bacteria and 

human host may lead to a better understanding of how these system work together, 

provide insights into why communities change over time, and identify the drivers of 

disease. Microarrays also have a well established utility for measuring effects of 

treatment. A platform such as the VChip may provide useful insights that provide a 

basis for the development of methods to manipulate the microbiota (or host) to re-

establish a healthy state following a disturbance.

The VChip represents a use of what might arguably be the pinnacle of 

microarray technology: custom, programmable, UV light directed synthesis of 60 bp 
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oligonucleotides at the incredibly high density of 1.4 million spots in triplicate on a 

standard glass microscope slide. While microarrays have become a standard tool in

many biological laboratories, their use is in decline due to the emergence and rapid 

improvements in HTS. In response to the increased popularity of sequencing based 

methods, Roche NimbleGen has discontinued its microarray operations, making it 

impossible to purchase the VChip in its current form. Other options for printing the 

set of probes developed for the VChip are available however, including the Custom 

Gene Expression Microarrays from Agilent Technologies 

(www.genomics.agilent.com) and MyGeneChipTM custom arrays by Affymetrix 

(www.affymetrix.com).

http://www.affymetrix.com/
http://www.genomics.agilent.com/
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